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S U M M A R Y  

This research aims to use image processing to determine cell defects in polycrystalline solar 

modules. Image processing is a process of enhancing images for different applications. One domain 

that seems to not yet utilise the use of image processing, is photovoltaics.  

An increased use of fossil fuels is damaging the earth and a call to protect the earth has resulted in 

the emergence of pollutant-free technologies such as polycrystalline photovoltaic (PV) cells, which 

are connected to make up solar modules. However, defects often affect the performance of PV 

cells and consequently solar modules. Electroluminescence (EL) images are used to examine 

polycrystalline solar (PV) modules to determine if the modules are defective.  

The main research question that this research addressed is “How can an image processing 

technique be used to effectively identify defective polycrystalline PV cells from EL images of such 

cells? “. The experimental research methodology was used to address the main research question.  

The initial investigation into the problem revealed that certain sectors within industry, as well as 

the Physics Department at Nelson Mandela University (NMU), do not currently utilise image 

processing when examining EL images of solar modules. The current process is a tedious, manual 

process whereby solar modules are manually inspected. An analysis of the current processes 

enabled the identification of ways in which to automatically examine EL images of solar modules.           

An analysis of literature provided a better understanding of the different techniques that are used 

to examine solar modules, and it was identified how image processing can be applied to EL images. 

Further analysis of literature provided a better understanding of image processing and how image 

classification experiments using Deep Learning (DL) as an image processing technique can be used 

to address the main research question. The outcome of the experiments conducted in this research 

were different adaptive models (LeNet, MobileNet, Xception) that can classify EL images of PV cells 

according to known standards used by the Physics Department at NMU. The known standards 

yielded four classes; normal, uncritical, critical and very critical, which were used for the 

classification of EL images of PV cells.  

The adaptive models were evaluated to obtain the precision, recall and F1 – score of the models. 

The precession, recall, and F1 – score were required to determine how effective the models were 

in identifying defective PV cells from EL images. The results indicated that an image processing 

technique can be used to identify defective polycrystalline PV cells from EL images of such cells. 

However, further research needs to be conducted to improve the effectiveness of the adaptive 

models. 

 



 

  Page iii 

Keywords 

Image Processing, Deep Learning, Photovoltaics, Electroluminescence 



CONTENTS 

  Page iv 

G L O S S A R Y  

Term Definition 

Adam Adaptive Momentum Estimation   

AI Artificial Intelligence   

CNN Convolutional Neural Network 

DL Deep Learning  

EL Electroluminescence  

Epoch Number of times iterations are made through data when training an adaptive model 

ML Machine Learning  

NN Neural Network 

PV Photovoltaic  

  

 



CONTENTS 

  Page v 

C O N T E N T S  

1 Introduction .................................................................................................................................... 1 

1.1 Background ............................................................................................................................. 1 

1.2 Problem Statement ................................................................................................................ 2 

1.3 Thesis statement .................................................................................................................... 2 

1.4 Research Questions ................................................................................................................ 2 

1.5 Project Goal ............................................................................................................................ 3 

1.6 Project Scope and Risks .......................................................................................................... 3 

1.7 Research Methodology .......................................................................................................... 4 

1.8 Dissertation Structure ............................................................................................................ 4 

2 Research Design .............................................................................................................................. 6 

2.1 Introduction ............................................................................................................................ 6 

2.2 Research Onion ...................................................................................................................... 6 

2.2.1 Research Philosophy .................................................................................................... 6 

2.2.2 Approach ...................................................................................................................... 7 

2.2.3 Strategy ...................................................................................................................... 10 

2.2.4 Techniques ................................................................................................................. 12 

2.3 Research Methodology ........................................................................................................ 13 

2.4 Summary .............................................................................................................................. 14 

3 Literature Review: Photovoltaics .................................................................................................. 16 

3.1 Introduction .......................................................................................................................... 16 

3.2 Photovoltaic (PV) Technologies ............................................................................................ 16 

3.2.1 Single-crystalline Si ..................................................................................................... 18 

3.2.2 Multi-crystalline/Polycrystalline Si ............................................................................. 18 

3.2.3 Thin Film PV materials ................................................................................................ 18 

3.3 Photovoltaic (PV) module design ......................................................................................... 19 

3.4 Photovoltaic (PV) cell defects ............................................................................................... 20 

3.5 Identifying Photovoltaic (PV) cell defects ............................................................................ 21 

3.5.1 Electroluminescence (EL) ........................................................................................... 21 

3.5.2 Large-area laser beam induction current (LA-LBIC) ................................................... 22 

3.5.3 Current-Voltage (I-V) characteristics ......................................................................... 23 

3.5.4 Light Infrared Imaging ................................................................................................ 24 

3.6 Proposed integration ............................................................................................................ 25 

3.7 Summary .............................................................................................................................. 26 

4 Literature Review: Computer Vision ............................................................................................. 28 

4.1 Introduction .......................................................................................................................... 28 

4.2 Computer Vision ................................................................................................................... 29 

4.3 Image Processing .................................................................................................................. 31 

4.3.1 Image Pre-processing ................................................................................................. 33 

4.3.2 Deep Learning (DL) ..................................................................................................... 36 

4.3.3 Image Classification .................................................................................................... 45 

4.3.4 Pattern Recognition ................................................................................................... 49 



CONTENTS 

  Page vi 

4.4 Related Work ........................................................................................................................ 50 

4.4.1 Medical Image Analysis .............................................................................................. 50 

4.4.2 Feature Learning and Image Classification ................................................................ 51 

4.5 Preliminary Investigation of Implementation Tools ............................................................ 52 

4.6 Summary .............................................................................................................................. 53 

5 Experimental Design and Implementation ................................................................................... 55 

5.1 Introduction .......................................................................................................................... 55 

5.2 A proposed solution for automatic identification of defective photovoltaic (PV) cells ...... 56 

5.3 Experimental Design ............................................................................................................. 58 

5.3.1 Data processing .......................................................................................................... 60 

5.3.2 Experimental Setup .................................................................................................... 60 

5.4 Experiment Implementation ................................................................................................ 64 

5.5 Experimental Procedure ....................................................................................................... 66 

5.5.1 Learning Techniques and Experiment Groups ........................................................... 67 

5.5.2 Performance – Phase One (Binary Classification) ...................................................... 70 

5.5.3 Performance – Phase Two (Multi-class classification) ............................................... 72 

5.6 Evaluation Plan ..................................................................................................................... 74 

5.7 Summary .............................................................................................................................. 76 

6 Experimental Results ..................................................................................................................... 78 

6.1 Introduction .......................................................................................................................... 78 

6.2 Image Classification Results ................................................................................................. 79 

6.2.1 Training from Scratch ................................................................................................. 80 

6.2.2 Transfer Learning (TL) ................................................................................................ 83 

6.2.3 Model Evaluation ....................................................................................................... 84 

6.3 Conclusion ............................................................................................................................ 89 

7 Conclusion ..................................................................................................................................... 90 

7.1 Introduction .......................................................................................................................... 90 

7.2 Research Achievements ....................................................................................................... 91 

7.3 Contribution of Research ..................................................................................................... 92 

7.3.1 Theoretical Contributions .......................................................................................... 93 

7.3.2 Practical Contributions ............................................................................................... 93 

7.4 Problems Encountered ......................................................................................................... 94 

7.5 Limitation and Recommendations for Future Research ...................................................... 94 

7.6 Summary .............................................................................................................................. 95 

References ........................................................................................................................................ 97 

Appendices ..................................................................................................................................... 106 

Appendix A – Article ...................................................................................................................106 

Appendix B – Results ..................................................................................................................113 

 

 



CONTENTS 

  Page vii 

L I S T  O F  F I G U R E S  

Figure 1-1: Dissertation structure ...................................................................................................... 5 

Figure 2-1: The research onion (Saunders et al., 2008) ..................................................................... 7 

Figure 2-2: Research approach .......................................................................................................... 9 

Figure 2-3: Research strategy .......................................................................................................... 11 

Figure 2-4: Research methodology .................................................................................................. 14 

Figure 3-1: Chapter overview ........................................................................................................... 17 

Figure 3-2: Images showing examples of PV devices a) Single-crystalline Si PV cell, b) multi-

crystalline/polycrystalline Si PV cell, c) thin film PV device ............................................................. 18 

Figure 3-3: Two PV cells connected in series ................................................................................... 19 

Figure 3-4: Scanned EL images of part of a PV modules a) The PV module without defects, b) non-

functional PV module,  c) PV module with cracked cells (Friedrischková & Horák, 2013) .............. 22 

Figure 3-5: Laser beam induction current system (Rabha, Dimassi, Bouaïcha, Ezzaouia, & Bessais, 

2009) ................................................................................................................................................ 23 

Figure 3-6: I-V characteristic curve of a PV cell ................................................................................ 23 

Figure 3-7: I-V curve of a normal PV cell from normal PV module vs an I-V curve of a defective PV 

cell in defective PV module (Schill, Brachmann, & Koehl, 2015) ..................................................... 24 

Figure 3-8: A greyscale thermal image of a string of PV modules with a single defective cell ....... 25 

Figure 4-1: Chapter overview ........................................................................................................... 29 

Figure 4-2: Examples of global and local thresholding (Nicolosi et al., 2012) ................................. 34 

Figure 4-3: Comparison of Canny and Sobel edge detection techniques ........................................ 36 

Figure 4-4: DL in relation to AI (Sze, Chen, & Yang, 2017) ............................................................... 37 

Figure 4-5: Biological neuron vs artificial neuron ............................................................................ 38 

Figure 4-6: High-level NN structure (Engelbrecht, 2007) ................................................................ 39 

Figure 4-7: Illustration of gradient descent (Engelbrecht, 2007)..................................................... 41 



CONTENTS 

  Page viii 

Figure 4-8: High-level general CNN architecture (Patterson & Gibson, 2017) ................................ 43 

Figure 4-9: Convolution function (Patterson & Gibson, 2017) ........................................................ 43 

Figure 4-10: Image classification framework (Shu, McIsaac, Osinski, & Francis, 2017) .................. 46 

Figure 4-11: Image classification techniques (Affonso, Rossi, Vieira, & de Carvalho, 2017)........... 47 

Figure 4-12: LeNet CNN architecture (LeCun, Haffner, Bottou, & Bengio, 1999) ........................... 48 

Figure 4-13: Example of X-ray images used in skeletal bone age assessment (Spampinato et al., 

2017) ................................................................................................................................................ 51 

Figure 4-14: Driver assist system architecture (Chen, Seff, Kornhauser, & Xiao, 2015).................. 52 

Figure 5-1: Chapter overview ........................................................................................................... 56 

Figure 5-2: Existing method vs. stages of the proposed solution .................................................... 57 

Figure 5-3: Mock-up CNN for the initial phase of experiments (Ker, Wang, Rao, & Lim, 2018) ..... 59 

Figure 5-4: LeNet training history – (a) model accuracy; (b) model loss ......................................... 70 

Figure 5-5: VGG 16 training history – (a) model accuracy; (b) model loss ...................................... 71 

Figure 5-6: MobileNet training history – (a) model accuracy; (b) model loss ................................. 71 

Figure 5-7: Xception training history – (a) model accuracy; (b) model loss .................................... 72 

Figure 5-8: LeNet multi-classification training history – (a) model accuracy; (b) model loss .......... 73 

Figure 5-9: MobileNet multi-classification training history – (a) model accuracy; (b) model loss .. 73 

Figure 5-10: Xception multi-classification training history – (a) model accuracy; (b) model loss ... 74 

Figure 5-11: Confusion matrix for multi-class classification (Deng et al., 2016) ............................. 75 

Figure 6-1: Chapter overview ........................................................................................................... 79 

Figure 6-2: VGG performance history on Dataset B ........................................................................ 80 

Figure 6-3: LeNet confusion matrix .................................................................................................. 85 

Figure 6-4: MobileNet confusion matrix .......................................................................................... 86 

Figure 6-5: Xception confusion matrix ............................................................................................. 87 



CONTENTS 

  Page ix 

Figure 7-1: Dissertation structure .................................................................................................... 90 

Figure B-1: LeNet – Dataset B vs. Dataset C ................................................................................... 113 

Figure B-2: MobileNet – Dataset B vs. Dataset C ........................................................................... 113 

Figure B-3: Xception – Dataset B vs. Dataset C .............................................................................. 113 

Figure B-4:TL Xception – Dataset C vs. Xception - Dataset C ......................................................... 114 

 

  



CONTENTS 

  Page x 

L I S T  O F  TA B L E S  

Table 2-1: Research approach stages and chapter mapping ............................................................. 8 

Table 3-1: Factors that influence PV state ....................................................................................... 26 

Table 4-1: Different image processing techniques .......................................................................... 32 

Table 5-1: Images used for the first phase of experiments ............................................................. 63 

Table 5-2: Images used for the second phase of experiments ........................................................ 64 

Table 5-3: Choice of DL CNN architectures ...................................................................................... 65 

Table 5-4: Experiment hyperparameters ......................................................................................... 65 

Table 5-5: Data augmentation techniques ...................................................................................... 65 

Table 6-1: Performance results Dataset B (150 x 150 pixels) .......................................................... 81 

Table 6-2: Performance results Dataset B (200 x 200 pixels) .......................................................... 81 

Table 6-3: Performance results on Dataset C (150 x 150 pixels) ..................................................... 82 

Table 6-4: Performance results on Dataset C (200 x 200 pixels) ..................................................... 83 

Table 6-5: TL performance results on Dataset B (160 x 160 pixels) ................................................ 83 

Table 6-6: TL Performance results on Dataset C (160 x 160 pixels) ................................................. 84 

Table 6-7: PV cell classification measurements ............................................................................... 88 

Table 7-1:Research Questions and Chapters ................................................................................... 91 

 



INTRODUCTION 

  Page 1 

1  I N T R O D U C T I O N  

This dissertation will document the research activities involved in using an image processing 

technique to determine solar cell defects from electroluminescence images of photovoltaic 

modules. The image processing technique will have to conform to the general rules used in the 

identification of solar cell defects. 

1.1 Background 

Increasing demand for energy across the globe has resulted in increased use of fossil fuels. The 

downside to the increased use of fossil fuels is the continuous depletion of the ozone layer, and 

the climate is changing, as well as rising environmental issues and possibilities of different health 

risks which living creatures might face (Hussain, Arif, & Aslam, 2017). The increased use of fossil 

fuels has resulted in the increased emission of carbon dioxide (CO2), a major greenhouse gas which 

also pollutes the environment. A call was made to keep the earth safe, which has given rise to 

pollutant free technologies of harnessing electricity from renewable energy sources, which 

comprise of hydropower, wind energy, solar energy, biofuels, biomass and geothermal energy 

(Hussain et al., 2017).   

One of the devices that harness renewable energy uses photovoltaic (PV) technology, which 

converts the light radiated by the sun into electricity. Solar energy is a clean source of energy 

(Nogueira, Bedin, Niedzialkoski, De Souza, & Das Neves, 2015). A clean source of energy causes 

zero or very minimal ecological damage (Nowotny et al., 2018). It is believed that the solar energy 

received on the earth’s surface in three days is equivalent to all the energy stored in all fossil energy 

sources (Askari, Abadi, & Mirhabibi, 2015). The oil crisis in the 1970s resulted in an increased 

interest in PV cells as alternative power generating technology. A collection of PV cells connected 

in either a series or parallel circuit makes up a PV module, which is commonly known as a solar 

module (Askari et al., 2015).  

Different types of PV cells exist due to different semiconductor materials used in manufacturing 

the PV cells as well as the method used in making the PV cell. The two main classes use either 

crystalline or thin-film PV technology. Silicon is still the material that is used in most PV devices and 

is either single-crystalline, multi-crystalline (polycrystalline) or amorphous silicon (thin-film 

technology) (Goetzberger, Hebling, & Schock, 2003; Crozier, 2012). Each type of PV cell performs 

differently under similar natural conditions, which affects the electricity output of the PV cell 

module (Guenounou, Malek, & Aillerie, 2016).  
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Cell defects affect the performance of all types of PV cells. The underperformance of cells emerges 

from cells being shaded or from defects such as cracked or corroded contacts thus preventing PV 

cells from generating an equal output current similar to other cells in the same series string. In 

addition, shading and defects result in lower power output of an entire PV module (Alonso-Garcıá, 

Ruiz, & Chenlo, 2006; Crozier, 2012). There are several ways of identifying the presence of cell 

defects within a PV cell, which include infrared imaging, electroluminescence (EL), large-area laser 

beam induced current, and current-voltage (I-V) characteristics (Crozier, 2012). One method 

involves manually analysing EL images of solar modules. However, hundreds of thousands of 

images may need to be inspected since the analysis methods are tedious and time-consuming. 

Therefore a faster more efficient way of flagging EL images are needed. EL images primarily show 

the presence of cracks on cells as well as dark areas where the cell is either electrically 

disconnected from the rest of the cell or low electroluminescence occurs. The analysis of the EL 

images determines the state of the solar cell based on the percentage of the solar cell affected by 

the defect. 

This study aims to use images to identify cell defects in solar modules. EL images of solar modules 

will be used for this research. The images will either be provided or will be taken in a laboratory to 

increase the variety of defects where necessary.  

1.2 Problem Statement  

Currently, no automated way to effectively identify defective polycrystalline PV cells, according to 

known PV cell defect standards from EL images, could be found. However, there are conventional 

ways that exist in photovoltaics that are used to identify defective polycrystalline PV cells. 

1.3 Thesis statement 

Image processing can be used to identify patterns that may indicate PV cell defects in 

polycrystalline solar modules from EL images. The identified defects can be used to determine the 

state of the PV cell. 

1.4 Research Questions 

The main research question (MRQ) of this study is: 

How can an image processing technique be used to effectively identify defective polycrystalline 

PV cells from EL images of such cells? 

The following sub research questions (RQs) will be used to answer the main research question: 
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RQ1: What are the existing methods for examining PV cell defects? 

RQ2: What are the constraints on existing methods of identifying PV cell defects in polycrystalline 

solar modules using EL images? 

RQ3: How can an image processing technique be used to assist in identifying defects in 

polycrystalline PV cells using EL images of the PV cells? 

RQ4: How can an image processing technique be used appropriately to identify defective PV cells? 

RQ5: How effectively can the chosen image processing technique identify defective PV cells? 

1.5 Project Goal 

The goal of this project is to identify defective polycrystalline PV cells from EL images effectively. 

This is to be achieved by determining the how precisely the derived solution can classify EL images 

of defective PV cells.  

In addition, the identified defects will be based on standards defined by Kajari-Schröder et al., 

(2010) and are used in the Physics Department at Nelson Mandela University (NMU). The PV cell 

EL image classification is based on the following factors: 

• Very critical: 20% or more of the cell area is affected; 

• Critical: more than or equal to 8% but less than 20% of the cell area is affected; 

• Uncritical: less than 8% of the cell area is affected; and 

• Normal: the cell is not affected. 

1.6 Project Scope and Risks 

The focus of this study is to identify an image processing technique that can be used to identify cell 

defects in polycrystalline solar modules. In addition, the known standards of identifying PV cell 

defects (Sections 1.5 and 3.6) will have to be incorporated to classify the defects appropriately. 

One possible constraint may be that the initial images available for this study may be of poor 

quality, thus making it difficult to distinguish between defective PV modules and normal PV 

modules. Since the data is historical data, there might be a discrepancy in the voltage throughput 

at which the EL images were taken.  
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1.7 Research Methodology  

This research will use the experimental research methodology. The experimental research 

methodology pursues to determine factors and causal links that influence different research 

outcomes (Creswell, 2010). The experimental research methodology will be discussed as part of 

the research design in the following chapter. 

1.8 Dissertation Structure  

The current chapter provides an introduction to the research. The following chapters will discuss 

the different aspects of this research, which will include the research design, literature review, 

experimental design and implementation, experimental results and a conclusion chapter (Figure 

1-1). The chapters depicted in Figure 1-1 will document the following aspects: 

• Chapter 1 – Introduction: Chapter one introduced the problem at hand and gave a brief 

background on different aspects of this research.    

• Chapter 2 – Research Design: Chapter two discusses the research design and provides 

support on why the experimental research methodology is the most appropriate research 

methodology for this research.   

• Chapter 3 – Literature Review: Chapter three comprises literature reviewed regarding 

different aspects of photovoltaics.    

• Chapter 4 – Literature Review: Chapter four comprises literature reviewed regarding 

different aspects of computer vision. 

• Chapter 5 – Experimental Design: Chapter five documents the design of the different 

experiments based on the literature reviewed in chapters three and four. This chapter 

discusses the different requirements needed to conduct the designed experiments and the 

two phases of experiments that were conducted for this research.   

• Chapter 6 – Experimental Results: Chapter six discusses the experiment results from the 

experiments designed in Chapter five. The experimental results chapter provides evidence 

on whether or not the MRQ has been answered. 

• Chapter 7 – Conclusion: The final chapter documents the achievements and conclusion 

from this research, problems encountered throughout the research, and limitations 

identified and provides recommendations for future research. 
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2  R E S E A R C H  D E S I G N  

2.1 Introduction 

This chapter provides a high-level overview of the research methodology selected for this project. 

The research questions (Section 1.4) and the goal of this research (Section 1.5) were identified in 

the preceding chapter. The research design provides a plan for how the research questions will be 

addressed throughout the research.  

The research onion (Saunders, Lewis, & Thornhill, 2008) is briefly discussed in this chapter (Section 

2.2) to provide a foundation for identifying the different research methods that will be appropriate 

to this research. This is vital since research methods are influenced by the research methodology 

(Section 2.3) and the RQs identified in the previous chapter (Section 1.4). 

2.2 Research Onion 

The research onion (Figure 2-1) provides an effective process of determining which research 

methodology to apply to a particular research study. The research onion is used in conjunction 

with the research questions identified in the preceding chapter to determine the research methods 

appropriate for this research. The research methods are used to answer the research questions, 

which are greatly influenced by the research plan and methodology. The research methods chosen 

for this research are defined in the following sections by critically considering several factors. The 

research methods are chosen with the aid of the research onion (Figure 2-1) (Saunders et al., 2008), 

which describes the stages to follow based on the most appropriate research methodology. The 

philosophy (Section 2.2.1), approach (Section 2.2.2), strategy (Section 2.2.3) and techniques 

(Section 2.2.4) of this study are discussed in the subsequent sections, which will motivate the 

chosen research methodology. 

