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Abstract

Air flow velocity field control is of crucial importance in aerospace applications to
prevent the potentially destabilizing effects of phenomena such as cavity flow oscilla-
tions, flow separation, flow-induced limit cycle oscillations (LCO) (flutter), vorticity,
and acoustic instabilities. Flow control is also important in aircraft applications to
reduce drag in aircraft wings for improved flight performance. Although passive flow
control approaches are often utilized due to their simplicity, active flow control (AFC)
methods can achieve improved flight performance over a wider range of time-varying
operating conditions by automatically adjusting their level of control actuation in
response to real-time sensor measurements. Although several methods for AFC have
been presented in recent literature, there remain numerous challenges to be overcome
in closed-loop nonlinear AFC design. Additional challenges arise in control design for
practical systems with limited onboard sensor measurements and uncertain actuator
dynamics.

In this thesis, robust nonlinear control methods are developed, which are rigor-
ously proven to achieve reliable control of fluid flow systems under uncertain, time-
varying operating conditions and actuator model uncertainty. Further, to address
the practical control design challenges resulting from sensor limitations, this thesis
research will investigate and develop new methods of sliding mode estimation, which
are shown to achieve finite-time state estimation for systems with limited onboard
sensing capabilities. The specific contributions presented in this thesis include: 1) the
application of proper orthogonal decomposition (POD)-based model order reduction
techniques to develop simplified, control-oriented mathematical models of actuated
fluid flow dynamic systems; 2) the rigorous development of nonlinear closed-loop ac-
tive flow control techniques to achieve asymptotic regulation of fluid flow velocity
fields; 3) the design of novel sliding mode estimation and control methods to regulate
fluid flow velocity fields in the presence of actuator uncertainty; 4) the design of a non-
linear control method that achieves simultaneous fluid flow velocity control and LCO
suppression in a flexible airfoil; and 5) the analysis of a discontinuous hierarchical
sliding mode estimation method using a differential inclusions-based technique.

iv



Acknowledgments

First, I would like to give my thanks and deepest gratitude to Dr. William MacKunis
for his knowledge, patience, guidance, support, and dedication. I will be forever
grateful for what you have taught me and I will always cherish your input. I would
like to thank my committee members Dr. Sergey Drakunov, Dr. Mahmut Reyhanoglu
and Dr. Vladimir Golubev for their valuable inputs and suggestions. The knowledge,
insight and your classes have been invaluable and greatly appreciated.

I would like to thank all my friends in the EP program, specially Chris, Andrea,
Niloofar and my academic sister Natalie. I am grateful for her help during the course
of my Ph.D. My life as an international student in a new country would not have been
so smooth without the help of these people and I’ll cherish all those lunch discussions
we had. I also would like to thank my friend Irfan and my brother Sriram for their
constant feedback and support.

I would like to thank my mom Jayasree, dad Muralidhar and my family for making
me a person who I am today. Finally my wife Anu, a simple thank you would not
suffice the profound gratitude and love for her, I would not have accomplished this
challenging endeavor without her.

v



Contents

Abstract iv

Acknowledgements v

List of Tables x

List of Figures xi

1 Inroduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Dissertation Organization . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Mathematical Definitions 9

2.1 Nonlinear System and Stability . . . . . . . . . . . . . . . . . . . . . 9

2.2 Lyapunov Stability Theory . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Lyapunov’s First Stability Theorem . . . . . . . . . . . . . . . 10

2.2.2 Lyapunov’s Second Stability Theorem . . . . . . . . . . . . . . 11

2.3 Sliding Mode Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Robust Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.1 Nonlinear Damping . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Synthetic Jet Actuators . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5.1 Virtual Surface Deflection using SJA . . . . . . . . . . . . . . 18

2.6 Proper Orthogonal Decomposition . . . . . . . . . . . . . . . . . . . . 21

2.6.1 POD based ROM for Unactuated Systems . . . . . . . . . . . 21

2.6.2 POD based ROM for Actuated Flow . . . . . . . . . . . . . . 23

vi



3 A Closed-loop Nonlinear Control and Sliding Mode Estimation Strat-

egy for Fluid Flow Regulation 28

3.1 Flow Dynamics Reduced-order Model . . . . . . . . . . . . . . . . . . 29

3.1.1 Unactuated Flow Dynamics Reduced-order Model . . . . . . . 30

3.1.2 Reduced-order Model for the Actuated Flow . . . . . . . . . . 32

3.1.2.1 Actuation Modes . . . . . . . . . . . . . . . . . . . . 32

3.1.2.2 Actuated Dynamic Model . . . . . . . . . . . . . . . 34

3.2 Sliding Mode Observer Design . . . . . . . . . . . . . . . . . . . . . . 35

3.2.1 Observer Design 1 . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.2 Observer Design 2 . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 Control Development . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.1 Open Loop Error System . . . . . . . . . . . . . . . . . . . . . 41

3.3.2 Closed-Loop Error System . . . . . . . . . . . . . . . . . . . . 42

3.4 Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 Sliding Mode Estimation Strategy for Synthetic Jet Actuator-based

Flow Control Under Actuator Uncertainty 53

4.1 POD-based Reduced-order Model . . . . . . . . . . . . . . . . . . . . 54

4.1.1 Reduced-order Model for the Actuated Flow Dynamics . . . . 54

4.1.1.1 Actuated Dynamic Model . . . . . . . . . . . . . . . 55

4.2 SJA-based Control Model Derivation . . . . . . . . . . . . . . . . . . 56

4.2.1 SJA Actuator Model . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 Observer Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4 Control Development . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4.1 Control Objective . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4.2 Open Loop Error System . . . . . . . . . . . . . . . . . . . . . 65

4.4.3 Closed-Loop Error System . . . . . . . . . . . . . . . . . . . . 67

4.5 Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.6 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

vii



5 Limit Cycle Oscillation Suppression using a Closed-loop Nonlinear

Active Flow Control Technique 79

5.1 Mathematical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.1.1 LCO Dynamic Model . . . . . . . . . . . . . . . . . . . . . . . 80

5.1.2 Flow Dynamics Reduced-order Model . . . . . . . . . . . . . . 82

5.1.3 Reduced-order Model for the Actuated Flow . . . . . . . . . . 84

5.2 SJA-based Control Model Derivation . . . . . . . . . . . . . . . . . . 85

5.3 Control Development . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3.1 Open Loop Error System . . . . . . . . . . . . . . . . . . . . . 87

5.3.2 Closed-Loop Error System . . . . . . . . . . . . . . . . . . . . 89

5.4 Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.5.1 Flow parameters . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.5.2 LCO parameters . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6 A Hierarchical Sliding Mode Estimation Method Using a Differential

Inclusions-based Analysis 96

6.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.1.1 Mathematical Definitions . . . . . . . . . . . . . . . . . . . . . 97

6.1.2 Simple Example of Differential Inclusion . . . . . . . . . . . . 100

6.2 Observer Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.2.1 Dynamic Model and Properties . . . . . . . . . . . . . . . . . 101

6.2.2 Observer Design . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.3 SMO Estimation Error Dynamics . . . . . . . . . . . . . . . . . . . . 105

6.3.1 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.3.2 Estimation Error Dynamics . . . . . . . . . . . . . . . . . . . 106

6.3.3 Hierarchical Analysis of Estimation Error Dynamics . . . . . . 107

6.4 Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.5 Simulation Study: Flow Field Velocity Estimation . . . . . . . . . . . 112

6.5.1 Reduced-order Model Derivation . . . . . . . . . . . . . . . . 112

6.5.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . 115

viii



6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7 Conclusion and Future Work 119

7.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

A Proof of Lemma 1 121

B Proof of Theorem 10 123

References 125

ix



List of Tables

4.1 SJA parameters and their estimates for all three cases . . . . . . . . . 71

4.2 Initial Conditions of the states and Estimates . . . . . . . . . . . . . 72

4.3 Parameters Used in the Simulation Plant Model . . . . . . . . . . . . 72

4.4 Observer gains used in the simulation . . . . . . . . . . . . . . . . . . 72

5.1 Dynamic parameters and geometric dimensions of the LCO Model . . 93

6.1 Parameters Used in the Simulation Plant Model . . . . . . . . . . . . 116

x



‘

xi



List of Figures

2.1 Schematic layout of a synthetic jet actuator . . . . . . . . . . . . . . 19

2.2 Example of synthetic jet actuators and their installation in airfoil

(wing) model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Variation of virtual surface deflection with the voltage from the syn-

thetic jet actuator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1 Zoomed plots magnifying the initial closed-loop transient response of

the states x1(t), x2(t) and the error e1(t), e2(t) using the observers in

(3.15) (left) and (3.18) (right). . . . . . . . . . . . . . . . . . . . . . . 49

3.2 Closed-loop response of the states x1(t), x2(t) and the error e1(t), e2(t)

for the total simulation time using the observers in (3.15) (left) and

(3.18) (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3 Commanded control inputs during the initial transient period of closed-

loop controller operation using the observers in (3.15) (left) and (3.18)

(right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1 Time Evolution of the states for open-loop (uncontrolled) configuration 74

xii



4.2 Zoomed-in plots showing the initial convergence phase of the states

(blue) and the estimates (red) using the observer in (4.14). . . . . . . 74

4.3 Closed-loop response of true states with and without compensation for

uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4 Zoomed-in plots showing the initial transient response of the closed-

loop system for case 1, with (red) and without (blue) compensation for

uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.5 Closed-loop response of the control signal γ (t) . . . . . . . . . . . . . 76

4.6 Monte Carlo-Type simulation results for three different sets of uncer-

tain SJA parameters for actual states . . . . . . . . . . . . . . . . . . 76

4.7 Monte Carlo-Type simulation results for three different sets of uncer-

tain SJA parameters for estimated states . . . . . . . . . . . . . . . . 77

5.1 A block diagram illustrating the proposed nonlinear control method

for simultaneous flow control and LCO suppression . . . . . . . . . . 81

5.2 Open-loop plunging time response of the LCO simulated system . . . 93

5.3 Closed-loop time response of LCO plunging with different initial con-

ditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.4 Control magnitude during closed-loop operation . . . . . . . . . . . . 94

6.1 Time evolution of the states (blue) and the estimates (red) using the

observer in (6.19) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.2 Zoomed plots showing the initial convergence phase of the states (blue)

and the estimates (red) using the observer in (6.19) . . . . . . . . . . 117

6.3 Time evolution of the error in each state over the entire simulation time 117

xiii



Chapter 1

Inroduction

1.1 Motivation

Fluid flow can be defined as the motion of liquids or gases, which is a phenomenon

that one encounters continuously in everyday life. The flow of air around the body

of a car or the wing of an aircraft, flow of water in oceans and the motion of air

in the atmosphere carrying the clouds are only a few examples of fluid flows. Flow

control refers to the ability to manipulate fluid flow so as to achieve a desired change

in its behavior. Flow control is of crucial importance in aerospace applications to

prevent the potentially destabilizing effects of phenomena such as cavity flow oscilla-

tions, flow separation, flow-induced LCO (flutter), vorticity, and acoustic instabilities

(Ito & Ravindran, 1998; Rowley & Williams, 2006; M. Balajewicz & Dowell, 2012).

Significant progress has been made in developing various control strategies; however,

the control of fluid flow remains an active field of research.

Flow control methods are broadly classified into two categories, passive and active.

1



1.1. MOTIVATION

Although passive flow control approaches are often utilized due to their simplicity,

they can not adapt to flow changes, they might lose their efficiency during the process

(Heller & Bliss, 1976; Shaw, 1979; Lin, Howard, & Selby, 1989). Active flow control

(AFC) have gained lot of interest, as the technological advancement in computing,

sensors and actuation. Moreover AFC methods can achieve improved flight perfor-

mance over a wider range of time-varying operating conditions by automatically ad-

justing their level of control actuation in response to sensor measurements. Although

several methods for AFC have been presented in recent literature (e.g., (Singh, My-

att, Addington, Banda, & Hall, 2001; Debiasi & Samimy, 2004; Gad-el Hak, 2006;

Pinier, Ausseur, Glauser, & Higuchi, 2007; Cadirci, Gunes, & Rist, 2013; Couchot,

Deschinkel, & Salomon, 2013)). In (Singh et al., 2001), a feedback linear control law

is presented to control two-dimensional incompressible, unsteady wake flow past a

circular cylinder. (Debiasi & Samimy, 2004) presents an experimental investigation

for controlling a shallow cavity flow using closed-loop control techniques. An efficient

proportional feedback loop is presented in (Pinier et al., 2007), to delay the separation

of flow over NACA-4412 airfoil at high angle of attacks. Other recently developed

AFC methods utilize intelligent control techniques, such as fuzzy logic rules or neural

networks (NN). For example, a NN-based AFC method is presented in (Couchot et

al., 2013), in which an artificial NN is trained to predict the evolution of the flow

dynamics resulting from the actuation effects of an array of micro-electromechanical

systems (MEMS) actuators. The AFC strategy in (Couchot et al., 2013) then utilizes

the NN-based prediction to optimize the flow according to a pre-defined numerical

criterion.

Popular approaches to AFC design often utilize experimental or numerical tech-

2



1.1. MOTIVATION

niques (Andino et al., 2011; Sohankar, Khodadadi, & Rangraz, 2015; Zhao, Zhao,

Gu, & Chen, 2016a). (Andino et al., 2011) presents experimental results of using

proportional feedback controller to control flow over a cylindrical turret. (Sohankar

et al., 2015) analyzes the effects of uniform suction and blowing through the surface

of a square cylinder on vortex shedding. Numerical simulations show a reduction

in drag and vortex shedding. Numerical methods to analyze flow systems can be

very computationally expensive (M. J. Balajewicz, Dowell, & Noack, 2013). Ex-

perimental and computational approaches have been shown to achieve good AFC

performance, where the focus is typically on the analysis of numerical or experimen-

tal data. However, rigorous mathematical tools of nonlinear control are not often

utilized to analyze the performance of closed-loop AFC systems. The motivation for

the closed-loop AFC design in this thesis is based on the desire to achieve closed-loop

flow control using a computationally inexpensive approach, which can automatically

adapt to time-varying operating conditions.

A challenge in nonlinear flow control design is that fluid flow dynamics are gov-

erned by complex models such as the Burgers’ equations or Navier-Stokes equations,

due to their inherent nonlinearity and complexity of infinite-dimensional flow dy-

namics. Control system design for these class of systems remains a challenging task.

POD-based model reduction is a popular technique that is utilized to recast the

infinite-dimensional flow dynamic model into finite set of ordinary differential equa-

tions (ODEs). The POD method uses Galerkin projection to project the Navier-

Stokes (or Burgers’) PDEs onto a finite-dimensional subspace such that the projec-

tion error is minimized. The reduced-order model (ROM) resulting from POD and

the Galerkin projection is a finite set of nonlinear ODEs in terms of the time-varying

3



1.1. MOTIVATION

coefficients resulting from Galerkin projection. The ROM are capable of approximat-

ing the dynamic of the flow field using only a few states (i.e., Galerkin coefficients)

(H. Park & Lee, 1998; Rowley, Colonius, & Murray, 2004; Lall, Marsden, & Glavaški,

2002; Chaturantabut, Sep., 2017; Annoni & Seiler, 2017). The ROM resulting from

these decomposition techniques enable one to accurately approximate the underlying

flow dynamics in a form amenable to control design. However, a key challenge in

control design using the ROM is that the state variables of the ROM are not directly

measurable, thus they are not available for feedback control design. To address this

challenge, closed-loop AFC systems based on ROM must incorporate observers (or

estimators), which are capable of generating estimates of the unmeasurable states

using direct sensor measurements (D. Park & Guay, 2015; MacKunis, Drakunov,

Reyhanoglu, & Ukeiley, 2011; Guay & Hariharan, June 11-13, 2008; John, Guay, &

Hariharan, June 10-12, 2009).

Sliding mode observers have been extensively studied over the past two decades

to estimate the states (S. Drakunov & Utkin, 1992; Utkin, 2013) of uncertain system

dynamics (Zhang & Xu, 2015; Jiang, Huang, & Guo, 2015; Dinh, Kamalapurkar,

Bhasin, & Dixon, 2014). Linear observers for flow problems have been implemented

over the years due to their simplicity and ease of estimation (Rowley & Juttiju-

data, 2005; Ahuja & Rowley, 2010; Nagarajan, Cordier, & Airiau, 2013). (Rowley &

Juttijudata, 2005) a Kalman filter is designed to estimate the states of a linearized

ROM flow system and feedback control was designed to suppress cavity oscillations.

In (Ahuja & Rowley, 2010), a feedback control of two-dimensional flow over a flat

plat at a low Reynolds number and a reduced-order Kalman filter was developed to

accurately reconstruct the flow field from sensor measurement. (Nagarajan et al.,

4



1.1. MOTIVATION

2013) proposed a feedback control law and a linear observer to control self-sustained

instabilities in cavity flows. But the problem of nonlinear estimation has not been

looked into relating to closed-loop flow problems. A DNN based robust observer and

dynamic filter are designed to estimate the system dynamics and the unmeasurable

states respectively in (Dinh et al., 2014), however the use of neural network based es-

timation and control strategy for flow control incurs a high level of complexity which

makes the real time implementation unsuitable. The theoretical design of nonlinear

observers for flow systems is further complicated by the fact that the mathematical

form of the sensor measurement equation is in a non-standard form.

Actuators play an important role in closed loop feedback control of flow system.

A detailed review of recent flow control actuators is presented in (Cattafesta III &

Sheplak, 2011; Wang, Luo, Xia, Liu, & Deng, 2012). The use of synthetic jet ac-

tuators (SJAs) have emerged a popular tool for flow separation control, trajectory

tracking control, LCO suppression (Mohseni & Mittal, 2014; Fisher, Nishino, & Savill,

2017; Ramos-Pedroza, MacKunis, & Golubev, 2017). A detailed review about dif-

ferent actuators used in closed-loop flow control is discussed in (Rowley & Williams,

2006). The application of SJAs in aerospace and active flow control applications are

becoming popular due to their small size, cost-effectiveness and they achieve the mo-

mentum transfer with zero-net mass-flux (Amitay, Smith, Kibens, Parekh, & Glezer,

2001; Kurowski, 2017; Ramos-Pedroza et al., 2017; Tang, Salunkhe, Zheng, Du, &

Wu, 2014; De Giorgi, De Luca, Ficarella, & Marra, 2015; Broglia, Choi, Houston,

Pasquale, & Zanchetta, 2018). (Amitay et al., 2001) shows improvements in the aero-

dynamic performance of a thick, blunt airfoil using sythetic jet fluidic control near

the airfoil leading edge. In (Kurowski, 2017), numerical simulation of SJAs for active

5



1.1. MOTIVATION

flow control has been investigated. In (Ramos-Pedroza et al., 2017), a SJA based

output feedback control method is presented that proves asymptotic regulation of

LCO in small UAV’s. (Tang et al., 2014) demonstrates the use of SJAs in delaying

the flow separation and improving the aerodynamics performance on a UAV. A nu-

merical investigation is performed to analyze the suppression of the boundary layer

separation on a NACA 0015 airfoil using two different active flow control techniques

in (De Giorgi et al., 2015). In (Broglia et al., 2018), a set-point tracking control prob-

lem of unsteady flow separation over an airfoil using plasma actuators is presented.

However, the major challenge in using SJAs in flow control design is the presence

of parametric uncertainty inherent in the SJA actuator model. The parametric un-

certainty in the SJA actuator model creates further challenges in observer design for

SJA-based systems. These challenges were mitigated through innovative algebraic

manipulation in the estimator error system derivation along with a Lyapunov-based

adaptive control law.

Relying on the closed-loop active flow control technique proposed in this thesis,

a nonlinear control method, which achieves simultaneous fluid flow velocity control

and LCO suppression in a flexible airfoil. The proposed control design is based on a

dynamic model that incorporates the fluid structure interactions (FSI) in the airfoil.

The FSI describe how the flow field velocity at the surface of a flexible structure gives

rise to fluid forces acting on the structure. The LCO are controlled via control of

the flow field velocity near the surface of the airfoil using surface-embedded SJAs. A

Lyapunov-based stability analysis is used to prove that the active flow control system

asymptotically converges to the LCO-stabilizing forcing function that suppresses the

LCO. The inherent discontinuities typically associated with SMO create significant

6



1.2. DISSERTATION ORGANIZATION

theoretical challenges in analyzing the performance of SMO.

