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Abstract

Millions are affected with the Human Immunodeficiency Virus (HIV) world wide, even though 
the death toll is on the decline. Antiretrovirals (ARVs), more specifically protease inhibitors 
have shown tremendous success since their introduction into therapy since the mid 1990’s by 
slowing down progression to the Acquired Immune Deficiency Syndrome (AIDS). However, Drug 
Resistance Mutations (DRMs) are constantly selected for due to viral adaptation, making drugs 
less effective over time. The current challenge is to manage the infection optimally with a limited 
set of drugs, with differing associated levels of toxicities in the face of a virus that (1) exists as a 
quasispecies, (2) may transmit acquired DRMs to drug-naive individuals and (3) that can manifest 
class-wide resistance due to similarities in design. The presence of latent reservoirs, unawareness 
of infection status, education and various socio-economic factors make the problem even more 
complex. Adequate timing and choice of drug prescription together with treatment adherence are 
very important as drug toxicities, drug failure and sub-optimal treatment regimens leave room for 
further development of drug resistance. While CD4 cell count and the determination of viral load 
from patients in resource-limited settings are very helpful to track how well a patient’s immune 
system is able to keep the virus in check, they can be lengthy in determining whether an ARV 
is effective. Phenosense assay kits answer this problem using viruses engineered to contain the 
patient sequences and evaluating their growth in the presence of different ARVs, but this can 
be expensive and too involved for routine checks. As a cheaper and faster alternative, genotypic 
assays provide similar information from HIV pol sequences obtained from blood samples, inferring 
ARV efficacy on the basis of drug resistance mutation patterns. However, these are inherently 
complex and the various methods of in silico prediction, such as Geno2pheno, REGA and Stanford 
HIVdb do not always agree in every case, even though this gap decreases as the list of resistance 
mutations is updated. A major gap in HIV treatment is that the information used for predicting 
drug resistance is mainly computed from data containing an overwhelming majority of B subtype 
HIV, when these only comprise about 12% of the worldwide HIV infections. In addition to growing 
evidence that drug resistance is subtype-related, it is intuitive to hypothesize that as subtyping 
is a phylogenetic classification, the more divergent a subtype is from the strains used in training 
prediction models, the less their resistance profiles would correlate.

For the aforementioned reasons, we used a multi-faceted approach to attack the virus in multiple 
ways. This research aimed to (1) improve resistance prediction methods by focusing solely on the 
available subtype, (2) mine structural information pertaining to resistance in order to find any 
exploitable weak points and increase knowledge of the mechanistic processes of drug resistance in 
HIV protease. Finally, (3) we screen for protease inhibitors amongst a database of natural com­

i



pounds [the South African natural compound database (SANCDB)] to find molecules or molecular 
properties usable to come up with improved inhibition against the drug target. In this work, struc­
tural information was mined using the Anisotropic Network Model, Dynamics Cross-Correlation, 
Perturbation Response Scanning, residue contact network analysis and the radius of gyration. 
These methods failed to give any resistance-associated patterns in terms of natural movement, 
internal correlated motions, residue perturbation response, relational behaviour and global com­
paction respectively. Applications of drug docking, homology-modelling and energy-minimization 
for generating features suitable for machine-learning were not very promising, and rather suggest 
that the value of binding energies by themselves from Vina may not be very reliable quantita­
tively. All these failures lead to a refinement that resulted in a highly-sensitive statistically-guided 
network construction and analysis, which leads to key findings in the early dynamics associated 
with resistance across all PI drugs. The latter experiment unravelled a conserved lateral expan­
sion motion occurring at the flap elbows, and an associated contraction that drives the base of 
the dimerization domain towards the catalytic site’s floor in the case of drug resistance. Interest­
ingly, we found that despite the conserved movement, bond angles were degenerate. Alongside, 
16 Artificial Neural Network models were optimised for HIV proteases and reverse transcriptase 
inhibitors, with performances on par with Stanford HIVdb. Finally, we prioritised 9 compounds 
with potential protease inhibitory activity using virtual screening and molecular dynamics (MD) 
to additionally suggest a promising modification to one of the compounds. This yielded another 
molecule inhibiting equally well both opened and closed receptor target conformations, whereby 
each of the compounds had been selected against an array of multi-drug-resistant receptor vari­
ants. While a main hurdle was a lack of non-B subtype data, our findings, especially from the 
statistically-guided network analysis, may extrapolate to a certain extent to them as the level of 
conservation was very high within subtype B, despite all the present variations. This network con­
struction method lays down a sensitive approach for analysing a pair of alternate phenotypes for 
which complex patterns prevail, given a sufficient number of experimental units. During the course 
of research a weighted contact mapping tool was developed to compare renin-angiotensinogen vari­
ants and packaged as part of the MD-TASK tool suite. Finally the functionality, compatibility 
and performance of the MODE-TASK tool were evaluated and confirmed for both Python2.7.x 
and Python3.x, for the analysis of normals modes from single protein structures and essential 
modes from MD trajectories. These techniques and tools collectively add onto the conventional 
means of MD analysis.
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Thesis overview

The thesis is divided into two main parts. In Part I, the research problem is motivated, before 
proceeding to explain the state-of-the-art in HIV treatment, which therefore requires an expla­
nation the viral life-cycle as it is a main working form of controlling the virus, in the wait of a 
cure. The main research thematic is that of finding novel in silico ways of tackling and improving 
our understanding of the drug-resistance problem. In Part II, three side projects performed in 
collaboration with various members of the RUBi research laboratory are elaborated, for which the 
extent of my contributions are listed in the Publications and contributions section.

In Chapter 1, an introduction is provided on the viral life-cycle, its general structural, genomic 
and taxonomic organisation, in addition to the current treatment strategies before focusing on the 
viral protease.

In chapter 2, based on available HIV drug resistance data sets from the Stanford HIVdb and the 
proportion of subtypes present therein, we aimed to improve the performance of drug resistance 
prediction for HIV proteases and reverse transcriptases in HIV. Ideally, a more general prediction 
method was desired, unfortunately we ended up building models for subtype B only, due to lack 
of sufficient labelled non-subtype B data. To do so, we applied various filtering approaches for the 
construction of neural network models for the improvement of drug resistance prediction in HIV.

In Chapter 3, several structural characteristics of the viral protease were mined to search for a 
possible resistance-specific signal in an attempt to find a more generalisable property that would 
hopefully extrapolate to non-subtype B HIV strains.

A failure to see any resistance-related signal in the previous chapter lead to the development of a 
more sensitive method, designed by improving the residue contact network approach by coupling 
statistical tests to network construction across an ensemble of MD trajectories for extracting short, 
but well-conserved motions generally associated with drug resistance, as presented in Chapter 4.

In Chapter 5, another facet of drug resistance in HIV protease is investigated via high through­
put virtual screening for the discovery of novel drug scaffolds using the South African natural 
compound database. As opposed to single variant targeting, a diverse set of protease variants 
obtained from the Stanford HIVdb was used to guide the screening process to target sequences 
from darunavir-failing patients.

Finally, in Part 2, we present side projects showcasing the tools MD-TASK and MODE-TASK, 
which are sets of scripts developed/tested in collaboration with RUBi members, and also showcase 
the application of network analysis onto MD data, using the renin-angiotensinogen complex - an 
important hypertension-related drug target.
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Flexible ligand docking (C3):
Allow ligand movement within complexes

Network analysis (C3):
Determine differential network properties 
associated with drug resistance

Elastic Network Models (C3):
Identify resistance-associated vibrations

Ensemble analysis (C4):
Increase the sensitivity of network construction 
using statistical methods.

Perturbation Response Scanning (C3):
Identify resistance-associated pressure points

Side projects (C6):
Tool development and testing

Renin Angiotensin 
System

High-Throughput Virtual Screening (C5):
Identify novel PI scaffolds from natural compounds

Figure 1: Schematic of the thesis. Coloured lines depict the techniques/sections applied to the re­
spective proteins, namely HIV protease (yellow) and reverse transcriptase (red), and the human renin- 
angiotensinogen complex (green). Chapters are abbreviated C1-C6, for Chapters 1 to 6.
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Part I

The main research: Targeting drug 
resistance in HIV
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Chapter 1

Introduction to the viral pathogen

1.1 H IV /A ID S : A  still unresolved problem

Discovering the Human Immunodeficiency Virus (HIV) in the early 1980’s as causative agent of the 
Acquired Immunodeficiency Syndrome (AIDS) was a result of independent work done by Robert 
Gallo and Luc Montagnier. Viral isolation was done by Montagnier’s research group while the 
association to the syndrome was found by Robert Gallo’s group [2]. The death rate due to HIV 
had been increasing very rapidly until the year 1995, when the drug saquinavir was introduced in 
antiretroviral therapy, resulting a sudden decline despite a steadily increasing number of new cases 
of people living with the virus [3]. According to the World Health Organisation, an estimated 
36.7 million of people were living with HIV/AIDS in 2016, while 1 million died the same year 
worldwide [4]. The development and use of protease inhibitors (PIs) in therapy is a very good 
example of what can be achieved with the help of computer-guided rational drug design [5]. 
Evolution and progression in HIV treatment is quite unique in the history of medicine [6], in 
the sense that despite the development of several drugs with HIV inhibitory activity, the virus 
consistently mutates and selects for drug resistance mutations under the selective pressure of 
antiretroviral therapy. As such there is no current HIV cure [7]. At the time of writing there are 
32 FDA-approved inhibitors, with the exclusion of combination products and retracted ones [8]. 
Due to continuous adaptation and differing levels of toxicity to patients, this pool of drugs is in 
fact limited. Complications arising from PI usage can be relatively benign, with side-effects such 
as skin rashes and gastrointestinal dysfunctions, but can also be quite severe with possibilities of 
intra-cranial haemorrhages [9] and hepatotoxicity [10]. HIV continuously mutates and adapts to 
every drug it is exposed to during treatment with antiretrovirals (ARVs). Relatively recent work 
by Cueva and colleagues in fact report “extremely high” mutation rates in HIV-1, on the order 
of 4 x 10-3 for each base per cell, from in vivo assays using peripheral blood mononuclear cells 
(PBMCs) [11]. In the same work, they show that it is the host apolipoprotein B mRNA-editing 
enzyme, catalytic polypeptide-like 3 (APOBEC3), which accounts for most of what is termed 
“hypermutation” - 98%, against 2% mutations caused by error-prone replication [12] resulting 
from the lack of proof-reading activity from the viral reverse transcriptase. Opinions diverge 
with respect to the impact of hypermutation as some report complete viral inactivation [13] while 
others suggest its use by the virus in a mechanism for evading recognition by the host immune
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system [14], even being referred to as a facilitator in the development of drug resistance [15]. 
This said, the retrovirus tolerates an astounding amount of genomic modification while remaining 
viable, even though fragility has been observed in the capsid protein, where multiple mutations 
resulted in replication-defective virions [16] in vitro. This genetic malleability with the associated 
complexity of drug resistance mutation (DRM) patterns have consistently thwarted any attempt 
at finding a permanent cure. In the wait of such, the virus can be slowed down by increasing 
the diversity of ARVs and/or improving the use of current drugs to maintain appropriate viral 
suppression. Uninhibited, the virus is estimated to produce 108 to 109 new virions per day [17]. 
Fortunately, after being approved by the FDA for use in treatment 1995, the first PI saquinavir 
[18] resulted in a significant drop in the number HIV-related deaths [19]. Since then, many 
other PIs have been designed along the similar peptidomimetic scaffolds until the development 
of tipranavir, which is the first non-peptidomimetic [20, 21]. Due to the similarities in drug 
design, it is not uncommon for some strains to be multi-drug resistant after the long history of 
using ARVs [22, 23]. Strains harbouring DRMs from drug-treated patients can be passed on to 
drug-naive individuals via various infection routes and can thus reduce treatment options. In 
fact, a 2003-2015 study reported ARV drug resistance in an estimated 8.3% to 15% of treatment- 
naive individuals [24]. The establishment of viral latency (viral genome integration) within an 
infected person marks the potential for chronic infection [25] and the impossibility of ARV drugs 
to completely clear out the virus [26] from the infected individual. Numerous strategies are used 
to assist in slowing down the permanent impairment of the immune system (Acquired Immune 
Deficiency Syndrome) [27] and are discussed in section 1.4. The damages associated with HIV are 
not limited to human physiology, but also extend to patient mental and social well-being, which 
are very much intertwined with confounding factors such as poverty and level of education [28] 
that can certainly play a role in getting access to ARVs in treatment. All these factors make the 
virus a constantly elusive target against treatment.

In this work, we focus on the improvement of current treatment approaches and finding charac­
terising features that can assist in improving the understanding of drug resistance. We therefore 
investigate in silico various methods of optimizing current ARV treatment, highlight potentially 
strong elements associated with drug resistance and additionally propose new potential molecular 
scaffolds for the design of novel PIs via high-throughput virtual screening. In the following sec­
tions we describe in varying levels of detail important characteristics of the retrovirus and provide 
information on the state-of-the-art in current treatment strategies and research challenges.

1.2 The life cycle of HIV: Opportunities for viral suppres­

sion

Knowledge of HIV’s life cycle is crucial for the development effective HIV counter-measures. The 
virus is mainly targeted by interfering at critical points in its life-cycle via antiretroviral therapy, 
and the increasing number of solved HIV protein structures has been very beneficial in accelerating 
rational drug discovery in HIV. The mature retroviral virion (Figure 1.1) is shielded by a host-
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Reverse transcriptase gp120
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Viral RNA 
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Integrase

Nucleocapsid
protein
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Figure 1.1: A detailed view of the mature viral particle. The capsid proteins (in green) mainly form 
hexameric assemblies and few pentameric “defects” at the top and bottom of the capsid, forming a 
protective fullerene cone around the genomic material [31]. Adapted from [32].

cell-derived bilayered outer envelope decorated by transmembrane glycoprotein complexes [29] 
and other host proteins such as the major histocompatibility antigens [30]. Immediately found 
underneath is the matrix shell, composed of an estimated 2000 copies of monomeric matrix (MA) 
proteins, which in addition other functions [33], assists in guiding immature viral poly-proteins to 
the plasma membrane prior to viral assembly [34]. Located further inside is the conically-shaped 
protective structure referred to as the capsid (CA), which is also composed of about 2000 monomers 
[34], which together house viral genetic material, stabilizing nucleocapsid (NC) proteins, essential 
enzymes (protease (PR), reverse transcriptase (RT) and integrase (IN)) together with several 
accessory proteins [29]. The genomic information is packaged as two copies of single-stranded 
RNA molecules stabilized in the form of ribonucleoproteins by NC proteins [29]. The NC has 
been shown to play a vital role in stabilizing and protecting nucleic acid sequences from various 
forms of degradation [35, 36]. Its genome is approximately 9.7 kilobases in length (Figure 1.2) and 
encodes fifteen distinct proteins [37] that are terminally-flanked on each side of the genome by long 
terminal repeats [29]. These fifteen proteins can be simply regrouped into structural, enzymatic

Figure 1.2: Components of the HIV-1 proteome, with respect to the HXB2 reference genome. Adapted 
from information generated by the HIV-1 genome browser from the Los Alamos National Laboratory.

and accessory proteins. The six structural proteins comprise the four Gag proteins (MA, CA, NC 
and p6) and two Env proteins (glycoproteins gp120 and gp41). The three enzymatic proteins (PR,
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RT and IN) are all found on the Pol poly-protein and are only active in dimeric form - RNAse 
forms part of RT heterodimer [38]. The enzymatic and structural proteins are synthesized as poly­
proteins of Gag, Pol-Gag and Env, which require catalytic cleavage in a process of maturation. 
Remaining six proteins can be classified as accessory (Vif, Vpr, Vpu and Nef) proteins [39] and 
as regulators (Tat and Rev) of gene expression [29], even though some authors classify all of them 
as accessory on the main basis that they were observed not to be essential for replication in cell 
cultures [40].

The life cycle of HIV is spent in multiple forms, namely (1) as a mature infective viral particle, 
(2) as a cell parasite relying on the host translational machinery for replication and (3) as a 
DNA fragment integrated in the host genome in wait of activation. Figure 1.3 depicts the various 
stages in the life-cycle of HIV, which are explained in this current paragraph. Cellular infection

M aturation  R elease

Figure 1.3: Various stages in the HIV life-cycle in and outside of the host cell, going through the 
process of binding to CD4 receptors and co-receptors, which lead to membrane fusion, exposure of the 
viral genetic material to the host cellular machinery, before undergoing nuclear integration and later 
releasing new virions. Adapted from [32], [41] and [42]

begins upon recognition of the envelope glycoprotein gp120 by the CD4 receptor molecule [42], 
which is found mainly at the surface of T-helper cells, monocytes, macrophages and dendritic 
cells [41]. Further interaction with a host co-receptor, namely the chemokine receptor 5 (CCR5) 
or the C-X-C chemokine receptor 4 (CXCR4) leads to membrane fusion and release of the full 
capsid into the host cell cytoplasm [32]. HIV strains may have specific co-receptor requirements, 
for instance using only CCR5 or CXCR4, while others can use both, by a phenomenon termed 
co-receptor tropism [41]. After capsid digestion, the single-stranded viral RNA is subsequently 
reverse-transcribed and converted to double-stranded DNA by the enzyme reverse transcriptase 
(RT) [17, 43]. A pre-integration complex (PIC) is formed involving HIV IN and the viral DNA
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to be transported through the nuclear pore complex. Integrase then nicks the host genomic DNA 
to permanently insert the proviral genome [44]. Upon host cell activation [17], a number of viral 
messenger RNA is transcribed and exported out of the nucleus for translation by the host cellular 
machinery. This results in the production of viral poly-proteins Gag, Pol-Gag and Env that are 
directed to the cell inner surface together with viral RNA waiting to be released from the host cell. 
Finally, the virion undergoes a maturation stage during which viral aspartyl protease (PR) cleaves 
the proteins precursors into their functional forms. The exact mechanism for proteolysis by the 
retroviral protease is not known, however one of the proposed models is shown in subsection 1.5 
describing features of the enzyme.

1.3 HIV classification: Strength in genetic diversity

Owing to its high mutation rate and genetic heterogeneity [45], HIV has been classified using mul­
tiple criteria, including phylogenetic relationships, genome architectures, clinical traits, virulence, 
infectivity and their geographic distribution [46]. At the top-level HIV is classified as two types 
on the basis of virulence, namely as HIV-1 and HIV-2 [47], with the former generally being more 
virulent and common worldwide. Both types are further delineated into groups. HIV type 1 is 
subdivided into 4 groups M, N, O and P, each linked to an independent cross-species transmission 
on the basis of their separate origins from non-human primates [48]. HIV-2 is composed of groups 
A-H [49]. As the focus of this research is on type-1, we describe HIV-1 classifications in more 
detail. Group M (where ” M” stands for major or main) is the one responsible for the majority of 
HIV infections, while the remaining ones are mainly present in Central Africa, with a generally 
lower prevalence [50]. Underneath group classification, both HIV types are further differentiated 
into genetically-distinct clusters known as subtypes, which are a result of founder effects that have 
emerged at different time points in the past [48]. A founder event is described as the situation 
whereby a small group of individuals colonizes a new environment, which may then lead to adap­
tation and a reduction in genetic variation - a phenomenon known as the “founder effect” [51]. 
In HIV-1, this has lead to the description of 9 distinct subtypes (A-D, F-H, J and K) [49]. A 
depiction for the generally-accepted classification for HIV strains is shown in Figure 1.4.

H IV
i

Types: HIV-1
i r - ^  i

HIV-2

G roups: M N O P
i— i— i— h — i— i---- 1— i— i—

i i i i i i i

A  B C D E  F G H

S u b type s: A  B C D F G H J K R Fs

Figure 1.4: Classification of HIV strains into types, groups and subtypes. Recombinant Forms (RFs) 
comprise the strain hybrids. Adapted from [49]

HIV protein residue differences ranging from 8% to 30% can be observed within a given sub­
type, while variations on the order of 17%-42% between subtypes can prevail depending on the
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subtype and genomic locus under consideration [52]. Inter-strain HIV hybrids, termed unique or 
circulating recombinant forms (URFs or CRFs, respectively) also form part of the viral popula­
tion, being referred as such based on their frequency in human population [53]. With a genetic 
diversity epicentre located in Central Africa, recombinant forms are widespread [49] and their 
presence is being increasingly felt in certain parts of the world, such as Thailand, China, Brazil 
and West Africa [54, 55], where they appear to be displacing the founder subtypes [54]. This 
said, Hemelaar reported that subtype C accounts for nearly 50% of the HIV-infected population 
worldwide, followed by subtypes A and B, as shown in Figure 1.5. It should be emphasized that 
strain subtyping has been done in slightly different ways over time, using the env [53], gag [56], 
partial sequences [57, 58], combinations of gag and env [59], even complete genomes [60] and later 
pol sequence data due to the availability of PR and RT sequences from drug resistance testing 
data [61, 62]. According to Robertson, the large majority of subtypes adopt consistent clustering 
patterns regardless of genomic locus, even though a certain fraction of the subtypes have been 
found discordant [63, 53]. HIV’s extant genetic diversity and constant evolution pose a serious
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Figure 1.5: HIV subtype distributions worldwide (2004-2007 data), adapted from [49].

threat for the perpetuation of current virological suppression approaches used for treatment of 
patients. In order to maintain a wide array of treatment approaches, it is necessary to keep on 
developing novel control strategies that will resist their evolutionary adaptation mechanisms. The 
next section elaborates on some of these strategies.

1.4 Current state-of-the-art in the fight against HIV

Due to the tenacity and resilience of the virus, approaches targeting HIV are manifold and there 
is currently no permanent cure [64]. One approach consists in the development of a vaccine by 
searching for broadly-neutralizing antibodies, which have shown success only in animal models 
and not in humans [65]. Another area of research is focused on genome-inactivation of the per­
sistent retroviral DNA by using the CRISPR/Cas9 system via gene therapy [66]. Recent work 
showed successful inactivation of integrated proviral HIV DNA in latently-infected human cell 
lines, namely in Jurkat cells [67] and HeLa T-cell lines [68]. A main obstacle for its success is the 
lack of an effective delivery system for the CRISPR reagents to infected cells [66]. Most of cur­
rent therapies in use involve the prescription of antiretroviral inhibitor combinations in the form 
of a Highly-Active Antiretroviral Therapy (HAART) [69] that target and interfere with essential
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steps in the life-cycle of HIV. These include drugs interfering with nucleoside reverse transcrip­
tases (NRTIs), non-nucleoside reverse transcriptases (NNRTIs), proteases (PIs), fusion, entry and 
integrases (IN) [70]. The modes of action for the different classes of inhibitors are described in 
Table 1.1. In order to raise the barrier against drug resistance, ARVs may be prescribed together 
with low levels of pharmacological enhancers, such as the drug ritonavir [71] or its analogue co- 
bicistat (COBI), which mainly inhibit cytochrome P450 drug metabolism [72] and are especially 
used in second and third line regimens [41]. The sheer number of drug targets and molecules 
(Table 1.1) exploited over the years relates to the amount of effort required to keep up with this 
constantly-adapting single pathogen. Unfortunately, associated toxicities can be a limitation of 
drug efficacy in certain cases. Various treatment strategies of prescribing these drugs have been 
evaluated for prolonging their usable lifetimes, for which some opinions diverge in the scientific 
community, as resistance mechanisms are not completely understood. Additionally, diagnosis and 
treatment do differ on the basis of resources availability. For instance, monitoring CD4 cell counts 
and the use of viral load assays can guide clinicians as to how patients respond to ARV treatment 
[73], however assistance from sequence-based methods greatly facilitates and speeds up the drug 
selection process [74]. Certain regimen recommendations can vary according the guidelines being 
followed [75], some examples of which are those from the International AIDS Society (IAS), the 
World Health Organisation (WHO), the European AIDS Clinical Society (EACS) and the US De­
partment of Health and Human Services (DHHS) [76]. In an effort to improve our understanding 
of outcomes from complex mutation patterns, a panel of experts from the International Antiviral 
Society-USA (IAS-USA) regularly updates HIV drug resistance information with curated data 
in order to better guide HIV clinical practitioners [77, 78, 79, 80]. This said, a variety of ARV 
formulations based on nano/micro-particle drug delivery systems are being evaluated as a means 
to enable sustained slow-release and improve the ARVs half-life, with the objective of targeting 
HIV reservoir areas (central nervous system, gut-associated lymphoid tissue, lymph and spleen) 
[81]. Meanwhile the use of preventive medication such as the pre-exposure prophylactic (PrEP) 
drug holds a lot of promise in limiting the incidence of new HIV cases, especially for high-risk indi­
viduals [82]. In parallel, initiatives such as the Stanford HIVdb store and make publicly-available 
information and tools to assist in performing drug resistance predictions from sequence data [83] 
thus expediting progress in the field of HIV drug resistance research. While phenotypic assays can 
be used to reliably predict drug resistance for making more informed decisions in the treatment 
of HIV patients, they are expensive and laborious. Cheaper in silico proxies (genotypic assays) 
are instead routinely used when sequence data is available, using web servers such as the Stan­
ford HIVdb, REGA and ANRS. As more resistance-associated mutations are uncovered over time, 
the algorithms used to assess the impact of drug resistance mutations are updated [84]. At the 
same time, independent research groups also strive to improve current prediction performances, 
especially as machine learning tools mature and as more labelled data becomes available. Further 
details around in silico genotype-based predictions are given in chapter 2, where we present the 
development of neural network models to improve predictability in HIV PR and RT.
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Table 1.1: Description of inhibitors used in the treatment of HIV patients.

ARV
class

Mechanism of action Drug Additional informa­
tion

PI

Competitively inhibit 
the HIV protease active 
site, which prevents 
cleavage of the precursor 
proteins, thus hindering 
viral maturation [85].

atazanavir (ATV) 
darunavir (DRV) 
fosamprenavir (FPV) 
indinavir (IDV) 
lopinavir (LPV) 
nelfinavir (NFV) 
ritonavir (RTV) 
saquinavir (SQV) 
tipranavir (TPV)

amprenavir precursor. 

Pharmacokinetic booster.

NRTI Competitively inhibit 
HIV reverse 
transcriptase [86] and 
interrupts DNA 
synthesis by 
incorporating viral 
DNA, leading to chain 
termination [41].

tenofovir (TDF) 
lamivudine (3TC) 
abacavir (ABC) 
emtricitabine (FTC) 
zidovudine (AZT) 
didanosine (DDI) 
stavudine (D4T)

In certain circumstances, 
some of these drugs have 
been associated with 
serious side-effects, 
sometimes being fatal 
[87].

NNRTI Bind away from the 
active site, causing 
conformational changes 
to inhibit reverse 
transcriptase [41].

efavirens (EFV) 
etravirine (ETR) 
nevirapine (NVP) 
rilpivirine (RPV)

INI Prevent the formation of 
covalent bonds between 
the host and viral DNA
[70].

raltegravir (RAL) 
dolutegravir (DTG) 
elvitegravir (EVG)

Fusion
inhibitor

Interferes with the fusion 
of viral and cell mem­
branes by binding with 
part of the gp41 glyco­
protein [88].

enfuvirtide (ENF) Limited use in multi-drug 
resistant patients mainly 
due to the requirement 
for subcutaneous injec­
tions and the frequency of 
painful side reactions [71].

Entry
inhibitor

Selectively binds to the 
human CCR5 receptor 
to prevent gp120 attach­
ment [70]

maraviroc (MVC) Ineffective against HIV 
showing CXCR4 or dual 
tropism [70]

Post
attach­
ment
Inhibitor

Prevents viral transmis­
sion from cell-cell fusion 
by binding domain 2 of 
the CD4 receptor, hin­
dering post-attachment 
of HIV viral particles 
[89].

ibalizumab (IBA) Fortnightly intra-venal 
injections.
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1.5 Characteristics of the chosen drug target: HIV pro­
tease

Antiretrovirals of the PI class have come out as an essential part of HAART [69] changing the 
tides in HIV treatment since the introduction of saquinavir, the first in line amongst a series of 
first-generation PIs to be approved by the FDA [90]. The target enzyme is a 22 kDa [91] homod­
imer composed of two 99-residue long chains, with an approximate 2-fold rotational symmetry 
[92, 93], in other words the dimer appears very similar when rotated 180 degrees. It forms part of 
the aspartic peptidase domain super-family of proteins, which is widely distributed across multi­
ple domains of life, encompassing organisms such as vertebrates, plants, protozoa going through 
prokaryotes and certain viruses [94]. In HIV, the enzyme is crucial for the proteolytic cleavage of 
precursor poly-proteins and hence is vital for the process of viral maturation [95]. The enzyme 
relies on a pair of catalytic aspartic acid residues situated at position 25 from each monomer [92] 
to catalyse the breakdown of asymmetric peptide substrates [96]. Each ASP25 residue forms part 
a catalytic triad (ASP25-THR26-GLY27), which are stabilized as loops by a network of hydrogen 
bonds to form a conformation referred to as the fireman’s grip [97]. Overall the monomer topology 
is mainly composed of a fl-barrel and an a-helix, which is usually observed in pepsin-like proteases 
such as renin and cathepsin D from the super-family of acid proteases [98]. These secondary ar­
rangements have been further described as functional units in HIV protease, akin to a mechanical 
system actioned by levers. These mainly consist of the flaps, cantilever and a fulcrum, as shown 
in Figure 1.6. Less-structured segments comprising the elbow, 10’s, 60’s and 80’s loop regions

Cantilever
Fulcrum

ASP25

v Dimer 1 
interface

Elbow

60's loop

Elbow

10's loop
10's loop

60's loop

Figure 1.6: Mapping of functional elements from HIV-1 protease. The coloured segments depict the 
flaps (yellow), cantilever (orange), fulcrum (red), elbows (blue), dimer interface (cyan) and 10’s loop 
(brown), 60’s loop (purple) and the 80’s loop (grey). Grey spheres denote residues from the binding 
cavity while the catalytic aspartates are coloured pink. Figure re-used from [99]

mainly connect to fl-strands. Being highly-selective, the aspartyl protease achieves catalysis by
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performing a nucleophilic attack on the scissile amide linkages within their peptide substrates [17]. 
The exact mechanism of proteolytic cleavage is not known, but is proposed to occur as shown in 
Figure 1 .8 , via a concerted mechanism involving the polarization of water by the catalytic residues, 
causing a nucleophilic attack on the targeted peptide bond. The substrate cleavage site itself is an 
octapeptide which bears no clear motif conservation, and is usually represented as P4-P3-P2-Pi 4- 
P1-P2-P3-P4, where the down arrow represents the scissile bond [100] amongst the residues de­
noted by P , which each correspond to cavity regions referred to as sub-sites. Due to discordances 
in the exact definition of cavity sub-sites [101, 102, 103], the terminology is not used in this study. 
The use of protein mimicry (peptidomimetics) was a natural choice for inhibiting the catalysis of 
peptide bonds in the process of rational drug design for the development of substrate-like PIs [104] 
based on a hydroxyethylene or hydroxyethylamine substructure [105]. This long tunnel is formed 
by the assembly of two identical subunits [106] and can allow the flaps to move by up to 7 A away 
from each other upon substrate association [97]. The closed receptor conformation is typically 
observed in the presence of a bound substrate or inhibitor, while the opened conformation allows 
ligand entrance and release [95]. A semi-opened conformation is also described as an intermediate 
between the two, as shown in Figure 1.7 with green flaps in the midst of the other two confor­
mations. The strategy of designing PIs which compete for the active site by masquerading as

(a) Side view. Top view.

