
IEEE/ASME TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. ??, NO. ?, DECEMBER 2018

A Fast Algebraic Estimator for System
Parameter Estimation and Online Controller

Tuning - A Nanopositioning Application

Abstract—Parameter uncertainty is a key challenge in
the real-time control of nanopositioners employed in Scan-
ning Probe Microscopy. Changes in the sample to be
scanned, introduces changes in system resonances; re-
quiring instantaneous online tuning of controller parame-
ters to ensure stable, optimal scanning performance. This
paper presents a method based on the frequency-domain
algebraic derivative approach for the accurate online iden-
tification of the nanopositioner’s parameters. The param-
eter estimates are produced within a fraction of one pe-
riod of the resonant mode frequency, allowing almost in-
stantaneous tuning of controller parameters. Experimental
results show that the proposed method can be utilized
to automatically tune an Integral Resonant Control (IRC)
scheme, that combines both damping and tracking actions,
and consequently deliver positioning performance far su-
perior to that achieved solely due to the scheme’s inherent
robustness properties. It is further shown that the achieved
performance compares favourably with an optimally de-
signed control scheme of the same type.

Index Terms—Nanopositioning, Algebraic Parameter Es-
timation, Integral Resonant Control.

I. INTRODUCTION

H IGH-SPEED NANOPOSITIONING is a key enabler in
several scientific areas such as biotechnology [1], [2],

fibre optics [3], medicine [4], sensing [5] etc. Piezoelectric-
stack driven nanopositioners have gained high popularity in
recent years, [6] due to their numerous advantages such as
mechanical robustness, relatively large travel ranges, high
resolution, repeatability, accuracy and absence of friction or
stiction. The resonant dynamics of these nanopositioners, com-
bined with the nonlinear effects induced by the piezoelectric
actuators, i.e., hysteresis and creep, mandate the design and
implementation of an effective closed-loop control scheme to
achieve accurate positioning performance. Consequently, most
popular control schemes incorporate both damping (for the
mechanical resonances) and tracking (for accurate positioning)
actions, [7].

During active scanning operations, changes in resonant fre-
quency by up to 80%, can be introduced by numerous factors.
Some of these changes can be estimated to a certain extent -
for example: changes in the mass of the sample scanned, addi-
tional mass introduced by heating elements, magnetic coils or
liquid cells etc. On the other hand, changes in the temperature,
humidity, payload during pick and place tasks at nanometric
scale, tribology variations etc., are difficult to predict [8].
This uncertainty in key system parameters makes it extremely
difficult to design effective controllers, as most control design

techniques (and performance thereof) are based on an accurate
system model, [9]. Till date, this parameter uncertainty was
addressed by ascertaining that the designed control scheme
was robust to parameter variations within a certain operational
limit. Consequently, several control techniques that possess
adequate robustness have been proposed, [10], [11], [12],
[13], [14], [15]. These techniques, though robust, undergo
considerable degradation in positioning performance when the
system moves away from the nominal model parameters on
which the controller design was initially based. This is why
many commercial nanopositioners define a limited range of
admissible payloads (changes in mass results in subsequent
changes in resonant frequency) and indicate the maximum
scanning frequency associated with each mass, for which the
nanopositioners deliver acceptable positioning performance.

To overcome this limitation, this paper applies the general
algebraic framework for linear identification proposed in [16],
to formulate a specific algorithm aimed at the online parameter
estimation of a lightly damped second order systems, hitherto
not addressed in literature. Furthermore, a new re-initiation
algorithm is also proposed. Though several re-initiation algo-
rithms have been published in literature, arguably the more
efficient one was reported in [17]. The re-initiation algorithm
proposed in this paper, outperforms the one presented in
[17] by: 1) Requiring less computational effort and computer
memory and 2) Ensuring smooth convergence to zero, thereby
yielding parameter estimates in less time ( typically shorter
than one period of the resonance frequency). Moreover, previ-
ous works [18] and [19] identified only two parameters of
slowly oscillating systems (the resonance frequencies were
under 2 Hz). The algorithm proposed in this paper is capable
of identifying three parameters of significantly fast oscillating
system (resonance frequency >700 Hz) in less than one period
of the resonance frequency, using relatively low sampling rates
and limited computation capabilities. The proposed estimator
is especially well-suited to track step-wise changes in system
parameters such as those introduced by the addition or removal
of mass (effected by changes in the scanned sample) on
the nanopositioner. These estimates can further be utilized to
automatically tune a multitude of popular control schemes
applied to nanopositioners. Due to it’s simplicity, inherent
robustness, good performance and guaranteed stability, the
Integral Resonant Control (IRC) scheme that combines both
damping and tracking actions, [12], has been chosen as a
candidate to demonstrate the efficacy of the proposed algebraic
estimation and re-initiation algorithm.

