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1 Abstract

Erosion of the seafloor is often interpreted tdheeresult of turbidity currents and
reflects their frictional and non-cohesive natitewever, evidence of the interaction
between sediment gravity-flows and the substrataifay the sea floor has been increasingly
reported in the literature. Based on styles of lbasaraction with the substrate, we here
propose a broad classification of submarine masgements labelled free- and no-slip flows.
Three mechanisms are proposed for free-slip flowshg translation of mass movements
that are effectively detached from the substragdrdplaning, shear wetting, and substrate
liquefaction. In contrast, no-slip flows occur wlaehe mass movement is welded to the
substrate, and the strain front lies within thesstdte itself. In the latter case, flows can erode
by pushing forward and/or ploughing into the suddstroften remobilizing sediments that are
later incorporated into the flow, a common chanastie shared by many mass transport
deposits (MTDs) containing blocks. Additionallypdiar track features (e.g. grooves and
striations) are described as a consequence ofratdstoling by rigid blocks. Using outcrops
in NW Argentina as a detailed case study, we hagerded evidence for penetration of the
strain profile into sediments underlying MTDs armdegorised the deformation into no-slip
basal deformation that may display continuous ascoaitinuous profiles. Continuous
deformation profiles involve the complete deforraatof the uppermost layers of the
substrate, while discontinuous deformation proffjesserve a undeformed substrate layer
between the MTD and the zone of deformed substfaiese features highlight the erosive

and deformational nature of MTDs, and can be usqubgential kinematic indicators.
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2 Introduction

Sediment failure on a slope occurs in responseawatgtional forces with or without the
additional effects of seismicity (e.g. Dott, 1968mpton et al., 1996; Middleton and
Hampton, 1973; Moscardelli and Wood, 2008; Nardiale 1979). The resulting mass flows
are highly mobile and lead to sediments being feared from regions of higher gradient
(e.g. shelf break and upper slope) onto lower gradi(e.g. deep-water) through downslope
translation over a basal shear surface. Mass ftmngange in volume from tens of cubic
metres (~2 x 10 km®) up to hundreds of thousands of cubic kilometre8%9 x 16 km?),
extend over an area of tens of millions of squémietres (~ 114 x Tokm?) (e.g. Denne et
al., 2013; Moscardelli and Wood, 2015), and hawg laun-out distance (400 kilometres)
over very low-angled (0.05°) slopes (Gee et al999Such processes are highly complex,
and the resulting deposits, normally termed masssport deposits (MTDs) or complexes
(MTCs), are highly variable in their geometry, cargpion and degree of internal
deformation, depending on the geological settirdyrmaany other factors. They include
deposits described as slides, slumps and debws fiMoscardelli and Wood, 2008). In
addition, they may have a significant impact onrteerroundings either by modifying
previously deposited sedimentary sequences, ordatiog topography, which subsequently

controls the pathway of turbidity currents (Knekgral., 2016).

MTDs can be classified as frontally confined omtiadly emergent according to their
frontal emplacement{g 1) (Frey-Martinez et al., 2006). Frontally confindd Ds occur
when the flow undergoes relatively limited downsglapovement and does not have enough
momentum to overcome the frontal ramp and transhage the sea floor. This results in the
flow being restricted to the area directly overtyie basal shear surface (BSS) that
separates the MTD from undeformed strata, bothrdlden (beneath) and stratigraphically
equivalent to(downslope) those involved in the M{HPey-Martinez et al., 2006).
Conversely, frontally emergent MTDs occur whenftbes is able to overrun its frontal
ramp, extending beyond its original BSS, and is feflow over the seafloor (Frey-Martinez
et al., 2006).

The potentially interactive character of the basaitact of MTDs was documented in
early works by Prior et al., (1984), where a frdigtamergent debris flow was described as
possessing an “eroding base” that could incorp@atensiderable amount of sea floor

material. Additionally linear features (termed gliftacks) were created by detached masses
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of sediment that moved beyond the main flow depmgtr undeformed sea floor (Prior et al.,
1984). A large number of subsequent publicationve hesed seismic datasets to illustrate
basal erosion, including features such as scouss€N et al., 1999; Posamentier and Kolla,
2003), glide tracks (Nissen et al., 1999; Pricalet1984), grooves (Bull et al., 2009;
Posamentier and Kolla, 2003), striations (Bulllet2009; Gee et al., 2005), ramp and flat
systems (Bull et al., 2009; Omosanya and Alves320hegascours (Moscardelli et al.,
2006) and features that splay in plan view, vatidsscribed as cat claws (Moscardelli et
al., 2006), and monkey fingers (McGilvery and Co2B03), among others.

