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Abstract

Slime mould (Physarum) may not have brains, but they are
capable of solving many significant and challenging prob-
lems. Existing models for studying the intelligent behaviour
of Physarum have overlooked its foraging behaviour under
competitive settings. In this research, we propose a new
model based on Cellular Automata (CA) and Reaction Dif-
fusion (RD) system, where multiple Physarum interact with
each other and with their environment. The novelty of our
model is that the Physarum has six neighbours at equidistant
(hexagonal CA), furthermore, we have extended the model to
3D and multi-dimensional CA grid. The growth of Physarum
is determined by the balance between attraction force to-
wards food resources (determined by mass and quality) and
repulsion forces between competing Physarum according to
their power (mass) and hunger motivation. To validate this
model, numerical experiments were conducted. Physarum
with more mass succeeded in engulfing a larger number of
food resources with high quality in shorter time (number of
iteration). It also occupied larger area of the grid (territory)
and excluded its competitors. We also conducted empirical
analysis to compare the time complexity between the hexag-
onal and Moore neighbourhood, and it showed that hexagonal
neighbourhood is more efficient than Moore in terms of com-
putational cost. To the best of our knowledge, we are the first
to present Physarum in competition mathematical model and
the algorithms inspired from such a model has demonstrated
its promising performance in solving several real world prob-
lems such as mobile wireless sensor networks, and discrete
multi objective optimization problems.

Introduction
Swarm intelligence is one of the most interesting topics
dealing with the collective behaviour of decentralized and
self-organized systems. It consists of a population of sim-
ple agents which can communicate locally with each other
and to their local environment. These interactions can lead
to the emergence of very complex global behaviour (Tan
and Shi, 2017). A variety of swarm intelligence algorithms
for optimization problems such as particle swarm optimiza-
tion (Eberhart and Kennedy, 1995), ant colony optimiza-
tion (Dorigo et al., 1996), Artificial Bee Colony (ABC)
(Karaboga and Basturk, 2007) have been developed with in-
creasingly wide applications in real-world.

In recent years, cellular computational models based on
single cellular organisms function, become an important
branch of biology-inspired computing; Bacterial colonies
(Kim et al., 2007) and Physarum Polycephalum (Slime
mould) (Adamatzky, 2010) are examples. Just like so-
cial insects and animals, Physarum too exhibits swarm in-
telligence; it shares many features of collective behaviour
such as synchronization, communication, positive feedback,
leadership, and response thresholds (Reid and Latty, 2016).
The primitive intelligence of Physarum polycephalum is
mostly demonstrated during its plasmodium stage (a giant
amoeba-like multi-nucleated single cell). Physarum senses
gradients of chemo attractants and repellents and forms a
mycelial yellowish vascular network in search of nutrition
(Cavender, 1995). The Physarum foraging behaviour con-
sists of two simultaneous self-organized processes of expan-
sion (exploration) and shrinkage (exploitation) (Nakagaki
et al., 2001). Physarum protoplasmic flux is changing in
a continuous way with the change of external environmental
conditions(chemotaxis, phototaxis and thermotaxis) (Caven-
der, 1995; Jones et al., 2017). This characteristic allows
Physarum to have great potentials in dealing with network
graph-optimization problems in dynamic environment.

It has been demonstrated that Physarum is capable of find-
ing the shortest path between two points using a simple
heuristic while foraging for food (Nakagaki et al., 2000).
This has inspired computer scientists to develop novel, bio-
inspired algorithms capable of solving many hard prob-
lems (Adamatzky, 2010). Much research has confirmed and
broadened the range of its computation abilities to spatial
representations of various graph problems. Please refer Sun
(2017); Zhang et al. (2016b) for more detailed discussions.

In this paper, we present a novel mathematical model to
simulate multiple Physarum foraging behaviour in compe-
tition settings, based on the trade-offs between their moti-
vation for food, the value of resources (food patch quality),
and in the presence of competitors. We assume that the in-
dividual skills of competition is more efficient to achieve an
optimal balance between exploration and exploration, and
fundamental for the process social collaboration and popu-
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lation diversity. We assume that the individual skills of com-
petition is more efficient to achieve an optimal balance be-
tween exploration and exploration, and fundamental for the
process social collaboration and population diversity.

