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Key Points:7

• Kelvin-Helmholtz (KH) vortices in Hall MHD simulation can form large magnetic8

islands to transport plasma.9

• Plasma mixing is mainly through diffusion in hybrid simulation of the KH instabil-10

ity.11

• Anisotropic temperature can be formed by the nonlinear KH instability, which can12

drive kinetic-scale waves.13
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Abstract14

A quantitative investigation of plasma transport rate via the Kelvin-Helmholtz (KH) in-15

stability can improve our understanding of solar-wind-magnetosphere coupling processes.16

Simulation studies provide a broad range of transport rates by using different measure-17

ments based on different initial conditions and under different plasma descriptions, which18

makes cross literature comparison difficult. In this study, the KH instability under similar19

initial and boundary conditions (i.e., applicable to the Earth’s magnetopause environment)20

is simulated by Hall MHD with test particles and hybrid simulations. Both simulations21

give similar particle mixing rates. However, plasma is mainly transported through a few22

big magnetic islands caused by KH driven reconnection in the fluid simulation, while23

magnetic islands in the hybrid simulation are small and patchy. Anisotropic temperature24

can be generated in the nonlinear stage of the KH instability, in which specific entropy25

and magnetic moment are not conserved. This can have an important consequence on the26

development of secondary processes within the KH instability as temperature asymmetry27

can provide free energy for wave growth. Thus, the double-adiabatic theory is not appli-28

cable and a more sophisticated equation of state is desired to resolve meso-scale process29

(e.g., KH instability) for a better understanding of the multi-scale coupling process.30

1 Introduction31

The Kelvin-Helmholtz (KH) instability, as one of the main mechanisms of viscous-32

like interaction between the solar wind and the planets’ magnetosphere/ionosphere, has33

been widely observed at various solar system objects for decades (see Johnson et al. [2014]34

and their reference). Driven by the large sheared flow, it can operate under different inter-35

planetary magnetic field (IMF) orientations [Kavosi and Raeder, 2015; Henry et al., 2017].36

It can be responsible for the transport of momentum and energy [Miura, 1984; Pu and37

Kivelson, 1983]. In addition, the KH instability can trigger secondary instabilities (e.g.,38

reconnection and wave-particle interaction) in the nonlinear stage to break the frozen-in39

condition, which transports plasma, flux tube entropy, and magnetic flux [Ohsawa et al.,40

1976; Otto and Fairfield, 2000; Nykyri and Otto, 2004; Ma et al., 2014a,b; Ma et al., 2017;41

Delamere et al., 2011, 2018]. Furthermore, several nonadiabatic heating mechanisms are42

expected to be attributed to the KH instability and the associated secondary instability43

(e.g., [Moore et al., 2016; Masson and Nykyri, 2018]).44
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Quantitative investigation of the transport processes in the KH instability as a macro45

scale diffusion process under different IMF conditions is critical to our understanding of46

the interaction between the solar wind and the Earth’s magnetosphere. Simulation stud-47

ies from magnetohydrodynamics (MHD) to particle-in-cell (PIC) simulation show a large48

range of transport rates from 109 m2 s−1 to 1011 m2 s−1 for Earth’s magnetopause environ-49

ments [Miura, 1984; Nykyri and Otto, 2001, 2004; Cowee et al., 2009, 2010; Delamere50

et al., 2011; Ma et al., 2017; Nakamura et al., 2017]. The difference among these studies51

is not only due to considering different physics, but also because of using different onset52

conditions, as well as using different methods to quantify the transport rate, which actually53

represent different transported quantities and even different transport processes. For in-54

stance, Miura [1984] estimated the anomalous viscosity (i.e., momentum and energy trans-55

port rates) based on Maxwell and Reynolds stresses in a high-plasma-beta region (β � 1)56

for a symmetric configuration. In contrast, Nykyri and Otto [2001, 2004] calculated the57

plasma entry rate (i.e., mass and flux transport rates) based on the total plasma in the re-58

connected magnetic island for an asymmetric configuration with a plasma beta value close59

to unity. Hybrid simulations [Cowee et al., 2009, 2010] used a mixing parameter deter-60

mined by the number of particles in a given cell which originated on a given side of the61

boundary. This allows to evaluate the mixing rate of superdiffusion driven by the KH in-62

stability with no initial perturbation and low plasma beta (β = 0.1). The fully kinetic 3-D63

simulation with periodic boundary conditions along the third dimension showed that in the64

later nonlinear stage the KH vortices lead to a spectrum of secondary KH and Rayleigh-65

Taylor instabilities, giving a mixing velocity that is about one percent of the initial shear66

flow speed [Nakamura et al., 2013; Nakamura and Daughton, 2014]. As such, it is difficult67

to identify the relative importance between different physics (e.g., Hall physics and ion fi-68

nite Larmor radius effects) and physical processes (e.g., reconnection and superdiffusion )69

in the KH instability by comparing various studies from the literature.70

The motivation of this study is to understand how kinetic physics affects the KH71

instability transport processes by comparing a fluid simulation with test particle and hy-72

brid simulation under the same KH onset condition. In principle, the KH onset condition73

and the growth rate are mainly determined by the shear flow speed with respect to the lo-74

cal fast mode speed (i.e., the sum of the Alfvén speed and acoustic speed), the magnetic75

field along the sheared flow direction, and the KH wavelength with respect to the width76

of initial sheared flow and other typical length scales (i.e., ion inertia length or ion Lar-77
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mor radius) [Miura and Pritchett, 1982]. The density, thermal pressure, and transverse78

magnetic field (i.e., the magnetic field perpendicular to the KH wave vector) affect the79