The basal interaction of MTDs with the underlyindpstrate is widely documented from
seismic data (e.g. Alves et al., 2013; Bull et2009; Gee et al., 2005; McGilvery and Cook,
2003; Moscardelli et al., 2006; Omosanya and Al2€4,3; Posamentier and Martinsen,
2011) and more rarely in outcrop (e.g. Butler aagtarnelli, 2006; Dakin et al., 2013;
Dykstra et al., 2011; Gawthorpe and Clemmey, 1286ente and Pini, 2003; Ogata et al.,
2012; Sobiesiak et al., 2016a), but the naturéisfibteraction with the substrate is poorly
understood. In this paper, we propose two styldsasél interaction broadly classified as; (i)
free-slip flow; and (ii) no-slip flowKig 2). To illustrate the basal contact and the intéoact
with the underlying substrate, we present examipies a variety of previously published

and original case studies.

3 Stylesof basal interaction
3.1 Freedip flows

A mass flows may override the substrate with lititero sign of its passage preserved in
the strata below the basal shear surf&tg Za and b). This implies no significant interaction
such as erosion and deformation, although mineraetion may develop such as
mobilization and/or mixing between the flow and thelerlying deposits, especially during
deposition.

3.1.1 Hydroplaning

Laboratory experiments and theoretical models aftenpare submarine debris flows
with their subaerial counterparts to better undedthe flow mechanics and physical
properties (e.g. Mohrig et al., 1999; Toniolo et 2004). Some of these experiments suggest
a flow mechanism termed hydroplaning to explain wbgne submarine debris flow are

apparently more mobile and have longer runout dcsta than their subaerial equivalents
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(llstad et al., 2004a; Mohrig et al., 1999, 1998)droplaning is considered to develop when
the hydrodynamic water pressure at the front oflthe increases and is transferred down
from the front of the flow into the underlying b@dohrig et al., 1998). The overburden
pressure at the base of the flow enables the iwetrof a discrete water layer that separates
the flow from the underlying bed (De Blasio andéttwzi, 2011; Mohrig et al., 19985i¢

2a). The lubricating layer of water-rich sedimentdselthe debris flow has a lower viscosity
than either the debris flow or the underlying stdistand is therefore easily sheared. Where
only the head of the flow is hydroplaning, it aerates away from the (non-hydroplaning)
body due to substantially lower basal resistanaesing the region immediately behind the
head to extend and attenuate (stretching zonepineess referred to as necking (Mohrig et
al., 1998). The stretching zone behind the headase to interact with water from the
lubricant layer, that is progressively transfornm@d a muddier layer. In turn, small cracks
are developed at the base of the flow, due torttieeased pore pressure and consequently
reduction of effective stresses produced by themditfusion at the flow base (llstad et al.,
2004b). If the flow experiences further translativican cause the complete detachment of
the hydroplaning head (auto-acephalation), resylitira secondary head and an ‘outrunner
block’ comprised by the detached head (llstad.e@D4a; Mohrig et al., 1998). The basal
shear stress produced by the translation of tlve iBnot transferred into the substrate via the

lubricant layer due to the large difference in vty (Mohrig et al., 1999).
3.1.2 Shear wetting

Another explanation for the lack of interactionweegn the debris flow and the substrate
deposits is the ‘shear wetting model’ (De Blasialet2005). Shear wetting results from high
shear rates established between the water and eredooundary during flow, leading to
dilution of the base of the flow and a significalecrease in shear strenglig2a). On the
other hand, the entrainment of small amounts of iciep the lubricant layer will greatly
increase its yield stress and viscosity when coetpar pure water, while still being lower
than the overlying flow (lIstad et al., 2004b). Siprocess creates a softer, more dilute phase
(slurry) that acts as a lubricating layer (De Bbamnd Elverhgi, 2011; De Blasio et al., 2005).
Shear wetting can also be achieved during hydrapdganhen cracks in the necking region
enable the penetration of water into the baseefltw, resulting in the development of a
lubricating slurry layer (Elverhgi et al., 20055tHd et al., 2004b). Progressive shear wetting
would result in a more constant flow velocity, drehce a more uniform distribution of the
deposit (De Blasio et al., 2005).



132 3.1.3 Liquefaction

133 We follow Ogata et al., (2014) in invoking liquefan as a possible mechanism to

134 explain the mobility of MTDs. Liquefaction involveke transformation of sediments from a
135 solid-like state into a fluid-like state (Allen, 88; Maltman and Bolton, 2003; Owen, 1987).
136 According to Ogata et al., (2014) the relationdbepveen shear zones and liquefaction in
137 undrained, poorly-consolidated sediments is a n@arponent in controlling flow mobility
138 by promoting the reduction of basal and interniatifsnal forces. These authors invoke

139 liquefaction of fine-grained sediments throughdw mass flow to account for their mobility.
140 However, we propose a specific mechanism involWnegliquefaction of poorly-packed sand
141 immediately below the sea floor over which the nfass is moving (Ogata et al., 2012).
142 During shear induced by the over-riding flow, theniework of grain contacts within the
143 sand is lost, producing a quasi-Newtonian low s#ydayer immediately below the mass
144  flow. The liquefied sand bed thus acts as a vilydaltion-free shear zone at the sea floor.
145 As the flow finally comes to rest, the liquefiedhdanjects upwards into the basal part of the
146 MTD (Fig 2b).