The rest of this paper is structured as follows: In Section
2, some related work is reviewed. The novelty of our model
is discussed in Section 3, then we proceed to explain our
proposed model in Section 4. Numerical examples are given
to demonstrate how the proposed model simulate multiple
Physarum decision making in competition settings in Sec-
tion 5. Finally, the paper ends with conclusions and sugges-
tions for further researches.

Related Work
Mathematical Models
Many mathematical models have been proposed to study
the Physarum foraging behaviour, for example the flow-
conductivity model (Tero et al., 2007), the cellular model
(Gunji et al., 2008), the multi-agent model (Jones, 2011),
and the shuttle streaming model (Siriwardana and Halga-
muge, 2012) are examples. These models were able to solve
problems such as finding the shortest path in directed or
undirected networks (Zhang et al., 2014), designing sup-
ply chain networks (Zhang et al., 2016a), and simulating
transport networks (Tsompanas et al., 2015). Up to now
these models consider the foraging behaviour when only one
Physarum is presented. They did not address the responses
of individual Physarum in competition settings, which can
lead to the emergence of very complex global behaviour, far
beyond the capability of individual Physarum.

Physarum Competitive Behaviour
Competition is generally referred to the negative effects
caused by the presence of neighbours, usually by reduc-
ing the availability of resources (exploitation-competition).
Competition is very important in driving natural selection as
a superior competitor can eliminate an inferior one from the
area, resulting in competitive exclusion (Hardin, 1960). Im-
perialist Competitive Algorithm (ICA) (Bernal et al., 2017)
and Competition Over food Resources (COR) (Mohseni
et al., 2014) are examples of competition algorithms.

There is increasing evidence that simple organisms like
Physarum have complex social behaviours including co-
operation and competition. Physarum is capable of mak-
ing complex foraging decisions based on trade-offs between
risks, hunger level and food patch quality (Latty and Beek-
man, 2011). Physarum always initiated foraging behaviour
quicker if it was hungry and in the presence of a com-
petitor (Stirrup and Lusseau, 2019). We still do not fully
understand how competitive behaviour is integrated in the
Physarum decision-making processes in realistic competi-
tion settings, so we started by postulating possible heuristics
that Physarum might employ in competitive environments.

Work Novelty
Model Selection

After reviewing the literature on several models, we
have decided to extend Tsompanas et al. (2016) model,
which is based on Cellular Automata (CA) and Reaction-
Diffusion (RD) system, to simulate the foraging behaviour
of Physarum in the presence of competition. However this
model needs modification to address new requirements of
competition settings.

Why Cellular Automata and Reaction-Diffusion Sys-
tems? After Wolfram (1984), CA have received extensive
academic interest for their fundamental characteristics and
capabilities to effectively simulate physical systems, bio-
logical systems, and solving scientific problems (Feynman,
1982). CA can capture the essential features of systems
where global behaviour arises from the collective effect of
simple components, which interact locally. Gunji et al.
(2008) have developed a model based on CA to simulate the
motion of Physarum as a local protoplasmic flow system.

RD systems are mathematical models which correspond
to several physical phenomena. The most common is the
change in space and time of the concentration of one or more
chemical substances, which causes the substances to spread
out over a surface in space. RD systems are naturally ap-
plied in chemistry, however, they can also describe dynami-
cal processes of non-chemical nature like in biology (Kondo
and Miura, 2010).

Basic Principals for Physarum Mathematical
Model in Competition Settings

In the following subsections, we will show how our model
differs from the previous model of Tsompanas et al. (2016),
which considered only single Physarum foraging behaviour.

Hexagonal Cell Automaton Neighbourhood There are
different types of neighbours that can be considered during
the experiment design to capture Physarum diffusion direc-
tion. Some researchers decided to use four neighbourhood
of Von-Neumann (Fig. 1-A) as in Shirakawa et al. (2015),
however diagonal diffusion of Physarum (North East, North
West, South East and South West) is longer; but it still can
occur with lower probability. Other researchers used eight
neighbourhoods of Moore (Fig. 1-B) as in Tsompanas et al.
(2016). For these reasons, we have considered a new model,
where Physarum will have six neighbours (hexagonal pat-
tern) (Fig. 2-A) at equidistant. This will allow circular diffu-
sion of Physarum in contrast to the two of the most famous
neighbourhood (Von-Neumann neighbourhood and Moore
neighbourhood). Furthermore, this hexagonal grid has the
densest packing, the 3D voxels are more sphere-like, and has
the highest volumetric quotient (Nagy and Strand, 2009).
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Figure 1: Von Neumann / Moore neighbourhoods.