2.2.1 Research Philosophy 

The first layer of the research onion (Figure 2-1) comprises different research philosophies. A 

research philosophy adopted in research relates to how the researcher views the world (Gray, 

2004). In addition, different approaches and strategies through which research is conducted are 

dependent on the research philosophy. Furthermore, the research philosophy determines how 

data vital to the research is gathered, analysed and used.  
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Figure 2-1: The research onion (Saunders et al., 2008) 

This research will utilise the positivist paradigm or philosophy. The positivist paradigm holds that 

knowledge is absolute and objective and that a single objective reality exists external to human 

beings (De Villiers, 2005). In other words, meaningful data is obtained from experiments and 

observations (McGregor & Murnane, 2010). The data to be collected should be according to 

developed research questions. The main research question is therefore tested throughout the 

research processes to further develop existing theories (Saunders, Lewis, & Thornhill, 2009). 

The positivist approach will be used to address the main research question through experiments 

and the use of quantitative data. This research revolves around an observable reality, which is 

supported by the selected research philosophy. The following section discusses the research 

approach. 

2.2.2 Approach 

The second layer of the research onion (Figure 2-1) depicts different approaches that can be taken 

when conducting research. A research approach may not always be clear in the early stages of 

research, but the conclusion of the research usually sums up the research approach. An important 

question to ask at this stage is whether to develop the main research question and design a 

research strategy based on existing theories (deduction), or develop the main research question 

based on collected and analysed data (induction) (Saunders et al., 2009). 
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This study will make use of the deductive approach, which complements the positivist research 

philosophy (Section 2.2.1). The deductive approach allows for the main research question to be 

deduced based on existing theories. The main research question will undergo rigorous tests 

throughout the research. In addition, the deductive research approach is commonly used in 

scientific research. The deductive approach consists of five stages (Saunders et al., 2008): 

1. Deducing the main research question; 

2. Expressing the research question in operation terms (secondary research questions); 

3. Testing said operational research questions; 

4. Examining the specific outcome of the inquiry; and 

5. Examining the main research question. 

These five stages revolve around the main MRQ which is expressed into secondary RQs. The five 

stages of the research approach allow the research approach to be mapped onto the different 

chapters of the dissertation as depicted in Figure 2-2.  

The main research question will be explicitly examined in Chapter 6 (Figure 2-2). The main research 

question is expressed in secondary research questions in Section 1.4. The secondary research 

questions are tested in Chapters 3 to 6. The research questions are tested to answer the main 

research question and provide different deliverables for the different chapters. Table 2-1 tabulate 

the research approach stage and the chapter in which the stage is handled. The following section 

discusses the research strategy. 

Table 2-1: Research approach stages and chapter mapping 

Research Approach Stage Chapter 

Deducing the MRQ  1 

Expressing research question in operation terms 1 

Testing operational research questions 3, 4, 5, 6 

Examining specific outcomes of inquiry  6 

Examining the MRQ  6 
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2.2.3 Strategy 

Research strategies can be used to either explain, explore or describe the research being carried 

out. The research strategy selected for this research is important in answering the identified 

research questions. To an extent, the research strategy is influenced by the research questions and 

the objective of the research. In addition, the research philosophy and approach guide the 

selection of the research strategy. Possible research strategies include survey, case study, 

experiment, and ethnography (Figure 2-1). Furthermore, the research strategy is influenced by the 

nature of the research. The deductive nature of this research identified in Section 2.2.2 requires 

that the main research be testing, which further influences the research methodology of choice.   

Upon considering all the factors that influence the research strategy, it was decided to employ the 

experimental strategy to this research. Most experiments aim to study causal links between 

variables. An experimental strategy typically involves the following aspects (Saunders et al., 2008): 

• The definition of research  questions; 

• Selection of samples; 

• Random allocation of samples; 

• Introduction of planned intervention or manipulation; 

• Testing of a small number of dependent variables; and 

• Control of all other variables. 

The aspects of the experimental strategy will aid in addressing the research questions defined in 

Section 1.4. Figure 2-3 depicts how the research questions will be addressed throughout the 

dissertation. Furthermore, the main research question will help achieve the objective of the 

research and provides a foundation for the research questions listed in Section 1.4.  

The selection of the samples that were used for this research were briefly mentioned in Chapter 1, 

but further support for this choice will be discussed in Chapter 3. The sampled data was allocated 

based on the EL image classification (Sections 1.5 and 3.6). In support of the classes identified in 

Section 1.5, different image classification techniques will be discussed in Section 4.3.3.  

The experimental strategy requires an outlined plan of data manipulation. Literature will be 

reviewed in Chapter 3 to identify ways of manipulating the samples.  In addition, a way in which 

data was manipulated for this research is discussed in Chapter 5. Furthermore, testing a small 

number of dependent variables and the control of all other variables is carried out in Chapter 5. 

Figure 2-3 depicts how the experimental strategy is mapped onto the dissertation structure.        



RESEARCH DESIGN 

 

  Page 11 

Chapter 1:
Introduction

Chapter 2:
Research Design

Chapter 3:
Literature Review: 

Photovoltaics

Chapter 4:
Literature Review: 
Computer Vison

Chapter 5:
Experimental 
Design and 

Implementation 

Chapter 6:
Experimental 

Results

Chapter 7:
Conclusion

MRQ

RQ1

RQ2

RQ3

RQ4

RQ5

Defining RQs

Testing 
dependent 
variables

Control of 
variables 

Dissertation 
Structure

Strategy

Selection of 
samples

Allocation of 
samples

Introduction of 
planned 

manipulation

 

Figure 2-3: Research strategy 

Data collecting methods and data sampling methods that drive this research are discussed under 

techniques (Section 2.2.4). Techniques form the core of the research onion (Figure 2-1). Data are 
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used to determining the causal links between different variables, therefore, making the next 

section important to this research.  

2.2.4 Techniques 

Research techniques include data collection and sampling methods. Data collection and sampling 

methods are important aspects of research design and these methods influence ways in which 

research should be conducted. Data collection and sampling methods outline how the necessary 

data will be obtained and analysed for this research.   

2.2.4.1 Data Collection 

Data collection is the process of gathering information on variables of interest. The purpose of this 

process is to answer research questions, as well as to evaluate the outcomes of the research 

(Creswell, 2010). The necessary data for this research will include EL images of PV modules 

collected from industry by the Physics Department at Nelson Mandela University (NMU) and data 

collected from tests within the Physics Department. As a result, secondary data collection will be 

the initial data collection method. Secondary data analysis is the use of data that was collected for 

a different primary purpose (Johnston, 2014). This research aims at analysing PV modules at a cell 

level because PV cell mismatch is the leading cause of PV module outputting less power than 

intended (Section 3.3). This will result in the manipulation of the original data received from the 

Physics Department at NMU, by segmenting EL images of PV cells from the module data. The 

segmentation of the EL images will ensure that the original PV modules are not in any way 

identifiable. 

Furthermore, the data collected needs to represent different problem cases. Within the context of 

this research, the data needs to represent PV cells with different types of defects. The variation of 

the data representing the different types of defects will ensure that different cases (including those 

defined in Section 1.5) are tested in order to reduce bias and chances of error. In the event that 

the secondary data does not provide the necessary variety to represent the different types of 

defects, primary data collection might be required to ensure that the variation of data is present. 

Primary data collection allows data collected to be for a specific research problem (Hox & Boeije, 

2005). 

2.2.4.2 Data Sampling 

Data sampling is a process of selecting a representative portion of data from data obtained during 

data collection (Latham, 2007). The data collected for this research has an equal probability of 

being selected. Therefore, simple random sampling will be used for this research. Data sampling 
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also includes the manipulation discussed in Section 2.2.4.1 and analysis of a subset of data that 

represents a larger dataset (Section 5.3.2.2) to identify trends and patterns within data.  

This research relies on images classified based on the defect classification defined by Kajari-

Schröder et al., (2010), (Section 1.5) before any analysis can be done. The classification of images 

will be discussed in depth in Chapter 4 (Section 4.3.3). 

2.3 Research Methodology  

The experimental research methodology was preliminarily identified as the most appropriate 

research methodology for this research in the previous chapter (Section1.7). In support of the 

experimental strategy which was discussed in Section 2.2.3, the experimental methodology will be 

used to study causal links between variables. The experimental research methodology was 

developed to reduce biases of all kinds as much as possible (Hulbert, 2008). Sections 2.2.1 to 2.2.4 

provide a summary of why the experimental methodology was the most appropriate methodology 

for this research.  

According to Gray (2009), the experimental research methodology comprises two main steps: the 

planning and operational stage. The planning stage gives perspective on what will be investigated 

which is achieved in Chapter 1. The main research question defined in Section 1.4 is used to deduce 

secondary RQs as identified by the deductive research approach. RQs are a crucial part of the 

planning stage of research. All research questions have to be answered throughout this research. 

This is achieved with the aid of the operational stage of the experimental research methodology. 

The operational stage also allows for experiments designed based on the planning stage to be 

conducted. Figure 2-4 shows the mapping between the dissertation and the research 

methodology. 
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Figure 2-4: Research methodology 

2.4 Summary 

This chapter aimed to present the research design and to discuss the factors that influenced the 

selection of the most appropriate research methodology for this research. It was highlighted in this 

chapter that each section of this research had to conform to the chosen research methodology. 

Different methods were identified to ensure that the relevant research methodology is strictly 

followed. The methods included a positivist research philosophy (Section 2.2.1), a deductive 

research approach (Section 2.2.2), an experimental research strategy (Section 2.2.3) and research 

techniques (Section 2.2.4) which encompassed data collection and sampling methods. The 

research approach and strategy provided different aspects to ensure that the research 

methodology is applied relevantly to this research (Figure 2-2 and Figure 2-3).   
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Data collection and data sampling were discussed in Sections 2.2.4.1 and 2.2.4.2 respectively. 

These aspects are necessary to identify the different processes and analysis techniques that will be 

used on the data collected. Existing methods of analysing PV cell defects and the constraints with 

these existing methods are discussed in the following chapter.   

In addition, the different methods (Sections 2.2.1 to 2.2.4) were discussed to confirm whether the 

choice made to use the experimental research methodology was appropriate for this research. A 

summary of the different factors posed by each method in support of the experimental research 

methodology were discussed in Section 2.3. Furthermore, Figure 2-4 depicts how the dissertation 

structure utilises the selected approach and strategy. 

The following chapter provides support to why EL images are the data sampled for this research 

and will begin to test the RQs as part of the research methodology as depicted in Figure 2-2.  
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3  L I T E R A T U R E  R E V I E W :  P H O T O V O LT A I C S  

3.1 Introduction 

The focus of this chapter revolves around a brief overview of the primary photovoltaic (PV) 

technologies and the materials that are used to manufacture PV devices (Section 3.2), PV module 

design (Section 3.3), the type of defects that occur in polycrystalline silicon (Si) material (Section 

3.4) and how the defects are identified (Section 3.5). Furthermore, ways in which characterisation 

techniques currently used to identify polycrystalline PV cell defects can be used in conjunction with 

computer vision techniques are introduced (Section 3.6).  

This chapter aims to address the first two research question as depicted in Figure 3-1:   

RQ1: What are the existing methods for examining PV cell defects? 

RQ2: What are the constraints on existing methods of identifying PV cell defects in 

polycrystalline PV modules using EL images? 

Answering RQ1 will help provide evidence of the data sampled (EL images) for this research is used 

to analyse PV cell defects. Furthermore, the constraints that currently exist from identifying PV cell 

defects from EL images are identified.   

3.2 Photovoltaic (PV) Technologies 

Different PV (solar) technologies exist due to the different semiconductor materials used in the 

manufacturing process of the PV device. PV technologies can be broadly divided into crystalline 

silicon (Si) and thin film devices (Honsberg & Bowden, 2013). Crystalline Si PV cells are made by 

thinly slicing crystalline Si material to form wafers that are then processed further. Thin film devices 

are made by monolithically depositing layers of PV materials on a transparent substrate to form 

semiconductor junctions. Long strips of interconnected cells are formed by isolating the deposited 

material using a laser scribing process.  
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Figure 3-1: Chapter overview   

For this discussion crystalline Si can be further grouped into either single-crystalline silicon (c-Si) or 

polycrystalline (multi-crystalline) silicon (p-Si) PV devices. Thin-film PV devices are made from a 

very wide variety of semiconductor materials. The most common materials are; amorphous silicon 

(a-Si), copper indium selenide (CIS),  copper indium gallium selenide (CIGS) and cadmium telluride 

(CdTe) (Goetzberger et al., 2003; Crozier, 2012). 
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Figure 3-2: Images showing examples of PV devices a) Single-crystalline Si PV cell, b) multi-

crystalline/polycrystalline Si PV cell, c) thin film PV device 

Figure 3-2 shows examples of single-crystalline, multi-crystalline, and amorphous silicon PV 

materials respectively. The following sections will discuss the differences between the three 

different types of PV devices. 

3.2.1 Single-crystalline Si 

Single-crystalline or monocrystalline PV cells are manufactured from a slightly lower grade silicon 

that is used to make silicon chips in electronic equipment. The Czochralski (Cz) process is the most 

commonly used method to grow single crystalline ingots (Bothe, Sinton, & Schmidt, 2005; Glunz, 

Rein, Warta, Knobloch, & Wettling, 2001). The PV cells are sawed from a round single crystalline 

silicon ingot that consists of a continuous crystal lattice. A visible feature is the absence of a multi-

crystalline structure with grain boundaries shown in Figure 3-2 (b) (Bagher, 2015). Figure 3-2 (a) is 

an example of a single-crystalline PV cell (Askari et al., 2015). 

3.2.2 Multi-crystalline/Polycrystalline Si 

Multi-crystalline or polycrystalline PV devices are made from a high purity form of metallurgical 

grade silicon through a chemical purification process. The silicon is cast directly into multi-

crystalline ingot slabs or bricks, which are then recrystallised. The multi-crystalline bricks are then 

sliced into thin wafers and used to manufacture polycrystalline PV cells. Polycrystalline PV cells are 

the most common PV cells (Askari et al., 2015). Figure 3-2 (b) is an example of a polycrystalline PV 

cell. 

3.2.3 Thin Film PV materials 

A wide variety of PV materials are used to manufacture thin film PV devices. The most common 

materials are; amorphous Si, copper indium selenide (CIS), copper indium gallium selenide (CIGS), 
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and cadmium telluride (CdTe) compounds. Thin film PV devices are made by depositing a thin layer 

of Si, CIS, CIGS or CdTe vapour onto a smooth surface (Bergmann, Berge, Rinke, Schmidt, & Werner, 

2002). Thin film PV devices products are usually about one micrometre thick. Thin film PV devices 

are much cheaper to manufacture than the other types of PV devices since a small amount of 

material is needed to manufacture the device. One major drawback of thin film PV devices is that 

they are not as efficient as the other types of PV cells (Askari et al., 2015). Figure 3-2 (c) is an 

example of a thin film PV device. 

3.3 Photovoltaic (PV) module design 

A PV module consists of interconnected PV cells, typically made from one of three PV materials 

(Section 3.2). This research aims to analyse polycrystalline PV cells to identify defective 

polycrystalline PV cells automatically (Section 1.5). 

PV cells in PV modules are connected in series (Figure 3-3) to increase the available voltage, and 

this connection is commonly referred to as a string. In an ideal operational state of a PV module, 

the current through each PV cell in the PV module is equal. If a discrepancy between the current 

through each PV cells in a module arise, PV cell current mismatch is said to be present within the 

PV module. A current mismatch may lead to affected cells to become reverse biased causing power 

loss in the string.  Figure 3-3 shows PV cells that have an equal current passing through them and 

are of equal voltage. 

 

Figure 3-3: Two PV cells connected in series1 

                                                      

1 https://www.pveducation.org 
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PV cell mismatch is a serious problem in PV modules. PV cell mismatches are induced by defects 

(Section 3.4) and lead to thermal heating of PV cells (Alonso-García et al., 2006). The defects 

prevent the PV cells from generating current equal to other PV cells in a string. PV cell mismatch is 

the degradation of a PV module and results in a PV module having a lower power output than 

expected.  

3.4 Photovoltaic (PV) cell defects 

It was mentioned in Section 1.1 that PV defects affect the performance of PV cells. A variety of PV 

cell defects that are inherent in the material exists ranging from point defects to dislocations and 

grain boundaries (Budhraja, 2012). Other defects such as fine cracks in crystalline Si material may 

not always result in reduced power outputs and it may not always indicate a defective cell. 

However, the PV defects that affect the efficiency of PV cells (Mari, Ullah, & Sanchez Ruiz, 2016) 

are of interest in this study. This section provides an overview of the currently known types of 

defects.  

The cell defects listed below do not affect the performance or efficiency of PV cell and 

consequently a PV module (Köntges et al., 2014): 

• Crystal dislocation: irregularities within a crystal structure;  

• Edge wafer: a result of the materials used to make the PV cell falling off the edges of a PV 

cell; and 

• Striation rings: caused by convective instabilities during crystal growth. 

On the other hand, the defects listed below are some of the identified defects that cause PV cell 

failures and affect the performance of PV modules (Köntges et al., 2014): 

• Cell cracks: PV cells are made from silicon, which is very brittle. Cell cracks are of different 

lengths and orientation. Only cracks that electrically disconnect active parts of cells cause 

current mismatch and will lead to power loss and possible failure. Unfortunately, these 

cracks may not always be visible to the naked eye. Apart from cracks that are formed due 

to mechanical impact to the PV module, wafer slicing and the embedding of strings during 

production may cause cells to crack. 

• Finger failure: Cracks beyond the cell interconnection ribbons are called finger failures. 

Finger failures usually indicate high strain at solder joints. Thermochemical stress usually 

induces finger failure and lead to high power loss. 

• Humidity corrosion: the humidity condenses between the glass over the PV cell material 

and the PV material itself. The resulting water residue causes the radiant light to reflect, 

refract or diffract before hitting the cell. 
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• Contact forming failure: temperature inhomogeneities during the firing process of 

manufacturing the PV cell causes contact degradation. 

• Shunt fault: the linkage of positive and negative terminals of PV modules due to the 

degradation conductor insulators, resulting in shunt paths.  

3.5 Identifying Photovoltaic (PV) cell defects 

As discussed in Section 3.4, a variety of defects exist and not all defects affect the efficiency of PV 

cells. The most common defects include corrosion and cracks within the PV cell and these common 

defects will impact the performance of PV cells.  

Even though there is a variety of defects, their existence within PV modules can be identified using 

appropriate techniques. These techniques include EL, large-area laser beam induced current (LA-

LBIC), I-V measurements, and infrared (IR) imaging. All these methods provide PV module data that 

can be used for PV module defect analysis. It was identified in Chapter 1 that EL images will be 

used in this research to identify defective PV cells automatically, and the data collection and 

sampling techniques were introduced in Sections 2.2.4.1 and 2.2.4.2 respectively.   

3.5.1 Electroluminescence (EL) 

Luminescence in semiconductor materials occurs when charge carriers (holes and electrons) 

recombine radiatively by emitting electromagnetic radiation in the visible to near infrared (NIR) 

part of the spectrum (Dexter, 1953).  Charge carrier separation can be generated (exited) either 

optically or electrically. Radiative recombination from charge carriers that were optically generated 

emits photoluminescence (PL) while electrically generated charge carriers emit 

electroluminescence (EL).  EL in the visible part of the spectrum is important for the functioning of 

light emitting diodes (LED) and are now also extensively used in the lighting industry. EL from Si 

derived PV devices only occurs in the NIR part of the spectrum. A very sensitive NIR camera is 

required to create EL images of PV cells.  

The intensity variation showing up as features in EL images of PV cells, therefore, indicates the 

magnitude of radiative carrier recombination that occurred. Carrier recombination is by 

implication an indicator of the presence of charge carriers and electrical activity. The bright parts 

of the EL image, therefore, correlates to the presence of charge carriers and electrical activity. And 

the dark parts correlates to the absence of charge carriers and  electrical activity (Fuyuki, Kondo, 

Yamazaki, Takahashi, & Uraoka, 2005). 

EL can be used in photovoltaics to identify defective PV cells. EL is used to measure the current 

density in a PV cell, which is carried out by inducing photons allowing a flow of current through the 
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PV cell. Light sensitive sensors are then used to capture images of the PV module. Figure 3-4 shows 

three examples of EL images. 

 

Figure 3-4: Scanned EL images of part of a PV modules a) The PV module without defects, b) non-

functional PV module,  c) PV module with cracked cells (Friedrischková & Horák, 2013) 

Figure 3-4 (a) shows a PV module with no defects. In theory, this PV module should be functioning 

optimally. On the other hand, Figure 3-4 (b) contains cracked cells that have parts of cells 

electrically disconnected. The circled regions indicate defective areas. Lastly, Figure 3-4 (c) shows 

PV cells with cracks that do not disconnect parts of the cell, which is a known type of PV defect. 

Unlike the non-functional PV cells, the PV cells in Figure 3-4 (b and c) still work, although at a much 

lower performance than a PV module without defects. 

EL images are usually taken of entire PV modules; therefore, a decision was made to analyse the 

EL images on a cell level (Section 2.2.4.1 and 2.2.4.2). Furthermore, EL images are possibly taken 

with a different voltage from different modules. The excitation current flowing through the PV 

module can therefore differ and affect the EL intensity of the cells that appear in the EL image. This 

can potentially be a source of error when running experiments. Normalisation must be considered 

before performing experiments. Normalisation is included in image pre-processing, discussed in 

Section 4.3.1. In this case, normalisation will ensure that all EL images are as similar as possible 

before the images are used in experiments.  

Currently, EL images are examined manually to identify the defects marked in Figure 3-4 which 

affects the effectiveness of identifying defective PV cells which can be incurred by human error. 

The goal of this project (Section 1.5) is to automate this process of identifying defective PV cells 

from EL images using image processing (Section 4.3).      

3.5.2 Large-area laser beam induction current (LA-LBIC) 

Large-area laser beam induced current (LA-LBIC) is another technique used to identify cell defects. 

