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Abstract 

Children with Developmental Coordination Disorder (DCD) demonstrate inefficient motor 

planning ability with a tendency to opt for non-optimal planning strategies. Motor imagery 

can provide an insight to this planning inefficiency, as it may be a strategy for improving 

motor planning and thereby motor performance for those with DCD. In this study, we 

investigated the prevalence of end-state-comfort (ESC) and the minimal rotation strategy 

using a grip selection task in children with DCD with and without motor imagery 

instructions. Boys with (n = 14) and without DCD (n = 18) aged 7 – 12 years completed one, 

two and three colour sequences of a grip selection (octagon) task. Two conditions were 

examined; a Motor Planning (MP) condition requiring only the performance of the task and a 

Motor Imagery and Planning (MIP) condition, which included an instruction to imagine 

performing the movement before execution. For the MP condition, children with DCD ended 

fewer trials in ESC for the one (p=0.001) and two colour (p=0.002) sequences and used a 

minimal rotation strategy more often than those without DCD. For the MIP condition, the 

DCD group significantly increased their use of the ESC strategy for the one colour sequences 

(p=0.014) while those without DCD improved for the two colour (p=0.008) sequences. ESC 

level of the DCD group on the MIP condition was similar to those without DCD at baseline 

for all colour sequences. Motor imagery shows potential as a strategy for improving motor 

planning in children with DCD. Implications and limitations are discussed. 

 

Keywords: ESC, end-state-comfort, task complexity, minimal rotation, grip selection 
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1. Introduction 

Developmental coordination disorder (DCD) is a neurodevelopmental condition that is 

characterised by the inability to acquire and execute well-coordinated movements at an age 

appropriate level (American Psychiatric Association, 2013). With a prevalence of 5 - 6% of 

the population, this condition significantly affects performance in many physical and 

everyday activities (American Psychiatric Association, 2013; Zwicker, Suto, Harris, 

Vlasakova, & Missiuna, 2018). The symptoms become apparent at an early age and cannot be 

explained by intellectual disability, visual impairment or other neurological conditions 

affecting movement (e.g. cerebral palsy) (American Psychiatric Association, 2013). 

 There is substantial evidence indicating that poor motor planning is a core feature of 

children with DCD (Adams, Ferguson, Lust, Steenbergen, & Smits-Engelsman, 2016; 

Bhoyroo, Hands, Wilmut, Hyde, & Wigley, 2018; Fuelscher, Williams, Wilmut, Enticott, & 

Hyde, 2016; Wilmut & Byrne, 2014a). Generally, motor planning reflects the process of 

selecting movement plans from an infinite number of possible movement combinations or 

solutions by which the desired goal could be achieved (Rosenbaum, Vaughan, Barnes, & 

Jorgensen, 1992). Behaviourally, one way this process can be assessed is with grip selection 

tasks that elicit the ‘end-state-comfort’ (ESC) effect (Rosenbaum et al., 1992). This effect 

illustrates the tendency to prioritise grasping objects in such a way that movements can be 

ended comfortably, even if this means sacrificing comfort at the beginning and/or during a 

movement. While children with DCD have demonstrated a reduced tendency to plan for ESC 

in grip selection tasks, this effect is most stable (or stronger) when the complexity of the 

motor planning tasks increase (Wilson et al., 2017). Supporting this, recently, Bhoyroo et al. 

(2018) investigated motor planning ability in children with and without DCD using a variety 

of simple and complex grip selection tasks.  They found that children with DCD 

demonstrated similar ESC performances to their peers for the easier tasks (i.e., bar rotation, 

bar transport and sword tasks) but were less likely to plan for ESC for the complex task (i.e., 

octagon task) as often as their typically developing (TD) peers. 

 During motor planning, an internal model of action is thought to be engaged 

(Flanagan & Wing, 1997). This model comprises both inverse and forward models. To 

perform a certain action, the inverse model generates the motor plan to achieve the required 
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goal. The forward model provides stability to motor systems enabling rapid error correction 

by predicting the outcome from the generated motor plan before slower, sensorimotor 

feedback becomes available (Shadmehr, Smith, & Krakauer, 2010; Wolpert, 1997; Wolpert, 

Diedrichsen, & Flanagan, 2011). This forward model provides a template of the upcoming 

sensory consequences of an action. This is important when using grip selection tasks to 

ensure an appropriate movement plan is selected to complete actions comfortably (Johnson‐

Frey, McCarty, & Keen, 2004; Rosenbaum, Herbort, van der Wei, & Weiss, 2014).  