This paper is organized as follows. Section II formally states
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the problem and presents the algebraic estimation scheme
utilized in this work. The experimental setup is described in
Section III. Simulated as well as real-time experimental results
that validate the proposed algebraic estimator are presented
and discussed in Section IV. Section V concludes the paper.

II. PROBLEM STATEMENT AND BACKGROUND THEORY

The frequency-response of one axis of a typical nanopo-
sitioner exhibits a dominant lowly-damped resonant peak and
can be modeled with good accuracy, as a lightly-damped mass-
spring-damper system whose dynamics can be described by:

ÿ(t) + 2ζωnẏ(t) + ω2
ny(t) = σ2u(t) (1)

where y(t) is the displacement of the moving platform, u(t)
is the input voltage applied to the actuator, σ2 corresponds to
the equivalent stiffness of the mechanism, ζ is the damping
coefficient, and ωn is the natural frequency of vibration of
the system, [20]. To initiate any control design, the system
parameters σ, ζ, and ωn need to be estimated accurately from
u(t) and y(t). These system parameters are often time-variant.
Furthermore, these estimated parameters are often utilized to
tune a controller in an adaptive control scheme. Thus, the
desirable features for an appropriate estimation algorithm are:

1) Short estimation time: The time required to generate an
accurate estimate must be shorter than one period of
the targeted resonant mode frequency. This will enable
quick tuning of the controller parameters without long
periods of sub-par performance due to an incorrectly
tuned controller. Since the nanopositioner used in the
experiments to verify this work exhibits its first resonant
mode at ≈700 Hz, an estimation time of the order of 1
ms is required.

2) Robustness to unmodeled dynamics: The system is mod-
eled as a second-order resonant system, yet, as seen in
Section III, at least four high-frequency resonant modes
can be seen in the recorded frequency response for the
nanopositioner axis. As the frequency of the second
mode is less than two times the frequency of the first
mode, it is apparent that the second mode will have a
clear impact on the output signal and can potentially
introduce errors in any system parameters identified
based on a single resonant-mode model.

3) Practicality and Applicability: The algorithm should be
implementable on a standard PC with modest computa-
tion capabilities and be relatively insensitive to coarse
sampling. Furthermore, the identification algorithm must
be relatively simple in order to facilitate real-time imple-
mentation. For the system used to conduct experiments
reported in Section III, the sampling rate is about 30
KSs−1. Therefore, each period of the first resonant
mode is characterized by only 30-40 samples (and a
significantly less number of samples characterize the
higher modes).

Phase-locked-loop (PLL) topologies [21], adaptive notch
filters [22], robust globally convergent estimators [23], contin-
uous least squares [24], frequency-locked-loop filters [25] and
Prony-based methods [26] have all been applied to estimate

the parameters of undamped resonant modes. However, these
methods show high sensitivity to noise as well as the neglected
high-frequency modes and in most instances, are incapable
of providing good estimates for systems with lightly damped
resonant modes, typical of nanopositioner axes. Additionally,
these methods require time equivalent to several periods of
the resonant frequency to generate an accurate estimate of
the system parameters. All these drawbacks are overcome
by algebraic estimators [27], [28]. Continuous transfer func-
tions have also been obtained using algebraic identification
techniques, having mainly been applied to electrical drives
[29], [30]. It was shown in [31], that algebraic identification
methods converge to accurate estimates in significantly less
time compared to algorithms based on discrete least squares.
Moreover, algebraic identification techniques are based on
relatively simple algorithms that can be easily implemented in
real-time, and possess low sensitivity to slow sampling rates.

As the algebraic identification technique possesses all the
desirable features listed earlier, it emerges as the most appro-
priate approach to be applied to parameter identification and
controller tuning for nanopositioning applications.

A. Estimation algorithm

The Laplace transform of the equation of motion of the a
single mass-spring-damper system presented in (1), is given
by:

σ2U(s) =s2Y (s)− sy(0)− ẏ(0)
+2ζωn [sY (s)− y(0)] + ω2

nY (s) (2)

where Y and U are the Laplace transforms of y(t) and
u(t) respectively. Double differentiation with respect to the
complex variable ”s”, cancels the initial conditions.