Raster scanning a perpendicular beam of light across the surface of a sample induces a localised 

current in a PV cell. By plotting the current and corresponding position of the light beam a LBIC 

image is formed. The local photoresponse current of the cell is used to determine whether the cell 

is defective or not. LA-LBIC can be used to detect polycrystalline cells defects such as grain 
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boundaries (Crozier, 2012; Donolato, 1983; Phillips et al., 2016). Figure 3-5 shows the schematics 

of a LA-LBIC system. The camera captures the light beam generated by the laser device and is 

plotted against the current which is recorded by the PC. 

 

Figure 3-5: Laser beam induction current system (Rabha, Dimassi, Bouaïcha, Ezzaouia, & Bessais, 

2009) 

3.5.3 Current-Voltage (I-V) characteristics 

PV cell I-V characteristics provide a detailed description of a PV cell energy conversion ability and 

its efficiency. I-V characteristic curves are a graphical representation of PV cell performance (Figure 

3-6). 

 

Figure 3-6: I-V characteristic curve of a PV cell2 

                                                      

2 http://www.alternative-energy-tutorials.com 
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Certain cell defects affect the power output of a PV module (Budhraja, 2012). I-V characteristics of 

a PV module can be used to determine the presence of cell defects within a PV module since this 

indicates the possibility of a cell mismatch within a PV module. PV cells with a lower current output 

than the rest of the cells in the module are known as weak cells (Crozier & Van Dyk, 2015), and 

weak cells result in a current mismatch (Section 3.3) of cells in the same string. I-V curves are 

plotted which are compared to those of an optimally performing PV module. The differences in the 

curves are what suggest the presence of defects within the PV module, as this will be an indication 

of a decline in the power output of the PV module. Figure 3-7 shows how an I-V curve of a normal 

cell compares to an I-V curve when defects are present causing a current mismatch. 

 

Figure 3-7: I-V curve of a normal PV cell from normal PV module vs an I-V curve of a defective PV cell 

in defective PV module (Schill, Brachmann, & Koehl, 2015) 

3.5.4 Light Infrared Imaging 

Infrared images can be used to determine whether cell defects are present in a PV module. This is 

done by analysing the heat distribution captured in a thermal image of the surface of a PV module. 

PV cells with slightly higher temperatures correspond to energy loss and indicate the presence of 

a defect. If this is not attended to, the heat generated affects the performance of neighbouring PV 

cells (Mayekar, Kotmire, Wagh, & Shinde, 2016). 
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Figure 3-8: A greyscale thermal image of a string of PV modules with a single defective cell 

Figure 3-8 shows a greyscale thermal image of a PV module. Areas with a darker shade of grey 

represent higher temperatures, and lighter shades of grey indicate lower temperatures. In 

addition, the black spot indicates a possible current mismatch (Section 3.3), which indicate the 

presence of a PV cell defect.  One downside of thermal images is that the type of defect cannot be 

identified in the image.     

In some cases, there is no correlation between thermal images and the defect properties of a PV 

cell.  One way to mitigate this concern is by comparing thermal images with optical images. 

However, the sensor differences between the optical and thermal cameras raise another concern. 

The difference in sensors can result in thermal and optical images of a different resolution which 

can pose a challenge during automatic analysis. In addition, the images are likely captured at 

different flight times which introduce other discrepancies which include; images taken from 

different angles and at different altitudes.  The one defect characteristic known to be identified 

from optical images is whether the PV module is covered in dirt or has areas that are being shielded 

from the sun’s radiation. Lastly, the weather might introduce other irregularities, as cloud cover 

might make it seem to appear as if PV cells are shaded, which might incorrectly indicate the 

presence of a defect. 

3.6 Proposed integration  

This section discusses the preliminary integration between photovoltaics and computer vision 

proposed in this research. This research aims at using EL images (used in photovoltaics) to identify 

defects through image processing (computer vision). Currently, no automated ways of identifying 

defective PV cells from EL images were found. The existing methods of identifying defects only 

indicate the presence of a defect but cannot be used to identify the nature of the defect.   

Initially, thermal images and optical images were identified as the possible sources of data to be 

used to automatically identify defective PV cells (Section 1.2). Upon further refinement of the 
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problem and concerns identified in Section 3.5.4, it was decided to use EL image. The primary 

reason was due to the fact that no defect properties are exhibited in thermal images besides the 

average temperature of the PV cell. The average temperature of the PV cell only indicates the 

presence of a defect, but this temperature cannot be used to identify the actual defect present in 

the PV cell. The inability of the average temperature to identify the defect present is one of the 

constraints of existing methods of identifying PV cell defects. 

The EL images have been identified as the data source to be used to identify defective PV cells 

using image processing automatically. Different image processing techniques that can be used will 

be investigated in Chapter 4 to deduce the most appropriate image processing technique that can 

be used for this research. Furthermore, this research will discuss different image processing tasks 

that can be used to automate the process of identifying defective PV cells. The automated process 

of identifying defective PV cells will have to be able to distinguish between normal and defective 

PV cells. The standards used to distinguish the PV cells were defined by Kajari-Schröder et al. (2010) 

and were highlighted in Section 1.5. Table 3-1 tabulates the factors that influence how to 

distinguish the PV cells.   

Table 3-1: Factors that influence PV state 

PV cell state Area affected by defect 

Normal 0% 

Uncritical <8% 

Critical >=8% but <20% 

Very Critical  >=20% 

3.7 Summary 

The aim of this chapter was to discuss the, different PV technologies (Section 3.2), PV module 

design (Section 3.3),  different types of PV cell defects (Section 3.4), different ways of identifying 

PV cell defects (Section 3.5) and the proposed integration (Section 3.6) between PV and computer 

vision. 

Different types of PV cell technologies were discussed in Section 3.2. However, this research will 

only investigate defects found in polycrystalline PV cells. In addition, module designs of the 

identified PV cell technologies were discussed in Section 3.3, which lead to the introduction of PV 

cell current mismatch which is the phenomenon that arises when defective PV cells are present in 

a PV module.  In addition, different types of PV cells defects were discussed in Section 3.4, as they 

result in PV cell current mismatch.  

The discussion on different types of PV cells defects leads to the investigation of existing methods 

of examining PV cells (RQ1) which were discussed when addressing different techniques of 
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identifying PV cell defects in Section 3.5. One of these techniques includes EL 

(Electroluminescence), of which EL images is a by-product. Furthermore, the constraints on existing 

methods of identifying PV cell defects (RQ2) were highlighted in Section 3.6. 

EL images were identified as the images that will be used to solve the problem identified; currently, 

no automated way to effectively identify defective polycrystalline PV cells, according to known PV 

cell defect standards from EL images could be found (Section 1.2). Therefore, evidence was 

provided that EL images are indeed used in photovoltiacs supporting their use in automating the 

process of identifying defective PV cells from EL images. The use of EL images in photovoltiacs 

confirmed that the right data was sampled for this project.  

The integration of PV and computer vision were briefly discussed in Section 3.6. The following 

chapter discusses different techniques that may be employed within computer vision to effectively 

identify defective polycrystalline PV cells from EL images of such detective PV cells. 
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4  L I T E R A T U R E  R E V I E W :  C O M P U T E R  V I S I O N  

4.1 Introduction 

This chapter aims to introduce computer vision (Section 4.2) and discuss how image processing 

(Section 4.3), a technique within computer vision may be employed to effectively identify defective 

polycrystalline PV cells (Section 3.2.2 and 3.5) from EL images of such defective cells. In addition, 

different aspects of image processing will be discussed such as deep learning (DL) (Section 4.3.2), 

image classification (Section 4.3.3), and pattern recognition (Section 4.3.4). Related work (Section 

4.4) to this research will also be discussed in this chapter. Furthermore, this chapter documents 

ways in which computer vision can be used in conjunction with techniques of identifying defective 

PV cells (Section 3.5) as proposed in Section 3.6.  

The literature review (Chapter 3 and Section 4.2 to 4.3) and the related work (Section 4.4) reviewed 

in this chapter aims to provide insight into how to design experiments to extract patterns within 

PV cell EL images and classify them accordingly to address the MRQ. In addition, this chapter aims 

at explicitly addressing the 3rd and 4th research questions. These RQs are as follows:    

RQ3: How can an image processing technique be used to assist in identifying defects in 

polycrystalline PV cells using EL images of the PV cell? 

RQ4: How can an image processing technique be used appropriately to identify defective PV 

cells? 

Figure 4-1 shows how this chapter aims to address the RQs using the research approach and 

research strategy. Figure 4-1 depicts how this chapter introduces how the data sampled for this 

research will be manipulated (Section 4.3). The introduction to data manipulation is required to 

answer RQ3 and RQ4.   All this is achieved in this chapter through an in-depth discussion of 

computer vision (Section 4.2), image processing (Section 4.3), and work related to this research 

(Section 4.4).  
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Figure 4-1: Chapter overview 

The following section discusses different aspects of Computer vision.  

4.2 Computer Vision 

Computer vision is a useful field that uses human vision principles to help computers gain a high-

level understanding of digital images and videos. In most cases, computer vision is used in the 

implementation of assistive technologies, which help individuals overcome limitations when 

executing tasks (Leo, Medioni, Trivedi, Kanade, & Farinella, 2017). Assistive technologies are used 

in different fields, including the medical field. Certain aspects regarding the use of computer vision 

in the medical field are discussed in Section 4.4.1. 
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Computer vision systems are usually used to characterise objects or patterns within digital images 

and videos. In most cases, computer vision systems can characterise textures, shapes, colours, and 

sizes (Bhargava & Bansal, 2018). More sophisticated systems go as far as grading and detecting 

defects through automated inspections. 

Computer vision systems execute four main tasks. These tasks are acquiring, processing, analysing 

and the understanding of digital images (García-Pulido, Pajares, Dormido, & de la Cruz, 2017). 

1. Acquiring: images are acquired using different sensors or devices. Some of these devices 

include cameras, magnetic resonance imaging (MRI) devices or computed tomography (CT) 

devices. Image acquisition is required as data collection process for a computer vision 

system.    

2. Processing: images are processed to gain an understanding of the information concealed 

within an image. Image processing allows for the implementation of computer vision tools 

that can recognise objects or patterns within an image.        

3. Analysis: the analysis task in computer vision permits computer vision systems to describe 

information embedded within an image. 

4. Understanding: this task permits computer vision systems to be able to classify images. The 

understanding task in computer systems allows more sophisticated implementations can 

automatically caption images. 

The three main tasks of computer vision systems are required to address the third research 

question identified in Section 1.4: 

RQ3: How can an image processing technique be used to assist in identifying defects in 

polycrystalline PV cells using EL images of the PV cell? 

Acquiring, the first task in computer vision links to data collection (Section 2.2.4.1). The data 

acquired for this research are EL images that will be used to perform image classification 

experiments.   

Image processing (Section 4.3) is a core component of this research as there is a need to 

understand features concealed in EL images relating to the defects present in PV cells.  

Besides image acquiring and processing, there is a need to analyse and understand the images. 

These are the last two tasks of computer vision systems. The analysis task in the proposed solution 

will, therefore, have to discern features that describe defects. Lastly, the understanding task of the 

proposed solution will have to correctly classify EL images exhibiting an understanding of different 

features within EL images. The next sections further identify and discuss image processing 

techniques used in this research.  
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4.3 Image Processing 

Image processing was briefly introduced in Section 4.2 and was identified as a task within computer 

vision. Image processing is an approach used to enhance raw images for various applications. 

Different techniques within image processing have been developed since the 1970s to enhance 

and interpret images (Rao, 2006). Image processing can further be used to transform, manipulate 

or analyse digital images (Fu & Rosenfeld, 1976). 

In most cases, image data must be improved before image processing in order to complete a task 

(Krig, 1993). The initial stage before image processing is known as image pre-processing, which 

allows for distortions present within images to be suppressed. Image pre-processing is required 

because distortions result in the misrepresentation of data within images. Image pre-processing is 

discussed in Section 4.3.1.  

A variety of tasks can be achieved using image processing. The tasks within image processing 

include image classification (Section 4.3.3), pattern recognition (Section 4.3.4) and image feature 

extraction. Image classification and image recognition can be carried out using different image 

processing techniques (Table 4-1). Table 4-1 lists different image processing techniques, the details 

of the image processing techniques, whether the different image processing techniques apply to 

this research and motivation to why the techniques were applicable or not. These image processing 

techniques include image restoration, image edition and neural networks (NNs). These are just 

some of the image processing techniques that can be used to carry out image processing tasks to 

help identify defective PV cells from EL images. Table 4-1 provides details of the different image 

processing techniques, which provides evidence on whether the listed image processing technique 

can be used for this project. The two image processing techniques that can be utilised in this project 

based on the list tabulated in Table 4-1  are linear filtering and NNs. Linear filtering and NNs allow 

for feature enhancement within images and feature extraction. The extracted features are used to 

train generative models. The resulting models can be used to classify images; in the context of this 

project EL images of PV cells. The other image processing techniques, even though useful, were 

not suitable to solve the identified problem; automatically identifying defective PV cells from EL 

images of PV cells. Brief motivations of whether or not each image processing technique is 

applicable to this project is tabulated in Table 4-1.   

This research will take the NN approach as the image processing technique to automatically 

identify defective PV cells from EL images based on the image processing techniques reviewed in 

Table 4-1. NNs have been identified over the years as a technique that can be used to accomplish 

different image processing tasks (Ferreira & Giraldi, 2017; Litjens et al., 2017). Furthermore, NNs 

are a fundamental basis of DL which has successfully revolutionised computer vision (LeCun, 

Bengio, & Hinton, 2015). DL will be discussed in depth in Section 4.3.2. In addition, linear filtering 
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is vital to this research as it makes up part of pre-processing (Section 4.3.1) and can be in the 

convolutional layer of convolutional neural networks (CNNs) (Section 4.3.2.3).  

Table 4-1: Different image processing techniques  

Image Processing 
Technique 

Details Applicable to 
Research  

Motivation 

Image Edition Altering digital images using 
graphics software tools. 

No There was no need to alter the 
PV cell images with graphical 
software in order to identify 
whether the PV cell was 
defective or not. 

Image Restoration Estimating a clean, original 
image from a corrupt or noisy 
image. 

No The images provided were in a 
good state and did not require 
estimating a clean image from 
the provided dataset. 

Independent 
Component 
Analysis  

Decomposing multi-variant 
signals 

No The dataset provided was not 
multivariate. 

Anisotropic 
Diffusion 

Reducing image noise without 
omitting important parts of the 
image.  

No The images did not require any 
noise reduction. 

Pixellation Converting printed images into 
digital ones 

No The dataset received was 
already in digital format. 

Principal 
Components 
Analysis 

Extraction of features from 
images 

No This technique extracts 
features from images to make it 
easier to visualise, which was 
not the goal of this project. 

Self-organising 
Maps 

Classifying images into 
different classes 

No This technique is not able to 
create a generative model that 
can be later used to classify a 
different dataset into different 
classes. 

Linear Filtering Enhances image features Yes Is used in CNNs to enhance 
features within images. 

Neural Networks Image feature extraction and 
image classification  

Yes NNs allow features to be 
extracted from images, used to 
train a classifier that produces a 
generative model that can be 
used to classify images. 

Before discussing the different tasks of image processing (image classification and pattern 

recognition) and the image processing techniques (DL approach), image pre-processing, which is a 

subset of image processing and enhancement, needs to be discussed. Image pre-processing and 

how it can be applied to this study are explored in the next section. 
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4.3.1 Image Pre-processing 

Image pre-processing is the normalisation of image data sets, which is important for different 

feature description methods. Image pre-processing usually has a positive effect on feature 

extraction and the results obtained after image analysis (Krig, 1993).  

Image pre-processing is important in determining areas of interest within images. The areas of 

interest are important for the analysis at hand and the intended use of the images in this research. 

For this study, image pre-processing will be used to enhance defects, which are the areas of 

interest, within the images. Segmentation is one process that is used to identify areas of interest 

within images.  

Segmentation is the partitioning of images into meaningful parts which have similar features and 

properties (Kaur & Kaur, 2014). Alternatively, segmentation is referred to as the process of 

partitioning areas of the image that are similar. The following sections will discuss some pre-

processing techniques related to segmentation. These sections will highlight thresholding and edge 

detection.  

4.3.1.1 Thresholding 

Thresholding is one of the first segmentation techniques. Thresholding is used on greyscale images, 

and the distinction between objects and the background is made using black and white 

respectively. If there are different objects in the image, a threshold is determined for each object. 

Each sub-region that emerges is known as a local threshold. The characteristics of the objects (how 

light reflects off the images) help to determine the different threshold regions. When there is a 

single object in the image, thresholding is done using global information. This thresholding 

technique is known as global thresholding (Sahoo, Soltani, & Wong, 1988). Global thresholding is 

highly dependent on the level of distinction between the object and background pixels. Global 

allows for thresholding to be carried out on an entire image, resulting in a segmented output of 

the original image (Langote & Chaudhari, 2012).  Figure 4-2 (2nd and 3rd column) shows an example 

of global thresholding.   

Local thresholding works best over small regions. If the quality of the image is poor, it is best to use 

local thresholding. Since it is difficult to segment poor quality images properly, local thresholding 

can be used to isolate the image into smaller images, which are then segmented separately. The 

sub-images are then arranged to create a segmented output of the original image (Langote & 

Chaudhari, 2012). Figure 4-2 (4th column) shows an example of local thresholding. 
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Figure 4-2: Examples of global and local thresholding (Nicolosi et al., 2012) 

4.3.1.2 Edge Detection 

Edge detection is a fundamental step in computer vision and is a commonly used operation in 

image analysis (Bhardwaj & Mittal, 2012). Edge detection is a known segmentation method used 

to identify areas of interest within images, which may include interesting features or specific 

patterns (Zheng, Rao, & Wu, 2010). Edge detection techniques consider edges as points of abrupt 

change in greyscale images. Image processing techniques are said to reduce the amount of data 

processed while preserving important structural information of objects (Canny, 1986). Edge 

detection techniques can be classified into five different categories (Sharifi, Fathy, & Mahmoudi, 

2002): 

1. Gradient Edge Detectors contain classical operators and use first directional derivative 

operations. Sobel edge detection is an example of gradient edge detection; 

2. Zero Crossing uses second derivatives and includes Laplacian operators and second 

directional derivatives; 

3. Laplacian of Gaussian is a combination of Gaussian filtering and Laplacian; 
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4. Gaussian Edge Detectors is symmetric along the edge and reduces noise by smoothing the 

image. The main operators involve derivatives of Gaussian. Canny edge detection is an 

example of Gaussian edge detection; and  

5. Coloured Edge Detectors are divided into three categories, which include output fusion 

methods, multi-dimensional gradient methods, and vector methods.  

According to Ansari, Kurchaniya, and Dixit (2017), Bhardwaj and Mittal (2012), Chandwadkar, 

Dhole, Gadewar, Raut, and Tiwaskar (2013) and Shrivakshan and Chandrasekar (2012), the use of 

the Sobel edge detection technique is recommended since Sobel edge detection is sensitive to 

horizontal and vertical edges, and the Canny edge detection is recommended because it is not very 

prone to noise within image data.    

Sobel Edge Detection 

Sobel is a gradient edge detection method. Sobel edge detection makes use of the differentiation 

operator, by computing the gradient of the image’s intensity function. Sobel edge detection is 

based on convolving images with integer values filtered into vertical and horizontal directions 

(Zhang Jin-Yu, 2009). 

Canny Edge Detection 

The Canny edge detection technique falls under Gaussian edge detectors. This edge detection 

technique aims to maximise the possibility of detecting real edge points while minimising the 

chances of falsely detecting a non-edge point. The detected edges have to be as close as possible 

to the actual edges. Furthermore, the real edges should not be detected more than once (Canny, 

1986).      

Figure 4-3 shows a comparison of the Canny and the Sobel edge detection techniques applied to 

an EL image of a PV cell. This was to show whether edge detection techniques can indeed enhance 

cracks in EL images of PV cells. Figure 4-3 shows an original EL image of PV cells, and how cracks 

are enhanced once the Sobel and Canny detection techniques have been applied to the original EL 

image of a PV cell. 
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Figure 4-3: Comparison of Canny and Sobel edge detection techniques 

Edge detection can be vital to this research to identify cracks effectively. Cracks are abrupt changes 

in the crystal lattice of semiconductors (Section 3.2 and 3.4) used to manufacture PV cells. 

Alternatively, edges in computer vision are considered as points of abrupt change. Therefore, these 

principles can be used to identify cracks in PV cells. Furthermore, the edge detectors can enhance 

only the crack and not the grain boundaries with the PV cells.  

Linear filters utilise most of the principles of image pre-processing in the convolutional layer of 

CNNs (Section 4.3). CNNs are the foundation of DL which is considered an image processing 

technique under NNs. A discussion of DL is documented in the following section.   

4.3.2 Deep Learning (DL)  

DL was identified in Section 4.3 as an approach that will be used for this research. DL was of interest 

to this research after identifying NNs as an image processing technique that can be used for this 

research. CNNs are vital to DL (Goodfellow, Bengio, & Courville, 2016) and will be discussed in this 

section. CNNs are a result of successfully applying machine learning (ML) to visual imagery 

applications such as image classification (Section 4.3.3) and image recognition (Section 4.3.4) 

systems. The following sections will provide an overview of DL, by providing brief details of ML, 

NNs, and CNNs. 

4.3.2.1 Machine Learning (ML)  

DL is a class within ML that provides systems with the ability to automatically learn and improve 

their experience without being explicitly programmed (Mitchell, 1994). In addition, DL exploits 

many layers of non-linear information processing (Deng & Yu, 2013). ML systems are an application 

of artificial intelligence (AI). Figure 4-4 shows different branches of AI. Furthermore, ML systems 

are used to identify objects in images, transcribe speech into text or select relevant results for 

searches. DL makes it possible to solve problems that the best attempts of AI have failed to solve 

to date (LeCun et al., 2015). 
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Figure 4-4: DL in relation to AI (Sze, Chen, & Yang, 2017) 

DL adopts different ML techniques and architectures that use many layers of non-linear 

information processing stages which are hierarchical (Deng, 2014).  One notable technique which 

DL adopts from ML is the learning algorithms.  

ML algorithms are usually divided into two classes: supervised and unsupervised learning. DL, on 

the other hand, has three broad classes. In addition to supervised and unsupervised learning, DL 

also has a hybrid learning aspect. (Alom et al., 2018; Deng, 2014; Sze et al., 2017). 

1. Supervised Learning: target labels are provided from which patterns necessary for 

classification are obtained. 