To cope with the discontinuities that can arise in the SMO dynamic models, the

dissertation also provides a detailed analysis of SMO estimation error dynamics using

differential inclusions to rigorously analyze the convergence performance of SMO.

The following specific theoretical contributions are presented in detail, A differential

inclusions-based analysis of the SMO, which incorporates the set-valued definition

of the discontinuous signum function and an expanded derivation of the estimation

error dynamics, which emphasizes advantageous properties particular to the SMO

structure. Finally, a Lyapunov-based stability analysis of the SMO that rigorously

incorporates the multiple discontinuities in the estimation error dynamics and proves

that the SMO achieves finite-time estimation of the complete state vector, where the

output equation is in a nonstandard mathematical form.

1.2 Dissertation Organization

This thesis is organized as follows: Chapter 2 provides various preliminary stabil-

ity concepts, sliding mode estimation techniques and mathematical analysis of POD

based model order reduction with the effects of actuator dynamics embedded in the

flow model. Chapter 3 presents preliminary development of sliding mode estimator

and closed-loop active flow control technique for fluid flow regulation. This chapter

also provides Lypaunov-based stability analysis to achieve asymptotic regulation of

the fluid flow system. Chapter 4 presents a novel sliding mode estimation strategy

for SJA-based flow control under actuator uncertainty. This is the first closed-loop

active flow control result that combines a finite-time sliding mode estimation strategy

7
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with a robust control method under actuator uncertainty. Chapter 5 provides a proof

of concept nonlinear control method, that achieves simultaneous fluid flow velocity

control and LCO suppression in a flexible airfoil. Finally, Chapter 6 describes a dif-

ferential inclusions-based analysis of the SMO and a Lyapunov-based analysis that

proves that the sliding mode estimator achieves finite-time estimation in the presence

of multiple discontinuities in the estimator dynamics.

8



Chapter 2

Mathematical Definitions

This chapter presents the key mathematical concepts involved in the development of

closed-loop control design presented in this dissertation. This chapter describes Ly-

paunov’s first and second stability theorem, sliding mode estimation technique based

on equivalent control, robust control design structure, SJA dynamics and concludes

with POD-based reduced-order modeling.

2.1 Nonlinear System and Stability

A nonlinear dynamic system can be represented by a set of nonlinear differential

equations of the form

ẋ = f(x, t) (2.1)

where f : D× [0,∞)→ Rn is a nonlinear vector function and x(t) ∈ D ⊂ Rn denotes

the state vector. The number of states n is called the order of the system. A solution

of (2.1) usually corresponds to a curve in state space as t varies from [0,∞). The
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2.2. LYAPUNOV STABILITY THEORY

system defined in (2.1) is called non-autonomous system due to the explicit time

dependence (Slotine & Li, 1991).

2.2 Lyapunov Stability Theory

Aleksandr Mikhailovich Lyapunov, a Russian mathematician developed a global ap-

proach to the analysis of the stability of the nonlinear dynamic systems (Lyapunov,

1992). This section presents some of the important Lyapunov theorems that are

used in the control design and stability analysis of the closed-loop system in this

dissertation.

Definition 1. Stability in the sense of Lyapunov: The equilibrium point x∗ = 0

of (2.1) is stable (in the sense of Lyapunov) at t = t0 for any ε > 0 there exists a

δ(t0, ε) > 0 such that

‖x(t0)‖ < δ ⇒ ‖x(t)‖ < ε,∀t ≥ t0. (2.2)

2.2.1 Lyapunov’s First Stability Theorem

Lyapunov’s first stability theorem is often referred to as indirect method of Lya-

punov and is important for determining the stability of a nonlinear system around an

equilibrium point x∗ from the stability of its linearized system (Gantmakher, 2000)

Theorem 1. If the linearized system is strictly stable around the equilibrium point

x∗ = 0, then the equilibrium point is asymptotically stable for the nonlinear system.

• If the linearized system is unstable around the equilibrium point x∗ = 0, then

the equilibrium point is unstable for the nonlinear system.

10



2.2. LYAPUNOV STABILITY THEORY

• If the linearized system is marginally stable around the equilibrium point x∗ =

0, then one cannot conclude anything from the linear approximation for the

nonlinear system

2.2.2 Lyapunov’s Second Stability Theorem

The basic philosophy of Lyapunov’s second (direct) stability theorem is from funda-

mental physical observation. If the total energy of a system is continuously dissipated

then the system must eventually settle down to an equilibrium point (whether linear

or nonlinear). Let V : Rn → R be a continuously differentiable Lyapunov function.

Theorem 2. Consider the dynamic system in (2.1), where x∗ is the equilibrium point

of the system. Then the equilibrium point is

• Stable if,

V (x∗) = 0 and V (x) > 0 in D− {x∗} ∀t (2.3)

and its time derivative along the trajectories of the system is negative semi-

definite in the sense that

V̇ (x) ≤ 0. (2.4)

• Asymptotically stable if, (2.3) is satisfied and V̇ (x) is negative definite in the

sense that

V̇ (x) < 0 in D− {x∗}. (2.5)

• Globally asymptotically stable if, (2.3) is satisfied for any initial state x(t0) along

11
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with (2.4) and the function V (x) is radially bounded

‖x(t)‖ ⇒ ∞ V (x)→∞. (2.6)

• Unstable if,

V̇ (x) >0 ∀ x 6= x∗ (2.7)

V̇ (x∗) =0 ∀ t. (2.8)

2.3 Sliding Mode Estimation

This section summarizes a sliding mode estimator (or observer) design, which can be

utilized to generate state estimates using only available sensor measurements. The

sliding mode estimator described here can be applied to linear systems or nonlinear

systems (S. V. Drakunov, 1992; S. Drakunov & Utkin, 1992; S. V. Drakunov &

Reyhanoglu, 2011), where the dynamic model is not completely known.

Consider a nonlinear system

ẋ = f(x) + g(x)u (2.9)

y = h(x) (2.10)

where x ∈ Rn, f(x) ∈ Rn, y ∈ Rm denote sufficiently differentiable vector functions,

g(x) ∈ Rn×m denotes a sufficiently differentiable input gain matrix and u(t) ∈ Rm

denotes the control input.

12
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Assumption 1. If x (t) ∈ L∞, the first and second partial derivatives of f (x), g (x),

and h (x) with respect to x (t) exist and are bounded.

An observer that estimates the full state x(t) of the system in (2.9) using only

measurements of y(t) can be designed as

˙̂x =

(
∂H(x̂)

∂x

)−1

M(x̂){sgn(V (t)−H(x̂))}eq + g(x̂)u(x̂) (2.11)

where {sgn(·)}eq represents a smooth continuous value operator of the discontinuous

signum function (S. V. Drakunov, 1992), M(x̂) ∈ Rn×n is the sliding gain diagonal

matrix as previously mentioned of the form

M(x̂) = diag

[
m1(x̂) · · · mn(x̂)

]
, (2.12)

H(x̂) ∈ Rn is a vector of the output derivatives (S. V. Drakunov, 1992; MacKunis et

al., 2011; S. V. Drakunov & Reyhanoglu, 2011) of the form

H(x) ,

[
h1 (x) h2 (x) · · · hn (x)

]T
(2.13)

=

[
h (x) Lfh (x) · · · Ln−1

f h (x)

]T
(2.14)

where Lf =
∂h

∂x
f(x) denotes the Lie derivative of the output function, h(x), along

the direction of the vector field. If x(t) is a solution to the system described in (2.9),

then

d
dt
hi(x(t)) = hi+1(x(t)), i = 1, ..., n− 1. (2.15)
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Lastly, V (t) ∈ Rn is the observer vector in the form of

V (t) =

[
v1(t) · · · vn(t)

]T
(2.16)

=

[
h1(x) · · · mi{sgn(vi(t)− hi(x̂))}eq

]T
(2.17)

for i = 1, · · · , n.

Definition 2. L∞ is a function space, in which for a function f in this set, its

essential supremum serves as an norm:

‖f(x)‖∞ ≡ inf{C ≥ 0 : |f(x)| ≤ C ∀x} (2.18)

Condition 1 (Observability). The system given in (2.9) and (2.10) must satisfy the

observability condition

rank (O (x, µ)) = n, ∀ x ∈ Rn, (2.19)

where the observability matrix O (x, µ) , ∂H(x,µ)
∂x

∈ Rn×n.

Theorem 3. Provided the observability Condition 1 and Assumption 1 are satisfied,

the sliding mode observer in (2.11) achieves finite-time estimation of the state x(t) in

the sense that x̂(t) ≡ x(t) for t ≥ tn, where tn ∈ L∞

Proof. Based on Condition 1, the observability matrix is full rank, and
∣∣∣det

(
∂H(x)
∂x

)∣∣∣ ≥
ε > 0. It thus follows that the map H (x) is a diffeomorphism (i.e., there is a one to

one correspondence between x (t) and H (x). Since H(x) is a diffeomorphism, it is

sufficient to prove that e(t) = H(x)−H(x̂) = 0 for t ≥ tn.

The estimation error dynamics can be obtained by taking the time derivative of
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e (t) = [e1 (t) , ..., en (t)]T as

ė (t) =
∂H (x)

∂x
ẋ− ∂H(x̂)

∂x
˙̂x. (2.20)

By using (2.9), (2.11), (2.13) and (2.12) the estimation error dynamics can be ex-

pressed as

ė(t) =
∂H (x)

∂x
ẋ−M(x̂){sgn(V (t)−H(x̂))}eq −

∂H(x̂)

∂x
g(x̂)u(t). (2.21)

Therefore from (2.15),

ėi(t) = hi+1(t)−mi(x̂){sgn(vi(t)− hi(x̂))} −
n∑
i=1

∂hi(x̂)

∂x

m∑
j=1

gijuj (t) (2.22)

for i = 1, . . . , n and for j = 1, . . . ,m. The convergence of ei (t) to the corresponding

sliding manifolds can be achieved by selecting the sliding gain terms mi (x̂) to satisfy

mi (x̂) > hi+1 −
n∑
i=1

∂hi(x̂)

∂x

m∑
j=1

gijuj (t) (2.23)

for i = 1, . . . , n and for j = 1, . . . ,m. Hence, provided Assumption 1 and Condition

1 and (2.23) are satisfied, it can be shown that the sliding manifolds ei (t) = 0 are

reached in finite time. Hence, x̂ (t) ≡ x (t) in finite time.

2.4 Robust Control

The control of uncertain nonlinear dynamic systems is a topic that continues to

challenge control theoreticians. In many real-world applications, the mathematical
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model is poorly known or uncertain. Various robust control techniques have emerged

over the last decade to facilitate the uncertainties of nonlinear systems. Among

these, RISE (Robust Integral of the Sign of the Error) is advantageous because it is a

differentiable control method that can compensate for additive system uncertainties.

Due to its advantages, flurry of results have been published in the literature (Xian,

Dawson, de Queiroz, Chen, et al., 2004; Patre, MacKunis, Kaiser, & Dixon, 2008;

Cai, de Queiroz, & Dawson, 2006). This section presents a stability analysis proof

similar to the ones presented in Chapters.

2.4.1 Nonlinear Damping

Consider the dynamical system

ẋ = f(x, t) + u(t) (2.24)

where x(t) ∈ Rn is the state space vector, u(t) ∈ Rn is the control input vector, and

f : D × [0,∞) → Rn is an unknown disturbance that is bounded and sufficiently

smooth in the sense that

|f(x, t)| ≤ ζ |ḟ(x, t)| ≤ ζ0 (2.25)

where ζ, ζ0 ∈ R+ are known constants. A control law design, u(t), is utilized to drive

the state vector, x(t), to the desired equilibrium point, x∗, as

u = −(ks + 1)x (2.26)
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where ks ∈ R+ is the nonlinear damping gain (ks could also be defined as a positive

definite diagonal gain matrix). The closed loop dynamics are obtained when (2.26)

is substituted into (2.24) as

ẋ = f(x, t)− (ks + 1)x (2.27)

To analyze the stability of (2.27), consider the following positive definite Lyapunov

function and its derivative

V =
1

2
x2 (2.28)

V̇ = xẋ (2.29)

Substituting (2.27) into (2.29) results in

V̇ = xf(x, t)− (ks + 1)x2 (2.30)

After completing the squares, the Lyapunov derivative can be expressed as

V̇ ≤ −x2 − ks
(
|x|2 − ζ

ks
|x|
)

(2.31)

V̇ ≤ −x2 +
ζ2

4ks
≤ −2V +

ζ2

4ks
(2.32)

Based on the expression in (2.32), x(t) is bounded and converges to the compact set

described as

S =

{
x | |x| ≤ ζ

2
√
ks

}
. (2.33)
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Note that the size of the ultimate bound on the tracking error can be made arbitrarily

small by increasing the control gain ks.

2.5 Synthetic Jet Actuators

The use of SJAs have emerged a popular tool for flow separation control, trajectory

tracking control, LCO suppression (Mohseni & Mittal, 2014; Fisher et al., 2017;

Ramos-Pedroza et al., 2017).

The most common SJA assemblies are piston cylinder, voice-coil magnet, or piezo-

electric disk type actuators. These SJAs transfer linear momentum to a flow sys-

tem using a piezoelectric membrane inside a cavity, which creates a train of vortices

through the alternating suction and ejection of the air around it through a small

orifice as seen in Figure 2.5. This means that SJAs achieve momentum transfer with

zero net mass flux across the flow boundary. Figure 2.2 illustrates an example of the

installation of these SJAs in an airfoil.

2.5.1 Virtual Surface Deflection using SJA

The control actuation in SJA is generated by a given m number of SJA arrays and

the control input u (t) represents the virtual surface deflection angle resulting from

the cumulative effect of these the SJA arrays. The key challenge in SJA-based control

design is that the virtual deflection angle due to the ith SJA array is an uncertain

nonlinear function of the input voltage applied to the array. Specifically, the dynamics

of the virtual surface deflection due to the ith SJA array can be expressed using the

empirically determined model (Deb, Tao, Burkholder, & Smith, 2007), (Deb, Tao,
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Figure 2.1: Schematic layout of a synthetic jet actuator (Pedroza, 2018).

Figure 2.2: Example of synthetic jet actuators and their installation in an airfoil
(wing) model (Zhao et al., 2016b).
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Burkholder, & Smith, 2008)

ui (t) = θ∗2i −
θ∗1i
vi (t)

, i = 1, ...,m (2.34)

where ui(t) ∈ R denotes the virtual deflection angle due to the ith SJA array;

vi(t) = A2
ppi(t) ∈ R denotes the peak-to-peak voltage applied to the ith SJA array

in [Volts]; and θ∗1i, θ
∗
2i ∈ R are uncertain constant physical parameters in [Volt−deg]

and [deg], respectively, for the ith SJA array. The parameter θ∗2i physically represents

the maximum surface deflection angle achievable using the ith SJA array. Figure 2.3

shows the different variation of the virtual surface deflection with the voltage provided

from the SJA for four different values of the constant physical parameter θ∗1.

Figure 2.3: Variation of virtual surface deflection with the voltage from the synthetic
jet actuator (Ramos-Pedroza et al., 2017).

To compensate for the SJA nonlinearity and input parametric uncertainty in
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(2.34), a robust-inverse control structure will be utilized (MacKunis et al., 10-13

Dec., 2013), which employs constant, “best-guess” estimates of the uncertain SJA

parameters θ∗1i, θ
∗
2i. The robust-inverse control law can be expressed as

vi (t) =
θ̂1i

θ̂2i − udi (t)
, i = 1, ...,m (2.35)

where θ̂1i, θ̂2i ∈ R+ are constant feedforward estimates of θ∗1i and θ∗2i, respectively; and

udi (t) ∈ R, for i = 1, ...,m, are the auxiliary control terms. These auxiliary control

terms are defined in the subsequent chapters.

2.6 Proper Orthogonal Decomposition

POD, was introduced by Lumley (Bakewell Jr & Lumley, 1967) to identify coherent

structures in flow. Since then it has been successfully applied to many scientific and

engineering applications for low-dimensional dynamic modeling, image compression

(Richards John & Xiuping, 1999). In this section, a POD based model order reduction

for Incompressible Navier-Stokes is presented. For more detailed analysis on POD

the reader is referred to (Holmes, 2012).

2.6.1 POD based ROM for Unactuated Systems

The incompressible Navier-Stokes equations are given as (Batchelor, 2000)

∇ · u = 0,
∂u

∂t
= −(u · ∇)u+ v∇2(u)−∇p, (2.36)
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where u(s, t) : Ω × [0,∞) ∈ R3 denotes the velocity of the flow field over a spatial

domain s ∈ Ω ⊂ R3; p(s, t) ∈ R3 is the space- and time-dependent pressure of the

flow field over Ω; and v ,1/Re, where Re denotes the Reynolds number. In the

POD modal decomposition technique, the flow velocity field u(s, t) is expanded as a

weighted sum of POD modes defined in the spatial domain Ω as

u(s, t) = u0 +
n∑
i=1

xi(t)φi(s). (2.37)

In (2.37), φi(s) ∈ R3, denote the POD modes and xi(t), i = 1, ..., n, denote unknown,

time-varying coefficients resulting from the modal decomposition, respectively; and

u0 ∈ R3 denotes the mean flow velocity over Ω. By substituting the velocity field

expansion (2.37) into (2.36), the POD-based reduced-order model of the Navier-Stokes

equations is obtained as (MacKunis et al., 2011; Guay & Hariharan, June 11-13, 2008;

John et al., June 10-12, 2009)

∂

∂t

n∑
j=1

xj(t)φj(s) = −
[
u0 +

n∑
i=1

xi(t)φi(s)

]
· ∇
[
u0 +

n∑
k=1

xk(t)φk(x)

]
+

v∇2

[
u0 +

n∑
j=1

xj(t)φj(x)

]
−∇p. (2.38)

ẋk(t) =
n∑
j=1

xj(t)〈(−φj(s) · ∇)u0 − (u0 · ∇)φj(s) + v∇2φj(s), φk(s)〉

−
n∑
i=1

n∑
j=1

xi(t)xj(t)〈(φi(s) · ∇)φj(s), φk(s)〉+ 〈−u0 · ∇u0 + v∇2u0, φk(s)〉

(2.39)
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where 〈φi(s), φj(s)〉 denotes the standard inner product between two vectors in Eu-

clidean space. By orthogonality of modes, 〈φi(s), φj(s)〉 = δij, where δij denotes the

Kronecker delta symbol. Note that, since div (φk) = 0, it can be shown that φk(s) =

0 on the boundary of Ω. Indeed, it follows that

∫
Ω

∇p · φk(s)dV =

∫
∂Ω

pφk(s) · nΩds (2.40)

where nΩ represents the unit vector normal to the spatial domain Ω. Thus, the

pressure term can be ignored, and the expression in (2.39) can be rewritten in the

compact form

ẋk(t) = Lkx(t) + xT (t)Qkx(t) + bk, k = 1, ..., n. (2.41)

The expression in (2.41) represents a system of nonlinear ordinary differential equa-

tions resulting from POD-based model reduction. In (2.41), Lk(s) ∈ R1×n, Qk(s) ∈

Rn×n, and bk ∈ R are defined as

Lki(s) = 〈−(φj(s) · ∇)u0 − (u0 · ∇)φj(s) + v∇2φj(s), φk(s)〉, (2.42)

Qkij(s) = −〈(φi(s) · ∇)φj(s), φk(s)〉, (2.43)

bk(s) = 〈−u0 · ∇u0 + v∇2u0, φk(s)〉. (2.44)

2.6.2 POD based ROM for Actuated Flow

In the POD-based model order reduction method described in Section 2.6.1, the flow

field expansion does not include the effects of actuation. This section presents an
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extension of the POD based ROM where the flow velocity field u(s, t) is expanded

as a weighted sum of actuated and unactuated POD modes defined in the spatial

domain Ω (Akhtar, Nayfeh, & Ribbens, 2009; Kasnakoğlu, Camphouse, & Serrani,

2009)

u(s, t) = u0 +
n∑
i=1

xi(t)φi(s) +
m∑
i=1

γi(t)ψi(s) (2.45)