∂2U
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In order to avoid multiplications by positive powers of
s, which are translated as undesirable time derivatives in
the time-domain, we multiply (3) by s−2. Rearranging this
expression, we obtain:
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Let L denote the usual operational calculus transform
acting on exponentially bounded signals with bounded left
support [32]. Recall that L−1s(·) = d/dt(·), L−11/s(·) =∫ t
0
(·)(σ)dσ, and L−1dv/dsv(·) = (−1)vtv(·). Expression (4)

can thus be written in the time-domain as follows:
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Expression (5) can be written in a compact form as:

q(t) =
1

σ2
β(t) +

2ζωn
σ2

ξ(t) +
ω2
n

σ2
η(t) (6)

where q(t), β(t), ξ(t), and η(t) can be calculated in real-time
as they are the outputs of the following time-varying linear
unstable filters:

q(t) = z1 β = z3 + t2y ξ = z5 η = z7

ż1 = z2 ż3 = z4 − 4ty ż5 = z6 + t2y ż7 = z8

ż2 = t2u ż4 = 2y ż6 = −2ty ż8 = t2y

(7)

whose initial states are set to zero.
The linear equation (6) has three unknowns, σ, ζ and ωn,

which can be obtained from a least-squares error fitting in the
time interval [ti, tf ] (where the interval [ti, tf ] is equal to the
interval of time between the first and the last available sample).
With a change of variables such that:

A =
1

σ2
, B =

2ζωn
σ2

, C =
ω2
n

σ2
, (8)

a cost function can be defined as:

ε =

∫ tf
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[ β(τ) ξ(τ) η(τ)
]
·

 A
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− q(τ)


2

dτ,

(9)
The minimization of this cost function leads to:

 A
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·
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The batch formula expressed in (10), was first applied
for algebraic parameter estimation in [29]. Furthermore, a
recursive formula of the least-squares algorithm that demon-
strated increased computational efficiency, was used in [30]
to estimate the parameters of a DC motor using an algebraic
estimator. The parameters σ, ζ and ωn are only weakly linearly
identifiable. This signifies that once A, B and C have been
identified, σ, ζ and ωn can be easily determined by using the
following non-linear relations:

σ =
1√
A
, ζ = B

√
1

4AC
, and ωn =

√
C

A
(11)

B. Re-initiation Algorithm

In order to perform the online estimation of the nanopo-
sitioner parameters, it is necessary to reset and re-initiate
the aforementioned algorithm because: 1) linear time-varying
filters are unstable, and the values of the variables involved
in the estimation may therefore become very large as time
increases and 2) the noise present in the measurements may
produce wrong estimates such as negative values for σ, ζ
and ωn. To avoid these issues, it is important to have a
criterion which clearly discriminates between two cases: 1)
the estimator is providing good estimates and the procedure
has converged to meaningful close-to-actual estimates of the
parameters and 2) the samples utilized to produce the estimates
cannot converge and it is necessary to re-initiate the estimation
algorithm.

In order to determine the time of re-initiation, [17] proposed
a criterion based on the moving average and on the moving
standard deviation of the estimates of frequency. However,
these operations require the storage of a relatively high number
of samples that comprise the moving window that is utilized to
perform the average and the standard deviation. It is important
to note that even if the recursive implementation of these
operations is performed, all the samples need to be stored in
a circular array. This may cause issues if the system presents
limited memory or if it takes a long time to displace all the
samples through the circular array.

To overcome the aforementioned issues and to utilize a more
computationally efficient approach, the proposed procedure
is based on the Exponentially Weighted Moving Average
(EWMA) and the Exponentially Weighted Moving Standard
Deviation (EWMSTD) [33]. These two operators are com-
monly employed in forecasting seasonals and trends in eco-
nomics. However, to the best of the authors’ knowledge, this
is the first time this criterion is used to define the re-initiation
procedure of an algebraic estimator. The recursive formulae
of the EWMA and the EWMSTD are given below:

Z(i) = λ1 ·X(i) + (1− λ1)Z(i− 1), (12)

and:

S(i) =
√
λ2(X(i)− Z(i))2 + (1− λ2)S2(i− 1) (13)

where Z(i) is the EWMA computed for the ith sample
X(i), S(i) is the ith EWMSTD computed for the ith sample
X(i), and λj , 0 < λj ≤ 1, j = 1, 2 are two smoothing
constants. In both cases, the initialization values are defined
as Z(1) = X(1) and S(1) = X(1). It is important to note that
from a control point of view, the EWMA is just a different
representation of the Discrete Euler Backward implementation
of a first-order low-pass filter. By using these definitions and
the outputs of the algebraic estimator provided by (11), it
can be concluded that the estimation has converged when the
condition:

Sωn
(n)

|Zωn
(n)|

≤ δ ∩ Zσ(n) > 0 ∩ Zζ(n) > 0 (14)
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is verified. Sωn
(n) and Zωn