 Motor imagery provides a window into the neurological processes involved in 

representing actions and is hypothesised to play an important role in effective action planning 

(Caeyenberghs, Tsoupas, Wilson, & Smits-Engelsman, 2009; Jeannerod & Decety, 1995; 

Johnson, 2000; Wolpert & Flanagan, 2001). Motor imagery refers to the ability to imagine a 

movement without any overt execution of the movement (Decety & Grezes, 1999) and is 

thought to recruit the forward modelling aspect of the internal models to predict the sensory 

consequences of the imagined actions (Kilteni, Andersson, Houborg, & Ehrsson, 2018; Sirigu 

et al., 1996; Wolpert & Kawato, 1998). At a neurological level, motor imagery is thought to 

share common networks (e.g., parietal cerebellar structures and premotor cortices) with areas 

involved in planning and executing actions (Hanakawa, Dimyan, & Hallett, 2008; Sharma & 

Baron, 2013). In a seminal behavioural study, Rosenbaum et al. (1990) found that when 

asked to grasp a horizontal wooden bar and place the left or right end of the bar onto a target 

disk, most participants chose a grip that enabled their final hand position to be comfortable 

regardless of the target location. Researchers argue that the final grasp postures might be 

specified before movements are initiated (Rosenbaum, Meulenbroek, Vaughan, & Jansen, 

2001).  In another study, researchers investigated the motor planning and development of 

cognitive representation of grasp postures in TD children aged 7 – 9 years (Stöckel, Hughes, 

& Schack, 2012). They found that by mentally representing certain grasp postures, children 

could improve their ESC level. In TD individuals, efficiency in motor imagery performance 

is associated with a greater tendency to terminate movements in ESC (Fuelscher et al., 2016; 

Toussaint, Tahej, Thibaut, Possamai, & Badets, 2013). However, this relationship has not 

been observed in children with DCD (Fuelscher et al., 2016; Noten, Wilson, Ruddock, & 

Steenbergen, 2014). Fuelscher and colleagues (2016) found that performance on a hand 

rotation task was not related to the effect of ESC in those with DCD, as a result, they 
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concluded that children with DCD appear less likely to automatically engage internal 

representations to plan grip selection tasks. 

 When required to grasp and rotate an object, many children with DCD opted for non 

ESC strategies, in particular, a minimal rotation strategy (van Swieten et al., 2010; Wilmut & 

Byrne, 2014a). Using this strategy, participants move their hand as little as possible, 

minimising initial wrist rotation at the start of a movement. For example, van Swieten and 

colleagues (2010) asked 5- to 13-year-old children with and without DCD to grasp and rotate 

a handle. They found that those with DCD used the minimal rotation strategy more than an 

ESC strategy compared to TD children. In another study involving the octagon task where 

participants had to reach and grasp a dial then rotate it to the assigned colour sequences, 

Wilmut and Byrne (2014a) obtained similar results. These findings suggest children with 

DCD favour a minimal rotation strategy (van Swieten et al., 2010; Wilmut & Byrne, 2014a) 

rather than the optimal ESC strategy that is associated with action representation to plan grip 

selection tasks (Fuelscher et al. 2016). Of note, for the octagon task, completing movements 

in uncomfortable states do not necessarily involve the use of a minimal rotation strategy. 

Some researchers, as mentioned above, simply reported this commonly used strategy for all 

the trials that ended in uncomfortable states. 

 Motor imagery can improve motor performance, in particular movement accuracy and 

efficacy (Di Rienzo et al., 2016). This imagery-driven motor learning can generalise to other 

tasks that are physically executed (Schuster et al., 2011; Theeuwes, Liefooghe, De Schryver, 

& De Houwer, 2018). Motor imagery is an emerging strategy to improve performances for 

elite athletes (Weinberg, 2008), musicians (Keller, 2012), and for the rehabilitation of 

neurological patients (Oostra, Vereecke, Jones, Vanderstraeten, & Vingerhoets, 2012; Spruijt 

et al., 2013) including those with DCD (Wilson et al., 2016; Wilson, Thomas, & Maruff, 

2002). Motor imagery instructions have been used in studies involving DCD populations to 

encourage the adoption of a first-person perspective when performing a task and improving 

motor representations (Reynolds, Licari, Elliott, Lay, & Williams, 2015; Williams, Thomas, 

Maruff, & Wilson, 2008). Given the purported link between motor imagery and motor 

planning, the overlap of neural structures that support these processes and the improved 

motor imagery ability using motor imagery instructions, imagining motor tasks prior to 
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execution could be an effective strategy to improve the planning ability of children with 

DCD.  