KH growth rate via the local fast mode speed. However, the density asymmetry affects80

the mass transport rate. As an extreme case, no net plasma mass is transported by KH81

driven reconnection for a symmetric density and magnetic field condition. Therefore, the82

transport rate by KH instability driven reconnection is measured by the area of a magnetic83

island rather than the mass in the magnetic island in this study (see next section). In con-84

trast, the plasma mixing due to the finite Larmor radius, being largely determined by the85

thermal pressure and magnetic field, always exists even without magnetic reconnection.86

The detailed numerical model and measurement of transport rate are introduced in Section87

2. The results, discussion and summary are presented in Sections 3, and 4, respectively.88

2 Methods89

2.1 Fluid and hybrid simulations90

The KH instability in two-dimensional (2-D) geometries will be simulated by both91

fluid (i.e., Hall MHD) and hybrid simulation under similar initial and boundary conditions92

within the same simulation domain. The behavior of test particles introduced into the fluid93

simulation, which evolve in accordance with the electric and magnetic fields, is compared94

with particles in the hybrid simulation.95

The fluid simulation uses a leap-frog scheme to numerically solve the full set of re-96

sistive Hall MHD equations [Potter, 1973; Birn, 1980; Otto, 2001; Nykyri and Otto, 2004],97

in which the electric field E is given by98

E = −
(
u −

j
en

)
× B + ηj.

Here, u is the ion bulk velocity, j is the current density, and η is the resistivity. The col-99

lisionless plasma implies a zero resistivity, except in the reconnection diffusion region.100

Thus, a current-dependent resistivity model: η = η0
√

j2 − j2
cH( j − jc) + ηb is applied in101

the fluid simulation, where η0 = 0.05, critical current density jc = 1.1, H(x) is the Heavi-102

side step function [Arfken, 1985], and a background resistivity ηb = 0.01. This resistivity103

model switches on a resistivity only if a critical current density is surpassed, and the max-104

imum value of the resistivity is less than 0.0475 during the whole simulation time. Our105

previous studies [Nykyri and Otto, 2001, 2004; Ma et al., 2014a,b; Ma et al., 2017] demon-106
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strated that the overall dynamics of the KH instability are insensitive to the parameters of107

this resistivity model.108

The hybrid code (i.e., kinetic ions and massless fluid electrons) was first proposed109

by Harned [1982], and the particular algorithms for our code were developed by Swift110

[1995, 1996] and [Delamere et al., 1999; Delamere, 2009; Delamere et al., 2018]. The111

code assumes quasineutrality, and is nonradiative. The Lorentz force equation is solved112

following the Boris method [Boris, 1970; Birdsall and Langdon, 1991]. The electric field113

and magnetic fields are calculated on a rectangular Yee lattice [Yee, 1966] that ensures an114

easy calculation of the curls of the fields and maintains a divergence-free magnetic field.115

The magnetic field equations are updated with a second-order, predictor-corrector method.116

A resistive term based on ion-electron collisions, ν(ue − ui), is included in the electron117

momentum equation:118

E = −ue × B − ν(ue − ui),

where ion and electron bulk velocities are ui and ue, respectively. The collision frequency,119

ν = 2 × 10−4ωg, is set to alter the amount of diffusion in the hybrid code to ensure nu-120

merical stability, where ωg is the ion gyrofrequency. The electron pressure term is not121

considered in this study.122

All simulations are carried out in a rectangular domain |x | ≤ Lx = 20L0 , |y | ≤123

Ly = 15L0, where L0 = c/ωpi = 139 km is the ion inertia length. Here the x direction is124

the normal direction outward from the magnetosphere (MSP, x < 0) to the magnetosheath125

(MSH, x > 0); the z direction points to the North; and the y direction is mostly along the126

sheared flow direction based on the right-hand rule. Both fluid and hybrid simulation have127

a uniform grid resolution of 0.1L0 in all directions. The y boundary conditions are peri-128

odic. The x boundary is open with ∂x = 0. The dimensions of the simulation domain are129

sufficiently large that all conclusions drawn in this study are insensitive to a larger simula-130

tion size along the x direction.131

The initial steady state condition is a one dimensional tangential discontinuity layer,132

in which number density, n = 0.4 cm−3, thermal pressure, p = βB2
0/(2µ0), magnetic field133