147 Hydroplaning, shear wetting and liquefaction angstthree, possibly concomitant
148 mechanisms for the formation of a lubricating lagethe base of a mass flow. They result in
149 the loss of shear strength at the base of the thomt,the prevention of shear stress

150 transmission from the flow into the substrate duthe difference in viscosity.

151 Nevertheless, even though the shear wetting prdwesbeen observed in experiments,
152 the process is not yet fully understood and thezevany uncertainties regarding sediment
153 behaviour (De Blasio and Elverhgi, 2011; De Blaial., 2005). Hydroplaning on the

154 otherhand is well documented and understood inr¢édbry examples (e.qg. listad et al.,

155 2004a; Mohrig et al., 1999, 1998). However, thertoidate no evidence of hydroplaning or
156 shear wetting flows in nature, although liquefacti® well documented in MTDs from

157 outcrop studies (e.g. Lowe, 1976; Odonne et all12@gata et al., 2014; Owen, 1996;

158 Strachan, 2002; Talling et al., 2013).

159 3.2 No-dip flows

160 We employ the term ‘no-slip flows’ to refer to mdksvs with a zero- or limited-slip
161 boundary with the substrate, which thus interagnificantly with the sea floor (for example

162 where they erode or deform it). No-slip flows magguce a spectrum of interactions ranging
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from sole marks through substantial erosion to tsatesdeformation that penetrates to

significant depths below the base of the displaneds Fig 2c and d).
3.21 Substrateerosion

Submarine MTDs containing large blocks are commoblserved in modern and ancient
deepwater sedimentary basins (e.g. Alves, 2015|dpwet al., 2010; Jackson, 2011,
Macdonald et al., 1993). These blocks can be divid® either autochthonous or
allochthonous blocks. Autochtonous or remnant ldaanle interpreted as situ masses of
sediment that have not experienced failure angka#ion (e.g. Bull et al., 2009) and are still
connected to the unremobilized substrate. On ther dtand allochthonous or rafted blocks
are coherent bodies of sediment that are carriddmthe MTD, therefore do not possess any
sort of connection with the substrate. Such blagssoriginate either by disaggregation of
the failed MTD protolith, or by interaction betwettre MTD and the substrate through basal
erosion. Nevertheless, care must be taken whetifiglag their origin since blocks may
originate by erosion close to their initial failusnd thus possess the same lithology as the
MTD matrix; also MTDs may have a heterogeneous asitipn reflecting a range of
lithologies at the point of failure (e.g. Festakt 2016; Macdonald et al., 1993; Sobiesiak et
al., 2016b), which could lead to misinterpretatibistinction of block and matrix
lithologies(and thus identification of block origimay not be possible in seismic data.
Nonetheless, when analysing the seismic expressidMiD’s blocks from offshore
Morocco, Lee et al., (2004) observed velocity dagyseath many of the blocks and suggested
that this decrease in velocity could be lithologlated, suggesting that differentiation of

block lithology in seismic may be possible in satireumstances.

The presence of a heterogeneous block assembl#ga MiTDs suggests that the flow
may have interacted with the substrate at somd.p&iithough the results of this interaction
(typically small-scale) can locally be seen in oofc(e.g. Butler and McCaffrey, 2010;

Dakin et al., 2013; Dykstra et al., 2011; Ogatalgt2012; Sobiesiak et al., 2016a) the true
nature and geometry of the erosion are best ageekcin seismic data. In the case of no-slip
flows, this means that the shear stress at thedfake flow is transmitted to the substrate
without being moderated by the presence of anydating layer (see above). Since the
contrast in material properties between the floa substrate is likely to be relatively small
compared to free-slip flows, shear stress can feetefely transmitted across the flow’s

lower boundary. Three scenarios can be expectactassequence of shear stress
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transmission(i) substrate material is sheared off (eroded) anarjrazated into the flowHig
20); (i) substrate becomes internally deformed throughipldeformation Fig 2d); and(iii)

a mixture of both. The features resulting from keaferosion described in the literature are
many. However, we propose a simplified and compreive classification for such features
using their geometry as a parameter to defifenegascours and scoufsq 3), (ii) grooves
(Fig 5) and(iii) peel-back scours-{(g 7).