 In summary, children with DCD show a reduced tendency to plan grasp selection 

tasks compared to their TD peers. This could result from their reduced ability to engage 

internal models of action and default to using less efficient strategies such as minimal 

rotation. Motor imagery may provide an insight to poor planning ability as it could facilitate 

the generation of accurate internal models sub-serving motor planning and may be an 

effective strategy in improving motor skills of those with DCD. In this study, we investigated 

the pattern of grasping behaviours of children with and without DCD, specifically their 

selection of ESC or the minimal rotation strategies when completing a grip selection task. In 

addition, we investigated whether introducing motor imagery would influence their grip 

selection strategy. Finally, we looked at whether children with DCD could improve grip 

selection tasks to TD levels with motor imagery. In doing so, this study is the first to assess 

the influence of motor imagery on grasping behaviours in children with and without DCD. 

2. Method 

2.1. Participants 

Thirty-six boys aged between 7- to 12 years were recruited from local schools, 

advertisements in the local newspaper and on websites for professional Occupational 

Therapist, Physiotherapist and Disability associations. All participants were screened to 

determine suitability and group status (DCD or TD).  

 Those in the DCD group (n = 17) satisfied the four Diagnostic and Statistical Manual 

of Mental Disorders (DSM-5) criteria (American Psychiatric Association, 2013). Conforming 

to Criteria A, participants with DCD scored less or equal to 85 (equivalent to the 15th 

percentile or lower) on their Neuromuscular Developmental Index (NDI) derived from the 

McCarron Assessment of Neuromuscular Development (MAND; McCarron, 1997). Using 

the Developmental Coordination Disorder questionnaire (DCDQ07; Wilson, Crawford, 

Green, Roberts, Aylott & Kaplan, 2009), parents confirmed that movement difficulties 

significantly interfered with their children’s activities of daily living (criteria B). Criteria C 

and D were based on parent’s report. Parents reported that the onset of symptoms were 
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evident in early childhood (criteria C). Moreover, as their children attended regular primary 

schools and did not have a diagnosis of a learning disorder, an IQ of greater than 70 was 

inferred. Confirmations of any visual impairments or neurological diagnoses (e.g., cerebral 

palsy, muscular dystrophy) that could affect movement were obtained from parents (criteria 

D). As attention deficit hyperactivity disorder (ADHD) is highly comorbid with those with 

DCD (Dewey, Kaplan, Crawford, & Wilson, 2002), parents completed the Swanson Nolan 

and Pelham-IV ADHD questionnaire  (Bussing et al., 2008).  Children with a neurological 

condition (n = 2) or showed an indication of ADHD (n = 1) were excluded from the study.  

 A cut-off NDI equal or above 90 (equivalent to the 20th percentile) was used to 

allocate participants into the TD group (n = 18). In addition, all those in the TD group had no 

diagnosed movement difficulties or neurological conditions. They all attended regular 

primary schools and there were no concerns regarding their academic performance or 

learning ability. The final sample consisted of 14 children with DCD (left handed = 2) and 18 

TD (left handed = 1) children.  

2.2. Experimental task - Octagon 

The task required participants to grasp a small octagon dial by placing each finger on one flat 

side of the octagon and then turn it to direct a pointer to the named colour/s. Participants were 

free to grasp the octagon in their preferred way and rotate it in a clockwise or anticlockwise 

direction. This task is typically administered in one, two and three colour sequences 

(Bhoyroo et al., 2018; Fuelscher et al., 2016; Wilmut & Byrne, 2014a, 2014b) with 

complexity increasing as the number of sequences increases. For two and three colour 

sequences, participants were instructed to pause between colours. Any combination of 

clockwise-anticlockwise rotations could be used for a given colour sequence. Once the 

movement started, participants were asked not to adjust their grasp, doing so resulted in the 

trial being re-started. This occurred for five participants, in one or two trials, and for the two 

or three colour sequences only.  They all successfully completed the trial on the second 

attempt. 