By = B0 sin θ and Bz = B0 cos θ components are constant across the velocity shear, uy =134

u0 tanh(x/L0). Here, the magnetic field B0 = 50 nT, the magnetic field tilt angle θ = 5◦,135

sheared flow velocity u0 = 0.5vA, the Alfvén speed vA = B0/
√
µ0n0m0 = 172 km s−1,136

with vacuum permeability, µ0, and ion mass, m0. The plasma beta, β is set to 0.25. The137
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fast mode speed at the boundary is v f =
√

c2
s + v

2
A
=

√
γβ/2 + 1vA ≈ 1.1vA, and the fast138

mode Mach number u0/v f = 0.45. The Alfvén speed along the shear flow direction is139

vA‖ = sin θvA ≈ 0.09vA, and the associated Mach number u0/vA‖ = 5.7.140

In principle, hybrid simulations for the KH instability can be self-seeded, resulting141

in initial small-scale KH waves that inversely cascade to larger scales at the later stage142

[Delamere et al., 2018]. The small-scale KH waves can diffuse the boundary layer, which143

affects the longest wavelength with respect to the initial width of the sheared flow. Hence,144

both fluid and hybrid simulations are triggered by a velocity perturbation in this study,145

which is given by δu = δu∇Φ(x, y)×ez , where the stream function is Φ (x, y) = − cos
(
ky y

)
cosh−2

(
x

2L0

)
,146

and the KH wave number along the y direction is ky = π/Ly . The amplitude of the pertur-147

bation, δv, is slightly different in the hybrid and fluid simulation for a convenient compari-148

son, which will be explained in more detail in Section 3.149

This study only allows a single KH wave mode to operate in the simulation system,150

which serves the purpose of comparison between Hall MHD with test particle and hybrid151

simulations. The pairing process in a larger simulation box is often observed in numerical152

experiments (e.g., [Faganello et al., 2009; Cowee et al., 2009, 2010]). It is suggested that153

the pairing process increases the anomalous viscosity [Miura, 1997]. In contrast, MHD154

simulations with dimensions that allow the pairing process [Nykyri et al., 2017] showed155

that the overall mass transport rate is comparable to the results without the pairing process156

in a much smaller simulation box [Nykyri and Otto, 2001, 2004]. This result also agrees157

with the hybrid simulation results that a typical diffusion coefficient for KH instability158

with the pairing process is about 10 × 108 m2 s−1 to 10 × 109 m2 s−1, and this value de-159

creases with more density asymmetry [Cowee et al., 2009, 2010].160

2.2 Measurement of plasma mixing and reconnected area161

The growth of KH instability is measured by the range of bulk velocity ux compo-

nent [Nykyri and Otto, 2004; Ma et al., 2014a]. The momentum transport rate (anomalous

viscosity), νano is given by

νano =
TM
xy + TR

xy

ρdu′y/dx
,

where, TM
xy = BxByµ

−1
0 and TR

xy = −ρuxu′y are the xy component of Maxwell and Reynolds162

stress, respectively, u′y is the bulk velocity uy component in the magnetospheric frame163

(i.e., x < 0 region), and the overline indicates the spatial average of the quantity TM
xy , TR

xy ,164
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and u′y over one wave period [Miura, 1984]. This measurement can be directly applied to165

both fluid and hybrid simulation.166

Magnetic islands can be generated via magnetic reconnection driven by 2-D nonlin-167

ear KH modes [Nykyri and Otto, 2001, 2004]. Integrating the density over the area of the168

detached magnetic islands is used to estimate the mass entry velocity (in units km s−1)169

from the magnetosheath into the magnetosphere, and the diffusion coefficient (in units170

m2 s−1) with an additional assumption of 1000 km wide boundary layer [Nykyri and Otto,171

2001, 2004]. The identification of the magnetic island transport direction is based on the172

density inside of the magnetic island, which requires initially different density across the173

sheared flow. This method has only been applied to the configuration where magnetic field174

components along the KH wave vector direction keep the same direction across the bound-175

ary, which is referred to as “type-II” reconnection by Nakamura et al. [2006]. In this case,176

the newly reconnected magnetic field line is still connected to the same side of shear flow177

boundary (i.e., magnetosheath to magnetosheath or magnetosphere to magnetosphere). In178

contrast, the “type-I” reconnection operates when magnetic field components along the179

KH wave vector direction are antiparallel across the boundary, which connects magnetic180

field lines from both the magnetosheath and magnetospheric sides [Nakamura et al., 2006;181

Nykyri et al., 2006]. As such, the reconnected magnetic island mixes the plasma from both182

sides.183

It appears that the plasma transport and mixing by “type-I” and “type-II” recon-184

nection, which is largely determined by the KH wave vector direction, are fundamentally185

different. In reality, the KH wave vector is mainly along the most unstable direction. As186

such, the type of reconnection can be very sensitive for the quasi-transverse magnetic field187

case, suggesting the singularity of the strict transverse magnetic field case. However, such188

singularity is caused by 2-D geometry, which does not exist in 3-D geometry. In 3-D ge-189

ometry (non-periodic boundary condition along the third dimension), the localized non-190

linear KH wave can cause a pair of reconnection sites away from the equatorial plane,191

which exchanges a portion of magnetosheath and magnetospheric flux tube and conse-192

quently transports plasma [Otto, 2006]. This process is called “double mid-latitude recon-193

nection” [Faganello et al., 2012; Borgogno et al., 2015]. Note that this process does not194

provide a net mass transport in a symmetric configuration. Ma et al. [2017] estimated the195

mass transport rate with asymmetric density by identifying double-reconnected flux though196

fluid parcel and magnetic field line tracing, and found the mass transport rate can reach197
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1010 m2 s−1. However, the presence of a flow-aligned magnetic field component (either198