Figure 1.7: Depictions of the closed (PDB ID: 4TVG [107], blue flaps), semi-opened (PDB ID: 1HHP 
[108], green flaps) and wide open (PDB ID: 1TW7 [109], red flaps) HIV protease conformations super­
imposed, with top and side views, showing the general direction of motion involved in receptor opening 
(left) and the inter-flap spacing (right). Adapted from [110]

the transition state of the natural protein has proved to be exceptionally successful in achieving 
tightly-bound PI complexes of high-affinity [95]. Out of all the FDA-approved PIs, tipranavir is 
the only non-peptidomimetic drug, being based from lead optimization of coumarin and pyrone 
derivatives [111]. As opposed to the peptide-mimicking counterparts, non-peptidomimetic drugs 
do not require an interfacial water molecule for stabilization by hydrogen bonds around the ILE50 
residues [1 1 2 ].
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Figure 1.8: A proposed mechanism by Jaskolski and co-workers for the concerted proteolytic cleavage 
of peptide bonds by the HIV protease. Catalytic aspartates are shown in purple and brown, while the 
water molecule is coloured in dark blue. In this model, water is polarized by catalytic aspartate oxygen 
atoms to cause a nucleophilic attack the peptide bond, following which a proton is transferred from one 
of the aspartates to the N-terminal amine group of the cleaved peptide. Adapted from [113, 17]

1.6 Challenges in HIV research

Our target pathogen is a tremendously resilient retrovirus endowed with an efficient, rapid and 
constant adaptation, owing to various survival strategies. (1) Its existence as a diverse viral pool 
within infected individuals means that any class of enzymatic inhibitor has to remain potent 
against a large number variants in order to impart adequate virological suppression. (2) Its 
permanent establishment as part of the host genome as latent reservoirs forces a life-long treatment 
regimen upon patients, who have to face the additional challenges of drug tolerability, toxicity and 
eventually adherence. Due to latency period, many infected individuals may not be aware of their 
infection status, thus allowing the virus to prevail unnoticed. Such events facilitate the spread 
of drug experience to drug-naive individuals thus narrowing initial treatment options. (3) Inter­
subtype viral recombinations (mosaicism) form novel hybrids [114], which add to the resilience 
and complexity of the quasispecies dynamics.

While genotype-based drug resistance prediction approaches are manifold, they are all mainly 
based on a single subtype, which is not reflective of the worldwide distribution, and hence pro­
vides an opportunity for improvement, which is unfortunately limited by the insufficient diversity 
in publicly-available labelled drug resistance datasets. DRM patterns are complex and thus dis­
agreements between various genotypic methods can occur, even though such differences tend 
to lessen with time. Viral sequences are typically generated using Sanger sequencing or high- 
throughput technologies, for which there is a trade-off amongst several factors involving sequence 
diversity, quality and cost for the assays, given non-homogeneous samples simultaneously contain­
ing low and high-abundance variants in the form of a quasispecies [115, 116]. Template re-sampling 
errors can also originate from the polymerase chain reaction, which can make samples appear more 
homogeneous by repetitively amplifying original templates [117, 115]. Independent to these bio­
logical and experimental factors, socio-economic problems such as lack of education and reduced 
access to ARVs can contribute to the unabated proliferation of the virus.
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1.7 Research objectives

Our main objectives consisted in contributing to the body of research in the fight against ARV drug 
resistance in HIV. While initially targeting non-B HIV strains, the amount of labelled publicly- 
available data was insufficient for our purposes. Therefore, a significant portion of the work was 
laid on finding very strongly-conserved signals from subtype B instead, in the hopes that such 
could extrapolate or establish a methodology applicable to our initial target strains should such 
information be available later.
In Part I, we do so by aiming to accomplish the following:

1. Improve the accuracy of drug resistance prediction in HIV-1 protease and reverse transcrip­
tase for FDA-approved ARV drugs.

2. Seek for a characteristic resistance-associated signal from structural data in HIV proteases 
able to tell apart resistant sequences from susceptible ones with high performance and pre­
cision.

3. Discover novel scaffolds for use in the design of anti-HIV ARV drugs using high-throughput 
in silico screening of natural compounds.

Part II deals with several side projects performed in collaboration with members of the RUBi 
research group, pertaining to method and tool development in structural bioinformatics.
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Chapter 2

Improving fold resistance prediction of 
HIV-1 against protease and reverse 
transcriptase inhibitors using artificial 
neural networks

This chapter draws from and reproduces certain figures and tables used in the publication listed 
below. Credit for the reproduced material is given as citations in the respective figure and table 
captions.

• Sheik Amamuddy O , Bishop NT and Tastan Bishop O. “Improving fold resistance pre­
diction of HIV-1 against protease and reverse transcriptase inhibitors using artificial neural 
networks” BMC Bioinformatics, 2017 August 15. doi: 10.1186/s12859-017-1782-x.

2.1 Introduction

In this chapter, we introduce the use of neural networks for the improvement of prediction of 
drug resistance in subtype B HIV-1, more specifically against protease and reverse transcriptase 
inhibitors. This method was chosen as a cheap, fast and accurate way of improving over what is 
used to assist physicians in prescribing more optimal regimens to patients. HIV patients would 
typically have HIV enzymes sequenced from blood samples followed by a genotypic assay [118], 
which characterizes the effectiveness of the antiretroviral to prescribe. The gold standard is the 
phenotypic assay [119] whereby the sequenced HIV pol gene fragment is cloned into a recipient 
HIV virus later used in cell cultures exposed to different drug concentrations to determine an 
inhibitory concentration. The concentration required to inhibit viral proliferation is compared 
against that of the wild type virus. Depending on the determined fold resistance ratio obtained 
with respect to defined cut-off values, a sequence may be deemed susceptible, resistant or par­
tially (intermediate) resistant to a given drug. Further classification denominations are used by 
different prediction methods. A variety of genotypic resistance prediction methods exist and are 
usually implemented as web servers. Some examples of which are Geno2pheno [119], Stanford
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HIVdb [83], REGA [120], the “Agence Nationale de Recherches sur le SIDA” (ANRS), SHIVA 
[121], amongst many others. Geno2pheno defines a drug resistance state (susceptible or resistant, 
with a probability score) using machine learning techniques (decision trees and support vector 
machines) trained on genotype and phenotype correlations [122]. HIVdb assigns a drug resis­
tance state (susceptible, potential low-level, low-level, intermediate or high-level) by obtaining a 
total drug resistance score from the of sum penalty scores derived from literature for each residue 
difference from the reference B subtype for each separate ARV drug [123]. ANRS defines a drug re­
sistance state (susceptible, possible resistance or resistant) using a set of rules derived largely from 
genotpe/phenotype correlations based from a large database of ARV-failing patients to produce a 
tabulated list of resistance-associated mutations [124]. REGA is a complex algorithm that defines 
a drug resistance state (susceptible, intermediate or resistant) based on a set of rules derived 
from mutations reported to be associated with resistance or reduced therapeutic effect [123]. The 
algorithm takes into account DRM interactions and is valid across HIV subtypes despite showing 
reduced effectiveness in cases of multi-drug resistant HIV [123]. SHIVA is a recently-developed 
web server, which specialises in interpretation of drug resistance from multiple sequences obtained 
via next-generation sequencing technologies for instance from a single patient and internally uses 
random forest models on their numerical-encoding (using the Kyte and Doolittle hydrophobic- 
ity scores) as input to give resistance predictions (resistance or susceptible) for each sequence 
[125, 121]. Results from these different prediction algorithms may have certain discordances in 
drug resistance predictions, even though this trend should be decreasing as more resistance data 
and information becomes available. HIV DRMs are nevertheless updated via regular publications 
[77, 78, 79, 80]. Accuracy of predictions can have a large impact on the patient well-being, as 
suboptimal prescriptions lead to faster development of DRMs, which make drugs less effective. As 
the pool of ARVs is limited, optimized drug prescription is a must, not only for improved patient 
lifestyle but also for reduced risks of viral transmission, for instance in cases of shared syringes 
amongst drug users and in mother to child transmissions. In addition, preliminary analysis of 
the Stanford HIV protease and reverse transcriptase datasets used for training models to predict 
ARV resistance mainly consist of subtype B, which represents only 11% of the global cases of 
HIV infections, while at least 9 other subtypes exist, with a high prevalence of subtype C followed 
by subtype A [49]. Recombinants also exist and can be unique or not, whereby the former are 
termed “Unique Recombinant Forms” while the latter are referred to as “Circulating Recombinant 
Forms” [48] and are numbered sequentially [126]. Subtyping is a phylogenetic grouping [53], and 
subtype B is only an HIV sub-classification. One can easily predict that the effects of unobserved 
subtype-specific mutations will not be taken into consideration and as such prediction methods 
will generalize less well, especially if the evaluated sequences are very divergent. We therefore 
push and support the idea of making available subtype-specific sequences so that the accuracy of 
prediction can be increased. In this chapter, we show that by applying filtering strategies involving 
the removal of non-B subtypes, that prediction accuracy can indeed be increased, though at the 
expense of non-B sequences.
Publicly-available sequence datasets labelled with drug resistance ratios are used to train artificial 
neural network models for available FDA-approved ARVs. The raw dataset has various sources of
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uncertainty, that if mitigated can improve the predictive performance. By decreasing the chances 
for technical variation via various filtering approaches and focusing the analysis on the majority 
subtype (subtype B), we improve drug resistance prediction accuracy in several cases for protease 
and reverse transcriptase inhibitors, when compared to similar work done by Shen and co-workers 
[127], the well-established Stanford HIVdb web server and a recent prediction server, known as 
SHIVA [121]. We highlight strong disagreements with respect to drug resistance classifications ob­
tained from the SHIVA web server. Overall, we demonstrate an improved regression performance 
for the majority of HIV PIs and NRTIs when compared to recent models developed by Shen and 
co-workers [127] and further show competitive classification accuracies in comparison to the web 
servers Stanford HIVdb and SHIVA.

2.1.1 Machine learning solutions for complex problems

Since recent years there has been a growing interest in the use of machine learning (ML) to 
solve complex problems due to the increasing amounts of computational power and data avail­
ability. Many of these algorithms have been open-sourced via various libraries written in different 
programming languages, popular ones including scikit-learn [128], keras [129], TensorFlow [130], 
PyTorch [131], caret [132] for the R language and also as stand-alone tools such as LIBSVM [133]. 
While some algorithms are implemented similarly across languages, others can also be available 
in a particular language. For a brief description of what is available and how the algorithms are 
generally used in predictive modelling, we will describe some functionality from the open-source 
packages scikit-learn and caret together with the commercially-available software MATLAB. De­
pending on the format of data at hand, predictive models can either be built in a supervised or 
an unsupervised manner [134]. When available, labels can be used as target values to guide the 
learning process using matching features, in which case the training is referred to as being su­
pervised. A multitude of supervised learning algorithms are available, including linear regression, 
Random Forests (RF), k-Nearest Neighbours (KNN), Support Vector Machines (SVM), Artificial 
Neural Networks (ANN), naive Bayes, decision trees and ensemble methods, only to name a few. 
We now give a brief description for some of these algorithms. Linear regression is the simplest 
method which predicts an intercept and a coefficient for one variable to predict a response - multi­
ple linear regression (MLR) extends the idea using more than one input variable [135]. RFs are a 
composition of various decision tree structures each built from a random subset from the training 
data and uses averaging to predict classes or continuous variables [128]. The KNN algorithm uses 
a predefined number of neighbours on the basis of a distance measure (eg. Euclidean, Minkowski, 
Hamming, etc) to infer the class of a sample, but can also be used in regression [128]. SVMs work 
by identifying an optimal high dimensional decision boundary (hyperplane) defined by a given 
kernel function (eg. linear, polynomial, sigmoid, radial basis) with the objective of maximizing 
a separating margin between some training samples defined as support vectors [136, 128, 137]. 
ANNs are a class of biologically-inspired algorithms, and are discussed in detail in subsection 
2.1.4. Naive Bayes methods are a class of highly-scalable algorithms based on the application of 
Bayes Theorem under strong assumptions of predictor independence to mainly emit classification 
probabilities [137]. Ensemble methods are built by combining predictions from different simpler
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models, comprising of techniques such as bagging, boosting or stacking in order to decrease model 
variance - this definition also includes the random forest algorithms [138].
In the absence of any useful annotation, dimension reduction methods (for instance PCA or t-SNE 
[139]) in combination with clustering techniques (such as k-means, DBSCAN [140]) can be applied 
in an unsupervised manner to a set of features with the hope of finding structure from a given 
dataset. In the same way, hierarchical clustering can also be employed with a variety of linkage 
approaches before applying branch-cutting methods to find partitions within data points without 
explicitly-defined labels. In scikit-learn, these algorithms are laid out in a systematic object- 
oriented design, which requires creation of a parametrized model object, followed by applying a 
fit and predict function to perform the learning and prediction respectively on featurized samples. 
Training performance can then be assessed using separate functions, for instance regression and 
cross-validation. Proper data partitioning into training and testing sets is expected from the user. 
Similarly, the caret package from the R programming language uses a set of procedures, featuring 
a train and a predict function. ML algorithms are then simply defined as parameters to the train 
function together with cross-validation parameters. Same would be accomplished for a neural 
network using the newff, train and sim functions from the Neural Net add-on from MATLAB, 
and is used in this chapter.

2.1.2 Applications of neural networks in biological research

An artificial neural network (ANN) is internally nothing more than a complex regression algorithm 
amongst a list of various machine learning (ML) algorithms. ANNs take a series of input vectors, 
also know as features to match them up at an acceptable error tolerance to one or more expected 
target values (labels). Each feature set captures some description of a given input object, which 
can for instance be a protein sequence and the features would have some characteristic associated 
to it, for instance amino acid composition (as described in this chapter), as linearised 3D features 
(such as the Delaunay triangulation as used in Shen and co-workers [127]) or any other accurate 
descriptor of an object. Recent work has also used chemical descriptors as features to describe 
actual drugs in an attempt to infer biological activity from new compounds, in an approach 
known as the Quantitative Structure-Activity Relationship (QSAR) [135]. ANN-based models 
have found high-impact applications in the medical field, for instance in the non-invasive detection 
of malignant tumours from mammograms [141], identification of treatable diabetic retinopathy 
from tomography images [142], tuberculosis detection from radiographic images [143], modelling 
cellular growth and function from genotype [144], and many more.

2.1.3 Recent applications of ANNs specific to HIV research

ANNs have also been used in multiple contexts within the field of HIV research over the years, 
with interesting mentions of earlier studies on drug resistance in HIV-1 protease performed by 
Bonet and co-workers who trained recurrent neural networks with amino acid contact energies as 
features to predict resistance against 7 protease inhibitors [145], and work by Fogel and co-workers, 
who trained ANNs to identify dual-tropic HIV-1 (i.e. strains able to bind any of 2 co-receptors
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for cell entry) using various structural, biochemical and regional annotations as feature vectors 
for a dataset of 1559 HIV subtype B sequences [146]. We describe a few more recent use cases of 
ANNs in HIV research in the following paragraphs.

Otange and colleagues achieved clinically-acceptable performance (R2 > 0.9) estimates of viral 
load concentrations using Raman spectral peaks obtained from HIV-1 p24 antigen spiked blood 
samples as inputs for training ANNs [147]. As an underlying technique, Raman spectroscopy 
detects analytes based on the scattering patterns of monochromatic light associated with charac­
teristic molecular vibrational modes [147]. Whilst displaying a high performance, the viral titre 
estimation is additionally reagent-free, cheap and fast.

Dwivedi and Chouhan have employed a special kind of ANN, termed a radial basis function ANN 
to classify CRF and non-CRF HIV-1 strains with high accuracy using features of length 64 (to 
represent codon composition) from complete genomes with 10-fold CV [148].

Lu and co-workers applied one-hot encoding onto HIV-1 protease cleavage datasets (a form of 
binary feature representation comprising one non-zero bit within a longer vector of zeros) to train 
deep neural networks in order to predict cleavage sites of the HIV protease [149]. The deep 
learning models used in their study involved a Convolutional Neural Network (CNN), a Recurrent 
Neural Network (RNN) and a Long Short Term Memory Network (LSTM). These ANN models 
all include a high number of layers, and even more complex node layouts as is the case for LSTMs. 
RNN and LSTMs gave highest classification accuracies, in the range of 92-96%.

Hu and colleagues developed a deep learning framework named DeepHINT, able to accurately pre­
dict HIV-1 genomic integration sites from host DNA, while also providing mechanistic information 
explaining the detected sites [150]. Known integration sites together with flanking upstream and 
downstream nucleotides with one-hot encoding were generated prior to training.

Barzegar and co-workers developed an ANN-based QSAR workflow for predicting HIV-1 reverse 
transcriptase inhibition [—log(IC50)] based on a 1459 inferred molecular descriptors from 40 pyridi- 
none scaffold derivatives [151]. A regression performance of 0.92% was observed from the test set.

Buiu and co-workers performed preliminary work to predict the neutralising ability (IC50 values) 
independently for several antibodies using 4907 entire HIV-1 Env amino acid sequences, which 
were aligned and numerically-encoded for use as training vectors in feed forward ANNs [152]. 
The dataset was divided into 3 parts - 75% for training, 10% for testing and 15% for validation, 
repeated 100  times before returning the most generalisable model, based on the correlation value.

2.1.4 Neural network fundamentals

At the heart of neural networks is the application of a non-linear function to the dot product of 
the input and a series of weight matrices, followed by back-propagation of mean error. In their 
early beginnings, ANNs relied on binary step functions as “squashing” transforms from input 
data, which failed to give consistent results thus causing research interest in the field to decrease. 
However, replacing the hard step function by smooth non-linear functions turned the tides as
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training errors could be fed back into the model and minimized by including derivatives of the 
so-called sigmoid functions. These include the logistic, hyperbolic (inverse) tangent, softmax, 
in addition to linear transforms and the more recent Rectified Linear Unit (ReLU), which finds 
applications when the number of layers and nodes becomes very large (deep neural networks). In 
Figure 2.1, we show the simple layout for the construction of a feed-forward neural network. In 
this schematic (read from left to right), the input matrix containing 3 input features (vectors) are 
dotted against a weight matrix before being scaled by a sigmoid function. This forms the first 
layer of activations for 3 neurons. In order to produce 2 outputs per input vector, another weight 
matrix (with 2 columns) is dotted against this activated neuron and once again transformed - in 
this case a linear function is used by some implementations.

Figure 2.1: Example of a feed-forward ANN architecture with 1 hidden layer of 1 node, used to predict 
2 target values from each input feature. Every single dot is a real number and is coloured to show the 
flow of dot products from each input vector to subsequent layers. A sigmoid and a linear function are 
also included. In-place operations are surrounded by dotted lines. Two neurons are also shown in yellow 
and red hues. The first column from the inputs are biasing coefficients, which are typically assigned a 
value of one.

After the first pass, initial prediction values, here labelled as (yj), are generated. In order to 
adjust them towards expected output values (for instance y*), the back-propagation algorithm is 
used to minimize the mean square error (equation 2.6). Many variations of the gradient descent 
algorithm are available to address certain weaknesses that may be encountered, such as saddle 
points [153] and learning rates which can either lead to slow convergence [154] or even overshoot 
the error surface. Some examples of minimization algorithms (optimizers) for the error function are 
the stochastic gradient descent with momentum [155], Adagrad [156], Adadelta [157], RMSprop, 
Adam [158] amongst many more [154]. They all mainly affect the basic gradient descent algorithm. 
The generic algorithm is defined below (equation 2.1):

. dP . .
w =  w — a. (2 .1 )

dw
where P  is the error function and W  is the updated weight after subtracting the derivative with 
respect to the weight. Parameter a is the learning rate, a factor which specifies the rate of 
convergence towards a set target error. In order to implement this weight update, the error is 
back-propagated from the last layer towards the left-most weight matrix, by using the analytical 
derivative, which involves the chain rule to unwrap the derivatives from function compositions. 
Going against the gradient along a logistic or hyperbolic tangent makes this process convenient
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Left neuron Right neuron

Figure 2.2: Two selected neurons showing the flow of input across the multiplication operator and two 
activation functions (logistic and linear). The letters i, w, p, o and y represent the input, weight, product, 
activation and the expected output respectively. The subscripts l and r jointly refer to being an attribute 
of the left and right neurons. Note that ir is synonymous to oi. Adapted from Patrick Winston’s OCW 
lecture material on Artificial Intelligence [159].

as the updated weights are obtained by directly subtracting multiples of the same input weights.
As an example, we show the back-propagation mechanics using the two highlighted neurons and a
logistic transfer function that are used to apply equation 2.1 for weight updates from Figure 2.1.
The two neurons are redrawn in Figure 2.2: In order to calculate the first order partial derivatives
of the cost function P  with respect to all weights, the latter are considered separately, as they

dP dP
belong to separate layers. Starting from right to left, we evaluate and then , only stopping

dWr dwi
when the concerned weight is reached as shown in equations 2.2 and 2.3. In order to increase the 
depth of the neural network, equation 2.2 is applied to the final layer, while 2.3 is used to all 
the preceding layers. Reused computations are coloured in blue font. After one back-propagation 
sweep, the updated weight information is fed forward and the mean squared error is calculated. 
The cycle is iterated for a certain number of epochs until a defined maximum error tolerance.

5P  =  dP x dor x dpr ( 2 2)
dwr dor dpr dwr

dP  =  dP dor dpr d o  dPL ( 2 3)
dwt dor X dpr X dot X dpi X dwi .

As feature components can be of different magnitudes, these are typically scaled using various 
methods to improve the rate of convergence towards the target error. Two examples of such 
methods comprise the standard scaler (equation 2.4), which normalizes the data according to the 
normal distribution, with mean of zero while the minmax scaler (equation 2.5) scales data in the 
range [0,1]. The a function is given in equation 2.8

Xu
z-score(x) =

a(x)
(2.4)

, . x — min (x) minmax(x) =
max (x) — min (x)

(2.5)

2.1.5 Evaluation of model performance

ML models are mainly trained to emit real numbers or integers, in which case they are termed 
regressors and classifiers respectively, the choice of which directly influences the evaluation metric 
to be used. Additionally, a trained model has to generalize well given unseen data, and not only

22



predict training samples with high accuracy. The latter case is referred to as over-fitting. For 
this reason, prior to fitting the data is first partitioned into 2 or 3 subsets reserved for training, 
validation and testing (depending on the ML model implementation). As this may be problematic 
when the number of data points (samples) is limited, clever approaches have been designed to 
make maximum use of available data. Cross-validation (CV) methods such as the Leave-One-Out 
(LOOCV) and k-fold CV do just this. LOOCV trains n models using (n — 1) samples, while 
evaluating against the single unseen sample each time. Similarly, in the case of k-fold CV data is 
randomly partitioned into k unique partitions of size (n/k) before training k times on each of the 
(k — 1) folds to test on the single unseen partition each time. In both LOOCV and k-fold CV, n 
and k performance values are evaluated respectively, from which the mean and variance can be 
calculated. As k is a smaller subset of n , it can be deduced that LOOCV demands much more 
rounds of computation, but finds application when the number of samples is limited.
The actual performance values used in classification and regression problems are various, however a 
few simple ideas borrowed from the field of statistics are routinely used for performing comparisons 
- metrics based on the deviation from averages in the case of real data and the use of contingency 
table metrics in the case of discrete data. Some of the functions used in regression problems 
include the mean squared error

M SE  =  N  — yi)2 (2.6)
N i=0

where yi and yi are the actual and predicted values respectively for an ith sample. The coefficient 
of determination (R2) is also widely used. One way of computing this value is by squaring the 
correlation as such

R 2
' N

E (t i — y)(yi — y)
i= 0 a(y)a(y)

where a is the root mean squared deviation function, as shown in the following equation.

(2.7)
2

a(y)
Ef=o (yi — y)2 

N -  1
(2.8)

For classification problems, commonly-employed metrics include the sensitivity (true positive rate), 
specificity (true negative rate) and accuracy. However in our case we measure accuracy’s comple­
ment - the rate of misclassification. The metrics are calculated thus:

T P  . .
sen.si.trni.ty =  T P  +  F N  (2.9)

TN
sPec%f%c%ty =  TN  +  F P  (2.10)

T P  +  TN
accuracy =  T p  +  TN  +  F P  +  FN (2.11)
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m iscla ss ifica tion  rate =  1 — accuracy (2.12)

where the letters T  and F  refer to True and False while letters P  and N  refer to positives 
and negatives. Sensitivity and specificity effectively give the proportions of correctly-classified 
positives and negatives over the actual positive and negative samples respectively, while classifica­
tion accuracy gives the total proportion of correctly-classified samples. Above all, any prediction 
model will only at best be reflective of the quality and amount of training samples used to teach 
it. Hence, an understanding of the problem at hand and circumstances of data collection are very 
often key in making drastic improvements in the quality of computational predictions. Here we 
use biological knowledge of HIV and features of the data to pry out and discard data points likely 
to increase model variance, while limiting potential bias from under-sampling.

2.2 Methods

2.2.1 Preprocessing PR and RT drug resistance data

Unfiltered datasets were retrieved from Stanford HIVdb for proteases and reverse transcriptases. 
These datasets were chosen over the pre-filtered ones as they contained subtype information. Pre­
liminary checks could not match certain labels from the unfiltered dataset to the filtered one. 
Each entry of the records was uniquely identifiable by a sequence identifier, corresponding to a 
compacted sequence representation dependent on a consensus protease or reverse transcriptase se­
quence of the B subtype. Fold resistance ratios for each drug class were also available. Any residue 
deviation from the consensus were labelled by the characters ‘ .’ (no residue), ‘# ’ (insertion), ‘~ ’ 
(deletion), ‘* ’ (stop codon). Further, residue mixtures were denoted by two or more residues for 
a given position. Entries with incomplete fold resistance ratios were retained in order to increase 
the number of data points. To keep a total length of 99 residues (for proteases) and 240 (for 
reverse transcriptases) of a relatively higher quality, entries with indels were removed. Reverse 
transcriptase sequences were restricted to 240 residues to be on par with the filtered version of 
the dataset from Stanford HIVdb. Additional characters found during exploratory data analysis 
of the datasets ( /  X, d and l) were also filtered out. Sequences with mixtures were expanded to 
retrieve all possible sequence variations up to defined cut-offs, which were introduced initially for 
computational efficiency in cases where some entries would display over a million variant combi­
nations. Non-B sequences were discarded as they were in large minority in the datasets. Each 
sequence entry, was then represented as sequence with a corresponding fold resistance value (the 
label) for the matching antiretroviral for each of the drug classes used. Every residue composing 
each sequence was then numerically-encoded in order to construct a feature vector representing 
the viral sequences, as shown in Table 2.1. The matching sequence fold resistance values were 
placed in an output vector, with each entry corresponding to a feature vector. The approach 
used bears some similarity to the method used by [160] where codons were utilized with an earlier 
version of the dataset [161]. Major differences here are that our numbering method has no specific 
biological meaning; also more recent datasets were used.
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2.2.2 The training strategy

An Artificial Neural Network was optimized for each of the FDA-approved drugs (8  protease 
inhibitors and 10 reverse transcriptase inhibitors) mainly by varying the topologies of the hidden 
layers from 1 to 3 layers, with permutations of 2, 4, 6 , 8 and 10 nodes per layer. For each drug, 
the dataset was partitioned into 3 subsets, namely: 70% were used for training, 15% for validation 
and 15% for testing. The testing set was not seen during training and was used to evaluate out- 
of-sample performance. When over-fitting was detected due to low performance in the testing set, 
the number of layers was reduced to one and the number of nodes were varied (from 5 to 20). In 
order to mitigate sources of technical variation such as sequencing error coming from the input 
sequences, filtering strategies were evaluated in order to decrease out-of-sample error, namely (1) 
the filtering of rare variants, (2 ) the use of Principal Components Analysis for detecting potential 
outliers (3) the use of sequence expansion cut-off values to limit the amount of technical variation 
and (4) the use of error analysis to remove samples consistently giving large errors despite the use 
of different random weight initializations. Rare variants are defined here as amino acid residues 
present only once at any homologous position across all aligned sequences used in entire dataset 
for each drug. Absolutely conserved positions were ignored from training to improve the rate of 
convergence.

Table 2.1: Amino acid numerical encoding

residue A R N D B C E Q Z G H I L K M F P S T W Y V
encoding 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

As a preparation for MATLAB’s neural network functions, both the input features and the output 
vector were transposed to be used in a feed-forward neural network model based on Levenberg- 
Marquardt’s algorithm [162, 163]. By default the newff command scales the input features and 
removes invariant columns. Errors calculated from the differences between actual outputs and final 
network activations were back-propagated to adjust weights using the gradient descent algorithm. 
Back-propagation was repeated for a maximum of 1000 cycles, unless a minimum gradient of 1e-7 
was reached or upon 6 consecutive validation failures.

2.2.3 Assessing model performance

The predictive performance of trained models were assessed using both regression and classifica­
tion performance metrics, namely via the coefficient of determination (R2) and misclassification 
rates respectively. In order to show any signs of over-fitting, the k-fold cross-validation was used 
with 5-folds over the complete dataset giving the average error and its standard deviation. These 
values were compared against similar metrics evaluated from the Random Forest (RF) and K- 
Nearest Neighbour (KNN) models developed by Shen and co-workers referred to as protocols B 
and C respectively [127]. As an additional quality control, the detailed breakdown of regression 
performances was provided for separate subsets of the complete data giving R2 regression perfor­
mances over (1) the whole dataset, (2) the validation set and (3) the test set. Misclassification rates 
were computed by applying appropriate cut-off values from our ratio predictions. Predictions from
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Stanford HIVdb were obtained by submitting a GraphQL queries together with FASTA-formatted 
back-translated protein sequences (one of the coding sequences from each peptide) via the Sierra 
web service. Back-translation was done using backtranseq tool from the EMBOSS suite [164]. 
JSON-formatted predictions (where classes were labelled S, I and R for susceptible, intermediate 
and resistant respectively) were parsed and converted to numeric form 0, 2 and 1 for computing 
discordances. SHIVA predictions were obtained by submitting the protein sequence via their web 
page with default settings. Returned CSV files with labels (0,1) corresponding to susceptible and 
resistant were used directly for evaluating classification accuracy. In order to accommodate dif­
ferences between the number of classes evaluated by Stanford HIVdb and SHIVA (3 and 2 classes 
respectively), available binary cut-offs were obtained from the PhenoSense Assay, while values 
from a Stanford HIVdb R script [165] were used for 3-class performance evaluations (As shown in 
Table 2.2). In the case of SHIVA, where no binary cut-off is available for certain ARVs, a lower 
and an upper bound were evaluated for determining misclassification rates. The proportion of 
truly misclassified pairs (0,1 or 1,0) was used as a lower bound while ambiguous cases (2,0 or 2,1) 
were counted and set as an upper bound. In each case (predictions from our ANN models, SHIVA 
and Stanford HIVdb), matching cut-off values were applied to PhenoSense fold resistance ratios 
available from the dataset before evaluating discordances.

Table 2.2: Cut-off values used for classing drug resistance. Table re-used from [99].

PhenoSense cut-offs HIVdb cut-offs
ARV ARVs lower upper lower upper
class bound bound bound bound
PIs FPV 4 11 3 15

ATV 5.2 3 15
IDV 10 3 15
LPV 9 55 9 55
NFV 3.6 3 6
SQV 2.3 12 3 15
TPV 2 8 2 8
DRV 10 90 10 90

NRTIs 3TC 3.5 5 25
ABC 4.5 6.5 2 6
AZT 1.9 3 15
D4T 1.7 1.5 3
DDI 1.3 2.2 1.5 3
TDF 1.4 4 1.5 3

NNRTIs EFV 3 3 10
NVP 4.5 3 10
ETR 2.9 10 3 10
RPV 2.5 3 10
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2.3 Results and Discussions

Initially a single ANN model was constructed per ARV class, i.e. one for the HIV PIs and another 
for the RTIs. However, very large mean squared errors were obtained, corresponding to moderate 
correlations. We note that correlation is not a very robust metric when thousands of samples are 
processed as errors are diluted over the number of training samples to give a wrong impression of 
accuracy. For this reason, the regression models were independently built - one for each drug and 
correlation was replaced by the coefficient of determination (R2) as quality metric. It was also 
initially assumed that higher confidence sequences would be obtained by only considering cases for 
which drug fold resistance ratios were available against all members of a given class (RT and PR). 
Even though the odds of this assumption being right could not be completely ignored, this strategy 
consistently reduced the number of training samples, which would decrease generalizability of the 
prediction models downstream. Therefore, all sequences with at least one fold drug resistance 
ratio were considered to increase the information content via the more diverse pool of available 
sequence compositions. For this reason, several filtering criteria and approaches were implemented 
to reduce the incidence of low-confidence sequences.