Motor planning and motor imagery in DCD 

7 

 

2.3. Procedure 

The cross-sectional study was approved by the Human Research Ethics Committee at the 

University where the research was undertaken (reference number: 016130F). Participating 

children and their parents provided written informed consent. The researcher was blinded to 

group status as scoring of the motor assessment was conducted after all tests were completed.  

 Participants were tested individually in a quiet room. They sat comfortably in front of 

the apparatus at a distance ensuring they could complete the tasks without difficulty, and 

placed their palms on their thighs. The colour sequences were presented in a blocked order, 

starting with the simplest sequence (one colour sequence). Participants completed two 

practice trials for each colour sequence. After successful completion of the practice trials the 

experimental trials commenced. The colour sequence/s used for the practice trials were not 

included in the experimental trials. Participants completed four different experimental trials 

for each colour sequence.  

 Participants completed the octagon task under two conditions. In condition one, 

Motor Planning (MP), instructions were given to grasp the octagon and turn the pointer to the 

assigned colour/s. No explicit instruction about grasping or imagining to grasp was given. In 

condition two, Motor Imagery and Planning (MIP), participants were provided with the same 

colour sequences as the MP condition. For each colour sequence, they were instructed to first 

imagine how they would grasp the octagon and rotate the pointer to the assigned colour/s, and 

then perform the action. Similar explicit instruction has been previously used in studies 

looking at motor imagery (e.g. Ehrsson, Geyer & Naito, 2003). The following instruction was 

given: ‘I want you to imagine how you will grab the octagon and turn the pointer to colour 

one (for one colour sequences) or, to colour one and then to colour two (for two colour 

sequences) or, to colour one, then to colour two and finally to colour three (for three colour 

sequences). You will start imagining after I give the colour/s and say start.’ This process 

could be completed with eyes closed or open. When finished imagining the colour sequence, 

participants were instructed to say ‘stop’.  To ensure that participants imagined the actions, at 

the end of the imagination phase the participants indicated where they placed their thumb on 

the dial and whether their first rotation was clockwise or anticlockwise. Following this, they 

were instructed to complete the task the same way they imagined it. Participants completed 
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all the colour sequences for the MP condition followed by the MIP condition. A 15-minute 

break was allocated between each condition.  

 Participants completed the task with their preferred hand as determined by the MAND 

(McCarron, 1997). For each colour sequence the initial position of the thumb, the dial 

rotation direction and end colour were recorded. To determine ESC we followed the comfort 

rating scheme used by Wilmut and Byrne (2014a). A binary code: comfortable (1) and 

uncomfortable (0) was used to score each colour sequence. For all trials that did not end in 

ESC, if the thumb was positioned on nodes 6 or 7 for right handed participants or 4 or 5 for 

left handed participants, the trial was categorised as using the ‘minimal rotation’ strategy [a 

strategy employed by Fuelscher et al. (2016), van Swieten et al. (2010) and Wilmut and 

Byrne (2014a)]. Each colour sequence was then scored using a binary code based on the 

absence or presence of the minimal rotation strategy. All trials were coded and scored by two 

independent researchers.  In four cases, the videos were reviewed together to reach 

agreement. 

2.4. Statistical analysis 

Data analyses were performed using SPSS version 25.0 (IBM Corporation, Armonk, NY, 

USA). The data for descriptive statistics met the assumptions of normality and group 

differences were analysed using independent sample t-tests. The experimental data violated 

the assumption of normality, therefore non-parametric tests were used to examine between 

and within group patterns. Percentage ESC and percentage minimal rotation (the dependent 

variables) were calculated for each condition for each participant, for example: number of 

trials ending in ESC/total trials undertaken x 100 and similarly for minimal rotation. The 

higher the percentage, the higher the proportion of ESC or minimal rotation used. To 

compare between group differences in the motor planning strategy used for the MP and MIP 

condition the Mann Whitney U test was used. To investigate whether the groups changed 

their choice of strategy with MI instructions, a Wilcoxon Signed Rank test (Z) was used. We 

also compared the ESC level of the DCD group on the MIP condition to that of the TD group 

on the MP condition to determine whether the DCD group improved to TD levels with motor 

imagery using the Mann Whitney U test. Using the same test, interactions between the two 

groups were tested using the performance difference for ESC between MIP and MP for each 

colour sequence. Alpha was adjusted for the different analyses to control for multiple 
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comparisons using Bonferroni corrections. The effect size, r, was calculated to estimate the 

practical significance of the results, an r-value of 0.1 indicates a small effect, 0.3 a medium 

effect and 0.5 a large effect (Field, 2009). 