In (2.45), φi(s) ∈ R3 denote the POD modes; ai(t), i = 1, ..., n, are the unknown,

unmeasurable time-varying coefficients resulting from the modal decomposition; and

u0 ∈ R3 denotes the mean flow velocity over Ω, where ψi (s) ∈ R denote the actuation

modes, and γi (t) ∈ R denote actuation values (i.e., control inputs). After substituting

(2.45) in (2.36), the individual terms ∂u
∂t
, (u · ∇u) and ∇2u are expressed as

∂u

∂t
=
∂u0

∂t
+
∂

∂t

n∑
i=1

xiφi +
∂

∂t

m∑
j=1

γjψj

=
n∑
i=1

ẋiφ+
m∑
j=1

γ̇jψj (2.46)

u · ∇u =

[
u0 +

n∑
i=1

xiφi +
m∑
i=1

γiψi

]
· ∇
[
u0 +

n∑
j=1

xjφj +
m∑
j=1

γjψj

]

=u0 · ∇u0 + u0 ·
m∑
j=1

xj∇φj + u0 ·
m∑
j=1

γj∇ψj

+
n∑
i=1

xiφi · ∇u0 +
n∑
i=1

xiφi ·
n∑
j=1

xj∇φj +
n∑
i=1

xiφi ·
m∑
j=1

γj∇ψj

+
m∑
i=1

γiψi · ∇u0 +
m∑
i=1

γiψi ·
n∑
j=1

xj∇φj +
m∑
i=1

γiψi ·
m∑
j=1

γj∇ψj (2.47)
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rearranging the terms in (2.47),

u · ∇u =u0 · ∇u0 +
n∑
i=1

(
u0 · ∇φi + φi · ∇u0

)
xi +

m∑
j=1

(
u0 · ∇ψj + ψj · ∇u0

)
γj

+
n∑
i=1

n∑
j=1

(
φi · ∇φj

)
xixj +

m∑
i=1

m∑
j=1

(
ψi · ∇ψj

)
γiγj

+
n∑
i=1

m∑
j=1

(
φi · ∇ψj + ψj · ∇φi

)
xiγj. (2.48)

The diffusion term is expanded as

∇2u = ∇2u0 +
n∑
i=1

xi∇2φi +
m∑
j=1

γj∇2ψj (2.49)

By utilizing (2.46), (2.48) and (2.49) into (2.36) and project these equations along

φk and obtain

ẋk(t) =Ak +
n∑
i=1

Bkixi(t) +
n∑
i=1

n∑
j=1

Ckijxj(t)xi(t)

+
m∑
i=1

Dkiγ̇i(t) +
n∑
i=1

m∑
j=1

Ekijxi(t)γj(t)

+
m∑
i=1

Fkiγi(t) +
m∑
i=1

m∑
j=1

Gkijγi(t)γj(t), (2.50)
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where

Ak =− 〈u0.∇u0, φk〉+
1

Re
〈∇2u0, φk〉

Bk =− 〈u0.∇φi, φk〉 − 〈φi · ∇u0, φk〉+
1

Re
〈∇2φi, φk〉

Ck =− 〈φi · ∇φj, φk〉

Dk =− 〈ψi, φk〉

Ek =− 〈ψj · ∇φi, φi〉 − 〈φi · ∇ψj, φk〉

Fk =− 〈u0 · ∇ψi, φk〉 − 〈ψi · ∇u0, φk〉+
1

Re
〈∇2ψi, φk〉

Gk =− 〈ψi · ∇ψj, φk〉.

The actuated reduced-order flow dynamics model in (2.50) can be expressed in

control affine form as

ẋ = f(x) + g(x)u, y = h(x) (2.51)

where x(t) , [x1(t), x2(t), ...., xn(t)]T ∈ Rn contains the unmeasurable coefficients

resulting from POD-based model order reduction, g(x) ∈ Rn×m is an input gain

matrix, u(t) , [u1 (t) , ..., um (t)] ∈ Rm denotes a subsequently defined virtual control

input (e.g., resulting from m arrays of SJAs), and y(t) ∈ R is the measurable output

(e.g., sensor measurements of flow field velocity or pressure). In the subsequent AFC

design and analysis, the observer and controller development will be presented using

a virtual control signal u (t) ∈ Rm, which is defined via the parameterization

g (x)u = Qain (x, γ) +Qin (γ, γ) . (2.52)
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Remark 1. In (2.52), γ (t) ∈ Rm, and the terms Qain (x, γ) , Qin (γ, γ) are quadratic

in their respective arguments ((i.e, Qin(x, γ) is a function that includes products of

x and γ, Qin(γ, γ) is quadratic in γ)). Since the γ (t) dependence is quadratic in

this case, the mapping between γ (t) and u (t) will not be unique in general and any

‘desired’ control signal commanded by the actuation signal γ (t) can be realized by the

virtual control signal u (t).
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Chapter 3

A Closed-loop Nonlinear Control

and Sliding Mode Estimation

Strategy for Fluid Flow Regulation

In this chapter, a sliding mode observer and robust nonlinear control method are pre-

sented, which are shown to achieve finite-time state estimation and asymptotic regu-

lation of a fluid flow system. To facilitate the design and analysis of the closed-loop

active flow control system, POD-based model order reduction is utilized to express

the Navier-Stokes partial differential equations as a set of nonlinear ordinary differen-

tial equations. The resulting reduced-order model contains a measurement equation

that is in a non-standard mathematical form. This challenge is mitigated through

the detailed design and analysis of a sliding mode observer. The observer is shown to

achieve finite-time estimation of the unmeasurable states of the reduced-order model

using direct sensor measurements of the flow field velocity. The estimated states are
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utilized as feedback measurements in a closed-loop active flow control system. To

address the practical challenge of actuator bandwidth limitations, the control law is

designed to be continuous. A rigorous Lyapunov-based stability analysis is presented

to prove that the closed-loop flow estimation and control method achieves asymptotic

regulation of a fluid flow field to a prescribed state. Numerical simulation results are

also provided to demonstrate the performance of the proposed closed-loop active flow

control system, comparing two different designs for the sliding mode observer.

3.1 Flow Dynamics Reduced-order Model

In this section, a POD-based model reduction technique is utilized to recast the incom-

pressible Navier-Stokes equations as a finite set of nonlinear ODEs. The derivation

of the ROM for the unactuated flow dynamics is presented in Section 3.1.1. The

additional details involved in deriving the reduced-order Galerkin model for the ac-

tuated flow dynamics are then presented in Section 3.1.2. The ROM for the actuated

flow dynamics presented in Section 3.1.2 will be utilized to develop the proposed

closed-loop AFC system.

Remark 2. (Flow Reconstruction vs. Flow Control) POD-based model or-

der reduction can require a large number of modes to achieve resolution high enough

to reconstruct highly turbulent flow fields (Saha, Biswas, Mandal, & Sarkar, 2017).

However, the focus of the effort presented here is on control of the fluid flow, as op-

posed to reconstruction of the flow. It has been shown in recent research that ROM

accuracy sufficient for flow control can be achieved using only the first few POD modes

(Rowley et al., 2004; Wallace, Shea, Glauser, Thirunavukkarasu, & Carlson, 2012;
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Siegel, Cohen, & McLaughlin, 2006; Kasnakoğlu, Serrani, & Efe, 2008; S. Gordeyev &

Thomas, 2013; Caraballo, Little, Debiasi, & Samimy, 2007). For the proof-of-concept

of the sliding mode estimation and flow control method presented here, complete flow

field reconstruction is not necessary, and it is assumed that the ROM has sufficient

accuracy for the flow control objective.

3.1.1 Unactuated Flow Dynamics Reduced-order Model

The incompressible Navier-Stokes equations are given as (Batchelor, 2000)

∇ · u = 0,
∂u

∂t
= −(u · ∇)u+ v∇2(u)−∇p, (3.1)

where u(s, t) : Ω × [0,∞) ∈ R3 denotes the velocity of the flow field over a spatial

domain s ∈ Ω ⊂ R3; p(s, t) ∈ R3 is the space- and time-dependent pressure of the

flow field over Ω; and v ,1/Re, where Re denotes the Reynolds number.

POD, which is often referred to as Karhunen-Loève expansion or principal com-

ponent analysis, is used to obtain lower-dimensional dynamic models for fluid flow.

Specifically, POD is utilized to develop a set of basis functions (POD modes) that ap-

proximates the original infinite-dimensional flow dynamic model as a finite-dimensional

model in terms of the POD modes. In the POD modal decomposition technique, the

flow velocity field u(s, t) is expanded as a weighted sum of POD modes defined in the

spatial domain Ω as

u(s, t) = u0 +
n∑
i=1

xi(t)φi(s). (3.2)

In (3.2), φi(s) ∈ R3, denote the POD modes and xi(t), i = 1, ..., n, denote unknown,

time-varying coefficients resulting from the modal decomposition, respectively; and
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u0 ∈ R3 denotes the mean flow velocity over Ω. By substituting the velocity field

expansion (3.2) into (3.1), and following the procedure described in Section 2.6.1, the

POD-based reduced-order model can be expressed as

ẋ = A(x)x, A(x) = L+
n∑
i=1

xiPi, (3.3)

where x(t) , [x1(t), x2(t), ...., xn(t)]T ∈ Rn.

The flow field observer design presented here is based on the standard assumption

that one or more sensor measurements are available. For a general case where q

velocity field measurements are available at q predefined locations, the corresponding

average velocity measurement can be expressed in terms of the modal decomposition.

For example, a sensor velocity measurement at a single location s0 can be expressed

as (John et al., June 10-12, 2009)

y (t) =
n∑
i=1

xi (t)
(
φ1
i (s0) + φ2

i (s0) + φ3
i (s0)

)
, (3.4)

where φji (s) ∈ R denotes the jth element of the ith POD mode. Since the POD modes

are temporally independent, the output measurement in (3.4) can be expressed as

y (t) = Cx(t), (3.5)

where y (t) ∈ R, and C ∈ R1×n is a vector of known constants, and x (t) is introduced

in (3.3). Physically, the expression in (3.5) can be interpreted as the measured velocity

at a predefined location as expressed in terms of the POD modes.

An expression similar to that in (3.5) can be obtained to represent pressure mea-
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surements or other physical quantities. The subsequent analysis is based on the

assumption that a single velocity sensor measurement is available, without loss of

generality.

Further details of the reduced-order model derivation summarized above can be

found in (Holmes, 2012; Kalashnikova & Barone, 2012; Rowley, 2005). Note that the

derivation of the reduced-order model in this section does not explicitly include the

effects of control actuation, since the actuation effects are embedded in the coefficients

in the Galerkin model. The details of the ROM derivation for the actuated flow system

are summarized in the following section.

3.1.2 Reduced-order Model for the Actuated Flow

For the control design presented here, it will be assumed that an input separation

method (Kasnakoğlu et al., 2009) is utilized to expand the flow field in terms of

baseline (unactuated) POD modes and actuation modes. The baseline POD modes

are extracted using a standard POD procedure as described in Section 3.1.1, whereas

the actuation modes are built using an optimization algorithm similar to that in

(Kasnakoğlu et al., 2009). The following section provide details on the ROM for

actuated flow that is being considered in this paper.

3.1.2.1 Actuation Modes

Note that the reduced-order model given in (3.3) - (3.5) does not explicitly include

the effects of actuation. The actuation effects are embedded in the coefficients of the

Galerkin system. Specifically, the actuation effects can be included in the reduced-

order model by redefining the modal decomposition in (3.2) to include actuation
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modes as

u(s, t) = u0 +
n∑
i=1

xi(t)φi(s) + γ1 (t)ψ1 (s) + γ2 (t)ψ2 (s) , (3.6)

where ψ1 (s) , ψ2 (s) ∈ R denote the actuation modes, and γ1 (t),γ2 (t) ∈ R denote

actuation values (i.e., control inputs). Physically, the actuation values could represent

voltage input signals to SJAs, for example (MacKunis et al., 10-13 Dec., 2013). By

following an optimization technique similar to that in (Kasnakoğlu et al., 2009), the

actuation modes can be defined as the modes ψ1 (x) and ψ2 (x) that minimize the

energy not captured in the modal expansion of the actuated flow field. Details of the

minimization algorithm can be found in (Kasnakoğlu et al., 2009). The decomposition

in (3.6) assumes the presence of two actuation values, but the model can easily be

extended to an arbitrary number of actuation values with little modification. Our

subsequent numerical simulation results assume two actuation modes and two baseline

POD modes in the dynamic model, without loss of generality.

Remark 3. (Fully Actuated System) The theoretical estimator and control design

presented here can be applied to the general case of m > n. The case where there are

fewer control inputs than modes to be controlled (i.e., the underactuated case m <

n) requires a specialized treatment that is not addressed in the current result. The

numerical simulation results presented in this paper test the case of two modes and

two control inputs, without loss of generality.
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3.1.2.2 Actuated Dynamic Model

By replacing the actuated modal decomposition described in (3.6), the actuated

reduced-order flow dynamics can be expressed as (3.3)

ẋ = A (x)x+Qain (x, γ) +Qin (γ, γ) , (3.7)

where γ (t) ,

[
γ1 (t) γ2 (t)

]T
∈ R2, x (t) is introduced in (3.3), and the terms

Qain (x, γ) , Qin (γ, γ) ∈ Rn are quadratic in their respective arguments ((i.e, Qin(x, γ)

is a function that includes products of x and γ, Qin(γ, γ) is quadratic in γ)). In this

preliminary AFC design and analysis, the observer and controller development will

be presented using a virtual control signal µ (t) ∈ R2, which is defined via

g (x)µ = Qain (x, γ) +Qin (γ, γ) . (3.8)

In (3.8), g (x) ∈ R2×2 is a measurable input gain matrix, and µ (t) represents the

control actuation resulting from the cumulative effects of the actuation values γ1 (t)

and γ2 (t). Based on the quadratic structure of the actuation functions Qain (x, γ)

and Qin (γ, γ), it can be shown that any ‘desired’ control signal commanded by the

actuation signal γ (t) can be realized by the virtual control signal µ (t). Since the γ (t)

dependence is quadratic, the mapping between γ (t) and µ (t) will not be unique in

general; but the subsequent discussion is based on the assumption that the desired,

commanded control input can be delivered by the virtual control signal. Future work

will address a formal handling of the non-affine control problem.

Remark 4. (Zero-net Mass Flux) Note that the control mechanism being consid-
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ered here does not add mass to the flow system, since the control actuation is assumed

to be generated by means of boundary movement or using SJAs, which transfer mo-

mentum with zero net mass injection across the flow boundary.

3.2 Sliding Mode Observer Design

This section presents two sliding mode observer designs to estimate the unknown

coefficients resulting from POD-based reduced-order dynamic model for an actuated

flow velocity field. Our previous result in (MacKunis et al., 2011) presents the design

of a sliding mode observer, which is shown to achieve finite-time estimation of the

unknown modal coefficients for unactuated flow systems in the form given in (3.3)

- (3.5). The current result extends our previous work by designing a closed-loop

observer/controller system to estimate the unknown coefficients while simultaneously

driving the flow field to a desired velocity profile. This section will describe the non-

trivial reworking of the sliding mode observers that is required for the actuated flow

dynamics in (3.7) and (3.8).

By following a procedure similar to that in Sections 3.1.1 and 3.1.2, a reduced-

order (control-oriented) model for the actuated flow system can be obtained as

ẋ = f(x) + g (x)µ, (3.9)

y = h(x). (3.10)

where µ (t) ∈ R2 denotes the control input, g (x) ∈ Rn×2 denotes a sufficiently differen-

tiable input gain matrix, and y (t) ∈ R is the measurable output. In (3.9), f (x) ∈ Rn

and h (x) ∈ R denote sufficiently differentiable vector functions. In the flow control
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design presented here, f (x) and h (x) can be explicitly defined as f (x) , A (x)x and

h (x) , Cx as they are defined for the system in (3.3) - (3.5). The explicit definition

for g (x) can be obtained by following the POD-based model reduction procedure

presented in Section 3.1, where the actuated modal decomposition in (3.6) is utilized

in place of (3.2).

Definition 3. L∞ is a function space, in which for a function f in this set, its

essential supremum serves as an norm:

‖f(x)‖∞ ≡ inf{C ≥ 0 : |f(x)| ≤ C ∀x} (3.11)

Property 1. If x (t) ∈ L∞, the first and second partial derivatives of f (x), g (x),

and h (x) with respect to x (t) exist and are bounded.

To facilitate the subsequent observer design and analysis, a vector H (x) ∈ Rn of

output derivatives is defined as (S. V. Drakunov, 1992; MacKunis et al., 2011)

H(x) ,

[
h1(x) h2(x) · · · hn(x)

]T
=

[
h(x) Lfh(x) · · · Ln−1

f h(x)

]T
(3.12)

where Lifh(x) denotes ith Lie derivative of the output function h(x) along the direction

of the vector field f (x) (e.g., Lf = ∂h
∂x
f (x)). If x(t) is a solution to the system

described in (3.9), then

d
dt
hi(x(t)) = hi+1(x(t)), i = 1, ..., n− 1. (3.13)
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To design an observer for the actuated system in (3.9) and (3.10), the dynamic model

must satisfy the following observability condition and matching condition.

Remark 5. (Sufficiently Differentiable Control Input) Based on the defini-

tions in (3.12) and (3.13) and the subsequent analysis, it must be assumed that the

functions g (x), h(x), and f(x) in (3.9) and (3.10) have continuous partial derivatives.

In addition to this requirement, the control input function µ (t) must be sufficiently

differentiable. In the subsequent controller development, the choice to include the

discontinuous signum function in the control law µ (x) is based on the subsequent

Lyapunov-based stability analysis only. In numerical implementation of the control

law presented here, the discontinuous signum function is replaced with the continu-

ously differentiable tanh (·) function. This is a standard approximation, which relates

to the well-accepted definition of an “equivalent value operator” of a discontinuous

function in sliding mode (S. V. Drakunov, 1992; Sánchez-Torres, Loukianov, Moreno,

& Drakunov, 27-29 June, 2012).

Condition 2 (Observability). The system given in (3.9) and (3.10) must satisfy the

observability condition

rank (O (x)) = n, ∀ x ∈ Rn, (3.14)

where the observability matrix O (x) , ∂H(x)
∂x
∈ Rn×n.

3.2.1 Observer Design 1

Under Condition 2, an observer that estimates the full state x (t) of the system in

(3.9) using only measurements of y (t) can be designed as (Sánchez-Torres et al., 27-29
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June, 2012)

˙̂x = O (x̂)−1M(x̂) {sgn[V (t)−H(x̂)]}+ g (x̂)µ (x̂) , (3.15)

where O (·) is introduced in (3.14).

Remark 6. (Continuous Approximation of the signum Function) Note that

the theoretical design and stability analysis in this paper is based on the discontinuous

signum function (i.e.)

sgn(ζ) =


1 ζ > 0

0 ζ = 0

−1 ζ < 0

∀ζ ∈ R. (3.16)

The subsequent simulation results use a smooth, continuous equivalent operator,

{sgn [·]}eq, to approximate the discontinuous signum function (i.e., the tanh function).

In (3.15), V (t) = [v1(t), ...., vn(t)]T is defined via the recursive form

v1(t) = y(t), vi+1(t) = mi(x̂) {sgn[vi(t)− hi(x̂(t))]}eq ,

for i = 1, ..., n−1. Also in (3.15), M (x̂) ∈ Rn denotes a diagonal matrix with positive

elements defined as

M(x̂) = diag[m1(x̂), ....,mn(x̂)], (3.17)

where mi (x̂) ∈ R, i = 1, ..., n, are introduced in (3.17). Through judicious choice of

the gain matrix M(x̂), it can be shown that the observer in (3.15) estimates the state

x (t) in a finite time interval. The convergence of x̂ (t) → x (t) is achieved through

convergence to the desired sliding manifold σ = V (t) − H (x̂) = 0. The choice of
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M(x̂) is based on the region of initial conditions for the system (3.9) and the upper

bounds of hi (x). The complete proof of convergence of the observer in (3.15) can be

found in Section 2.3.