3.2.1.1 Megascours and scours

The term megascour was coined by Moscardelli gf2006) to define a ~60 kilometre
long erosional feature, ranging from 2 to 7 kilorastin width and up to 33 metres deep
developed at the base of a submarine MTD offsharedad and Venezueldig 4a).
Subsequently, megascour has been used to desoyili@rge-scale erosional feature. In this
study, megascours and scours are both classifiadyaseric erosional features with no pre-
defined shape, that may contain other types ofi@masithin, and which may occur across a
variety of scales from outcrop to seismic and drerefore, the largest features described
here Fig 3).

Such features are recognized in outcrop; Dakih. ef2913) described two examples of
what they referred to as megascours preservectiMitidle Eocene Ainsa Basin in Spain,
though these features are on a slightly smallde ¢ban those described by Moscardelli et al.
(2006). One of the scours is ~25 metres wide arddmdtres deep and the other is a concave-
up shaped scour up to ~1 kilometre wide and 35eaateepKig 4b). Dykstra et al., (2011)
and Sobiesiak et al., (2016b) also described aemaly irregular basal boundarfyi§ 4c)
from a ~180 metres thick Carboniferous mass tramsigposit (here termed MTDII) located
at Cerro Bola mountain in NW Argentina. The basa&gularity displays cuspate-shaped
scours that reach up to hundreds of metres intesugd ~20 metres in depth. Furthermore,
both outcrop examples contain disaggregated flgatamdstone blocks interpreted by the
authors as derived from the erosion of the semimnaonsolidated underlying sandstone,
suggesting the basal scours resulted from thel&ti@ms of one or several erosive MTDs over
the sandy substrate (Dakin et al., 2013; Dyksti.e2011; Milana et al., 2010; Sobiesiak et
al., 2016a). Additional seismic scale examples fiascardelli et al., (2006) highlight the
variability in scale of these structures and fomegosional escarpment (~70 kilometres long,
~10 kilometres wide and ~250 metres deep) thatatosithe megascour (described above)
plus a smaller secondary scour (>1 kilometre wea¢ending from 10 to 20 kilometres and
less than 20 metres deep)d 4a).
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3.2.1.2 Grooves (tool marks)

Another mechanism for local erosion of the substigby dragging of tools such as rigid
blocks contained at the base of the fléwg(5). These create linear features on the
flow/substrate boundary and can occur as eitlsamgle feature or in a bundle. The process
of tooling the substrate is a common feature abdwe of submarine debris flows, where an
object capable of eroding the substrate tendsmaireat the base of the debris flow for long
periods, until either being disaggregated viaifvicwith the substrate, or lifted off the base
of the flow (Posamentier and Martinsen, 2011). \&egorise grooves here as linear or
slightly sinuous features that are V-shaped inceextion (e.g. Bull et al., 2009; Posamentier
and Martinsen, 2011), and are typically narrow deep in relation to other erosional
features described heréig 5).

Posamentier and Kolla, (2003) observed long ligeaoved patterns at the base of a
mass transport deposit offshore Kalimantan, eagerneo. Here the grooves extend up to
20 kilometres in length, are over 25 metres wide Hxn metres deep, and have an overall
‘V’-shape in cross-section. Similar linear featyresmed ‘furrows’ by Gee et al., (2006), are
described from offshore Angola, where the furrovesgp to ~ 10 kilometres long and ~20
metres deep, with an overall 'V’ shaped profiler@alou, (2015) also presents a clear
example from the Amazon fan, where the basal serdéa shallow sub-surface MTD is
dominated updip by the headwall scar and frontalx#&ig 6a) and by grooves downdip
(Fig 6b).

Grooves are also recorded as small-scale featumegaop, with Draganits et al., (2008)
documenting 4 metres wide, 0.2 metres deep andedfeslong grooves related to a
submarine landslide in the Phe Formation, northiéstalaya. Dakin et al., (2013) also
described small scale grooves made by the fri@mhdragging of small objects (e.qg.
pebbles) at the base of an eroding debris flow filmenAinsa System of the Hecho Group,
Spanish Pyrenees.

3.2.1.3 Peel-back scour

Clusters of erosional features that diverge dowmf&nd display a square-shaped
termination are described from offshore Brunei, hade been termed ‘monkey fingers’ by
McGilvery and Cook, (2003)Hg 7a). These authors suggest that this geometry itecbta
basal gouging followed by the removal of the goggwol (grooves). However similar
features are described as single square-shapé&t-boftom structures by Gee et al., (2006,
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2005) as ‘striations’, by Moscardelli et al., (20@8 ‘cat claws’ and Gamberi et al., (2011) as
‘megascours’. They are suggested to originate bsliding or dragging of tabular blocks

into the substrate (Gamberi et al., 2011; Gee.g2@05) or by the transitional state of flow
confinement (Moscardelli et al., 2006).