2. Unsupervised Learning: it is referred to as generative learning in some cases. Unsupervised 

learning is expected to capture a high-order correlation of data patterns when no 

information about class labels is provided.  

3. Hybrid Learning: hybrid learning is achieved through optimisation of supervised learning 

networks, that are then used to estimate parameters in a generative network. 

Even though DL is a class within ML, it exists as a subfield of NNs (Figure 4-4), which is a class within 

ML (Schmidhuber, 2015). NNs will be discussed further in the following section. 
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4.3.2.2 Neural Networks (NNs) 

NNs typically model biological neurons of a brain which construct a computational model of 

artificial neurons. This results in NNs consisting of many connected processes called neurons 

(Schmidhuber, 2015). Figure 4-5 shows a biological neuron (on the left) and how it is artificially 

represented (perceptron, on the right).  

 

Figure 4-5: Biological neuron vs artificial neuron3 

The basic component of an artificial neuron is a node. The node receives input signals which are 

then used to compute the output signal. Input signals either come from the ‘environment’ or other 

artificial neurons. The output signals of a neuron are a weighted sum of all input signals of a neuron, 

due to some internal parameters of the neuron (weights and bias) that are learned during training. 

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑓 (∑ 𝑥𝑖𝑤𝑖

𝑁

𝑖=1

+  𝑏𝑖) 

( 1 ) 

Equation 1 is a mathematical representation of the artificial neuron depicted in Figure 4-5. The 

equation also comprises of an activation function. An activation function in artificial neurons is 

used to compute an output signal from input signals. Activation functions are important in NNs as 

they enable NNs to learn and allow mappings between inputs and response variables. Equation (2) 

and (3) are some of the commonly used activation functions (Engelbrecht, 2007): 

Linear function 

𝑓(𝑥) = 𝑚𝑥 

( 2 ) 

 

                                                      

3 https://www.datacamp.com/community/tutorials/deep-learning-python 
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Sigmoid function 

𝑓(𝑥) =  
1

1 + 𝑒−𝜆(𝑥)
 

 ( 3 ) 

The sigmoid function (Equation 3) is the activation function used in the experiments designed in 

Section 5.3. The non-linearity of the function allows it to saturate when it is subjected to very 

negative or very positive arguments from the input signals, which makes the function insensitive 

to very small changes (Goodfellow et al., 2016). The linear function (Equation 2) is simple to solve 

but is volatile when subjected to very positive and very negative arguments from the input signals. 

The following section will discuss NN architectures. 

Neural Network (NN) Architecture 

Artificial neurons are vital to NNs and are used to compose NNs. A NN can be defined as a layered 

network of artificial neurons, which consist of an input, hidden and an output layer (Figure 4-6). 

Artificial neurons in one layer are fully or partially connected to artificial neurons in the next layer 

(Engelbrecht, 2007) and compute output signals using any of the available activation functions. 

Figure 4-6 is an example of a NN structure. 

 

Figure 4-6: High-level NN structure (Engelbrecht, 2007) 

The list below describes the different layers that make up a NN (Figure 4-6): 

• Input layer: the input layer of a NN receives the initial data, which is then further processed 

by the other layers of the NN. The input layer comprises of several neurons.    
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• Hidden layer: the hidden layer in a NN is the layer between the input and output layer. The 

neurons in the hidden layer take in weighted inputs, which are passed through an activation 

function to produce outputs.  

• Output layer: the output layer is the last layer of neurons in a NN. The neurons in the output 

layer produce the final output of the entire NN.  

Different NN architectures are used to retain information from the data the NN receives. The 

following section discusses the different types of NN learning and the different learning rules that 

exist within NNs.  

Types of NN learning and Learning Rules 

The three types of learning in NNs are listed below and are similar to how DL classes are defined  

(Engelbrecht, 2007; Kriesel, 2005): 

1. Supervised learning: a NN is provided with a labelled dataset (training set). The labels are 

associated with the target output of the input set. Supervised learning aims to minimise 

the error between the real output of the neuron and the target output.   

2. Unsupervised learning: the aim of unsupervised learning is for the NN to discover patterns 

within input data. The aim is to achieve this without any interference with labelled data.  

The NN has to create pattern classes.  

3. Reinforced learning: the principle of reinforced learning is to incentivise a NN for good 

performance or castigate the NN for poor performance. The training set consists of input 

patterns and allows the NN to return results based on the input patterns. The network is 

then incentivised if the returned result is correct. 

The different learning types have resulted in the development of different learning rules. The 

different learning rules are as follows (Engelbrecht, 2007):  

1. Augmented Vectors: this learning rule allows the input vector to be augmented which 

allows an additional input unit to be added. The additional input unit is called the bias unit.    

2. Gradient descent: Gradient descent involves defining an error function which is used to 

measure the error while approximating the target. This learning rule works towards finding 

the weight values that minimise the error. The error is minimised by calculating the 

gradient of the error in the weight space, while moving the weight vector along the 

negative gradient.  An illustration of the Gradient descent is depicted in Figure 4-7. 
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Figure 4-7: Illustration of gradient descent (Engelbrecht, 2007) 

3. Widrow-Hoff: the Widrow-Hoff learning rule is referred to as the least-mean-square (LMS) 

algorithm in some cases. This learning rule was one of the first algorithms to train layered 

NNs with multi-adaptive linear neurons.  

4. Generalised Delta: the generalised delta learning rule is the generalisation of the Widrow-

Hoff learning rule. 

5. Error correction: this learning rule is used in supervised learning, and this method 

compares the NN output and the intended output. The obtained error is therefore used to 

direct the training process. 

Up until this point, the focus has been on single-layer NNs. However, single-layer networks have a 

limitation of the perceptron, which only permits the implementation of binary classifiers. The 

limitation of single-layer NNs is overcome by the implementation of a multilayer perceptron (MLP). 

MLP introduces the following factors to NNs: 

• The model of each neuron includes a non-linear activation function that is differentiable; 

• The network contains one or more hidden layers from both input and output nodes; and 

• Multilayer perceptron networks have a high degree of connectivity. 

A special class of multilayer perceptron is known as convolutional networks or convolutional neural 

networks (CNNs) and are well suited for pattern recognition. CNNs have been commonly used in 

signal and image processing, making CNNs vital to this research (Haykin, 2008). CNNs will be 

discussed in the following section. 
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4.3.2.3 Convolutional Neural Networks (CNNs) 

According to Goodfellow, Bengio, & Courville (2016), CNNs are a specialised kind of NNs that 

processes data with a grid-like topology. Furthermore, CNNs are NNs that employ a mathematical 

operation called convolution. CNNs are designed to recognise two-dimensional shapes with a high 

tolerance for scaling, skewing, translation and other different forms of distortion (Haykin, 2008). 

This case of recognition is achieved through supervised learning and such networks exhibit the 

following factors: 

1. Feature extraction: neurons take synaptic input from the previous layer from a local 

receptive field, allowing the neuron to extract local features. After the features have been 

extracted, the location of the features is no longer important, as long as the position 

relative to other features is preserved.   

2. Feature mapping: each computational layer of the network comprises of multiple feature 

maps, each of which are in the form of a plane. Within the planes, individual neurons are 

constrained to share the same set of synaptic weights. The neuron constrain allows for 

shift invariance and reduction in the number of free parameters.  

3. Subsampling: local averaging and subsampling are performed by computational layers that 

follow each convolutional layer. Subsampling results in the reduction of the feature map’s 

resolution. Subsampling reduces the shift sensitivity of output feature maps and other 

forms of distortion.    

CNNs have over the years become popular in image and sound classification tasks. In addition, 

CNNs have gained considerable attention in computer vision research (Ferreira & Giraldi, 2017). 

CNNs similarly to NNs are an important part of DL. CNNs are regarded as a DL application. CNNs 

have been applied in several computer vision research and have provided effective results in 

different image classification tasks. Figure 4-8 shows a high-level general CNN architecture used 

for image recognition  (Patterson & Gibson, 2017). CNNs are similar to NNs (Section 4.3.2.2) and 

comprise of layers of neurons similar to those depicted in Figure 4-6.  The layers in CNNs can be 

grouped as the input layer, feature-extraction layers and classification layers. 
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Figure 4-8: High-level general CNN architecture (Patterson & Gibson, 2017) 

The different layers that make up a CNN architecture are listed below and are depicted in Figure 

4-8:  

1. Input layer: data is fed into the network through the input layer. Raw image pixels can form 

part of this input data. 

2. Convolution layer: a convolution is an operation on two functions. The convolution layer 

consists of a function of image’s input values and filter (or kernel) function which is an array 

of numbers. Kernels are responsible for extracting high-level features that are fed to 

proceeding layers. The input image values are in the form of 2D matrices as depicted in 

Figure 4-9, which are used to generate the output matrices.  

 

Figure 4-9: Convolution function (Patterson & Gibson, 2017) 
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The filter highlights patterns that can be used in characterising input images. These filters 

may incorporate edge detectors similar to those discussed in Section 4.3.1.2. The dot 

product of the input and kernel function gives an output.  

𝑂𝑗  = 𝑓(∑ 𝐼𝑖 ∗  𝐾𝑖,𝑗 + 𝐵𝑗

𝑁

𝑖=1

) 

( 4 ) 

In Function 4, Ii is the input matrix which is convoluted with a corresponding kernel matrix 

Ki,j. Bi is a bias matrix which is added to the resulting convoluted matrix. Oj is the output 

matrix which is produced by the non-linear function f which is applied to each element.  

3. Rectified Linear Unit (ReLU): ReLU layers are used to apply non-linear functions to outputs 

of previous functions. Non-linear functions are used as the neuron activation function 

(Section 4.3.2.2). The activation function is defined as: 

𝑓(𝑥) = max (0, 𝑥) 

( 5 ) 

where x is the input to the neuron. The ReLU improves learning and classification 

performance in CNN applications. 

4. Pooling layer: the pooling layer is found between the convolution and ReLU layers. The 

pooling results in CNNs using fewer parameters in the learning process. As a result, the 

network only focuses on the most important patterns. 

5. Fully-connected layer: every neuron from all the other layers is connected in this layer. This 

is done to get an understanding of all the patterns generated in the preceding layers. This 

layer computes the possible score for the different classes used to train the network. 

6. Loss layer: this is usually the last layer of a network. The aim of this layer is to evaluate how 

much the predictions from the trained model deviate from the true labels assigned to data 

during supervised training. 

The following section discusses the learning techniques that exist in CNNs. CNN learning 

techniques conform to NN learning types; supervised, unsupervised and reinforced learning.  

CNN learning 

CNNs are a DL application. CNNs allow DL systems to identify useful patterns from images 

automatically. CNNs are similar to normal NNs, but CNNs tend to use fewer parameters in their 
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learning algorithms (Ferreira & Giraldi, 2017). The ability of CNNs to achieve shift/translation 

invariance makes it suitable to be used on images (Wahab, Khan, & Lee, 2017). There are a number 

of ways in which CNNs can learn parameters from image data, which includes the following 

(Spampinato, Palazzo, Giordano, Aldinucci, & Leonardi, 2017): 

• Training CNNs from scratch; 

• Off-the-shelf features extracted from CNNs trained on general imagery; 

• Fine-tuning pre-trained CNN models; and 

• Transfer learning (TL). 

CNNs trained from scratch extract all features needed to complete a computer vision task from 

data that has been provided to the network as input data. However, the resulting adaptive model 

from training a CNN can be used in off-the-shelf feature extraction, fine-tuning and TL.  

One approach of the off-the-shelf feature extraction uses a pre-trained CNN that have been trained 

from scratch as a feature extractor. The output vector of the fully-connected layer is based on input 

images used to train a much simpler classifier. This approach works best if the images used to train 

the dataset are similar to the input dataset (Spampinato et al., 2017). However, the off-the-shelf 

approach would not be useful for this research because no systems were trained on a dataset 

similar to the dataset used for this research could be found.  

On the other hand, fine-tuning pre-trained CNN models is an alternative DL approach. An existing 

model is analysed and is fine-tuned to the target dataset. This technique helps speed up the 

training process of the CNN and helps prevent overfitting (Section 5.5) (Spampinato et al., 2017). 

Lastly,  TL is achieved by transferring knowledge gained from one task to help solve a different task  

(Oquab, Bottou, Laptev, & Sivic, 2014). The knowledge is essentially transferred when weights 

(Section 4.3.2.2) from one CNN model are used in a different CNN model provided that the CNN 

architecture is the same. TL allows for the transfer of knowledge between different CNNs that are 

intended to solve completely different tasks (Pan & Yang, 2010).  Although TL is similar to fine-

tuning, it is not the same.  

The following section discusses image classification and briefly discusses how DL CNNs can be used 

to complete image classification tasks.     

4.3.3 Image Classification 

Image classification is an important aspect of this research as there is a need to distinguish between 

normal and defective polycrystalline PV cells and different types of polycrystalline PV cell defects. 

The PV cell data (EL images) collected for this research need to be classified according to similarities 
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in features. Image classification is, therefore, the process of categorising all pixels in an image to 

obtain a given set of labels (Al-doski, Mansor, Zulhaidi, & Shafri, 2013). Image classification is an 

image processing task (Section 4.3) thus making it a subset of computer vision.  

Image classification frameworks include feature extraction before images are fed into a classifier. 

Figure 4-10 depicts a basic image classification framework. Currently, feature extraction to identify 

defective PV cells from EL images is done manually, and this research aims to automate the feature 

extraction and classification processes.  

 

Figure 4-10: Image classification framework (Shu, McIsaac, Osinski, & Francis, 2017) 

Feature extraction is the elimination of inconsistencies from image data by the reduction of 

variables within the data to end up with a more manageable group of image data (pixels) for 

processing (Sahu, Saxenaa, & Manoria, 2015). The goal for feature extraction is to map data to 

labelled classes. The features obtained from the feature extraction process are usually used for 

image selection or classification tasks (Choras, 2007). The descriptive and discriminative power of 

a feature extractor are crucial in attaining good classification performance (Li et al., 2014).  

Classifiers perform the role of a discriminant. Image pixels are grouped before the classification 

process, through feature extraction processes. The pixel grouping process is known as training in 

other systems. The classifier, therefore, identifies which class new images belong to from the 

features within the image (Gaur & Chouhan, 2017).  

The feature extraction process for this research will be supervised. The pre-processed images will 

have to be labelled correctly. The images will be labelled according to features describing the 

defects present in the images. The labelled images will, therefore, be used to produce a trained 

classifier that will be used to predict to which classes the images belong. Figure 4-11 shows 

different image classification techniques that produce classifiers as a by-product. 
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Figure 4-11: Image classification techniques (Affonso, Rossi, Vieira, & de Carvalho, 2017) 

The different image classification techniques are listed below (Affonso et al., 2017): 

• NN: NNs are a computer system modelled on a human’s brain and the nervous system. NNs 

were discussed in Section 4.3.2.2. 

• CNN: CNNs are a specialised kind of NNs that process data with a grid-like topology 

(Goodfellow et al., 2016). CNNs were discussed in Section 4.3.2.3. 

• Support Vector Machine (SVM): SVM is a learning technique, using statistical learning 

theories as to its foundation. SVM is robust to high-dimensional data and has high 

generalisation ability in different domains.    

• K-Nearest Neighbours (KNN): KNN is one of the simplest ML algorithms.  

• Decision Tree (DT): A DT requires splitting a complex decision into a combination of simpler 

decisions in the hopes that the final solution is similar to the intended solution. 

There are two broad categories of image classification techniques, namely supervised and 

unsupervised classification (Al-doski et al., 2013). Furthermore, supervised and unsupervised 

classification are commonly used to distinguish the different learning techniques within machine 

learning. DL (Section 4.3.2) was identified as the image processing technique that can be used to 

solve the classification of EL images of defective PV cells in this research. In addition, DL shares 

similar learning techniques as image classification as stated by Al-doski et al., (2013). The following 

section discusses some of the DL CNN architectures that can be trained to create adaptive models 

that can be used in image classification.  

Image Classification Architectures 

DL CNN architectures are suited for tasks ranging from general image classification to multi-stream 

data processing (Patterson & Gibson, 2017). The effectiveness of CNNs in image classification tasks 
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has in some cases outperformed humans (He, Zhang, Ren, & Sun, 2015). CNNs were identified in 

Figure 4-11  as an image classification technique. Some of the DL CNN architectures include LeNet, 

AlexNet, MobileNet and GoogLeNet, Xception.  

LeNet: LeNet is a CNN architecture proposed by LeCun in the 1990s. At the time it proved difficult 

to implement the algorithm due to limited computation capability and memory capacity. Figure 

4-12 shows a LeNet CNN architecture. 

 

Figure 4-12: LeNet CNN architecture (LeCun, Haffner, Bottou, & Bengio, 1999)  

AlexNet: This network architecture comprises of eight layers. Five of the layers are convolutional 

layers and the remaining three are fully connected layers (Krizhevsky, Sutskever, & Hinton, 2012). 

AlexNet was proposed by Krizhevsky et al. (2012) and at the time it was the deepest layer hierarchy. 

VGGNet: VGGNet was a result of investigating how the depth of a network affects recognition or 

classification accuracy of a CNN (Simonyan & Zisserman, 2015). The VGG architecture is comprised 

of two convolutional layers. Both convolutional layers use the ReLU activation function. The 

following layers consist of a single max pooling layer and a few fully connected layers which use 

the ReLU activation function. The final layer of the VGG model is a softmax layer responsible for 

classification (Alom et al., 2018).  

GoogLeNet: The GoogLeNet architecture was developed to reduce computational complexity in 

comparison to traditional CNN architectures. This was achieved by increasing the depth and width 

of the base network while maintaining the computation budget (Szegedy et al., 2014).   

Xception: The Xception architecture is a linear stack of depthwise separable convolutional layers 

with a residual connection. This makes the architecture very easy to modify and define (Chollet, 

2017). Xception was developed from the GoogLeNet architecture. 

MobileNet:  MobileNet architectures are primarily built from separable convolutional layers. 

MobileNets were proposed with the aim of reducing latency while yielding a small network 

(Howard et al., 2017; Sze et al., 2017).      
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The following section discusses pattern recognition, an image processing task that uses similar 

principles to image classification.    

4.3.4 Pattern Recognition 

Pattern recognition is an important part of computer vision and image processing and is a useful 

principle in automatic image recognition systems (Do, 2007). Patterns within images are key in the 

classification and the interpretation of images (Acharya & Ray, 2005). Pattern recognition is the 

process of classifying images based on similar descriptors or objects within an image (Dutt, 

Chaudhry & Khan, 2012; Fu & Rosenfeld, 1976). This research aims to identify defective PV cells 

automatically; therefore, making pattern recognition essential for this project.  

Classification is an integral part of pattern recognition. Image classification was discussed in the 

previous section (Section 4.3.3). Aspects of the classification framework are also used in pattern 

recognition systems. Primarily, image classification involves feature detection within images and 

thus grouping images based on labels describing the detected features.  

In addition, matching and feature detection (extraction) are important techniques that form a 

pattern recognition system. In order to detect patterns within images, the image being processed 

are matched to a standardised version of the pattern (Fu & Rosenfeld, 1976). Patterns are detected 

using techniques similar to edge detection and segmentation, which have been discussed 

throughout Section 4.3.1.  

Pattern recognition systems require the image and image scene to be analysed in conjunction with 

all of the techniques within image recognition. Image and image scene analysis is useful in 

identifying image descriptors, which are deduced from the relationships and the properties of parts 

of images (Fu & Rosenfeld, 1976). 

Different approaches exist for developing pattern recognition system. These approaches are (Dutt 

et al., 2012): 

• Statistical pattern recognition; 

• Data clustering; 

• Fuzzy sets; 

• NN; 

• Structural pattern recognition; 

• Syntactic pattern recognition; and 

• SVM. 
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Pattern recognition systems are developed based on the approaches mentioned above. Pattern 

recognition systems can be broken into three parts, which include; acquiring the data, analysis and 

classification. This can serve as confirmation that pattern recognition is a computer vision task 

(Section 4.2). Pattern recognition can be used to identify patterns within EL images that indicate 

the presence of defects within PV cells. Therefore, pattern recognition can be considered as a 

computer vision task that can be applied to this research. Furthermore, it can be noted that both 

pattern recognition and image classification systems can be implemented using NNs. 

The following section reviews different areas in which computer vision tasks such as image 

classification and pattern recognition have been applied. The following section will also provide 

insight into how this research project can utilise the different aspects discussed in this chapter.  

4.4 Related Work 

Existing systems related to the field of image recognition, processing, and classification will be 

discussed in this section. A review of these systems will examine different ways in which images 

are analysed to identify different patterns within the images. The findings of this review will be 

used to identify possible ways in which a solution can be implemented to use image processing to 

identify patterns that may indicate PV cell defects in polycrystalline solar modules.   

4.4.1 Medical Image Analysis 

Image-based diagnosis, disease prognosis and risk assessment are some of the ways in which 

images are used in the medical field. X-rays, CT scans, MRI, positron emission tomography and 

retinal photography are some of the common images used in different areas of medical image 

analysis (Litjens et al., 2017; Spampinato et al., 2017).  

Since the 1970s, AI paradigms have been adopted in different areas of medicine (Shen, Wu, & Suk, 

2017). However, the increase in the use of hand-crafted feature extraction techniques paved the 

way for the use of machine learning in medical image analysis. In addition, pattern classification is 

another technique that has been used for medical image analysis for decades (de Bruijne, 2016). 

Furthermore, image segmentation and image recognition are other techniques that have been 

introduced in medical images analysis and have shown great promise with regards to the use of 

computer vision in medicine (Li et al., 2014). 

X-ray images were listed as one of the common images used in image-based diagnosis. One way in 

which x-rays are used is to perform automated skeletal bone age assessment. Skeletal bone age 

assessment is a procedure used in pediatric radiology for diagnostic and therapeutic investigation 

of children growth and genetic disorder (Spampinato et al., 2017). Figure 4-13 shows examples of 

x-rays used in CNN-based skeletal bone age assessment system. A CNN is used to asses a dataset 



LITERATURE REVIEW: COMPUTER VISION 

 

  Page 51 

of x-ray images and predicts the right diagnosis or the right genetic disorder of the patient. Regions 

of interests are identified (joints), and the features extracted from the regions of interest are used 

predict a diagnosis (Spampinato et al., 2017).  