2.3.1 Preliminary filtering and training

We begin by identifying structure in the data by examining the proportion of subtypes for each 
unique sequence entry and find an overwhelming proportion of subtype B sequences. Subtyping 
is a taxonomic denomination which clusters similar sequences and separates more divergent ones. 
On this basis we proceeded with increasing the accuracy for subtype B at the expense of decreased 
generalization to non-B subtypes. For each compactly-represented sequence from the raw dataset, 
if no ambiguous residue was present, it was reconstituted from 3 dimensional arrays. The first 
dimension corresponded to the sequence ID, the second represented residue positions and the third 
contained possible residues for each given residue position. Cartesian product was thus applied to 
each array of residues to reconstitute the encoded sequences. To facilitate and standardize feature 
construction, sequences with indel mutations were disregarded such that each protease was 99- 
residues in length. Same was done for reverse transcriptase sequence but were trimmed down to 
240 residues as is done for the pre-filtered data available from Stanford HIVdb. During sequence 
reconstitution, some sequences were found to have several thousands to millions of possibilities. 
Training with this data can bias the models towards sequences from the dominating sequence IDs 
and unnecessarily increase model variance if these were technical variations. Therefore, a series of 
cut-off values were experimented on to control the maximum number of sequence combinations to 
use, namely 10, 20, 50, 100, 200, 300 and 1000. Values lower than 300 were too stringent, yielding 
too few sequences, which would then lower the information content and generalizability of the 
models downstream. Therefore, we proceeded with threshold values of 300 and 1000. Numerical 
sequence encoding and checks for uniqueness were then performed for each separate filter level 
and drug. Thereafter, residues occurring once across the whole dataset (termed rare variant in 
our manuscript) were systematically removed on the assumption that very rare sequences have 
a higher chance of being random (sequencing) errors. Further PCA analysis was performed on
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the encoded sequences together with their resistance labels to infer additional outlying samples 
and remove them. ANN models were then trained by varying the number of hidden layers (1-3) 
and nodes (2, 4, 6 , 8 , 10). In all cases random seeds were set and recorded for reproducibility. 
Training parameters giving the smallest mean squared errors were retained. Error-analysis was 
then employed by performing element-wise subtractions of the predicted drug fold resistance scores 
from the actual values to spot sequences with which the models have trouble fitting. In an attempt 
to mitigate these problems, the best model architecture was retained for each drug, the initial 
random seed was removed and models were generated a few times to spot samples with recurring 
high absolute error. These were removed only when occurring multiple times before putting the 
seed back. Final models were evaluated by both regression and classification metrics in order 
to perform comparisons against those produced by Shen and co-workers, SHIVA and Stanford 
HIVdb.

2.3.2 Further filtering and ANN architecture optimisations

Filtering criteria described in the Methods section yielded a different number of unique sequence 
IDs for each drug, ranging from 169 (RPV) to 1524 (NFV) as shown in Table 2.4. The number 
of allowed sequence variants is generally found to be a maximum of 1000 except for 2 PIs (LPV, 
NFV) and the NNRTI NVP. Irrespective of cut-off value RTIs displayed a higher average number 
of variations than PIs, as observed from the higher proportions of unique IDs from expanded 
sequences. No particular pattern was observed for rare variant filtering, being applied to 10 out of 
the 18 prepared drug datasets. PCA and error analysis identified 1-2 potential outlying sequences 
for the drugs ATV, DRV, IDV, TPV and ETR. For the three reverse transcriptase inhibitors 
ABC, AZT and RPV, lower mean R2 values were initially obtained with relatively high variances. 
Therefore in these cases ANN architectures were screened afresh with only one layer of 5-20 nodes 
to rectify over-fitting, resulting in 14, 19 and 16 nodes respectively. For the remaining 15 drugs, 
only 2 models performed better with hidden 2 layers, the rest being optimal with 3 layers.

2.3.3 Regression performance

Our ANN models (henceforth referred as protocol A) generally improved on the performance 
obtained from models developed by Shen and co-workers [127] with higher mean R2 values and 
smaller standard deviations, as shown in Figure 2.3. In the case of PIs (Figure 2.3a), the average 
performance is higher in all cases, the gap being less in the case of IDV and LPV due to the 
relatively high model variance. Largest improvements for the PIs were achieved for the drugs FPV, 
SQV and TPV with respective average R2 differences of 0.117, 0.116 and 0.219 when compared to 
protocol B. For NRTIs, we obtained better overall performance, except in the case of 3TC, where 
the model was on par with protocol B. Appreciable improvements were obtained for AZT, DDI 
and TDF both in terms of R2 average and variance. In the case of NNRTIs, observably higher 
performances were obtained with the drugs ETR and RPV. Our seemingly higher performance for 
RPV may be offset by the smaller number of sample points, which limits generalizability to more 
divergent samples. Protocol C outperforms ours in the case of NVP, while the model developed
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for EFV had a lower average R2 compared to those of protocols B and C.

(a) Mean R-squared values 
for PIs

(b) Mean R-squared values 
for NRTIs

(c) Mean R-squared values 
for NNRTIs

Protease Inhibitors Nucleoside Reverse Transcriptase Inhibitors Non-Nucleoside Reverse Transcriptase Inhibitors

Figure 2.3: Regression training performances for PIs, NRTIs and NNRTIs. Our ANN models are in 
red while those from Shen and co-workers coloured in blue and yellow, representing the RF and KNN 
models respectively. Figure re-used from [99]

Further to our k-fold CV calculations, a breakdown of coefficient-of-determination values for the 
final models, given in Table 2.3 shows that over-fitting is minimal as the R 2 values are equally 
high for both data subsets used in model training and the test sets, for which data points were 
not seen during ANN construction. It is important to point out that these quality calculations 
are separate from the average values evaluated from k-fold CV.

2.3.4 Classification performance

In order to compare our models to additional prediction methods, our fold score predictions were 
converted to classes by applying cut-off values. All models were found to compare favourably in 
terms of misclassification rates against Stanford HIVdb, with respect to the initial PhenoSense 
labels (See Table 2.5). Same cannot be generally said for SHIVA, with exception of RPV where 
only 8.33% misclassification was obtained. TPV and ETR are unavailable from the SHIVA web 
server, but in all cases SHIVA seems to be very divergent from even the reference PhenoSense 
dataset given that the contingency tables were built in each case with respect to this reference. 
Main differences between our models and those from HIVdb should be attributed to the difference 
in filtering methods used on the original subtype-labelled fold resistance raw datasets.
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Table 2.3: Performance values (R 2) of our final models for different data subsets. Table re-used from
[99].

ARV
Classes

ARVs Whole
dataset

Validation
subset

Test
subset

PIs ATV 0.951 0.913 0.856
DRV 0.991 0.991 0.989
FPV 0.980 0.938 0.958
IDV 0.899 0.816 0.842
LPV 0.966 0.922 0.883
NFV 0.975 0.924 0.939
SQV 0.977 0.949 0.906
TPV 0.989 0.995 0.943

NRTIs 3TC 0.995 0.988 0.985
ABC 0.984 0.956 0.954
AZT 0.994 0.979 0.985
D4T 0.995 0.996 0.979
DDI 0.997 0.997 0.992
TDF 0.999 1.000 0.992

NNRTIs EFV 0.976 0.905 0.967
ETR 0.996 0.993 0.982
NVP 0.962 0.939 0.927
RPV 0.982 0.956 0.915
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Table 2.4: ANN hidden layer architectures and filtering parameters. Table re-used from [99].

ARV
class

ARVs Topology Fraction 
of unique 
sequence 
IDs

No. of 
allowed 
combi­
nations

Rare
variant
filtering

No. of
outliers
removed

PIs ATV 10x8x6 995/13625 <1000 yes 1
DRV 8x8 590/10374 <1000 yes 2
FPV 8x8x8 1429/17501 <1000 no 0
IDV 8x6x10 1459/16977 <1000 yes 1
LPV 10x8x10 1284/11019 <300 no 0
NFV 10x10x10 1524/11929 <300 no 0
SQV 10x10x8 1484/11509 <300 no 0
TPV 10x6x8 698/11989 <1000 yes 2

NRTIs 3TC 10x10x6 1342/33181 <1000 yes 0
ABC 14 1401/34016 <1000 no 0
AZT 19 1358/33818 <1000 yes 0
D4T 10x4x4 1365/34056 <1000 yes 0
DDI 10x6x6 1368/34062 <1000 yes 0
TDF 10x2 1130/29637 <1000 no 0

NNRTIs EFV 10x6x10 1400/33906 <1000 yes 0
ETR 8x2x10 448/11397 <1000 no 2
NVP 10x10x4 1414/20348 <300 no 0
RPV 16 169/2977 <1000 yes 0
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Table 2.5: Misclassification rates for our ANN models, HIVdb and SHIVA. Table re-used from [99].

ARV
class

ARVs AN N HIVdb SHIVA

PIs ATV 26.61 28.57 84.53
DRV 2.98 22.57 32.41-53.49
FPV 16.08 36.97 67.0-79.74
IDV 34.29 26.19 81.92
LPV 9.79 36.82 68.05-83.51
NFV 25.23 20.36 80.84
SQV 30.37 38.75 67.25-88.16
TPV 9.07 39.88 NA

NRTIs 3TC 3.87 12.09 90.21
ABC 6.53 33.78 50.76-72.25
AZT 36.19 29.88 90.38
D4T 7.31 44.07 79.15
DDI 8.05 57.52 34.14-92.44
TDF 5.39 37.2 37.36-66.53

NNRTIs EFV 16.08 21.05 81.32
ETR 6.58 13.21 NA
NVP 24.87 9.4 73.97
RPV 1.55 24.99 8.33

2.4 Conclusions

The main objective of this work was to improve the accuracy of fold drug resistance ratios to 
be as close to lab-determined values. We do so by training and optimising regression ANNs for 
each of the 16 FDA-approved ARVs (comprising PIs, NRTIs and NNRTIs) for which labelled data 
was obtained from unfiltered datasets available from the HIVdb. Our models compare favourably 
against the well-established Stanford HIVdb server and the models developed by Shen and co­
workers [127], as shown by high classification accuracies and R2 values. The main novelty here is 
in the series of filtering criteria used, which focused on subtype B while minimizing sources of tech­
nical error. Overall, we found that non-B data is insufficient from publicly-available datasets. The 
big question which remains is how these models will perform against phenotypic data from non-B 
subtype if such is made available. Should such labelled data be obtained, the strategy described 
in this chapter should apply similarly to produce competitive resistance prediction models.
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Chapter 3

When binding energies fail: An arsenal 
of approaches to search for a hidden 
drug-resistance signal

3.1 Introduction

The approach described in Chapter 2 displayed a surprisingly high overall performance for drug re­
sistance prediction in HIV protease and reverse transcriptase subtype B. This improvement comes 
with a decreased generalizability for other subtypes. We therefore attempt to fill in this gap by 
firstly evaluating protein ligand binding energies, still using the same resistance data. To test the 
correctness of this method we use subtype B to search for a highly-conserved pattern separating 
drug-resistance from susceptibility, in the hopes that it would be strong enough to extrapolate to 
non-B subtypes. However, as we will see binding energy fails to reveal any meaningful association 
with the level of drug resistance. We then test an array of different approaches to search for a 
clear differential signal, that if sufficiently conserved, might apply to non-B subtypes. Current 
ARV drug resistance prediction methods are mainly developed using subtype B, hence may tend 
to show reduced performance in non-B subtypes. A growing body of evidence suggests the influ­
ence of subtype on drug resistance [166, 167]. For instance, there is an increased rate of the early 
emergence of an RT major DRM K65R variant in subtype C when tenofovir is used in therapy 
[168]. Also, the RT N348I variant (not found amongst the 2017 DRM update [80]) was found 
to be frequent in patients failing first-line ART for subtype C HIV [169]. In a study assessing 
the suitability of resistance prediction algorithms in subtype C, it was found that the resistance 
was overestimated against the drugs etravirine and rilpivirine [170]. Another study based on viral 
load and CD4 cell counts found that non-B subtypes (A, C and D) differed amongst themselves in 
the selection of DRMs for patients not undergoing routine viral load checks and failing first-line 
NNRTI regimens [171]. Unfortunately the number of non-B resistance-labelled sequences from 
the Stanford HIVdb dataset is currently insufficient and so is its diversity for improving predic­
tive models against any non-B HIV. This said, in silico techniques for structural analysis may 
be evaluated for their effectiveness in determining drug affinity to receptors, which may then be 
extrapolated to non-B subtypes if they prove to be correct enough. There are various ways of
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estimating drug binding free energies ranging from the computationally-cheaper virtual screening, 
to those that can improve on it further such as MM-PBSA/MM-GBSA [172], thermodynamic 
integrations [173], linear interaction energy [174], alchemical transformations [175, 176], potential 
of mean force calculations [177], which are however very computationally-expensive to compute 
even for moderately large sample sizes. A great amount of effort is focused on improving in silico 
methods used to evaluate drug performance as this is still an open research problem [178]. Many 
approaches have been tried and are still emerging, with some examples including: the combination 
of docking and molecular dynamics to predict PI drug resistance, with reported accuracies in the 
range of 72-83% [179]; the use of docking scores to predict SQV resistance in HIV [180]; the com­
bination of 3D-QSAR and molecular docking to cross-validate the potency of DRV derivatives as 
potential protease inhibitor candidates [181]; the training of convolution neural networks using 3D 
representations of protein-ligand complexes to predict drug performance [182];the development of 
a trained Random Forest-based scoring function used to augment AutoDock Vina’s semi-empirical 
score for a improved overall screening power [183]. The list is long, especially with the increasing 
accessibility of structural data and advent of more sophisticated machine learning algorithms.

In this work, we start by investigating simpler approaches using a relatively large number of la­
belled sequences in an attempt to mitigate the drop in accuracy for a computationally-tractable 
speed trade-off, to gradually escalate towards more involved approaches. Starting with (1) mod­
elling and minimizing with ligands, we then proceed to (2) protein-ligand docking and (3) binding 
energy calculations during short molecular dynamics simulations of the complexes. Subsequently, 
several approaches are tested, involving Normal Mode Analysis (NMA), Dynamic Cross Correla­
tion (DCC), Perturbation Response Scanning (PRS) and dynamic residue network analysis. No 
strongly-conserved differential signal could be picked up to identify the resistance but they helped 
in laying the foundations and understanding the system in order to get closer towards a working 
method, later described in Chapter 4. In each of the following subsections we give details of the 
methods used in this chapter.

3.1.1 Overview of homology modelling and energy-minimization

In our search for a ligand-binding performance metric from docking, protein receptors are required. 
However, not all of them are available from current macromolecular structure databases, such as 
the Protein Data Bank. In the absence of experimental data from X-Ray crystallography or NMR 
data, protein structures can be inferred via various in silico approaches such as ab initio methods 
for relatively small proteins (<  120 residues) [184] and template-based modelling [185]. Provided 
with solved high-resolution templates of sufficient similarity, high-quality models can be obtained 
for target sequences [186]. MODELLER is a very versatile library with which a most-probable 
protein 3D models can be inferred from experimentally-determined structures [185]. Given suffi­
ciently similar sequences comparative modelling can predict structures with a root mean squared 
deviation within 1 A of the actual structure [187]. The method begins by aligning a sequence of 
interest (the target) to that of a selected template [188], which already has a solved structure. 
Multiple spatial features including Ca — Ca bond distances, angles, dihedrals and dihedral pairs

34



at atom intervals (2, 4 and 8 atoms), atomic density and solvent accessibility are then extracted 
from the template to be transferred onto an initial candidate structure for the target [189]. A 
final model is obtained by a combination of restraint satisfaction and conjugate gradient energy 
minimization (EM), even resorting to molecular dynamics or simulated annealing depending on 
the degree of refinement required [190, 191]. For our purpose, we require the positioning of a drug 
inside the binding cavity. To achieve such a task, MODELLER copies the co-crystallized ligand 
to the target model as a rigid body, which implies that additional resolution of energies may be 
required to allow for more favourable ligand orientations. For this task energy minimization is 
explored using the steepest descent algorithm via the GROMACS tool. While the global poten­
tial energy minimum would be ideal, finding it through high-dimensional configurational search 
space is very laborious such that EM algorithms within GROMACS only stop at the nearest local 
minimum [192]. Available algorithms include that of the steepest descent (SD), the conjugate 
gradient and the limited-memory Broyden-Fletcher-Goldfarb-Shanno (l-BFGS) minimizer, which 
all vary in their convergence rates versus accuracy trade-offs [192]. We employ the SD algorithm, 
implemented in GROMACS as such:

rn+1 rn +
Fn

max (|Fn|)
hn (3.1)

where r and F are vectors each of length 3N describing the atomic positions and forces along the 
x, y and z axes for each atom of a given system respectively. The scalar hn is the initial step size 
in nm, which is scaled by a factor of 1.2 or 0.2 based on whether the difference next potential 
energy is lower or higher than its actual value, respectively [192]. The force vector is scaled by 
the absolute maximum of its components before applying the position update for all the atoms 
at once. The algorithm stops when either a user-defined gradient (e) of the potential energy or a 
maximum number of steps is reached.

3.1.2 Molecular docking for estimating ligand affinity

Small molecule docking against receptors forms part of the preliminary steps for prioritizing lead 
molecules prior to the use of more computationally-demanding steps in the hopes of expediting 
the drug discovery process [193, 172, 194]. Diverse algorithms have been developed for that partic­
ular task and mainly involve finding the most energetically-favourable ligand binding pose using 
scoring and searching functions [195]. As reviewed by Kitchen and co-workers, ligand scoring can 
broadly be classified into force-field, empirical and knowledge-based methods [196]. An exam­
ple of a force-field-based approach is the one used by AutoDock4 and is shown in equations 3.2 
and 3.3, in which energy terms are calculated independently and summed. However, it is also 
semi-empirical [197]. The estimated binding free energy (AG) is a summation of the inter- and 
intra-molecular interactions in the bound and unbound forms, together with ligand conformational 
entropy (equation 3.2).

A G =  (V L- L — V L- L ) +  (V p - p — V p - p  ) +  (y P - l\v bound v unbound' ' \v bound v unbound' ' \v bound
V p-L

unbound +  ASconf ) (3.2)
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In equation 3.2, superscripts L and P refer to the ligand and protein respectively. The intra- and 
inter-molecular potential energy (V ) terms calculated for each of the bound and unbound terms 
in the same equation correspond to the following:

V  =  Wvdw £  ( A 2  -  j  +  Whbond £  E ( V I  -  j  +=  Wvdw
ij

QiQj

j ij j ij ij

V̂elec £  ( e T r f ^ )  +  Wsol Y,(S iV j +  S  /2<j2 +  WconfNtors
ij ij ij ij

(3.3)

where the coefficients W  are weighing terms calibrated to experimental binding constants [198]. 
The first and second terms are implementations of the Lennard-Jones potential for estimating van 
der Waals and directional hydrogen bonding contributions respectively, where the higher and lower 
power terms jointly denote repulsive and attractive components. The Coulombic term handles 
electrostatic interactions as a function of charge pairs (qi and qj) and their inter-atomic distance. 
Desolvation accounts for the hydration-related energy contributions in the form of implicit water 
[199]. Finally the entropic term gives an estimation of conformational entropy lost upon ligand 
binding [197].
An example of a non force-field-based (semi-empirical) scoring function is the one used by AutoDock 
Vina (henceforth referred to as Vina), whereby binding affinity is estimated via a series of 
empirically-determined weights (from actual ligand binding energies) applied to two Gaussian 
terms and three piecewise functions, which are mainly parametrised by inter-atomic distances 
[200, 201]. No interactions are evaluated beyond a distance of 8 A. The Gaussian terms together 
with the repulsive term form the steric component of the potential [201]. Hydrogen bonding and 
hydrophobic interactions (equations 3.8 and 3.9) are applied conditionally via piecewise functions - 
i.e. a hydrogen bond is evaluated only between proton-donating and accepting atom types, while 
hydrophobic interactions are only inferred from pairs of hydrophobic atom types. The atomic 
distance is defined by the difference between their collective van der Waal radii (Rt) for the atom 
types and their centers, as shown in equation 3.5. The total energy is evaluated as the sum of 
inter- and intra-molecular contributions (cinter and cintra respectively) for the complex, as shown 
in equation 3.4, where h refers to each energy term.

c cinter +  cintra ^  ̂htitj (dij) 
ij

(3.4)

dij r ij Rti Rtj (3.5)

gaussi(dij) =  e-(dij /a sA)2 (3.6)

gauss2(dij) =  e-((dij-3A)/2A)2 (3.7)
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repulsion(dij )
d2j , ifdij <  0 

0 , ifdij > 0

hydrophobic(dij )

1 , i f  dij <  0.5a

linearly interpolated, i f  0.5A < d j <  1.5A 

0 , i f  dij >  1.5A

hydrogen(dij )

1, i f  dij <  —0.7a

linearly interpolated, i f  — 0.7A < dij < 0 A

0 , i f  dij >  0 A

(3.8)

(3.9)

(3.10)

In order to calculate the poses, conformational space (comprising of translational and rotational 
degrees of freedom) has to be visited, but for computational tractability various algorithms are used 
to avoid an exhaustive sampling [196]. Vina estimates ligand binding free energy via the weighted 
sum of terms comprising two Gaussian functions and terms for repulsion, hydrophobicity, hydrogen 
bonding and the number of rotatable bonds evaluated for inter- and intra-molecular interactions 
[200]. As such, in addition to the commonly used molecular mechanical approximations of chemical 
potentials, Vina is also partly ML-oriented. The best solutions for the ligand poses are then 
ranked from a search space initiated from a diverse set of randomly-mutated conformations by 
minimizing the scoring function using the Broyden-Fletcher-Goldfarb-Shanno algorithm [200]. 
Vina is generally more easily set-up and according to Trott and co-workers [200] is approximately 
an order of magnitude faster than its parent software AutoDock, yielding lower ligand RMSDs 
from the refined PDBind training set while still maintaining higher out-of-sample performance. 
For these reasons Vina was a tool of choice for assessing in this case not the ligand, but the indirect 
performance of its bound receptor in a large-scale experiment. We hypothesised a reduction in 
ligand affinity against drug-resistant receptors in comparison to drug-susceptible ones. Correlation 
tests of the binding energies against the actual fold drug resistance scores for the B subtype dataset 
would subsequently inform us on its suitability as a proxy for inferring the efficacy of each PI 
drug. Both the Pearson’s and Spearman’s correlations are used. While Pearson’s coefficient is the 
covariance normalized by the product of the standard deviations of bivariate samples, Spearman 
uses the same mechanics on the ranks rather than the actual values. With a range of [-1, 1] jointly 
corresponding to negative and positive association (and zero being a lack thereof), Pearson’s 
r is more affected by the magnitude of differences, while Spearman’s p is affected to a much 
lesser extent. The tool X-Score, also used in this experiment, estimates binding affinity using 
a different scoring method from an already docked ligand pose, based on a consensus averaged 
score estimated from a set of 3 empirical scores pertaining to different aspects of hydrophobicity, 
namely HPScore, HMScore and the HSScore [202]. Each of the individual scores factors in van der 
Waals interactions, hydrogen bonding and deformation with different weights, differing at their 
hydrophobic term which separately account for “Hydrophobic Pairs” , “Hydrophobic Match” and 
“Hydrophobic surface” [202].
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3.1.3 Molecular dynamics simulations for conformational sampling

Molecular dynamics simulations are a way of investigating the dynamic properties of molecular 
systems over time. Due to the advent of increasingly efficient algorithms and cheaper cost of com­
putations, MD simulations are being heavily used in research to investigate multiple biological 
phenomena, such as allostery [203], in drug discovery [176], protein dynamics in alternate pheno­
types [204], which themselves encompasses a vast array of research applications. Different levels 
of simulation accuracies and theory can be applied to the biological systems under investigation 
via combinations of quantum and/or Newtonian representations of atomic models, for this work 
we only use the latter for computational efficiency given the large experimental size. Newtonian 
(molecular mechanical) models can be parametrised to mimic certain aspects of biology, such as 
ionic concentrations, temperature, pressure and to a limited extent the pH as well (via the recog­
nition and use of specific protonation atom types in the GROMACS software for instance). The 
basis for atomic mobility is implemented by solving for Newton’s second law of motion (F  =  mx) 
in a thermodynamic system defined by functions approximating potential energies. The simu­
lations begin with a static structure to which velocities components (vi) are randomly selected 
from a Maxwell-Boltzmann distribution generated by multiplying a random normally-distributed 
number in the range [0,1] by the standard deviation of the Boltzmann curve at the required 
temperature in Kelvin, where k is the Boltzmann constant. Velocities for all particles have to then 
be rescaled to match the required temperature and total energy [192] for the ensemble, due to the 
partial stochasticity. Residue and atom types for the force field define various atomic parameters 
such as the masses, partial charges, valences and bonding geometries for use in the thermody­
namic system. After the first velocity updates from zero, the subsequent velocities and positions 
are calculated for each time step, for instance by applying integrators such as the leap-frog or 
Verlet. Energies are calculated using the potential function defined by the chosen force field equa­
tions. These functions cater for both bonded (bond stretching, bending, angles and dihedrals) 
and non-bonded (Lennard-Jones and Coulomb) interactions, which are very similar to the terms 
used for pose-scoring in molecular docking. In this thesis, the AMBER03 [205] forcefield (equa­
tion 3.11) is used for all MD simulations. The bond stretching (1-2 interactions) and bending 
(1-3 interactions) terms [206] are defined by their respective force constants kb and ke and their 
deviations from equilibrium position (beq and 9eq) along their respective harmonic potentials. Vn 
is the force constant while 0 and 7  are the dihedral and phase angles respectively for the third 
term (1-4 interactions). The last term (for the non-bonded interactions) is a combination of the 
Lennard-Jones and Coulomb potentials, where the A and B  terms represent atomic repulsion 
and attraction, while partial charges are represented by q. The effect of simulation medium is 
controlled by the parameter e, which is usually has the value of one in typically-used solvated 
environments [205].

Etotal — / j kb 
bonds

kb(b — beq)2 +  y  ] ke (9 — @eq )2 +  
angle

VnY Vn [1+ cos(n 0 —t )] +  5 ]
dihedrals i<j

Aij Bij qiqj
+

Rif Rij ' eRi]}

(3 .1 1 )
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Independently to the force field equations, restraint potentials (mainly distance, angle and di­
hedral) are also available to prevent large sudden deviations, for instance during preliminary 
temperature and pressure equilibration steps, prior to doing production MD runs. In order to 
make biomolecular simulations more life-like, these MD experiments are typically performed in 
explicitly-defined water molecules, which are mainly utilised as variations of the SPC (Single 
Point Charge) or TIP water models together with added ions. As the solvation introduces new 
forces to the structure under study, these atomic clashes are first resolved by employing energy- 
minimization algorithms (e.g. steepest descent and conjugate gradient) before initializing velocity 
components for each atom. The temperature and pressure equilibration algorithms (commonly 
those of Berendsen [207] and Parrinello-Rahman [208] respectively) are typically done prior to 
production runs to ensure appropriate thermodynamic properties for the target temperature and 
pressure of the system. Finally constraint functions (typically LINCS [209] or SHAKE [210] al­
gorithms) are also included to correct for exceedingly large geometry deviations which may occur 
during equilibration and production runs [192].

3.1.4 Normal Mode analysis using an Elastic Network Model

Modal analysis is used in different domains of research ranging from the analysis of vibrational 
motions within objects engineered to perform critical functions, such as bridges and plane wings 
[211] to the study of functional motion in enzymes, viral and large protein assemblies [212]. The 
normal modes are obtained by decomposing a matrix of second partial derivatives of the potential 
energy for a given system, with respect to displacement along the x, y and z component axes [213]. 
Depending on the system size and/or level of refinement needed, this potential energy can be the 
result of applying a wave function (e.g. hybrid quantum mechanics [214]), a molecular mechanical 
force-field [215, 192] or more simply via a harmonic potential [216]. This second order derivative is 
generally represented as a square matrix, termed a Hessian (H ), where V  is the potential energy, 
subscripts i and j denote atom positions while the Cartesian coordinates are X, Y  and Z:

Hiij

dV dV dV
dXidXj dXidYj dXidZj

dV dV dV
dYidXj dYidYj dYidZj

dV dV dV
dZi dXj dZidYj dZidZj

(3.12)

dFxwhich represents force coefficients —— , where x  here is a generalized coordinate for the displace-
dx

ment of any particle along an axis. In order to obtain the modes of motion, which are non-zero 
orthogonal basis vectors, the Hessian is decomposed. These characteristic vectors, termed eigen­
vectors are typically normalised to unit length and have corresponding eigenvalues (scalars) as­
sociated to them. Two popular matrix decomposition algorithms are the eigenvalue and singular 
value decomposition methods (EVD and SVD, respectively), which both yield the same eigenvec­
tors for a square symmetric matrix. EVD factorisation by UAUT yields a diagonal matrix A of 
eigenvalues and another array for the matching eigenvectors U , while SVD factorisation provides 
the same information as identical left and right singular vectors, as represented by the following 
equation U£ V T. Elements from the diagonal matrix £  are however equal to the square root of

39



Y  X  Y

Figure 3.1: Components of the spring constant A along 3 pairs of axes from 3D Cartesian space for 
residues pair r  and rj, connected by a spring. The constant A is usually set to one.

values from the EVD diagonal matrix [217]. Coincidentally, in principal components analysis, a 
covariance matrix (C) is decomposed [218] instead of the Hessian, nevertheless the matrix C  can 
also be obtained by inverting the Hessian [219]. The use of NMA relies on a main assumption, 
which is that the equilibrium conformations oscillate around a single well-defined minimum energy 
conformation [220, 219]. In other words, NMA results are only valid at the immediate neighbour­
hood of this potential energy minimum, as large displacements from it may visit new minima [219], 
for which the modelled Hessian will differ. The extraction of orthonormal modes only hint at all 
the mathematically-possible ways a protein can move around a defined equilibrium and do not di­
rectly show how the actual motion happens, even though one or more of the low-frequency modes 
are functionally-relevant in most cases [221]. These modes correspond to the global motions, 
which are insensitive to local interactions [219]. This fact was exploited by Tirion’s pioneering 
work in which the usual multi-term molecular mechanical potentials were replaced by the simpler 
Hookean potential to successfully reproduce the slow dynamics of multiple large globular proteins 
[216]. Following this work, Bahar and colleagues further propose the concept of elastic network 
models (ENM) by introducing a cut-off distance (< 7A) for the calculation of a Kirchhoff (or 
valency-adjacency [2 2 2 ]) matrix r  from proteins coarse-grained by Ca atoms to be used by two 
main models, namely the Gaussian Network Model (GNM) [223] and the Anisotropic Network 
Model (ANM) [224]. In both these models, Ca atoms serve as nodes, which are connected by 
springs of uniform stiffness 7 , fixed by a cut-off radius rc [213]. The r  matrix for GNM is of size 
N x N  [223] and thus loses mode directionality, while that of the ANM is of size 3N x 3N [224] 
which caters for displacement along each axis. While the uniform spring constant A can be varied, 
the Kirchhoff matrix is defined as such:

r
- 1 ,

ij

i= j, Rij<rc 

i= j, Rij > rc

S i,i=j rij i =  j

0 (3.13)

In order to determine the contribution for each force coefficients along each component axis, 
the second order partial derivative A is scaled by the angle cosine formed between any pair of 
axes at each residue pair, for the off-diagonal residue entries from the Hessian. Figure 3.1 shows 
components of the spring constant along some example axes. The cosine is calculated from the
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dot product of the unit vectors. Each diagonal value is however evaluated by the row sum from 
the matrix, as shown in equation 3.13.

3.1.5 Dynamic Cross Correlation (DCC)

Dynamic cross-correlation is a popular method for MD analysis used in the study of correlative 
motions between atoms of molecular systems [225, 226]. One of its implementations is defined by 
the following equation, which we use in this section:

, =  (ATi.ATj)
'ij /-----------------

A A ri )(A ri)
(3.14)

where A ri or ri — (r̂ ) is the displacement of the ith residue from its time-averaged position [227]. 
It also corresponds to the normalized covariance matrix, also known as the second moment matrix 
A , where aij is defined by (Ari.A rj), which is conceptually the mean squared fluctuation when 
i equals j  [228]. DCC values are generally plotted as a 2D map, which displays the correlations 
between every residue pair as determined over a defined amount of time, whereby values in the 
range [-1,1] show negative and positive correlations respectively. A value of zero corresponds 
to uncorrelated motion. The method cannot detect atomic motions that are in the same phase 
and period but at perpendicular angles; a major caveat found at the sub-nanosecond time scales 
is that perceived correlations heavily depend on the time-scale over which conformations are 
sampled. Very early work by Hunenberger and co-workers [229] demonstrate that cross-correlation 
values may not converge when evaluated over small sections (picoseconds) from an MD trajectory. 
Nevertheless the method is useful and can lead to interesting insights, such as the identification of 
collective motions and the characterization of protein domains [227] and has been used in several 
applications investigating differential dynamics happening in protein systems, such as those of (1) 
wild type and mutant coronavirus proteins upon RNA binding [230], (2) allosteric mechanisms in 
human Ras protein onco-mutations [231], (3) binding of the cyclic peptide DC3 to the androgen 
receptor involved in prostate cancer [232] and many more. Here DCC is used to investigate 
whether correlations prevailing in drug-resistant and drug-susceptible ensembles are differential. 
If successful, the method could be used to further focus on early resistance-associated movements 
that are most differential, specific enough to function in non-subtype B sequences. Instead of 
using a DCC map, aggregates of the cross correlation values are compared across ensembles, as 
explained in the methods section.