We propose here that these features are the cduéeling back of the substratad 7b
and c). As the flow moves over the basal detachmentshigar stress is transmitted into the
uppermost few- or tens- of metres of the substptshing and/or peeling the sediments in
the flow direction. Where a weak layer is prestm,substrate detaches along this horizon
and is translated in a manner analogous to a tehest, creating a negative feature within
the substrate, which displays a box-shaped geornretmpss section, bounded laterally by
sub-vertical strike-slip shear zones. The failedemal is pushed in the transport direction
and is buttressed against a frontal ramp wheredékmchment ramps up to the sea floor, or to
a shallower detachment surface. In such casegr @ithimbricate thrust system develops
(Fig 7c, d) or the scour is completely evacuated and thenmhte disaggregated and
incorporated into the moving flow. Peel-back featuare usually wide and shallow with a

characteristic flat-bottom.

All types of erosional features described abovelmnsed as kinematic indicators for
the movement of MTDs, as the linear axis of scognspves and/or peel-backs are usually
parallel or elongated towards the main flow direct{e.g. Bull et al., 2009; Butler et al.,

2016; Butler and Tavarnelli, 2006; Ogata et all&05obiesiak, 2016). The differentiation of
MTD erosional features from turbidite erosion canifferred on the basis of their occurrence
upslope and/or beneath blocky debris flows (e.goges and megascours) and/or beyond the

downslope termination of a mass flow (e.g. gligek) (Bull et al., 2009; Gee et al., 2005).
3.2.2 Substrate deformation

When a submarine mass flow moves downslope itlatessover a detachment surface
(BSS). This surface is developed due to progressiear failure and defines the terminus or
the base of the MTD, thus separating deformed,tahand disrupted strata from continuous
strata of the undeformed substrate or coherentsitspown-dip (e.g.Bull et al., 2009; Frey-
Martinez et al., 2006; Hampton et al., 1996; Omgaand Alves, 2013). However, the basal
shear surface may be complex, and localised detmmhas been described in the substrate
(e.g. Alves, 2015; Laberg et al., 2016; Ogata .eR8ll2; Sobiesiak et al., 2016a). This results
in folds and other deformational features thatmats¢e downwards from the slide surface
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(Alves, 2015; Alves and Lourenco, 2010). These uhe&tion structures are the result of
stress penetration into the substrate, commonlyaligcalised variation in the basal shear
surface geometry (e.g.ramp and flat systefng Lb) affected by faults, bedding planes or
material property variation (Alves and Lourencol@QBull et al., 2009; Omosanya and
Alves, 2013).

Alves and Lourenco, (2010) consider palaeo-seatietwrmation from outcrops of a
submarine landslide in SE Crete, where the auttnoatysed the deformation underneath
rafted megablocks. The deformation was recordemlitir the first few metres below the
basal contact of the megablocks, with a sharp ahartg undeformed strata. A similar
observation was made by Alves, (2015) from seistata from offshore SE Brazil, revealing
the complexity of the basal shear surface, wheredfiectors show a thick continuous
deformed zone between the MTD and the surfaceshadrmally mapped as the basal shear
surface (see Fig. 08a frofves, (2015)). Such observations indicate that the basal shear
surface can be more than a simple surface sepgudgiormed from undeformed strata, and
therefore the basal boundary is a shear zone rtthera single shear surface (Alves, 2015;

Alves and Lourenco, 2010).

Based on these observations of basal deformdtig2(), and on an outcrop case study
from the Guandacol Formation (Carboniferous) inr€&ola, NW Argentina, we propose
two basic types of basal deformation, termed comtits no-slip and discontinuous no-slip
(Fig 8a and b).

3.2.2.1 Basal Shear Zone

The Argentinian case study consists of two seissnade MTDs intercalated with
sandstone packages related to deltaic progradatianstratigraphy of the interval of interest
comprise roughly 500 metres of sedimentary rockspmpassing a fluvio-deltaic succession
(FDI), overlain by an MTD (MTD 1), another fluvioettaic succession (FD l1), followed by
the upper MTD (MTD II) and ending in ponded turlédsandstones (e.g. Milana et al.,
2010).The upper MTD (MTD II) is up to ~180 mettbik, and contains characteristically
large, relatively undeformed exotic sandstone dpakhich are preserved throughout the
whole deposit (Sobiesiak et al., 2016b). The sam#sblocks are typically larger and more
abundant towards the MTD base, where they comppde ~30% of the deposit by volume.
These blocks are interpreted to be derived fronutiderlying sandstone substrate, from
which they were eroded and incorporated into tbe filuring transport. This process resulted
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in local erosional features such as scours aloadpéisal contact (described above in Section
3.2.1.1), and soft sediment deformation that asféteé uppermost ~20 metres of the
underlying sandstones (Sobiesiak et al., 2016dprDwtion in the contact with substrate
commences at the MTD and continues downward t@gpsthear surface that defines the

boundary between deformed and undeformed sandstiéigesa and 9b)