 

Figure 4-13: Example of X-ray images used in skeletal bone age assessment (Spampinato et al., 2017) 

4.4.2 Feature Learning and Image Classification  

Feature learning and feature extraction are used for text recognition, especially from handwritten 

extracts (Balci, Saadati, & Shiferaw, 2017). Text recognition tends to cause problems because of 

different writing styles that exist. CNNs have the capability of learning different handwriting styles 

used to represent the same character.  

Secondly, feature learning and image classification can be used in remote sensing. Remote sensing 

is a process of obtaining information about objects or areas of the earth’s surface without being in 

direct contact with the object and area (Aggarwal, 2004). In this case, satellite images have to be 

classified for a variety of reasons, some of which include landscape planning and resource 

management (Al-doski et al., 2013). The images are classified based on pre-existing images from 

which the feature have been extracted. After that, new images are matched to the most 

appropriate class based on extracted features. 

Feature learning and image classification have been adopted in the automotive industry, which is 

made possible using DL. DL makes traffic sign recognition in vehicles systems possible, which is 

helpful in driver assist systems (Cireşan, Meier, & Schmidhuber, 2012). Figure 4-14 depicts how DL 

is used in vehicles. An image is read into the system, which is then subjected to a CNN. The output 

from the CNN is used to adjust different controls of the vehicle.   
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Figure 4-14: Driver assist system architecture (Chen, Seff, Kornhauser, & Xiao, 2015) 

Feature learning and image classification are further used in defect detection systems. These 

systems include surface damage detection, metallic surface defect detection and crack damage 

detection (Cha, Choi, & Büyüköztürk, 2017; Huang, Xie, Yao, Li, & Chen, 2018; Tao, Xu, Ma, Zhang, 

& Liu, 2018). CNNs are used to learn features of surfaces, and the resulting adaptive models are 

used to recognise damaged surfaces, cracks and defective metallic surfaces. This provides further 

evidence that DL can be used to attempt to automatically identify defective PV cells from EL 

images.   

Furthermore, feature learning and image classification are used to determine defective PV cells 

from thermal images (Pierdicca et al., 2018). However, there is no physical properties that can be 

determined by analysing thermal images of solar panels (Section 3.5.4). This project aims to use EL 

images to PV cells that are either normal, uncritical, critical and very critical.  

The following section discusses a preliminary investigation of tools that can be used to implement 

experiments for this research. 

4.5 Preliminary Investigation of Implementation Tools 

A variety of development environments are available to implement DL experiments, but Python 

appears to be the most popular programming language used when implementing AI systems and 

consequently deep neural networks (Goodfellow et al., 2016; LeCun et al., 2015; Srivastava, Hinton, 

Krizhevsky, Sutskever, & Salakhutdinov, 2014; Sze et al., 2017). DL was one approach that was 

discussed in this chapter that can be used to identify defective PV cells from EL images 

automatically.  

TensorFlow is an open source software library that was developed by Google’s Machine 

Intelligence research organisation for conducting machine learning and deep neural network 
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research (TensorFlow, 2017). Keras is a high-level API, written in Python. Keras was developed to 

enable fast experimentation, and it can run on top of TensorFlow (Keras Documentation, 2017).  

Open Source Computer Vision Library (OpenCV) is an open source computer vision and machine 

learning software library. The library comprises of more than 2500 classes and state of the art 

computer vision and machine learning algorithms. OpenCV interfaces with C++, Python, Java and 

MATLAB. OpenCV supports Windows, Linux Android and MAC operating systems (OS) (OpenCV 

library, 2017).  

4.6 Summary 

This chapter aimed to discuss computer vision (Section 4.2), image processing (Section 4.3)and to 

review work related (Section 4.4) to this research. Section 4.2 provided a foundation into image 

processing, and different computer vision tasks within image processing were identified. 

In addition, different image processing techniques were identified (Section 4.3), and the most 

appropriate image processing technique to apply to this research was identified. DL was identified 

as the suitable image processing techniques as it was a subclass of NNs and it was discovered that 

DL has successfully revolutionised computer vision. Furthermore, image pre-processing (Section 

4.3.1) was discussed, which highlighted, that different edge detection techniques which are in 

some cases used in DL for feature extraction.  

DL was discussed in Section 4.3.2, and it was discovered that DL is developed from existing fields 

such as ML, NNs and CNNs. Moreover, ways in which DL can be used to assist in identifying defects 

in polycrystalline PV cells using EL image of PV cells (RQ3) were motivated by the discussion in 

Section 4.3.2. 

Image processing tasks, specifically image classification (Section 4.3.3) and pattern recognition 

(Section 4.3.4) were discussed. It was identified that these tasks were vital to this research. In 

addition, it was identified that image classification and image recognition systems could be 

developed using NNs which further motivated the use of DL in this research. DL CNNs that can be 

used to accomplish image classification tasks were also discussed in Section 4.3.3. This provided 

evidence on how an image processing techniques (DL) can be used appropriately to identify 

defective PV cells from EL images (RQ4).   

Related work (Section 4.4) that used DL as an image processing technique were reviewed. These 

included the application of DL in medical image analysis and feature learning and image 

classification. This was a preliminary investigation on how the identified image processing could be 

used appropriately to identify defective PV cells from EL images (RQ4). Furthermore, this provided 
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insight on how to design DL CNN that can be used to extract patterns within PV cell EL images to 

classify them accordingly.   

Lastly, a preliminary investigation of the different tools that could be used to implement DL were 

discussed in Section 4.5. The following chapter will discuss the experiments designed to 

demonstrate whether image processing can be used to identify defective PV cells from EL images 

effectively.  
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5  E X P E R I M E N TA L  D E S I G N  A N D  

I M P L E M E N T A T I O N   

5.1 Introduction 

This chapter discusses the experiments designed to test aspects of the main research question. In 

addition, the proposed solution (Section 5.2), the experimental design (Section 5.3), the 

implementation of the experiments (Section 5.4), the experimental procedure (Section 5.5) and 

the evaluation plan (Section 5.6) are discussed in this chapter. 

Section 2.3 presented the motivation for selecting the experimental research methodology for this 

research. Therefore, this chapter is the core component of the work presented in Section 2.3. In 

addition, literature was reviewed in Chapters 3 and 4 to confirm the data to be sampled for this 

research. Plans were introduced on how the data (EL images) should be manipulated (Section 

2.2.4.1) for the experiments designed and implemented in this chapter.   

This chapter will aim to address the fourth research question (Figure 5-1). The research question 

reads:   

RQ4: How can an image processing technique be used appropriately to identify defective PV 

cells? 

Figure 5-1 depicts the activities that are carried out in this chapter. In addition to testing RQ4, 

samples are categorised into different classes (Section 5.3.2.2) for experiments, and variables are 

controlled (Section 5.5) to produce the most effective model to identify defective PV fells from EL 

images. A small sample from the allocated samples is used to test the dependent variables in order 

to evaluate the model. The results of the evaluation are reported in Chapter 6.    
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Figure 5-1: Chapter overview 

The next section discusses the solution that was proposed to identify defective PV cells from EL 

images automatically. 

5.2 A proposed solution for automatic identification of defective photovoltaic 

(PV) cells 

Based on literature and the related work reviewed in Chapter 4, it was decided that DL (Section 

4.3.2) in some cases referred to as deep CNNs (Rawat & Wang, 2017) will be used for the purpose 

of this research in an attempt to automatically identify defective PV cells from EL images. 

Specifically, CNNs with a deep layer hierarchy will be applied to this research (Section 4.3.2.3). 
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EL images will be used to automate the process of identifying defective PV cells as an image 

classification task; therefore it was appropriate to include image processing in the proposed 

solution. Figure 5-2 shows the different stages of the proposed solution. The proposed solution 

will take in an input image, and this input image is then segmented into individual PV cells (Section 

2.2.4.1). Features from PV cell EL images are then extracted to train a classifier.  

 

Figure 5-2: Existing method vs. stages of the proposed solution 

The proposed solution maps onto different aspects of the main research question identified in 

Section 1.4. The main research question reads:  

MRQ) How can an image processing technique be used to efficiently identify PV cell 

defects of polycrystalline PV cells from EL images? 

Image processing technique – image processing was identified in the research question as a way 

to automatically identify defective PV cells from EL images (Section 1.5). Section 4.3 provides an 

overview of image processing and the different image processing techniques were also identified. 

DL was determined to be the most appropriate image processing technique. 

Efficiently identifying polycrystalline PV cell defects from EL image – currently, the process of 

identifying defective PV cell from EL images is done through a tedious manual process. Chapter 3 

discussed constraints in existing methods of identifying PV cell defects using EL images. A DL CNN 

can extract features automatically from EL images, and the extracted features can be used to 

classify new EL images into the appropriate defect category correctly. 

The image processing stage of the proposed solution in Figure 5-2 deals with how data is handled. 

The data collection process (Section 2.2.4.1) resulted in EL images of PV modules being provided. 

The proposed solution suggests segmenting (Section 4.3.1.1) EL images of PV modules into 
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separate PV cells making up a PV module. The area of the PV cell image was considered as the area 

of interest for this research, especially if the area was affected by defects. The proposed solution 

will extract features from the segmented (pre-processed) images. Therefore, all the adaptive 

models used in this research were trained in EL images of PV cells. The original images that were 

provided for this research were each split into individual cells before any training process was 

carried out. The provided PV module images were normally oriented; therefore, a simple region 

splitting algorithm was applied to the PV module images (Kamdi & Krishna, 2012) with the OpenCV 

library used for this project. Each EL image of a PV module comprised on 72 PV cells. Below are the 

details of the algorithm:  

_______________________________________________________________________________  

 load image; 
for row in range (0, image, 12) do // 12 rows 
 for column in range (0, image, 6) do // 6 columns 
  writeNewImage(img{row}_{column}.png) 
 end 
end 

_______________________________________________________________________________ 

The second stage of the proposed solution in Figure 5-2 deals with feature extraction. This stage 

required features to be extracted and learned from different labels (classes) of PV cells; two classes 

for the first phase of experiments (binary classification) and four classes for the second phase of 

experiments (multi-class classification) (Section 5.3.2.2).   

The features extracted in the second stage of the proposed solution in Figure 5-2 are used to train 

a classifier which is used in the last stage; classification (Section 4.3.3). The classification allows 

trained DL models to identify to which class a PV cell belongs automatically. The following section 

discusses the experiments designed as a result of the proposed solution. 

5.3 Experimental Design 

This section documents how the experiments needed for this research were designed and outlined 

a plan on how to conduct the experiments. The proposed solution aims to identify a process to 

effectively and automatically identify defective polycrystalline PV cells from EL images. The 

experimental design discussed in this section includes all the necessary steps taken in all the 

experiments that were designed and carried out. The experiments are required to answer the 

MRQ. 

The experiments were designed in two phases, namely a binary classification experiment and 

multi-class classification experiment. The initial phase of experiments was the binary classification 
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experiments and these experiments were necessary to confirm whether a DL approach (Section 

4.3.2) was an appropriate image processing technique. The literature reviewed highlighted similar 

problems that were solved using DL. The initial phase required scaling down the problem, by 

assuming that PV cells belong to two classes.  The two classes for this phase of experiments were 

said to be normal and defective. Figure 5-3 depicts a high-level architecture describing the CNN 

used in the first phase of experiments. The CNN takes EL images of a PV cell as input images, and 

then the features are extracted and learned in the different layers of the CNN to produce an 

adaptive model that can classify EL images PV cells. The experiments in the initial phase were used 

to determine how feasible the proposed solution was to the identified problem. The four identified 

classes could be represented by two simple classes. This was done to observe whether the resulting 

classifiers were able to model the data representing two classes. This was done before the data 

was allocated into four different classes. Based on the training history of the models using this 

data, the solution was extended to incorporate the four classes identified in Chapter 1.     

 

Figure 5-3: Mock-up CNN for the initial phase of experiments (Ker, Wang, Rao, & Lim, 2018)   

The second phase of experiments, the multi-class classification experiments, on the other hand, 

were reliant on results from the first phase of experiments. Failure to obtain a positive result from 

the initial phase of experiments would indicate that the proposed solution would not be a viable 

option. In addition, the classes in which PV cells would be classified into for the second phase of 

experiments were based on standards defined in Sections 1.5 and 3.6. The standard classifies PV 

cells into four classes based on the presence or absence of defects, namely: normal, uncritical, 

critical and very critical. In addition, the same CNN architecture as the one used in the initial phase 

of experiments (Figure 5-3) can be used to describe the second phase of experiments; the only 

difference being the number of output classes. The performance history of these experiments are 

discussed in Section 5.5.3. The results of the second phase of experiments based on the evaluation 

plan (Section 5.6) are discussed in the next chapter, and the results of the second phase of 
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experiments are used to determine the effectiveness of image processing using DL in identifying 

defective PV cells from EL images. 

Before any of the experiments could be carried out, the data (EL images) had to be pre-processed 

(Section 4.3.1). The different ways in which the EL images were processed for this research are 

discussed in Section 5.3.1. 

Besides data processing, the experimental setup had to be defined. The experimental setup 

included the platform on which experiments were conducted and the PC configuration that was 

used for the experiments.  Details regarding the experimental setup are discussed in Section 5.3.2. 

5.3.1 Data processing 

Image processing is one of the main foci of this research (Section 4.3). EL images of polycrystalline 

PV cells were used for this research, and this section discusses some pre-processing that was 

performed on the data.  

The EL images were obtained from the Physics Department at NMU (Section 2.2.4.1). The EL images 

provided for this research all represented entire polycrystalline PV modules. For this research, PV 

cells were the main focus (Section 2.2.4.1). Therefore, PV cell images had to be segmented from 

the PV module images. According to the literature reviewed in Chapter 4, segmentation is a process 

within image pre-processing (Section 4.3.1).  

The resulting images from image pre-processing were used in both the phases of experiments 

planned for this research. The details of the experiments conducted using the processed data are 

discussed in Section 5.5.    

5.3.2 Experimental Setup  

This section defines the different apparatus that were required in order to conduct the 

experiments designed in this chapter. The plan was to conduct two phases of experiments of which 

the main difference was the number of classes in which PV cell images could be classified. 

The initial phase of experiments was to deduce whether DL, the selected image processing 

technique, could distinguish between a normal and a defective PV cell. The second phase of 

experiments was to obtain models that were then used to deduce how effectively DL could identify 

defective polycrystalline PV cell into the appropriate class. 

The following sections discuss the software and hardware requirements for the experiments 

(Section 5.3.2.1). In addition, the data requirements for both phases of experiments are discussed 

in Section 5.3.2.2.    
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5.3.2.1 Hardware and Software 

A preliminary investigation of the implementation technique and tools was discussed in the 

previous chapter (Section 4.5). This section includes the software and hardware requirements of 

the experiments as well as the data requirements. These requirements in some way influence the 

implementation of the different experiments.   

Both phases of experiments were implemented using Python4, coupled with Keras5 and 

TensorFlow6 libraries. More details regarding the implementation of the different experiments are 

discussed throughout Section 5.3. The experiments were performed on a Mecer Proficient 

computer, with an i7 - 4790 central processing unit (CPU), 3.60 GHz, 16 GB of ram, a Nvidia GeForce 

GTX 1080 graphics processing unit (GPU) with 8 GB dedicated memory and running on Windows 

10 OS. 

A GPU was used because it provides a highly parallel computation, therefore providing an 

exception magnitude of executing threads in comparison to CPUs. GPUs help reduce the time it 

takes to perform experiments (Litjens et al., 2017). One of the libraries used to implement 

experiments provided the capability of executing DL experiments on GPUs. The different 

implementation tools used in this research are discussed in the following section.   

Implementation tools 

Several tools were used to implement the experiments required for this research, which included 

IntelliJ7. IntelliJ is an integrated development environment (IDE) used to implement the designed 

experiments. This was more of a researcher’s preference. IntelliJ can run python directly as long as 

the necessary plugins are installed and permits the configuration of NNs in a few steps8.  

NVIDIA develops CUDA toolkit and it provides a development environment for creating high-

performance GPU-accelerated solutions. This allows utilisation of the GPU that was in the PC 

configuration that was used to perform the experiments. In addition, cuDNN, a library which is part 

                                                      

4 https://www.python.org/ 

5 https://keras.io/ 

6 https://www.tensorflow.org/ 

7 https://www.jetbrains.com/idea/ 

8 https://deeplearning4j.org/docs/latest/deeplearning4j-quickstart 



EXPERIMENTAL DESIGN AND IMPLEMENTATION 

 

  Page 62 

of the NVIDIA DL software development kit (SDK) had to be installed. cuDNN is responsible for 

accelerating DL frameworks.    

The DL framework that was used to implement the experiments was TensorFlow. The framework 

was coupled with Keras, which is a high-level application programming interface (API). Other 

libraries that were used in the implementation of the experiments were: 

• Pillow – imaging library. 

• Matplotlib – plotting library. 

• Pydot – python interface to GraphViz dot language.  

• OpenCV – open source computer vision library. 

The following section discusses the data requirements of the experiments that were performed as 

part of this research.  

5.3.2.2 Data  

The images received from the Physics Department at NMU were of modules that had to be pre-

processed (Section 5.3.1) to obtain useful EL images of individual PV cells of each module provided. 

The individual PV cell images were approximately 150 by 150 pixels each, and a total of 5136 

images were used for the different experiments. 

For the initial phase of experiments, the images were manually divided into two classes. It was 

ensured that each class had an equal number of images. The second phase of experiments, 

however, required the images to be divided into four classes. In both cases, each class was 

comprised of images with defects that have been defined to be similar. The classes used in the two 

phases of experiments are defined below:   

 The first phase (binary classification) of experiments: 

i. Normal – normal and uncritical PV cells 

ii. Defective – critical and very critical PV cells 

The second phase (multi-classification) of experiments as per classes defined in Section 3.6: 

i. Normal cells 

ii. Uncritical cells 

iii. Critical cells 

iv. Very Critical cells 
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Each class of images was split into three additional groups, namely training, validation and test 

(Bishop, 2013; Haykin, 2008; Kriesel, 2005). This served as the allocation of data as per the 

experimental strategy (Section 2.2.3): 

• Training data: training data is used to tune the parameters of an adaptive model; 

• Validation data: validation data is used to provide an unbiased evaluation of the model 

during training while tuning the hyperparameters (Section 5.4) of the model. In addition, 

validation data is needed to avoid overfitting; overfitting happens when the model learns 

details and noise in the training data in such a way that it impacts the performance of the 

model; and 

• Testing data: test data is used to perform an unbiased evaluation of the resulting model 

that is completely tuned using the training data. 

The first phase of experiments used 600 images to train the different models. Both the normal and 

the defective classes contained 300 images. An additional 48 images were used to validate the 

model during training. Table 5-1 contains a summary of the images used for the first phase of 

experiments. The outcome of the first phase of experiments is discussed in Section 5.5.2. 

Table 5-1: Images used for the first phase of experiments  

Dataset Classes Number of Training Data Number of Validation Data 

α (n = 648) Normal 300 24 

 Defective 300 24 

 Total 600 48 

The second phase of experiments were carried out in three groups which were determined by the 

datasets that were salvaged from the provided data. The first dataset (Dataset A) used a total of 

736 images to train the different models. Each of the four classes, normal, uncritical, critical and 

very critical, contained 184 images. An additional 128 images were used for validation in the 

second phase of experiments. The training histories of the second phase of experiments are 

discussed in Section 5.5.3. 

The last two Datasets B and C were used to produce the most optimum model to identify defective 

PV cells effectively. This required requesting an additional set of data from the Physics department 

at NMU. Experiments using an unbalanced dataset were performed to test how different the 

models performed when subjected to an unbalanced dataset. The unbalanced dataset represents 

a dataset which had classes with a different number of training data. Table 5-2 contains a summary 

of how the data was split in all the experiments conducted in the second phase. The classification 

results obtained from the second phase of experiments are discussed in the following chapter.   
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Table 5-2: Images used for the second phase of experiments 

Dataset Classes Number of Training Data Number of Validation Data 

A (n = 864) Normal 184 32 

 Uncritical 184 32 

 Critical 184 32 

 Very Critical 184 32 

 Total 736 128 

B (n = 1248) Normal 200 112 

 Uncritical 200 112 

 Critical 200 112 

 Very Critical 200 112 

 Total 800 448 

C (n = 5136) Normal 3424 112 

 Uncritical 373 112 

 Critical 415 112 

 Very Critical 476 112 

 Total 4688 448 

The data represented different cases of defects that may occur in each of the classes. It should be 

noted that defects in the same class are similar, based on the area on the area the defect covers 

but the defects may appear differently. Furthermore, data augmentation was introduced during 

training to increase the defects that may be represented by the data provided as well as to reduce 

the chances of overfitting by generating more data for the models to train on (Section 5.4). Dataset 

C was used to increase the representation of the data provided and to ensure that all the data that 

was provided for this research, was utilised. 

The adaptive models (Section 4.3.2.3) from the second phase of experiments (Multi-class 

classification) are evaluated to determine whether DL as an image processing technique could 

effectively identify defective PV cells from EL images. The evaluation plan is discussed in Section 

5.6 and the results from the evaluation are discussed in Chapter 6. The next section outlines the 

implementation of the experiments based on the experimental design discussed in this section. 

5.4 Experiment Implementation 

The experimental design discussed in Section 5.3 allowed for the implementation of the 

experiments. The implementation of the experiments required the incorporation of different DL 

CNN architecture (Section 4.3.2.3). Some DL CNNs used to accomplish image classification tasks 

were discussed in Section 4.3.3, however, not all of the architectures mentioned in Section 4.3.3 

were used in this research. Table 5-3 lists the DL CNN architectures that were incorporated in the 

implementation of experiments and a reason indicating why it was implemented was provided 
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(Alom et al., 2018; Chollet, 2017; Howard et al., 2017; LeCun et al., 1999; Simonyan & Zisserman, 

2015). 

Table 5-3: Choice of DL CNN architectures  

Model Reason for choice 

LeNet Simple to implement 

VGGNet To investigate how depth affects performance  

MobileNet Efficient and the resulting CNN is small 

Xception Easy to modify and define 

Hyperparameters had to be set accordingly when implementing experiments. A hyperparameter 

is a parameter where values are set before the learning begins (Goodfellow et al., 2016; LeCun et 

al., 2015). The hyperparameters that were set for the different experiments performed in this 

research are tabulated in Table 5-4. 