3. Results 

3.1 Participant characteristics 

Mean (M) and standard deviation (SD) for participant characteristics are shown in Table 1.  

Table 1.  

Mean (M) and standard deviation (SD) for participant characteristics 

 DCD (n = 14) TD (n = 18) t Group 

Difference  M (SD) M (SD) 

Age 10.05 (1.30) 10.05 (1.30) 0.004 1.00 

NDI 72.29 (15.71) 106.61 (13.03) 6.76 < 0.001 

SNAP 1.11 (0.77) 0.96 (0.57) -0.55 0.60 

Note. NDI=Neuromuscular Developmental Index, SNAP=Swanson Nolan and Pelham-

IV ADHD score. 

3.2 Motor planning under MP condition 

Between group comparisons for the MP condition revealed that the DCD group ended in a 

significantly lower percentage of ESC than the TD group for the one colour (U = 42.50, p = 

0.001, MdDCD = 50.00, IQRDCD = 31.25, MdTD = 75.00, IQRTD = 25.00) and the two colour (U 

= 55.50, p = 0.002, MdDCD = 25.00, IQRDCD = 6.25, MdTD = 50.00, IQRTD = 50.00) sequences 

(Figure 1A and Figure 1B). Effect sizes were large for both the one (r = 0.60) and two colour 

sequences (r = 0.50). 

 Children with DCD used the minimal rotation strategy more often than their TD peers 

for the one (U = 44.00, p = 0.001, r = 0.58, MdDCD = 50.00, IQRDCD = 31.25, MdTD = 25.00, 

IQRTD = 25.00) and two colour sequences (U = 49.00, p = 0.002, r = 0.54, MdDCD = 62.50, 
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IQRDCD = 25.00, MdTD = 25.00, IQRTD = 50.00) with large effect sizes. No difference in 

performances were observed for the three colour sequences (Figure 2A and 2B).  

3.3 Motor planning across conditions 

Within group analyses revealed that the DCD group had significantly higher percentages of 

ESC with large effect sizes for the MIP condition compared to the MP condition for the one 

colour sequence only (Z = 2.460, p = 0.014, r = 0.66) (Figure 1A and 1C). The opposite was 

found for the MIP condition where the minimal rotation strategy was used less compared to 

the MP condition for all sequences (one: Z = 2.801, p = 0.005, r = 0.75; two: Z = 3.025, p = 

0.002, r = 0.81; three: Z = 2.719, p = 0.007, r = 0.73; Figure 1B and 1D).  

 A different outcome was found for the TD group for the two colour sequence only.  

For this sequence TD children demonstrated a higher percentage ESC for the MIP condition 

compared to the MP condition for the two colour sequences with a large effect size (Z = 

2.460, p = 0.014, r = 0.58). There was no difference between conditions for the one and three 

colour sequences (Figure 2A and 2B). As can be seen in Figure 2B and 2D, the TD group 

were less likely to use the minimal rotation strategy for the MIP condition than the MP 

condition for the two colour sequence (Z = 2.714, p = 0.007, r = 0.64) only. 

3.4 Motor planning of DCD group on MIP condition compared to TD group under MP 

condition 

In order to determine whether children with DCD could improve their ESC performance to a 

TD level of motor imagery, we compared ESC level of the DCD group on the MIP condition 

to the TD group for the MP condition. For this analysis, no significant differences in ESC 

were found for any of the colour sequences between the groups. When group change in 

performance from the MIP to the MP condition was examined, a significant between group 

difference in ESC level was found for the one colour sequence only with a large effect size 

(U = 47.00, p = 0.001, r = 0.56). 