The sections containing deformed strata througtieitvhole ~20 metres are defined as
continuous no-slipKig. 8a and 9b). Some sections, however, are virtually undeformed
within the first couple of metres of sandstonelofoked by ~ 18 metres of deformed strata;
these sections are here termed discontinuous m@sg. 8b and 9a). In both cases, the
deformation is recorded as a series of soft sedisteunctures such as recumbent, overturned,
parasitic (S and Z) fold type&i@. 9c), boulder rotationKig. 9d), boudins, pinch and swell
structuresig. 9e), mullion structuresKig. 9f), bed attenuation and the formation of proto-
block shaped structures (which are similar in shaghe entrained blocks within the overlain
MTD) (Fig. 9a and b). Additionally the outcrop displays deformatiordashearing of thin
sand layers, that vary in thickness from a couplailimetres up to ~5 centimetreBig.
9g). Similar deformation and shearing of sand layeesdocumented adjacent to the
sandstone blocks in the overlying MTD (see Soblestal., 2016b).

The main difference between continuous and diseoatis no-slip basal deformation is
that in the latter case, the uppermost few of rsatfesubstrate sandstone are undeformed
(Fig. 9a). One interpretation for such conservation is thatyield strength of the uppermost
few metres is higher than the underlying stratd, that the slab was thus welded to the base
of the mass movement with zero or limited slip. Tineerlying strata served as a weak layer
over which the undeformed slab slipped with lititeno internal strain. These sections are
characterised by the preservation of primary stmest such as right way-up sets of planar
cross-stratification and trough cross-beddifigy(9a and 10a). The undeformed sandstone is
limited at the upper boundary by the base of theidélow and at the lower boundary by a

shear surface.

The distribution of fold hinges from the deformeahdstone interval is shown in
stereonetsHig. 10b). The folds were categorised into east-vergingdgblue dots) and west-
verging folds (red dots). The east-verging folds marked by NW-dipping axial planes
(mean strike and dip 205°/65°NW), while the westgugg folds have E-dipping axial planes
(mean strike and dip 036°/45°SE). Both east and-wagjing folds display SSW plunging



356 hinges (mean 208°) with hinge trends distributeer@s154° arc. The distribution of fold

357 hinges and their scattered pattern suggest thatefoemation was dominated by layer

358 parallel shear (Alsop et al., 2016; Alsop and Hadolidh, 2007), meaning that fold hinges and
359 associated axial planes originated at right anglése downslope/transport direction.

360 Furthermore, there is no indication of fold hingrel axial plane rotation towards the

361 transport direction during progressive deformatipplication of the mean axial method

362 (MAM of Alsop and Marco, (2012) indicates an ovetednsport orientation of 298°, which
363 corroborates previously published assessments aniet al., (2010), Dykstra et al., (2011)
364 and Sobiesiak et al., (2016b) that indicate trartgpavards the NW or WNW.

365 Another example from Cerro Bola is the basal skeae developed between the lower
366 MTD (MTD I) and the underlying sandstone (FD 1) ciéised by Valdez et al., (2015). The
367 characteristics of the MTD are very similar to tme described above, namely a ~115 metres
368 thick debris flow including large-scale sandstotaxks, interpreted to originate by the

369 interaction between the MTD and the substrate. Amgtres thick deformation zone (basal
370 shear zone) can be seen in the uppermost pare eintierlying sandston€i@. 10c). The

371 zone includes highly deformed sediments contaipingh and swell structures along with

372 folding in a highly sheared matrix. According t@tWaldez et al. (2015) the deformation

373 style resembles ductile structures described irametphic rocks.

374 The total thickness (~20m) of the basal shear zeseribed from below the younger
375 Argentinian MTD (MTD 1) is ~11% of the total tHioess of the overlying deposit (~180m),
376 while the thickness (~14m) of the basal shear batew the older Argentinian MTD (MTD
377 1) is ~12%. Together with data published by Alves &ourenco (2010) demonstrating the
378 thickness of the deformed material is ~15% thektiess of the overlying slide blocks

379 (Alves, 2015), these observations corroborateriterpretation that occasionally the basal
380 surface may consist of a shear zone rather thanmesdetachment surface. Alves and

381 Lourenco (2010) pointed out that a change in thesighl properties of the substrate in

382 response to submarine debris flow may be enoughuee the deformation zone described
383 above. Moreover, the following variables may bdisignt to influence the occurrence, style,
384 and thickness of the deformation zone; (i) whethersubstrate consists of an older debris
385 flow rather than a well layered sequence; (i) Mif&ocity and thickness; (iii) presence and
386 distribution of weak layers that can dissipate slsé@&ss and cause a reduction in the basal

387 shear zone thickness; (iv) physical state and ptieégeof the substrate sediments (lithified or
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unlithified, density, thickness); (v) nature of imass flow (slide, slump, debris flow) and

style (confined and unconfined); among others (Alaad Lourenco, 2010).