“type-I” and “type-II”) breaks the north-south asymmetry, which reduces the transport rate199

[Ma et al., 2017].200

The KH instability diffusion coefficient is also measured by particle mixed area in201

hybrid and PIC simulations, where a mixed cell is defined as one containing both ion202

species where the density of each species in the cell must be at least 25% of its initial203

nominal density [Cowee et al., 2009, 2010; Delamere et al., 2018]. Although the value of204

25% is arbitrary, the overall result is insensitive to this value. Note that plasma mixing205

can be caused by magnetic reconnection, especially for “type-I” reconnection, it can also206

operate simply due to ion finite Larmor radius effects [Cowee et al., 2009]. For numeri-207

cal computation, a value p = 1 or 0 is assigned to a particle, if the initial position x of208

this particle is > 0 or < 0. For a given point x0 = (x0, y0), representing a small area209

|x − x0 | ≤ d = 0.2, the average of the p, (i.e., p̄), in this area indicates the mixing rate210

of this area, in which p̄ = 0 or 1 means no mixing, and p̄ = 0.5 means fully mixed. For211

a better visualization, the mixing rate is redefined as rM = 1 − 2|0.5 − p̄| [Matsumoto212

and Hoshino, 2006], where rM = 1 means fully mixed, rM = 0 means no mixing, and213

rM ≥ 0.5 is called the mixed region.214

For fluid simulations, test particles are introduced to estimate the mixing rate. In215

order to compare with the hybrid simulation results, a Maxwellian distribution of 100 par-216

ticles per each 0.1 × 0.1 grid cell is initialized. The Maxwellian is based on the velocity,217

temperature, and density in the vicinity of the cell. The test particles are introduced only218

for |x | < 15, because trajectories of the particles outside of this region are dominated by219

the E×B drift. The charged particles are traced by solving the Lorentz equation of motion220

using the Boris [1970] method, which has been used to investigate high-energy particles221

in the cusp diamagnetic cavity [Nykyri et al., 2012]. The instantaneous values of the fields222

are determined by interpolating in time between snapshots of the fluid simulation results223

spaced one Alfvén time apart (i.e., τA = L0/vA ≈ 0.81 s). Note the parallel electric can224

efficiently accelerated the charge particle, which is often exaggerated by the resistivity225

model in the fluid simulation. Thus, the electric field in the test particle excludes the ηj226

term. We interpreted magnetic B and
(
u − j

en

)
at particles’ positions first, and then ap-227

plied the cross product to obtain the electric field, which avoids the parallel electric field228

from the numerical interpretation. The symmetric treatment of the time derivative in the229

Boris method maintains the temporal reversibility of the Lorentz equation. As such, this230
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code can trace back the test particles to reconstruct particle distributions based on Liou-231

ville’s theory [Birn et al., 1997, 1998].232

3 Results233

Figure 1 shows the velocity ux component (panel A), the anomalous viscosity, νano234

(panel B), the area of magnetic island, Ar (panel C), and the area of mixed region, AM235

(panel D), as functions of the time from top to bottom, respectively, which roughly repre-236

sents the overall dynamic properties of the fluid with test particle simulation (blue lines)237

and the hybrid simulation (red crosses). The yellow, green, and cyan background indicate238

the linear stage (t ≤ 75), the early nonlinear stage (75 ≤ t ≤ 150), and the later nonlin-239

ear stage (t > 150). The separation between early and later nonlinear stage at t = 150240

is because the mixing area from fluid with test particle appears different from the result241

from hybrid simulation, suggesting small scale physical processes missing from the fluid242

simulation may begin to play a role. The velocity normal component (i.e., ux) is used to243

represent the growth of the KH instability, which is almost identical between the fluid and244

hybrid simulations after t = 20. The fluid system has a slightly faster growth rate than the245

hybrid system. The different KH growth rate between fluid simulation and kinetic simu-246

lation has been discussed by Nakamura et al. [2010] and Henri et al. [2013]. They noted247

that the typical MHD initial configuration for KH instability is not a kinetic equilibrium.248

The initial relaxing process leads to a quick enlargement of the original shear layer in PIC249

simulations, on which the KH instability grows at a lower rate. Since this study is mostly250

focused on the nonlinear stage, a smaller initial perturbation is applied to the fluid simu-251

lation to make both systems almost simultaneously arrive to the nonlinear stage at about252

t = 75, which is convenient for a detailed comparison.253

The anomalous viscosity for both fluid and hybrid simulation correlates to the growth254

of KH until the early nonlinear stage (i.e., t ≈ 100), and both reach their peak value when255

the instability saturates. In the late nonlinear stage (i.e. t > 150), the anomalous viscosity256

value becomes scattered, which is likely affected by secondary small-scale processes (e.g.,257

magnetic reconnection) driven by the KH mode. The fluid simulation shows that the mag-258

netic island is switched on at t ≈ 110, and the total magnetic island area, Ar , remains over259