(n) are the standard deviation and
the average value of the estimated natural frequency of the
system computed by using the EWMA and the EWMSTD. δ
is the tolerance parameter that determines the accuracy of the
estimate of the natural frequency of the system. Additionally,
conditions Zσ(n) > 0 and Zζ(n) > 0 are imposed to ensure
σ > 0 and ζ > 0. Considering Ts to be the sampling time, the
sample under which condition (14) is verified is denoted as n̂,
and the time n̂ ·Ts is the operation time interval corresponding
to the interval of time from the beginning of the estimation
process (it is assumed that n = 0 when the estimation starts)
until (14) is satisfied. The estimates provided by the algorithm
are:

ωen = Zωn
(n̂), σe = Zσ(n̂), ζe = Zζ(n̂), (15)

If condition (14) is not verified after time Tr, the resulting
estimates are deemed invalid and the algorithm is re-initiated.
The selection of Tr is based on experience: a good compromise
is often that of choosing a value of the order of the period of
the lowest frequency that has to be estimated.

The proposed real-time estimation algorithm can be sum-
marized as follows:

1) Initiate the algorithm.
2) During each sampling period, use inputs of the

Brunovsky filter (7), i.e. the voltage applied to the
system u, the displacement of the nanopositioner y, and
the time t as input to the estimator and compute new
estimates of system parameters (ωn, σ, and ζ) using
(10) and (11).

3) Compute (12), (13) using successive estimates of ωn σ,
and ζ.

4) Check the re-initiation criterion (14). If this criterion
is verified, the last value of each EWMA will be
considered a valid estimation of the system parameters
(15). If a time Tr is reached and (14) is not fulfilled,
return to step 1).

In the next section, a brief description of the experimen-
tal setup employed to validate the efficacy of the proposed
algorithm is presented, followed by both simulation and ex-
perimental results.

III. EXPERIMENTAL SETUP

The experimental setup pictured in Fig. 1, consists of
a flexure-based XY serial-kinematic nanopositioner, voltage
amplifiers and displacement sensors. The nanopositioner is
driven by two piezoelectric-stacks, each with a stroke of ± 20
µm. The nanopositioner delivers translational motions along
x and y axes which are measured by a Microsense 4810
capacitive displacement sensor and a 2805 measurement probe
with a measurement range of ± 50 µm for a corresponding
voltage output of ± 10 V. All experimental data is recorded
in real-time, using a PC OPTIPLEX 780 with an Intel(R)
Core(TM)2 Duo Processor running at 3.167 GHz and equipped
with 2GB of DDR3 RAM memory. The whole system is
capable of deterministic sampling times as low as 30 µs. In
order to interface between the nanopositioner and the PC,

a PCI-6621 data acquisition card from National Instruments
installed on a second PC running the Real-Time Module from
LabVIEW is utilized.

Fig. 1. A two-axis serial kinematic nanopositioner, designed at the
EasyLab, University of Nevada, Reno.

In order to characterize the dynamics of the nanoposi-
tioner, small signal frequency response functions (FRFs) were
recorded. The FRFs are obtained by applying a sinusoidal
chirp signal (from 10 Hz to 1800 Hz) with an amplitude of
0.2 V as input to the voltage amplifier of the x−axis and
measuring the output signal (sensor voltage proportional to
axial displacement) along the same axis. Subsequently, the
FRF is computed by taking the Fourier transform of the
recorded data. The same procedure was repeated for obtaining
the y−axis FRF. It is important to note that since the capacitive
sensor measures relative displacements from a zero point,
before each experiment a new zero point is measured in order
to avoid any offset in the measurements. In Figure 2, the
magnitude responses of the two axes of the nanopositioner
are plotted (recorded using a sampling time of 50 µs).

The chosen frequency range captures the dominant resonant
mode of the nanopositioner as well as a number of high-
frequency secondary modes that can be neglected due to their
low dynamic range when compared to the first dominant
resonant mode. The identified transfer function parameters for
both axes of the nanopositioner are given in Table I.
It is also important to note that the parameters of the system
used in (1) correspond to the dominant first resonant mode of
the corresponding axis as reported in Table I.