4 Conclusion

A broad classification is proposed here (free- malip flows) to decribe the styles of

basal interaction beneath submarine mass movenmetgiscuss three mechanisms for

substrate erosion and two types for substrate ahefioon. The principal conclusions of this

work can be summarised as follows:

Free-slip flows

(i)

Hydroplaning, shear wetting and liqguefaction acpatential mechanisms that
allow mass movements to detach from the subsfrais.leads to flow bypass
(Fig 2aand b), prevents shear stress transmission into thdrsidsand thereby

limits any potential erosion or deformation.

No-slip flows

(ii)

(iii)

Megascours and scouFsg 3) are erosional mechanisms where the basal drag is
great enough to allow the mass movement to plonighthe substrate, thereby
pulling and/or ripping up the substrate and incoafing it into the moving flow.
Grooves Fig 5) result from the dragging of a tool carried at lase of the flow
that is pressed against the substrate, and leasa@sua-shaped track of its
passage. Finally, peel-badkig 7) is developed when the substrate is pushed by
the flow along a basal detachement (weak layegjaddy bounded by sub-vertical
strike-slip shear zones, resulting in a flat- bota box-shaped erosional feature.
Continuous and discontinuous no-slip basal defdondFig 8) describes the
situation where the strain front related to the smasvement does not coincide
with the base of the mass flow but occurs a conalde depth into the substrate,

resulting in the development of a basal shear geitgll).
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Figures caption

Fig 1. Schematic drawing showing MTD classification acaogdo their frontal
emplacemenia) Frontally-confined mass flow develops when th&ethmass does not leave
the basal shear surface, and the downslope tagtre$sed against the frontal rantip).
Frontally-emergent mass flow develops when thedamhass ramps up out of the basal shear
surface onto the seabed and is free to spreadd&dubd lines mark where sets of imbricate
thrusts will develop; blue lines and dashed linesks where extensional (listric normal)
faults are formed. (Modified from Frey-Martinezadt 2006)

Fig 2. Cartoon showing the main types of free- and nofkiws. Free-slip flows, (a)
Hydroplaning and shear wetting models showing thplacement of a lubricant layer
between the mass movement and the underlying sidshtote the necking area behind the
flow head is marked by a stretching zone and al&velopment of cracks at the base of the
flow. (Figure inspired by Fig 12 of llstad et &Q04b). (b) Liquefaction model of poorly-
packed sands, when liquefied sand work as a Iubrgcéayer to the mass movement. As the
flow is deposited, the liquefied sand injects upiganto the basal part of the MTNo-dlip
flows; (c) Basal erosion model displaying the ploughing, eénesind incorporation of the
substrate sediments by the overflowing mass moverfrsSubstrate deformation model

suggesting the strain transmission from the ddlavg into the upper zone of the substrate.

Fig 3: Cartoon of a megascoun) 3D view of a megascour at its downslope end, where
the flow ramps up onto the seafloor. Note a smaibaie erosional feature contained within
the megascour. Black arrow indicates flow direc{ionLongitudinal section through a
megascour, showing the imbrication generated afrtimtal ramp. Location of section is

shown in (a).

Fig 4: (a) Seismic example showing the basal erosion causadigss movement from
the near-seafloor offshore Trinidad. The topogragldominated by the erosional
escarpment, a box-shaped megascour, togethereatmdary scours. All three features
described are classified as megascours and sdismayed surface interpreted by
Moscardelli et al., (2006)b) Interpretation based on photomosaic of an outexgmple
showing a megascour from the Ainsa Basin (modifiiech Dakin et al., (2013)). Palaeoflow
is away from the observec) Oblique aerial photograph looking east at CerrtaBshowing
the erosive boundary between the MTD and the uyidgrsandstone substrate. Note the

sandstone blocks within the MTD.
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Fig 5. Cartoon of a groovda) 3D view of a groove, showing the dragging tooktha
scoured the seafloor, resulting in a “V” shapedsiensal structure. Black arrow indicates
flow direction.(b) Cross section through a groove, showing the tothleaerosional front
between substrate and flow. Location is shown)n (a

Fig 6: Seismic examples from the Amazon fan (based ogf@au, 2015)(a) Seismic
interpretation of the basal surface of a mass mewnshowing the three main features of
the basal surface, the headwall scar, the froataprand the grooves. (from (Garyfalou,
2015).(b) 3D seismic interpretation of the grooved seafld@rom Garyfalou, 2015).