Table 5-4: Experiment hyperparameters 

Hyperparameter Value 

Optimiser  Adam 

Activation Function Sigmoid  

Batch Size 25 

Epochs 500 

Dropout 0.5 

Data augmentation was included in the implementation of all the experiments performed for this 

research.  Data augmentation was included to increase the number of parameters. A high number 

of parameters is advantageous to the training process of a DL CNN. This increases the amount of 

relevant data since data augmentation allows for the creation of synthetic data which is then added 

to the training set (Wu, Yan, Shan, Dang, & Sun, 2015; Wu, Zhong, & Liu, 2017). Data augmentation 

is used to help prevent overfitting (Section 5.5).  Table 5-5 contains the data augmentation 

techniques that were employed during training on all datasets that were used for experiments in 

this research. 

Table 5-5: Data augmentation techniques 

Data Augmentation Technique  How was it applied? 

Flip Images were flipped along the horizontal axis 

Zoom Images enlarged by 20% 

Rescale Images were scaled up by a factor of 4   

Shear Images were displaced horizontally by 20% 

The following section discusses the experimental procedure of the different experiments 

conducted in this research.  

 



EXPERIMENTAL DESIGN AND IMPLEMENTATION 

 

  Page 66 

5.5 Experimental Procedure 

Experiments were performed to determine causal links between variables (Sections 2.2.3 and 2.3). 

The experiments performed were essentially image classification experiments, to investigate 

whether EL images of PV cells could be classified in four different classes; normal uncritical, critical 

and very critical. This required the implementation of the proposed solution discussed in Section 

5.2 which incorporates the image classification architectures discussed in Section 4.3.3. 

Furthermore, the classification architectures used in the implementation of the solution were 

trained from scratch (Section 4.3.2.3) in both phases of experiments. Section 5.3 outlined the 

different phases of experiments performed. The experiments in each phase covered the following 

aspects:  

• Choose-feature experiment; 

• Tune-model experiment; and 

• Compare-model experiments. 

One concern before the second phase experiments were performed was underfitting. Underfitting 

usually arises when there is little training data (Wu et al., 2015). Another phenomenon that was of 

concern due to the small size of the training data was overfitting. Overfitting occurs when the 

models extract features from data so well that noise within the data tends to have a negative 

impact on the performance of the model. The number of epochs used in training models can be 

used as a preventative measure of overfitting. 

An epoch is the number of times iterations are made through data when training a model and is 

one of the hyperparameters (Section 5.4) used in this research. The number of epochs for the 

different model architectures was deduced by checkpointing and early stopping (Brownlee, 2016). 

As a result, the number of epochs for the different architectures are different. However, the 

number of epochs were set to 500 to ensure that checkpointing was effective.   In addition, 

checkpointing and early stopping were used to ensure that overfitting did not occur while training 

the different models.   

Checkpointing is a fault tolerance technique which saves optimal states of a system during training 

in cases of failure (Brownlee, 2016). The validation dataset is used for checkpointing. The validation 

accuracy is monitored and weights that result in the best accuracy are saved. Each time the 

accuracy improves, a model with updated weights is saved. A check known as the ‘patience’ is put 

in place in order for early stopping. ‘Patience’ is the number of permitted epochs allowed after the 

best validation accuracy has been recorded before the training process is terminated.   
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As stated earlier, early stopping is a preventative measure for overfitting. Two ways can be used 

to avoid overfitting: reducing the number of dimensions of the parameter space or reducing the 

effective size of each dimension (Prechelt, 2012). Early stopping is one technique of reducing the 

size of each parameter dimension. Early stopping was widely recommended in a number of studies 

(Mahsereci, Balles, Lassner, & Hennig, 2017; Prechelt, 2012; Zhang & Yu, 2005). 

In addition, a dropout of 0.5 (Table 5-4) was incorporated in the training process. Dropout is one 

of the regularisation methods that can be used to prevent overfitting.   

The experiments were carried out by training different deep CNN architectures from scratch using 

the provided EL images, after checkpointing and early stopping had been incorporated to the 

designed experiments. The performance history of the different experiments in each phase are 

discussed in Sections 5.5.2 and 5.5.3. However, the results from the evaluation of the adaptive 

models obtained from the second phase of experiments (multi-class classification) will be discussed 

in the following chapter.  

The next section discusses the experimental procedure of the two learning techniques used in this 

experiment; training from scratch and TL. Furthermore, the groups in which experiments are 

conducted is discussed.  

5.5.1 Learning Techniques and Experiment Groups  

This section will discuss the two different learning technique used for experiments in this research 

and how the experiments were grouped based on the datasets.   

5.5.1.1 Training from Scratch 

As stated earlier in this section this learning technique was utilised by experiments in phase one 

and phase two. The experimental procedure of this learning technique is described in pseudo code 

below:  

_______________________________________________________________________________  

Parameters: 
optimisers – adam 
set seed variable – dimension 
initialise model – LeNet; VGGNet; MobileNet; Xception.  

train from scratch: 
foreach model do 

train (optimiser) 
reset model 
clear memory 

end 
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5.5.1.2 Transfer learning (TL) 

TL experiments were performed to examine how TL affects the performance and the results of the 

experiments. TL experiments were only performed in the second phase of experiments (multi-class 

classification). Inductive TL was suitable to be applied to this research. Inductive TL is defined as: 

Given a source domain and a learning task (T1), a target domain and a learning task (T2), 

inductive TL aims to help improve the learning of the target predictive function in the target 

domain using the knowledge in source domain and learning task, where two learning tasks 

are not the same(T1 ≠ T2)  (Pan & Yang, 2010).  

The adaptive models evaluated in this section were trained having had preloaded ImageNet9 

weights. ImageNet is an image database that is organised according to the nouns within WordNet10 

hierarchy. WordNet is a lexical data of English nouns, verbs, adjectives and adverbs which are 

grouped in cognitive synonyms that express distinct concepts. ImageNet is a very large image 

dataset, comprising of many classes. TL can be considered when presented with a new but small 

dataset that has to be classified. This is achieved by introducing weights from a different classifier 

that was trained on a large dataset. This made it suitable for ImageNet weights to be used for 

experiments that were carried out for this project to achieve inductive TL. TL experiments were 

performed to observe how TL affects the performance of the adaptive models when classifying EL 

images of PV cells.  

The experimental procedure of the TL experiments is described in pseudo code below:   

 

 

 

 

 

 

 

                                                      

9 http://www.image-net.org/ 

10 https://wordnet.princeton.edu/ 
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_______________________________________________________________________________ 

Parameters: 
optimisers – adam 
set seed variable – dimension 
initialise model – MobileNet; Xception. 
load ImageNet weights 

TL: 
foreach model do 

train (optimiser, learning rate) 
reset model 
clear memory 

end 

 

5.5.1.3 Experiment Groups 

Table 5-1 and Table 5-2 shows how the data was split across the different experiments which 

consequently determined the different experiments performed for this research. The list below is 

a breakdown of how the experiments were grouped based on the datasets and what was being 

examined at each stage: 

• Dataset α: this dataset was used to get an initial indication of whether DL could be used to 

identify defective PV cells from EL images (Banda & Barnard, 2018)(Appendix A – Article). 

In addition, different models that could be used to identify defective PV cells were 

identified. The performance of the different experiments are discussed in Section 5.5.2. The 

experiments performed using Dataset α were strictly binary classification.   

• Dataset A: this dataset was then used to determine whether a multi-class classification was 

possible on the dataset. The performance history of these experiments are discussed in 

Section 5.5.3. 

• Dataset B: the experiment performed using this dataset permitted the evaluation of the 

adaptive models (LeNet, MobileNet and Xception) to determine how effectively defective 

PV cells defects could be identified from EL images of the PV cells.  

• Dataset C: this dataset was used to examine how models cope when trained with an 

unbalanced dataset. This was to explore how differently the adaptive models (LeNet, 

MobileNet Xception) obtained in experiments performed on Dataset B compared to those 

obtained from experiments performed on Dataset C.  

The results from the experiments performed on Dataset B and C in the second phase of 

experiments are discussed in the next chapter. One of the experimental strategies to be addressed 

in this chapter was controlling variables. One variable that was altered for different experiments 
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was the dimensions of the input images. The experiments were conducted with input image 

dimensions at 150 by 150 and 200 by 200.  The following sections discuss the performance history 

obtained from the first and second phase of experiments. 

5.5.2 Performance – Phase One (Binary Classification) 

The training history of a model provides vital information on how well models performed during 

training. The training history was used to determine whether DL was an appropriate image 

processing technique to tackle the identified problem. Figure 5-4 to Figure 5-7 below show the 

performance of models from the initial phase of experiments. As discussed in Section 5.3, the first 

phase of experiments was to train a binary classifier. Furthermore, the initial phase of experiments 

was used to eliminate DL architectures that were not able to tune a model using the data that was 

provided for this research. In addition, the performance history depicted in Figure 5-4 to Figure 5-7 

do not represent the performance of the adaptive models that were evaluated in the following 

chapter. The first phase of experiments merely served as an indication of whether DL could be used 

to solve the multi-class classification problem.    

The first training history that was analysed was that of the LeNet (LeCun et al., 1999) model 

architecture. Figure 5-4 shows that the model did train from the provided data and there is an 

indication that the learning rate did improve. The model attained an accuracy of over 97.5 %. The 

model loss (Figure 5-4 (b)) did indicate a sign of overfitting. However, the LeNet model was later 

used in the second phase of experiments. 

 

Figure 5-4: LeNet training history – (a) model accuracy; (b) model loss 

The training history of the VGG (Simonyan & Zisserman, 2015) model architecture depicted in 

Figure 5-5 remained consistent over 100 epochs. This was an indication that the learning across 

the data provided did not improve. Furthermore, it was an indication that the VGG model was not 

ideal for the proposed solution. 
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Figure 5-5: VGG 16 training history – (a) model accuracy; (b) model loss 

Figure 5-6 depicts the performance of the MobileNet model (Howard et al., 2017), which indicate 

that the learning rate was consistent at 50% accuracy for the first 40 epochs. The model accuracy 

then improved to about 90% towards the end of the training process. The model loss (Figure 5-6 

(b)) mirrored the accuracy of the model - as it dropped significantly after the 40th epoch. The 

MobileNet architecture performed well enough to be considered for the second phase of 

experiments. 

 

Figure 5-6: MobileNet training history – (a) model accuracy; (b) model loss 

Figure 5-7 depicts the performance of the Xception (Chollet, 2017) model. Figure 5-7 indicates that 

the Xception model performed as well as the LeNet model (Figure 5-4). The training accuracy of 

the Xception model was over 90%. In addition, the model loss did not indicate any sign of 

overfitting. This model was later used in the second phase of experiments. 



EXPERIMENTAL DESIGN AND IMPLEMENTATION 

 

  Page 72 

 

Figure 5-7: Xception training history – (a) model accuracy; (b) model loss 

The performance of the different models provides sufficient evidence that DL could be used to 

implement the proposed solution (Figure 5-2). The VGG model was the only model that did not 

support the attempt made to identify defective PV cells from EL images automatically using DL. It 

was concluded from the initial phase of experiments that DL can be used to automatically identify 

defective PV cells from EL images ( 

Appendix A – Article). The next section discusses the training history of models in the second phase 

of the experiments.  

5.5.3 Performance – Phase Two (Multi-class classification) 

The second phase of experiments were vital for the proposed research. Phase one of experiments 

was a mere confirmation whether DL could be used to solve the identified problem: eliminating 

the tedious nature of identifying defective PV cells from EL images. Figure 5-8 to Figure 5-10 show 

the performance while training different DL models which showed promising results in the first 

phase of experiments (Section 5.5.2). The three model architectures that performed well in the 

first phase of experiments were LeNet, MobileNet and the Xception model.  

The training history of the LeNet model exhibited interesting characteristics. The model loss (Figure 

5-8 (b)) of the validation set started decreasing initially, and then it escalated after the 20th epoch. 

This was an indication of overfitting despite having incorporated checkpointing and early stopping 

during training. This was an indication that the ‘patience’ had to be reduced. The evaluation results 

of the model will be discussed in the next chapter.  



EXPERIMENTAL DESIGN AND IMPLEMENTATION 

 

  Page 73 

 

Figure 5-8: LeNet multi-classification training history – (a) model accuracy; (b) model loss 

The MobileNet model performed better in the second phase of experiments than it did in the first 

phase of experiments. The learning rate gradually increased from the first epoch. The training 

accuracy reached the 90% mark. In addition, the model loss plot did not indicate any sign of 

overfitting. The evaluation of the different adaptive models obtained from training the MobileNet 

architecture will be discussed in the following chapter. 

 

Figure 5-9: MobileNet multi-classification training history – (a) model accuracy; (b) model loss 

The Xception model training history performed as expected. The learning rate did improve over 

time, confirming its ability to get tuned from the EL images provided. The model reached the 

training accuracy of about 90%. On the other hand, the model loss plotted in Figure 5-10 (b) did 

not indicate any sign of overfitting. The evaluation of the different adaptive models obtained from 

training the Xception architecture will be discussed in the following chapter. 
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Figure 5-10: Xception multi-classification training history – (a) model accuracy; (b) model loss 

This section discussed the training history of the models in order to confirm the assumption drawn 

from the first phase of experiments. The results obtained from the evaluating the adaptive models 

from these experiments will be discussed in the following chapter.  

The next section discusses the evaluation plan intended to determine the effectiveness of the 

adaptive models (LeNet, MobileNet and Xception) obtained from the second phase of experiments 

(multi-class classification) performed in this research.    

5.6 Evaluation Plan 

This section will discuss a way in which the adaptive models will be evaluated in the next chapter. 

A confusion matrix is a concept in ML (Section 4.3.2.1) that is used to evaluate the classification 

ability of classification systems (Deng, Liu, Deng, & Mahadevan, 2016). A confusion matrix is two-

dimensional which are indexed by the actual classes of objects and the classes the classifier 

predicted. Figure 5-11 depicts a confusion matrix of a multi-class classifier. Ai and Aj represent the 

actual and predicted classes respectively. Nij, on the other hand, represents the number of samples 

that belong to class Ai but have been classified as belonging to Aj.  
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Figure 5-11: Confusion matrix for multi-class classification (Deng et al., 2016) 

Different measurements can be obtained from a confusion matrix. The measurements that are of 

interest for this research are the accuracy, precession, recall and the F1-score (Deng et al., 2016; 

Han, Kamber, & Pei, 2012; Sokolova & Lapalme, 2009).  

For this section of the evaluation of the models obtained after experiments, the accuracy is 

considered as the total number of correct prediction and is the average per-class effectiveness of 

a classifier. This is defined as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑖  =  
∑ 𝑁𝑖𝑗

𝑛
𝑖=1

∑ ∑ 𝑁𝑖𝑗
𝑛
𝑗=1

𝑛
𝑖=1

 

( 6 ) 

The precision is how accurate a specific class is predicted. Precision is the measure of exactness. 

Precision is defined as: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 =  
𝑁𝑖𝑖

∑ 𝑁𝑘𝑖
𝑛
𝑘=1

 

( 7 ) 

Recall is the effectiveness of a classifier to identify classes correctly. Recall can be considered as 

the measure of completeness. This is defined as: 

𝑅𝑒𝑐𝑎𝑙𝑙𝑖 =  
𝑁𝑖𝑖

∑ 𝑁𝑖𝑘
𝑛
𝑘=1

 

( 8 ) 
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F1-score is the relationship between the actual data labels and those given by a classifier. It is a 

combined measure of the classifier’s precession and recall.   F1-score is defined as:  

𝐹 − 𝑠𝑐𝑜𝑟𝑒𝑖 = 2 ×  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 × 𝑅𝑒𝑐𝑎𝑙𝑙𝑖

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 + 𝑅𝑒𝑐𝑎𝑙𝑙𝑖
  

( 9 ) 

For this research, the four measurements were calculated for the best performing models that 

were obtained after altering different variables. This was required to test dependent variables in 

this research as required by the research strategy (Section 2.2.3 and Figure 5-1). The 

measurements obtained from the experiments performed for this research are discussed in the 

next chapter (Section 6.2.3). The best results are expected to be obtained when the highest values 

are obtained along the diagonal of the of the confusion matrix, where Nij (i=j), which represent 

how accurately a specific class is predicted. The following section provides a summary of this 

chapter.   

5.7 Summary 

This chapter discusses the proposed solution to the problem identified in section 1.2. The proposed 

solution (Section 5.2) and the literature reviewed in Chapters 3 and 4 lead to the design of 

experiments (Section 5.3), which included how the data was processed (Section 5.3.1) and the 

experimental setup (Section 5.3.2). All this was necessary to perform experiments that confirmed 

whether the identified image processing technique was ideal to solve the identified problem. 

Furthermore, the implementation of the experiments (Section 5.4), the experimental procedure 

(Section 5.5) and the evaluation plan (Section 5.6) were discussed in this chapter. 

The proposed solution discussed in Section 5.2 incorporated the DL CNNs discussed in Section 

4.3.3. This continued to answer RQ4 – demonstrating how an image processing technique can be 

used appropriately to identify defective PV cells from EL images. Furthermore, the proposed 

solution leads to the experimental design (Section 5.3). This section discussed the hardware and 

software requirements (Section 5.3.2.1) for the different experiments, as well as the data 

requirements (Section 5.3.2.2). This was essential for the data allocation in fulfillment of the 

research strategy (Figure 5-1).   

The experiment implementation was discussed in Section 5.4, and the different hyperparameters 

were defined. Not all DL CNNs architectures identified in Section 4.3.3 were implemented; 

however the four DL CNNs that were implemented were listed in this section. The following section 

then discussed the experimental procedure (Section 5.5) and discussed the different learning 

techniques that were used for the experiments. The variables that were controlled and how they 
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were controlled was discussed in this section. This included altering input image dimensions and 

introducing ImageNet weights to the experimental procedure (TL).   

The performance history of the two phases of experiments (binary and multi-class classification) 

were discussed in Sections 5.5.2 and 5.5.3. This provided an initial confirmation that DL was an 

appropriate image processing technique to be used to identify defective PV cells from EL images.  

Lastly, the evaluation plan discussed in Section 5.6  outlined a plan on how the dependent variables 

will be tested from the adaptive models obtained from the experiments designed in this chapter. 

The following chapter will discuss results obtained from the evaluation of the adaptive models that 

was planned in Section 5.6. 
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6  E X P E R I M E N TA L  R E S U LT S   

6.1 Introduction 

Experiment design of all experiments conducted in this research were discussed in the previous 

chapter (Section 5.3). This chapter discusses results obtained from evaluating models trained in 

the second phase of experiments (Section 5.5.3) to determine how effectively the models trained 

for this research could classify PV cell EL images. These results include classification results of 

models trained from scratch (Section 6.2.1), models trained using transferred learning (Section 

6.2.2), and the evaluation of the different models (Section 6.2.3).  

This chapter aims to answer the fifth research question: 

RQ5: How effectively can the chosen image processing technique identify defective PV cells? 

The findings of this chapter are also used to examine the main research question: 

MRQ: How can an image processing technique be used to effectively identify defective 

polycrystalline PV cells from EL images of such cells? 

Figure 6-1 depicts the deliverables of this chapter and how this chapter forms part of the overall 

process research. Furthermore, Figure 6-1 shows how this chapter fits within the research 

approach (Section 2.2.2).  

The results discussed in this chapter are a result of the variables that were tested in the previous 

chapter.  
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Figure 6-1: Chapter overview 

The following sections aid in answering the last research question to conclude the answering 

process of all the defined research questions.  The results discussed in this chapter contribute to 

answering of the main research question.     

6.2 Image Classification Results  

Image classification was discussed in Section 4.3.3, which lead to the experiments designed in the 

previous chapter (Section 5.3). The experiments were conducted to obtain adaptive models that 

could be used to classify EL images of PV cell. The classification results discussed in this section will 

determine how effectively PV cell EL images could be classified into the four identified classes; 

Normal, uncritical, critical and very critical (Section3.6). The effectiveness of the identified images 

processing technique (which leads to the examining of the MRQ) was evaluated by how well the 
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different adaptive models (LeNet, MobileNet and Xception) could classify the EL images. The 

following section discusses the results of the multi-class classification experiments designed in the 

previous chapter; specifically, those experiments that required models to be trained from scratch.    

6.2.1 Training from Scratch 

Three Datasets (A, B and C) of EL images were used for the experiments that conducted in the 

second phase of experiments (Section 5.3.2.2). An aspect that was examined in the second phase 

of experiments included determining how altering different variables affected how effectively 

different adaptive models identified defective PV cells (Section 5.5).  

Dataset A was used to decide which models could be used to effectively identify defective PV cells 

from EL images (Section 5.3.2.2 and 5.5). This enabled elimination of the VGG CNN architecture 

from further experiments, even though it was experimented on later on to validate whether the 

conclusion was still true under different circumstances. Figure 6-2 depicts the performance history 

obtained when an attempt was made to train the VGG architecture using Dataset B. The validation 

accuracy remained constant at 25% which indicated that no learning occurred during training. The 

low validation accuracy may be due to the datasets used (Datasets A and B). Even though the data 

sets were different based on the number of classes and images, it may be that the datasets were 

not large enough. The resulting classification models after training the VGG architecture thus has 

no ability to distinguish PV cell images from the four classes. Furthermore, the data represented 

by the PV cell images could have not been suitable for the model in question to classify; VGG 

classifier might have better object recognition capabilities than pattern recognition. 

 

Figure 6-2: VGG performance history on Dataset B  
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Therefore, the results discussed in this section were of the LeNet, Xception and MobileNet model 

architectures. These results were obtained when experiments were performed using Datasets B 

and C based on the experimental procedure discussed in Section 5.5. 

6.2.1.1 Results - Dataset B 

This section discusses the image classification results obtained from experiments performed using 

Dataset B. The results in Table 6-1 were of experiments performed on Dataset B while maintaining 

the original dimensions of the input images. The loss, accuracy, validation loss and validation 

accuracy are compared to identify the best model to use to identify defective PV cells from EL 

images, bearing in mind that the same image processing technique was used across all 

experiments. The number of epochs varied because of the use of early stopping. This is the case 

for all discussed performance results in this chapter.  