IV. REAL-TIME PARAMETER ESTIMATION OF A
NANOPOSITIONER

The proposed algebraic estimator involves two algorithms:
the estimation procedure and the convergence criterion. In
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Fig. 2. (a) FRF of the x−axis and (b) FRF of the y−axis of the
experimental platform

TABLE I
PARAMETERS OF THE NANOPOSITIONER

X axis

Mode Gain Damping Frequency (rad/s)

1st σ1 = 3200 ζ1 = 0.011 ω1 = 716.2 · 2π
2nd σ2 = 250 ζ2 = 0.0008 ω2 = 1294 · 2π
3rd σ3 = 350 ζ3 = 0.0008 ω3 = 1578 · 2π
4th σ4 = 800 ζ4 = 0.0001 ω4 = 2325 · 2π

Y axis

Mode Gain Damping Frequency (rad/s)

1st σ1 = 2250 ζ1 = 0.013 ω1 = 505 · 2π
2nd σ2 = 250 ζ2 = 0.0005 ω2 = 1235 · 2π
3rd σ3 = 100 ζ3 = 0.0008 ω3 = 1578 · 2π
4th σ4 = 400 ζ4 = 0.0001 ω4 = 2325 · 2π

Subsection IV-A, simulations are carried out to illustrate
the accuracy, small convergence time of the estimator and
the effectiveness of the convergence criterion given by (14).
Consequently, the experimental setup is utilized to validate the
efficacy of the proposed technique using a practical application
in Subsection IV-B. Results provided by the algebraic estima-
tor are used to automatically tune the parameters of the Integral
Resonant Controller (IRC) applied to impart damping to the
first resonant mode of the nanopositioner axis (inner loop) as
well as the integral controller gain (outer loop) that enforces
reference tracking, [12]. It is experimentally demonstrated
that the proposed method is capable of tracking step-wise
changes in the parameters of the system and provides real-time
estimations which can be used to perform online automatic
tuning of classical control schemes typically employed in
nanopositioning systems, thus improving their performance.

A. Simulated results
The most popular trajectory nanopositioners are forced to

follow is a raster pattern. This is generated by moving one
axis of the nanopositioner in a triangular trajectory and the
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Fig. 3. Input signals applied to the simulated model of the nanoposi-
tioner and displacement produced

other in a stair-case trajectory. First, the identified model
of the nanopositioner is utilized to simulate the response of
the system to the two inputs: step and triangular signals.
Later, using the the open-loop response of the system, the
performance of the algebraic estimator in correctly estimat-
ing the parameters of the system is studied. To highlight
the contribution of this article and the advantages of the
application of algebraic parameter estimation to a practical
system, the relationship between the maximum achievable
bandwidth (considering the ±3dB criterion) and the variation
in the resonant frequency of the nanopositioner axis are studied
under two operating scenarios: (i) Nominal operation -The
IRC-based control scheme is pre-tuned to the parameters of the
unloaded nanopositioner and (ii) Online algebraic estimation
and tuning: The IRC-based control scheme is tuned online
using the system parameter estimates obtained via the adopted
algebraic estimation technique.

1) Response to triangular and step signals: Both the step
and the triangular inputs have an amplitude of 0.2 V. The
triangular input trajectory used to simulate the response of
the system has a frequency of 35 Hz, see Figure 3. The
step response clearly shows high-frequency oscillations caused
by the excitation of the first resonant mode of the system.
These oscillations are utilized by the algebraic estimator to
identify the parameters of the nanopositioner and, since the
step signal produces oscillations with a higher amplitude than
those produced by the triangular signal 1, the step signal leads
to estimates quicker than the triangular signal.

In order to illustrate the working principle of the proposed
method and demonstrate its fast convergence capabilities,
Figure 4 shows the displacement of the nanopositioner when
excited by the aforementioned step signal. The evolution of
the estimation of the natural frequency of the system and a
comparison between the evolution of the re-initiation condition
Sn(ωn)/|Zn(ωn)| and the re-initiation condition proposed in
[17] (possibly the most efficient of the conditions proposed in
literature for algebraic estimators) are also presented. It is clear
that the estimation of ωn converges very quickly to its actual
value, and that the convergence criterion is a monotonically
decreasing function which tends to zero (a feature not achieved
with the condition proposed in [17]). Note that the limit

1This is because the amplitude of the harmonic frequency component
that excites the system resonance is higher in the step signal than in the
triangular signal.
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Fig. 5. Estimation of the natural frequency of the system excited by a
step input signal.

tolerance δ is reached in a very short time, and thus the
condition (14) is verified. Consequently, the estimate of the
natural frequency is produced in less than one cycle of the
high-frequency oscillations experienced by the system. The
evolution of the estimator in the case of a triangular signal
is omitted because it presents a similar behaviour but with
slightly slower convergence.

Once the efficacy of the algebraic estimator and the conver-
gence criterion are verified, the complete procedure (including
the re-initiation step) is analyzed. In this case, the maximum
time required to produce a valid estimation Tr is set to 0.015
s. The resulting estimates can be seen in Figure 5. Table II
gives a comparison of the estimates produced by the algorithm
for both step and triangular inputs.