500 after t = 150. The magnetic island fully depends on the tiny diffusion point, requiring260

a thin current layer, which can be widened by the KH dynamics and consequently switch261

off reconnection. Therefore, there are several sharp jumps between t = 100 and 150 in262
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panel C, and this process can be exaggerated by the nonlinear resistivity model. Thus it263

should not be considered as a robust feature. In contrast, the hybrid simulation gradually264

increases the magnetic island area and saturates at a smaller value (≈ 100) compared to265

the fluid result. The mixed area from fluid with test particle simulation and hybrid simu-266

lation are identical until t = 150. The smaller amplitude oscillation in this interval is due267

to the ion gyroradius motion. The missing feedback from the test particles to the electro-268

magnetic field in the fluid simulation allows for an additional artificial mixing such that269

the fluid mixing is larger in the final stages of the simulation.270

Matsumoto and Hoshino [2006] used a similar initial configuration but without mag-271

netic By components, in which the mixed region is defined as Am =
∫

rMdxdy. This def-272

inition of mixed region has only a minor difference compared to our definition. The final273

diffusion width (i.e., mixed region normalized by the KH wavelength) is almost identi-274

cal between our hybrid simulation results and their full particle simulation, although we275

used about twice the KH wavelength. This result suggested that for the given magne-276

tosheath and magnetosphere conditions, the final diffusion layer is insensitive to the KH277

wavelength.278

Figure 2 shows the selected results of fluid with test particle simulation. The top283

two panels show plasma density, ρ (color index), in-plane velocity, ux and uy (white ar-284

rows), and magnetic field lines (black lines) at t = 108 (left) and 162 (right). The bot-285

tom two panels show the plasma mixing rate, rM (color index) at t = 108 (left) and 162286

(right). The white contour lines highlight rM = 0.5 (i.e., the definition of mixed area287

rM ≥ 0.5), and magenta lines are the boundary of magnetic islands formed by mag-288

netic reconnection. There is a clear vortex structure with a thin spine region in the mid-289

dle of the simulation box at the early nonlinear stage (e.g., t = 108), while the neighbor-290

ing vortices begin to collapse to a broad boundary layer at the later nonlinear stage (e.g.,291

t = 162). Although the magnetic field has been strongly bent at t = 108, the current292

sheet is not sufficiently thin to trigger magnetic reconnection, therefore, no magnetic is-293

land is formed at that moment. After the onset of magnetic reconnection, the majority of294

the vortex region becomes magnetic island. In contrast, the description of particle motion295

using test particles in the fluid simulation shows the mixing of particles has already oper-296

ated along the interface between the two sides of fluid at t = 108. Thus, the highly mixed297

region (i.e., the yellow belt bounded by the white lines) highlights the strongly modified298

boundary layer. The width of the yellow belt (i.e. mixed area) is close to the gyroradius,299
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Figure 1. Fluid with test particle (blue lines) and hybrid simulation (red crosses) results of velocity ux

component, the anomalous viscosity, νano, the area of magnetic island, Ar , and the area of mixed area, AM ,

as functions of time from top to bottom, respectively. The yellow, green, and cyan background indicate linear

stage (t ≤ 75), early nonlinear stage (75 ≤ t ≤ 150), and later nonlinear stage (t > 150).

279

280

281

282

–11–



Confidential manuscript submitted to JGR-Space Physics

which appears insensitive to the time. Thus, the increase of the mixed area is mainly due300

to the extension of the length of interface, which is caused by the KH instability. This re-301

sult agrees with the previous hybrid simulation by Terasawa et al. [1992] and Thomas and302

Winske [1993]. Note that the mixed region barely overlaps with the magnetic island, be-303

cause these two concepts describe two fundamentally different physics processes.304

As comparison, Figure 3 mimics Figure 2 showing the selected results from the hy-305

brid simulation at similar times t = 110 (left) and 160 (right). The hybrid simulation re-306

sults are mostly identical to the fluid and test particle results. However, both the size and307

the location of magnetic island are different between fluid and hybrid simulations. The308

fluid simulation forms relatively fewer but larger scale magnetic islands, and their forma-309

tion fully depends on the few tiny localized reconnection sites. For hybrid simulation, the310

size of magnetic islands is smaller, and they exist not only inside of the vortex but also311

along the spine region, suggesting that the magnetic diffusion region becomes very patchy312

in the hybrid simulation, which is likely due to the kinetic physics missing in the fluid de-313

scription and numeric noise [Henri et al., 2013]. The difference does not have a strong314

influence at the early nonlinear stage, since the thin current layers only appear in a small315

region (e.g., spine or part of the vortex region). Nevertheless, with the continuous twisting316

of magnetic field lines, KH modes eventually form multiple thin current layers inside of317

the vortex region, where the missing kinetic physics becomes important and fluid simu-318

lations often exaggerate the diffusion region. This is likely the reason why fluid with test319

particle simulation gives a higher mixed area.320

In general, the particle distribution moments from the test particle simulation should331

represent the fluid results. However, it is more interesting to examine whether the anisotropic332

particle distribution from the test particle simulation is comparable to the result from hy-333

brid simulation. In test particle and hybrid simulations, the temperature tensor, Ti j , can be334

evaluated by calculating the second moment of the particles’ velocity distribution (i.e., the335

standard deviation of particles’ velocity, Ti j = (vli − v̄i)(v
l
j − v̄j), where the overline rep-336

resents the average based on all the individual particles within the selected area), which337

is coordinate dependent. Nevertheless, it is easy to find the highest and lowest temper-338

ature and their directions by using the minimum or maximum variance analysis (MVA)339