Figure 2: Hexagonal neighbourhood.

Modelling Multiple Physarum and Multiple Food
Resources Unlike previous models based on single
Physarum, we considered a Physarum competitive be-
haviour, where a group of Physarum with different power
(masses) and motivation (Hunger / Satiety) each having au-
tonomous behaviours react to each other and their own local
environment. We also modelled the presence of multiple
food resources with different quality.

Attraction / Repulsion Forces affecting Physarum Explo-
ration Unlike previous models which addressed only the
attraction force of Physarum towards a food resource, we
considered other forces acting on Physarum based on meta-
heuristics inspired from Physarum behaviour in a competi-
tion setting. We assume that competing Physarum will exert
repulsion forces on each other which will affect the evolu-
tion of the whole system. We created a new formula to com-
pute two forces acting on Physarum: (A) the chemo attrac-
tion force based on the combination of chemical mass and
chemical quality, and (B) the repulsion negative forces that
competing Physarum exert on each other.

Modelling Physarum Shrinkage (Exploitation) We in-
troduced a new rule on the Physarum diffusion process to
imitate the natural process of Physarum shrinkage, where
if a Physarum cell is not contributing to the path towards
food resource for a certain time (number of iterations), the
whole Physarum mass is migrated to the nearest neighbour
cell contributing to the path of food resource attraction.

The Proposed Physarum Competition
Mathematical Model

As stated before, our proposed model is based on CA and
RD systems. We will discuss in details in the following two
sections the model state and model rules.

Cellular Automaton (CA) Model State

In order to model the Physarum foraging behaviour in
competition settings, where a set of Physarum (P =
p1, p2 . . . pm) are competing on a set of Chemicals (food
resources) (CHM = chm1, chm2 . . . chmn). We con-
sider a CA grid in the two-dimensional space, where it is
divided into a matrix (X × Y ) of identical hexagon cells,
each cell c(i,j) at location (i, j) in the grid has six neigh-
bours as shown in Figure 2-B. Moreover, this CA space
can be extended to multi-dimensional hexagonal grids as
Hexagonal/Body-Centered-Cubic (bcc) grid using the fol-
lowing definition:

Definition 1. Let p = (p(1), p(2), . . . , p(n)) and q =
(q(1), q(2), ..., q(n)) be two points in Zn.
q is 1-neighbour to p if q(1) ≡ q(2) ≡ . . . ≡ q(n) (mod2)
and |p(i) − q(i)| ≤ 1 for 1 ≤ i ≤ n and

∑n
i=1 (p(i) −

q(i))2 ≤ n.

These grids are the three-dimensional ”equivalent” to the
two-dimensional hexagonal grid (Nagy and Strand, 2009).

The state of a cell ct(i,j) at iteration t is described by its
type. Initially all cells are empty until it is occupied by
food resource and/or Physarum, an obstacle cell (Ex:- Wall),
or remain empty (Equation 1). Chemical is defined by its
mass and quality while Physarum is defined by its mass and
hunger motivation.

CT(i,j) =





FREE
OBSTACLE
PHY SARUM
CHEMICAL





(1)

where CT(i,j) represents the cell type.

Cellular Automaton (CA) Model Rules

The CA model rules are mainly based on the diffusion equa-
tion (Chopard and Droz, 1991) combined with Physarum
heuristics in competition settings. These rules are applied on
both Physarum’s mass to define the exploration of Physarum
on the search space and on food resources’ mass to define
their diffusion over the grid.

Physarum Competition Heuristics

(i) A cell can be occupied by one or more chemical class
(Ex:- Food resource) and by at most one Physarum in each
cell.
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(ii) Chemo attraction forces exerted on Physarum will be a
function of food resource (with different mass and qual-
ity) and Physarum hunger motivation. If Physarum is sat-
isfied, it would appreciate the quality of chemical rather
than the mass, and if it is hungry, vise versa.

(iii) Competing Physarum will exert repulsion forces on each
other which will be calculated as negative force.