3.2.2 Observer Design 2

Motivated by the desire to improve estimation performance, an alternative to the

observer design in Section 3.2.1 will also be utilized in the closed-loop flow control

system (S. V. Drakunov & Reyhanoglu, 2011). In the second observer design, x(t)

is the state of the actuated flow dynamics in (3.9), and the state estimates x̂ (t) are

obtained using the following observer:

˙̂x = f(x̂) +O (x̂)−1M(x̂) {sgn[V (t)−H(x̂)]}+ g (x̂)µ (x̂) (3.18)

Similar to the design in (3.15), it can be shown that the observer design in (3.18)

achieves finite-time estimation of the state x (t). Specifically, it can be shown that,

through judicious selection of the diagonal matrix M(x̂), x̂(t) ≡ x(t) for any t ≥ t1.

By including the additional term f (x̂) in the observer design in (3.18), it follows that,

for t ≥ t1, the system converges to the sliding manifold σ = V (t)−H (x̂) = 0; and the

observer equation (3.18) converges to the flow dynamic system in (3.9). Heuristically,

the additional knowledge of the system dynamics used in the second observer in (3.18)

should improve the performance of the closed-loop system.

The subsequent Section 3.5 presents numerical simulation results for the closed-

loop flow control system using both of the observer designs given in (3.15) and (3.18).
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3.3 Control Development

The control objective is to design the control signal µ (t) to regulate the state vector

x(t) to a desired reference profile xd (t), using only state estimates x̂ (t) as feedback

measurements. To quantify the control objective, a tracking error e(t) ∈ Rn and an

auxiliary tracking error r(t) ∈ Rn are defined as

e(t) = x(t)− xd(t), r(t) = ė+ αe, (3.19)

where α ∈ R is a positive, constant control gain. Thus, the control objective can be

stated mathematically as

e (t)→ 0. (3.20)

Note that the tracking error signal e (t) and auxiliary tracking error r (t) are not

directly measurable since they depend on the state x (t).

Assumption 2. The desired flow field velocity profile xd (t) and its first three time

derivatives are bounded in the sense that xd (t) , ẋd (t) , ẍd (t) ,
...
x d (t) ∈ L∞ ∀ t ≥ 0.

Assumption 3. In this preliminary result, it will be assumed that the energy content

of the neglected POD modes is insufficient to cause transition to turbulence resulting

from instability in the closed-loop system. Future work will investigate AFC system

design to compensate for the neglected higher-order modes.
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3.3.1 Open Loop Error System

Taking the time derivative of (3.19) and using the definition of (3.19), the open loop

error dynamics can be expressed as

ṙ = ∂f(x)
∂x

(r − αe+ ẋd) + ġ (x)µ+ g (x) µ̇− ẍd + α(r − αe). (3.21)

Assumption 4. In this preliminary closed-loop control design, it assumed that the

matrix g(x) can be considered constant or slowly varying; and thus, ġ (x) ≈ 0. The

analysis can be extended to address a time varying g by including a compensation term

in the form of µ̇ = −k‖µ‖sgn(r̂) as in (MacKunis et al., 10-13 Dec., 2013; Wilcox,

MacKunis, Bhat, Lind, & Dixon, 2010), but the analysis is not considered here and

would be a future extension of this result.

The error dynamics in Equation (3.21) can be expressed as

ṙ = Ñ(t) +Nd(t)− e+ gµ̇(t), (3.22)

where the unknown, unmeasurable auxiliary functions, Ñ (t), Nd(t) ∈ Rn are defined

as

Ñ = ∂f(x)
∂x

(r − αe+ ẋd) + α(r − αe) + e, Nd = −ẍd (3.23)

The motivation for the separation of terms in (3.23) are based on the fact that the

following inequalities can be developed

‖Ñ‖ ≤ ρ (‖z‖) ‖z‖ , ‖Nd‖ ≤ ζNd , ‖Ṅd‖ ≤ ζNd2 (3.24)
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where ζNd , ζNd2 ∈ R+ are known bounding constants; ρ (·) is a positive, globally

invertible, non-decreasing function; and z(t) ∈ R2n is defined as

z (t) ,

[
eT (t) rT (t)

]T
. (3.25)

3.3.2 Closed-Loop Error System

Based on the open-loop error system dynamics in (3.22), the control term µ(t) is

designed as:

µ(t) =g−1

(
− (ks + 1)ê(t) + (ks + 1)ê(0)− α

∫ t

0

(ks + 1)ê(τ)dτ

−β
∫ t

0

sgn(ê(τ))dτ

)
(3.26)

where ks, β ∈ R are positive, constant control gains.

In (3.26), ê (t), r̂ (t) ∈ Rn are estimates of the error signals e (t) and r (t) defined

as

ê (t) , x̂ (t)− xd (t) , r̂ (t) ,
·
ê+ αê. (3.27)

Note that the matrix inverse (i.e., g−1) calculation in (3.26) is valid for any con-

stant, square, nonsingular matrix g. After substituting (3.26) into (3.22), the closed-

loop error dynamics is obtained as

ṙ = Ñ +Nd − e− (ks + 1)r̂ − βsgn(ê). (3.28)

To facilitate the following stability proof, the control gain β in (3.26) is selected to

42



3.4. STABILITY ANALYSIS

satisfy the sufficient condition

β ≥ ζNd + 1
α
ζNd2 , (3.29)

where ζNd and ζNd2 are introduced in (3.24).

3.4 Stability Analysis

Theorem 4 (Observer Convergence). The observers given in (3.15) and (3.18) achieve

finite-time estimation of the state x (t) in the sense that

V (t) ≡ H (x̂)⇒ x̂ (t) ≡ x (t) , for t ≥ t1 > 0. (3.30)

Proof. By using the observer designs in (3.15) and (3.18), Assumption 4 can be used

along with (3.26) to prove that finite-time estimation is achieved under the influence

of the proposed control law. The formal proof is similar to that provided in Section

2.3.

The following definition and lemma will be utilized in the proof of Theorem 4.

Definition 4. To facilitate the Lyapunov-based proof of Theorem 4, an auxiliary

function P (t) ∈ R is defined as

P (t) , β |e (0)| − eT (0)Nd (0)−
∫ t

0

L (τ) dτ (3.31)
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where the auxiliary function L(t) ∈ R is defined as

L(t) = rT (t) (Nd(t)− βsgn (e(t))) . (3.32)

Lemma 1. Provided the sufficient condition in (3.29) is satisfied, the following in-

equality can be obtained:

∫ t

0

L(τ)dτ ≤ β |e (0)| − eT (0)Nd (0) . (3.33)

Hence, (3.33) can be used to prove that P (t) ≥ 0.

Proof of Lemma 1 can be found in appendix section.

Theorem 5 (Asymptotic Profile Tracking). Provided Theorem 4 is satisfied, the

robust nonlinear control law given in (3.26) ensures that all system signals remain

bounded throughout closed-loop operation, and that the flow field profile tracking error

is asymptotically regulated in the sense that

‖e (t)‖ → 0 as t→∞, t ≥ t1, (3.34)

where t1 is introduced in (3.30), provided the control gain ks introduced in (3.26) is

selected sufficiently large, and β is selected to the sufficient condition in (3.29).

Remark 7. (Stability Analysis for Non-smooth Systems) The following Lyapunov-

based stability analysis does not include a rigorous treatment to address the discon-

tinuous right hand side of the close-loop error system in (3.28) (i.e., using Filippov

Solutions (Filippov, 1988)). Note that this does not invalidate the current result,
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since (Fischer, Kamalapurkar, & Dixon, 2013) provides a detailed Filippov solutions

in a Lyapunov-based framework for a closed-loop system in a form similar to that

in (3.28). Chapter 6 addresses a Filippov solution-based stability analysis for the

proposed estimator design.

Proof. (See Theorem 5) Let D ⊂ R2n+1 be a domain containing w (t) = 0, where

w (t) ∈ R2n+1 is defined as

w (t) ,

[
zT (t)

√
P (t)

]T
, (3.35)

where P (t) is defined in (3.31).

Let V (w, t) : D × [0,∞)→ R be a radially unbounded, positive definite function

defined as

V = 1
2
eT e+ 1

2
rT r + P, (3.36)

which satisfies the inequalities

U1 (w) ≤ V (w, t) ≤ U2 (w) , (3.37)

provided the sufficient condition in (3.29) is satisfied. In (3.37), the continuous posi-

tive definite functions U1 (w), U2 (w) ∈ R are defined as

U1 (w) , 1
2
‖w‖2 , U2 (w) , ‖w‖2 . (3.38)

After taking the time derivative of (3.36) and using (3.28), V̇ (t) can be expressed as

V̇ = eT (r − αe) + rT
(
Ñ +Nd − e− (ks + 1)r − βsgn(e)

)
+ Ṗ , (3.39)
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where (3.19) and (3.30) were utilized. After canceling common terms, the expression

in (3.39) can be rewritten as

V̇ = −α ‖e‖2 − ‖r‖2 −
(
ks ‖r‖2 − rT Ñ

)
, (3.40)

where (3.31) and (3.32) were utilized. After completing the squares for the parenthetic

terms in (3.40) and using inequality (3.24), (3.40) can be upper bounded as follows:

V̇ ≤ −λ0 ‖z‖2 − ks
(
‖r‖ − ρ(‖z‖)

2ks
‖z‖
)2

+ ρ2(‖z‖)
4ks
‖z‖2 (3.41)

⇒ V̇ ≤ −
(
λ0 − ρ2(‖z‖)

4ks

)
‖z‖2 , (3.42)

where λ0 , min(α, 1). The following expression can be obtained from (3.42):

V̇ ≤ −U (w) , (3.43)

where U (w) = c ‖z‖2, for some positive constant c ∈ R is a continuous positive

semi-definite function that is defined on the domain

D ,
{
w (t) ∈ R2n+1| ‖w‖ ≤ ρ−1

(
2
√
ksλ0

)}
. (3.44)

The expressions in (3.37) and (3.42) can be used to prove that V (w, t) ∈ L∞ in D;

hence, e (t), r (t) ∈ L∞ in D. Given that e (t), r (t) ∈ L∞, a standard linear analysis

technique can be used along with (3.19) to show that ė (t) ∈ L∞ in D. Since e (t),

ė (t) ∈ L∞, (3.19) can be used along with the assumption that xd (t), ẋd (t) ∈ L∞ to
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prove that x (t), ẋ (t) ∈ L∞ in D. Given that x (t), ẋ (t) ∈ L∞, (3.9) can be used

along with the assumption that g (x) is nonsingular to prove that the control input

µ (t) ∈ L∞ in D. Since r (t) ∈ L∞, the assumption that g (x) is nonsingular can be

used along with (3.26) to prove that µ̇ (t) ∈ L∞ in D. Given that r (t), e (t) ∈ L∞, the

bounding inequalities in (3.23) can be used along with (3.28) to prove that ṙ (t) ∈ L∞

in D. Since ė (t), ṙ (t) ∈ L∞, (3.25) can be used to prove that z (t) is uniformly

continuous in D. Hence, the definitions of U (w) and z (t) can be used to prove that

U (w) is uniformly continuous in D.

Let S ⊂ D denote a set defined as follows:

S ,
{
w (t) ⊂ D|U (w (t)) ≤ 1

2

(
ρ−1

(
2
√
ksλ0

))2
}
. (3.45)

Note that, based on the definitions (3.44) and (3.45), the sets D and S are dependent

on the initial conditions and do not depend on time ’t’. Theorem 8.4 of (Khalil, 1996)

can now be invoked to state that

c ‖z (t)‖2 → 0 as t→∞ ∀ w (0) ∈ S.

Based on the definition of z (t), (3.45) can be used to show that

‖e (t)‖ → 0 as t→∞ ∀ w (0) ∈ S. (3.46)

Hence, asymptotic regulation of the flow field velocity is achieved, provided the initial

conditions lie within the set S, where S can be made arbitrarily large by increasing

the control gain ks - a semi-global result.
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3.5 Simulation Results

A numerical simulation was created to demonstrate the performance of the proposed

observer/control system. The simulation demonstrates the performance of the control

law in (3.26) using each of the proposed observer designs in (3.15) and (3.18). For

high-fidelity CFD results of an AFC system similar to the proposed AFC system, the

reader is referred to (Nguyen, Golubev, Mackunis, Ramos, & Pasiliao, 2015). The

objective of the simulation is to regulate the velocity of a flow field to a constant

value. The simulation objective of regulating the flow field to a constant velocity

profile is provided here as a proof-of-concept only. Physically, the objective of this

simulation can be interpreted as suppressing the variations in the kinetic energy of the

flow field over a given spatial domain. For further discussion regarding the practical

motivation for this control objective, the reader is referred to (M. J. Balajewicz et al.,

2013). To test the controller performance under different operating conditions, five

different simulations were run using each of the two observer designs, where the initial

conditions a1(0) and a2(0) were selected randomly in each case. The reduced-order

flow dynamic model in the simulation uses two POD modes, but the proposed control

design can be applied to ROM consisting of an arbitrary number of modes.

The flow system parameters utilized to create the simulated flow environment

{see (2.42)-(2.44)} are b1 = −5, b2 = 32.7, L11 = 30, L12 = 36.5, L21 = −111.7,

L22 = −120.5, Q112 = −45.4, Q122 = 47.2, Q211 = −361.1, Q212 = 304 (MacKunis

et al., 2011). The remaining coefficients of Qkij were taken to be zero (MacKunis

et al., 2011). The control gain values were selected as ks = 5, α = 3, and β = 15;

and the desired constant POD modes were selected as x1 = 0.2 and x2 = 0. The

input gain matrix g was taken to be the 2 × 2 identity matrix, I2×2, without loss
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of generality. Note that, based on (3.26), the proposed control design is applicable

to reduced-order models containing any constant, nonsingular input gain matrix g.

Based on the parameters described, the systems of equations in (3.9) and (3.10) are

rewritten as:

ẋ1(t) =b1 + L11x1 + L12x2 +Q112x1x2 +Q122x2x2 + g11µ1 (3.47)

ẋ2(t) =b2 + L21x1 + L22x2 +Q212x1x2 +Q211x1x1 + g22µ2 (3.48)

y(x) =h(x) = x1 + x2 (3.49)
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Figure 3.1: Zoomed plots magnifying the initial closed-loop transient response of the

states x1(t), x2(t) and the error e1(t), e2(t) using the observers in (3.15) (left) and

(3.18) (right).
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Figure 3.2: Closed-loop response of the states x1(t), x2(t) and the error e1(t), e2(t)

for the total simulation time using the observers in (3.15) (left) and (3.18) (right).

The simulation results are summarized in Figs. 3.1 - 3.3. The states x1(t) and

x2(t) and the estimates x̂1(t) and x̂2(t) converge to the desired constant values using

the observer design in (3.15) and (3.18). Fig. 3.1 shows the initial transient responses

of x1(t) and e1(t) , x2(t) and e2(t) during the first 0.25 seconds of closed-loop operation

using the two observer designs. The results demonstrate that a slight performance

improvement is achieved by using the observer design in (3.18), which incoporates

partial knowledge of the flow dynamics. The states and their estimates remain stable

and convergent throughout the entire simulation duration. Fig. 3.2 shows the time

response of x1(t) and e1(t) , x2(t) and e2(t) for the total simulation time. Magnified

plots of the control input showing the initial transient response are given in Fig. 3.3.
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3.6. CONCLUSION

The results in Fig. 3.3 show that the closed-loop control system using observer (3.15)

incurs a slightly higher control effort as compared to the system using observer (3.18).

Again, this suggests that the performance of the overall closed-loop AFC system can

be improved by incorporating additional knowledge of the system dynamics in the

estimator design.
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Figure 3.3: Commanded control inputs during the initial transient period of closed-

loop controller operation using the observers in (3.15) (left) and (3.18) (right).

3.6 Conclusion

A nonlinear control method is developed, which is rigorously proven to asymptotically

regulate the velocity of a fluid flow field over a given spatial domain. The control

design amalgamates a SMO with a Lyapunov-based robust nonlinear control method

to achieve asymptotic regulation of a flow field to a desired flow field velocity profile.
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3.6. CONCLUSION

To reduce the computational burden, the proposed control law can be implemented

without the use of adaptive parameter update laws, neural networks, computational

fluid dynamics (CFD) calculations, or fuzzy logic rule sets. To achieve the result, a

POD-based model reduction technique is utilized to recast the Navier-Stokes PDEs

as a set of nonlinear ODEs in terms of the unknown, time-varying coefficients from

Galerkin projection. A sliding mode observer is then designed to estimate the un-

known coefficients, and the state estimates are utilized as feedback measurements in a

nonlinear control law. By leveraging the finite-time estimation capability of the SMO,

a rigorous Lyapunov-based stability analysis is utilized to prove that the control law

drives the velocity of the flow field to a desired velocity profile over a given finite

spatial domain. Numerical simulation results are provided to demonstrate the perfor-

mance of the proposed control law in reliably regulating the flow field velocity using

two different observer designs. Future work will focus on extending the observer

and controller design to compensate for actuator uncertainty and nonlinearities in

SJA-based flow control applications.
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Chapter 4

Sliding Mode Estimation Strategy

for Synthetic Jet Actuator-based

Flow Control Under Actuator

Uncertainty

This chapter presents a SJA-based closed-loop active flow control and estimation

method, which compensates for the parametric uncertainty inherent in SJAs. A

POD-based model reduction technique is first utilized to recast the Navier-Stokes

partial differential equation as a set of ordinary differential equations in terms of

the unknown Galerkin coefficients. The POD-based reduced-order model is then

expressed in a control-oriented form, which incorporates the parametric uncertainty

inherent in the SJA model. A novel sliding mode estimator is designed to estimate

the unknown Galerkin coefficients in the uncertain SJA-based reduced-order model.
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4.1. POD-BASED REDUCED-ORDER MODEL

This is the first time that a sliding mode estimation strategy is rigorously proven

to achieve finite-time state estimation for a flow system in the presence of input-

multiplicative parametric uncertainty. A rigorous proof of finite time state estimation

is provided, and the estimates are used in a nonlinear control law, which achieves

asymptotic regulation of a fluid flow field to a desired time-varying velocity profile.

A Lyapunov-based stability analysis is utilized to prove asymptotic regulation of the

flow field velocity, and numerical simulation results are provided to demonstrate the

performance of the proposed closed-loop active flow control system.

4.1 POD-based Reduced-order Model

In this section, a POD-based model reduction technique is utilized to derive a reduced-

order, control-oriented model for the actuated flow dynamics.

4.1.1 Reduced-order Model for the Actuated Flow Dynamics

The incompressible Navier-Stokes equations are given as (Batchelor, 2000)

∇ · υ = 0,
∂υ

∂t
= −(υ · ∇)υ +

1

Re
∇2(υ)−∇p (4.1)

where υ(s, t) : Ω × [0,∞) ∈ R3 denotes the velocity of the flow field over a spatial

domain s ∈ Ω ⊂ R3; p(s, t) ∈ R3 is the space-and time-dependent pressure of the flow

field over Ω; and Re denotes the Reynolds number.

In the POD-based model order reduction method, the flow velocity field υ(s, t)

is expanded as a weighted sum of actuated and unactuated POD modes defined in

the spatial domain Ω. The actuation effects are embedded in the coefficients of the
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4.1. POD-BASED REDUCED-ORDER MODEL

Galerkin system. Specifically, the actuation effects can be included in the reduced-

order model by defining the modal decomposition as (Akhtar et al., 2009; Kasnakoğlu

et al., 2009)

υ(s, t) = υ0 +
n∑
i=1

xi(t)φi(s) +
m∑
i=1

γi(t)ψi(s) (4.2)

In (4.2), φi(s) ∈ R3 denote the POD modes; xi(t), i = 1, ..., n, are the unknown,

unmeasurable time-varying coefficients resulting from the modal decomposition; and

υ0 ∈ R3 denotes the mean flow velocity over Ω, where ψi (s) ∈ R denote the actuation

modes, and γi (t) ∈ R denote actuation values (i.e., control inputs). By leveraging an

input separation method similar to that in (Kasnakoğlu et al., 2009), the actuation

modes can be defined as the modes ψi (s) that minimize the energy not captured in

the modal expansion of the actuated flow field. The subsequent simulation section

assumes m = 4 actuation modes, but the flow estimation and control method in this

paper can easily be extended to address any number of actuation modes (m ≥ n).