3.5 Motor planning under MIP condition 

The DCD group ended fewer trials in ESC than their peers for the MIP condition for the two 

colour sequence only (U = 55.50, p = 0.004, r = 0.55, MdDCD = 25.00, IQRDCD = 25.00, MdTD 
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= 75.00, IQRTD = 31.25) with a large effect size. No significant between group differences 

were found for the all the colour sequences using the minimal rotation strategy. 
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Figure 1. Box plots representing end-state-comfort (ESC) for the Motor Planning condition (MP) and Motor Planning and 
Imagery condition (MIP) for one, two and three colour sequences. A. ESC in children with DCD for MP condition. B. ESC 
in TD children for MP condition. C. ESC in children with DCD for MIP condition. D. ESC in TD children for MIP 
condition. 

median 
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Figure 2. Box plots representing minimal rotation for the Motor Planning condition (MP) and Motor Planning and Imagery 
condition (MIP) for one, two and three colour sequences. A. Minimal rotation in children with DCD for MP condition. B. 
Minimal rotation in TD children for MP condition. C. Minimal rotation in children with DCD for MIP condition. D. Minimal 
rotation in TD children for MIP condition. 

median 
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4. Discussion 

In this study, the strategy used to plan movement sequences was examined in children with 

and without DCD on a motor planning condition and a motor planning and imagery 

condition. There were several key findings. First, in line with previous motor planning studies 

using the octagon task (Fuelscher et al., 2016; Wilmut & Byrne, 2014a), motor planning 

ability as demonstrated by the percentage of trials ending in ESC, was significantly lower in 

children with DCD compared to TD children for the one and two colour sequences. Second, 

also similar to previous research (van Swieten et al., 2010; Wilmut & Byrne, 2014a), children 

with DCD preferred to use a minimal rotation strategy when planning movements. Again, 

this was observed for the one and two colour sequences. Third, with motor imagery 

instructions, the DCD group showed significant improvements in their movement selections 

for ESC for the one colour sequence only. Interestingly, they significantly reduced their use 

of the minimal rotation strategy for all colour sequences. In the TD group, an increase in the 

percentage of trials ending in ESC was observed together with a reduction in using the 

minimal rotation strategy for the two colour sequence only. Finally, when motor imagery 

instructions were given to the DCD group, a significant improvement in their motor planning 

ability was observed for all the colour sequences resulting in similar outcomes to the TD 

group on the MP condition. 

 Similar to previous studies employing reach to grasp and object rotation tasks 

(Fuelscher et al., 2016; van Swieten et al., 2010; Wilmut & Byrne, 2014a), the DCD group 

were less likely to finish in ESC for the octagon tasks than their peers.  Instead, they showed 

a preference for the minimal rotation strategy (van Swieten et al., 2010; Wilmut & Byrne, 

2014a). This supports the findings by Wilmut and Byrne (2014a) that children with DCD 

consistently opted for the minimal rotation strategy compared to their peers. The internal 

model of action suggests that in planning for sequential action tasks, accurate specification of 

the motor commands of the sub movements are required to anticipate the sensory outcomes 

based on these motor commands (Flanagan, Bowman, & Johansson, 2006; Flanagan & Wing, 

1997; Johansson & Flanagan, 2009). Accordingly, action representation may be associated 

with planning for an optimal grip selection (Johnson, 2000; Rosenbaum et al., 2001). While 

this association has been found in TD children (Toussaint et al., 2013), the failure to find an 
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association between motor imagery and motor planning in children with DCD led to the 

conclusion that they may adopt a less optimal planning strategy by relying less on the internal 

model of action (Fuelscher et al., 2016). 

  Our findings suggest that children with DCD adopted an easier alternative, a minimal 

rotation strategy, which does not account for comfort at the end of the task. After an 

instruction for motor imagery, performance of the DCD group improved to a similar level as 

the TD group on the MP condition (without explicit instruction) for all colour sequences. 

This suggests that children with DCD may build well-defined internal representations of the 

action that promotes ESC when prompted to do so.  This was supported by the finding that, 

across conditions, the DCD group significantly decreased their use of the minimal rotation 

strategy. In two previous studies, the researchers explicitly asked their participants that they 

might think about their grasp (van Swieten et al., 2010; Wilmut & Byrne, 2014a). However, 

in both studies, participants still completed more movements using the minimal rotation 

strategy. The instruction to mentally represent the whole action, rather than the grip or initial 

starting point prior to performance forces the adoption of a first person perspective. This in 

turn may facilitate the performer to consider the task constraints and thereby enable an 

internal representation of appropriate grasp postures that lead to ESC. To-date, this is the case 

for all studies that have tested motor imagery ability using explicit instructions in children 

with and without DCD (Reynolds et al., 2015; Williams et al., 2008).  