(iv) When two Physarum are competing for the same cell, the
one with higher power (mass) will occupy it.

(v) Food resource engulfed by a Physarum will be excluded,
and this Physarum mass will grow at this point according
to this food resource quality.

(vi) In the Physarum exploration phase, if the mass of the
Physarum is less than a critical value the Physarum will
stop diffusing to prevent the Physarum from spreading all
over the board (as exhibited by Physarum in real experi-
ments).

(vii) In the Physarum exploitation phase, the Physarum tend to
shrink and collect its body mass to move towards resource
of attraction.

(viii) Physarum hungry motivation is a parameter that increases
with the number of iteration it was unable to find food
resource.

(ix) When a Physarum engulfs food resource, it will be sa-
tiated (reset hungry motivation), and stop searching for
food for a certain time (number of iterations).

CA Diffusion Equations Every cell occupied by chemical
at iteration (t) uses the values of its six neighbours cell to
calculate the value of the mass at iteration (t+ 1). The total
chemical mass for a cell c(i,j) at iteration (t+1) is described
in Equation 2.

CM t+1
(i,j) = CM t

(i,j)+

∑

(k,l)

{
CD ∗ (CM t

(k,l) − CM t
(i,j)) if C AA(i,j),(k,l) = 1

0 otherwise
(2)

∀(k, l) : i− 1 6 k 6 i+ 1,

j − 1 6 l 6 j + 1,

k 6= l

where,
CM t+1

(i,j) defines the diffusion of chemical mass for the next
generation (t+ 1) at cell c(i,j).
CM t

(i,j) is the current mass of the chemical at iteration (t)
for cell c(i,j).
CM t

(k,l) is the current mass of the chemical at iteration (t)
for neighbouring chemical cell c(k,l).
CD is the chemical diffusion coefficient.

C AA(i,j),(k,l) defines whether chemical at cell c(i,j) is
available to diffuse towards a neighbouring cell c(k,l) as de-
fined in Equation 3.

C AA(i,j),(k,l) =

{
0, if CT(k,l) = ”OBSTACLE”

1, otherwise
(3)

Every cell occupied by Physarum at iteration (t) uses the
values of its six neighbours cell to calculate the value of the
mass at iteration (t+1). The total Physarum mass for a cell
c(i,j) at iteration (t+ 1) is described in Equation 4.

PM t+1
(i,j) = PM t

(i,j)+

∑

(k,l)





(PF ∗ PD)(PM t
(k,l) − PM t

(i,j))

if P AA(i,j),(k,l) = 1,

PM t
(i,j) > Diff limit

0, otherwise
(4)

∀(k, l) : i− 1 6 k 6 i+ 1,

j − 1 6 l 6 j + 1,

k 6= l

PF = 1 + P AttForce(i,j),(k,l) + P RepForce(i,j),(k,l)

where,
PM t+1

(i,j) defines the diffusion of Physarum mass for the next
generation (t+ 1) at cell c(i,j).
PM t

(i,j) is the current mass of Physarum at cell c(i,j).
PM t

(k,l) is the current mass of neighbouring Physarum at
cell c(k,l).
P AAt

(i,j),(k,l) defines whether Physarum at cell c(i,j) is
available to diffuse towards a neighbouring cell c(k,l) as
defined in Equation 5.
PD is the Physarum diffusion coefficient.
Diff Limit is the limit which in which the Physarum
mass must exceed in order to diffuse.
PF is the sum of forces affecting Physarum.
P AttForce(i,j),(k,l) defines the value of attraction forces
applied on Physarum at cell c(i,j) coming from its neigh-
bouring cell c(k,l) as defined in Equation 6.
P RepForce(i,j),(k,l) defines the value of repulsion forces
applied on Physarum at cell c(i,j) exerted by its neighbour-
ing cell c(k,l) as defined in Equation 7.

P AA(i,j),(k,l) =





1, if CT(k,l) = ”FREE”

1, if CT(k,l) = ”PHY SARUM”,

P ID(i,j) = PID(k,l)

0, otherwise
(5)

where,
PID(i,j) is the ID of the Physarum at cell c(i,j).
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As seen in the equation calculating the Physarum diffu-
sion, there are attraction and repulsion forces affecting the
diffusion of Physarum. The attraction forces as described in
Equation 6 determines the movement of Physarum towards
the chemical (food resource). It is a function which com-
bines chemical (mass and quality) and Physarum motivation
(hungry/satiated).