Because the exact values of the parameters ωn, σ and ζ are

TABLE II
QUANTIFYING ESTIMATOR PERFORMANCE

Step input

Parameter Min. Value Average Value Max. Value Standard
deviation

ωn 0.02 (%) 0.11 (%) 0.24 (%) 0.028 (%)
σ 0.067 (%) 0.23 (%) 0.43 (%) 0.052 (%)
ζ 2.01 (%) 14.76 (%) 17.67 (%) 3.28 (%)
Operation time 0.00105 0.00106 0.00165 8.24·10−5

interval (s)

Triangular input

Parameter Min. Value Average Value Max. Value Standard
deviation

ωn 0.03(%) 0.62 (%) 2.30 (%) 0.63 (%)
σ 0.02 (%) 0.75 (%) 2.66 (%) 0.74 (%)
ζ 16.35 (%) 17.79 (%) 18.53 (%) 0.59 (%)
Operation time 0.00105 0.00109 0.0033 0.00031
interval (s)

known in the simulation, the performance of the estimates is
expressed in terms of relative error with regards to the actual
values of the parameters of the system. As several estimates
have been produced in each experiment (because every time
the estimator is re-initiated, a new estimate is produced), the
minimum, maximum and average errors are shown along with
the standard deviation of the errors of the estimation of each
parameter. The last index which is utilized to describe the
performance of the estimator is the time required to generate
each estimate. In each case, the maximum value corresponds
to the time taken to produce the first estimate in each case.
The time taken for the succeeding estimates is considerably
shorter. Additionally, it can be seen that estimates derived with
triangular input excitation constitute a larger error compared
to those generated via step excitation. This is because of the
smaller magnitude of high-frequency oscillations produced by
the triangular signal. However, in both cases, the estimates of
ωn and σ (which are the most important parameters required
for the correct tuning of any control scheme) present an
estimation error less than %3.

2) Performance quantification in closed-loop: To demon-
strate the efficacy and performance improvement facilitated
by the proposed algebraic estimation with online tuning of
control parameters, the proposed technique was compared
with the traditional closed-loop approach where the controller
parameters are pre-tuned for the nominal unloaded case. For
both the traditional pre-tuned and the proposed online-tuned
cases, the resonant mode frequency of the nanopositioner
axis was reduced to simulate loading and the standard ±3
dB criterion was used a performance metric. In both cases,
the control scheme used was an inner-loop Integral Resonant
Controller for damping and an outer-loop integral controller
for tracking. Note that for the traditional pre-tuned case,
closed-loop performance in the presence of variation in system
parameters (resonance frequency and damping coefficient in
this case) is solely dependent on the inherent robustness
properties of the adopted control scheme. The simulation
results are shown in Figure 6.

As seen in Figure 6 (a), for the traditional pre-tuned case, the
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Fig. 6. Open- and closed-loop FRFs of a nanopositioner axis incor-
porating an IRC scheme with integral tracking designed using the (a)
Traditional pre-tuned approach and, (b) Proposed algebraic estimation
with online tuning of controller parameters (c) Relationship between
closed-loop bandwidth and resonant frequency of the system for the
traditional and proposed approaches.

shape of the closed-loop FRF and therefore the resulting 3 dB
bandwidth varies substantially and degrades rapidly as the res-
onant frequency moves away from the nominal unloaded case.
The deterioration in the closed-loop bandwidth is clearly seen
in Figure 6 (c). On the other hand, as the proposed scheme first
estimates the system parameters (resonance frequency and the
damping coefficient (ωn and ζ) and then tunes the controller
gains for every resonance frequency shift individually, the loss
of bandwidth is more graceful and gradual when compared
with the traditional pre-tuned case. This is evident from the
FRF’s presented in Figure 6 (b) as well as from the bandwidth
vs resonance frequency plot given in Figure 6 (c).

B. Experimental results

As gleaned from the simulations, the worst case scenario
for the algebraic estimator is the utilization of a triangular
input signal, as it produces parameter estimates with larger
average errors and requires a longer time to produce them.
Therefore, to rigorously interrogate the effectiveness of the
proposed scheme and demonstrate its potential for practical
application, the worst-case, i.e., employing a triangular signal
for procuring parameter estimates, was chosen. It is obvious
that the step signal input will result in more accurate estimates
and improved estimator performance.

( )y t( )r t ( )G sdK
s

tK
s

d

Fig. 7. Block diagram of the IRC control scheme combining both
damping and tracking actions.