3.1.6 Application of Perturbation Response Scanning to search for 
trigger residue positions correlated with the resistance state

Originally described in 2009 by Atilgan and Atilgan in the context of Fe3+ shuttling within a ferric- 
binding protein [233], the principle has been slowly gaining popularity [234, 235, 236, 237, 238, 239] 
in the analysis of allostery in proteins. The principle relies on the application of uniformly- 
distributed random forces at a single residue Ca atoms, centered around zero, over their three
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coordinate axes and recording the resultant displacement of all other residues. The force applied, 
or the perturbation, is isotropic, meaning that its uniformly distributed spherically [233]. There 
are three main assumptions for setting up the main equation behind the PRS algorithm. Firstly, 
for a net force of zero at equilibrium, the sum of forces resulting from internal (residue-residue 
interactions) and externally-applied perturbations should be zero along every direction cosine for 
each residue.

B 3Nx M x A f Mxl =  AF3Nxl (3.15)

where B  if the matrix of direction cosines, A f  is the vector of internal forces and A F  is the 
matrix of external perturbations, for a system of Ca atoms connected by springs. Secondly, the 
displacements along each of the bond vectors (Ar) are matched to those of the position vectors 
(AR), given the direction cosines.

BMX3N x A R 3Nxl — A rMxl (3.16)

Lastly, Hooke’s law is formulated as such, using uniform spring constants, which are defined only 
for residues within a specified cut-off radius rc:

K m xm  x A rm xl =  A f Mxl (3.17)

By replacing the internal force A f  and subsequently the bond vectors A r in equation 3.15, a 
relation involving the Hessian matrix ( B K B ) t  is retrieved, in an expression representing the 
external force as a linear product of the position vector and the Hessian:

( B K B  )t  A R  =  A F  (3.18)

By changing the subject of formula to determine the displacement A R from A F , the main pertur­
bation equation for the whole system is obtained by inverting the force constants of the Hessian 
into a matrix of displacements per unit force, along the direction cosines:

( B K B t  ) - l A F  =  A R  (3.19)

Equation 3.19 is applied system-wide, using a force vector, comprising of zeros except for the 
residue to be perturbed, i.e. {0, 0, 0...AFX, AFy, A F lz...0, 0, 0} where the force is uniformly applied 
to residue i along each of its units of displacement. Perturbation components propagate through 
the entire molecule to result in a global displacement from an initial molecular configuration, 
which is recorded by subtracting the displacement. The perturbation is repeated for the same 
residue (for example 100 times), and average displacements are obtained before calculating the 
overlap (or correlation) against a target conformational change. The same experiment is repeated 
for each residue to determine the regions yielding highest similarities to the target conformation. 
The Hessian matrix can also be obtained from a trajectory, as explained for the Normal Mode 
Analysis in subsection 3.1.4, and is the one used in this analysis.
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3.1.7 Residue network analysis for identifying differential network be­
haviours associated with resistance

A network graph is a mathematical representation of variables with underlying relational infor­
mation. Being composed of nodes (also known as actors or vertices depending on the field of 
application) and edges (also known as arcs or ties) which link the former, they can represent very 
complex data and lend themselves to different types of analyses. There are two main ways of 
representing networks, firstly as edge lists, which are more compact and secondly as the more 
computationally-friendly adjacency matrices, which allow the use of linear algebra operations. 
Edges can be binary with values {0, 1} or continuous, in which case they are weighted. Depend­
ing on types of relations supported by the edges, networks are classified as undirected or directed. 
In the former case, the adjacency matrix is symmetrical while in the latter case it is asymmetric 
(also termed a digraph), reflecting the non-reciprocity of node relationships [240]. In addition, 
networks can be cyclic or acyclic, in which case nodes are allowed to have self-connections or not, 
respectively.
Several network concepts are defined to summarize and reveal underlying engrained patterns from 
relational data. These include, but are not limited to the degree, betweenness, closeness, shortest 
paths and clustering coefficient. These and additional metrics are described herein, with social 
network interpretations (mainly adapted from [241]). The degree centrality, also known as con­
nectivity is defined by the following:

ki =  ^  A j , (3.20)
i=j

where A is the adjacency matrix. Node degree defines the sum of neighbours for any given node. It 
can be calculated as the row or column sum from the adjacency matrix. Scaling by the maximum 
degree adjusts its values to the range [0 ,1], and can be defined as:

Ki
ki

k̂max
(3.21)

Heterogeneity is a measure of degree variability, normalised by its average. As opposed to regular 
graphs, where every node has the same degree, complex networks tend to be approximately scale- 
free and tend to display a higher degree heterogeneity [241]. A scale-free topology is a network 
property in which a straight line displays a high fit if the log degree centrality is plotted against 
its log probability density [241]. Such networks generally comprise a few highly-connected nodes 
and a large number of low-degree nodes, making such networks resilient to accidental errors [242]. 
The heterogeneity metric is defined by the following:

^var(k)
mean(k)

n x sum(k2) 
sum(k)2

1 . (3.22)
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The maximum adjacency ratio (MAR) for a given hub node shows whether it connects strongly 
to a few neighbouring nodes or moderately to many more nodes, and is defined as:

MAR(i)  =  ( A  )
l^i=j Aij

The density metric describes the average degree centrality prevailing within a given network. A 
value of 1 corresponds to fully-connected nodes, whereas lower values point to more heterogeneous 
relationships. Network density is defined by the following:

(3.23)

mean(k)
Density = ------------

n 1
(3.24)

The clustering coefficient assesses the degree of interconnectedness around a given node, the 
social interpretation being whether somebody’s friends are also friends with each other thus form­
ing a clique. The highest value would thus occur when all the nodes are connected to each other 
around a given node. It is defined likewise:

Z j  Z k  AijAjkAki -  Z j  A|j Aij

( E j - j l
(3.25)Clustering coefficient(i)

Topological overlap (TO) measures the extent of shared neighbours between two nodes. This 
metric adds to clustering coefficient by incorporating shared presence and absence of contacts (or 
“friendships” in the social network jargon) between two nodes, and can thus be used as a way to 
decrease the impact of erroneous adjacencies in a network thus yielding a more robust measure of 
interconnectivity [241]. TO is defined by the following:

T O( i , j )
Eu=i,j AiuAuj +  Aij

min ( E  u=i AiuJ2u=, j  + 1 -  Au=j j ij
(3.26)

Betweenness centrality (BC) measures the number geodesics going through an intermediate 
node [243]. This therefore reflects the importance of high-betweenness nodes as information control 
points within a network [244]. For this reason, their removal will tend to cause the most disruption 
within the network [245]. BC is defined as:

B C  (i) =  ^  , (3.27)
j=i=k£V ajk

where j  (i) denotes the number of geodesics for each of the node pairs j  and k that go through 
node i . The term geodesic distance is generally used to refer to the shortest path connecting two 
given points along a curved surface [246] and is borrowed as a network terminology to describe 
the shortest path (or degree of separation [240]) connecting two nodes in a network graph [247]. 
Some examples of algorithms used for determining the geodesic distances are Dijkstra’s [248], 
Bellman-Ford’s [249], the A* [250] and Johnson’s [251] algorithms, among a list of many more 
[252]. The average shortest path (L), also known as farness, unlike betweenness, gives the
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averaged shortest paths leading to instead of through a node. The computation of L is essentially 
performed for each node by determining the shortest distance to every other node before obtaining 
an average for each residue, defined likewise:

L(i)
^™=11 distance(i, j ) 

n 1
(3.28)

Closeness centrality is the inverse of L, defined such that a larger value denotes a node that is 
closer to every other node in the network. In other words, a node of high closeness centrality has 
the shortest average path length to every other node in a network graph, and the equation for 
such a property is generally represented likewise:

n 1
doseness(i) = ------ ;--------------------- (3.29)

E J-1  distanced, j )

There is a wide array of applications for the use of networks in representing and analysing complex 
biological processes. We mention a few of the exciting applications enabled by the network analysis 
framework in biology. Protein-protein interaction data and various annotations by the STRING 
database have been put together to assist in the inference of function for orthologous proteins 
by association of relational data [253]. The GeneMANIA database similarly integrates various 
annotations such as co-expression, pathway and literature to assist in predicting gene function 
from contextual gene lists [254]. They have also been used to investigate gene co-expression 
modules in a complex diseases such as Type 1 diabetes [255] and in investigating the epigenetics 
of Parkinson’s disease, which is the second most prevalent neurodegenerative disorder worldwide 
[256, 257]. More generally, network analysis is also used for mapping, tracking and predicting 
pathology-associated neural patterns involved in the impairment of the connectome, which is a 
mapping of brain connectivity topology [258]. There is growing interest and great research impetus 
in the application of network analysis for the study of intra-protein residue behaviour termed by 
various names (e.g. RIN, DRIN, DRN, RCN) depending on implementation details. In this work 
we used some network metrics over the course of MD simulations to investigate network behaviour 
associated with drug-resistance or drug-susceptibility in HIV protease complexes. In each case, 
networks were built from subsets of sampled time frames before averaging each of the network 
metrics and comparing them across collections of the resistant and susceptible complexes for each 
PI drug. This differs from previous methods which mainly infer residue contact based on static 
structures, such as in [259, 260] or in [261] where energy minimization was used. Our method was 
developed independently but is similar to that described by Doshi and co-workers, without the 
use of upper and lower bounds for filtering contacts [262].

3.2 Methods

Dataset preparation: Sequences labelled with drug fold resistance ratios were obtained from 
previous filtering, as explained in Chapter 2, subsection 2.2.1. The aim here is to use a battery 
of different approaches to highlight any type of difference occurring at the sequence or structural
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level able to differentiate the resistance state from the susceptible state for all of the eight FDA- 
approved PIs. Stanford HIVdb cut-off values defined previously in Table 2.2 were used for each 
of the protease inhibitors ATV, DRV, FPV, IDV, LPV, NFV, SQV and TPV. In order to extract 
conserved differences, multiple sequences were used, in this case 100 highest and the 100 lowest 
fold resistance ratios were selected using the individual cut-off values. Mutations (with respect to 
the subtype B consensus protease) present in the resistant sequences were subsequently collected.

3.2.1 Homology modelling and energy-minimization

We begin by evaluating the simplest approach involving homology-modelling of protease receptors 
together with a PI drug and correlating the estimated drug binding energy against actual fold 
resistance values to see whether these can be used to infer resistance later in non-B subtypes. HIV 
subtype B protease variants were modelled together with a copy of the co-crystallized ATV ligand 
from the template structure (PDB ID: 3EL9) using MODELLER (version 9.18). As the software 
mainly caters for protein backbone and side chain placement from template-derived restraints, 
minimization of the complex was subsequently performed, using the method of steepest descent 
(SD) in GROMACS (version 2016.1) [263] in order to improve receptor-ligand contacts. Homol­
ogy modelling was mainly achieved by preparing a template-target PIR alignment file, which also 
included the ligand residue from the crystal structure. As a preparation for minimization, the 
modelled receptor and ligand were extracted for topology generation in each case. Due to the 
sheer number of minimization experiments, the co-crystallized ligand was directly used to prepare 
a single “itp” topology file using bond charge correction (BCC) algorithm from the ACPYPE tool 
[264] and simply copied to each model directory. Fully-protonated “gro” coordinate files were gen­
erated for each variant from their extracted modelled ligand file using Open Babel (version 2.3.1). 
This short cut made the method feasible and was possible due to the fact that MODELLER does 
not alter ligand conformation during modelling, thus retaining atomic partial charges for all vari­
ants. To determine the stopping criterion for energy-minimization, minimum gradient components 
of the potential energy (namely 5 and 10 kJmol-1nm-1) referred to as e values, were evaluated 
with an initial step size of 0.01nm using a Python script wrapping the GROMACS commands. 
An automatic resolution of minimization failures due to bad contacts was done by restarting the 
minimization with a halved initial step size. This mechanism would try the SD algorithm up to 
four times, failing which the procedure would be deemed a failure. The closed conformation high 
resolution (1.6 A) template crystal structure containing the drug of interest was retrieved from 
PDB to build high quality models for every resistance-labelled sequence retrieved from Stanford 
HIVdb. Due to the number of drugs and the possibility of replication, the optimizations were lim­
ited to ATV-related sequences for preliminary investigations. The top 10000 variants were selected 
from the filtered data that were previously used to train and test the ANN model for predicting 
ATV resistance from protease sequences (in Chapter 2) by ranking them in increasing order of 
similarity. The last frame from the each trajectory was used to extract the protein and ligand 
in each case using the trjconv command. Open Babel and AutoDockTools were used to generate 
ligand MOL2 files for X-Score and PDBQT files for Vina to score the poses in-place. Correlations 
were calculated to determine the trend between actual drug fold resistance and the determined
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binding energies. Individual energy terms from Vina were also evaluated for correlations.

3.2.2 Molecular docking: Investigating binding energy relationship 
with drug resistance by improving ligand poses

The ligand conformational search is made more exhaustive by using molecular docking to allow for 
improved ligand movement and positioning within the modelled receptor variants. Vina is used 
for flexible ligand docking and X-score is used as an independent scoring tool for the top-scoring 
pose obtained from Vina. Due to the decreased requirement for computational resources, the 
experiment is performed for all 8 PI drugs with 10000 models in each case. As there would be 
no further energy-minimization of the complex after ligand placement in the binding site, models 
were built with very slow refinement for a more thorough receptor structure optimization via 
an increased number of MD and simulated annealing steps, from within MODELLER [185]. A 
random seed (-10000) was fixed for modelling following which control docking was performed using 
the templates with PDB accessions 3EL9 [265], 2HS1 [266], 3NU3 [267], 2AVO [268], 2O4S [269], 
3EL5 [265], 2NMZ [270] and 3SPK [20] in which the inhibitors ATV, DRV, FPV, IDV, LPV, NFV, 
SQV and TPV  had been obtained co-crystallized within the receptor proteases. All templates were 
pre-processed to only keep higher-occupancy side chain rotamers using an in-house Python script. 
In case of equal occupancy values, the last rotamer was kept. Based on ligand RMSD values, 
a co-crystallized flap water was retained only for non-TPV related targets. The algorithm for 
picking interfacial water selects only those water molecules that are found between the ILE50 
(from both protease chains) and the ligand residue interface using an overlapping radius of 3 AA 
centered round any of the residue atoms. Modelled receptors were aligned to the SQV-containing 
template to get a common docking center (20.147, 29.716, 16.093) using ProDy [271]. These were 
then protonated to pH7 using PDB2PQR (version 2.1.0) [272] with the PROPKA algorithm prior 
to merging non-polar hydrogen atoms and setting Gasteiger partial charges with AutoDockTools 
[273], whilst keeping the modelled water where present. The grid box size was defined with sides 
(20 x 26 x 20 A3). Each Vina run was seeded with the number 10000, setting the exhaustiveness 
at 16 to run with 12 cores per job. Lowest energy poses were harvested from each complex to 
retrieve their binding affinities and values for each of the energy terms. Thereafter, X-Score was 
used to cross-evaluate the docked ligands (after converting the docked PDBQT files in MOL2 
format) within the aligned protonated target receptors. It should be noted that the X-Score tool 
does not include the explicit placed water molecule in its calculation. Multiple sections of the 
experiment were run concurrently using GNU Parallel (version 20160422) [274] over the large 
queue at the Centre for High Performance Computing (CHPC). Finally, all binding energies and 
available terms were correlated against their actual fold resistance ratios to search for any trend 
that could be later used for inferring drug resistance in subtype B HIV proteases, and eventually 
repeat the same experiment in non-B subtypes if large enough sample sizes are available.
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3.2.3 Molecular dynamics: Searching for trends in drug binding en­
ergies and resistance at several time points in phase space

The aim of this experiment is to improve on previous work reporting that in silico drug binding 
affinities can be utilized to predict ARV resistance in HIV [275, 180] and suggesting that increased 
simulation time [179] may improve predictability. We design the experiment to determine if any 
of the binding energies will correlate favourably with actual drug resistance values available from 
the raw dataset, pre-filtered by our own means. For each of the 8 PI drugs, the top and bottom 
100 complexes were chosen from the 10000 docked proteases (from subsection 3.2.2), after ranking 
them by their PhenoSense Assay fold ratio label. This yielded resistant and susceptible data 
subsets, which we refer as ensembles for each PI drug. The cut-off values used by Hedlin in [165] 
were applied to determine the resistance statuses based on these available labels. Thus the MD 
simulations were started with the protonated receptors (pH7) with the AMBER residue type and 
docked ligands. These ligands were fully-protonated and converted to PDB format using Open 
Babel before preparing the topologies for each of the poses (as the partial charges changed due 
to altered ligand pose). Correct receptor protonation states were restored by GROMACS during 
topology generation based on the AMBER residue types created by PDB2PQR. After docking, the 
VEGA software (version 3.1.1) [276] was utilised to restore the fully-protonated state of the ligands 
before preparing the atom topologies using ACPYPE. Receptor topology files were prepared using 
the pdb2gmx command from within GROMACS. The all-atom AMBER03 force field was used for 
the system. Non-bonded short-range interactions (van der Waals and Coulombic) cut-off values 
were set at a maximum of 1.2 nm while long range charged interactions were handled by the smooth 
Particle Mesh Ewald algorithm. The energy of the system was minimized using the method of 
steepest descent, after adding SPC-modelled water and neutralizing charges with 0.15 M of sodium 
chloride in a triclinic periodic box, with a minimum image distance of 1 nm. The same target 
criteria used earlier for minimization stop were used - a potential energy gradient minimum of 
10 kJmol-1nm-1 for an initial step size of 0.01 nm. As before, the step sizes were automatically 
halved in case of bad contacts for a maximum of 4 attempts. Temperature (310 K) and pressure 
(1 atm) were subsequently equilibrated over a period of 50 ps in each case, using the Berendsen 
[207] and Parrinello-Rahman [208] algorithms respectively. A seed of 10000 was used for velocity 
generation in the temperature equilibration step. Production MD simulations were then run for 
a total of 2 ns. For both equilibration and final MD runs, the LINCS constraint was applied to 
all atoms and a 2 fs time step was used. All simulations were run in parallel using GNU Parallel 
(version 20160422) [274] over the large queue (2400 cores) at the CHPC, with 24 cores per job. 
Proteins complexes were finally centered, removing rotational and translational movements using 
GROMACS’s trjconv command. Ca RMSD values were then calculated to detect any obvious 
failures in the removal of periodic boundary conditions before proceeding to further analysis. 
Finally drug binding energies were scored in-place from each complex at 12 time points (10, 50, 
100, 200, 300, 400, 500, 600, 700, 800, 900 and 1000 ps) by extracting the receptors and bound 
drugs before evaluating them with Vina and idock. As explained in subsection 3.2.2, receptors 
and ligands were prepared with AutoDockTools prior to calculating correlations with actual fold 
resistance scores.
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3.2.4 Elastic Network Model: Mining for a resistance-related motions

Using the anisotropic network model (ANM), we collect all the modes and search for any clustering 
pattern that can hopefully differentiate resistant and susceptible protease models. Homology 
models prepared in subsection 3.2.2 were used as input for analysis using ProDy. The ANM model 
was thus applied to each of the 10000 protease variants for each of the 8 drugs, decomposing the 
Hessian matrices to their respective eigenvectors and eigenvalues. Only the first 297 non-zero 
modes out of 594 modes (corresponding to the 3N degrees of freedom for the HIV proteases, 
where N is 198 residues) were retained for each of the structures that were coarse-grained by Ca 
atoms. The default spring constant (y= 1) and cut-off distance of 15 A were used. Only the first 2 
non-trivial modes are reported. Each mode was compared across proteins by stacking them into 
individual matrices, with each row being the mode from a protease variant for a given drug. The 
first two principal components of the decomposed matrix were then represented as scatter plots 
(Figures 3.6a and 3.6b), colouring the representative proteases by their resistance status, with the 
aim of identifying differential clustering patterns.

3.2.5 Dynamic Cross Correlation (DCC): Searching for correlation 
patterns associated with resistance

For calculating DCC, equation 3.14 is applied over the MD trajectories for each of the resistant 
and susceptible protease complexes for each of the 8 PIs. DCC is typically represented as a 
square matrix, representing pairwise correlations. However, in this experiment 100 matrices are 
computed for each of the 2 resistance classes and represented in a concise manner to facilitate 
interpretation. Each DCC matrix is simply linearised by taking values from its upper triangle and 
stacking them into rectangular matrices to be visualized as two heat maps for each drug. The aim 
was to investigate for any differentiation, before proceeding further should any consistent pattern 
be obtained.

3.2.6 Perturbation Response Scanning: Searching for trigger points 
correlated with drug resistance

Logsdon and co-workers [277] determined that an expanded active site cavity is correlated with 
reduced binding to protease inhibitors that resistant proteases. Based on this observation, we fur­
ther investigate the hypothesis that resistant proteases would have a higher likelihood of reaching 
the opened conformation, compared to the W T protease, for all PIs. We thus model this expected 
“drug resistant conformation” for each of the 100 resistant and 100 susceptible sequences using 
a wide-open multi-drug-resistant protease crystal structure (PDB ID: 1TW7) as target structure. 
MODELLER was used with very slow refinement and a random seed of -10000 to model the target 
conformation for each sequence. For each protease complex, the corresponding MD topology file 
was used as the starting protease conformation. For both the initial and final protein conforma­
tions, Open Babel (version 2.3.2) was used to convert the PDB files to XYZ format, after the Ca 
atoms were selected using the grep command. PRS (as implemented in MD-TASK) was used for
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each protease to successively apply the default 250 random perturbations on each residue of the 
dimer. Additionally, a 2ns-MD trajectory was provided for the covariance matrix calculation in 
each case.

3.2.7 Residue network analysis: Investigating differential network be­
haviours associated with resistance

A weighted contact network was constructed by considering all residue pairs (defined by Cp or 
glycine Ca atoms) with a euclidean distance of less than 0.67 nm. All contacts were simply 
aggregated along each MD frame before calculating network metrics, namely degree, betweenness, 
closeness and density. For all the metrics, with the exception of density, the values were stacked 
together into a matrix to be represented as heat maps. The MD frames were read in strides of 
4, starting from 100ps up to 2ns. Using this strategy, we aimed at identifying network properties 
that might differentiate drug resistance from susceptibility in HIV protease.

3.3 Results and Discussions

3.3.1 Homology modelling and energy-minimization

The simplest structure-based approach is based on homology-modelling and the in-place scoring 
of ligand binding energy. Energy-minimization was then applied to guide the complex down a 
local energy minimum for each protease variant using the AMBER03 forcefield after solvation in 
a triclinic box with SPC water and 0.15 M of NaCl using the GROMACS tool. For each drug, 
we tested the hypothesis of association between fold resistance ratio and binding energies using 
a parametric (Pearson’s) and a non-parametric (Spearman’s) test. While both tests employ a 
normalized covariance, the Spearman correlation test uses ranks instead of the values themselves 
thus ignoring the effect of magnitudes for the actual differences occurring between each matched 
pair (fold ratio and energy score). A good performance for either test would be values approaching 
1 or -1 for positive or negative correlations respectively, with 0 denoting the absence of correlation. 
We unfortunately observed low correlations (Figure 3.2), as seen from the low magnitudes of 
correlation between fold resistance ratios and energy scores obtained from X-Score and several 
metrics from AutoDock Vina (overall score and unweighted energy terms) for the drug ATV, 
which was used as test system for determining suitable parameters, before evaluating same for the 
remaining PI drugs. Binding energies had initially been calculated after minimizing the solvated 
complexes with an epsilon value of 10 kJmol-1nm-1 , which is the maximum force obtained from 
the force vector used as the main stopping criterion. Due to the very large number of systems to 
be minimized, an automatic resolution of bad contacts was devised in a wrapper Python script 
to automatically halve the initial step size (0.01 nm) upon each minimization failure, by up to 
four times before reporting a minimization failure. In an attempt to improve energy correlations, 
a separate run was performed at a lower minimum, with epsilon halved down to 5 kJmol-1nm-1 
before re-evaluating the correlations. While hydrophobic contributions displayed a comparatively 
higher absolute correlation with respect to ATV fold resistance ratios, a lower energy minimum
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Pearson correlation

Figure 3.2: Correlations of X-Score and Vina binding energies against fold drug resistance ratio in 
energy-minimised ATV-bound protease models. Individual energy terms from the Vina potential are also 
shown.

did improve AutoDock Vina’s overall score correlation together with both of its Gaussian terms 
but decreased the hydrogen bonding energetic contributions. Assuming the protease sequence fold 
ratio labels were predominantly correct, we hypothesize that the disregard of bond angles in the 
estimation of hydrogen bonding energies may be at cause for the observed differences happening 
after further minimization for that energy term. Despite a simple estimation by linear interpolation 
based on distance, atom typing and the application of discontinuity, the hydrophobic interaction 
appears to be a major contributing factor associated with drug resistance. It is possible that a 
highly hydrophobic interior of the binding cavity may have a higher influence on drug positioning 
and hence better describes the energetic effects related to resistance. X-Score’s performance was 
generally poor. We note a potentially interesting finding from this experiment when comparing 
the corresponding Pearson’s and Spearman correlations for the same energy terms, which is that 
of an improved predictive ability for each score when the energy values are swapped by their ranks. 
This may point to the fact that both tools will tend to have a relatively better ranking ability 
but a comparatively lower capacity to predict accurate energy values, for the same drug. Though 
not directly related to drug resistance prediction, we predict that the relationship between ligand 
binding energy and ranking will definitely be impacted differently as a function of properties of 
the receptor binding surface in high-throughput virtual drug screening experiments.

As a quality control for the 10,000 models used in this experiment, we show the distribution of 
z-DOPE values for the models in Figure 3.3. z-DOPE scores tending towards or lower than -1 
point to native-like conformations while positive ones are likely poor models [278]. We can see 
that the large majority (>75%) of the models are below a score of -0.8, with very few outliers 
around -0.4, meaning that the models were generally conducive for biological investigations.

- 1.4 - 1.2 - 1.0 - 0.8 - 0.6 - 0.4
z-DOPE score

Figure 3.3: Box plot showing the z-DOPE distribution for models of the ATV complexes before energy 
minimization. The whiskers are placed at any value that is just below 1.5 times the interquartile range 
running along each direction from the box, and any value away from them is treated as an outlier.
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3.3.2 The use of docking to estimate ligand affinity

Prior to performing high throughput docking using known PI drugs against the protease vari­
ants, docking controls were performed by removing and re-docking the drug co-crystallized within 
template protease X-ray crystal structures. Compared to in-place scoring where ligand flexibility 
was partly accounted for by carrying out energy minimization after protein homology-modelling, 
flexible ligand docking allows for a widened conformational search space and an improved ligand 
positioning within the binding site. X-Score was used to re-score the docked drug poses produced 
using Vina, to look for any improvement in the correlations with drug fold resistance. For the 
positive controls, we investigated the presence and absence of a water molecule at the flap-ligand 
interface, using docking parameters for exhaustiveness, grid box specifications as described in sub­
section 3.2.2. This water was automatically extracted from the crystal structure using an in-house 
Python script implementing an algorithm that searches for any water shared between the crystal­
lized ligand and the protease ILE50 residue (from both chains A and B) at a cut-off distance of 
3 A. It can be seen from Table 3.1 that the interfacial water largely improves the RMSD of the 
docked drug from its originally crystallized pose for all cases, except for the drug ATV where the 
RMSD was slightly higher. As no water was found crystallized at the flap/ligand interface for the

Table 3.1: Comparison of RMSD values from ligand control docking in the presence and absence of 
crystallized water for each PI drug.

D ocking condition A T V D R V F P V ID V L P V N F V SQ V T P V
Without flap water 
With flap water

1.103
1.243

1.404
0.972

0.834
0.239

0.250
0.245

1.654
0.819

1.079
0.290

0.891
0.892

1.024
NA

modelling template containing the drug TPV, it was omitted for the high-throughput docking for 
this drug, as it is not needed for ligand stabilization within the protease active site. As our exper­
imental set-up agreed with literature, which describes the requirement of this interfacial water for 
ligand stabilization, with the exception of TPV, we proceeded with the docking experiment tar­
geting the different sets of HIV protease variants. X-Score was used to re-score the docked poses 
in all cases from the poses generated by Vina, before estimating the correlations of their binding 
energies against actual fold resistance ratios. As seen in Figures 3.4a and 3.4b, which show the 
performances of both tools for all 8 PI drugs, poor correlations were generally obtained as they 
were all closer to zero than one. As observed previously in the case of modelling the ligand along 
with the protein followed by energy-minimization step, the Pearson correlation is generally low but 
improves when the ranks are used for the Spearman’s test. It would appear that X-Score generally 
slightly improves the binding energies in each case, even though the final outcomes do not show 
strong correlations. The highest correlation is obtained with the drug LPV, using X-Score with 
Spearman’s test. Based on the distribution of samples on the scatter plot, it is also possible that 
having a more homogeneous spread of actual fold scores along the x-axis would improve on the 
estimations of correlation in each case. As the estimation of binding energies were from a single 
time point, the next experiment was designed to factor in the time evolution of binding energies 
in an attempt to investigate any improvement in correlation with drug resistance.
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(a) Vina binding energy correlations.

(b) X-Score binding energy correlations.

Figure 3.4: Pearson and Spearman correlations of binding energies from (a) Vina and (b) X-Score against actual drug fold resistance ratios (x-axis) for the 
8 PI drugs.