Fig 7: (a) Seismic interpretation of the basal surface oélarid flow, showing the
divergent square-shaped erosion typical of the ‘kegriingers”. The red arrow indicates the
flow direction to the NNW (from McGilvery and CooR003).(b) 3D cartoon of a peel-back,
showing the flat-bottomed box-shaped scour and $esiments are pushed forward
potentially forming a duplex as the base of the M@ps up onto the seafloor. Black arrow
indicates flow direction(c) Cross section through the peel back scour shothimgluplex
imbrication on the frontal ramyd) Cropped figure 155d from Posamentier and Walker,

(2006) to illustrate how a set of duplex imbricatiook on a seismic dataset.

Fig 8: Cartoon showing the differences between discoatiswand continuous no-slip
substrate deformatiofa) Continuous no-slip substrate deformation, shovlmgcomplete
deformation of the substrate down to a diffuseisti@nt or sharp shear zone that delimits
the deformed from the undeformed strata belgyDiscontinuous no-slip substrate
deformation, where the first few metres are undeéa and preserved between two shear
zones (top and base), while the rest of the subssaleformed (label D) down to a diffuse

strain front or sharp shear zone.

Fig 9: (a) Panoramic view from Cerro Bola in Argentina of aadintinuous no-slip
substrate deformation section, showing soft-sedirdeformation within the upper tens of
metres of the underlying sandstone. Note thatiteetivo metres of sands are undeformed,
and are bounded by the MTD above and a shear-suntElow. Red dashed lines and arrow
mark the shear zone and shear direction, yelloeslmark deformed bedding and define
folds that broadly form a footwall syncline to thleear zone. Section is parallel to the MTD
transport direction towards NNWh) Field example of a continuous no-slip substratenfro
Cerro Bola, showing the deformed sediments seghfaim the undeformed by a shear

surface (red dotted line). Deformation zone is ~2Bitk. Interpretative sketch on the lower
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left side. Section is parallel to the MTD transpdirection towards NNW(c) Field example
of a discontinuous no-slip substrate deformatianige. Photograph shows details of
parasitic folds located at the hinge of a largeunebent fold. Note thinner and more
attenuated beds on the lower limb of the fold. ltimeais shown in (a)d) Boulder
undergoing clockwise rotation within a flowing matrBoulder is inclosed within a red sand
layer, with smaller folded sand layers on the igptrof the picture. Location is shown in (a).
(e) Boudin and pinch-and-swell structures suggestirgiilduattenuation on the lower limb of
the footwall syncline. Location is shown in (é&). Mullion structure parallel to the inferred

transport direction(g) Thin sand layers that are sheared and folded.tiarces shown in (a).

Fig 10: (a) Detail of the first two metres below the MTD, shog/primary bedding and
right-way-up cross-stratification suggesting refally low strains. Location is shown in Fig
10a.(b) Stereonet showing the distribution of fold hingégast (blue) and west (red)
verging folds and the mean axial plane. This presidn approximate flow orientation of NW
— SE.(c) Photograph showing the basal deformation stagtrige base of the MTD into the
underlying sandstone. Note the highly deformedreedis. (modified from Valdez et al.,
2015).

Fig 11: Cartoons showing the shear stress distributighizvan MTD and its substrate

for the cases of free-slip basal boundaries, coatis and discontinuous no-slip basal

boundaries of the MTDTy: shear stress profile within MTBs: shear stress profile within

substrate7.: yield stress profile of substrate material, Zghe (a) Free-slip case, with no

deformation of substrat€)) Continuous no-slip case, where the MTD is effetdtivoonded

to weak substrate, and the strain front the mdr&sieepest level where shear stress exceeds
the yield stress and failure occurs in the sulestiBte strain front does not therefore coincide
with the base of the debris flow, but occurs a merable distance into the underlying
substrate. The profile of shear stress within thessate (shown here schematically), and
thus the depth to which strain extends, depends tlmmaterial properties of the substrate
and the basal shear stress of rhe M{dpDiscontinuous no-slip case, where the MTD is

bonded to strong substrate above a weaker layer.
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Highlights

1.

Broad classification for basal interaction of submarine mass movements as free- and no-
slip flows

Hydroplaning, shear wetting and liquefaction are mechanisms resulting in the detachment
of the mass flow from the substrate, leading to flow bypass

Megascours and peel-back are erosional mechanisms where the basal drag is high enough
to allow the mass flow to plough into the substrate.

Grooves result from the dragging of a tool carried at the base of the flow.

Strain front related to the mass movement does not coincide with the base of the mass
flow but may occurs a considerable depth into the substrate.