 Children without DCD significantly increased their ESC performance and decreased 

their use of the minimal rotation strategy for the two colour sequence on the MIP condition 

compared to the MP condition. For the most complex three colour sequence, they planned for 

ESC to a similar extent under both conditions. As previously discussed by Bhoyroo et al. 

(2018), children may not be able to proficiently plan a four-step task given their limited 

exposure to such tasks. It appears that simply imagining such actions once prior to 

completion may not be sufficient to improve their performances. This was observed for the 

DCD group for the one colour sequence only. However, although this group also reduced the 

minimal rotation strategy for the two and three colour sequences, a significant increase in 

their ESC level was not observed. It is probable that for the DCD group, the two colour 

sequence is a complex sequence to plan.  The percentage of trials ending in ESC was still 

significantly lower than their TD peers on the MIP condition for this colour sequence. 



Motor planning and motor imagery in DCD 

16 

 

Further, motor planning performance in children with DCD appears to be task dependent 

(Noten et al., 2014; Wilson et al., 2017). The observed poor motor planning performance has 

been associated with a deficit in predictive modelling (Adams, Lust, Wilson, & Steenbergen, 

2014, 2016, 2017). In the present study, we observed that children with DCD significantly 

lowered their use of the minimal rotation strategy for the two and three colour sequences but 

did show non-significant increase in their ESC level. This suggests that the two colour 

sequence may be an easy task for the TD population but complex for the DCD population. 

Accordingly, children with DCD are unable to build accurate motor presentations for 

complex tasks resulting in an inefficiency in their motor planning ability.  

 Schoemaker and Smits-Engelsman (2015) found that many of those with DCD are not 

able to improve their motor skills simply with practice.  Motor imagery training has now been 

implemented as an intervention to improve a range of motor skills in the DCD population 

(Adams, Smits-Engelsman, Lust, Wilson, & Steenbergen, 2017; Wilson et al., 2016; Wilson 

et al., 2002). Together with the findings of the present study, it is possible that a motor 

imagery strategy implemented immediately prior to completing an action, may deliver 

improved outcomes. It would also be of interest to investigate whether this group is able to 

retain or generalise this strategy. Consequently, replication of the study with a larger sample 

size and a wider range of tasks may determine the generalisability of the findings. This may  

provide an important avenue for improving planning of activities of daily living in children 

with DCD.   

 While our results are encouraging, care must be taken interpreting them considering 

the limitations in the design. As is typical of research focusing on neurodivergent 

populations, recruitment of children with DCD proved to be difficult and numbers were low, 

precluding the inclusion of a DCD control group. There is a possibility that the positive 

results may be due to a practice effect and counterbalancing of the conditions was not 

undertaken considering the modest sample size. However, several aspects in the design 

minimised this effect. For instance, while participants were informed that they were going to 

imagine and perform tasks, they did not know that the tasks were the same as those presented 

in the MP condition.  Also, the participants completed the trials only once instead of the usual 

12 times for each colour sequence as in previous studies (Fuelscher et al., 2016; Wilmut & 

Byrne, 2014a) which minimises the possibility for an observable practice effect. Further, 
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participants had a 15-minute break between the two conditions. It has already been 

established that, many individuals with DCD have difficulty solving motor problems with 

practice alone (Schoemaker & Smits-Engelsman, 2015). . While this study provides an 

insight into the positive effect of motor imagery on planning motor actions, including a DCD 

and TD control group may further our knowledge regarding a learning effect.  

5. Conclusion 

Children with DCD favoured the minimal rotation strategy for completing the octagon grasp 

selection tasks. However, with the instruction to imagine the tasks prior to completion, they 

used an ESC strategy more often which improved their performance to baseline TD level. 

Their inability to imagine and complete the more complex tasks as efficiently as their peers 

may indicate a deficit in their predictive modelling. Together, it is possible that encouraging 

children with DCD to imagine their actions prior to execution could make a difference to 

their performance. This study identifies avenues for future research to develop well-designed 

motor imagery strategies to plan action. 
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