Table 6-1: Performance results Dataset B (150 x 150 pixels) 

Model Loss  Accuracy Validation Loss  Validation 

Accuracy 

LeNet (epochs = 30) 0.5989 0.7288 0.9589 0.6400 

MobileNet (epochs = 150) 0.3043 0.9012 1.0946 0.7035 

Xception (epochs = 75) 0.2683 0.9150 1.8879 0.5176 

Early stopping (Section 5.5) was incorporated when the experiments of which results are tabulated 

in Table 6-1, were performed. This was to ensure that models with the most optimal weights were 

evaluated. The Xception model emerged as the best performing model. The Xception model had 

the lowest loss (0.2683) and the highest accuracy (0.9150). However, the MobileNet model had 

the highest validation accuracy (0.7035). The MobileNet model obtained from the performance 

results tabulated in Table 6-1 was not the best MobileNet classifier across all experiments. The 

different models were further evaluated to confirm the tabulated results by plotting confusion 

matrices. The different confusion matrices compared in Appendix B – Results. 

The results in Table 6-2 were of experiments performed using Dataset B, after scaling up the 

dimensions of the input images to 200 by 200 pixels. Just as with the results in Table 6-1, the loss, 

accuracy, validation loss, and validation accuracy of the different models are compared to 

determine which model most effectively identifies defective PV cells from EL images.   

Table 6-2: Performance results Dataset B (200 x 200 pixels) 

Model Loss  Accuracy Validation Loss  Validation 

Accuracy 

LeNet (epochs = 30) 0.4866 0.7925 1.0164 0.6635 

MobileNet (epochs = 150) 0.2345 0.9112 1.0026 0.6988 

Xception (epochs = 80) 0.1517 0.9500 1.2121 0.6847 
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The Xception model had the lowest loss (0.1517) and the highest accuracy (0.9500), and yet the 

MobileNet model had the lowest validation loss (1.0026) and the highest validation accuracy 

(0.6988). Furthermore, the LeNet classifier obtained when experiments were performed on 

Dataset B, with input images scaled up to 200 by 200 pixels was the best performing LeNet classifier 

obtained across all experiments.   

The next section discusses the classification results obtained from experiments performed on 

Dataset C. 

6.2.1.2 Results - Dataset C 

The results in Table 6-3 were of experiments performed on Dataset C while maintaining the original 

image dimensions of 150 x 150. The outcomes of these experiments were to determine how a 

differently sized dataset affect how effectively the resulting models could identify defective PV 

cells from EL images. The loss, accuracy, validation loss and validation accuracy of the different 

model architectures are compared to determine which model could effectively identify defective 

PV cells. 

Table 6-3: Performance results on Dataset C (150 x 150 pixels) 

Model Loss  Accuracy Validation Loss  Validation 

Accuracy 

LeNet (epochs = 25) 0.2887 0.8968 0.8996 0.6588 

MobileNet (epochs = 100) 0.0720 0.9726 0.8427 0.8047 

Xception (epochs = 75) 0.0919 0.9658 0.6665 0.7953 

The results tabulated in Table 6-3 were from the most optimal weights before any overfitting 

because early stopping was incorporated in all the experiments that were performed for this 

research. MobileNet emerged as the best performing model to attempt to identify defective PV 

cells from EL images effectively. MobileNet had the lowest loss (0.0720), the highest training 

accuracy (0.9726) and the highest validation accuracy (0.8047). However, the MobileNet validation 

loss was not the lowest. 

The results in Table 6-4 were of experiments performed on Dataset C after scaling up the 

dimensions of the input images to 200 by 200 pixels. The outcomes of this experiments were to 

deduce how scaling up input images dimensions of training data which was unbalanced, affected 

the performance of adaptive models. The loss, accuracy, validation loss and the validation accuracy 

of the different models were then compared to identify the best performing model. 
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Table 6-4: Performance results on Dataset C (200 x 200 pixels) 

Model Loss  Accuracy Validation Loss  Validation 

Accuracy 

LeNet (epochs = 25) 0.2727 0.9003 0.9630 0.6165 

MobileNet (epochs = 100) 0.0871 0.9675 0.5635 0.8447 

Xception (epochs = 65) 0.0697 0.972 0.9205 0.7624 

The Xception model had the lowest loss (0.0697) and the highest accuracy (0.972), and yet the 

MobileNet model had the lowest validation loss (0.5635) and the highest validation accuracy 

(0.8447). The next section discusses results obtained after TL was incorporated into the 

experiments.   

6.2.2 Transfer Learning (TL) 

The Xception and the MobileNet architectures were the only architectures that had ImageNet 

resources available in the Keras11 repository. Therefore, the TL evaluation was only viable for 

Xception and MobileNet models. TL on the MobileNet and Xception architecture using ImageNet 

weights only permits certain input image dimensions. The permitted image dimensions were: 

{128;160;192;224}. As a result, experiments were performed using dimensions closest to those of 

the original images which were 160 x160. The following sections discuss the performance results 

of the Xception and the MobileNet models, having incorporated TL into the experiments.  

6.2.2.1 Transfer Learning (TL) Results - Dataset B 

Table 6-5 contains Dataset B results obtained from the TL experiments. The results include loss, 

accuracy, validation loss, and validation accuracy of the Xception and MobileNet models. These 

results are compared to determine whether the models performed better than the same models 

trained from scratch, and to determine which of the two models can most effectively identify 

defective PV cells.    

Table 6-5: TL performance results on Dataset B (160 x 160 pixels) 

Model Loss  Accuracy Validation Loss  Validation 

Accuracy 

MobileNet (epochs = 95) 0.0278 0.9912 1.2048 0.7835 

Xception (epochs = 60) 0.0765 0.9687 1.0867 0.7812 

The MobileNet model emerged as the best performing model from the results tabulated in Table 

6-5. The MobileNet model had the lowest loss (0.0278), the highest accuracy (0.9912) and the 

highest validation (0.7835 

                                                      

11 https://keras.io/applications/#applications 
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6.2.2.2 Transfer Learning (TL) Results - Dataset C 

Table 6-6 contain results after performing TL experiments on Dataset C. The results were used to 

determine which models could most effectively determine defective PV cells. This was achieved by 

comparing the loss, accuracy, validation loss, and validation accuracy obtained after performing TL 

experiments on the Xception and MobileNet models.     

Table 6-6: TL Performance results on Dataset C (160 x 160 pixels) 

Model Loss  Accuracy Validation Loss  Validation 

Accuracy 

MobileNet (epochs = 90) 0.0379 0.9812 0.8586 0.8353 

Xception (epochs = 55) 0.0379 0.9855 1.1349 0.8094 

The results tabulated in Table 6-6 indicated that the MobileNet model performed better than the 

Xception model. Besides both models attaining the same loss of 0.0379, the MobileNet model had 

a lower validation loss (0.8586) and the highest validation accuracy (0.8356). Similarly to the 

previous TL experiments, the validation accuracy did improve slightly. This confirmed that weights 

obtained from a completely different problem can help the model’s classification ability. 

Furthermore, the classifier obtained from the Xception architecture after incorporating TL was 

compared with classifiers obtained from other Xception experiments. This was depicted in Figure 

B-4 (Appendix B – Results). The classifier as a result of TL performed better than those classifiers 

that were not exposed to ImageNet weight during training.  

The evaluation of the best performing models from each of the experiments will be discussed in 

the following section.   

6.2.3 Model Evaluation  

This section explicitly evaluates how effectively the different models could identify defective PV 

cells from EL images. This was achieved by plotting a confusion matrix (Section 5.6) using the 

different models trained in the experiments that were performed for this research.  A confusion 

matrix is a table that is used to visually describe the performance of a classification system (Deng 

et al., 2016). A confusion matrix contains information about actual and predicted classifications 

done by a classification model. Figure 6-3 to Figure 6-5 depict confusion matrices plotted from 

predictions made by either the LeNet, MobileNet or Xception models. One of each of these models 

(LeNet, MobileNet and Xception) discussed in Section 6.2.1, and 6.2.2 was evaluated to plot a 

confusion matrix. The models that were evaluated were selected based on which of the models 

attained the best validation accuracy after the different experiments.   

The LeNet model that was used to perform this evaluation was obtained from the experiments 

that were performed using Dataset B that was trained using images with an input image dimension 
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of 200 by 200 pixels. The classification results of the model are in Table 6-2. Figure 6-3 was the 

confusion matrix that was obtained from the evaluation of a test dataset. The diagonal of the 

confusion matrix in Figure 6-3 indicates the accuracies which the LeNet model predicted each of 

the classes. The normal and critical were predicted with an accuracy of 29%, which was better than 

the LeNet could predict any other class by this classifier. A conclusion was drawn from these 

results, that the performance of the LeNet models was better when larger input images were used 

to train the model, as a larger Dataset C did not yield a better performing classifier. Furthermore, 

different classifiers obtained from models trained on Dataset B and C were compared in Figure B-1 

(Appendix B – Results), to visualise how differently the LeNet models performed. 

The rest of the values of the confusion matrix in Figure 6-3 were used to calculate measurements 

(F1 – score, recall and precision) on the model. These measurements were defined in Section 5.6 

and the resulting measurements of the LeNet model are tabulated in Table 6-7.          

 

Figure 6-3: LeNet confusion matrix 

The MobileNet model with the best validation accuracy was obtained when experiments were 

performed using Dataset C, and the images had an input dimension of 160 by 160 pixels. The 

classification results of this model are tabulated in Table 6-4. After that, the model was 

evaluated, and a confusion matrix was plotted and is depicted in Figure 6-4. The values from 

Figure 6-4 were used to calculate measurements which are tabulated in Table 6-7. 

Furthermore, it was noted that the MobileNet performance improved by scaling up the input 

images and indicated that the size of the dataset did affect the performance of the model. The 

confusion matrices depicted in Figure B-2 (Appendix B – Results), are a visual representation 
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of how the mentioned factors affected the resulting classifiers having trained the MobileNet 

on Dataset B and C.    

The diagonal of the confusion matrix (Figure 6-4) indicates the accuracies which the MobileNet 

model predicted each of the classes. Normal PV cells were predicted accurately 42% (0.42) of 

the time using the MobileNet model and was the highest for the model. However, the desired 

result would have been a 1 (representing 100% accuracy) across the diagonal of the confusion 

matrix, which would represent an ideal MobileNet model which is able to classify PV cells from 

EL images correctly each time. 

 

Figure 6-4: MobileNet confusion matrix 

The best models while performing experiments using the Xception architecture was obtained when 

TL was employed to the experiments. The performance results for the model that was used to plot 

the confusion matrix (Figure 6-5) were tabulated in Table 6-6. Figure 6-5 shows percentage 

distribution of prediction of samples. The highest scores were expected along the diagonal, which 

indicates how accurately the model makes prediction. The Xception model predicted uncritical PV 

cells better than any other class with an accuracy of 41%.  

In addition, a comparison of the confusion matrix before and after TL was done. Not only did the 

models converge quicker during training as per Table 6-6, but the resulting model was a better 

classifier. This was depicted in Figure B-4 (Appendix B – Results). This indicated that inductive TL 

does improve the classification ability if a model in some cases. Furthermore, the Xception 

architecture trained on Dataset C produced a better classifier than that trained on Dataset B. This 

is depicted in Figure B-3 (Appendix B – Results).   
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The rest of the values from the confusion matrix (Figure 6-5) were used to calculate measurements 

that were introduced in Section 5.6 and the resulting measurements are tabulated in Table 6-7.       

 

Figure 6-5: Xception confusion matrix 

There were different conclusions that were drawn from the results obtained from this project. 

Upon analysing the results, different factors were noted that may have affected the obtained 

results. This included the difference in datasets used to train the adaptive models, the size of the 

input images used for training, and TL. 

Different datasets were used to test how the size of the dataset used to train the different network 

architectures affected the resulting classifier. In case of the Xception and MobileNet architectures, 

increasing the dataset improved the performance of the classifiers. Therefore, increasing the size 

of the dataset might affect the resulting classifiers even further.  

Furthermore, an unbalanced dataset was used to utilise all the images made available for this 

project and to test how an unbalanced dataset would affect results. There were more normal PV 

cells than defective cells obtain from the data provided for this research. Experiments on Dataset 

C were performed to take advantage of this fact, by not disregarding images that would result in 

excessive images in a single class. The results obtained from experiments performed on Dataset C 

appeared to have improved the classification ability of the Xception and MobileNet adaptive 

models.  
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Scaling up the input images was another factor that affected the performance of the resulting 

classifiers from the experiments. In the case of the MobileNet, the size of the input images 

improved the performance of the resulting classifier.  

It was observed from the analysis of the results obtained that different factors affected the 

resulting adaptive models used for classification differently. For instance, the LeNet architecture 

trained better on a balanced dataset as expected and based on theory. The MobileNet produced a 

better classifier having trained on dataset C with scaled up input images. And lastly, the Xception 

model produced a better classifier when an inductive TL was incorporated into the experiments. 

Lastly, theory suggested that TL can be used to improve the performance of a classifier even if the 

intended solutions of the models to be trained and the solution from which weights are obtained 

are different. ImageNet weights were introduced to Xception and MobileNet. However, only the 

Xception model produced a better classifier when inductive TL was incorporated to the 

experiments, but both the Xception and MobileNet architecture exhibited faster convergence 

during taring.  

Evaluation Results 

Table 6-7 tabulates the evaluation measurements (Section 5.6) calculated for the best performing 

adaptive models obtained from the different experiments. The best adaptive models were used to 

plot a confusion matrix from which the measurements; precision, recall and F1 – score were 

calculated. 

Table 6-7: PV cell classification measurements    

Model Precision  Recall F1 - score 

LeNet 0.268 0.248 0.258 

MobileNet 0.275 0.289 0.282 

Xception (TL) 0.273 0.238 0.254 

Overall, the MobileNet model performed better than the LeNet and Xception model. The 

MobileNet model had the highest precession, recall and F1 – score. However, from inspecting the 

confusion matrices, different models predicted certain classes better than others.  

The obtained results were not the most ideal results.  This may be due to the data within the 

different classes appearing to be very closely related, making it difficult for the classifiers to 

distinguish between the different classes.  However further refinement to the model architectures 

can be incorporated in future research, to determine whether the data within the four classes can 

be modelled accordingly. 

The following section will provide a conclusion to the findings of this chapter based on the different 

results discussed in this chapter. 
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6.3 Conclusion 

This chapter presented the results of the classification of PV cell EL images into four different 

classes namely; normal, uncritical, critical and very critical (Section 6.2). The classification 

experiments were of models trained from scratch and through transferred learning. The result 

from these experiments were discussed in Sections 6.2.1 and 6.2.2 respectively.   

The classification results that were discussed in Section 6.2 were obtained from the three models 

that were identified in Section 5.5.3 namely; LeNet, Xception and MobileNet. The classification 

results suggested that all three models could classify PV cell from EL images. TL was applied to the 

experiments to investigate further what impact TL had on the experiments, and the result were 

discussed in Section 6.2.2. The findings were used to conclude that the Xception model performed 

better when TL was applied to experiments. In addition, it could further be concluded that weights 

obtained from different classification tasks can be used to improve the performance of completely 

different classification tasks. 

The models obtained from the image classification experiments were evaluated in Section 6.2.3. 

This was to determine how effectively DL, an image processing technique, could identify defective 

PV cells (RQ5). The results, however, indicated that the models struggled to precisely make 

predictions and recall which class a PV cell EL image belongs to if the models have not been 

previously exposed to the EL image. It was also noted that different models could classify certain 

classes better than others.  

The different aspects discussed in this chapter were required to answer RQ5 and to examine the 

MRQ. DL as an image processing technique could be used to effectively identify defective PV cells 

from EL images, however, the precision at which defective EL images were classified was low 

indicating that the accuracy at which specific classes were predicted was poor. Even though the 

results were poor, it was a step in the right direction as at the point when this work was done, no 

existing systems to classify EL images of PV cells, as documented in this project, could be found. 

The manual system can currently be viewed as a better alternative, but the results from the 

experiments carried out in this project can be used to further investigate different ways in which 

DL can be used to effectively identify defective PV cells. Therefore, DL need not to be disregarded 

in future as an approach of identifying defective PV cells. 

The following chapter discusses the conclusion to this research. 
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Figure 7-1: Dissertation structure 

7.1 Introduction 

Image processing is said to be used to transform, manipulate or analyse digital images (Fu & 

Rosenfeld, 1976). It was discovered through literature that image processing is used in, amongst 

others, the medical and the automotive industry to analyse images. Image processing has been 

used in the medical field for diagnosis and image processing has been incoporated to driver assist 

system in the automotive industry. This is accomplished by extracting features from an image in 

order to complete a task. This research investigated whether image processing can be used in 

photovoltaics to identify defective PV cells from EL images of these cells. 



CONCLUSION 

 

  Page 91 

This chapter will provide a summary of this research. This will be achieved by discussing the 

research achievements (Section 7.2), the contribution of this research (Section 7.3), problems 

encountered in this research (Section 7.4) and limitations and recommendation for future research 

(Section 7.5). Lastly, a final summary will be provided in Section 7.6. 

7.2 Research Achievements 

It was identified in Chapter 1 (Section 1.2) that there was no automated way to identify defective 

PV cells from EL images effectively. The proposal to this project suggested the use of image 

processing to identify defective PV cells. The PV cells in question were of polycrystalline PV 

modules. The goal of this project is to identify defective polycrystalline solar cells from EL images 

effectively. In addition, the identified defects will be based on standards defined in Section 3.6. 

The way in which to effectively identify defective PV cells from EL modules was highly 

experimental; thus, it was decided that the experimental research methodology would be applied 

to this research. Furthermore, the deductive approach (Section 2.2.2) and experimental strategy 

(Section 2.2.3) were applied to the dissertation structure, which helped deduce which chapters 

addressed the different research questions (Table 7-1). The research questions were derived from 

the MRQ: 

How can an image processing technique be used to effectively identify defective 

polycrystalline PV cells from EL images of such cells? 

Therefore, the findings of this research answered the MRQ. 

Table 7-1:Research Questions and Chapters 

Research Question Chapter 

RQ1: What are the existing methods for examining PV cell defects? 3 

RQ2: What are the constraints on existing methods of identifying PV cell defects 

in polycrystalline solar modules using EL images? 

3 

RQ3: How can an image processing technique be used to assist in identifying 

defects in polycrystalline PV cells using EL images of the PV cells? 

4 

RQ4: How can an image processing technique be used appropriately to identify 

defective PV cells? 

4, 5 

RQ5: How effectively can the chosen image processing technique identify 

defective PV cells? 

6 

The first research question, RQ1, was answered through the review of literature in Chapter 3 

(Section 3.5). In addition, the different constraints of identifying defective PV cells from existing 
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methods was revealed, which answered the second research question, RQ2. Furthermore, Chapter 

3 provided support to use EL images to automate the process of identifying PV cells.    

Answering RQ3 required identifying an image processing technique that can be used to identify 

defective PV cells from EL images automatically. This was achieved through the review of literature 

on image processing (Section 4.3). It was deduced that NNs and consequently DL (Section 4.3.2) 

was the most suitable image processing technique that could be used to identify defects in 

polycrystalline PV cells from EL images of the PV cells. 

RQ4 was answered in Chapter 4, alongside RQ3. The literature reviewed on image classification and 

pattern recognition (Sections 4.3.3 and 4.3.4) and the related work reviewed (Section 4.4) revealed 

how the image processing technique identified could be used appropriately to identify defective 

PV cells from EL images.  

Chapter 5 continued to address RQ4 by proposing a solution (Section 5.2) based on the findings of 

Chapter 4. Experiments were designed (Section 5.3) and implemented (Section 5.4) to demonstrate 

how appropriately the identified image processing could be used to identify defective PV cells from 

EL images.     

RQ5 was answered in Chapter 6. An evaluation plan discussed in Section 5.6 was used to evaluate 

the adaptive models (Section 6.2.3) obtained from the experiments conducted in this research. The 

models to evaluate were deduced from the image classification results discussed in Section 6.2. 

The results from the evaluation were used to deduce how effectively the chosen image processing 

technique identified defective PV cells from the EL images.  

The MRQ: How can an image processing technique be used to effectively identify defective 

polycrystalline PV cells from EL images of such cells? was addressed by answering the different 

RQs. This indicated that the thesis statement: Image processing can be used to identify patterns 

that may indicate PV cell defects in polycrystalline solar modules from EL images. The identified 

defects can be used to determine the state of the PV cell – was proved. However, the effectiveness 

at which the defective PV cells were identified were not as desired as the adaptive models from 

the classification experiments exhibited a low precision and recall (Section 5.6). The following 

section discusses the contribution of this research.   

7.3 Contribution of Research 

The contribution of this research to the body of knowledge is a result of a lack of research to use 

image processing in photovoltaics. No evidence was found of the use of image processing in 
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photovoltaics to effectively identify defective PV cell defects from EL images. This research had a 

theoretical and a practical contribution which are discussed in Sections 7.3.1 and 7.3.2 respectively.  

7.3.1 Theoretical Contributions 

This research proposed the use of image processing to identify defective polycrystalline PV cells 

from EL images. The theoretical contributions made by this research are:  

• The use of image processing in photovoltaics 

• DL, an image processing technique can be used on EL images 

The literature reviewed in Chapter 3 provided evidence of constraints in ways that are currently 

used to examine EL images to identify defective PV cells. The constraints were overcome by 

proposing the use of image processing in photovoltaics to identify defective PV cells from EL 

images.  

The literature reviewed in Chapter 4 indicated that image processing, a task within computer vision 

can be used to for different image classification tasks. This research provided evidence that DL 

CNNs, can be used to identify defective PV cells.  

This research aimed at effectively identifying defective polycrystalline PV cells from EL images. This 

research has contributed to the body of knowledge in the use of DL, an image processing 

technique, in photovoltaics to identify defective PV cells. The following section will discuss the 

practical contributions of this research.  

7.3.2 Practical Contributions 

This research also made a practical contribution. The practical contributions that have been 

identified for this research are: 

• The creation of PV cell EL image dataset 

• A classified dataset of EL images of PV cells. 

• Trained image classification models that can be used to classify EL images of PV cells. 

• Image classifaction results after evaluating the models.  

The EL images received from the Physics Department at NMU was of PV modules, however, it was 

explained in Section 2.2.4.1  that the analysis of the images will be done on a cell level (Section 

2.2.4.1). Therefore, the EL images were pre-processed to obtain PV cell EL image (Section 5.3.1). 

This enabled the creation of a dataset containing PV cell EL images. 