4.1.1.1 Actuated Dynamic Model

By substituting the actuated modal decomposition (4.2) into (4.1), and following the

procedure described in Section 2.6.2, the actuated reduced-order flow dynamics can

be expressed as

ẋ = f(x) + g(x)u, y = h(x) (4.3)

where x(t) , [x1(t), x2(t), ...., xn(t)]T ∈ Rn contains the unmeasurable coefficients

resulting from POD-based model order reduction, g(x) ∈ Rn×m is an input gain

matrix, u(t) , [u1 (t) , ..., um (t)] ∈ Rm denotes a subsequently defined virtual control
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input (e.g., resulting from m arrays of SJAs), and y(t) ∈ R is the measurable output

(e.g., sensor measurements of flow field velocity or pressure (MacKunis et al., 2011)).

Property 2. If x (t) ∈ L∞, then the first and second partial derivatives of f (x), g (x),

and h (x) with respect to x (t) exist and are bounded. Based on the flow measurement

equation and the actuated flow dynamics in (4.3), f (x) and h (x) can be expressed as

f(x) , A(x)x and h(x) , Cx (explicit definitions of f (x) can be found in (MacKunis

et al., 2011) and omitted here for brevity).

4.2 SJA-based Control Model Derivation

In this section, the POD-based reduced-order model for the actuated flow dynamics

will be augmented to include the effects of SJA actuation. To this end, a well-

accepted, empirical model for the virtual surface deflection generated by SJA (Deb et

al., 2008) will be utilized to represent the control actuation signal in the flow dynamics

reduced-order model provided in Section 4.1.1. A series of algebraic steps will then be

utilized to express the SJA-actuated flow dynamics in a control-oriented form, which

explicitly includes the parametric uncertainty inherent in the SJA actuator model.

The uncertain control model is a key feature of the proposed flow control design,

which enables us to derive a nonlinear observer that is proven to compensate for the

parametric uncertainty in the SJA actuators.

4.2.1 SJA Actuator Model

The virtual control surface deflection angle generated by an array of m SJAs can be

expressed as (Deb et al., 2007, 2008)
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ui(t) = θ?2i −
θ?1i
vi(t)

, i = 1, 2, ....,m. (4.4)

In (4.4), vi(t) , A2
ppi (t) ∈ R+ denotes a measurable input signal, where Appi rep-

resents the peak-to-peak voltage magnitude applied to the ith SJA array; and θ?1i,

θ?2i ∈ R are uncertain positive parameters. The SJA actuator model given in (4.4)

illustrates one of the main challenges in SJA-based estimator and control design: the

virtual surface deflection control input ui(t) depends nonlinearly on the SJA volt-

age input signal vi(t) and contains parametric uncertainty due to θ?1i and θ?2i. To

address these challenges, the voltage input signal vi(t) can be designed using the

robust-inverse control structure (MacKunis et al., 10-13 Dec., 2013)

vi(t) =
θ̂1i

θ̂2i − udi(t)
(4.5)

where, θ̂1i, θ̂2i ∈ R+ are constant, best-guess feedforward estimates of the uncertain

parameters θ?1i and θ?2i. In (4.5), udi(t) ∈ R, for i = 1, ...,m, are subsequently defined

auxiliary control signals.

Remark 8. (Singularity Avoidance) Note that using a singularity avoidance al-

gorithm (Mondschein, Tao, & Burkholder, 2011) can be used to ensure that vi (t)

remains singularity-free.

After substituting (4.4), (4.5) into (4.3) the SJA-based control model can be ex-

pressed as

ẋ = f(x) + ΞB + Ωud(t) (4.6)

where ud (t) , [ud1 (t) , ..., udm (t)]T ∈ Rm, and expressions for the uncertain constant
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auxiliary terms ΞB ∈ Rm and Ω ∈ Rn×m can be readily obtained. To handle the

uncertainty in the input-multiplicative matrix Ω in (4.6), the auxiliary control signal

ud (t) is designed as

ud(t) = Ω̂#µ(t) (4.7)

where Ω̂ ∈ Rm×n denotes feedforward estimate of Ω, and [·]# denotes the pseudoin-

verse of a (nonsquare) matrix. Note that the standard matrix inverse operation could

be used in place of the pseudoinverse for the case where n = m. In (4.7), µ (t) ∈ Rn

denotes a known, nominal control input signal. After substituting (4.7) into (4.6),

the open loop SJA-based system can be expressed as

ẋ = f(x) + ΞB + Ω̃µ(t) (4.8)

where Ω̃ , ΩΩ̂# ∈ Rn×n. Heuristically, the uncertain matrix Ω̃ represents the devia-

tion between the actual SJA parameters θ?1i, θ
?
2i and their constant estimates θ̂1i, θ̂2i,

for i = 1, ...,m.

Property 3. The uncertain matrix Ω̃ can be decomposed as

Ω̃ = In + ∆(t) (4.9)

where In ∈ Rn×n denotes the identity matrix, and ∆(t) ∈ Rn×n denotes uncertain

“mismatch” matrix.

Assumption 5. Approximate model knowledge is available such that the mismatch

matrix ∆ satisfies

‖∆(t)‖i∞ < ε < 1 (4.10)
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where ε ∈ R+ is a known bounding constant, and ‖·‖i∞ denotes the induced infinity

norm of a matrix. Heuristically, Inequality (4.10) can be interpreted as the assumption

of approximate SJA model knowledge.

Preliminary results show that Assumption 5 is mild in the sense that the proposed

estimation and control method performs well over a wide range of SJA parametric

uncertainty.

By substituting (4.9) into (4.8), the SJA-based flow dynamic model can be ex-

pressed as

ẋ = f (x) + ΞB + µ (t) + ∆(t)µ (t) , y = h (x) . (4.11)

4.3 Observer Design

In this section, an observer is designed, which estimates the full state x(t) of the

uncertain system described in (4.11) using only measurable outputs (i.e., y (t)). The

derivation presented here will provide the mathematical details in the non-trivial re-

design of a sliding mode estimator, which compensates for the parametric uncertainty

in the SJA actuator model (cf. (S. V. Drakunov, 1992)).

To facilitate the following estimator design and stability analysis, a vector of

output signals is defined as

H (x, µ) ,

[
h1(x) h2 (x, µ) · · · hn (x, µ)

]T
=

[
h(x) Lfh (x) · · · Ln−1

f h (x)

]T
(4.12)

where Lifh(x) denotes the ith Lie derivative of the output function h(x) (Isidori, 2013),
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along the direction of the vector field f (x, µ), where f (x, µ) denotes the right hand

side of (4.11). Note that h1 (x) = h (x) does not depend on the measurable input

signal µ (t) based on the output equation in (4.11).

Condition 3 (Observability). The system given in (4.11) must satisfy the observ-

ability condition

rank (O (x, µ)) = n, ∀ x ∈ Rn, (4.13)

where the observability matrix O (x, µ) , ∂H(x,µ)
∂x

∈ Rn×n. Note that the observability

condition given in (4.13) can be ensured through judicious sensor placement.

Provided Condition 3 is satisfied, the sliding mode observer that estimates the full

state x (t) for the uncertain SJA-based dynamic system in (4.11) can be designed as

˙̂x = f(x̂) +O−1 (x, µ)M(x̂, µ){sgn(Ψ(t)−H(x̂))}+ µ(t) (4.14)

where H (·) is defined in (4.12), and O (x, µ) is introduced in (4.13). In (4.14),

{sgn [·]}eq denotes a continuous “equivalent value operator” of the discontinuous

signum function (S. V. Drakunov, 1992). Also, in (4.14), Ψ(t) = [ψ1(t), ...., ψn(t)]T ∈

Rn is defined using the modified recursive form (cf. (S. V. Drakunov, 1992))

ψ1(t) = h1 (x) (4.15)

ψi+1(t) = mi {sgn[ψi(t)− hi(x̂(t))]}eq +
∂hi (x̂)

∂x
µ (t) (4.16)

for i = 1, ..., n − 1. The observer design in (4.14) will be shown to compensate for

the SJA actuator parametric uncertainty through the design of the sliding gain term
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M (x̂, µ) ∈ Rn×n, which has the general form

M(x̂, µ) = diag[m1(x̂, µ), ....,mn(x̂, µ)] (4.17)

where mi (x̂, µ) ∈ R, for i = 1, ..., n, denote subsequently designed observer gains.

Through the appropriate design of the gain matrix M(x̂, µ), it will be shown that the

sliding mode observer in (4.14) achieves finite-time estimation of the state x (t) using

only measurements of the output signal y (t). The following theorem and stability

proof will present a design for M(x̂, µ) that yields finite-time estimation for the system

in (4.11), which includes parametric uncertainty in the SJA actuator model.

Assumption 6. The initial conditions of the state and state estimate satisfy x(0)−

x̂(0) ≤ ε0, where ε0 is a known bounding constant.

Theorem 6. Provided the observability condition 3 is satisfied, the sliding mode ob-

server in (4.14) achieves finite-time estimation of the state x (t) in the sense that

x̂(t) ≡ x(t) for t ≥ tn, where tn ∈ L∞.

Proof. Based on (4.13), the observability matrixO (x, µ) is full rank, and
∣∣∣det

(
∂H(x)
∂x

)∣∣∣ ≥
ε > 0. It thus follows that the map H (x, µ) is a diffeomorphism (i.e., there is a one

to one correspondence between x (t) and H (x, µ) for any given value of µ (t)). Since

H(x, µ) is a diffeomorphism, it is sufficient to prove that x̃(t) = H(x, µ)−H(x̂, µ) = 0

for t ≥ tn.

The estimation error dynamics can be obtained by taking the time derivative of

x̃ (t) = [x̃1 (t) , ..., x̃n (t)]T as

·
x̃ (t) =

∂H (x, µ)

∂x
ẋ− ∂H(x̂, µ)

∂x
˙̂x. (4.18)
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By utilizing (4.11), (4.12), (4.14), and (4.17), the estimation error dynamics for x̃1 (t)

can be expressed as

·
x̃1 (t) =

∂h1 (x)

∂x
(f (x) + ΞB) +

∂h1 (x)

∂x
∆µ (t) +

(
∂h1 (x)

∂x
− ∂h1(x̂)

∂x

)
µ (t)

−∂h1(x̂)

∂x
f(x̂)−m1 {sign (x̃1 (t))}eq (4.19)

where the fact that ψ1 (t) = h1 (x) = h (x) was utilized. Based on (4.19) and the

convergence analysis, the sliding gain term m1 (x̂, µ) is designed as

m1 (x̂, µ) = β1,1 + β2,1 ‖µ‖ (4.20)

where the auxiliary observer gains β1,1 and β2,1 are selected to satisfy

β1,1 >

∣∣∣∣∂h1 (x)

∂x
(f (x) + ΞB)− ∂h1(x̂)

∂x
f(x̂)

∣∣∣∣ (4.21)

β2,1 >

∣∣∣∣∂h1 (x)

∂x
− ∂h1(x̂)

∂x

∣∣∣∣+ ε

∣∣∣∣∂h1 (x)

∂x

∣∣∣∣ (4.22)

where ε is introduced in (4.10). Provided Assumptions (5) and (6) and inequalities

(4.10), (4.21), and (4.22) are satisfied, (4.19) can be upper bounded as

·
x̃1 (t) ≤ −κ {sign (x̃1 (t))} ⇒ |x̃1(t)| ≤ |x̃1(0)‖ − κt (4.23)

where κ ∈ R+ is a known bounding constant. Hence, (4.23) can be used to prove

that sliding mode is reached, and x̃1 (t) ≡ 0 after some finite time t = t1.

To facilitate the proof of finite-time convergence for the remaining estimation error

terms x̃2, ..., x̃n, the expressions in (4.12), (4.14) and (4.16) will be utilized to rewrite
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(4.19) as

·
x̃1 (t) = h2 (x)− ∂h1(x̂)

∂x
µ (t)−m1 {sign (ψ1(t)− h1(x̂))}eq (4.24)

where the fact that h2 (x) , ∂h1(x)
∂x

ẋ = ∂h1(x)
∂x

(f (x) + ΞB + µ (t) + ∆µ (t)) was utilized.

Given that x̃1 (t) ≡ 0 for t ≥ t1, it follows that
·
x̃1 (t) ≡ 0, and (4.24) can be used

to show that

h2 (x, µ) =
∂h1(x̂)

∂x
µ (t) +m1 {sign (ψ1(t)− h1(x̂))}eq (4.25)

for t ≥ t1. It follows from (4.16) and (4.25) that h2(x̂) = ψ2(t). The estimation error

dynamics for x̃2 can be expressed as

·
x̃2 (t) = h3 (x)− ∂h2(x̂)

∂x
µ (t)−m2 {sign (x̃2 (t))}eq (4.26)

given that x̃2 (t) ≡ 0 for t ≥ t2, from (4.16) and (4.26) that h3(x̂) = ψ3(t). In similar

way,

x̃i(t) ≡ 0⇒ ψi+1(t)− hi+1(x̂) = x̃i+1 (4.27)

and the following recursion relation is obtained:

·
x̃i (t)= hi+1 (x)− ∂hi(x̂)

∂x
µ (t)−mi

{
sign(x̃i)

}
eq
. (4.28)

The convergence of x̃2 (t) , ..., x̃n (t) to the corresponding sliding manifolds can be
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achieved by selecting the sliding gain terms mi (x̂, µ) to satisfy (see (4.20))

mi (x̂, µ) > hi+1 −
∂hi(x̂)

∂x
µ (t) (4.29)

for i = 1, ..., n − 1, where the explicit design of mi (x̂, µ) is in the form of (4.20),

with observer gains β1,i and β2,i selected similarly as in (4.21) and (4.22) for i =

2, ..., n. Hence, provided Assumptions (5) and (6), (4.20), (4.21), (4.22), and (4.29) are

satisfied, it can be shown that the sliding manifolds x̃1 (t) = x̃2 (t) = · · · = x̃n (t) = 0

are reached in finite time. Hence, x̂ (t) ≡ x (t) in finite time.

4.4 Control Development

In this section, the finite-time convergence property of the sliding mode observer will

be leveraged to develop a feedback control law, which achieves asymptotic regulation

of a fluid flow velocity profile for the flow dynamic system given in (4.11).

4.4.1 Control Objective

The control objective is to design the control signal µ (t) to regulate the the state

vector x(t) to a desired reference profile xd (t), using only state estimates x̂ (t) as

feedback measurements. To quantify the control objective, a flow velocity profile

tracking e(t) ∈ Rn is defined as

e(t) = x(t)− xd(t), (4.30)
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Thus, the control objective can be stated mathematically as

‖e (t) ‖ → 0, (4.31)

where ‖.‖ in (5.12) denotes standard Euclidean norm (or 2-norm).

Assumption 7. The desired flow field velocity profile xd (t) and its first three time

derivatives are bounded in the sense that xd (t) , ẋd (t) , ẍd (t) ,
...
x d (t) ∈ L∞ ∀ t ≥ 0.

4.4.2 Open Loop Error System

An auxiliary tracking error r(t) ∈ Rn is defined as

r(t) = ė+ αe. (4.32)

where α ∈ Rn×n is a positive, diagonal constant control gain matrix. Note that the

tracking error signal e (t) in (4.30) and auxiliary tracking error r (t) in (4.32) are not

directly measurable since they depend on the state x (t). Taking the time derivative

of (4.32) and using the definition of (4.11), the open loop error dynamics can be

expressed as

ṙ = ∂f(x)
∂x

(r − αe+ ẋd) + Ω̃µ̇(t) + ∆̇(t)µ(t)− ẍd + α(r − αe). (4.33)

The error dynamics in (4.33) can be expressed as

ṙ = Ñ(t) +Nd(t) + Ω̃µ̇(t) + ∆̇(t)µ(t)− e, (4.34)
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where the unknown, unmeasurable auxiliary functions, Ñ (t), Nd(t) ∈ Rn are defined

as

Ñ = ∂f(x)
∂x

(r − αe+ ẋd) + α(r − αe) + e, Nd = −ẍd (4.35)

Assumption 8. Approximate model knowledge is available such that the mismatch

matrix ∆̇(t) satisfies ∥∥∥∆̇(t)
∥∥∥
i∞
< ε1 < 1 (4.36)

where ε1 ∈ R+ is a known bounding constant, and ‖·‖i∞ denotes the induced infinity

norm of a matrix.

The motivation for the separation of terms in (4.35) are based on the fact that

the following inequalities can be developed

‖Ñ‖ ≤ ρ (‖z‖) ‖z‖ , ‖Nd‖ ≤ ζNd , ‖Ṅd‖ ≤ ζNd2 (4.37)

where ζNd , ζNd2 ∈ R+ are known bounding constants; ρ (·) is a positive, globally

invertible, non-decreasing function; and z(t) ∈ R2n is defined as

z (t) ,

[
eT (t) rT (t)

]T
. (4.38)
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4.4.3 Closed-Loop Error System

Based on the open-loop error system dynamics in (4.34), the control term µ(t) is

designed as:

µ̇(t) = −ku‖µ(t)‖sgn(r̂)− (ks + In×n)r̂ − βsgn(r̂) (4.39)

where ku, ks, β ∈ Rn×n are positive, diagonal constant control gain matrices.

In (4.39), ê (t), r̂ (t) ∈ Rn are estimates of the error signals e (t) and r (t) defined as

ê (t) , x̂ (t)− xd (t) , r̂ (t) ,
·
ê+ αê. (4.40)

After substituting (4.39) into (4.34), the closed-loop error dynamics is obtained

as

ṙ = Ñ +Nd − Ω̃ku‖µ(t)‖sgn(r̂)− Ω̃(ks + In×n)r̂ − Ω̃βsgn(r̂) + ∆̇(t)µ(t)− e. (4.41)

4.5 Stability Analysis

Theorem 7. Provided Theorem 6 is satisfied, (4.14) can be used to show that ê (t) ≡

e (t) and r̂ (t) ≡ r (t); and the robust nonlinear control law given in (4.5), (4.7), and

(4.39) ensures that all system signals remain bounded throughout closed-loop opera-

tion, and that the flow field velocity profile tracking error is asymptotically regulated

in the sense that

‖e (t)‖ → 0 for t ≥ tn <∞ (4.42)
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provided the control gain ku, ks and β introduced in (4.39) are selected according to

the conditions

λmin(ks) >
ρ2(‖z‖)

4ελmin(α, ε)
, λmin(ku) >

ε1

ε
, λmin(β) >

ζNd
ε
. (4.43)

Proof. (See Theorem 7) Let V (z, t) : R2n× [0,∞)→ R be a nonnegative function

defined as

V =
1

2
eT e+

1

2
rT r (4.44)

After taking the time derivative of (4.44) and using (4.9), (4.32) and (4.41), V̇ (z, t)

can be expressed as

V̇ (z, t) =− αeT e+ rT Ñ + rTNd − rT (In×n + ∆)ku‖µ(t)‖sgn(r̂)

−rT (In×n + ∆)(ks + In×n)r̂ − rT (In×n + ∆)βsgn(r̂) + rT ∆̇(t)µ(t). (4.45)

By using the bounding inequalities in (4.35) and Assumptions 5 and 8 the above

expression can be upper bounded as

V̇ (z, t) ≤− α‖e2‖+ ‖r‖ρ (‖z‖) ‖z‖+ ζNd‖r‖ − ελmin(ks + 1)‖r2‖

−ελmin(ku)‖r‖‖µ‖ − ελmin(β)‖r‖+ ε1‖r‖‖µ‖ (4.46)

V̇ (z, t) ≤− α‖e2‖ − ε‖r2‖ − ελmin(ks)‖r2‖+ ρ(‖z‖)‖z‖‖r‖

−[ελmin(ku)− ε1]‖r‖‖µ‖ − [ελmin(β)− ζNd ]‖r‖. (4.47)

If the gains ku and β satisfy the sufficient gain condition in (4.43), the bracketed

terms are positive and by completing the squares the upper bound in (4.47) can be
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expressed as

V̇ (z, t) ≤ −α‖e2‖ − ε‖r2‖ − ελmin(ks)

[
‖r‖ − ρ(‖r‖)

2ελmin(ks)
‖z‖
]2

+
ρ2(‖z‖)

4ελmin(ks)
‖z2‖

(4.48)

V̇ (z, t) ≤ −

(
min(α, ε)− ρ2(‖z‖)

4ελmin(ks)

)
‖z2‖ (4.49)

Provided the gain condition in (4.43) is satisfied, (4.44) and (4.49) can be used

to show that V (t) ∈ L∞; hence, e (t), r (t) ∈ L∞. Given that e (t), r (t) ∈ L∞, a

standard linear analysis technique can be used along with (4.30) to show that ė (t) ∈

L∞. Since e (t), ė (t) ∈ L∞, (4.30) can be used along with the assumption that xd (t),

ẋd (t) ∈ L∞ to prove that x (t), ẋ (t) ∈ L∞. Given that x (t), ẋ (t) ∈ L∞, (4.3) can be

used along with the Assumption 5 to prove that the control input µ (t) ∈ L∞. Since

r (t) ∈ L∞, Assumption 5 can be used along with (4.39) to prove that µ̇ (t) ∈ L∞.