[Sonnerup and Scheible, 1998]. For quantification of this property, all particles within a340

distance of d = 0.2 from the given point (x0, y0) are selected to evaluate the anisotropic341

value, λ3/λ1 at the point (x0, y0), where λ3 and λ1 are the maximum and minimum eigen-342
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Figure 2. Selected results of fluid with test particle simulation. The top two panels show plasma density,

ρ (color index), in-plane velocity, ux and uy (white arrows), and magnetic field lines (black lines) at t = 108

(left) and 162 (right). The bottom two panels show the plasma mixing rate, rM (color index) at t = 108 (left)

and 162 (right). The white contour lines highlight rM = 0.5, and magenta lines are the boundary of magnetic

islands formed by magnetic reconnection.
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Figure 3. Selected results of hybrid simulation. The top two panels show plasma density, ρ (color index)

and in-plane velocity, ux and uy (white arrows), and magnetic field lines (black lines) at t = 110 (left) and

160 (right). The bottom two panels show the plasma mixing rate, rM (color index) at t = 110 (left) and 160

(right). The white contour lines highlight rM = 0.5, and magenta lines are the boundary of magnetic island

formed by magnetic reconnection.
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values from the MVA method based on all three velocity components of selected particles.343

These eigenvalues represent the maximum and minimum standard deviation of the parti-344

cles’ velocities. Therefore, the anisotropic value here means the ratio between highest and345

lowest temperature for a given point, which does not tell whether the direction of highest346

or lowest temperature is along the magnetic field or not. Figure 4 shows the anisotropic347

value, λ3/λ1, for fluid with test particle simulation (left) and hybrid simulation (right) at348

early nonlinear stage (top) and later nonlinear stage (bottom). The results from test parti-349

cles quantitatively agree with the hybrid simulations, although the hybrid simulation has a350

slightly smaller maximum anisotropic value. Both simulations show the anisotropic value351

increase at shear flow boundary with the growth of the KH instability. The highest value352

is often in the spine region. It is interesting to note that there is no strong gradient of bulk353

velocity in the spine region (see Figure 2 and 3), therefore, the high anisotropic value is354

not due to counter streaming.355

As a comparison, Figure 5 plots the ratio between parallel and perpendicular tem-358

perature, T‖/T⊥. The test particle simulation agrees well with the hybrid simulation at359

the early nonlinear stage, however, there is large deviation in the vortex region at the later360

nonlinear stage. For instance, the test particle simulation shows T‖ > T⊥ in the vortex re-361

gion, while hybrid simulation shows T‖ lower than T⊥ in the same region. Note in Figure362

4, these two simulations have similar λ3/λ1 value in the vortex region, meaning this devi-363

ation may be attributed to the different magnetic field directions in fluid and hybrid simu-364

lations. Nevertheless, both simulations show perpendicular temperature is greater than the365

parallel temperature in the spine region, which is a robust feature. This anisotropic tem-366

perature is likely to driven small scale kinetic waves (e.g., mirror modes and ion cyclotron367

waves [Nykyri et al., 2003, 2011; Dimmock et al., 2015, 2017]) and secondary instabilities368

(e.g., firehose instability).369

The double-adiabatic theory is often used for describing an anisotropic MHD sys-372

tem, which assumes that the specific entropy, s = T 2
⊥T‖
ρ2 , and the magnetic moment, µ =373

mv2
⊥

2B , are conserved along the trajectory of a fluid parcel. Here, v⊥ is the particle’s perpen-374

dicular velocity. Thus, the equation of state can be rewritten as ds/dt = 0, and dh/dt = 0,375

where the parallel term is h = T‖B
2

ρ2 , and the material derivative, d/dt, is based on bulk376

velocity. Figure 6 shows the change of specific entropy, s/s0 (top), and the parallel term377

h/h0 (bottom), in logarithmic scale at t = 120 (left) and 160 (right) from hybrid stimu-378

lation, suggesting that neither specific entropy nor the parallel term is conserved. Here,379
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Figure 4. The anisotropic value, λ3/λ1, for fluid with test particle simulation (left) and hybrid simulation

(right) at early nonlinear stage (top) and later nonlinear stage (bottom).
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Figure 5. The ratio of parallel and perpendicular temperature, T‖/T⊥, for fluid with test particle simulation

(left) and hybrid simulation (right) at early nonlinear stage (top) and later nonlinear stage (bottom).
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the subscript 0 refers to the initial values. The test particle simulation results are not pre-380

sented here, because it is mostly identical to the hybrid result. The specific entropy in-381

creases by half an order of the magnitude at the early nonlinear stage to one order of the382

magnitude at the later nonlinear stage along the spine region and in the KH vortex region.383