The PV cell EL images obtained in Section 5.3.2.2 were then classified. The PV cell EL images were 

initially classified using a binary classifier to represent normal and defective PV cells (Section 
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5.3.2.2). The EL images were further classified using a multi-class classifier into four classes namely; 

normal, uncritical, critical and very critical (Section 5.3.2.2). This provided the classified dataset of 

EL images of PV cells. 

Trained image classification models that can be used to classify EL images of PV cells were a 

contribution of this research. The image classification models were obtained from the experiments 

that were performed in this research (Section 5.5). It was identified in Section 5.4 to use the LeNet, 

MobileNet and Xception DL CNN architectures for this research.    

The final practical contribution of this research were the image classifiaction results after 

evaluating the adptive models. The result suggested that an image processing technique can 

indeed be used to identify defective PV cells from EL images, but not yet as effectively as possible. 

The following section will discuss the problems and limitation encountered in this research.  

7.4 Problems Encountered 

Several problems were encountered throughout this project. One of these problems was that the 

number of normal samples outweighed the number of defective samples from the EL images. Data 

augmentation was incorporated into the implementation of the experiments to help mitigate this 

problem. Furthermore, the initial dataset that was obtained from the initial set of images received 

was not sufficient. Therefore, more images had to be requested from the Physics Department at 

NMU.    

Another problem that was encountered in the early stages of this research was a lack of 

computation power, as experiments were performed on a PC CPU. However, a GPU was provided 

by the Computing Sciences Department at NMU which resulted in experiments being performed 

much faster. 

7.5 Limitation and Recommendations for Future Research 

This section will discuss the limitations of this research and recommendations for possible future 

research. Ideally, experiments should be conducted on all existing DL CNN architectures. 

Therefore, I would recommend exploring more DL CNNs to deduce which adaptive models would 

attain a higher precision and recall and alternatively more accurately identify defective PV cells 

from EL images. Furthermore, research can be conducted to develop a DL CNN that can be 

specifically designed to cater for photovoltaics. 
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Secondly, the proposed solution (Section 5.2) did not cater for defects of abnormalities that occur 

in PV cell materials but do not affect the performance of the PV cell. This would require further 

refinement of the classified dataset that emerged from this research. 

Furthermore, the adaptive models obtained from various experiments can be incorporated into 

systems used to take EL images. The resulting EL images from the system could be labelled 

according to the nature of each cell in the PV module. However, the adaptive models would have 

to be robust enough to ensure that defects are identified, regardless of the orientation in which 

the EL image is taken. In addition, further research can be conducted to improve the effectiveness 

of the adaptive models that were obtained in this research. 

Lastly, other defect detection techniques can be investigated to determine whether they are able 

to identify defective PV cells from EL images more effectively. Specifically, techniques that do not 

require a large dataset to produce an effective EL image classifier could be investigated.  

7.6 Summary   

The focus of this research was to investigate whether image processing can be used to identify 

defective PV cells from EL images effectively. This research addressed the issue that no automated 

process could be found whereby defective polycrystalline PV cells are classified, according to 

known standards from EL images. The outcome of this research was adaptive models that can be 

used to classify EL images of PV cells. 

The positivist philosophy, deductive approach and experimental strategy were applied to this 

research (Section 2.2). These choices were influenced by the experimental research methodology 

(Section 2.3) that was utilised by this research. The experiments that were designed in this research 

(Section 5.3) as a result of the research methodology were used to study causal links between 

variables within EL images.     

Existing techniques of identifying defective PV cells (Section 3.5) were reviewed which revealed 

the constraints that exist within these techniques. It was revealed that EL images were analysed 

manually in order to identify defects which is a tedious process. Integration between an existing 

method of identifying PV cell defects and computer vision was therefore proposed (Section 3.6) to 

automate the process of identifying defective PV cells from EL images.   

Image processing was a task within computer vision that was identified to be used for the proposed 

integration between photovoltaics and computer vision. Through a literature review on image 

processing (Section 4.3), it was identified that DL was the image processing techniques that was 

suitable for this research. It was later revealed through literature (Sections 4.3.3 and 4.3.4) and 
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related work (Section 4.4) how DL can be used appropriately to identify defective PV cells from EL 

images. Furthermore, experiments were conducted to demonstrate the appropriate use of the 

image processing technique identified (Section 5.4). 

The outcomes of the experiments were adaptive models that can be used to classify EL images of 

PV cells. The adaptive models were used to answer the MRQ: 

How can an image processing technique be used to effectively identify defective 

polycrystalline PV cells from EL images of such cells? 

It was concluded that an image processing technique can be used to identify defective 

polycrystalline PV cells from EL images of such cells. 
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ABSTRACT 
The aim of this paper is to determine whether photovoltaic (PV) 
cells can be automatically identified as either defective or normal 
from electroluminescence (EL) images. This paper utilizes an 
experimental methodology to address the identified research 
problem. This paper provides evidence that deep learning (DL) 
can be used to distinguish between a defective and a normal PV 
cell. The results of this research confirm that techniques from the 
Computer Science discipline can be applied in photovoltaics to 
alleviate the tedious processes used in identifying defective PV 
cells from EL images. 

CCS CONCEPTS 
• Computing methodologies  → Machine learning ; Machine 
learning approach  • Applied computing  → Physical science 
and engineering; Physics 

KEYWORDS 
Deep learning; Machine learning; Photovoltaic; 
Electroluminescence.    
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1 INTRODUCTION 
Climate change resulting from the increased use of fossil fuels 

has resulted in a call for pollutant free technologies that can be 
used to harness electricity from different energy sources [18]. One 
device that emerged from this call of pollutant free technologies 
was a solar or photovoltaic (PV) cell. An array of PV cells forms a 
PV panel. There are three types of solar cells, single-crystalline, 
polycrystalline and amorphous silicon [11,15]. This research only 
takes into account polycrystalline PV cells.  

The performance of any type of PV cell is affected by defects 
[11]. Defective PV cells are a result of cracks in the cell or cells 
being blocked from the sun’s radiation. PV cell defects can be 
identified using infrared imaging, large-area laser beam induced 
current, current-voltage (I-V) characteristic or 
electroluminescence (EL). 

EL images were selected as the data that would be analyzed 
for the purpose of this research. Currently, no stand-alone 
automated ways of analyzing EL images in order to distinguish 
between normal and defective PV cells were found. The process 
of identifying normal and defective PV cells from EL images is a 
tedious, manual process. 

This paper documents aspects of the research that were 
important in determining which techniques to use to 
automatically identify if a PV cell is defective. The research design 
section of this paper reports on the literature and existing systems 
that were reviewed, as well as the experimental design. The 
implementation and the experiment results are discussed after the 
research design section, followed by a discussion of different 
limitations of the research and a conclusion. 

2 RESEARCH DESIGN 
The proposed solution is to automate the identification 

process of PV cell defects using existing image processing 
techniques. The proposed solution is highly experimental; 
therefore, an experimental research approach was taken to solve 
the problem. Identifying causal links between variables is the 
main focus of an experimental research methodology [27].  
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experiments. The next sections document the literature and 
existing systems reviewed and an outline of the experiments that 
were designed. 

2.1 Literature Review 
This section provides an insight into different techniques that 

can be used to solve the identified problem for this research 
through image processing. The proceeding section will discuss 
image processing techniques and a deep learning approach to 
image processing.    

2.1.1 Image Processing 
Image processing is the transformation, manipulation or the 

analysis of digital images [14]. An initial step in preparing images 
for analysis is referred to as image pre-processing. During this 
stage, images are either corrected or enhanced. 

Image pre-processing is the normalization of an image data set 
which is essential for different image processing techniques. 
Image pre-processing usually has a positive effect on results from 
image analysis tasks [26]. Image pre-processing is done before 
certain image processing techniques are applied. Image pre-
processing is vital in determining areas of interest within images.   

Figure 1 shows the schematics of a pattern/image recognition 
system indicating how image pre-processing is performed on 
images before feature extraction in an image recognition system. 
Image recognition is identified as a technique to solve the EL 
image classification problem present in photovoltaics.  

 

Figure 1: Pattern/image recognition system schematic [16]. 

Image classification is a technique that goes hand in hand with 
image recognition and was proposed to solve the identified 
problem. Figure 1 shows that a classifier aspect is included within 
image recognition systems. Image classification is important for 
this research, especially when distinguishing between normal and 
defective PV cells. There are two main types of classification 
namely, supervised and unsupervised classification [3]. The Deep 
Learning (DL) approach discussed in Section 2.1.2 utilizes 
supervised learning which uses similar principles to those in 
supervised image classification. Image classification can only be 
carried out after some image processing has been performed on 
images. 

Image processing consists of different techniques that can be 
performed on images. One of these techniques is feature 
extraction, which is used in image recognition. Feature extraction 
is the process of extracting features within the image that best 
describes the content of the image [8].  

Edge detection is another technique within image processing. 
Edge detection is one of the most basic tasks in image processing 
and recognition [32]. Edge detection is important for performing 
image segmentation on images. 

Image segmentation is a major problem in image processing 
and one technique used to solve segmentation is thresholding 
[20]. Image segmentation is the process of splitting an image into 
independent regions that can be processed separately. 

Computer vision applications utilize most of the above-
mentioned techniques. In recent years, deep learning (DL) has 
been applied to computer vision applications as an alternative to 
some of the above-mentioned techniques. The following section 
will discuss a DL approach to image processing and image 
recognition.  

2.1.2 Deep Learning Approach 
For this paper, image recognition was identified as a technique 

that could be used for pattern and feature detection in EL images. 
Image recognition is an aspect of image processing. In essence, 
image recognition is the identification of features within an 
image. This is carried out by mapping parts of the image to 
descriptors of the content within said part [14].  Image and pattern 
recognition form a branch in machine learning [5].  

Machine learning (ML) is defined as the change in a system 
that carries out tasks related to artificial intelligence (AI) [25]. 
This gives computer systems the ability to learn from different 
types of data without being explicitly programmed. More complex 
problems are attempted using DL [21]. DL is a class within 
machine learning utilized in this paper to solve the problem of 
identifying defective cells within the field of photovoltaics. 
Convolutional neural networks (CNN) are a fundamental part of 
DL and best describes the leaning method within deep learning. 
CNNs have over the years, become useful in image recognition 
and image classification [12,22]. In addition, CNN architectures 
are the best representation of DL methods [1] 

Neural networks (NN) are modeled from the human brain and 
nervous system [17,19]. CNNs use fewer parameters for their 
learning algorithms in comparison to traditional fully-connected 
NN. The basic structure of a CNN architecture is described below 
[13]:    

1. Input layer : data is fe d into the network through this 
layer. Raw image pixels can form part of this input data. 

2. Convolution layer : a convolution is an operation on 
two functio ns. The convolution layer consists of a 
function of images input values and filter function. The 
filter highlights patterns that can be used in 
characterizing input images. The dot product of the two 
functions gives an output.  

Rectified Linear Unit  (ReLU): ReLU layers are used to apply 
non-linear functions to outputs of previous  
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1. functions. The functions are used to improve the training 
performance of CNNs. 

2. Pooling layer : the pooling layer is found in between 
convolution and ReLU layers. This is how CNNs result in 
using fewer parameters in the learning process. As a 
result, the network only focuses on the most important 
patterns. 

3. Fully-connected layer: every neuron from all the other 
layers is connected in this layer. This is done to get an 
understanding of all the patterns generated in the 
preceding layers. This layer computes the possible score 
for the different classes used to train the network on. 

4. Loss layer: this is usually the last layer of a network. The 
aim of this layer is to evaluate how much the predictions 
from the trained model deviate from the true labels.   

One important thing to note is that in DL the feature 
extraction from the layers mentioned above is not engineered, 
but rather learned from a general-purpose learning procedure 
[21]. The following section will discuss areas in which DL has 
been applied to carry out image processing tasks, including 
image analysis.   

2.2 Related Work 
This section explores some areas in which DL techniques have 

been applied to solve problems similar to that of distinguishing 
between normal and defective PV cells. The proceeding sections 
will discuss the use of DL in medical image analysis and its use in 
feature learning and image classification.  

2.2.1 Medical Image Analysis 
AI paradigms were adopted as early as the 1970s in medicine 

[28]. The rise of hand-crafted feature extraction techniques 
resulted in the use of ML in medical image analysis. The ability of 
CNNs to revognise and classify images has allowed DL to be one 
of the leading techniques in medical image classification. 

CNNs can be utilized in the case of both 2-dimensional and 3-
dimensional structures of organs, in order to distinguish between 

normal or abnormal organ structures [29]. Some of the common 
images used for medical analysis include: X-rays, computed 

tomography (CT) scans, magnetic resonance imaging (MRI), 
positron emission tomography and retinal photography [22,30].  

Based on the images mentioned above, there are a few areas 
in which DL is continually being used. The ability of CNNs to 
process 3-D images allows for analysis to be performed on brain 
images, which are obtained from MRIs[22].  

Retinal images are another type of images that have been 
subjected to CNNs for analysis. As a result, applications have been 
developed that can detect retinal abnormalities and diagnose eye 
diseases [22].    

The complexity of medical images allows for a DL approach 
to be taken to automate medical systems that use retinal images 
and MRIs. These medical systems are usually used to diagnose 
patients. Existing MRIs and retinal images are used to train CNNs 
that are incorporated in the medical systems. The resulting 
models can take in as an input different images and predict a 
single diagnosis based on the labels of the images used to train the 
model.    

2.2.2 Feature Learning and Classification 
DL is continually being used to solve pattern/feature 

extraction, image recognition and classification problems [2]. One 
area in which feature learning/extraction and classification are 
being used is handwritten text recognition [4]. Handwritten text 
recognition poses a challenge due to the variation of writing styles 
from different writers. CNNs have the ability to learn different 
handwritten text representations.  
Besides handwritten text recognition, CNNs have also been used 
in the classification of different images. A very common problem 
solved by CNNs is the cat-vs-dog problem [23]. Figure 2 shows 
what is involved in training a CNN model and how predictions 
are made from a test set. The CNN is represented by feature vector 
space in Figure 2. Similarly to the photovoltaics  

Figure 2: Learning and prediction architecture for the cat-vs-dog problem [23]. 

 



APPENDICES 

 

  Page 109 

 

problem, the cat-vs-dog problem requires a feature extraction 
component in order to solve it. The proposed solution discussed 
in this paper needs to have the ability to differentiate between 
features extracted from normal and defective PV cells. 

In the automotive industry, DL allows for the possibility of 
traffic sign recognition, which is helpful with driver assist 
technologies [9]. 

 

Figure 3: Driver assist system architecture [7]. 

Figure 3 shows how a captured image is read into a pre-trained 
CNN (CNN model) and the resulting prediction is responsible for 
adjusting driving controls. For instance, a speed sign indicating a 
necessary reduction in speed can trigger an output control to slow 
down a car. The same principle is applied to the proposed solution 
in the sense that the trained model makes a predication 
responsible for the distinction between normal and defective PV 
cells. 

The next session discusses how experiments for this research 
were designed based on some of the principles highlighted in this 
section.   

2.3 Experimental Design 
This section discusses the framework in which the 

experiments for this research were conducted, based on the 
reviewed literature and related work. The outcome of the research 
has to be evaluated from data gathered and from the variables 
present in the data [10]. This research used EL images that were 
obtained from the Physics department at Nelson Mandela 
University. 

The EL images were intended to be used to train a CNN and 
based on the performance, it would then be deduced whether DL 
could be an appropriate approach to solving the identified 
problem. The images would have to be augmented during training 
of the CNN to cater for different possible orientations when 
testing the model ability to make predictions. This is due to the 
fact that all obtained images of the initial dataset were of a single 
orientation. Figure 4 shows samples of the images used for this 
research. Figure 4-A represents a normal PV cell and Figure 4-B to 
4-D represent the different defective cells.  

 

Figure 4: A - normal PV cell; B to D - variation of defective 
PV cells. 

One immediate concern when designing the experiments was 
the number of images in the dataset obtained from the data 
provided. The dataset was small, which would most likely lead to 
overfitting during training. Overfitting is a result of a model 
overcompensating when determining relationships from training 
data [31]. This results in noise within the data being considered 
as useful. 

The experiments were used to deduce whether normal or 
defective PV cells can be distinguished by a DL model using EL 
images. The image set was split into two classes in order to train 
the DL model. The two image classes represented normal and 
defective PV cells. 

The experiments and the experiment results are discussed in 
the next section. The next section also includes a discussion of the 
different CNN model architectures that were implemented from 
the experiments. 

 

Figure 5: Basic CNN architecture for image classification. 

Figure 5 is a visualization of a basic CNN architecture which 
was discussed in section 2.1.2. This architecture is used as a basis 
of all the models implemented in the next section. 

3 IMPLEMENTATION AND EXPERIMENT  
The experiments outlined in the previous section were 

implemented in Python and was coupled with Keras and 
Tensorflow libraries. The implemented experiments were run on 
a Mecer Proficient PC, with an i7 - 4790 processor, 3.60 GHz, 16 
GB of ram, a Nvidia GeForce GTX 1080 graphics card with 8 GB 
dedicated memory and running on Windows 10 OS. 

The initial experiments were to determine whether DL could 
be used to solve the problem at hand and whether the data 
provided was suitable for the experiments. Three model 
architectures were tested to help confirm whether DL could be 
used as an approach for automatically identifying defective PV 
cells from EL images. 

EL images of normal and defective PV cells formed the two 
classes for the initial experiments. A total of 600 images from both 
classes were used to train the model. An additional 48 images not 
belonging to the training set were used for validation. The 
validation data was used to determine and approximate number 
of epochs to use for training, and the process will be discussed in 
the following section. And lastly, 10 images not from either the 
training or validation sets were reserved to test the trained model. 
An experiment was performed to determine an approximate 
number of epoch to use for the rest of the experiments. An epoch  
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is a single pass through the training set while training a model. 
The number of epochs to use were approximated using a 
technique known as early stopping. In addition, early stopping 
ensures that models are trained without overfitting. The 
validation accuracy from the performance of the model was used 
to determine the number of epochs.  

Early stopping is achieved with the aid of checkpoints which 
allow for a model to be monitored during training and in turn 
deduce when the maximum validation accuracy was achieved. 
The training process (fitness function) was terminated after 149 
epochs as depicted in Figure 6. A patience of 50 was used in this 
case which indicate that the model validation accuracy did not 
improve after the 99th epoch.  

 

   

Figure 6: visualizing when training was terminated. 

The three model architectures that were used in the initial 
experiments to help confirm the DL approach were, a simplified 
adaption of the LeNet, the CifarCNN architecture, and the 
GoogleNet architecture. Models in Keras use Stochastic gradient 
descent (SGD) as the training algorithm [6]. In addition, root mean 
square propagation was used to optimize the learning algorithm.  

All three implemented models were run over 100 epochs based 
on the earlier experiment. Therefore, all three models iterated 
through all the images in the training set a hundred times before 
the models were completely trained. The accuracy of all the 
models trained were plotted in Figures 7-9 below. 

 

Figure 7: Epoch vs. Accuracy LeNet. 

Figure 7 shows the performance accuracy plotted of the model 
adapted from the LeNet model architecture while it was being 
trained. The graph above shows that the model had a resulting 
performance accuracy of 99%.  

 

Figure 8: Epoch vs. Accuracy CifarCNN. 

Figure 8 shows the performance accuracy of the CifarCNN 
model architecture for each of the 100 epochs. The training graph 
in Figure 8 shows that the performance of the model constantly 
revolved around 50% during the course of the training process.  
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Figure 9: Epoch vs. Accuracy GoogleNet. 

Figure 9 shows the performance accuracy of the GoogleNet 
model during training up until 100 epochs were completed. The 
training graph in Figure 9 shows that the model had a 98% 
performance accuracy.   

Fortunately, the model adapted from the LeNet architecture 
and the GoogleNet architecture performed well on the data used 
to train the models. This provided an initial confirmation that DL 
could indeed be used to solve the problem at hand and was an 
appropriate approach to use in solving the problem. The trained 
models could predict all the images in the test set as being normal 
or defective correctly. The CifarCNN, did not perform as well as 
hoped and was crossed off the list of model architectures to use 
when further refining the proposed solution.  

On the other hand, the validation graphs in Figures 7-9 were 
erratic. This was an indication that the validation set was not large 
enough. Therefore, the validation data set has to be increased for 
the refinement of the proposed solution.   

The model loss of one of the model architectures that 
performed well was plotted in Figure 10. The figure was plotted 
to determine whether overfitting occurred during training.  

 

 

Figure 10: Epoch vs. Loss GoogleNet. 

The model loss for the GoogleNet architecture was selected 
and is depicted in Figure 10. The gradual decrease in the loss 
present in Figure 10 was an indication that overfitting did not 
occur. The same erratic behavior present in Figures 7-9 was 
present in Figure 10, which confirmed that the validation set was 
indeed not large enough.   

4 LIMITATIONS 
This paper is part of a research project that aims at classifying 

PV cells into four MBJ PV cell classes. MBJ is an innovation 
solutions company that offers different PV related products 
ranging from sun simulators, EL test systems, and test systems for 
insulation and ground testing for PV module testing [24].  The 
four classes mentioned are adopted from the EL test system. The 
classes represent normal, uncritical, critical and very critical PV 
cells.  

This paper focuses on a binary classification, and the two 
classes represented normal and defective PV cell as mentioned in 
Section 2.3. The experimental results confirmed that normal and 
defective PV cells could be predicted with 98% certainty.   

Even though the accuracy from the experiment results were 
high, it might not be the best representation of what might happen 
when four classes were taken into account. The differences 
between the classes might be very difficult to distinguish, 
resulting in a poor performance of the DL model.   

5 CONCLUSIONS 
In this paper, a proposal was made to use DL as a technique of 

automatically identifying defective PV cells. Experiments on 
different DL model architectures were carried out to confirm 
whether it was possible to solve the problem using DL and the 
results indicated that it was possible. Therefore, an extension to 
the binary classification can be implemented to cater for the four 
MBJ PV cell defect classes. 
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Appendix B – Results 

 

Figure B-1: LeNet – Dataset B vs. Dataset C 

 

Figure B-2: MobileNet – Dataset B vs. Dataset C  

  

Figure B-3: Xception – Dataset B vs. Dataset C 
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Figure B-4:TL Xception – Dataset C vs. Xception - Dataset C 

 