The definition of V (z, t) in (4.44) can be used along with the inequality (4.49) to

show that V (z, t) can be upper-bounded as

V̇ (z, t) ≤ −cV (z, t) (4.50)

provided the sufficient condition in (4.43) is satisfied. The differential inequality in

(4.50) can be expressed as

V (z, t) ≤ V (z(0))e−ct. (4.51)

Hence, (4.38),(4.44) and (4.50) can be used to conclude that

‖e(t)‖ ≤ ‖z(0)‖e−
c
2
t ∀ t ∈ [0,∞). (4.52)
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4.6 Simulation Results

A numerical simulation was created to test the performance of the proposed SMO.

The simulation demonstrates the performance of the control law in (4.39) using the

proposed observer design in (4.14). The objective of the simulation is to regulate

the flow field velocity to a desired constant value. The proposed controller design

is compared with a controller that does not account for uncertainty compensation

(Kidambi, MacKunis, Ramos-Pedroza, & Drakunov, 2017). The results show an

improvement in performance of the proposed closed-loop observer/controller system.

The reduced-order flow dynamic model in the simulation uses four POD modes, but

the proposed control design can be applied to ROM consisting of an arbitrary number

of modes.

The flow field dynamic reduced-order model in this simulation can be expressed

as (S. V. Gordeyev & Thomas, 2013)

ẋ1 = b1 + L11x1 +Q141x1x4 +Q111x
2
1 +Q121x1x2 +Q131x1x3 + µ1 (4.53)

ẋ2 = b2 +
[
L22 + t2

(
x2

2 + x2
3

)]
x2 + L23x3 +Q121x1x2 + µ2

ẋ3 = b3 + L32x2 +
[
L33 + t3

(
x2

2 + x2
3

)]
x3 +Q313x1x3 +Q314x1x4 + µ3

ẋ4 = b4 + L41x1 + L44x4 +Q444x
2
4 +Q414x1x4 +Q424x2x4 +Q434x3x4 + µ4

with a measurement (i.e., output) equation given by

y =
4∑
i=1

cixi (4.54)
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where, ci, i = 1, · · · , 4 are the coefficients of the output matrix and without loss of

generality are assumed to be 1. Thus, based on (4.53) and (4.54), the simulation

plant model is in the form of (4.11), where x : [0,∞) → R4 and y : R4 → R.

For completeness in defining the simulation plant model, the values of the constant

parameters bi, Lij, Qijk for i, j, k = 1, ..., 4 are provided in Table 4.3. The initial

conditions of the states and estimates are provided in Table 4.2. The observer gains

(see (4.21), (4.22) and (4.29)) β1,i and β2,i, where i = 1, 2, 3, 4 denotes the POD mode

are provided in Table 4.4. The control gain values (see 4.39) were selected as ks = 29,

ku = 3, α = 20, and β = 16; and the desired constant POD modes were chosen as

x1 = 10, x2 = 8, x3 = −1 and x4 = −2. The input gain matrix g was taken to

be the 4 × 4 identity matrix, I4×4, without loss of generality. Note that, based on

(4.39), the proposed control design is applicable to reduced-order models containing

any constant, nonsingular input gain matrix g.

Table 4.1: SJA parameters and their estimates for all three cases

Nominal Values θ̂1i 32.9, 29.8, 26.7, 24.0 θ̂2i 14.7, 13.8, 12.8, 11.7

Case 1 θ?1i 32.6, 27.3, 17.1, 20.9 θ?2i 13.4, 11.8, 10.6, 8.0

Case 2 θ?1i 31.4, 26.4, 19.5, 21.8 θ?2i 13.4, 11.7, 10.5, 10.6

Case 3 θ?1i 27.1, 28.3, 22.1, 21.2 θ?2i 13.2, 12.1, 10.1, 10.2
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Table 4.2: Initial Conditions of the states and Estimates

States (x(t)) 10 9 6 5

Estimates (x̂(t)) 8 6 3 2

Table 4.3: Parameters Used in the Simulation Plant Model

Linear Terms Quadratic and Cubic Terms

b1 = 557.7 L11 = −86.1 Q111 = 1.8 Q414 = 2.9

b2 = 1016.9 L22 =−392.4 Q121 =−2.2 Q424 = −9.8

b3 = 41.0 L23 =263.9 Q131 = −2.3 Q434 = 6.3

b4 =−628.9 L32 = −218.3 Q141 = −6.8 Q444 = −7.3

L33 = −7.6 Q212 = 75.0

L41 = 43.4 Q313 = 5.0 t2 = −2.5

L44 = −113.5 Q314 = 3.9 t3 = −0.2

Table 4.4: Observer gains used in the simulation

β11 = 5 β12 = 2 β13 = 3 β14 = 3

β21 = 0.1 β22 = 0.1 β23 = 0.1 β24 = 0.1

To test the performance of the closed-loop system to compensate for SJA uncer-

tainty, a Monte Carlo-type simulation was created, which shows the results of the

closed-loop AFC system under three different sets of values for the uncertain SJA pa-

rameters θ∗1i, θ
∗
2i. Specifically, the results were obtained using randomly selected values
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of the SJA parameters that deviate from nominal by up to 36%. Table 4.1 shows the

deviation of each SJA parameter from its nominal value and the percentage of un-

certainty associated with it. The simulation results are summarized in Fig. 4.1 - 4.7.

The states x1(t), x2(t), x3(t) and x4(t) and the estimates x̂1(t), x̂2(t), x̂3(t) and x̂4(t)

are shown to effectively converge to the desired constant values using the proposed

estimation and control method in (6.19) and (5.20). Fig. 4.1 shows the SMO reliably

estimating the true states, even under the highly oscillatory open loop state response.

Fig. 4.2 shows the zoomed-in initial transient response of the SMO in the open loop.

Fig. 4.3 shows the closed-loop response of the true states with and without the un-

certainty compensation elements in the observer and controller structure, and Fig.

4.4 is a zoomed plot that magnifies the initial transient response. The results in Figs.

4.3 and 4.4 clearly demonstrate the improvement in closed-loop performance that is

achieved by incorporating the proposed input uncertainty compensation elements in

the estimation and control system. Fig. 4.5 shows the commanded control signals

during closed-loop operation. Based on the reduced-order model definitions in (4.2) -

(4.5), the units of the actuation signals are approximations of the SJA input voltages

in [Volts](Krishnappa, 2016; Tantaroudas & Da Ronch, 2017). The experimental SJA

studies in (Krishnappa, 2016) show that the commanded SJA input voltages remain

well within reasonable limits throughout closed-loop operation. Fig. 4.6 and 4.7 show

the Monte Carlo closed-loop response of the true states and estimates under three

different uncertain SJA parameters, respectively. The results demonstrate the capa-

bility of our SMO and control method to compensate for significant SJA parametric

uncertainty and to regulate the states of the reduced-order flow dynamic model to a

desired profile. Physically, this can be interpreted as driving the flow field to a desired

73



4.6. SIMULATION RESULTS

velocity profile.
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Figure 4.1: Time Evolution of the states for open-loop (uncontrolled) configuration

0 0.05 0.1 0.15
Time [s]

5

10

15

True State
Estimate

0 0.05 0.1 0.15
Time [s]

-20

-10

0

10

20

0 0.05 0.1 0.15
Time [s]

-20

-10

0

10

20

0 0.05 0.1 0.15
Time [s]

-5

0

5

Figure 4.2: Zoomed-in plots showing the initial convergence phase of the states (blue)

and the estimates (red) using the observer in (4.14).
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Figure 4.3: Closed-loop response of true states with and without compensation for

uncertainty

Figure 4.4: Zoomed-in plots showing the initial transient response of the closed-loop

system for case 1, with (red) and without (blue) compensation for uncertainty
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Figure 4.5: Closed-loop response of the control signal γ (t)

Figure 4.6: Monte Carlo-Type simulation results for three different sets of uncertain

SJA parameters for actual states
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Figure 4.7: Monte Carlo-Type simulation results for three different sets of uncertain

SJA parameters for estimated states

4.7 Conclusion

A SJA-based closed-loop active flow control system is presented, which compensates

for the parametric uncertainty inherent in SJAs. To achieve the result a POD-based

reduced-order model is utilized to recast the Navier-Stokes partial differential equa-

tions as a finite set of ordinary differential equations in terms of the unknown Galerkin

coefficients. A sliding mode estimator is designed to estimate the unknown Galerkin

coefficients in the uncertain SJA-based reduced-order model in the presence of input-

multiplicative parametric uncertainty in the SJA actuator model. To the best of the

authors’ knowledge, this is the first time that a sliding mode estimation strategy is

rigorously proven to achieve finite-time state estimation for a flow system in the pres-
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ence of input-multiplicative parametric uncertainty. A rigorous proof of finite-time

state estimation is provided, and the estimates are used in a nonlinear control law,

which achieves asymptotic regulation of a fluid flow field to a desired time-varying

velocity profile. A Lyapunov-based stability analysis is utilized to prove asymptotic

regulation of the flow field velocity, and numerical simulation results are provided,

which demonstrate the capability of the SJA-based closed-loop active flow control sys-

tem to achieve asymptotic regulation of a fluid flow field in the presence of significant

uncertainty in SJA.
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Chapter 5

Limit Cycle Oscillation

Suppression Using a Closed-loop

Nonlinear Active Flow Control

Technique

This chapter presents a nonlinear control method, which achieves simultaneous fluid

flow velocity control and LCO suppression in a flexible airfoil. The proposed control

design is based on a dynamic model that incorporates the fluid structure interactions

(FSI) in the airfoil. The FSI describe how the flow field velocity at the surface of a

flexible structure gives rise to fluid forces acting on the structure. In the proposed

control method, the LCO are controlled via control of the flow field velocity near the

surface of the airfoil using surface-embedded SJAs. Specifically, the flow field velocity

profile is driven to a desired time-varying profile, which results in a LCO-stabilizing
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fluid forcing function acting on the airfoil. A Lyapunov-based stability analysis is used

to prove that the active flow control system asymptotically converges to the LCO-

stabilizing forcing function that suppresses the LCO. Numerical simulation results

are provided to demonstrate the performance of the proposed active flow-and-LCO

suppression method.

5.1 Mathematical Model

In this section, the mathematical model of LCO dynamics in an airfoil and the flow

field dynamics based on the Navier-Stokes equations are presented. Section 5.1.1

describes the LCO dynamics of a foil in the presence of fluid forces. In 5.1.2, a

detailed description of the fluid flow model using the incompressible Navier-Stokes

equations is presented and POD-based model reduction technique is utilized to recast

the incompressible Navier-Stokes equations as a finite set of nonlinear ODEs. A

reduced-order model for the actuated flow dynamics is presented in section 5.1.3,

which will be utilized to develop the proposed closed-loop system. Fig. 5.1 shows the

block diagram of the proposed closed-loop system.

5.1.1 LCO Dynamic Model

The equation of motion describing the LCO dynamics, in the presence of a fluid

forcing function are expressed as (Torrielli, Tubino, & Solari, 2010)

M(s)ḧ(s, t) + C(s)ḣ(s, t) + κ(s)h(s, t) = Ffluid(s, t) (5.1)
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Figure 5.1: A block diagram illustrating the proposed nonlinear control method for
simultaneous flow control and LCO suppression

whereM(s) is mass per unit length of the wing, C(s) and κ(s) are the viscous damping

and stiffness operators, respectively; and h(s, t) is the structural displacement. The

forcing function Ffluid(s, t) in (5.1), denotes the perpendicular fluid force acting on

the wing.

Assumption 9. In this preliminary control design, we will make the standard as-

sumption that the mass per unit length, damping and stiffness operator M(s), C(s), κ(s),

respectively are constant. But the proposed control method can be applied to more gen-

eral form of the dynamics given in (5.1).

In the LCO dynamic model given by (5.1), the fluid forcing function Ffluid(s, t)

acting on the wing can be expressed as the product of the perpendicular airflow

velocity u(s, t) and a position dependent, known, positive defnite function b(s) as
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(Torrielli et al., 2010)

Ffluid(s, t) = b(s)u(s, t) (5.2)

In (5.2) the fluid forcing function is directly dependent on the fluid flow velocity field

u(s, t) near the surface of the wing. The goal is to drive the flow field velocity u(s, t)

to a desired time varying profiles that result in desirable fluid forcing function that

suppress large LCO on a wing. The positive definite function b(s) in the fluid forcing

function F (s, t) is given as

b(s) = ρbcdU(s) (5.3)

where ρ being the density of the air/fluid, b is the cross-section characteristic size and

cd the drag coefficient. The mean wind velocity U(s) is assumed to have aligned with

a symmetric axis of the structural cross-section.

Remark 9. The fluid forcing function Ffluid(s, t) in (5.1) can be viewed as a virtual

control input, which can be designed to drive the LCO to a desired state that minimizes

the oscillations. In this paper, closed-loop active flow control methods will be used to

drive the fluid flow dynamics (i.e, velocity) to states that produce forcing functions

Ffluid(s, t) with desirable performance characteristics.

5.1.2 Flow Dynamics Reduced-order Model

In this section, a POD-based model reduction technique is utilized to recast the in-

compressible Navier-Stokes equations as a finite set of nonlinear ODEs. By expressing

the Navier-Stokes PDEs as a set of ODEs, an approximate dynamic model for the

flow dynamics will be obtained, which is more amenable to control design.
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The incompressible Navier-Stokes equations are given as (Batchelor, 2000)

∇ · u = 0,
∂u

∂t
= −(u · ∇)u+ ν∇2(u)−∇p, (5.4)

where u(s, t) : Ω × [0,∞) → R3 denotes the velocity of the flow field over a spatial

domain s ∈ Ω; p(s, t) ∈ R3 is the space- and time-dependent pressure of the flow

field over Ω; and ν , 1
Re

is the kinematic viscosity, where Re denotes the Reynolds

number.

POD, which is often referred to as Karhunen-Loève expansion or principal com-

ponent analysis, is used to obtain lower-dimensional dynamic models for fluid flow.

Specifically, POD is utilized to develop a set of basis functions (POD modes) that ap-

proximates the original infinite-dimensional flow dynamic model as a finite-dimensional

model in terms of the POD modes. In the POD-based model order reduction method,

the flow velocity field u(s, t) is expanded as a weighted sum of actuated and unactu-

ated POD modes defined in the spatial domain Ω. The actuation effects are embedded

in the coefficients of the Galerkin system. Specifically, the actuation effects can be

included in the reduced-order model by defining the modal decomposition as (Akhtar

et al., 2009; Kasnakoğlu et al., 2009)

u(s, t) = u0 +
n∑
i=1

xi(t)φi(s) +
m∑
i=1

γi(t)ψi(s) (5.5)

In (5.5), φi(s) ∈ R3 denote the POD modes; xi(t), i = 1, ..., n, are time-varying

coefficients resulting from the modal decomposition; and u0 ∈ R3 denotes the mean

flow velocity over Ω, where ψi (s) ∈ R denote the actuation modes, and γi (t) ∈ R

denote actuation values (i.e., control inputs). Physically, the actuation values could
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represent voltage input signals to SJAs, for example (MacKunis et al., 10-13 Dec.,

2013). By leveraging an input separation method similar to that in (Kasnakoğlu et

al., 2009), the actuation modes can be defined as the modes ψi (s) that minimize the

energy not captured in the modal expansion of the actuated flow field.

5.1.3 Reduced-order Model for the Actuated Flow

By substituting the actuated modal decomposition in (5.5) into (5.4), and following

the procedure described in Section 2.6.2, the actuated reduced-order flow dynamics

can be expressed as

ẋ = f(x) + g(x)µ, y = h(x) (5.6)

where x(t) , [x1(t), x2(t), ...., xn(t)]T ∈ Rn contains the unmeasurable coefficients

resulting from POD-based model order reduction, g(x) ∈ Rn×m is an input gain ma-

trix, µ(t) , [µ1 (t) , ..., µm (t)] ∈ Rm denotes a subsequently defined virtual control

input (e.g., resulting from m arrays of SJAs), and y(t) ∈ Rp is the measurable out-

put (e.g., sensor measurements of flow field velocity or pressure (MacKunis et al.,

2011)). The equation in (5.6), contains the time derivative of the control signal γ. A

detailed derivation of actuated reduced-order model in (5.6) can be found in (Lewin

& Haj-Hariri, 2005; Kasnakoğlu et al., 2009) and is omitted here for brevity. In the

subsequent AFC design and analysis, the controller development will be presented

using a virtual control signal µ (t) ∈ Rm, which is defined via the parameterization

g (x)µ = Qain (x, γ) +Qin (γ, γ) . (5.7)

Remark 10. In (5.7), the terms Qain (x, γ) , Qin (γ, γ) ∈ Rn are quadratic in their
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respective arguments. Since the γ (t) dependence is quadratic in this case, the mapping

between γ (t) and µ (t) will not be unique in general; but the subsequent discussion is

based on the assumption that the desired, commanded control input can be delivered

by the virtual control signal.

Remark 11. In the current closed-loop control development, the only requirement is

that the number of inputs is greater than or equal to number of outputs (i.e m ≥ p).

The subsequent stability analysis and simulation section is based on a single-input

single-output case where m = p = 1 without loss of generality.

Property 4. If x (t) ∈ L∞, then f(x), g(x), h(x) and the first and second partial

derivatives of f (x), g (x), and h (x) with respect to x (t) exist and are bounded. Ex-

plicit definitions of f (x) and h(x) can be found in (Kidambi, Ramos-Pedroza, MacK-

unis, & Drakunov, 2019) and are omitted here for brevity.

5.2 SJA-based Control Model Derivation

In this section, the POD-based reduced-order model for the actuated flow dynamics

will be augmented to include the effects of SJA actuation. By following a similar pro-

cedure described in Section 4.2, the SJA-based flow dynamic model can be expressed

as

ẋ = f (x) + ΞB + µ (t) + ∆(t)µ (t) , y = Cx, (5.8)

where the output matrix C ∈ R1×n for the single output case.

Remark 12. (SJA in Flow Control) The actuation term µ (t) in the flow dy-

namics in (5.6) is assumed to be generated by means of the virtual deflection angle
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resulting from a single SJA or an array of SJAs. The main contribution presented

in this paper is the rigorous stability analysis that proves how a SJA-based closed-

loop control system can be designed to achieve asymptotic regulation of a fluid forcing

function in the presence of parametric uncertainty in the SJA actuator model. For

further details on the use of SJA in flow control applications, the reader is referred

to (Deb et al., 2008).

Remark 13. The control objective in this paper is based on driving the fluid forc-

ing function to a desired fluid forcing function, which is designed in a separate step

based on the objective of regulating LCO. The fluid forcing function in (5.2) can be

approximated using POD as

Ffluid = b(s)u(s, t) ' b(s)y(t) = b(s)Cx(t), (5.9)

where y(t) is the output of the flow dynamic model described in (5.8). The approx-

imation accuracy can be made arbitrarily accurate by adjusting the number of POD

modes which are defined in (5.5).