P AttForcet(i,j),(k,l) =



WM(i,j) ∗
CM t

(k,l)

Total NCM(i,j)
+WQ(i,j) ∗

CQt
(k,l)

Total NCQ(i,j)
,

if CM t
(k,l) = MAX(CM t

(i,j))

0, otherwise
(6)

WM(i,j) =
PHt

(i,j)

100
,WQ(i,j) =

100− PHt
(i,j)

100

where,
WM(i,j) is the weight assigned to the chemical mass that
will attract Physarum to it.
CM t

(k,l) is the current mass of the chemical at iteration (t)
for cell c(k,l).
Total NCM(i,j) is the total summation of chemical mass
for the first neighbour of cell c(i,j).
WQ(i,j) is the weight assigned to the chemical quality that
will attract Physarum to it.
CQt

(k,l) is the current quality of chemical at iteration (t) for
cell c(k,l), where CQ ∈ [0 − 10]; 0: Low quality, 10: High
quality.
Total NCQ(i,j) is the total summation of chemical quality
for the first neighbour of cell c(i,j).
MAX(CM t

(i,j)) is a function which returns the maximum
value of chemical mass among the neighbourhood of cell
c(i,j).
PH(i,j) is the hunger motivation of the Physarum, where
PH ∈ [0− 100]; 0:Satiated, 100:Hungry.

The repulsion forces as described in Equation 7 repre-
sent the competition between Physarum, in which every
Physarum tries to repel other competitors. This function is
based on the neighbour Physarum mass of the opposite di-
rection.

P RepForcet(i,j),(k,l) =



PM t
opp(k,l)

Total NPM(i,j)
if PID(i,j) 6= PIDopp(k,l),

PM t
opp(k,l) > Rep Limit

0, otherwise

(7)

where,
PM t

opp(i,j) is the neighbour Physarum mass of the opposite
direction of cell c(i,j).
Total NPM(i,j) is is the total summation of Physarum

Table 1: Parameters values for the experiments

Parameter Value Parameter Value

CD 0.1 SD 0.05
CM 3000 PM [1,000-10,000]
CQ [0-10] PH 80

DIFF LIMIT 5 REP LIMIT 5

mass for the first neighbour of cell c(i,j).
Rep Limit is a limit where Physarum must reach to repel
neighbouring Physarum.

Experimental Results
The core model was implemented in Java with Processing
package https://processing.org/ being used for
graphical simulation. To validate our model, we have con-
ducted two experiments using the same parameters of diffu-
sion equation as mentioned in Tsompanas et al. (2016) (Ta-
ble 1). Each experiment was conducted for 100 times to get
unbiased results and were statistically analysed using SPSS
package.

Experiment (I): Competition and Decision Making
In this experiment design, two Physarum of different masses
(high power and low power Physarum) will be competing for
multiple (six) food resources placed in a (50×50) hexagonal
grid. The aim of the experiment is to show how many food
resources are engulfed by the high and low power Physarum
and the time (iteration) needed to engulf food resources ac-
cording to their quality.

This experiment has two different competition settings.
In the first setting (A), the two competing Physarum will
be randomly placed, and the 6 food resources will be ran-
domly placed each having the same quality. In the second
setting (B), the two competing Physarum will be placed in
the middle of the grid, three food resources with high qual-
ity will be placed randomly in the upper part (North field) of
the grid, and three food resources with low quality will be
placed randomly in the lower part (South field) of the grid.
This experiment was also conducted in duplicate, where the
two Physarum exchange location to nullify the chance of
better location.

The results were statistically assessed using independent
samples t-test to compare means, in the first setting (A) of
the experiment, it is shown that Physarum of higher mass
(power) succeeded in engulfing larger number of food re-
sources (3.71 ± 1.23) versus (2.29 ± 1.23) by Physarum
with lower mass (power) with p-value < 0.001. Nearly the
same results were obtained in the duplicate experiment af-
ter changing the two Physarum location which proved that
the distance between Physarum and food resource influence
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Figure 3: Represents the first setting (A) of Experiment (I)
where Physarum of higher mass (P1) engulfed more food
resources than Physarum of lower mass (P2).