3.3.3 Investigating energy patterns during molecular dynamics

Performing molecular dynamics allows for receptor mobility, in an attempt to improve residue 
positioning with respect to the complexed ligand, within a system containing explicitly-modelled 
water and ions. Due to these added components, the systems containing the docked complexes had 
to be energy-minimized before simulating motion under the assumptions of Newtonian mechanics 
at physiological conditions under the energetic constraints of the AMBER03 forcefield. Temper­
ature and pressure equilibration were also performed prior to the production run to maintain a 
temperature of 310 K and pressure of 1 bar. Rotational bond lengthening was corrected by the 
LINCS algorithm applied over all atoms. With this set-up, ligand binding energies were estimated 
from frames sampled at 12 time points, using AutoDock Vina and idock [279]. Both programs 
share the exact same scoring functions, but have some minor implementation details, especially 
in the optimization of conformational search algorithms. Correlations were evaluated at each of 
the time points to firstly determine if the predictability of drug fold score ratios was improved 
when the protein was allowed to move, and secondly whether performance improved over time, as 
observed by [179] for run times of 0.1-1ps of MD simulation. As seen in Figures 3.5a and 3.5b for 
the Pearson and Spearman tests of correlation, correlations remain globally of low magnitudes, 
and do not seem to generally improve on the results obtained from docking, but rather seem to 
oscillate around their initially recorded energies at 10ps, if not worsening in several cases. Despite

ATV- 0.179 0.122 0.176 0.203 0.145 0.118 0.140 0.083 0.029 0.069 0.055 0.082 -0.097 -0.052 -0.104 -0.079 0.056 -0.128 -0.149 -0.072 -0.112 -0.192 -0.020 -0.102

DRV 0.038 -0.030 -0.017 -0.052 -0.051 0.065 0.054 0.037 0.070 0.083 -0.004 -0.048 0.014 0.071 -0.019 -0.001 -0.055 0.029 -0.078 0.119 -0.002 -0.027 -0.035 0.056

FPV -0.059 0.042 -0.041 -0.003 -0.092 -0.030 -0.091 -0.108 -0.099 -0.041 -0.107 -0.028 0.349 0.173 0.146 0.286 0.373 0.348 0.349 0.297 0.282 0.312 0.365 0.226

ID V --0.107 -0.068 -0.170 -0.121 -0.110 -0.195 -0.143 -0.105 -0.169 -0.102 -0.313 -0.284 0.077 0.014 0.093 0.014 0.023 -0.003 0.097 0.112 -0.013 0.264 0.078 0.056

LPV- 0.195 0.227 0.207 0.118 0.155 0.082 0.151 0.117 0.164 0.105 0.163 0.139 -0.111 -0.005 0.059 -0.095 -0.018 -0.033 -0.147 -0.022 0.061 0.037 -0.058 -0.115

NFV - -0.019 0.074 0.071 -0.027 -0.059 -0.005 0.026 -0.016 0.019 -0.002 0.004 -0.034 -0.025 -0.165 -0.114 0.002 -0.014 -0.114 -0.120 -0.125 0.001 -0.107 -0.011 -0.125

SQV- 0.126 0.161 0.162 0.066 0.101 0.141 0.133 0.057 0.063 0.085 0.159 0.044 -0.084 -0.073 -0.203 0.046 0.008 0.015 -0.017 -0.086 0.043 0.124 -0.011 -0.167

T W - 0.051 0.118 0.049 0.061 0.018 0.045 0.039 0.053 0.010 0.024 0.029 0.048 -0.028 -0.052 -0.044 -0.090 -0.146 -0.151 -0.051 -0.087 -0.091 -0.037 0.073 -0.228

A10 A50 A100 A200 A300 A400 A500 A600 A700 A800 A900 A1000 B10 B50 B100 B200 B300 B400 B500 B600 B700 B800 B900 B1000

(a) Pearson correlations.
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NFV - -0.045 0.085 0.064 -0.036 -0 .057 0.025 0.030 -0.029 0.015 -0.011 -0 .020  -0.072 -0 .008  -0.158 -0.093 -0.034 -0 .027  -0 .096 -0.124 -0.129 0.007 -0.099 0.009 -0.106

SQV - 0.228 0.190 0.181 0.091 0.129 0.153 0.171 0.125 0.093 0.116 0.242 0.096 -0 .046  -0.070 -0.132 0.052 0.029 0 .057  -0.002 -0.018 0.073 0.179 -0.005 -0.099

TPV - 0.076 0.148 0.060 0.083 0.068 0.106 0.072 0.070 0.048 0.075 0.060 0.110 0.002 0.004 0.005 0.002 -0.063 -0 .069 -0.009 -0.027 0.003 0.034 0.075 -0.174
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(b) Spearman correlations.
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Figure 3.5: Correlations of drug binding energies scored in-place at different intervals along MD tra­
jectories using the ligand docking tools Vina (A10-A1000) and idock (B10-B1000), for each of the 8 PI 
drugs. The numbers represent the time (in picoseconds) at which energy-scoring was performed.

low absolute values of correlation, the best performances are observed after 0.9 ns for IDV and at
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10 ps for idock, using Pearson’s correlation coefficient. As samples have been taken at different 
time points without seeing any consistent pattern in favour of drug resistance for any of the PI 
drugs despite the large number of labelled complexes, we suspect the errors to mainly come from 
the insufficiency of non-equilibrium energy-scoring functions to properly describe the energetics 
of receptor-ligand interactions. While more involved methods, such as the MM-PBSA might have 
been attempted, these are too computationally-expensive for the number of complexes. Expert 
opinion by Genheden and Ryde raised many concerns about the reproducibility and accuracy 
of the MM-PBSA method, for instance due to the use of continuum-solvation (implicit) models, 
sampling method and treatment of entropy, which can overestimate the ligand effects, in addition 
to large ranges of uncertainty in energy values that can make comparisons impractical [280, 172].

3.3.4 Mining for a resistance-related motion using Normal Modes

The calculation of normal modes was used here to investigate its potential use in highlighting 
resistance-related differences. By comparing similarly-ranked modes prevailing across resistance 
states, we hoped to either use modes to firstly predict drug-resistance and secondly map these 
associated motions, on a 3D structure. The ordering of modes were assumed to be analogous 
for complexes modelled from the same template. For instance, in the case of ATV 10,000 models 
comprising of resistant, susceptible and intermediate resistance sequences were assumed to contain 
comparable modes, which are typically arranged in descending order of eigenvalue magnitude. For 
a given drug, the first two non-trivial modes were gathered from each modelled protease. Matrix 
decomposition was separately performed on each mode across the complexes and plotting the first 
and second principal components as a scatter plot, one for first and another for the second non­
trivial mode. Each mode consisted of 594 (198 x3) components, for any given protease structure. 
Each sample was then coloured according to its level of resistance (resistant, intermediate and 
susceptible) against the given drug. Only the non-trivial modes one and two are shown in Figure 
3.6. As can be seen, no clear clustering pattern delineating resistant sequences from the susceptible 
ones can be obtained from the 2 modes for any of the protease inhibitors. Even though each 
set of protein variant conformations for each drug should be unrelated, variations of elliptical 
silhouettes were obtained for each of the 8 drugs, however we do not have a clear explanation for 
this behaviour. Also visible are the partial symmetries occurring mainly from the first non-trivial 
modes, which we posit may be related to the two-fold symmetry of the dimers. No meaningful 
clustering pattern was obtained when more modes were explored using the same approach for the 
drug ATV. Due to this behaviour, we hypothesised that resistance-related activity may not be a 
result of sampling from mutually-exclusive sets of receptor conformations, but may be a result of 
their altered probability distributions instead, such that both states can elicit the same receptor 
shapes, but favour some more than others over time. However, due to the static input for the 
ANM calculation, such may not be visible. Another possibility may be linked to the loss of side 
chain information as a result of coarse-graining, such that the perceived vibrations are mainly 
a result exploring the system of connected nodes constrained only by the observed carbon atom 
positions along the backbone, with Hookean spring properties defined by the cut-off radius.
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(a) Principal components 1 and 2 for the first non-trivial mode.
ATV DRV FPV IDV

Principal components 2

(b) Principal components 1 and 2 for the second non-trivial mode.

Figure 3.6: Principal components analysis for the first and second slowest ANM modes gathered from each of 10000 modelled proteases. Each coloured 
dot represents a protease. Drug resistant, intermediate and susceptible samples are coloured in red, blue and black respectively for each PI drug.



3.3.5 Searching for correlated residue positions associated with resis­
tance using Dynamic Cross Correlation (DCC)

DCC results are shown in Figure 3.7, where the resistant and susceptible sequence sets are com­
pared for each PI drug. The cross-correlation values corresponding to the amino acid residue pairs 
are laid out into an ascending ordered pair of the matrix indices. While not very meaningful by 
themselves, they can be compared across sequences as the order of residue pairs is identical in each 
case. We conclude from this “profiling” experiment that this DCC implementation cannot reveal 
any useful differences coinciding with drug resistance for all of the PI drugs, inferred from a car­
bon atom movement recorded over a period of 2ns. Non-specific differences were however observed 
mainly within each of the drug complexes. Variations between drugs were present, though very 
minute and may be attributable to either (1) the modelling templates used in each case which may 
have created slightly different energy surfaces or (2) be a consequence of the different ligand in 
each case, propagating drug-specific signals from their point of contact within the active site. It is 
remarkable that such conservation prevails in two very different states of ARV drug resistance, as 
it suggests a level drug resistance-agnostic order in residue movement. It is however also possible 
that the differential changes occur over longer time scales. However such an approach would be 
very lengthy, since same would need be replication as well.

(a) ATV complexes

(c) FPV complexes

(e) LPV complexes

(g) SQV complexes

(b) DRV complexes

(d) IDV complexes

(f) NFV complexes

(h) TPV complexes

Figure 3.7: Dynamic Cross Correlation for protease inhibitor complexes. Linearised DCC values are 
shown for 100 resistant and 100 susceptible complexes in each case. Protease sequences are displayed 
along the y-axes while homologous residue pairs (in no biologically-meaningful order) are shown on the 
x-axes
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3.3.6 Application of Perturbation Response Scanning to search for 
trigger residue positions correlated with the resistance state

The main aim of the analysis is to compare the trigger residues prevailing in the different resistant 
states for each drug, with respect to a wide-opened, multi-drug resistant receptor conformation. 
Our assumption is that the susceptible state should theoretically have a lesser tendency of having 
a wide-opened active site, which is otherwise a mechanism that leads to drug exit from the binding 
cavity. According to Logsdon and co-workers [277] an expanded active site cavity is correlated with 
a reduced binding to protease inhibitors. This is in agreement with both the substrate envelope 
hypothesis and ligand-binding thermodynamics experiments [281, 109]. PRS applies forces of 
random magnitude and direction, in sequence to all residues (represented by Ca atoms) onto a 
starting conformation of protein, using the covariance matrix obtained from an MD simulation. 
The resulting coordinates are then correlated to a desired final structure, in this case a wide open 
conformation multi-drug resistant (MDR) protease (1TW7 [109]). From Figure 3.8, we observe 
some form of symmetry in the distribution of trigger residue correlations, which stems from the 
fact that the top 99 residues are from chain A and the rest are from chain B. In each case, 
the areas of highest correlation to the MDR opened-conformation point to regions surrounding 
indices 49 and 148, which are flap residues flanking the ILE50 residue from both chains of the 
homodimer. Also visible, but to a lesser degree are positive correlations occurring at indices 
80 and 179, which correspond to residue 79 from the 80’s loop - an area forming part of the 
binding cavity. From this perturbation response analysis, it would seem that both resistant and 
susceptible HIV proteases apply similar modes of motion leading to flap opening, irrespective of 
drug resistance mutations or PI drug present in the active site. Unfortunately, from the results 
of this experiment, a differentiating response was not obtained, which may suggest some more 
complex motions, for instance manifesting as a differential sampling of conformations happening 
over time. The PRS analysis inherits from the same limitations coming from Normal Mode 
Analysis, which due to the reliance on an energy minimum are only applicable in the immediate 
vicinity around an equilibrium from the chosen protein conformation. Additionally, while practical 
for enabling comparisons of proteins with different atomic compositions, protein coarse-graining 
may be reducing the information content, thus decreasing its sensitivity to side chain effects.

3.3.7 Residue network analysis for identifying differential network be­
haviours associated with resistance

As all of the energy-based and correlation-based methods did not show meaningful resistance- 
associated patterns that could be utilized for identifying any clear and consistent differential 
signal, the simpler concept of networks was employed in an attempt to extract several aspects 
from the pairwise relationships prevailing between residue pairs over the course of dynamics. 
While energy minimization as used by Ozbaykal was an attractive idea due to the reduction of 
computational demands to construct a single network [261], we found that minor changes in a 
minimization criterion (the number of steps, which we will refer to as EM steps) could alter the 
behaviour of network metrics for the same starting receptor topology. By varying the number of
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EM steps, we found significant changes in the difference of averaged geodesics (wild type versus 
20 variants, shown in Figure 3.9), which upon hierarchical clustering, displayed a very high degree 
of clustering based mainly on the number of minimization steps used (Figure 3.10) instead of the 
sequence variation itself, which points to the fact that using intermediate number (100 - 5000) of 
EM steps would bias and affect reproducibility of contact inference in our case.
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(a) ATV complexes (b) DRV complexes

(c) FPV complexes (d) IDV complexes

(e) LPV complexes (f) NFV complexes

(g) SQV complexes (h) TPV complexes

Figure 3.8: Perturbation Response Scanning of protease inhibitor complexes. For each PI drug, resistant 
complexes are shown on the left while susceptible ones are on the right of each figure frame. The colour 
scale ranges from yellow through red to black, representing the correlation values from 1 to 0 against 
models built from an opened-conformation multi-drug resistant target protease.
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Delta L plots for 20 HIV-1 protease variants (unminimized: apoprotein)

Delta L plots for 20 HIV-1 protease variants (minimized with 1000 steps: apoprotein)

Delta L plots for 20 HIV-1 protease variants (minimized with 5000 steps: apoprotein)

Figure 3.9: Assessment of the impact of the number of energy minimization steps on network behaviour 
using the difference of average reachability AL calculated between a consensus protease and 20 variants. 
The different coloured lines denote the individual protease variants and are matching across the different 
sub-figures. The x-axis represents the protease residue positions for chains A (1-99) and B (100-198).
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Figure 3.10: Comparing the impact of the number of energy minimization steps on network behaviour using hierarchical clustering with Euclidean distance 
AL for the 20 protease variants. Un-minimized proteins structures are in green while minimized ones are in red (100 steps), cyan (1000 steps) and black 
(5000 steps). The first section of the node labels comprise the Stanford HlVdb sequence ID, followed by a unique number corresponding to the variant (after 
sequence expansion and filtering), and the number of minimization steps following the keyword “em” .



At the other extreme, a high number of EM steps was avoided as several researchers mention the 
effect of over-minimization as a problem related to the fact that current force-fields are not accurate 
enough representations of atomic models [282, 283, 284, 285, 286] to proceed far down in the 
energy landscape. Quantum effects become more important as inter-atomic distances converge, for 
instance as demonstrated in the photosynthetic bacterium Chromatium vinsosum where electron- 
transfer is observed when a cytochrome molecule and bacteriochlorophyll are within the van der 
Waals contact distance, with insulation happening otherwise [287]. The Coulomb potential coupled 
with Newtonian-mechanics cannot model such phenomena as they have very limited treatment for 
handling the effects of electrons, such as the fixing of atomic partial charges, which thus ignores 
polarisation from electron clouds. Our solution was therefore to calculate networks over the course 
of MD simulation, in a manner similar but not identical to work done by Doshi and co-workers, 
in that all contacts are retained [262].

For analysing the time series data sets (MD), we have used the degree, betweenness, closeness 
and density to expose and compare the different facets of pairwise residue contact behaviour 
happening over time. While the first three metrics were averaged by calculating the centrality at 
several time points before averaging them, box plots were used to represent the distributions of 
averaged network densities from each complex composing the individual drug resistance ensembles.

From the degree centrality plots in Figure 3.11, no consistent difference between the classes of 
drug resistance were observed whether within or between drugs. High degree centrality points to 
residues that have a large number of neighbours and thus give an idea of local density around 
each residue, and thus may be partly related to the radius of gyration, which is instead generally 
computed for the whole molecule. From the mapping of protease functional residues, we see that 
the flaps have low connectivities in each chain, and is related to the fact that they are composed 
of a surface-exposed mobile loop, which relieves some of the mechanical constraints that would be 
present if they were buried or formed part of a regular secondary structure, such as -sheets and 
a-helices. Residues close to and including the catalytic ASP25 from both chains have very high 
connectivities, most likely due to stabilisations conferred by the bound ligand in the active site 
and strong stabilisations by hydrogen bonding networks [288] at the dimer interface, in addition 
to being buried, despite being part of a loop. Also of consistently high degree centrality is residue 
86 (from both chains of the dimer), which is found at the base of the 80’s loop in close proximity 
to the fireman’s grip and part of the TIM barrel. As it turns out, this glycine residue is highly- 
conserved, and mutation experiments have shown severely reduced enzymatic function, showing 
no evidence of substrate interaction from NMR experiments [289].

Betweenness centrality (BC) incorporates more distal effects by counting the number of paths 
going through each residue. In the context of social network analysis, a person of high betweenness 
centrality would be a key player in communicating information between two groups. In our case, 
the highest betweenness centrality for any given residue would be a result of highly-connected 
clusters found on both sides of that particular residue, as explained by Kasahara and co-workers 
[226] who mention that BC increases for residues bridging cliques (highly interconnected group). 
All complexes irrespective of resistance state, variation or PI highlighted the catalytic ASP25 for
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chains A and B, which unfortunately does not help characterize resistance. However this informs 
us that the protease monomers are held together very strongly by interactions that stabilize these 
two aspartates, which is an already known phenomenon that explains the name fireman’s grip for 
the connected loops held together by a strong hydrogen-bonding network. Comparing the degree 
and betweenness centralities suggests that the catalytic aspartates comprise a highly-connected 
hub that stays together, irrespective of intra-domain motion occurring from both sides of the 
dimer. Also, the flaps have relatively lower BC values due to their constant movement that 
frequently creates and breaks residue contacts. Conversely, by observing the high proportion of 
binding cavity residues in or close to regions of high BC, one could further infer that relatively 
high values are a result of their lowered mobility with respect to all the other residues.

Closeness centrality hints at the ease of reachability for a given node to every other node based 
on average shortest paths leading to it. Based on its implementation in NetworkX [290], larger 
numbers indicate shorter average distances to every other node [291]. As the connecting edges are 
all same and positive, the actual geodesics are equivalent to the number of contacts, and thus larger 
values of closeness occur when the total geodesic is small (equation 3.29) for a given node. With 
this reasoning, a centrally-located residue would tend to have higher closeness to all surrounding 
residues while peripheral ones should be generally displaying lower closeness (higher farness or 
L) values. From Figure 3.13, no discernible resistance-related patterns were observed for any of 
the drugs. However, it can be seen that the elbow regions have lower closeness, probably because 
they are surface-exposed and have higher relative mobilities, which would frequently interrupt 
stabilizing interactions thus impacting reachability. On the other hand, areas around ASP25 
(from both chains) have the highest values for the metric, followed by areas close to the catalytic 
wall, which may be generally stable core residues.

Finally, to compare the distributions of global connectivity between both resistance states, for each 
drug, network density was evaluated and represented as box plots. This metric is the averaged 
degree centrality, which we hypothesized to show some form of relationship to the radius of 
gyration, which estimates molecular compaction based on the root mean squared atomic deviation 
from the molecular center of mass. However, instead of obtaining lower network densities in the 
resistant-ensembles relative to the susceptible ensemble (reflecting a higher tendency towards a 
wider binding cavity in resistant HIV protease) we mostly obtained larger network density medians 
in all resistant complexes, with the exception of SQV. Upon careful comparison of the equations 
used for computing network density and the radius of gyration, we find that the former is evaluated 
between every residue pair, whereas the latter is based off evaluations between pairs comprising 
a common molecular center of mass and each residue. Therefore, they represent different types 
of information. One possible explanation for the unintuitive observations is that the protease 
relaxation associated with a wider binding cavity, may be generating new highly-connected hubs 
elsewhere within the protein, which collectively yield larger degree centralities when compared to 
analogous values obtainable from the drug-susceptible complexes.

As a general observation from the limited time of the MD simulations and basis for defining 
network edges, we hypothesise that resistance may not be a state statically defined across time,
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and may thus be a phenomenon that is defined with a probability of occurrence. Time may also 
genuinely be insufficient to observe more characteristic motions occurring over longer time scales, 
however based on our hypothesis suggesting the role of probabilities of sampling certain local 
conformations, we decided to rethink and redesign the network construction method to factor in 
statistical differences, as elaborated in Chapter 4.
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(a) ATV complexes. (b) DRV complexes.

(c) FPV complexes. (d) IDV complexes.

(e) LPV complexes (f) NFV complexes.

(g) SQV complexes (h) TPV complexes.

Figure 3.11: Time-averaged degree centrality from each MD trajectory from resistant and susceptible 
ensembles. Highest degree centralities are shown in white, going through yellow and red to black cor­
responding to decreasing values of centrality. The coloured strips are a mapping of functional residues 
from HIV protease, showing the fulcrum (red), elbow (blue), flap (yellow), cantilever (orange), interface 
(cyan) and binding cavity residues (grey spheres).
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(a) ATV complexes. (b) DRV complexes.

(c) FPV complexes. (d) IDV complexes.

(e) LPV complexes. (f) NFV complexes.

(g) SQV complexes. (h) TPV complexes.

Figure 3.12: Time-averaged betweenness centrality from each MD trajectory from resistant and sus­
ceptible ensembles. Highest betweenness centralities are shown in white, going through yellow and red to 
black corresponding to decreasing values of centrality. The coloured strips are a mapping of functional 
residues from HIV protease, showing the fulcrum (red), elbow (blue), flap (yellow), cantilever (orange), 
interface (cyan) and binding cavity residues (grey spheres).
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(a) ATV complexes. (b) DRV complexes.

(c) FPV complexes. (d) IDV complexes.

(e) LPV complexes. (f) NFV complexes.

(g) SQV complexes. (h) TPV complexes.

Figure 3.13: Time-averaged closeness centrality from each MD trajectory from resistant and susceptible 
ensembles. Highest closeness centralities are shown in white, going through yellow and red to black 
corresponding to decreasing values of centrality. The coloured strips are a mapping of functional residues 
from HIV protease, showing the fulcrum (red), elbow (blue), flap (yellow), cantilever (orange), interface 
(cyan) and binding cavity residues (grey spheres).
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♦ < ♦

ATV DRV FPV IDV LPV NFV SQV TPV

Figure 3.14: Box plot of network density values from MD for each resistance ensemble for the PI drugs. 
Resistant samples are in red while susceptible ones are coloured blue. Dots represent the outliers sample 
above 1.5 times the interquartile range.
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Table 3.2: All sequence mutations present in each of the resistant subsets against each PI.

PI R esidue m utations
ATV 4S, 10IVF, 11LI, 12I, 13VM, 14R, 15V, 16A, 19IV, 20RIVTM, 21D, 22V, 24IM, 

32I, 33FV, 34QF, 35DNG, 36IV, 37DS, 41K, 43IT, 46LI, 47V, 48QV, 51A, 
53L, 54LVM, 55RN, 57K, 58E, 60E, 61HDN, 62V, 63P, 64VM, 66V, 67YFE, 
69RYQ, 70E, 71IV, 72LTVMF, 73STA, 74PS, 75I, 76V, 77I, 79SA, 82LSTA, 
83D, 84VA, 89V, 90M, 91S, 92K, 93LM, 95F, 96S

DRV 10IFV, 11LI, 12KPA, 13V, 14R, 15V, 16A, 19QV, 20RTVM, 24M, 30N, 32I, 
33F, 34Q, 35DG, 36IVT, 37QDT, 43IQT, 46LI, 47V, 51A, 53L, 54LM, 55RN, 
57KG, 58E, 60E, 62V, 63P, 64VM, 66V, 67WY, 69Q, 71IV, 72LVM, 73STA, 
77IT, 79S, 82LA, 84V, 85L, 88D, 89V, 90M, 91S, 92K, 93L

FPV 10IVF, 11I, 12KDPV, 13V, 14RT, 15V, 16A, 19QTI, 20RITVM, 24M, 30N, 
32I, 33F, 35KDNG, 36LI, 37HDQTP, 41K, 43IT, 46LI, 47V, 48Q, 53L, 54LVM, 
55RN, 57KG, 58E, 60E, 61DN, 62V, 63P, 64LV, 66FV, 67YGFE, 68E, 69KLQ, 
70TE, 71LIVT, 72LTM, 73ST, 74PS, 76V, 77IT, 79SA, 82LTA, 84VA, 87G, 
88D, 89VM, 90M, 91S, 92KR, 93L, 95F

IDV 4A, 7R, 10IFV, 11I, 12KP, 13VM, 15V, 19QIPT, 20RIT, 21D, 22V, 24M, 32I, 
33IF, 34TQ, 35DNG, 36LI, 37SDE, 41K, 43TE, 46LI, 47V, 48LVM, 50V, 53LY, 
54TVSACM, 57K, 58E, 60NE, 61HNE, 62V, 63P, 64VM, 66VF, 67FE, 68E, 
69RYQ, 71TV, 72LTV, 73CSTA, 74DS, 75I, 76V, 77I, 82SFTA, 83D, 84VA, 
85V, 89V, 90M, 92K, 93L

LPV 10IFV, 11LI, 12KP, 13V, 14R, 15V, 16A, 19IPQV, 20RTVM, 24I, 30N, 32I, 
33FV, 34TQ, 35DAG, 36I, 37EDQTS, 41K, 43QITE, 45R, 46LI, 47VA, 48V, 
50V, 51A, 53L, 54LTVMS, 55RN, 57K, 58E, 60E, 61HE, 62V, 63P, 64VM, 
65D, 66VF, 67Y, 68E, 69Y, 70E, 71IVT, 72TVM, 73CSTA, 74PAS, 75I, 76V, 
77IT, 79S, 82SIFTA, 84V, 85LV, 87G, 88D, 89TV, 90M, 91S, 92K, 93L, 95F

NFV 7R, 10IVF, 11LI, 12IA, 13V, 15V, 16E, 18H, 19I, 20RIVT, 21D, 22V, 24M, 
30N, 33IVFM, 35DNG, 36I, 37DSTE, 38F, 41K, 43TN, 45R, 46LI, 48M, 53L, 
54VM, 55R, 57K, 58E, 60E, 61HNE, 62V, 63PT, 64V, 65D, 66VF, 67W, 68E, 
69R, 71TVI, 72LTV, 73STA, 77I, 82FA, 83D, 84VA, 85V, 88D, 90M, 93L

SQV 10IF, 11LI, 12IP, 13VM, 15V, 18H, 19I, 20RIVT, 21D, 22V, 24M, 32I, 33IVF, 
34D, 35DNG, 36IV, 37DS, 41K, 43T, 46LI, 48QV, 53L, 54LVM, 55R, 57K, 
58E, 60E, 61HN, 62V, 63PE, 64V, 66FV, 67WFE, 69Q, 71TVI, 72LTVM, 
73ST, 74SP, 75I, 76V, 77I, 79A, 82A, 83D, 84VA, 85V, 89V, 90M, 91S, 92K, 
93LM, 95V

TPV  10IV, 11LI, 12K, 13V, 14R, 15V, 16A, 19V, 20RTV, 21D, 22V, 24IM, 32I, 
33F, 34QDF, 35DG, 36IV, 37D, 43T, 45R, 46LI, 47V, 53L, 54LVM, 55R, 57K, 
58E, 60E, 61HN, 62V, 63P, 64V, 66V, 70T, 71IVM, 72TVM, 73ST, 74P, 77I, 
82LTA, 83D, 84V, 85L, 87G, 89VM, 90M, 91S, 93LM
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NFV with 5884 R and 3037 S FPV with 4089 R and 4384 S LPV with 2786 R and 5520 S DRV with 262 R and 7551 S

TPV with 1751 R and 5776 S ATV with 4381 R and 3320 S SQV with 3574 R and 4737 S IDV with 5479 R and 2900 S

Figure 3.15: Distributions of fold resistance values of filtered datasets for each FDA-approved PI. Red lines demarcate the lower and upper bounds for 
classifying resistance against each drug. At the top of each plot is the number of sequences predicted to be resistant (R) and susceptible (S) to each 
antiretroviral.



3.4 Conclusions

This series of experiments consisted in the application of different techniques based on structural 
approaches for the search of conserved drug resistance-associated patterns by comparing informa­
tion derived from sets of drug-resistant and drug-susceptible sequences. None of the techniques 
were observed to possess such discriminative ability, but rather helped in refining the initial re­
search idea and method. To be more descriptive, non-equilibrium potential energies evaluated 
from (1) homology modelling and energy minimisation, (2) ligand docking and (3) molecular dy­
namics cannot be directly used to infer PI drug performance as they all correlated poorly with 
actual drug fold resistance ratios. Insufficiently accurate scoring functions may also be responsible 
but were chosen for computational efficiency. Nevertheless, the hydrophobic potential from Vina 
displayed some relatively stronger relationship with drug resistance. Because of the requirement 
for a single potential energy minimum for constructing the Hessian for both normal mode estima­
tions and perturbation response scanning, the results may be limited to observing differences that 
are more stationary in time, thus being unsuited to comparing events that are might be of a prob­
abilistic nature. No differential trend in the directionality of pairwise residue movements could be 
found by the implemented DCC algorithm. The aggregation of residue interaction networks also 
failed to give any meaningful differential network metric associated with resistance. It is possible 
that the amount and diversity of sampled conformations for each collection of the receptor/drug 
complexes for each of the drug resistance states was insufficient, thus missing any differentiating 
signal(s) entirely, especially if they are rare or manifest over relatively long time scales. Increasing 
the extent of conformational sampling however, would require a tremendous amount of compute 
time, such that the number of sequences to be examined would have to be decreased, thus reduc­
ing the number of considered drug resistance variations to ultimately affect the generalizability 
of the experiment. We therefore retained the hypothesis that a differential signal may still exist 
- not as a distinct state across time but buried as probability distributions, and thus proceeded 
by redefining network construction using statistically-driven network construction in chapter 4. 
Under this hypothesis, we suspect that both resistant and susceptible variants can adopt very 
similar receptor conformations, but do so at different rates.
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Chapter 4

Ensemble analysis of protein geometries

This chapter draws from and reproduces certain figures and tables used in the publication listed 
below. Credit for the reproduced material is given as citations in the respective figure and table 
captions.

1. Sheik A m am uddy O, Bishop Nigel T and Tastan Bishop O. “Characterizing early drug 
resistance-related events using geometric ensembles from HIV protease dynamics.” Scientific 
Reports, 2018 December 18. doi: 10.1038/s41598-018-36041-8.

4.1 Introduction

After failing with almost every approach to obtain a resistance signal in Chapter 3, we choose to 
increase the sensitivity of our analysis with a simple and novel approach based on statistical and 
network analysis from protein dynamics. Proteins show different modes of motion, some of which 
can be local, happening over short time-scales, while others are global, potentially adding noise 
to conserved motions. Depending on where the protein lies in phase space (the description of a 
system by its set of atomic positions and corresponding momenta), it may allow for the sampling 
of certain types of motions by going along potential energy surfaces located at the vicinity at that 
point in time. Global or coarse methods of analysis have failed to detect any signal, which we 
believed might still be buried in conformational samples we obtained from dynamics of carefully- 
separated sequences of differing resistance states. This experimental method was designed to 
pick up any local differences happening between the resistance states, despite the inherent noise 
originating from different sources of variation. Instead of relying on energy-based methods, residue 
pairwise distances are computed from molecular dynamics simulations for docked ARV-protease 
complexes. By comparing analogous residue pairs, it is hoped that a differential behaviour would 
be observed between groups of drug-resistant and drug-susceptible sequences. For each protein, 
every pairwise distance is time-averaged. Same is done for all protease dynamics data before 
using moderated t-tests on each pair of protease ensembles. The meaning of an ensemble here is 
simply the collection of sequences from one drug resistance class - in this case a drug-resistant 
versus a drug-susceptible group of complexes. Because of the complex dynamics of biological 
macromolecules, we use the network concept of preferential attachment to detect isolated residues 
that have a higher probability of being further away or closer with respect to a given group of
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residues shown to display significantly different pairwise distances to that lone residue. Degree 
centrality is used to rank and determine the identity of these characterizing residues. It is a fact 
that drug resistance is associated with a wider binding cavity [277, 292] that facilitates ligand 
exit. Several key factors have been tied to this phenomenon over the years. Most prominently, 
individual mutations that occur at the ligand-binding cavity (also known as primary mutations) 
can lead to the direct loss of receptor-drug interactions [293] and lowered drug sensitivity [294]. 
In the absence of drug exposure, viral fitness is generally reduced by such mutations, but can be 
subsequently offset by the selection of additional mutations at sites distal to the active site (termed 
accessory mutations) that enhance catalytic activity [295, 296]. These distal residue adaptations 
have been shown to act in a co-operative fashion in a study done by Ohtaka and co-workers where 
drug-binding kinetics of multi-drug resistant proteases were assayed [293]. Further, Weber and 
Agniswamy show reduced dimer stability in proteases bearing the drug resistance mutations L24I, 
I50V and F53L [23]. Same was observed by Louis and co-workers [297] in multi-drug resistant 
sequences bearing the L76V mutation. Recently, Goldfarb and co-workers proposed a mechanism 
of defective hydrophobic sliding occurring in an SQV-resistant mutant containing mutations G48T 
and L89M [298]. Findings from this experiment attribute the defect to changes in the distribution 
of van der Waals interactions in the hydrophobic core, resulting in altered protease dynamics. In 
this study, we further report through high-throughput molecular dynamics simulations that short 
movements associated with widening of the drug-binding cavity are conserved across multiple 
highly drug-resistant mutants for all current FDA-approved protease inhibitors. The movements 
encompass a variety of DRMs for each ARV tested and as such are not residue-specific but position- 
dependent. The methods employed for molecular modelling are partly stochastic and therefore we 
applied stringent filtering criteria for network construction using statistically-moderated edges. 
Additionally the entire experiment is repeated with a different random seed for verifying the 
reproducibility of our findings. Hornak and co-workers [299] showed that the HIV protease opens 
via an external downward rotation of the monomers by observing three conformations sampled 
in molecular dynamics simulations correlating with NMR data. This mechanism involves a co­
operative downward movement consisting of the cantilever, fulcrum and flap elbows to result in 
upward motion of the flaps and catalytic aspartates via rotation about the dimer interface, thought 
to ease ligand binding. In our experiment, we additionally find a conserved lateral expansion at the 
flap elbows and contraction situated at the base of the dimerization domain towards the floor of 
the catalytic site, specifically attributed to drug resistance. Additionally, we find that even though 
these motions are well-conserved within and between different drugs, they are not accompanied 
by similarly-preserved angular behaviours, suggesting that the associated angular patterns may 
be degenerate.
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4.2 Methods

4.2.1 Preparing the drug resistance ensemble

As explained in Chapter 3, sequences were filtered and grouped into separate drug resistance 
groups, here termed ensembles. We show the extent of variations in Figure 4.1.