5.3 Control Development

The control objective is to design the control signal µ (t) to regulate the fluid forcing

function Ffluid(s, t) defined in (5.9) to a desired fluid forcing function Ffluid,des(s, t),

which is defined as

Ffluid,des(s, t) = b(s)yd(t) (5.10)
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where yd(t) is the approximate desired flow field velocity response that suppresses

LCO. To quantify the control objective, a tracking error e(t) ∈ R and an auxiliary

tracking error r(t) ∈ R are defined as

e(t) = Ffluid − Ffluid,des, r(t) = ė+ αe, (5.11)

where α ∈ R is a positive, constant control gain. Thus, the control objective can be

stated mathematically as

e (t)→ 0. (5.12)

5.3.1 Open Loop Error System

Taking the time derivative of r (t) and using the definition of (5.11), the open loop

error dynamics can be expressed as

ṙ = b(s)C
[
∂f(x)
∂x

ẋ+ Ω̃µ̇(t) + ∆̇(t)µ(t)
]
− F̈fluid,des + α(r − αe), (5.13)

where the constant uncertain matrix Ω̃ is defined in (4.9).

The error dynamics in (5.13) can be rewritten as

ṙ = Ñ(t) +Nd(t) + Ω̃1µ̇(t) + b(s)C∆̇(t)µ(t)− e, (5.14)

where Ω̃1 , b(s)CΩ̃ and the unknown, unmeasurable auxiliary functions, Ñ (t),
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Nd(t) ∈ R are defined as

Ñ = b(s)C ∂f(x)
∂x

ẋ+ α(r − αe) + e, (5.15)

Nd = −F̈fluid,des (5.16)

Assumption 10. Approximate model knowledge is available such that the mismatch

matrix ∆̇(t) satisfies

b(s)C
∥∥∥∆̇(t)

∥∥∥
i∞
< ε1 < 1 (5.17)

where ε1 ∈ R+ is a known bounding constant, and ‖·‖i∞ denotes the induced infinity

norm of a matrix.

The motivation for the separation of terms in (5.14), (5.15) and (5.16) is based

on the fact that the following inequalities can be developed

‖Ñ‖ ≤ ρ(‖z‖) ‖z‖ , ‖Nd‖ ≤ ζNd , ‖Ṅd‖ ≤ ζṄd , (5.18)

where ρ(·) is a positive, globally invertible non-decreasing function; and ζNd , ζṄd ∈ R+

are known bounding constants; and z(t) ∈ R2 is defined as

z (t) ,

[
e (t) r (t)

]T
. (5.19)
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5.3.2 Closed-Loop Error System

Based on the open-loop error system dynamics in (5.14), the control µ(t) is designed

via

µ̇(t) = −ku‖µ(t)‖sgn(r)− (ks + 1)r − βsgn(r) (5.20)

where ku, ks, β ∈ R are positive, constant control gains. After substituting (5.20)

into (5.14), the closed-loop error dynamics are obtained as

ṙ =Ñ +Nd − Ω̃1ku‖µ(t)‖sgn(r)− Ω̃1(ks + 1)r

−Ω̃1βsgn(r) + b(s)C∆̇(t)µ(t)− e. (5.21)

5.4 Stability Analysis

Theorem 8. The robust nonlinear control law given in (4.5), (4.7), and (5.20) en-

sures that all system signals remain bounded throughout closed-loop operation, and

that the fluid forcing function tracking error is asymptotically regulated in the sense

that

‖e (t)‖ → 0 as t→∞, (5.22)

provided the control gain ku, ks and β introduced in (5.20) are selected according to

the conditions

ks >
ρ2(‖z‖)

4εmin(α, ε)
, ku >

ε1

ε
, β >

ζNd
ε
. (5.23)
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Proof. Let V (z, t) : R2 → R be a non-negative function defined as

V =
1

2
e2 +

1

2
r2 (5.24)

After taking the time derivative of (5.24) and using (4.9), (5.11) and (5.21), V̇ (z, t)

can be expressed as

V̇ (z, t) =− αe2 + rÑ + rNd − rΩ̃1ku‖µ(t)‖sgn(r)

−rΩ̃1(ks + 1)r − rΩ̃1βsgn(r) + b(s)Cr∆̇(t)µ(t). (5.25)

By using the bounding inequalities in (5.17), (5.18) and Assumptions 5, 10 and

Property 3, the expression in (5.25) can be upper bounded as

V̇ (z, t) ≤− α|e|2 + |r|ρ (|z|) |z|+ ζNd |r| − ε(ks + 1)|r|2

−εku|r||µ| − εβ|r|+ ε1|r||µ| (5.26)

V̇ (z, t) ≤− α|e|2 − ε|r|2 − ε(ks)|r|2 + ρ(|z|)|z||r|

−[εku − ε1]|r||µ| − [εβ − ζNd ]|r|. (5.27)

If the gains ku and β satisfy the sufficient gain conditions in (5.23), the bracketed

terms are positive, and by completing the squares the upper bound in (5.27) can be

expressed as

V̇ (z, t) ≤ −α|e|2 − ε|r|2 − εks
[
|r| − ρ(|z|)

2εks
|z|
]2

+
ρ2(|z|)
4εks

|z|2 (5.28)
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V̇ (z, t) ≤ −

[
min(α, ε)− ρ2(‖z‖)

4ε(ks)

]
‖z‖2 (5.29)

Provided the ks gain condition in (5.23) is satisfied, (5.24) and (5.29) can be used

to show that V (t) ∈ L∞; hence, e (t), r (t) ∈ L∞. Given that e (t), r (t) ∈ L∞,

a standard linear analysis technique can be used along with (5.11) to show that

ė (t) ∈ L∞. Since e (t), ė (t) ∈ L∞, (5.9), (5.10) and (5.11) can be used along with

the assumption that yd (t), ẏd (t) ∈ L∞ to prove that y (t), ẏ (t) ∈ L∞. Given that

y (t), ẏ (t) ∈ L∞, (5.6) and Condition 2 can be used to prove that x(t), ẋ(t) ∈ L∞.

Since x(t), ẋ(t) ∈ L∞, (5.6) can be used along with Property 4 to prove that the

control input µ (t) ∈ L∞. Given that r (t) , µ(t) ∈ L∞, (5.20) can be used to prove

that µ̇ (t) ∈ L∞.

The definition of V (z, t) in (5.24) can be used along with the inequality (5.29) to

show that V (z, t) can be upper-bounded as

V̇ (z, t) ≤ −cV (z, t) (5.30)

provided the sufficient condition in (5.23) is satisfied. The differential inequality in

(5.30) can be solved as

V (z, t) ≤ V (z(0))e−ct. (5.31)

Hence, (5.31) can be used to conclude that

‖e(t)‖ ≤ ‖z(0)‖e−
c
2
t ∀ t ∈ [0,∞). (5.32)
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5.5 Simulation Results

A numerical simulation was performed to demonstrate the performance of the pro-

posed control law. The simulation tests the capability of the proposed controller

design in (5.20) to regulate fluid forcing function in (5.2) to desired fluid forcing func-

tion that suppresses the plunging LCO. Even though the closed-loop stability analysis

proposed here is for a general case, the simulation presented in this section is for a

specific case where p = m = 1, without loss of generality.

5.5.1 Flow parameters

The system parameters and the flow field dynamic reduced-order model equations

utilized for the simulated flow environment are summarized in section 4.6.

The control gain values were selected as ks = 25, ku = 8, α = 10, and β = 15. Fig.

5.2 shows the open-loop plunging response of the LCO and Fig. 5.3 shows the closed-

loop regulation of plunging LCO using the proposed control law. Fig. 5.4 shows the

control magnitude during the closed-loop operation. Future work will address the

chattering in the control response.

5.5.2 LCO parameters

The details of the LCO dynamic model utilized in the simulation are summarized in

(Ramos-Pedroza et al., 2017). Table 5.1 summarizes the physical parameters used in

the LCO dynamic model.
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Table 5.1: Dynamic parameters and geometric dimensions of the LCO Model

ρ = 1.225 kg/m3 a = −0.6 cmα = −0.635

m = 12.387 kg b = 0.125 m v = 13 m/s

Cα = 0.036 kg·m2/s clβ = 3.358 sp = 0.6 m

Iα = 0.065 kg· m Ch = 27.43 kg/s clα = 6.28

Kh = 2844.4 N/m cmβ = −0.635 xa = 0.2847

Figure 5.2: Open-loop plunging time response of the LCO simulated system
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Figure 5.3: Closed-loop time response of LCO plunging with different initial condi-

tions
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Figure 5.4: Control magnitude during closed-loop operation
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5.6 Conclusion

A nonlinear control method is developed, which is rigorously proven to asymptoti-

cally regulate the velocity of a fluid flow field to a desired velocity profile, that results

in generating the desired fluid forcing function to suppress LCO in an airfoil. To

achieve the result, a LCO dynamic model is utilized along with a FSI model and a

reduced order flow model. The reduced order flow model is obtained by POD-based

model reduction technique, in which the Navier-Stokes PDEs are recast as a set of

nonlinear ODEs. A Lyapunov-based stability analysis is utilized to prove asymptotic

regulation of the fluid forcing function that drives LCO suppression. Numerical simu-

lation results are provided, which demonstrate the capability of the proposed control

algorithm to achieve asymptotic regulation of LCO.
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Chapter 6

A Hierarchical Sliding Mode

Estimation Method Using a

Differential Inclusions-based

Analysis

In this chapter, a sliding mode observer (SMO) design and convergence analysis

are presented in this paper, which includes a rigorous treatment to address multi-

ple discontinuities in the resulting estimation error dynamics. In an extension of

our previous SMO results, the current work provides a non-trivial reworking of the

SMO estimation error system development and stability analysis that incorporates

differential inclusions. The specific contributions presented in this paper beyond the

previous work include: 1) A differential inclusions-based analysis of the SMO, which

incorporates the set-valued definition of the discontinuous signum function; 2) An ex-
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panded derivation of the estimation error dynamics, which emphasizes advantageous

properties particular to our SMO structure; 3) A Lyapunov-based stability analysis

of the SMO, that rigorously incorporates the multiple discontinuities in the estima-

tion error dynamics. The Lyapunov-based stability analysis proves that the SMO

achieves finite-time estimation of the complete state vector, where the output equa-

tion is in a nonstandard mathematical form. To test the performance of the SMO,

numerical simulation results are also provided, which demonstrate the capability of

the SMO to estimate the state of a fluid flow dynamic system using only a single

sensor measurement of the flow field velocity.

6.1 Preliminaries

In this section, we provide background on the mathematical tools utilized to address

the challenges involved in analyzing the behavior of differential equations with discon-

tinuous RHS. While the generalized solutions of differential equations with continuous

RHS are well known, the presence of discontinuities necessitates modified mathemati-

cal approaches to obtain the solutions. In this paper, we utilize differential inclusions

to handle the challenge of analyzing the stability of a SMO method, where the equa-

tions of the error dynamics contain discontinuities.

6.1.1 Mathematical Definitions

Consider a nonlinear system defined as

ẋ = f(x, t) (6.1)
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where x(t) ∈ X ⊂ Rn denotes the state vector, f : X × [0,∞) → Rn is Lebesgue

measurable and essentially locally bounded, uniformly in t; and X is an open and

connected set. The definition of a solution to (6.1) is well established for the case

where f is Lipschitz continuous; however, this basic definition is not applicable if there

exists a discontinuity in f at any point in X . To address the case where f contains

discontinuities, differential inclusions can be utilized to obtain the generalized solution

of (6.1) at a point of discontinuity by analyzing the behavior of the derivative of f at

neighboring points (Filippov, 1988; Krasovskii, 1963).

Remark 14. (Stability of Systems with Discontinuous RHS) The stability of closed-

loop systems in the form of (6.1) with continuous right-hand sides can be analyzed

using existing Lyapunov theory (Khalil, 1996; Slotine & Li, 1991). However, these

theorems must be modified to analyze systems with discontinuous RHS (Fischer et al.,

2013; Guo & Huang, 2009). The differences between Lyapunov analyses for systems

with continuous and discontinuous systems include: differential equations are replaced

with differential inclusions, points are replaced with sets, and gradients are replaced

by generalized gradients.

The following definitions are provided to facilitate the subsequent analysis.

Definition 5. (Filippov Solution) (Filippov, 1988; Shevitz & Paden, 1994) A func-

tion x(t) is called a solution to (1) on the interval [0,∞) if x(t) is absolutely continuous

and for almost all t ∈ [0,∞)

ẋ = K[f ](x(t), t) (6.2)

where K[f ](x(t), t) denotes an upper semi-continuous, nonempty, compact and convex
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valued map on X , defined as

K[f ] (x (t) , t) , ∩
ε>0

∩
µN=0

cof (B (x (t) , ε)−N, t) (6.3)

where ∩
µN=0

denotes the intersection over sets N of Lebesgue measure zero, and co

denotes convex closure. In (6.3), B (x (t) , ε) is the open set defined as

B (x (t) , ε) , {v ∈ Rn| ‖x (t)− v‖ < ε} . (6.4)

A simple example to illustrate the definitions in (6.2) - (6.4) is provided in the

subsequent Section 6.1.2.

Definition 6. (Directional Derivative) (Kaplan, 1991) The right directional deriva-

tive of a function f : Rm → Rn, at x ∈ Rm in the direction of v ∈ Rm is defined

as

f ′(x, v) = lim
t→0+

f(x+ tv)− f(x)

t
. (6.5)

The generalized directional derivative of f at x in the direction of v is defined as

f 0(x, v) = lim
y→x

sup
t→0+

f(y + tv)− f(y)

t
. (6.6)

Definition 7. (Regular Function) (Clarke, 1983) A function f : Rm → Rn is regular

at x ∈ Rm, if the right directional derivative of f at x in the direction of v exists ∀

v ∈ Rm, and f ′(x, v) = f 0(x, v).

Definition 8. (Clarke’s Generalized Gradient) (Clarke, 1983) Given a function V :

Rn × [0,∞)→ R, where V (x, t) is locally Lipschitz in (x, t), the generalized gradient

99



6.1. PRELIMINARIES

of V at (x, t) is defined as

∂V (x, t) = co {lim∇V (xi, ti)| (xi, ti)→ (x, t) , (xi, ti) 6∈ΩV } (6.7)

where ΩV denotes the set of measure zero where the gradient of V is not defined.

Lemma 2. (Chain Rule) (Paden & Sastry, 1987; Shevitz & Paden, 1994) Let V :

Rn × [0,∞) → R be a regular, Lipschitz function. If x (t) a Filippov solution of ẋ =

f(x, t), then d
dt
V (x(t), t) exists almost everywhere (a.e.) for t ≥ 0, and V̇ (x (t) , t)

a.e.
∈

˙̃V (x(t), t) where

˙̃V (x(t), t) , ∩
ξ∈∂V (x(t),t)

ξT

K[f ](x(t), t)

1

 . (6.8)

Proof of Lemma 2 can be found in (Shevitz & Paden, 1994) and (Paden & Sastry,

1987) and is omitted for brevity.

6.1.2 Simple Example of Differential Inclusion

The concept of Filippov’s solution is illustrated using a simple scalar differential

equation (Paden & Sastry, 1987)

ẋ = −sgn(x); x(0) = 1. (6.9)

The state is 1 at time 0 and moves at constant velocity -1 until it reaches 0 and

remains at the point of discontinuity in the right hand side of (6.9). In fact, this is

Filippov’s solution to (6.9). Since B (0, ε), ε > 0, an open interval containing the

origin, intersects both (−∞, 0) and (0,∞) on the sets of positive measure, we have
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that K[−sgn](0) = co {−1, 1} = [−1, 1]. For general x, the differential inclusion (6.2)

and (6.4) becomes

ẋ ∈ −SGN(x) (6.10)

where SGN is the set-valued sign function defined as (Paden & Sastry, 1987)

SGN (x) ,


{1} if x > 0

[−1, 1] if x = 0

{−1} if x < 0

. (6.11)

6.2 Observer Design

This section presents a SMO design for a class of autonomous, nonlinear systems.

Specifically, a rigorous analysis is utilized to derive a set of estimation error dynamic

equations, the right-hand side of which contains discontinuities resulting from the use

of the sgn (·) function in the SMO equation. A detailed analysis is also provided to

define the sets within which discontinuities exist.

6.2.1 Dynamic Model and Properties

Consider a class of nonlinear systems given by

ẋ = f(x) (6.12)

y = h(x) (6.13)

where x : [0,∞)→ Rn denotes the state vector, and y : Rn → R is the system output

(e.g., sensor measurement). In (6.12) and (6.13), f : Rn → Rn and h : Rn → R are
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sufficiently smooth vector functions as described in the subsequent Assumption 11.

To facilitate the subsequent observer design and convergence analysis, an auxiliary

measurement vector H : Rn → Rn is defined as (S. V. Drakunov, 1992; Kidambi,

Ramos-Pedroza, MacKunis, & Drakunov, 2016; Kidambi et al., 2017, 2019)

H(x) ,

[
h1 (x) · · · hn (x)

]T
(6.14)

where

h1(x) = h(x) (6.15)

hi+1(x) =
∂hi(x)

∂x
f(x). (6.16)

The function hi+1 (x) is the ith Lie (directional) derivative of h(x) along the trajecto-

ries of the system described in (6.12). Thus, the elements of H (x) can be expressed

as

hi(x) = Li−1
f h(x) (6.17)

Based on (6.12) and (6.15) it follows that, if x is a solution of (6.12), then

d

dt
hi(x) = hi+1(x) (6.18)

Assumption 11. If x (t) ∈ L∞, the first n− 1 partial derivatives of f(x) and first n

partial derivatives of h(x) exist and are bounded in the sense that ∂n−1f(x)
∂xn−1 ∈ L∞ and

∂nh(x)
∂xn

∈ L∞.

The differentiabilty requirements described in Assumption 11 stem from the use

of repeated Lie derivatives in the observer structure as defined explicitly in Equations
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(6.15) - (6.18), along with the subsequent bounding conditions in Inequality (6.33).

Although Assumption 11 is fairly restrictive, our subsequent Simulation Results sec-

tion presents an example of a practical system (i.e., reduced-order fluid flow dynamic

model) which satisfies Assumption 11. Future work will investigate extensions of the

current observer design, in which Assumption 11 can be relaxed or eliminated.

Assumption 12. For a given domain X0 ⊂ Rn of initial conditions of the system

(6.12), all solutions of (6.12) belong to the open one-component domain X ⊂ Rn, for

all t ∈ [0,∞).

Condition 4 (Observability). The Jacobian O , ∂H(x)
∂x

of the continuous map H (x)

is nondegenerating in X in the sense that

|detO| ≥ δ > 0

for some δ and for every x ∈ X .

From Condition 4, the Jacobian matrix O is invertible. This fact will be utilized

in the subsequent SMO design.

6.2.2 Observer Design

Under Condition 4, an observer that estimates the full state x of the system in (6.12)

using only output measurements y can be designed as

·
x̂ = O−1 (x̂)M (x̂) sgn (Φ(t)−H(x̂)) (6.19)
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6.2. OBSERVER DESIGN

where O (·) is introduced in Condition 4, and x̂ : [0,∞)→ Rn denotes the estimate of

the state x in (6.12). In (6.19) sgn (·) operates element-wise on the vector argument

so that sgn (ζ) , [sgn (ζ1) sgn (ζ2) · · · sgn (ζn)]T ∀ ζ ∈ Rn. Also in (6.19), M : Rn →

Rn×n denotes a diagonal matrix with positive elements defined as

M(x̂) = diag (m1(x̂), ....,mn(x̂)) (6.20)

where mi : Rn → R+, for i = 1, ..., n, denote control gains, which could be constant

or could depend on x̂ in general. In (6.19), Φ : [0,∞)→ Rn is defined as

Φ(t) = [φ1(t), ...., φn(t)]T (6.21)

where the elements φi (t) are defined via the recursive relationship

φ1(t) = y(t) (6.22)

φi+1(t) = mi(x̂)sgn (φi(t)− hi(x̂)) (6.23)

for i = 1, ..., n− 1.

Remark 15. (Measurable Auxiliary Signals) Based on (6.22), φ1 (t) is simply the

measurable output of the system in (6.12) and (6.13). Further, the recursion relation

in (6.23) ensures that the auxiliary signals φ2 (t) , φ3 (t) , ..., φn (t) are also measurable

throughout observer operation. Indeed, it follows from (6.23) that the auxiliary signals

depend only on y (t) and x̂ (t).

Through judicious design of the gain matrix M , it can be shown that the observer
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in (6.19) estimates the state x (t) in a finite time interval. The choice of M is based

on the region X0 of initial conditions for the system (6.12) and on the upper bounds of

hi (x). This proof is provided via Lyapunov-based stability analysis in the subsequent

Section 6.4.