Figure 4: Represents the second setting (B) of Experiment
(I) where Physarum started and ended engulfing food re-
sources of high quality (F1) faster than food resources of
low quality (F2) as indicated by less number of iterations.

competition but is not the only determining factor. (See
Figure 3). In the second setting (B) of the experiment,
Physarum forages faster for food resource of high qual-
ity as indicated by having fewer iterations (See Figure 4),
Physarum start engulfing food resource of high quality after
(180 ± 155) iterations and ends by (489 ± 210) iterations
versus (279± 280), and (698± 242) iterations for food re-
source of low quality with p-value < 0.001.

Experiment (II): Physarum imitation of natural
Competition scenario
The aim of the experiment is to show the competition and
the interaction between multiple Physarum over limited sup-
ply of food resources, and territory. In this experiment, ten
Physarum of different masses ranging from 1000 to 10000
were randomly placed over CA grid to compete over six
food resources, three of them are of high quality (HQF),

Figure 5: Graphical simulation of 10 Physarum foraging be-
haviour in competition settings after engulfing all food re-
sources, where yellow cells indicate engulfed food resource
and the number inside indicates Physarum (ID) engulfed this
food resource, white cells indicate empty cells and other
coloured cells indicate Physarum and the number inside in-
dicates the ID of the Physarum (ranging from 1 to 10) and
their mass range from 1, 000 to 10, 000 respectively.

and the other three of low quality (LQF). A graphical sim-
ulation of 10 Physarum in competition setting, illustrat-
ing food engulfment and territory area, is shown in Fig-
ure 5 with video demonstration in this hyperlink https:
//youtu.be/oKTGVtanEjE.

In this experiment we have used bivariate correlation
(Pearson correlation coefficient) to assess the effect of
Physarum power (mass) on the number of food resources
engulfed, territory area (number of cells occupied by each
Physarum) , and its survival (number of iteration for
Physarum to vanish). The results of our experiment showed
that Physarum mass significantly correlate with the num-
ber of food resources engulfed whether of HQF or LQF
with r-value 0.105, 0.102 and p-value < 0.001, 0.001 re-
spectively. Physarum with bigger mass (best competitor)
was able to occupy larger territory with r-value 0.249 and
p-value < 0.001, and would always exclude its competi-
tors and has longer survival with r-value 0.128 and p-value
< 0.001.

Finally, we conducted empirical analysis to compare the
computational complexity between hexagonal and Moore
neighbourhood. In this analysis, we measured the time com-
plexity using our own defined function that counts the num-
ber of execution of the diffusion equation. It showed that
hexagonal neighbourhood on average is efficient than Moore
neighbourhood by 11%.
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Conclusions & Future Work
In this study, we presented complex patterns observed in
Physarum polycephalum generated in competition settings.
This model is based on Cellular Automata and Reaction-
Diffusion system, where the growth of Physarum is the re-
sultant of chemo attraction towards food resources and re-
pulsion forces between competing Physarum. The exist-
ing models are based on imitating single Physarum forag-
ing behaviour and it did not address the skills of individ-
ual Physarum in competition settings. To the best of our
knowledge, this is the first time Physarum will have been
simulated in a hexagonal grid, which is more applicable to
Physarum natural diffusion in a circular pattern to equidis-
tant cell neighbours.

Experimental results clearly showed that our model was
able to simulate Physarum complex competition behaviours,
where multiple Physarum compare information on reward
(food resources’ mass and quality), and negative effects of
competing neighbours according to their hunger motivation
in order to make correct and adaptive decisions. Physarum
with higher mass (best competitor) succeeded in engulfing a
larger number of food resources, and was able to occupy
larger area of the grid (territory). Also According to the
competitive exclusion principle, Physarum less suited (lower
mass) to compete for resources will die earlier than strong
competitors as measured by number of iterations, which is
an important hypothesis in natural selection.

Our model has been proved to be useful in solving mul-
tiple origin-destination network optimization problems as in
mobile wireless sensor networks (Awad et al., 2019a, 2018),
and discrete multi objective optimization problems (Awad
et al., 2019b). This new model will be feasible for biologists
to carry out wet-lab experiments for model validation and
increasing our understanding of the possible heuristics that
Physarum use in complex foraging decisions in competition
settings.
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