In this section, the estimates produced by the algebraic
estimator are utilized to tune the parameters of the IRC-based
damping combined with Integral tracking, see Fig. 7. The three
controller parameters that require tuning are: (i) The tracking
gain - Kt, (ii) The damping gain - Kd, and (iii) The feed-
through term - d. The appropriate values of these parameters
are computed online using formulas provided in [34] viz:

α =
√
23/2 + 4, β =

√
2 + 2

ωd =
ωnαζ + ωn

√
(α2 − 4β)ζ2 + β

β

Kd =
−2αζω3

d + ωnβω
2
d − ω3

n

2ζσ2
(16)

d =
βσ2ω2

d − ω2
nσ

2

2ωnαζω3
d − ω2

nβω
2
d + ω4

n

Kt =
2ζω4

d

ωnβω2
d − 2αζω3

d − ω3
n

These equations aim to place the closed-loop poles of the
controlled system in a low-pass Butterworth pattern whose
cutoff frequency corresponds to ωd. It can be seen that the
design of the three parameters of the controller depends on the
numerical values of the first resonant mode frequency ωn, the
damping coefficient ζ and the dc gain factor σ. As these design
rules place the closed-loop poles of the system in very definite
positions, any change in the parameters of the nanopositioner
would lead to a displacement of the closed-loop poles of the
system and thus a degradation of the system’s performance,
which in extreme cases may lead to instability.

To demonstrate the effectiveness of the proposed algorithm,
two scenarios are tested experimentally. In Case 1, assuming
no previous knowledge of the system, the estimator first gener-
ates parameter estimates using the output of the nanopositioner
axis under triangular wave excitation and then uses these
estimates to tune the parameters of the IRC control scheme.
In Case 2 the nanopositioner is assumed to be operating under
nominal conditions and a sudden change in system parameters
is introduced via loading. The proposed algorithm is tasked
with re-estimating the new system parameters and conse-
quently tuning the control scheme parameters appropriately.
To ensue that the proposed scheme works under all possible
scenarios of parameter changes, Case 2 is further split into
two sub-cases: (a) Payload is increased and (b) Payload is
decreased.
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Fig. 8. Evolution of the estimates of the resonance frequency when the
experimental system is excited with a triangular signal of 35 Hz. The time
at which the algebraic estimator converges is indicated in the figure.

1) Case1: Parameter estimation and control scheme tuning
without prior system knowledge: In this experiment, the X-
axis of the nanopositioner is excited in open-loop with a trian-
gular signal. The algebraic estimator is initialized to estimate
the parameters of the system and the obtained estimates are
given as inputs to the design rules of the IRC-based control
scheme (16) (it is important to note that all this is done on-
line and autonomously). Finally, once the parameters of the
control scheme have been computed, the control scheme is
applied to the system to enforce low-error reference tracking.
For comparison, the experimental results obtained with this
procedure and the experimental results obtained when the
control scheme is designed knowing the identified parameters
of the system (pre-tuned IRC scheme) are presented in Fig. 8.
The open-loop response of the system and the time needed to
produce the parameter estimates are also included.

It was noticed that when the re-initiation was triggered in
this experiment after the first estimation, the design of the
regulator was so effective that the displacement produced by
the closed-loop system presents very small oscillations due to
the dominant resonant mode. Thus, the estimator was unable
to produce any further estimate (it was not able to fulfill (14)
in a time Tr=0.015 s).

2) Case 2 : Online tuning of the IRC scheme when payload
is increased (Resonance frequency decreases): This experi-
ment was carried out as follows: The parameters of the X-
axis of the nanopositioner are used to design the IRC-based
control scheme by using (16). The resulting control scheme
is then applied to the Y -axis and a 35 Hz triangular signal
is used as the reference input. As seen from Table I and
Fig. 2, the Y -axis has a much lower resonance frequency
(505 Hz) compared to the X-axis (716 Hz) and therefore,
this procedure effectively mimics a real-life scenario where
a payload is added to the nanopositioner. Subsequently, the
algebraic estimator is triggered to estimate the parameters of
the Y -axis and re-tune the parameters of the control scheme
in order to improve its performance.

The experimental results obtained with the nominal, pre-
tuned IRC for the higher resonance frequency, the IRC de-
signed using the proposed online-tuning scheme and the IRC
pre-tuned for the correct (reduced) resonance frequency are
contrasted in Fig. 9. It is clear that after the operation time

1.0
0.8
0.6
0.4
0.2

0
-0.2
-0.4
-0.6
-0.8
-1.0

Di
sp

la
ce

m
en

t (
μm

)

Time (s)
0                 0.01                0.02                0.03                0.04               0.05

Reference
IRC incorrectly tuned
IRC estimator-based tuned
IRC optimally tuned

Operation time
interval: 0.0075s

1.0
0.8
0.6
0.4
0.2

0
-0.2
-0.4
-0.6
-0.8
-1.0

Di
sp

la
ce

m
en

t (
μm

)
Time (s)