In order to give clearer context to this section, previous methods described in Chapter 3 are briefly 
re-introduced in this section. For each of the 8 FDA-approved PIs (ATV, DRV, FPV, IDV, LPV, 
NFV, SQV,and TPV), 100 high-quality models were built per resistance ensemble, docked against 
their respective ARV and sampled for conformations by MD. Separate high-resolution (<1.55 
A) drug-bound HIV protease crystal structures were used as template for each drug ensemble. 
The resulting 1600 HIV protease models were protonated to pH7 using PDB2PQR [272], docked 
using AutoDock Vina [200] before performing short (2ns) all-atom MD simulations on solvated 
complexes with set seeds for reproducibility using GROMACS [263]. In all, 3200 independent MD 
simulations were done. Due to the enormous number of runs, quality control was done by robust 
removal of periodic boundary conditions (PBC) and using Ca RMSD to check for the absence 
of sudden jumps. Rotational and translational motions were removed from the trajectories and 
initially-unstable regions were disregarded in further analysis. Thereafter, we investigated the 
refinement of network analysis in order to increase the sensitivity of detection to pick up more 
local characteristic motions.
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(a) ATV (b) DRV (c) FPV (d) IDV

(e) LPV (f) NFV (g) SQV (h) TPV

Figure 4.1: Mapping of the variation positions onto 3D structures, for each of the FDA-approved HIV protease inhibitors ATV, DRV, FPV, IDV, LPV, 
NFV, SQV and TPV used for the drug resistance ensembles. The coloured cartoon representations depict the fulcrum, elbow, flap, cantilever and interface, 
while the variation positions are depicted as red spheres. Note that even though single spheres are shown, some positions comprise multiple residue variations, 
some of which are validated drug resistance mutations (major and accessory DRMs) from the 2017 update. Variations from the susceptible ensembles are 
not shown, for clarity.



4.2.2 Assessing global compaction

Before proceeding to the more sensitive local approaches, global protein compaction was evalu­
ated. The radius of gyration (Rg) was calculated for each protein composing the entire ensemble 
and summarized as distributions for each PI. Same was evaluated from a replicate run for each 
ensemble. The algorithm used for calculating the radius of gyration by GROMACS is defined by 
the following formula:

Rg
E J r l f m A 2 

E i m  )
(4.1)

where m, is the mass of particle i and r, is the displacement vector of particle i from the molecular 
centre of mass. In other words, Rg is the root mean square distance between particles and an axis 
of rotation, in this case evaluated at each time point to be represented as density distributions, 
shown in Figure 4.3.

4.2.3 Network construction by statistical tests

Network graphs are well-suited for representing and analysing complex node relationships, how­
ever noise coming from temporary residue contacts during dynamics can be overwhelming. We 
therefore proceeded with a method to filter out edges that are most likely to be fortuitous. Edge 
refinement was performed by using independent t-tests on time-averaged pairwise distances be­
tween residues defined by Cp or glycine Ca atoms. For a given pairwise distance D j  between 
a residue pair, the time averaged distance (D j ) is calculated for every protein in one ensemble. 
These are then accumulated into a array and same is performed for the corresponding ensem­
ble. Thereafter, for each drug, individual two sample Welsch t-tests (for unequal variance) are 
performed for each analogous position for the residue pairs between the drug-resistant and drug- 
susceptible ensembles. After initially evaluating a null hypothesis of there being no difference 
(two-tailed tests) and finding that it was less informative and noisier, two alternative hypotheses 
were investigated in the form of one-tailed t-tests, performed at a 99% significance level. The 
first one evaluated whether the average pairwise distances were larger in the resistant ensemble, 
whereas the second alternate hypothesis evaluated whether the same distances were larger in the 
susceptible ensemble. These hypotheses are equivalent to the reverse hypotheses in the opposite 
ensemble. For clarity, emphasis was laid only on describing resistance-related differences only, as 
smaller or larger. The filtered results were then represented as an adjacency matrix by converting 
positions of significant difference into binary contacts comprising ones and zeros for the presence 
or absence of a contact. Thereafter the results were represented by scaled degree centrality plots 
contrasting the top 5 hub positions determined to be significantly larger and smaller for the re­
sistant ensembles. Network graphs and calculations were performed using the NetworkX library 
(version 1.11) [290]. For further visualization, the edges were mapped onto protein structures us­
ing the NGLview library (version 1.0) [300]. The MDTraj library (version 1.9.1) [301] was used for 
reading trajectories and for computing distances and bond angles. Statistical tests were performed 
using SciPy 1.0.0 [302]. Additionally, bond angles between Ca atoms were compared by perform­
ing one-tailed t-tests over analogous arrays of bond angles across drug resistance ensembles and

77



recording the p-values for larger and smaller angles. Only those bond angles with a -log(p-value) 
above 2.5 standard deviations were retained for both the larger and smaller angles. The negative 
logarithmic transformation highlighted the most significant p-values by showing the magnitude of 
their exponents. For both angles and distances, Bonferroni corrections were applied to correct for 
multiple testing by dividing critical t values by the number of tests performed. Further, in the 
case of angle comparisons, binary vectors were constructed for each drug to represent significant 
(ones) and non-significant (zeros) differences. These arrays were then represented as cluster trees 
using average linkage to show class-wide conservations and divergence in angular behaviour across 
the different PIs. Finally, the whole experiment was replicated once using a different seed.

4.3 Results and Discussions

4.3.1 Preliminary quality control of MD runs

In order to remove potential sources of additional variation, an initial 100ps of simulated data 
was removed from each trajectory, on the basis of higher variation in Ch-RMSD observed during 
that time (Figure 4.2). It is very likely a result of residual effects from temperature and pressure 
equilibration that were performed before the production MD runs. These summary statistics have 
been condensed from RMSD values plotted for each individual complex done as a quality control 
against the failure to remove periodic boundary conditions, which can lead to distance artefacts 
if uncorrected.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time (ps)

Figure 4.2: Average (top) and standard deviations (bottom) of Ca-RMSD values evaluated for all 8 
FDA-approved PIs. The red line demarcates an initial 100ps equilibration region. The heat map shows 
the RMSD variances coloured red to white corresponding to high and low values respectively. Figure 
re-used from [303].

4.3.2 Using Rg for global assessment of compaction

Preliminary observations were made from the analysis of global compaction by comparing distri­
butions of Rg values obtained in each resistance ensemble for each PI sampled over MD periods 
of 2ns. It is known that drug resistance is associated with a wider binding cavity, however as seen
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in Figure 4.3a, there is no systematic skew in the distribution of Rg values generally supporting 
a wider cavity. More specifically, higher average Rg values (corresponding to a wider binding 
cavity) were clearly observed only for the drugs DRV, NFV and SQV. For the drugs ATV, LPV 
and TPV the distinction was subtle, while the complete opposite was observed in the case of FPV 
and IDV. Replication of the entire experiments with different random seeds showed similar skews 
and statistical modes (Figure 4.3b) in the individual distributions for each drug ensemble. The 
general observations obtained from analysis of this global property is that a differentiation is very 
weakly-detectable and appears non-conserved across PI drugs. We therefore hypothesized that a
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Figure 4.3: Distributions of Rg values for the drug-resistant (shaded in grey) and drug-susceptible 
ensembles (shaded in red). Each sub-figure represents the distributions for a particular protease inhibitor, 
namely ATV (A), DRV (B), FPV (C), IDV (D), LPV (E), NFV (F), SQV (G) and TPV (H). Figure 
re-used from [303].

differential signal may exist at a local level but is heavily masked by more chaotic motions. For 
this investigation, more fine-grained analysis was done by comparing pairwise residue distances 
and bond angles between resistance states.

4.3.3 Network construction using t-tests of pairwise residue distances

Initial stages of calculating pairwise distances were based on Ca atoms, but were updated to use 
Op atoms (except for glycine) to represent amino acid residues with the objective of obtaining 
more information about side chain movement. Additionally, the MD run times were increased 
from 1ns to 2ns for an improved conformational sampling and to obtain more characterising infor­
mation. Ideally the use of a much larger simulation time would have improved the thoroughness 
of sampling, but the scope of research was limited by computational time as the experiment was 
to be replicated for 8 drugs. On the other side, a major advantage of a short simulation time 
would be the observation of possible differentiating signals early, which implies being able to do 
reliable resistance diagnostics from infected patients. The approach described can be extremely 
useful in cases where subtypes are divergent from subtype B, which is commonly used in training 
drug resistance predictors. Such an approach also will not suffer from features of differing lengths 
that can be ambiguous to represent and compute using common machine learning approaches. 
The t-test p-values corresponding to larger and smaller distances in the resistance ensembles were 
used to construct adjacency matrices for each drug after performing the Bonferroni correction for
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family-wise error rate and is shown in Figure 4.4. While informative, the adjacency matrices are 
still saturated with information but already generally show some strong patterns of conservation 
across the ensembles, although apparently weaker in LPV and TPV. In order to examine the re­
lationships, network graphs were constructed and degree centralities were evaluated for the larger 
and smaller distances separately. As a side note, a single network was initially calculated from the 
adjacencies for which connections were built from two-tailed tests. This method confounded in­
formation about which distances were larger and smaller, which made interpretations ambiguous, 
hence the calculation of one-tailed tests in each of the cases. At this stage, differential signals were 
still potentially noisy. Therefore we proceeded with the calculation of degree centralities hoping 
that the concept of preferential attachment from scale-free networks [304] would be of assistance 
in prioritising the differences that were consistent and most likely real. The idea relied on the fact 
that a residue would most probably be further away from a group of residues if the same residue 
was found to have statistically significant distances (greater or smaller) to multiple other residues. 
We find such information by ranking residues in descending order of connectivity and show our
findings in Figure 4.5 where degree centralities are scaled to the range [0,1] in each case, using

xi — min(x)the following formula: Additionally, betweenness centralities were evaluated
max(x) — min(x)

and overlaid on the same graph initially, but showed similar trends to the degree centrality in 
preliminary analyses and were therefore not considered further.

A very conserved signal was observed in all drug complexes despite the sequence variations, short 
simulation time and partial stochasticity of the methods used. As seen in Figures 4.5 and 4.7, 
the cantilever base is systematically drawn towards the catalytic core in all drug complexes in 
the resistant state. Not immediately apparent from the normalized degree centralities, mapping 
onto 3D structures clearly shows that a second conserved behaviour was detected (Figure 4.7), 
more specifically a lateral expansion that was also manifested early in drug resistant ensembles. It 
should be noted that very similar behaviours were observed from the replicated experiment, with 
minimal residue differences. We proceed by describing the set of observations for each PI drug.

4.3.4 Results obtained for each ARV

In the case of A T V , smaller distances were recorded at positions 70 and 17 on chains A and 
B (Figure 4.5A). Larger distances were observed at positions 36, 37 and 73 on chain A and at 
positions 36 and 73 on chain B. Structural mapping of these residue loci (Figure 4.7A) shows 
that residues displaying larger distances in the resistance ensemble favour a lateral expansion 
motion involving the walls of the binding cavity and the flaps elbows, which would correspond to 
a widened protease conformation. Residues predicted to have smaller distances display an upward 
motion in direction of the flaps. Additionally, those motions show a high level of symmetry with 
respect to each monomer. Highly similar residue behaviours were obtained upon replication, with 
minor differences such as residue 36 which peaked from chain A instead of B. For the resistance 
ensemble several mutations were present in addition to the accessory DRMs (10IVF, 32I, 33FV, 
34Q, 46LI, 48V, 53L, 54LVM, 60E, 62V, 64VM, 71IV, 73STA, 90M, 93LM) and the major DRM 
84V.
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For D R V  (Figures 4.5B and 4.7B), residues 71 and 72 from chain A, and residues 69, 71 and 72 
from chain B move symmetrically inwards towards the active site in the resistance ensemble. On 
the other hand, expansion occurs at position 10 from chain A and positions 10, 21, 37 and 54 
from chain B for the same ensemble. While the flap elbows did not move symmetrically, residue 
10 was found to move laterally outwards from both chains A and B. Additionally, residue 54 from 
chain B was also found to move out perpendicularly from the bulk of the protease - a scenario that 
was not observed under replication (Supplementary Figure). The resistance ensemble comprised 
the major DRMs 47V, 54LM and 84V, while accessory DRMs consisted 11I, 32I, 33F and 89V in 
addition to several other variations.

In the case of F P V  (Figures 4.5C and 4.7C), contractions were observed at residue position 71 on 
chain A and at positions 69-72 from chain B. On the other hand, expansions were observed along 
residues 15-17 on chain A, and positions 16 and 73 from chain B. Lateral expansion occurred as 
observed in the corresponding DRV ensemble, but here same is achieved via the 10’s region and 
the surface-exposed residue 73, under replication. Protein contraction also occurs reproducibly in 
the replicate run. In addition to other mutations, the resistance ensemble comprises major DRM 
84V and accessory DRMs 10IVF, 32I, 46LI, 47V, 54LVM, 73S, 76V, 82TA and 90M.

In ID V  (Figures 4.5D and 4.7D), contractions for the resistance ensemble were observed at posi­
tions 63, 69-71 on chain A and at residue 71 on chain B. Expansions were observed at positions 
16 and 73 on chain A, and at positions 16, 17 and 93 on chain B. Residues involved in expansion 
were identical upon replication, while inward motion was reproducible only for the cantilever loop 
along chain A. Cantilever residue 73 is yet again found to be implicated in lateral expansion, this 
time from both chains A and B. An identical response was obtained from the replicate runs for 
expansion along the 10’s region from both chains while compaction was mediated through residues 
69-71 on chain A. The resistance ensemble in this case includes, in addition to various variations, 
the major DRMs 46LI, 82FTA and 84V, and the accessory DRMs 10IV, 20R, 32I, 36I, 54V, 71TV, 
73SA, 76V, 77I and 90M.

In the case of L P V  (Figures 4.5E and 4.7E), contractions occurred via residue positions 70 and 71 
on chain A, and residues 69-71 on chain B in the resistance ensemble. Expansion was mediated via 
positions 73 and 93 from chain A and residues 34, 36 and 73 from chain B. A high concordance for 
the residues involved in expansion was obtained upon replication, with the exception of residues 
36 and 81 from chain B, which showed similar patterns despite ranking differently. Similarly 
compaction was mediated via residue 69 instead of 71. The resistance ensemble here comprises 
the major DRMs 32I, 47VA, 76V and 82SFTA while the accessory ones consist of 10IFV, 20RM, 
24I, 33F, 46LI, 50V, 53L, 54LTVMS, 63P, 71VT, 73S, 84V and 90M. Additional variations are 
also present.

For the N F V  resistance ensemble (Figures 4.5F and 4.7F), compaction occurred via residues 69-71 
from chain A and via residues 70 and 71 from chain B. On the other hand, expansion was mediated 
via residues 20 and 36 from chain A and residues 20, 36 and 73 from chain B. Replication lead to 
very similar behaviours, however residues 20 and 36, which form part of the elbow and fulcrum 
respectively, appeared to move in a coordinated manner during expansion. Protease contraction
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is mediated similarly to previous drugs, proximal to the cantilever loop. The resistance ensemble 
for NFV comprised major DRMs 30N and 90M, and accessory DRMs 10IF, 36I, 46LI, 71TV, 77I, 
82FA, 84V and 88D.

For SQ V  (Figures 4.5G and 4.7G), resistance-associated contractions were observed via residues 
70 and 71 on chain A and residues 69, 71 and 72 from chain B. Expansion was observed via 
residues 73 and 89 from chain A and on chain B for residues 18, 20 and 73. Replication produced 
similar, though not completely identical behaviours, with a very symmetric compaction at the 
fulcrum area within both chains while displaying very similar expansion points. The resistance 
ensemble for SQV comprised major DRMs 48V and 90M, while the accessory DRMs consisted of 
10I, 54LV, 62V, 71TV, 73S, 77I, 82A and 84V, amongst other mutations.

In T P V  (Figures 4.5H and 4.7H), contractions were experienced at positions 33, 60 and 71 from 
chain A, and at positions 70 and 71 from chain B. Expansions occurred via residues 16 and 20 
from chain A and at positions 15-17 from chain B. Upon replication a similar profile was obtained. 
It should be noted that contraction, while occurring proximal to the cantilever loop, mobilises 
the buried residue 33 from chain A - a property not observed in the other ARV complexes. The 
resistance ensemble for TPV comprised major DRMs 47V, 58E, 74P, 82LT, 83D, 84V and the 
accessory DRMs 10V, 33F, 36IV, 43T, 46L, 54VM and 89VM, amongst other mutations.

4.3.5 Monitoring angular backbone behaviour from C a atoms

In addition to distances, it was presumed that monitoring bond rotations would further help 
characterise movement within the ensembles associated to resistance or susceptibility. With the 
aim of finding an absolutely conserved angular behaviour characteristic of drug response, Ca — Ca 
angles were compared across drug resistance ensembles and represented as a cluster heat map. 
From Figure 4.8 and its replicate, it can be seen that position 84 is very likely larger across 
all drugs in the resistance state, however this is supported by only one of the replicates. TPV 
appears to elicit a very different response in the resistance state, very likely due to its non-reliance 
on interfacial water for stabilisation within the active site. Overall the angular behaviours are 
not highly conserved as seen from clusterings for replicate runs of both smaller (Figure 4.9) and 
larger (Figure 4.8) angles. The absence of such conservation may suggest that multiple angular 
behaviours may lead to a similar resistance effect, however an increased conformational sampling 
would add more evidence to this hypothesis, but would require very high computational resources 
unless a cheaper sampling method is available.
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Figure 4.5: Normalized degree centralities of significantly larger (red lines) and smaller (black lines) 
distances observed in resistant ensembles for 8 FDA-approved protease inhibitor complexes, namely ATV 
(A ), DRV (B ), FPV (C ), IDV (D ), LPV (E), NFV (F), SQV (G ) and TPV (H). The top 5 residue 
positions with the highest connectivities are labelled at the peaks in each graph. Inserted underneath are 
the functional protease residues depicted as coloured dots, namely the fulcrum (red), the elbow (blue), 
the flap y (yellow), the cantilever (orange), the interface (cyan) and the binding cavity residues (grey). 
Figure re-used from [303].
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Figure 4.6: Replicate of the normalized degree centralities of significantly larger (red lines) and 
smaller (black lines) distances observed in resistant ensembles for 8 FDA-approved protease inhibitor 
complexes, namely ATV (A ), DRV (B ), FPV (C ), IDV (D ), LPV (E), NFV (F), SQV (G ) and TPV 
(H). The top 5 residue positions with the highest connectivities are labelled at the peaks in each graph. 
Inserted underneath are the functional protease residues depicted as coloured dots, namely the fulcrum 
(red), the elbow (blue), the flap y (yellow), the cantilever (orange), the interface (cyan) and the binding 
cavity residues (grey). Figure re-used from [303].
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Figure 4.7: Top-ranked degree centralities mapped onto HIV protease structures for significantly larger 
(left) and smaller (right) distances observed in resistant ensembles for complexes containing ATV (A ) , 
DRV (B ) , FPV (C ) , IDV (D ) , LPV (E ) , NFV (F ) , SQV (G ) and TPV (H ) . Figure re-used from [303].
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Figure 4.8: Heat map of residue positions with significantly larger Ca angles in the resistant ensemble 
for each PI. The hierarchical cluster tree is displayed on the left. The first replicate is at the left and the 
second replicate is at the right. Figure re-used from [303].
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Figure 4.9: Heat map of residue positions with significantly smaller Ca angles in the resistant ensemble 
for each PI. The hierarchical cluster tree is displayed on the left. The first replicate is at the left and the 
second replicate is at the right. Figure re-used from [303].
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4.4 Conclusions

In this work, we use degree centrality calculated from graphs built using statistically-moderated 
edges across ensembles of PI-bound protease complexes expressing resistance and susceptibility. 
By increasing the sensitivity of signal detection in the comparison of geometric differences present 
in ensembles of HIV protease sequences, we were able to highlight clear and statistically-significant 
differential residue motions occurring very early in cases of resistance and susceptibility for 8 FDA- 
approved ARV drugs. Despite being performed only on subtype B HIV, this approach can be of 
tremendous value in non-B subtypes, where predictions are currently less optimal. Given the 
level of stringency used and conservation observed in this experiment, it is not impossible that 
same or similar signals may extend to early resistance-related events in other subtypes. The brief 
simulation time means that similar designs may be trialled on consumer grade computers to sup­
plement extant drug resistance algorithms in prescribing treatment. This level of conservation is 
novel and features a promising generic approach for the sensitive analysis of variation associated 
with differing phenotypes. More generally, such an approach can be repurposed for the extraction 
of dissimilarities between homologous systems or for feature augmentation in order to improve 
machine learning predictions of drug resistance. The experimental design inherits from require­
ments for performing the t-tests, that is generally 30 samples or more of each class for improved 
performance.
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Chapter 5

Screening for potential protease 
inhibitors

5.1 Introduction

In this section we shift gears from the improvement of resistance prediction to use high-throughput 
virtual screening (HTVS) to find potential ARV scaffolds with activity against darunavir-resistant 
protease sequences. According to a UNAIDS report [305], an estimated 36.7 million people were 
infected with HIV worldwide in 2016 at a rate of 1.8 million new infections for the same year. 
There is no current cure for the disease and clinicians assist patients in maintaining virological 
suppression by prescribing Highly Active Antiretroviral Therapy (HAART) regimens [306], which 
target distinct key enzymes involved in HIV replication via drug combinations. There have been 
several cases where rational drug design has expedited the discovery of novel active compounds. 
Some examples include the development of a renin inhibitor aliskiren, which is used in the treat­
ment of primary hypertension [307]; catechol diether derivatives potent against HIV RT highly 
resistant to rilpivirine and efavirenz [308, 309]; and in the repositioning of a non-steroidal anti­
inflammatory drug celecoxib as a STAT3 protein inhibitor to be used as an anti-cancer drug [310]. 
The rational design of the first protease inhibitor saquinavir using computational methods has 
been decisive in substantially reducing the rate of HIV-related deaths since its incorporation as 
part of therapy in 1995 [19]. Since then with the exception of tipranavir, several PIs have been 
developed using the concept of peptide mimicry based on hydroxyethylamine isosteres [311]. How­
ever, because most of the current PIs share this substructure or rely on similar ligand-contacting 
protease residues [312], drug pressure exerted via treatment continuously selects for DRMs via 
mutation stacking, which presents a main challenge for current PI designs which have been used 
for decades [90]. HIV’s tenacity resides in its ability to mutate [11] and replicate quickly [313], its 
capacity for accumulating mutations [314] and its existence as a quasispecies. Integration within 
the host genome marks permanent establishment of the retrovirus in HIV patients and for this 
reason timely use of effective ARVs is critical. DRMs harboured by HIV can either establish direct 
ARV contacts within the active site or act from a distance, in which case the DRMs are referred 
as major and accessory respectively [315]. The latter are individually less impactful but can act 
in concert to enhance drug resistance. For the reasons aforementioned, resistance against multiple
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members of a given drug class is not uncommon. After the previous gold standard lopinavir (LPV) 
[316], the latest FDA-approved protease inhibitor DRV is currently recommended by the World 
Health Organisation in combination with ritonavir for use in first line regimens as it is better- 
tolerated by patients and has a higher barrier for viral resistance. We use HTVS with a strong 
focus on finding drugs that will potentially be the next in line when patients fail DRV treatment. 
In this respect, the screen is performed to find new potential scaffolds targeted against a panel 
of DRV-resistant protease sequences using compounds from the South African natural compound 
database (SANCDB) [1]. Nine promising compounds are identified from the SANCDB database 
with good stabilities and hydrogen bonding capacities with their respective receptor complexes 
observed over periods of 20ns simulated by molecular dynamics. Modifications are also proposed 
to one of the compounds for improved efficacy.

5.2 Methods

5.2.1 Sequence retrieval and receptor preparation

The pre-filtered PhenoSense assay dataset was retrieved from Stanford HIVdb [83]. Each sequence 
entry was reconstituted by expansion using the Cartesian product of the tab-separated sequence 
residue positions. Using a DRV fold resistance cut-off ratio of 90, a total of 274 99-residue long were 
obtained and converted to FASTA format, with an identifier composed of the original sequence 
ID accompanied by an additional number corresponding to the variant rank after expansion. 
Following visual inspection of the multiple sequence alignment obtained from MUSCLE (version 
3.8.31) [317], no further filtering was deemed necessary, as there were no indel mutations. In order 
to increase our chances of finding a drug of wide spectrum against the quasi-species, a series of 
divergent sequences was prepared. We proceed by building a hierarchical cluster tree from the 
aligned sequences and cutting it to obtain 10 sequence clusters. From each partition, one sequence 
was randomly picked. The selected sequences were aligned as depicted in Figure 5.2 to show the 
location of sampled non-synonymous mutations.

5.2.2 Receptor preparation for docking

In addition to sequence variance, different receptor conformations are also considered. The opened 
(PDB ID: 4YOA) and closed (PDB ID: 3UCB) conformation crystal structures were thus retrieved 
on the basis of (1) high-resolution (1.70 A and 1.38 A respectively), (2) the presence of co­
crystallised DRV and (3) the absence of missing residues. The crystallized template protein 
structures were separated from any non-protein molecule and residue rotamers were removed using 
an in-house Python script so that protonation could be later performed. The rotamer removal 
algorithm was designed to retain higher-occupancy side chains. In the case of ties, only the last 
rotamer was kept. Complexed ligands were extracted and retained as separate files for docking 
preparations. MODELLER (version 9.16) [186] was used for homology modelling each sequence - 
100 models were built under slow refinement for each of the 10 sequences in both conformations, 
resulting in 200 models, that were individually ranked in ascending order of their z-DOPE score
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to obtain 20 high-quality models (See Table 5.1).

5.2.3 Docking validation (with DRV) and virtual screening

Prior to ligand screening, a validation was performed to determine optimal experimental parame­
ters for docking accuracy and speed. Apo-receptors were protonated to pH 7 with PDB2PQR (ver­
sion 2.1.0) [272] using the PROPKA algorithm to produce 3D models with AMBER residue types. 
Based on results obtained from preliminary docking validations, co-crystallized water present at 
the interface of the protease flaps and ligand was retained for the closed conformation template 
(and homology models) as they improved the ligand binding pose. The open conformation tem­
plate was aligned to the closed receptor conformation using PyMOL (version 1.7.2.1) to define a 
ligand docking centre. The C 7 carbon atom of DRV from 3UCB PDB file was used as the docking 
centre with coordinates (13.455, -0.862, -10.106). AutoDockTools [273] was used to determine the 
grid box size (22 x 22 x 22 A3) to entirely surround the binding cavity around the docking centre. 
Extracted crystallized ligands were protonated using the generic organic algorithm and converted 
to PDB format using VEGA (version 3.1.1) [276] before merging non-polar hydrogen atoms, calcu­
lating partial charges and assigning rotatable bonds using the AutoDockTools prepareJigand4-py 
script. These were then re-docked by flexible ligand docking against their respective prepared 
apo-receptor templates using AutoDock Vina (version 1.1.2) [200]. Once docking parameters were 
obtained, same were applied to screen all SANCDB ligands, finally summarizing the binding ener­
gies as an un-normalized and a quantile normalized (across compounds for each receptor) data set. 
In both cases, ligands were ranked in ascending order of average binding energy across receptor 
variants and conformations.

5.2.4 Assessment of hit compound stability

Each of the complexed ligands was subsequently monitored for their stability within the protease 
receptor variants via all-atom MD simulations using GROMACS (version 2016.4) [263] with the 
AMBER03 forcefield. Docked ligands were protonated to their original form and converted from 
PDBQT to PDB format using VEGA. Topologies were then obtained from the previously pro- 
tonated receptors using the GROMACS pdb2gmx command while ACPYPE [264] was used for 
protonated ligands. The receptor-ligand complexes were solvated with SPC-modelled water in 
0.15 M NaCl in a triclinic periodic box with a clearance of 1 nm from the protein. A cut-off 
distance of identical magnitude was used for short-range non-bonded interactions while PME was 
used for handling long distance charged interactions. After energy-minimization using the algo­
rithm of steepest-descent with a gradient minimum of 1000 kcal/mol for a maximum of 50000 
steps, the system underwent temperature and pressure equilibration for 50 ps in each case using 
time-steps of 2 fs. The LINCS algorithm was used to constrain bond lengths after unconstrained 
updates for both equilibration and the 20 ns production runs. All simulations were performed 
on the large queue of the Centre for High Performance Computing (CHPC) cluster using GNU 
Parallel (version 20160422) [274] with a 24-core node for each independent run. Hit compound 
stability was initially monitored by all-atom ligand RMSD with respect to the initial frame, but

90



was replaced by the more sensitive calculation of the euclidean distance between the protein and 
ligand COM values for each simulation frame. Additionally, hydrogen bonding propensity between 
the receptors and ligands was monitored.

5.2.5 Hit-ligand modification

One of the hit SANCDB compounds (SANC00178) with very high receptor binding affinities 
across opened conformations, but poor performance in only one closed conformation variant was 
modified to improve flexibility. Modifications involved deletion of two carbon-carbon single bonds 
connecting cycloalkane derivatives around a central pyrazine group followed by filling the open 
valences with double bonds to produce a 2,5-dimethylpyrazine derivative (See Figure 5.9). The 
structure was minimized by conjugate gradient until convergence using the Avogadro software 
[318]. After docking, the ligand protonation state was restored using the Discovery Studio Visu- 
alizer (version 4.1), its topology was prepared and dynamics were monitored as described above. 
Stability of receptor-ligand interactions are inferred from the contact strengths estimated from 
the time-averaging of intermolecular contacts between ligand and protein heavy atoms around a 
radius of 4 A from MD-sampled frames.

5.3 Results and Discussions

Here we present the ligand screening results, starting from receptor preparations, going through 
high-throughput ligand screening until the assessment of hit compound stability and the modifi­
cation of a promising hit compound.

5.3.1 Characteristics of the protease receptors

With focus on DRV-resistance the number of sequences to be evaluated for drug screening was 
set at 10 to incorporate multiple cavity variations associated with resistance. The aim being to 
increase the probability of obtaining efficient binders by mitigating docking-related problems while 
still maintaining reasonable computational costs. Top-most divergent sequences were estimated 
using hierarchical clustering on the complete subset of DRV-resistant sequences retrieved from 
Stanford HIVdb. Cluster representatives were chosen by initially trimming the dendrogram to 
obtain 10 clusters, before randomly selecting a sequence from each cluster. We report that a pre­
viously trialled algorithm based on ranking of all sequences by average distance before selecting 
top ones does not work correctly as it accumulates sequences which are equally divergent to the 
remaining subset of sequences. In effect, such an approach led to a subset of similar sequences for 
such a small set of 10 sequence variants and was thus replaced by the partly stochastic approach 
described earlier in this subsection. Figure 5.1 depicts the relationships estimated between the 
sequences whereby distances were calculated using similarity while the alignment of cluster rep­
resentatives is shown in Figure 5.2. Further, we show the location of sampled non-synonymous 
mutations with respect to the HIV reference protease by including the consensus B subtype in 
the multiple sequence alignment (Figure 5.2). Additionally, secondary structural elements have
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Figure 5.1: Hierarchical cluster tree based on the distance matrix obtained using the Fitch similarity 
metric from aligned protein sequences. The 10 selected sequences (sequence IDs: 90022_68, 205695_46, 
117075-1, 113060-0, 115065-0, 117133_0, 154816-0, 187119-0, 205693-3, 235703-0) are labelled in red. 
Several clades were collapsed in order to improve label visibility.

been overlaid to show the positions of major DRMs. From the same figure, it can be seen that 
the mutations occur at multiple loci along the selected proteases, targeting both residues from 
the substrate-binding cavity and important secondary structural elements (0-hairpins) comprising 
the flap, fulcrum and cantilever regions. Sampled cavity residue mutations occurring at positions 
46, 47, 82 and 84 are all involved in varying levels of multi-drug resistance, while the impacted 
0 -hairpins act in concert to lead in flap opening [299]. By evaluating ligand performance against 
such a panel of slightly altered receptors, we attempted to mitigate chance events resulting from 
the partly stochastic sampling of the ligand search space by increasing the number of indepen­
dent docking trials for each ligand. In effect, a hit compound would have to rank highly against 
most receptors for it to be considered further by more accurate but computationally-demanding 
methods. We improve the design further by also considering both opened and closed receptor 
conformations by using separate templates as described in the methods section. An array of 20 
models was thus obtained for screening the drugs after performing independent quality evaluations 
using both QMEAN4 (from the SWISS-MODEL web server) and z-DOPE from MODELLER. As 
seen in Table 5.1, high quality models were obtained in all cases, with values very close to or below 
-1 in the case of z-DOPE, thus indicating native-like states [278]. Similarly, QMEAN4 evaluations 
indicated good model quality with values approaching 1. Having selected the sequences, they were 
brought forward for ligand screening.