This implies nonadiabatic heating processes are triggered in the KH instability, which in-384

cludes but is not limited to magnetic reconnection. Nevertheless, the specific entropy en-385

hancement is still less than the observation [Ma and Otto, 2014]. The parallel term has386

relatively smaller enhancement, and it can also decrease in the edge of the vortex region,387

suggesting the first adiabatic invariant is no longer conserved in this condition.388

The top panels of Figure 7 show the average change of magnetic moment, log( µµ0
),391

where the subscript 0 refers to the initial values, and over-line refers to the geometric392

mean for all particles near the given point within a distance d = 0.2. The change of mag-393

netic moment can be roughly expressed as follows (see detailed derivation in appendix):394

d
dt

(
v2
⊥

B

)
=

2
B
γv⊥ · E⊥ +

(
2v‖v⊥ + v2

⊥b
B2

)
· (∇ × E − v · ∇B), (1)

where γ = q/m is the charge-to-mass ratio. This can be interpreted as the contribution of395

the perpendicular electric field, the magnetic field temporal variation (i.e, curl of the elec-396

tric field), and the magnetic field spatial variations along the particle trajectory. Presum-397

ing that the guiding center of ions are roughly moving at bulk velocity, the test particle398

simulation suggests that ion magnetic moments first decrease when ions are approach-399

ing the spine region. Then, their magnetic moments increase along the spine region and400

eventually drift into the KH vortex region. It is also interesting to note that the magnetic401

moment increase region coincides with the mixing region. In contrast, the bottom pan-402

els of Figure 7 show the average change of ion kinetic energy in the drift frame, Ed (i.e.,403

the square of ion velocity subtracting the E × B drift velocity), indicating plasma heating,404

which mainly increases in the spine region and decreases in the KH vortex region. The405

maximum increase of kinetic energy is about a half order of magnitude (i.e., 100.5 ≈ 3).406

As a comparison, the typical magnetosheath ion temperature is about 100 eV on the dawn407

and dusk flank terminator [Dimmock et al., 2015], while the ion temperature in the cold408

and dense plasma sheet (CDPS) is close to 1 keV (see [Wing et al., 2014] and references409

therein).410
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Figure 6. The change of the specific entropy (top) and the parallel term (bottom) in logarithmic scale at t =

120 (left) and 160 (right) from hybrid stimulation.
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Figure 7. The geometric mean of magnetic moment enhancement (top) and kinetic energy enhancement in

the E × B drift frame (bottom) at early nonlinear stage (left) and later nonlinear stage (right).
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4 Summary and Discussion413

This study carefully compared the results from Hall MHD with test particle and hy-414

brid simulations for the KH instability. Instead of investigating the path of each individ-415

ual ion with a certain energy range, we focused on the macro-scale properties of the ions,416

namely, the mixing rate, temperature anisotropy, the average magnetic moment, and the417

average kinetic energy in the E × B drift frame.418

1. In the current test parameter regime, Hall MHD with test particles and hybrid419

simulation give almost identical particle mixing rates. The increase of particle mixing is420

largely determined by the extension of the sheared flow interface length of the KH insta-421

bility. The overall mixed area is smaller than the reconnected magnetic island area in Hall422

MHD, but much greater than the magnetic island area in hybrid simulations, suggesting423

that particle mixing by finite gyro-radius is the dominant process in the hybrid simula-424

tions. However, it is important to keep in mind that the measurement of particle mixing425

in the 2-D geometry and the 3-D geometry with periodic boundary conditions along the426

third dimension should not be interpreted as the measurement of the amount of plasma427

transport from the MSH into the MSP, because one cannot identify whether these mixing428

regions are eventually connected to the MSH or the MSP. Thus, a careful quantification429

of plasma transport must define a boundary between the MSH and the MSP based on the430

magnetic field configuration first, and then compare the mass change within these regions431

(e.g. Ma et al. [2017]; Sorathia et al. [2017]).432

2. The nonlinear KH instability can cause anisotropic temperature. Two different433

types of temperature anisotropy values are used in this study, that is the ratio of the maxi-434

mum and minimum eigenvalues of matrix by using the MVA method based on three com-435

ponents of selected particles’ velocities, λ3/λ1 , and the ratio of the parallel and the per-436

pendicular temperature, T‖/T⊥. Note that λ3/λ1 > max (T‖/T⊥,T⊥/T‖). Both test particle437

and hybrid simulations show almost identical results for λ3/λ1 and T‖/T⊥ during the early438

nonlinear stage and even in the spine region during the later nonlinear stage, implying that439

T‖/T⊥ < 1 in the spine region is a robust feature. A large deviation appears for T‖/T⊥ in440

the vortex region in the later nonlinear stage. Notice, the measurement of λ3/λ1 is inde-441

pendent from the measurement of the magnetic field. Therefore, the deviation of T‖/T⊥442

between test particles and hybrid simulation is likely to be caused by the different mag-443

netic field configuration obtained from these two types of simulation. Nevertheless, the444
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nonlinear KH instability significantly increases the anisotropic value, λ3/λ1, in the spine445

and vortex regions, which can potentially be used to identify whether the in-situ observed446

KH event is in the early nonlinear stage or later nonlinear stage. The highly anisotropic447

temperature regions formed within KH waves are expected to give rise to the firehose,448

mirror or ion-cyclotron modes. However, the present results are somewhat limited by the449