0                 0.01                0.02                0.03                0.04               0.05

Reference
IRC incorrectly tuned
IRC estimator-based tuned
IRC optimally tuned

Operation time
interval: 0.014s

a) Addition of mass

b) Removal of mass

Fig. 9. Displacement of the nanopositioner before and after the es-
timation procedure in the case of (a) Increase in payload (decrease
in resonance frequency) and b) Decrease in payload (increase in
resonance frequency). The operation time when the algebraic estimator
has converged is clearly indicated.

interval (time required for generating parameter estimates), the
consequently tuned IRC-based scheme delivers performance
almost matching the one delivered by the optimally tuned one.

It was also noted that after the first estimation, the closed-
loop system presents very small oscillations and the estimator
was unable to produce any further estimates.

3) Case 3 : Online tuning of the IRC scheme when pay-
load is decreased (Resonance frequency increases): This last
experiment aims to mimic the removal of the payload from a
nanopositioner that is working with a control scheme designed
to operate with the payload (appropriate resonance frequency).
The same reasoning as in the previous case is applied, but
in reverse. In this case, parameters of the Y -axis of the
nanopositioner are first used to design the IRC-based control
scheme by using (16), then this control scheme is applied
to the X-axis and tracking performance is ascertained using
the same 35 Hz triangular trajectory. The algebraic estimator
is triggered to estimate the parameters of the X axis and to
redesign the parameters of the controller in order to improve
its performance. The experimental results obtained are shown
in Fig. 9. It is important to note that in this case, the algebraic
estimator needs a longer time interval to produce the estimates
of the parameters of the system than in the case of addition
of payload. This is because a removal of the payload of the
system leads to smaller residual vibrations in the tracking of
reference signals due to increase in resonance frequency and
the lower amplitude of the relevant harmonic component in
the triangular trajectory that excites it.
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TABLE III
PERFORMANCE COMPARISON

Quantifying algebraic estimator performance

Case ωn error σ error ζ error

Without previous knowledge 4.63% 7.8% 174%
Increased payload 1.45% 5.22% 180%
Decreased payload 30.51% 33.36% 150%

Quantifying controller estimator performance

IRC estimator-based tuned IRC incorrectly tuned
Index Payload↑ Payload↓ Payload↑ Payload↓
ISE: 0.00009 0.00006 0.0016 0.00046
IAE: 0.0015 0.0012 0.0058 0.0034
ITAE: 0.00002 0.00001 0.00008 0.00005

4) Performance of the proposed algorithm: The experi-
mental results obtained in the three aforementioned cases,
i.e. no previous knowledge of the system, addition of mass
and, removal of mass are summarized in Table III. This table
quantify on the one hand the performance of the algebraic
estimator, by presenting the errors in the estimates of the
three parameters of the system, i.e. ωn, σ and ζ, and on
the other hand, compares the performance of the classical
IRC scheme versus the proposed algorithm in the tracking
of a triangular signal. In order to compare these two schemes,
the classical measures of controlled system performance are
utilized, i.e. integral squared error (ISE), integral absolute error
(IAE) and integral time-weighted absolute error (ITAE). It is
important to note that in this case, the goal was not to track the
triangular signal without error, but to reproduce the tracking
capabilities of the IRC scheme designed by considering a
perfect knowledge of the parameters of the system, this is
why the different error indexes are computed considering the
difference with the signal produced by the IRC optimally
tuned.

It can be seen from the data presented in Table III that the
proposed control scheme produces very accurate estimates of
the parameters of the system and, therefore leads to a tuning
of the IRC that is very closed to the case with complete
knowledge of the parameters of the system, thus producing
much better control performance when compared with the
traditional IRC without automatic tunning.

V. CONCLUSIONS

The algebraic framework for the full parametric identifi-
cation of lightly damped second-order systems is expounded
and further combined with a suitable re-initiation algorithm to
enable the generation of accurate parameter estimates within
one period of the resonance frequency. Simulations as well as
experiments carried out on a nanopositioner validate the effi-
cacy of the proposed technique. Closed-loop tracking results
obtained via the proposed online estimation and consequent
control scheme tuning are in good agreement with those
obtained via an optimally tuned control scheme and clearly
outperform the static pre-tuned control scheme in presence
of parametric variations. This is demonstrated by using the
popular and simple IRC-based control scheme implemented
on a serial-kinematic XY nanopositioner forced to track

typical triangular trajectories. Future research directions in-
clude increasing the number of system parameters that can be
estimated, investigating methods to reduce estimation errors
and incorporating automatic optimal tuning of more evolved
control schemes.
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