5.3.2 High-throughput virtual screening

Before proceeding to HTVS, a control experiment was performed to validate docking parameters, 
which mainly comprised the grid size and centre in addition to the exhaustiveness. These are per-
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Figure 5.2: Multiple sequence alignment of the sequences used for drug screening showing the degree of 
residue conservation with respect to the subtype B consensus sequence, labelled as reference. Structural 
features have been added underneath the alignment as coloured strips, namely the protease dimer interface 
(cyan), the fulcrum (red), elbow (blue), flap (yellow), cantilever (orange) and the 80S loop (grey). Binding 
cavity residues are depicted as filled blue circles while black circular outlines denote major DRV-resistance 
positions.

formed to assessing how well our approach reproduces experimentally-determined ligand poses. 
The correctness of docking parameters was estimated by calculating the heavy-atom RMSD be­
tween the docked DRV and its originally co-crystallized position within each template receptor. 
RMSD values of 0.9 A and 8.6 A were obtained for the closed and opened conformation templates 
respectively. A lack of ligand-stabilizing contacts in the opened receptor conformation was the 
main reason for not being able to reproduce closely the original pose. However, the positioning was 
close enough as estimated by a centre-of-mass distance of 3.7 A with respect to the original pose. 
Ligand binding energies were estimated at -6.4kcal/mol and -8.7kcal/mol for the opened and closed 
template receptor conformations using AutoDock Vina. Of particular importance is an interfacial 
water molecule which was considered for screening in the case of the closed receptor conformations 
as it improved both the ligand binding energy and pose. Same could not be performed for the 
opened conformation as no crystallised water was anchoring DRV to the flaps. Subsequently, all 
compounds were retrieved from SANCDB for the screening experiment to make a total of 718 
ligands. The docking jobs were performed on the CHPC large queue with 12 cores each. Screen­
ing results were then organized into an array with ligands along the row and receptors along the 
columns. Average binding energies were calculated for each ligand to rank the dataset in increas­
ing order of average binding energy. The top-most ligands are shown in Figure 5.3 while details of 
their origin and recorded uses are given in Table 5.2. SANC0178a is a modification of compound 
SANC00178 based on observations made from dynamic simulations and is later discussed. From 
the heat map, it can be seen that all hit compounds displayed improved receptor affinities when 
compared to the re-docked DRV with the exception of a closed conformation receptor B3 in the 
case of SANC00178, despite a very good overall performance in opened conformations. Compound 
SANC00347 performed the best irrespective of receptor variation and conformation, with higher 
performances displayed towards the closed conformations. Co-incidentally most of the top hits 
comprised molecules from a select few compound classes each sharing similar structures, some 
being shown in Figure 5.8. The next step was to further narrow down the top hits by evaluating 
their stability under physiological conditions by molecular dynamics simulations.
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Table 5.1: Sequence identifiers and model quality scores for the selected protease receptors

Labels Sequence Protease con- z-D O P E  Q M E A N 4
used IDs form ation scores values
A1 113060_0 opened -1.261 0.850
A2 115065_0 opened -1.355 0.837
A3 117075_1 opened -1.269 0.834
A4 117133_0 opened -0.989 0.811
A5 154816_0 opened -1.053 0.839
A6 187119_0 opened -1.101 0.837
A7 205693_3 opened -1.081 0.814
A8 205695_46 opened -0.990 0.864
A9 235703_0 opened -1.233 0.822
A10 90022_68 opened -1.331 0.833
B1 113060_0 closed -1.521 0.823
B2 115065_0 closed -1.561 0.823
B3 117075_1 closed -1.490 0.779
B4 117133_0 closed -1.222 0.811
B5 154816_0 closed -1.350 0.795
B6 187119_0 closed -1.363 0.810
B7 205693_3 closed -1.334 0.821
B8 205695_46 closed -1.209 0.811
B9 235703_0 closed -1.488 0.787
B10 90022_68 closed -1.551 0.812

5.3.3 Stability of hit compounds within their receptor complexes

Hit compound stabilities were evaluated by estimating their tendency to be retained within re­
ceptors over time given their initially docked positions. For this matter, all-atom MD simulations 
were performed in explicit water with 0.15 M salt at a pH adjusted to 7 for the protease in a system 
pre-equilibrated at physiological temperature and pressure. Receptor protonation with PDB2PQR 
constantly resulted in only one catalytic aspartate being fully-protonated for the dimer. All lig­
and open valences were filled with hydrogen atoms using VEGA before preparing the topologies 
for use in MD. Of particular note is the failure of some methods (such as Open Babel or other 
algorithms from VEGA) to produce the right protonation states. Ligand RMSD values (Figure 
5.4) were first evaluated but were observed not to give an accurate reflection of ligand stability 
when assessed visually, especially for longer and flexible hit compounds. As a possible explanation 
using compounds SANC00670-672 as example, the centre of mass (COM) is subtly changed with 
respect to that of the receptor, but high flexibility of the long chains inflates RMSD values to 
mask the overall lack of COM movement. The euclidean distance was instead calculated for the 
position vector of the ligand COM with respect to that of the protease receptor at each time 
point (Figure 5.5) and was observed to be more in line with ligand stability within the active 
site. A summary of the COM distances is given as a series of box plots for the time-averaged
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Figure 5.3: Binding energies for 15 top binders across sequence variations and receptor conformations. 
Open and closed conformations are labelled Al-10 and Bl-10 respectively.

COM distances for each complex (Figure 5.6), which facilitates interpretation of individual ligand 
performances across arrays of receptor conformations. From the distributions of COM distances 
in Figure 5.6, one can more easily spot the least and most stable compounds SANC00584 and 
SANC00672 respectively, by the height of their upper whiskers, which have been set to be the 
range in this case. SANC00672 also displayed a small median and a narrow range for the upper 
and lower quartiles. Compounds SANC00491 and SANC00772 fared less well in this respect, and 
together with SANC00584 hint at the possibility of ligand exit. Due to the fact that COM distance 
carries information from the receptor, we predict that the method will behave as expected when 
the receptor centre of mass does not shift largely - additional equilibrium conformations of the 
receptor sampled at more distal wells in the energy landscape will negatively affect this value. An 
appropriate correction then would be to restrict the receptor COM calculation to a smaller area 
centered around the ligand being investigated. After this preliminary analysis, the trajectories 
were assessed visually and we proceed by discussing the compounds in a class-wise manner.
Main classes for the hit molecules include the cephalostatins, kraussianones, scutiaquinones, saun- 
derosides and marchantins, in addition to the compounds mamegakinone and 20(29)-lupene-3/3- 
isoferulate (Table 5.2). Cephalostatins SANC00178 and SANC00491 were less flexible owing to 
their linear arrangement of fused heterocycles (Figure 5.8) but were generally stabilized by a 
centrally-located pyrazine ring in the initial receptor conformations. Flowever, in one simulation 
with the opened conformation protease variant A7, SANC00471 was observed to force open one 
of the flaps whilst remaining strongly-bound to other flap over the course of simulation. Over­
all, SANC00178 is stabilized by a larger number of hydrogen bonds compared to SANC00491, 
especially in the opened receptor conformations, as shown in Figure 5.7 where higher maxima 
and bulks of the distributions are observed for SANC00178 in comparison SANC00491. The 
four kraussianones (Figure 5.8) share very similar substructures mainly composed of heterocycles. 
While SANC00342 and SANC00352 possessed a central rotatable bond, compounds SANC00347 
and SANC00348 were less flexible due to their fused rings. The narrower COM distance ranges 
for SANC00342 and SANC00352 as seen from Figure 5.6 can be hypothesized being the result 
of combined central mobility and exposure of planar ligand moieties to the inner walls of the 
binding cavity. Flowever, trajectory visualisation hinted at a weaker retention of SANC00342 in
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Table 5.2: Top 15 natural compounds hits with reported uses from SANCDB[1]

Accession Com pound Source organism R eported  use
SANC00178 Cephalostatin 1 C ep h a lo d is cu s  g ilch r is t i Anticancer activity
SANC00491 Cephalostatin 17 C ep h a lo d is cu s  g ilch r is t i Anticancer activity
SANC00342 Kraussianone 1 E r io s e m a  k ra u ss ia n u m Treatment of erectile dys­

function
SANC00347 Kraussianone 4 E r io s e m a  k ra u ss ia n u m NA
SANC00348 Kraussianone 5 E r io s e m a  k ra u ss ia n u m Contraction of corpus caver- 

nosum tissue
SANC00352 Kraussianone 6 E r io s e m a  k ra u ss ia n u m NA
SANC00436 Mamegakinone E u c le a  n a ta len s is Antibacterial
SANC00518 20(29)-Lupene-

3,0-isoferulate
E u c le a  n a ta len s is NA

SANC00584 Scutiaquinone A S c u tia  m y r t in a Anthelmintic Activity
SANC00585 Scutiaquinone B S c u tia  m y r t in a Anthelmintic Activity
SANC00670 Saundersioside F O r n ith o g a lu m  s a u n d e r s ia e Cytostatic activity against 

HL-60 leukemia cells
SANC00671 Saundersioside G O r n ith o g a lu m  s a u n d e r s ia e Cytostatic activity against 

HL-60 leukemia cells
SANC00672 Saundersioside H O r n ith o g a lu m  s a u n d e r s ia e Cytostatic activity against 

HL-60 leukemia cells
SANC00768 Marchantin C M a r c h a n t ia  p o ly m o r p h a NA
SANC00772 Marchantin H M a r c h a n t ia  p o ly m o r p h a NA

comparison to SANC00352, with the latter showing reduced translational mobility owing to pla­
nar hydrophobic contacts in addition to polar interactions mediated by carbonyl and hydroxyl 
functional groups. Despite being the best hit molecule from docking, SANC00347 displayed some 
mobile interaction modes involving the protease flaps despite a reduced flexibility, especially when 
not initially docked at the binding cavity’s floor. In two cases, namely the opened conformation 
variants A3 and A5, early signs of ligand exit though the 80S and flap loop were observed. Oth­
erwise stabilization was mainly mediated by a central hydroxyl group interacting with the floor 
of the binding cavity. Compound SANC00348 was stabilized by the similarly-positioned hydroxyl 
functional group despite an increased asymmetry resulting from a lack of heterocycles on one side. 
However, a higher frequency of interactions with the flaps or 80S loop regions were observed in 
several complexes, namely in A2, A3, A9, B2 and B9 pointing to an increased probability of ligand 
exit. In particular we note that COM distance captured the decreased stability better than lig­
and RMSD. With respect to hydrogen bonding (Figure 5.7), the kraussianone members generally 
maintained at about 2 hydrogen bonds over the duration of MD simulations. Mamegakinone (com­
pound SANC00436) was mainly unstable across protease conformations and variations, displaying 
increased interactions with receptor flaps and the 80S loop, at the expense of reduced contact 
with catalytic residues. In the initially-opened receptor conformation A6, SANC00436 leaves the 
active site. Compound SANC00518 was stable in several cases but left the active site in A2 and 
showed tendencies for ligand exit in A9 and B5. Additionally, hydrogen bonding propensity was
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low and less maintained in few cases, as seen in Figure 5.7. Both scutiaquinones (SANC00584 and 
SANC00585) tended not be retained within the active site due to their large planar size imparted 
by multiply-fused rings and limited flexibility, even though SANC00585 was slightly more flexible 
due to a different heterocycle arrangement. The latter compound was nevertheless found to be 
stable within a subset of the receptor conformations, namely A1, A2, A6, A8, A9, A10, B1, B3 and 
B6. As seen in Figure 5.7, both compounds displayed relatively poor hydrogen bonding proper­
ties, while SANC00584 additionally produced the largest maximum COM distance 5.6. The three 
saunderosides (SANC00670, SANC00671 and SANC00672) are also bulky and share a common 
scaffold, differing mainly terminally by few functional groups namely a hydroxyl, ketone and ether 
groups (Figure 5.8). Flexibility was achieved via rotation about ether linkages located on the one 
side of this class of moderately large compounds. This mainly resulted in self-folding within the 
active site and increased interactions with protease flaps, whilst allowing for linear ligand poses 
in few cases. As all three saunderosides displayed similar dynamics, it would seem that their 
different functional groups were not critical for their retention within the active site, at least for 
the period observed. Protease flaps, and in certain cases the 80S region, were key for stabilizing 
the saunderosides. Stabilization of the linear poses was mediated via the central hydroxyl groups 
involved in intermittent interactions with catalytic aspartates and via partial symmetry resulting 
from the presence of heterocycles at both ends of the molecules. The sheer bulk of the compounds 
meant that part of the saunderosides could be exposed outside of the binding site in two cases 
(compounds SANC00670 and SANC00672B1 in receptors B1 and B5 respectively), despite being 
stably folded within the active site. In all, these three compounds displayed variable hydrogen 
bonding propensities mostly sustained between 5 and 10 bonds (Figure 5.7) whilst showing no gen­
eral trend with the two main receptor conformation. In addition to displaying the highest number 
of hydrogen bonds, the saunderosides were not showing much translational movement within their 
respective receptor variants, as observed by the quasi-stationary COM distances (Figure 5.5 and 
5.6). In the case of these three compounds, it can be clearly seen that while RMSD is showing 
significant motion (Figure 5.4), COM distances are very stable, and corroborated with the absence 
of translational movement from visual inspection of the complexes. From this observation, we can 
see that protein-ligand COM distance may be a better descriptor of stability in cases where ligands 
are long and flexible. The two marchantins (SANC00768 and SANC00772) share a cyclic aromatic 
scaffold held together by multiple rotatable bonds. They only differ by the absence of a hydroxyl 
group on one of the phenolic moieties in SANC00768. Even though both compounds were initially 
among the top-scoring ligands from docking, both fit the active site only partly or displayed high 
mobility within the cavity in several receptor variants despite displaying some more stable poses 
in certain cases during dynamics simulations. Due to their high number of rotatable bonds and 
cyclic nature, both compounds also displayed self-compaction, which decreased the frequency of 
potential n contacts within the mainly hydrophobic walls of the binding cavity by placing the 
heterocycles along separate planes in a small space. Despite the variations in performance due 
to certain combinations of residue mutations, results from this screening experiment could be 
followed up by in vitro tests for protease inhibition. Additionally combinatorial optimization 
experiments can potentially be explored to enrich the pool of candidate ligands with improved
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performance and/or tolerability, if required. As an example of improving ligand effectiveness, we 
have investigated the modification of a top-performing compound, as discussed in the following 
subsection.
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Figure 5.4: Ligand RMSD plots for top 15 SANCDB hit compounds. Opened conformations are in blue while closed ones are coloured red. The modified 
ligand SANC0178a is also included
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Figure 5.5: Protein-ligand COM distance plots for top 15 SANCDB hit compounds. Opened conformations are in blue while closed ones are coloured red. 
The modified ligand SANC0178a is also included
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Figure 5.6: Box plots showing the distributions of observed average receptor-ligand COM distances for 
hit SANCDB compounds over the course of 20ns MD simulations. For each complex the COM distance 
was time-averaged and combined across all variants and conformations to give a distribution for each 
compound. Accessions are abbreviated to numbers for clarity.

5.3.4 Improving the performance of compound SANC00178

Compound SANC00178 showed very high affinities for the opened receptor conformations com­
pared to all the other hit compounds, but displayed a very poor performance against the closed 
conformation receptor B3. After closer inspection, the diminished performance was found to be 
a result of two bad contacts occurring involving two rigid methyl groups peripheral to the central 
pyrazine group. One of the bumps occurred between one of the methyl groups and the retained 
interfacial water while the other bump involved the second methyl group and the protruding side 
chain of ILE47 from the protease flap. We surmised that the cause was a lack of ligand flexibility 
and proceeded by cleaving two single bonds found around the pyrazine moiety to result in a par­
tially symmetric ligand topology. After investigating a few cleavage points involving asymmetric 
ones (not shown) and assessing their overall binding energies, the cleavage points were defined 
as shown in Figure 5.9. When compared against the hit compounds, the modified compound 
(SANC0178a) was found to perform exceedingly well overall, retaining the opened receptor con­
formation specificity while improving the affinity for closed conformations. A centrally-flexible 
polar pyrazine with partially symmetric long “arms” composed mainly of heterocycles was found 
to be beneficial, yielding in the majority of cases stable linear (Figure 5.10b) and folded (Figures 
5.10c) ligand poses specific to the closed and opened receptor conformations respectively. To 
give an idea of ligand stability and the strength of these interactions, receptor-ligand contacts 
are shown as weighted undirected contact network graphs in Figures 5.10a and 5.10d, with each 
contact corresponding to time averages. The atomic contacts themselves are inferred using a 
cut-off distance of 4 A and only those edges prevailing 40% of the time are shown, for clarity. 
The graphs themselves were produced using an in-house Python script. As a demonstration of 
applying an the network graph to show ligand performance, the linear and folded poses are shown 
in Figures 5.10d and 5.10e, corresponding to the complexes shown in Figures 5.10a and 5.10c 
respectively. The network graph corresponding to the linear pose is the worst performer within 
receptor B8, while that of the folded ligand pose is typically contact-rich, with no particular choice 
for selection. In this specific case, compound SANC0178a had migrated to one of the protease 
monomers to adopt a linear conformation thus decreasing the degree centrality while neverthe­
less maintaining strong connections with key residues mainly from chain A, namely the catalytic 
ASP25 (protonated)residue, and the residues GLY48 and ILE47 from the flap hairpin. In the case
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Figure 5.7: Box plots of hydrogen bonding distributions for hit SANCDB compounds over the course 
of 20ns molecular dynamics simulations. The modified ligand is also included. Opened conformation 
receptors are shaded blue and closed ones are coloured red. Box whiskers represent the range while a 
dotted grey lines have been introduced to ease visualization.

Figure 5.8: 2D structures of the short-listed scaffolds with potential inhibitory activity against DRV- 
resistant HIV protease sequences based on dynamic properties. Kraussianones, cephalostatins and saun­
derosides are shaded in red, blue and yellow respectively.
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of initially-opened conformation receptors, an abundance of relatively long-lasting cavity contacts 
were formed with the folded ligand conformation involving both protease chains, as seen in Figure 
5.10e. These contacts comprised the catalytic aspartate, residues from the flaps, 80S loops and 
additional internal surfaces within the binding pocket. Coincidentally, faulty restoration of ligand 
protonation states after docking initially yielded piperazine upon saturation but displayed simi­
lar dynamics with some added stabilization between one of the amine nitrogen and the catalytic 
aspartate.

Figure 5.9: Modification of the SANCDB hit compound SANC00178 to SANC0178a in order to improve 
mobility while maintaining stability, determined by trial and error around the central pyrazine moiety. 
The red crosses show where the bonds were broken. A double bond (in blue) was used to fill opened 
valences on each of the affected proximal rings while hydrogen atoms were used for resolving any unfilled 
valences for the carbon atoms.
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(a) Ligand pose in the worst 
performer among the tested 
receptors

(b) Typical ligand pose in the (c) Typical ligand pose in the 
initially-closed receptor conforma- initially-opened receptor 
tions conformations

(e) Contact map for an initially-opened receptor(d) Contact map for the worst performer conformation

Figure 5.10: Final ligand poses (a-c) and weighted protein-ligand contact maps (d, e) estimated from 
ensemble-averaging of contacts over the course of molecular dynamics. Chains A and B are coloured 
red and blue respectively, showing the top view. In the bottom sub-figures, only intermolecular contacts 
above a frequency cut-off of 40% are shown for clarity, with the ligand and receptor atoms laid out as 
inner and outer concentric circles respectively. The arc labels and width denote the inferred contact 
weights.

5.4 Conclusions

In this chapter, high-throughput virtual screening was performed using 718 natural compounds 
from the SANCDB to find potential scaffolds to be used in protease inhibitor design in cases 
where patients fail DRV treatment, which is the latest FDA-approved PI drug. 20ns molecular 
dynamics simulations were performed against each of the top hits obtained from docking. Top hit 
compounds were defined here as molecules with the lowest average binding energies across opened 
and closed receptor conformations and mutations. The nine hit compounds consist of SANC00178, 
SANC00491, SANC00672, SANC00671, SANC00670, SANC00347, SANC00352, SANC00348 and 
SANC00342, enumerated in a generally decreasing order of performance based on several criteria
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observed from their dynamics. We went one step further to explore ligand modifications of a 
promising compound, which showed the highest performances in the opened conformation recep­
tors. Increasing the central flexibility of SANC00178 improved its overall performance to produce 
receptor conformation-specific binding modes, which resulted in receptor affinities raised above all 
the other hit compounds used in our data set.
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General conclusions and potential for 
further research for Part I

The main core of the study has been a multi-pronged approach, addressing to various extents the 
problem of drug resistance in HIV-1. Ideally, non-B HIV subtypes would have been a suitable data 
set to compare any conservation or divergence in drug resistance related behaviour with respect 
to subtype B, which forms the bulk of most research done in HIV. Non-B subtype information 
would be crucial in determining the effectiveness of current ARVs in the grand scheme, especially 
given that subtype B forms only about 12% of the world HIV subtype distribution. However, 
there is insufficient amount of publicly-available drug resistance-labelled data to perform such an 
investigation. The next best approach was thus to direct our research efforts towards improving 
drug resistance prediction and our understanding of it by seeking for a potentially more conserved 
resistance-related behaviour using the subtype B data. We further contribute by suggesting new 
scaffolds for use as inhibitory compounds, not from a single drug target but a diverse set of 
resistant receptors for improved drug activity.

In Chapter 2, the objective was to improve drug resistance prediction in HIV protease and re­
verse transcriptase using publicly-available data from the Stanford HIVdb. Due to the dataset 
composition, including a mixture of true biological but also technical variability, a series of fil­
tering criteria were applied for each labelled protease and reverse transcriptase sequence entry in 
the initially unfiltered data record. These criteria included the variation of ANN architectures 
(nodes and layers), control of the number of sequence ID-specific variant combinations and the 
removal of sequences with very low frequency within each of the drug datasets. This resulted 
in a total of 16 predictive models for each of available FDA-approved drugs from the PI, NRTI 
and NNRTI classes, which faired well in terms of overall regression and classification performance 
when compared against Stanford HIVdb and SHIVA web servers, and relatively recent regression 
models developed by Shen and co-workers [127]. Another main output from this work lies in the 
filtering methodology, which may be applied to other subtypes should such similarly-labelled data 
be obtained. From our performance and explanations of phylogenetic concerns we also back the 
idea of subtype dependence in drug resistance prediction in the wait of a larger and more diverse 
dataset in terms of subtype composition.

In Chapter 3, we search for a highly-conserved differentiating signal characteristic of drug resis­
tance using a series of existing structure-based tools (homology modelling, energy-minimization, 
docking, MD, dynamic cross-correlations, modal analysis, PRS and contact network analysis) on

106



large numbers of variants, with the objective of finding a characteristic so conserved that it might 
extrapolate to non-B subtypes, either mechanistically or in terms of methodology. Unfortunately, 
none of these approaches showed the existence of such a signal. However, they lead to understand 
that both drug susceptible and resistant protease conformations share subsets of conformational 
space, and that the answer may instead lie in the probability of sampling such conformations. 
With this, the MD data were re-analysed by devising a more sensitive approach, described in 
the following chapter. Additionally, we have strong evidence backing the known quantitative in­
exactness of non-equilibrium potential energy estimation methods (using Vina and X-Score) due 
to their low correlations to lab-based resistance values for multiple drugs. Interestingly, the hy­
drophobic term was the highest contributing term to drug resistance, though not providing very 
strong correlations.

In Chapter 4, the redesign of the network construction approach by using stringent statistical 
tests over averages of pairwise residue distances across resistance states and using ranked degree 
centrality lead us to find a very strong degree of conserved behaviour, across PI drugs and very 
closely reproduced after replication in each case. Though re-analysed from Chapter 3, the extent 
of conformational sampling from MD was influenced by the number of samples needed to retain 
sufficient variant diversity while keeping the time required for sampling realistic, to obtain results 
of statistical significance. A lateral expansion and an associated contraction (base of the cantilever 
moving towards the central catalytic core) were observed, showing some degree of chain symmetry 
in many cases. Such signal may directly extend to non-B subtypes in similar simulated conditions, 
or may establish a sensitive method to detect subtype-specific motions in them. Additionally, the 
approach is generalisable to other systems where a minimum number of 30 variants per ensemble 
of some labelled phenotype may be made available, the number being generally acceptable for 
performing t-tests.

In Chapter 5, we switch gears to delve into the domain of protease inhibition. HTVS is used to 
identify potential inhibitor scaffolds derived from natural compounds obtained by screening 718 
SANCDB compounds. Focus was placed on DRV-failing patients and hit effectiveness against 
multiple variants in both opened and closed receptor conformations, using AutoDock Vina for 
in silica docking before performing 20ns MD simulations on the top ligands, sorted by binding 
energy. We thus prioritised 9 compounds and proposed modifications to cephalostatin 1 (a known 
compound with anticancer activity) to generate a dual-conformation lead compound able to stably 
bind the active site in both the opened and closed conformations. The latter compound showed 
outstanding overall affinities over all complexes and conformations.
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Part II 

Side projects
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Chapter 6

Overview of the side projects

This section deals with various sub-projects that branched from findings coming from the main 
research theme in addition to collaborative work.

Starting from the initial idea to make static networks from docked ligand complexes we extended 
the concept to factor in time for the study of proteins in different states, namely a diseased (case) 
and a wild-type (control) for the renin-angiotensinogen complex. A contact network is constructed 
over multiple frames sampled from a molecular dynamics trajectory whereby each residue-residue 
contact is then time averaged to result in a weighted network in the hopes that these will be a better 
representation of the overall protein dynamics at a residue position of interest. This forms part 
of my main contribution in terms of network analysis for this work using MD trajectories. PhD 
student at the time of the experiment, Dr David Brown investigated betweenness and reachability 
as global network metrics. The work resulted in a journal publication.

We then introduce the tool suites MD-TASK and MODE-TASK, which are sets of tools designed to 
study protein dynamics using non-conventional techniques and modes of motion respectively. Both 
resulted in journal publications, in which I mainly added a Python script for inferring weighted 
contacts and contributed in software testing respectively.

6.1 Side project 1: Analysis of non-synonymous mutations 
in the renin-angiotensinogen complex

This project draws from and reproduces certain figures used in the publication listed below. Credit 
for the reproduced material is given as citations in the respective figure captions.

• Brown DK, Sheik A m am uddy O and Tastan Bishop O. “Structure-Based Analysis of 
Single Nucleotide Variants in the Renin-Angiotensinogen Complex.” Global Heart, 2017 Mar 
13. pii: S2211-8160(17)30006-6. doi: 10.1016/j.gheart.2017.01.006. PMID: 28302554.

My contributions for this work are enumerated in the Publications and contributions section, 
item number 5.
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6.1.1 Summary

The renin-angiotensin-aldosterone system (RAAS or RAS) plays a vital role in the regulation of 
arterial blood pressure, plasma sodium concentration and extracellular volume [319]. Over-activity 
of this system may lead to the onset of multiple pathologies, which can be chronic, acute or even 
result in death [320]. At the heart of RAS are pressure-sensing juxtaglomerular cells which up- 
regulate secretion of the endopeptidase renin into the blood stream in a cascade of reactions [321] 
as a response to lowered blood pressure [94]. After activation by proteolytic cleavage of prorenin 
by the enzymes cathepsin B or neuroendocrine convertase 1 (or even by non-proteolytic mecha­
nisms) [319], the 340-residue long renin [322] catalyses conversion of the liver-produced precursor 
protein angiotensinogen into the decapeptide angiotensin I [323]. The Angiotensin Converting 
Enzyme (ACE) subsequently converts the decapeptide into an octapeptide, called angiotensin 
II [323], which then binds adrenal gland receptors to stimulate secretion of the hormone aldos­
terone, which increases both the retention of sodium by the kidneys and blood pressure. As shown 
in Figure 6.1, this system influences the behaviour of several organs in both the cardiovascular 
and central nervous systems and is an important target used for drug-treatment of hypertension- 
related morbidities. For these reasons, RAS was thus chosen as a target system to investigate the 
effect of potentially-damaging renin single nucleotide variations (SNVs) as predicted by in silico 
approaches. For this case study the in silico phenotypic predictions of non-synonymous mutations 
are investigated at the structural level using molecular dynamics and dynamic residue network 
analysis [204]. Severity of the mutations were inferred by Dr David Brown using the Variant Anal­
ysis Portal (VAPOR) server, which aggregates SNV functional effect predictions from five servers, 
namely PolyPhen-2 [325], PROVEAN [326], Phd-SNP [327], Panther-PSEP [328] and FATHMM 
[329]. These web servers implement different algorithms for predicting functional effects including 
Support Vector Machines, Hidden Markov Models, sequence similarity searches and Naive Bayes 
classifiers and have various levels of accuracy. With this approach, we hoped that the use of inde­
pendent predictors would increase the likelihood of finding cases where non-synonymous mutations 
would lead to conformational or dynamic changes, which would hopefully contrast the protein be­
haviour in diseased versus a healthy individual. By coupling network analysis to protein structural 
information in RAS, we cross-evaluated the effects of various SNVs predicted to be pathogenic 
in silico and found significant associated changes with respect to the W T complex, namely in 
(1) the angiotensinogen variant P40L, which reduced the complex stability, (2) the renin A188V 
variation, which resulted in increased residue fluctuations and (3) renin D104N, which increased 
overall rigidity of the complex.