2-D geometry in this study, because, the magnetic field is mostly along the invariable di-450

rection (i.e., k ‖ = 0). Thus, for realistic observation, the maximum and minimum ratio451

of parallel and perpendicular temperature is likely to be limited by the firehose mode or452

mirror mode onset condition.453

3. Compared with double-adiabatic theory, neither specific entropy nor the paral-454

lel term is conserved in the nonlinear KH wave, suggesting both adiabatic and nonadia-455

batic heating/cooling processes happen along the parallel direction. Thus, a more sophisti-456

cated equation of state (e.g., [Meng et al., 2012; Wang et al., 2015]) is desired to resolve457

meso-scale process (e.g., KH instability) for a better understanding of the multi-scale458

coupling process. The anisotropic velocity distribution is often associated with particle459

gyro-motion, in which the first adiabatic invariant, the magnetic moment, is the impor-460

tant quantity to be investigated. It is expected that the magnetic moment is no longer con-461

served, because the presence of the electric field, and the temporal and spatial variation462

of the magnetic field along the particle trajectory. The test particle simulation suggests463

that the magnetic moment often decreases before particles drifts into the spine region and464

increases along the spine region into the vortex region.465

4. The average magnetic moment pattern appears in contrast with the drift frame466

kinetic energy, Ed , which increases in the spine region and decreases in the vortex region.467

The drift frame kinetic energy, Ed , is representative of particle heating, implying ions can468

be heated in the spine region, but by only half an order of magnitude at most, which is469

very different from the observation.470

Based on this numerical experiment, the test particle simulation appears to provide471

an accurate description of particle properties (e.g., diffusion rate and anisotropy temper-472

ature) during the KH instability, especially at the early nonlinear stage. Although, at the473

later nonlinear stage, small structure formed by the KH vortex eventually requires a hybrid474

simulation or even a fully PIC simulation. Practically, for in-situ observations, the early475

nonlinear stage of KH vortex often has a relatively clear observational signature to iden-476
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tify. Thus, the fluid simulation with test particle is a good method to compare with the477

observation.478

Nevertheless there are several important observational features which have not been479

included in our simulation configuration. For instance, at the Earth’s magnetopause, the480

magnetic field and density are highly asymmetric. It is not clear whether the nonadiabatic481

heating process in the KH instability favors low temperature/plasma beta particles. Fur-482

thermore, the KH instability in three dimensions is fundamentally different from the two-483

dimensional geometry. It has been suggested that the middle-latitude double reconnection484

process can provide an additional nonadiabatic heating source [Johnson and Wing, 2009],485

which will be investigated in our future study.486

A: Derivation of Equation 1487

From the definition of magnetic moment, we have488

d
dt

(
v2
⊥

B

)
=

1
B

d
dt

(
v2
⊥

)
−

v2
⊥

B2
dB
dt

(A.1)

=
1
B

d
dt

(
v2 − v2

‖

)
−

v2
⊥

B2
dB
dt
, (A.2)

where, d/dt = ∂/∂t + v · ∇ represents the variation along the particle trajectory. The

derivative of total energy v2 with respective to time can be found from

dv2

dt
=2v ·

dv
dt

(A.3)

=2v · γ (v × B + E) (A.4)

=2γv · E. (A.5)

The equation of parallel velocity is

dv‖
dt
=

d
dt
(v · b) (A.6)

=
dv
dt
· b + v ·

db
dt

(A.7)

=γ (v × B + E) · b + v ·
(
∂b
∂t
+ v · ∇b

)
(A.8)

=γE‖ + v ·
(
∂b
∂t
+ v · ∇b

)
, (A.9)

where b is the unit vector of magnetic field B. The last term implies that the change of489

parallel velocity can be due to the change of the magnetic field direction along the particle490
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trajectory, even without temporal variation of the magnetic field (i.e., adiabatic motion491

assumption). Thus, the last term is expected to be close to the mirror force, − v2
⊥

2Bb · ∇B,492

when the gyroradius is much smaller than the |B/(∇B)|. Notice that:493

∇ · B = b · ∇B + B∇ · b = 0,

such that the mirror force can also be rewritten as v2
⊥

2 ∇ · b.494

With the help of Equation A.5 and A.9, Equation A.2 can be rewritten as:

d
dt

(
v2
⊥

B

)
=2

1
B

(
γv · E − γv‖E‖ − v‖v ·

db
dt

)
−

v2
⊥

B2
dB
dt

(A.10)

=
2
B
γv⊥ · E⊥ −

(
2v‖v⊥ + v2

⊥b
B2

)
· (
∂B
∂t
+ v · ∇B) (A.11)

=
2
B
γv⊥ · E⊥ +

(
2v‖v⊥ + v2

⊥b
B2

)
· (∇ × E − v · ∇B). (A.12)

Comparing with dµ/dt = 0 for adiabatic motion (v⊥ · E⊥ = 0 in the sense of one periodic495

gyro-motion, and ∂/∂t = 0), the term associated d/dt ≈ v · ∇ should be negligible under496

the adiabatic motion assumption.497
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