6.3 SMO Estimation Error Dynamics

6.3.1 Objective

Under Condition 4, the map H in (6.14) is a diffeomorphism (i.e., there is a one-to-

one correspondence between x and H). Since H is a diffeomorphism, it follows that

H (x) − H (x̂) → 0 ⇒ x − x̂ → 0. Thus, to quantify the estimation objective, it is

sufficient to define the estimation error as

e(t) = H(x)−H(x̂) (6.24)

where e (t) , [e1 (t) · · · en (t)]T represents the estimation error. The estimation

objective can therefore be mathematically stated as

‖e (t)‖ → 0, (6.25)

where ‖ · ‖ in (6.25) denotes the standard Euclidean norm (or 2-norm). Note that the

choice to use the 2-norm is arbitrary, and the subsequent stability analysis could be

used to prove convergence of the observer error using the p-norm definition in general.
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6.3.2 Estimation Error Dynamics

The estimation error dynamics can be obtained by taking the time derivative of (6.24)

as

·
e (t) =

∂H (x)

∂x
ẋ− ∂H(x̂)

∂x
˙̂x. (6.26)

After using (6.1) and (6.19), the estimation error dynamics can be expressed as

ė(t) =
∂H (x)

∂x
f (x)−M (x̂) sgn (Φ(t)−H(x̂)) (6.27)

where the fact that O (x̂) = ∂H(x)
∂x

∣∣∣
x=x̂

was utilized.

Remark 16. Note that the estimation error dynamic equation in (6.27) is in the

form of (6.1), where the RHS includes discontinuities resulting from the use of the

sliding mode observer introduced in (6.19). The use of differential inclusions provides

for existence of solutions, and the subsequent estimator convergence analysis will be

provided utilizing the definition of the Filippov solution presented in Section 6.1.

To facilitate the subsequent Lyapunov-based stability analysis, the definitions in

(6.15) and (6.16) will be used to rewrite the error dynamics in (6.27) as



ė1 (t)

ė2 (t)

...

ėn (t)


=



h2 (x)

h3 (x)

...

hn+1 (x)


−



m1 (x̂) sgn (σ1)

m2 (x̂) sgn (σ2)

...

mn (x̂) sgn (σn)


(6.28)

where σi : Rn → R denote sliding surfaces for the ith estimation error that are defined
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explicitly as

σi , φi (t)− hi (x̂) (6.29)

for i = 1, ..., n, where φi (t) are defined in (6.22) and (6.23). The estimation error

dynamic equations in (6.28) can be rewritten in the compact form

ėi (t) = hi+1 (x)−mi (x̂) sgn (σi) (6.30)

for i = 1, ..., n.

Property 5. (Sliding Surface Definition) Based on the definitions in (6.13), (6.15),

(6.22) and (6.29), it follows by definition that

σ1 (t) = e1 (t) . (6.31)

Property 5 will be utilized in the subsequent convergence analysis of the proposed

SMO.

6.3.3 Hierarchical Analysis of Estimation Error Dynamics

The motivation for expressing the estimation error dynamics in the forms given in

(6.28) and (6.30) is based on the recursive structure of the auxiliary signals in (6.22)

and (6.23). The decoupling between the individual elements of the estimation error

dynamics for ei (t), for i = 1, ..., n, is highlighted in (6.30) to facilitate the hierarchical

strategy of the convergence analysis in the subsequent Stability Analysis Section.

Theorem 9. (Sliding Surface Convergence) The hierarchical definition of the auxil-

iary signals φi (t), for i = 1, ..., n, in (6.22) and (6.23) can be used along with (6.29)

107



6.4. STABILITY ANALYSIS

and (6.30) to show that

ei (t) = 0⇒ σi+1 (t) = ei+1 (t) (6.32)

for i = 1, ..., n, provided the observer gains mi (x̂), for i = 1, ..., n, are selected to

satisfy the sufficient condition

mi (x̂) > |hi+1 (x)| . (6.33)

Proof. By using (6.30), the following can be obtained immediately:

ei(t) = 0⇒ ėi(t) = 0⇒ (6.34)

hi+1(x) = mi(x̂)sgn(σi). (6.35)

Based on the recursive definition of φi(t) in (6.23), it follows from (6.35) that φi+1(t) =

hi+1(x). Thus, σi+1(t) = hi+1(x)−hi+1(x̂) from (6.29). Hence, (6.32) can be obtained

from (6.24). This proves Theorem 9.

6.4 Stability Analysis

Theorem 10 (Observer Convergence). For the class of nonlinear systems described

by Equations (6.12) and (6.13), the observer described in (6.14), (6.19)-(6.21) ensures

that all system states and estimates remain bounded and that finite-time estimation
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of the complete system state x(t) is achieved in the sense that

‖e(t)‖ ≡ 0 for t ≥ tn <∞ (6.36)

using only measurements y(t), provided the observer gains mi, for i = 1,, n, are

selected to satisfy Inequality (6.33), and where tn ∈ L∞ are (finite) calculable time

instants that are explicitly derived in the appendix.

Proof. Let Vi : R× [0,∞)→ R, for i = 1, ..., n, be locally Lipschitz, positive definite,

Lyapunov candidate functions defined as

Vi =
1

2
e2
i . (6.37)

After taking the time derivative of (6.37), V̇i(ei)
a.e.
∈ ˙̃Vi(ei) and

˙̃Vi(ei, t) , ∩
ξi∈∂Vi(ei,t)

ξTi K

ėi
1

 (ei, t). (6.38)

Given that the Lyapunov candidate function in (6.37) is continuously differentiable,

the generalized gradient reduces to the standard gradient (Fischer et al., 2013), and

thus, (6.38) can be expressed as

˙̃Vi ⊂ ∇iV
T
i K[ėi](ei) ⊂ eTi K[ėi] (6.39)

where ∇i , ∂/∂ei, for i = 1, ..., n. By using (6.30), the equation in (6.39) can be

rewritten as

˙̃Vi ⊂ eTi (hi+1(x)−mi(x̂)K [sgn(σi(t))]) (6.40)
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for i = 1, ..., n, where K [sgn(·)] = SGN(·) denotes the set-valued signum function

defined in (6.11).

To complete the stability proof, Property 5 and Theorem 9 will be leveraged, and

the proof will be carried out sequentially. To this end, consider the case where i = 1,

for which the expression in (6.40) becomes

˙̃V1 ⊂ eT1 (h2(x)−m1(x̂)SGN (e1)) (6.41)

where the definition in (6.31) was utilized. The scalar inequality in (6.41) can be

reduced and upper bounded as

˙̃V1 ≤ − (m1 (x̂)− |h2 (x)|) |e1| . (6.42)

The reduction of the set in (6.41) to the scalar inequality in (6.42) results from the

fact that the set-defined term K [sgn(e1)] is multiplied by e1. Thus, when e1 = 0, it

follows that

(0)SGN (0) = {0} . (6.43)

By selecting the gain m1(x̂) according to the sufficient condition in (6.33), the upper

bound in (6.42) can be expressed as

˙̃V1 ≤ −κ1 |e1| (6.44)

where κ1 ∈ R+ is a known bounding constant. Inequality (6.44) can now be used
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along with (6.37) to prove finite-time convergence of e1 (t) in the sense that

|e1| ≡ 0, for t ≥ t1

where t1 ∈ L∞ can be computed.

Given that e1 (t) ≡ 0 for t ≥ t1, (6.32) can be used to show that σ2 (t) = e2 (t),

and thus, the set (6.40) for i = 2 can be expressed as

˙̃V2 ⊂ eT2 (h3(x)−m2(x̂)SGN (e2)) . (6.45)

The scalar inequality in (6.45) then reduces to

˙̃V2 ≤ − (m2 (x̂)− |h3 (x)|) |e2| . (6.46)

By again using the sufficient gain condition in (6.33), (6.46) can be expressed as

˙̃V2 ≤ −κ2 |e2| (6.47)

where κ2 ∈ R+ is a known bounding constant. The inequality in (6.47) can be used

along with (6.37) (for i = 2) to prove that

|e2| ≡ 0, for t ≥ t2

where t2 ∈ L∞ is calculable. Continuing in this sequential manner, and leveraging

Theorem 9, it follows that

|ei| ≡ 0, for t ≥ ti

111



6.5. SIMULATION STUDY: FLOW FIELD VELOCITY ESTIMATION

for i = 3, ..., n, provided the sufficient condition in (6.33) is satisfied. Thus, the

objective in (6.36) of Theorem 10 is proved.

Remark 17. (Implementation of the SMO) It should be noted that, although the

convergence proof of the proposed SMO was provided in a sequential manner, the

SMO implementation does not require any special treatment. The sequential analysis

used for the proof in this section was provided for clarity of the presentation only.

Indeed, the simulation results in the following section were obtained by implementing

the estimator with a single fixed set of observer gains mi, for i = 1,...,n, which was

selected a single time at observer initialization.

6.5 Simulation Study: Flow Field Velocity Esti-

mation

A numerical simulation was created to test the performance of the proposed SMO. The

simulation is based on the observer design described in (6.19) - (6.23). The simulation

tests the capability of the proposed SMO to estimate the complete state of a fluid

flow dynamic system using only sensor measurements of the flow field velocity.

6.5.1 Reduced-order Model Derivation

A challenge in designing an observer for such systems is that fluid flow dynamics

are governed by complex models such as the Burgers’ equations or Navier-Stokes

equations, which are partial differential equations (PDEs).In this example, we will

112



6.5. SIMULATION STUDY: FLOW FIELD VELOCITY ESTIMATION

consider the Navier-Stokes equations, which can be expressed as

∇ · υ = 0,
∂υ

∂t
= −(υ · ∇)υ +

1

Re
∇2(υ)−∇p, (6.48)

where υ(s, t) : Ω × [0,∞) ∈ R3 denotes the velocity of the flow field over a spatial

domain s ∈ Ω ⊂ R3, where 1
Re

is kinematic viscosity.

POD-based model order reduction is utilized to recast the PDE dynamic model

into a finite set of ordinary differential equations (ODEs). In the POD modal de-

composition technique, the flow field velocity υ(s, t) is expanded as a weighted sum

of POD modes defined in the spatial domain Ω as

υ(s, t) = υ0 +
n∑
i=1

xi(t)ψi(s). (6.49)

In (6.49), ψi(s) ∈ R3, denote the POD modes and xi(t), i = 1, ..., n, denote unknown,

time-varying coefficients resulting from the modal decomposition. By substituting

the velocity field expansion (6.49) into (6.48), the POD-based reduced-order model

of the Navier-Stokes equations is obtained as

ẋk(t) = Lkx(t) + xT (t)Qkx(t) + bk, k = 1, ..., n (6.50)

Lk(s) ∈ R1×n, Qk(s) ∈ Rn×n, and bk ∈ R, denote constant parameter matrices, which

can be explicitly obtained from a given set of experimental or high-fidelity simulation

data. The expression in (6.50) represents a system of nonlinear ordinary differential

equations resulting from POD-based model order reduction. The system of ODEs in

(6.50) can be expressed in the general form given in (6.12). For additional details on
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POD-based model order reduction, readers are referred to (Holmes, 2012; Chatterjee,

2000; MacKunis et al., 2011). Further details on the POD-based modal decomposition

from (6.48)→ (6.50) can be found in (Kidambi et al., 2019; MacKunis et al., 2011).

The reduced-order model resulting from POD contains an unmeasurable state vector

containing the time-varying coefficients from Galerkin projection.

The flow field observer design presented here is based on the standard assumption

that one or more sensor measurements are available. By using the similar POD

modal decomposition analysis the output measurement equation can be expressed as

(Holmes, 2012; Chatterjee, 2000)

y(t) = Cx(t), (6.51)

where y (t) ∈ R, and C ∈ R1×n is a vector of known constants, and x (t)

= [x1(t), x2(t), · · · , xn(t)]T is introduced in (6.50). Physically, the expression in (6.51)

can be interpreted as the measured velocity at a predefined location as approximated

in terms of the POD modes. Specifically, the plant model in (6.50) and the output

equation in (6.51) can be expressed in the form given in (6.12) and (6.13).

114



6.5. SIMULATION STUDY: FLOW FIELD VELOCITY ESTIMATION

6.5.2 Simulation Results

The flow field dynamic reduced-order model with a measurement (i.e., output) equa-

tion in this simulation can be expressed as (S. V. Gordeyev & Thomas, 2013)

ẋ1 = b1 + L11x1 +Q141x1x4 +Q111x
2
1 +Q121x1x2 +Q131x1x3 (6.52)

ẋ2 = b2 +
[
L22 + t2

(
x2

2 + x2
3

)]
x2 + L23x3 +Q121x1x2

ẋ3 = b3 + L32x2 +
[
L33 + t3

(
x2

2 + x2
3

)]
x3 +Q313x1x3 +Q314x1x4

ẋ4 = b4 + L41x1 + L44x4 +Q444x
2
4 +Q414x1x4 +Q424x2x4 +Q434x3x4

y = x1 + x2 + x3 + x4. (6.53)

Thus, based on (6.52) and (6.53), the simulation plant model is in the form of

(6.12) and (6.13), where x : [0,∞) → R4 and y : R4 → R. For completeness in

defining the simulation plant model, the values of the constant parameters bi, Lij,

Qijk for i, j, k = 1, ..., 4 are provided in Table I.

The initial values for the states and estimates were selected as

x1 = 0.01, x2 = 0.5, x3 = 0.1, x4 = 0.1

x̂1 = 0, x̂2 = 0, x̂3 = 0, x̂4 = 0

Figures 6.5.2 and 6.5.2 show the observer performance for estimator gains selected

as (see (6.19) and (6.20))

m1 = 7, m2 = 7, m3 = 7, m4 = 2.
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Table 6.1: Parameters Used in the Simulation Plant Model

Linear Terms Quadratic and Cubic Terms

b1 = 557.7 L11 = −86.1 Q111 = 1.8 Q414 = 2.9

b2 = 1016.9 L22 =−392.4 Q121 =−2.2 Q424 = −9.8

b3 = 41.0 L23 =263.9 Q131 = −2.3 Q434 = 6.3

b4 =−628.9 L32 = −218.3 Q141 = −6.8 Q444 = −7.3

L33 = −7.6 Q212 = 75.0

L41 = 43.4 Q313 = 5.0 t2 = −2.5

L44 = −113.5 Q314 = 3.9 t3 = −0.2

Figure 6.1: Time evolution of the states (blue) and the estimates (red) using the

observer in (6.19)
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Figure 6.2: Zoomed plots showing the initial convergence phase of the states (blue)

and the estimates (red) using the observer in (6.19)

Figure 6.3: Time evolution of the error in each state over the entire simulation time

Figure 6.5.2 shows that the SMO reliably estimates the true states, even under

the highly oscillatory state response. To clarify the results, Figure 6.5.2 shows the

117



6.6. CONCLUSION

initial transient response of SMO system. The results demonstrate the capability of

the proposed SMO design to reliably estimate the unmeasurable state of the system.

6.6 Conclusion

A rigorous error system development and stability analysis are presented, which are

based on a hierarchical SMO strategy containing multiple discontinuities. The hierar-

chical structure of the SMO is shown to achieve finite-time estimation of the complete

state vector using a single scalar measurement, which could be a nonlinear function

of the state in general. The challenge involved in analyzing the convergence behav-

ior of the estimation error dynamic equations with discontinuous RHS is addressed

through the use of differential inclusions in a Lyapunov-based framework. The result

is a Lyapunov-based stability analysis that proves finite-time state estimation, while

also incorporating a formal treatment of the multiple discontinuities inherent in the

SMO design. Numerical simulation results are provided to demonstrate the capability

of the SMO to estimate the full state of a fluid flow dynamic system using only a

single available sensor measurement. Future work will address a rigorous analysis of

the SMO as part of a closed-loop nonlinear control system under model uncertainty.
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Chapter 7

Conclusion and Future Work

In this dissertation, a closed-loop active flow control method along with a sliding

mode estimator is presented to regulate the fluid flow velocity field. A POD-based

model order reduction technique has been applied to reduce the Navier-Stokes PDE

to a finite dimensional nonlinear ODE. A rigorous Lyapunov-based stability analysis

is used to prove that the closed-loop active flow control system asymptotically tracks

a desired flow field velocity profile over a given spatial domain.

This initial result was extended to include actuator dynamics in the flow dynamic

model. A POD-based model order reduction is also developed with the effects of

actuation embedded in the reduced-order model. SJAs have been used due their

advantages, the major challenge in using SJAs in closed-loop control design is the

presence of parametric uncertainty inherent in the SJA actuator model. A novel

sliding mode estimator and robust control technique is developed, so that the states

of the ROM achieve asymptotic regulation and tracking of desired value in presence

of parametric uncertainty.
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The proposed closed-loop active flow control result is used along with FSI model

that results in generating the desired fluid forcing function to suppress LCO in an

airfoil. A Lyapunov-based stability analysis is utilized to prove asymptotic regulation

of the fluid forcing function that drives LCO suppression.

Finally, the challenge involved in analyzing the convergence behavior of the esti-

mation error dynamic equations with discontinuous RHS is addressed through the use

of differential inclusions in a Lyapunov-based framework. The result is a Lyapunov-

based stability analysis that proves finite-time state estimation, while also incorpo-

rating a formal treatment of the multiple discontinuities inherent in the SMO design.

7.1 Future Work

Future work relating to this research could include

1. Looking at the effects on the closed-loop response using other model order

reduction techniques such as balanced POD (or) dynamic mode decomposition

(DMD).

2. Examining the performance of the sliding mode estimation and control algo-

rithm in the presence of disturbances.

3. Analyzing the effect of closed-loop control on the development of sliding mode

estimation using differential inclusions-based analysis.
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Appendix A

Proof of Lemma1

This appendix provides a detailed derivation of Lemma 1 in Section 3.4. By integrat-

ing (3.32) on both sides,

∫ t

0

L (τ) dτ =

∫ t

0

rT (τ)(Nd(τ)− βsgn(e(τ)))dτ (A.1)

By substituting the value of r(t) from (3.19) into (A.1), it can re written as:

∫ t

0

L (τ) dτ =

∫ t

0

(ė+ αe)(Nd(τ)− βsgn(e(τ)))dτ (A.2)

=

∫ t

0

∂eT (τ)

∂τ
(Nd(τ)− βsgn(e(τ)))dτ

+

∫ t

0

αeT (τ)(Nd(τ)− βsgn(e(τ)))dτ (A.3)

=

∫ t

0

∂eT (τ)

∂τ
(Nd(τ))dτ −

∫ t

0

∂eT (τ)

∂τ
(βsgn(e(τ)))dτ

+

∫ t

0

αeT (τ)(Nd(τ)− βsgn(e(τ)))dτ (A.4)
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=Nd(t)e
T (t)−Nd(0)eT (0)− β | e(t) | +β | e(0) |

+

∫ t

0

αeT (τ)(Nd(τ) +
˙Nd(τ)

α
− βsgn(e(τ)))dτ (A.5)

Selecting β sufficiently large based on the condition given in (3.29) the sufficient

condition in (3.33) is satisfied.

122



Appendix B

Proof of Theorem 10

This appendix provides a detailed derivation of the time instants tn for i = 1, ..., n,

which are introduced in (6.36) of Theorem 10.

The Lyapunov candidate function defined in (6.37) is given as

Vi =
1

2
e2
i ⇒ |ei| =

√
2Vi (B.1)

By generalizing the expression in (6.44), ∀i = 1, 2, ..n, which is given as

V̇i ≤ −κi|ei| (B.2)

dVi ≤ κi|ei|dt, (B.3)
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integrating on both sides, by using (B.1 )

∫ Vi(t)

Vi(0)

1√
2Vi

dVi ≤
∫ ti

0

κidt (B.4)

1√
2

[
2
√
Vi(t)− 2

√
Vi(0)

]
≤ −κi[ti − 0] (B.5)√

2Vi(t) ≤ κiti +
√

2Vi(0) (B.6)

|ei(t)| ≤ |ei(0)| − κiti (B.7)

ti =
|ei(0)|
κi

, for i = 1, ..., n. (B.8)
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