6.1.2 Methods

D ata retrieval, filtering and hom ology m odelling: Dr David Brown, who is also first author 
in our publication [204] performed all the steps described in this paragraph, which lead to the 
acquisition of high-quality wild-type and mutant models as input for molecular dynamics. He 
retrieved RAS variants using the HUMA tool and filtered them to retain only non-synonymous 
variants, before fetching the sequences from UniProt and modelling templates from PDB. He
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Figure 6.1: The Renin Angiotensin System and strategies for inhibition. In blue is the main pathway 
forming part of the RAS system. Classes of inhibiting compounds are in yellow. Secreting organs are in 
orange while affected parts of the body are in green. Adapted from [324] and [323]

homology-modelled the variants and chose high-quality models. These models contained muta­
tions individually introduced in the enzyme, its substrate and in both. The positions of these 
mutations with reference to the template PDB structures (PDB IDs: 2X0B, 2WXW, 2WXY and 
2WXZ) used for modelling are given in Table 6.1. The templates obtained had missing residues 
at position 1-73 for renin, and for angiotensinogen at positions 1-32 and for the last 3 residues, 
after target template sequence alignments.
M olecular dynam ics simulations: GROMACS 5.1 [263] was used for the simulations, with 
480 cores per protein complex at the CHPC. The all-atom AMBER03 force-field was used to 
define the atom types and parameters for the potential functions. After explicitly solvating the 
proteins with SPC-modelled water and neutralising charges with NaCl at a final concentration 
of 0.15 M in a triclinic periodic box (with a minimum image distance of 1.5 nm), the system 
was energy-minimized by the steepest descent algorithm. An energy gradient tolerance of 1000 
kJ-1mol-1nm-1 was used for a maximum of 50,000 iterations with the default step size. A cut-off 
distance of 1 nm was used for short-range non-bonded interactions (van der Waals and electro­
statics) while the particle-mesh Ewald algorithm was used for long-range electrostatic interactions 
for the steps that followed. The LINCS algorithm was used here onwards to correct for rotational 
bond lengthening after unconstrained updates [209]. After a 100 ps temperature equilibration at
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310 K (using the modified Berendsen thermostat [207]), pressure was equilibrated at 1 bar (using 
the Parrinello-Rahman barostat [208]) for the same amount of time. Finally, 100 ns production 
dynamics runs were performed with time steps of 2 fs.
Traditional M D  analysis: The simulations were analysed by calculating the protein root 
mean squared deviation (Ca RMSD) and fluctuation (RMSF, per-residue) for the backbone- 
aligned proteins after correcting for periodic boundary conditions (PBC) and removing rota- 
tional/translational motions. As the periodic boundary was not completely removed initially 
using the molecular centre of mass, each protein complex had to be made whole before removing 
the periodic jumps and finally box-centering. Performing these steps sequentially was crucial for 
the success of molecular reconstruction.
Local network analysis: Additionally, we start developing scripts to construct residue inter­
action networks (RINs) along frames of given MD trajectories and combine them to produce 
time-averaged contact maps, referred to as Dynamic Residue Networks (DRNs) for each trajec­
tory. The algorithm mainly consists in the definition of Cg atoms (or Ca atoms in the case of 
glycine) as nodes and edges as the set of node pairs that are within a distance of 6.7 A apart [261]. 
These contacts are evaluated over every residue pair for the protein being investigated for the given 
frame. The network graph then is built by aggregating these contacts and dividing by the number 
of frames being considered to give a weighted contact. The original graphing functions were used 
from the igraph library [330] as implemented in the R scripting language, required expansion of the 
binary XTC trajectory file into PDB format using the trjconv tool from GROMACS. This multi- 
PDB file was parsed with an in-house Python script designed to calculate the residue contacts (1 
representing a contact and 0 for non-contact within a given frame). As the complete graph was 
too information-rich with the whole complement of residues and their pairwise relationships, the 
network was instead displayed for the non-synonymous mutation only in each case and compared 
to the analogous position in the reference RAS complex. We improve visibility and information 
content by representing the edge weights as /og2-scaled edge widths with the actual frequencies 
shown as edge labels. These weighted maps were then compared to assess the local impacts of 
individual mutations over the simulated period with respect to gain and loss of contact. Although 
generated and developed independently, our approach of combining networks as a weighted was 
found to share similarities to previous work done by Doshi and co-workers, where the dynamic 
contacts were instead defined as those being neither rare nor absolutely conserved [262].
G lobal network analysis: Dr David Brown calculated the betweenness centrality (BC) and aver­
age geodesics (L) for each residue using Brandes [331] and Dijkstra’s [248] (for pairwise geodesics 
calculation) algorithms respectively, from the NetworkX library from Python. As explained in 
Chapter 3, BC includes the number of geodesics that go through a node, while L determines the 
averaged geodesics to a node, for every residue pair in the protein contact network. To enable 
evaluation over dynamics, a network graph and the two network centrality metrics were evaluated 
at 10 ns intervals along the 100 ns trajectory, before computing the average and standard deviation 
for each individual residue position for the respective metrics. A L /L  was evaluated by dividing 
the difference in L between wild type and the variant by the wild type L value. A A B C  values 
were calculated similarly. Mean and standard deviations were evaluated for both metrics, with
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focus on two variants of interest, namely angiotensinogen P40L and renin A188L.

Table 6.1: Mutations evaluated

Label Renin Angiotensin
R1 D104N -
R2 R148C -
R3 R148H -
R4 A188V -
R5 L318R -
R6 F319V -
A1 - H39R
A2 - P40L
A3 - L43F
A4 - E48K
A5 - S49G
A6 - S49N
A7 - A104T
A8 - M105V
A9 - D168Y
B1 D104N L43F
B2 R148C E48K
B3 R148C S49G
B4 R148C S49N
B5 R148H E48K
B6 R148H S49G
B7 R148H S49N
B8 L318R A104T
B9 F319V A104T
B10 F319V M105V

6.1.3 Results and discussions

Variant selection and hom ology m odelling: All steps in this paragraph are a highlight of 
work done by Dr David Brown. Variation data from HUMA contained various SNVs from dbSNP, 
comprising both synonymous and non-synonymous variants, were retrieved for both renin and 
angiotensinogen. After discarding non-sense (codons leading to premature termination of trans­
lation) and synonymous variation data, only interfacial variations predicted to be pathogenic by 
VAPOR (a consensus prediction method for functional effects of variations) were considered, to­
talling 9 and 6 variants for angiotensinogen and renin, respectively. Homology models, once made 
had z-DOPE values ranging between -1.17 and -1.2, which hinted to near-native conformations. 
Further, SNVs from renin in close structural vicinity to SNVs from the substrate protein were 
modelled, yielding a total of 25 variant complexes, in addition to the wild type RAS. 
Conventional analysis o f M D  simulations: Out of all the mutants investigated, R5 MD sim­
ulation data was not obtained - bad contacts with water occurring during minimization were not 
resolved, as the variation had been deemed non-damaging by the VAPOR tool - the gathered vari­
ation data was also judged sufficient to proceed with the experiment [204]. Due to the high number
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of complexes evaluated, the Ca RMSD values are summarized as box plots. Periodic boundary 
condition were corrected based on initial results from RMSD plots, by sequentially making the 
proteins whole, before removing jumps and centering these molecules within their respective sim­
ulation box. From Figure 6.2, it can easily be seen from the RMSD distributions that complex A2 
displays the highest and most divergent RMSD distribution compared to all the others, inclusive 
of W T RAS. Complex A2 has a higher 25th, 50th and 75th percentile in addition to the highest

Figure 6.2: Box plots of Ca RMSD values for variants of the RAS complex.

observed maximum RMSD, suggesting a possible differential equilibrium state for the complex, 
which is significantly shifted from those of all the other RAS variants examined, inclusive of the 
W T complex, as they were all modelled using a same reference template. As RMSD only shows 
displacement from the initial reference frame, the calculation of RMSF values for all the complexes 
were evaluated to highlight local residue flexibility recorded over the entire 100 ns of simulation. 
We compactly represent RMSF results as the difference with respect to the W T RMSF values (A 
RMSF) in Figure 6.4a. From the heat map, it can be seen that the mutation position, whether 
in renin or angiotensinogen, did not lead to similar outcomes in terms of RMSF changes as there 
were no clear renin or angiotensinogen “clades” on the dendrogram. Several patterns of residue 
fluctuation appear to be conserved (deeper blue hues on the heat map) across variants with re­
spect to the W T protein along the C-terminus from renin (at several regions within renin spanning 
residue positions 260 to 380), and the N-terminus of its substrate (around positions 80 and 195), 
suggesting a higher relatively conserved rigidity in these areas. The topmost cluster, mutants A2 
and R4 appear to share mainly higher A RMSF values towards the C-terminus of angiotensinogen 
within positions 330-390, when compared to all remaining variants. For more detail, we display 
the residue fluctuations for complexes A2 and R4, in Figure 6.4b, along with that of R1. It can be 
seen that A2 and R4 share patterns of residue fluctuation, both being generally more flexible than 
the W T at the C-terminus of angiotensinogen. Analysis of individual RMSF plots also showed 
similarly increased flexibility in the double variant B2 (not shown). Variant R1 displayed highest 
overall rigidity, with respect to the W T complex, as shown in the same figure. In all, each of the 
tested RAS variants shared a relatively higher rigidity within the angiotensinogen substrate at 
residue positions 80-100 (surface-exposed loop) and 175-200 (spans an internal alpha helix within 
the serpin domain), as shown in Figure 6.4a. As the changes experienced by the surface-exposed
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loop are far-reaching within the complexes, they suggest allostery. On the other hand, the internal 
alpha helix is sandwiched at the dimer interface, which likely reduces mobility. As both changes 
seem to occur across all disease-causing variants, they may be correlated movements that lead to 
associated pathologies. Other areas, such as residue positions 435-450 (surface-exposed loop) in 
the substrate show less conservation in flexibility, probably associated with decreased stabilizing 
interactions with the -strands lying underneath.

115



116

(a) Position of the renin P40L. (b) Position of renin D104N. (c) Position of angiotensinogen A188V.

Figure 6.3: Variations of interest, found at the enzyme-substrate interface are shown in green with numberings from the models, while renin and an­
giotensinogen are coloured red and blue respectively in each of the sub-figures.



(a) Delta RMSF values for all RAS variants, with respect to the WT. Euclidean distance-based hierar­
chical clustering with average linkage was used for the row-wise dendrogram. In the heat map, higher 
and lower residue fluctuations are in red and blue respectively. The coloured strip on the left indicates 
whether the mutation was in renin (red), angiotensinogen (blue) or in both (orange).
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(b) RMSF values for variants A2, B4 and R1, including WT RAS.

Figure 6.4: RMSF values (nm) from 100ns MD simulation for the RAS variants. In sub-figures 6.4a 
and 6.4b, renin and angiotensinogen begin at residue positions 74 and 33 respectively.

A nalysis o f  R esid u e C on ta ct N etw orks: We showcase the application of network analysis for 
investigating the impact of residue variations over the MD trajectory by evaluating and comparing 
residue contacts prevailing within a subset of pathogenic variants against those occurring for the 
wild-type. The simplest method uses a cut-off distance and aggregates the contacts for each 
residue pair over the course of an MD simulation. Instead of representing the whole network, only 
one residue is chosen for comparing against the homologous position in the W T  protein, to give an 
idea of contact strength (via weighted edges) and gain/loss of contact at that locus - the SNVs of 
interest in this case. We show such graphs for the angiotensinogen P40L (Figure 6.5 a-b), and the 
renin A188V (Figure 6.5 c-d) variants. Edge labels are the observed contact frequencies in each 
case. The angiotensinogen P40L variation (chain B) significantly weakens the contacts THR84 and 
HIS367 within renin (chain A) centered around residue position 40. On the other hand, the renin 
A188V variation strengthened the PHE41 contact around residue position 188 in angiotensinogen. 
While ignoring any energy metric, the analysis highlights very pertinent information with respect 
to intra-molecular relationships. At the time of publication, it was not possible to order the
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Figure 6.5: Dynamic residue contact networks for angiotensinogen P40L and renin A188V. Each node is 
a protein residue, while edge labels denote the observed contact frequencies inferred from MD simulations. 
The central node represents the W T residue in the left sub-figures while the corresponding variants are 
shown on the right. Chain information is added after a dot, for convenience. Residues with significant 
changes in contact behaviour are circled in matching colours (red, blue and black) for the variant and 
corresponding W T protein. Figures re-used from [204].

118



nodes to ease comparison across homologous systems due to library-specific (igraph) limitations 
for manipulating the network graph layout within R. Since then, the R code has been rewritten 
for Python (2x and 3x) using the NetworkX library, thus facilitating comparisons and reducing 
the number of dependencies and making the tool more easily maintainable over time.

Analysis o f  network betweenness centrality: BC values evaluated for the potentially-pathogenic 
variants with respect to the wild type RAS showed high degree of conservation for this network 
property (though not absolute) at multiple locations for all of the pathogenic variations examined, 
in both renin and angiotensinogen. Regions of high averaged AABC values were associated with 
higher relative variabilities, indicating to a greater extent of conformational differences, involving 
7 loci in renin and 5 loci in angiotensinogen, as shown in Figures 6.6b and 6.6a for the enzyme, 
and 6.6d and 6.6c for the substrate, respectively. Mapping of the impacted residue locations shows 
that the regions of high AABC values within rennin were found mostly at substrate-interfacing 
residues, which is not unexpected given that the region connects and mediates tactile information 
between the enzyme and substrate, being referred to a “high traffic zone” in [204]. A similar 
trend was observed within angiotensinogen, whereby 4 regions were interfacial, except fo the case 
of an externally-located ^-strand at residue position 430-443. Such a scenario may be a result 
of differential packing of this secondary structure with respect the substrate’s core structure in 
the pathogenic variants. Overall, these mutation-driven ABC differences suggests a compensatory 
energetic pathway driving the protein dynamics within the complex, which could be important 
for retaining activity despite the associated pathogenicity of the variations. [204].
Analysis o f  network geodesics: It can be seen that comparing the averaged geodesics across 
cases and a control (wild type) highlights a different network property compared to BC. There is 
a relative extent of centrality conservation across the potentially-pathogenic variants, however the 
variants angiotensinogen P40L and renin A188L stood out with more divergent characteristics from 
the rest in terms of average and variance, respectively. The renin enzyme from the angiotensinogen 
P40L variant displayed a consistently higher average difference in averaged geodesics, from residue 
250 onwards to the C-terminus in renin, as shown in Figure 6.7 A and B. In the case of renin 
A188L, the averaged ALL showed less average divergence from the wild type, but displayed higher 
variability, as shown in Figure 6.8 A and B for both chains of the RAS complex. Contact maps at 
the renin A188L variation show weakened contacts with the angiotensinogen PHE41 residue with 
respect to the wild type, as seen in Figure 6.5 (c) and (d). The presence of PHE41 within a loop 
may explain the increased variability in reachability, resulting from the continuous formation and 
breakage of contacts due to a higher mobility.
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Figure 6.6: AABC heat maps (left) and the corresponding 3D mapping of residue segments with differential ABC values. The enzyme renin and its bound 
substrate angiotensinogen are depicted as red and blue cartoon representations respectively. Sub-figures (a) and (c) are mainly re-used from [204].
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Figure 6.7: Differences in geodesics for the variants with respect to the wild type RAS (only renin 
is shown). All the variants are shown in sub-figure A, while a more detailed profile is shown for the 
angiotensinogen P40L variant in sub-figure B with error bars depicting standard deviations. Re-used 
from [204]

6.1.4 Conclusions

This case study application of dynamic network analysis for the context of analysing residue 
behaviour from MD data has proved very useful in highlighting both local and distal events, 
as weighted residue contact maps and via the use of network centrality metrics, respectively. 
Weighted contact maps visually represent the strength of residue contacts via the frequency of 
connections, thus proving to be a very useful and easily-interpretable non-energetic characteri­
sation of the effect of non-synonymous variations between protein systems. The two explored 
network centrality metrics L and BC, prove very useful in extracting global effects not arising 
directly at the site being investigated, thus potentially highlighting allosteric effects, if such exist 
across homologous systems. Presented methods thus show an additional layer of information, 
compared to metrics such as radius of gyration, RMSF and RMSD, suggesting that developed 
methods can be used to complement the latter.
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6.2 Side project 2: An M D analysis tool: M D -TASK

This project draws from and reproduces certain figures used in the publication listed below. Credit 
for the reproduced material is given as citations in the respective figure and table captions.

• Brown DK, Penkler DL, Sheik A m am uddy O, Ross C, Atilgan AR, Atilgan C and Tastan 
Bishop O. “MD-TASK: a software suite for analyzing molecular dynamics trajectories.” 
Bioinformatics, 2017 May 31. doi: 10.1093/bioinformatics/btx349. PMID: 28575169.

My contributions for this work are enumerated in the Publications and contributions section, 
item number 4.

6.2.1 Summary

After developing the weighted contact network representation from the previous work with the 
RAS system, the script was refined and generalized before being incorporated in the MD-TASK 
suite of tools meant to supplement traditional methods of analysing results from MD simulations. 
Available tools include dynamic residue contact network analysis, perturbation response scanning 
(PRS), and dynamic cross-correlation (DCC) scripts, which for the main part use topologies and 
trajectories as input. My main contribution in the tool suite is in the writing and testing of a 
weighted residue contact map, which gives the time-averaged contacts around a chosen target 
residue, accumulated from an MD simulation. A typical application of residue contact maps 
would be in the comparison of conserved contacts between cases and controls, which could be for 
example (1) a mutant versus its wild-type protein, (2) to monitor the effect of ligand-binding to 
receptors versus the apo-protein or (3) to investigate a residue of interest such as one found at 
protein a interface region, following exposure to a given environmental perturbation. All of the 
available tools can be used in conjunction with conventional methods such as RMSF, to highlight 
protein functional/mechanistic properties for biological inference, to the extent permissible by the 
forcefield. This work [237] was designed as an Application Note paper and thus emphasis is laid 
on how the MD-TASK tool can be used, rather than a research paper describing a molecular 
phenomenon. Wild type and drug-resistant HIV proteases were used as a test system. Scripts for 
the MD-TASK suite are available on GitHub at the following address, https://github.com/RUBi- 
ZA/M D-TASK, where documentation is also available. In the following sub-section, we give a 
brief overview of the tool suite and then discuss a case using HIV protease as example.

6.2.2 Methods

Example results from the MD-TASK tool suite were generated using the 198-residue long HIV 
protease dimer. A wild type sequence was obtained from the crystal structure with the PDB 
ID 4ZIP [332], while the mutant sequence was obtained from the crystal structure with PDB 
ID 3S54. The major DRMs comprised variations V32I and I47V with the accessory DRM V82I. 
Closed and opened receptor conformations were modelled using the crystal structures with PDB 
IDs 3S54 [333] and 1TW7 [109] respectively for the wild type and resistant protease variants. 
Further details are provided in the following subsections.
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D ynam ic residue interaction networks: Dr David Brown (former PhD student at RUBi) 
wrote the scripts for performing betweenness centrality and average shortest paths calculations. 
These involved the computation of such metrics at each selected time frame along an MD trajec­
tory before estimating their average and standard deviation, at each residue position. For this 
evaluation, he used 40ns of simulated MD data as input, to show the L and BC profiles in the 
opened conformations of both the wild type and mutant.

D ynam ic residue contact maps: My main contribution was in the generalisation of a script 
for carrying out residue contact map calculations, which displays the time-averaged local contacts 
around a designated residue using a distance cut-off value from an MD simulation. Consequently 
the edge label values for the contacts will be in the range [0,1], denoting very poor and conserved, 
contacts respectively. The values are rounded to a maximum of 3 decimal places for improved 
readability and aesthetics. More emphasis will be laid on the contact maps for this case study.

D C C : Caroline Ross (PhD student at RUBi) wrote the script for performing dynamic cross 
correlations, which estimates trends in pairwise residue motions over time, from an MD simulation. 
She evaluated DCC using the opened conformation mutant protein. The equation used (Eq. 3.14) 
is the same described previously, in Chapter 3.

PR S: David Penkler (PhD student at RUBi) wrote the tool for performing perturbation response 
scanning, which sequentially applies random uniform forces around each residue via the dot prod­
uct of independent force vectors to inverted Hessian matrix obtained from an MD trajectory, before 
calculating correlations to a target conformation. At the heart of PRS is the equation given earlier 
in Chapter 3 (Eq. 3.19), which describes the dot product between an inverted Hessian matrix 
and a force vector. For demonstration purposes, he selected a 20ns equilibrated portion from MD 
data obtained from the mutant to evaluate perturbations leading towards the closed conforma­
tion triple-mutant structure 3S54 as a target state. 50 random uniform forces were applied at 
each residue. Due to the reliance on an energy minimum for the construction of a Hessian, it is 
conceivable that it will be negatively affected by a system that traverses multiple such minima.

6.2.3 Results and discussions

With its suite of tools, MD-TASK supplements traditional ways of analysing MD trajectories, 
packaging network-based methods together with PRS and DCC. Our method of constructing 
contact networks benefits from averaged values and avoids possible over-minimization, which is 
in contrast to work by Ozbaykal suggested several thousands of energy minimization steps [261]. 
We strongly believe that the accuracy of current forcefields is insufficient to cater for the more 
intricate quantum effects that become more apparent and significant as atoms draw closer, such 
that allowing a complex biomolecule to proceed too far downhill in the realm of standard molecular 
mechanical forcefields may lead to non-realistic conformations. When assessed over 2000 frames 
for a 599 residue-long protein using a provided example trajectory (example_small.dcd), analysis 
run times by MD-TASK scripts varied from minutes to several hours, as shown in Table 6.2, where 
performances were evaluated by Dr David Brown on a desktop PC (Intel Core i5-6300U quad-core
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Table 6.2: Time of execution for MD-TASK scripts. Re-used from [237]

Script A verage tim e (sec)
calc_network.py (-calc-L) 37 298
calc_network.py (-calc-BC) 62 109
calc_delta_BC.py 16 852
calc_delta_L.py 1 864
avg_network.py 1 713
compare_networks.py 4 230
delta_networks.py 2 289
contact_map.py 19 806
calc_correlation.py 39 703
prs.py 95 480

CPU clocked at 2.4 GHz, with 8 Gb RAM ) running the Ubuntu 16.04 operating system. Results 
from all MD-TASK scripts are shown in Figure 6.9. Averaged residue reachability (Figure 6.9A) 
showed that some regions are similarly highly central for global communication in both chains A 
and B for both the wild type and the mutant proteases around the mid portion of the sequence 
(residues 46-56, the flap), and also highlight some partial symmetry across chains, indicating some 
level of similarity of the protein dynamics. A high reachability value suggests high peripheral 
network connectivity (a denser network), which may possibly occur via compaction and may also 
be reinforced by stable immediate contacts at the flap tips. Betweenness centrality (Figure 6.9B) 
was less symmetrical and showed some more differentiation between the wild type and mutant. We 
note that BC and farness profiles are not subsets of each other - they do not display any obvious 
signs absolute correlation, as seen in Figure 6.9A and B. As pairwise geodesics, comparative residue 
betweenness hints at distal effects. High BC residues are important information-mediating nodes, 
able to cause significant disruption, despite their possibly low local connectivity. High BC was 
observed at residue position 25, which is not only the catalytic aspartate, but also forms part in 
a very strong hydrogen-bonding network within a loop, termed the fireman’s grip that maintains 
dimer stability. Despite their flexibility due to lack of regular secondary structure, the connectivity 
is lowered, however BC appropriately captures its importance as an information mediation node. 
By evaluating pairwise residue correlations over the protein length in Figure 6.9D, DCC reveals 
that isolated stretches of residues within the same chain move in a correlated fashion (chain A: 
residues 1-99 or chain B: residues 100-198), while anti-parallel motion is observed between chains. 
Sequential residue perturbation by the PRS method shows multiple residues coming from both 
chains A and B from the closed conformation wild-type protease that when perturbed lead to the 
targeted opened receptor conformation for the drug resistant variant, with part of the cantilever 
area (residues 60-72) ranking highest in terms of correlation whilst showing conservation across 
chains for the analogous positions. The weighted residue contact map in Figure 6.9 has been 
re-generated and magnified in Figure 6.10 using the latest version of the “contact_map.py” script. 
As an example, residue contacts around the major DRM position I47V are shown for both the 
wild-type and the drug-resistant variant. The script “contact_map.py” takes as input the MD 
trajectory and topology files and uses the Python library MDTraj for reading the inputs. The 
pairwise residue distances are then calculated within a radius of 6.7A by default around each C
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Chain A m

Figure 6.9: Example outputs from MD-TASK, using HIV protease, showing network properties in (A) 
AL, (B) ABC and (C) residue contact maps, and then (D) DCC and (E) PRS. 3D mapping of PRS 
correlations (F) was done separately by David Penkler. Re-used from [237]
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Figure 6.10: Magnified sub-figures for the weighted contact maps for the major DRM variation I47V 
in the initially-opened conformation HIV protease, re-generated using a revised version of the “con- 
tact_map.py” script. Edge thickness denotes the contact frequency (shown as edge labels) and indirectly 
reflects the strength of atomic interactions holding the residues together.

(or GLY Ca) atom, representative of each residue. The C  atoms are chosen to factor in side- 
chain information, which is otherwise absent for Ca atoms. Given the distance is satisfied, all 
contacts are weighed equally, with a value 1 or 0 for their presence or absence respectively. This 
is stored as an edge list instead of a matrix to limit physical memory consumption. In the initial 
implementation, the graph was processed via the “igraph” library from the R scripting language. 
The R dependency was removed and re-written in a later version to facilitate installation and 
increase portability by replacing it with Python’s “NetworkX” library. Doing so enabled ordering 
of the plotted nodes, such that comparisons of multiple graphs was made easier. This was not 
possible in the R implementation, which used a random node layout instead. The code was written 
for strong portability across Python 2.7x and 3.x. Additional options were also included in the 
most recent version, such as file prefixes, CSV output of the contacts in a compact form and cleaner 
PDF outputs of the graphs more geared to generate publication-ready figures. Additionally, new 
graphical parameters were also added such that the user could interact more with the graphical 
output, for instance the node size, node font size, a scaling factor for the edge width and an edge 
label font size. Minor optimizations were also done in the new code for increased running efficiency, 
such as the early reduction of the trajectory size to limit the repetitive reading of large chunks 
from the trajectory. Adjustable step sizes gives a trade-off between the edge weight accuracy 
and the speed of network construction. A strong point of this network inference method is its 
non-requirement for energy minima - the network is basically a summary of all relevant contacts 
irrespective of conformation, but however may suffer from the contact discontinuity problem. The 
definition of cut-offs, though taken from literature can be subjective, and hence ignore genuine 
contacts that are close to but not below the set radius. The weighted contact map is nevertheless
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a very easy and straightforward approach to hone in on, and interpret local residue behaviour.

6.2.4 Conclusion

The presented tool suite MD-TASK for analysing MD trajectory using non-conventional methods 
is a very versatile and freely-available set of scripts that facilitates the calculation of network met­
rics, enables the determination of possible trigger residues responsible for driving conformational 
changes and implements a DCC method for the investigation of correlative motion from proteins. 
A demonstration of applicability was shown using MD trajectories from modelled HIV protease 
structures.

6.3 Side project 3: Analysis of modes of motion: M ODE- 
TASK

This project draws from and reproduces certain figures used in the publication listed below. Credit 
for the reproduced material is given as citations in the respective figure captions.

• Ross CJ, Nizami B, Glenister M, Sheik A m am uddy O, Atilgan AR, Atilgan C and Tastan 
Bishop O “MODE-TASK: Large-scale protein motion tools” Bioinformatics, 2018 May 29. 
doi: 10.1093/bioinformatics/bty427.

My contributions for this work are enumerated in the Publications and contributions section, 
item number 2.

6.3.1 Summary

MODE-TASK was put together by the two main authors (Caroline Ross, a PhD student and 
Dr Bilal Nizami, a post-doctoral fellow) as a PyMOL plugin “pyMODE-TASK” based on the 
TkInter graphical user interface package for a series of independent Python scripts implementing 
code handling modal analysis from proteins [334]. Basically the package implements multiple 
dimension reduction techniques (Principal Components Analysis, multidimensional scaling and 
t-Distributed Stochastic Neighbour Embedding) and normal mode analysis (based on the Elastic 
Network Model). The main functionality of MODE-TASK is thus centered around the application 
of matrix decomposition techniques onto a Hessian or onto a covariance matrix prior to determin­
ing eigenvector and eigenvalue solutions, which will then give normal modes or essential modes, 
respectively, which both can be used to analyse protein motion. Normal modes are basically a 
set of orthonormal vectors that breakdown complex movement into a set of independent simpler 
motions that bear different weights on the observed movement. Large eigenvalues represent the 
most predominant motions in normal mode analysis and a similar principle is used in essential 
dynamics to compress a multidimensional array of molecular conformations down to few (usually 
2 or 3) dimensions, which can then be represented as scatter plots [217]. While there are many 
ways of modelling the potential energy to get a Hessian, the Anisotropic Network model, which 
forms part of the family of elastic network models (Hooke’s law for modelling springs), was used
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to obtain the modes from a single coarse-grained protein structure. Similarly essential dynamics 
is mainly a visualisation method that tries to represent sampled protein conformations by the 
first two principal components obtained from a trajectory covariance matrix. As a tester I eval­
uated functionality, compatibility and recommended changes. The MODE-TASK suite is freely 
available on github, at the following address: https://github.com /RU Bi-ZA /M O D E-TASK , and 
the PyMOL plugin is available here: https://github.com /RU Bi-ZA/pyM O DE-TASK . Software 
documentation is also included. As for MD-TASK, the MODE-TASK publication was prepared 
as an application note to showcase the available tools and demonstrate use cases.

6.3.2 Methods

To run the performance tests, a PC running the Ubuntu 16.04.2 LTS operating system was used 
with an Intel Core i7-4790 CPU with a processor speed of 3.60GHz with 32GB of Random Access 
Memory. Software documentation was written by Doctor Bilal Nizami and Caroline Ross (a PhD 
student at RUBi) and technical assistance was provided by Michael Glenister (software developer 
at RUBi). Command line codes were run several times in Python 2 and Python 3, checking that 
the outputs were generated and identical. Errors were reported to the developers, while minor 
typographical mistakes were corrected. Remote executions were run via SSH connections to the 
dedicated desktop computer. The whole steps were written as simple bash scripts. The GUI 
interface (pyMODE-TASK) was tested locally and was found to be limited to Python 2, due to a 
requirement for available PyMOL version for the operating system via the apt package manager.

Essential dynam ics: Tools for dimension reduction were written by Doctor Bilal Nizami. These 
tools mainly used dimension reduction functionality available from the scikit-learn Python library 
together with trajectory-handling and manipulation methods from the MDTraj library. Dimen­
sion reduction techniques mainly included Principal Components Analysis (PCA), t-Distributed 
Stochastic Neighbour Embedding (t-SNE) and Multidimensional scaling (MDS). Each tool was 
parametrised by various options, including the decomposition method (eg. eigenvalue versus singu­
lar value decomposition methods), coordinate type (pairwise distances, bond angles and dihedrals) 
amongst many more, wrapping several of the actual scikit-learn functionalities. For the purpose 
of the publication, I tested the performance of the tools using previously generated MD data 
(100ns;10,000 frames) for the renin-angiotensinogen variant P40L (in angiotensinogen). The tools 
“pca.py” , “internaLpca.py” , “mds.py” and “tsne.py” were evaluated for performance and bugs.

N orm al M od e  A nalysis: Tools for vibrational analysis from static protein 3D structures based 
on the anisotropic network model were implemented by Caroline Ross. These may be used se­
quentially, starting from the coarse-graining of a protein structure, through the calculation of 
normal modes, to finally analyse and visualise features associated with modes of interest. The 
scripts were evaluated for performance and bugs. Coarse-graining was performed on the full capsid 
of the coxsackievirus A16 (CAV-16; PDB ID: 5C4W [335]) to enable faster and cheaper down­
stream computation of modes, by evenly sampling from surrounding Qg (or GLY Ca) atoms with 
a coarse-graining level of 4 and starting at residue 3. The “ANM.py” tool was used for extracting 
vibrational modes from the coarse-grained capsid with a cut-off radius of 50 A. In order to test the
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“conformationMode.py” tool, a CAV-16 capsid conformation for the uncoating intermediate (PDB 
ID: 5C4W) was used to identify any mode with a high degree of association to the conformational 
change via the calculation of mode overlap and correlation. This mode was finally visualised in 
VMD using input generated by the tool “visualiseVector.py” . Additionally a covariance matrix 
was calculated for the first non-trivial eigenvector (mode 7) of the coarse-grained capsid using 
the “assemblyCovariance.py” tool, after which the mean square fluctuation was performed for the 
same mode to assess the coarse-graining level suitability using the “meanSquareFluctuation.py” 
tool.

6.3.3 Results and discussions

Essential dynam ics: For the purpose of demonstration, standard PCA was performed on 100ns- 
long MD simulations for each of the 781-residue W T RAS complex and P40L variant, the effects 
of which were previously described structurally in [204]. As the program used separate reference 
conformations (first frame from each simulation) for alignment before evaluating the principal 
components analysis, the plots are not exactly comparable although some initial conformational 
similarity exists due to the choice of common templates for homology modelling. However, one 
can see conformational drifts occurring over the course of each simulation. It is possible to make 
the plots more comparable by aligning all trajectories to a common reference before performing 
PCA, however this is not directly implemented in MODE-TASK as the first frame is automatically 
selected for alignment. Times of execution are listed in Table 6.3 and it can be seen that standard 
PCA works fastest with the default linear kernel and SVD solver using Cartesian coordinates for 
10000 MD frames as input.

N orm al M od e Analysis: Coarse-graining the full CAV-16 capsid at a level of 4, starting from 
residue 3 reduced the number of atoms from 399720 to 2460, comprising only C  and GLY Ca 
atoms. For ANM construction, the default cut-off of 15 A was increased to 50 A to account 
for more distal effects coming from the large capsid (~  300 A in diameter), while also verifying 
for the leading 6 non-trivial modes, which correspond to the 3 degrees of freedom for each of the 
rotational and translational movements. As an example of a use case, the “conformationMode.py” 
was used to reveal that mode 33 more closely matched the capsid conformation in the process of 
uncoating (PDB ID: 4JGY) using the previously coarse-grained structure together with the full 
capsid of the target conformation and the matrix of transposed eigenvectors (V T) as input. The 
3D vector plot was obtained by processing outputs from the “visualiseVector.py” script into VMD 
for the mode shown in Figure 6.12. Subsequently, the “combinationMode.py” script gives a break 
down of the mode contributions towards the observed conformational change, which in the case of 
mode 33 gives overlap values of -0.90, -0.79 and -0.92 for the matching chains A, B and C for the 
asymmetric unit 1. A covariance matrix was obtained using the “assemblyCovariance.py” tool for 
the coarse-grained capsid using mode 7, requiring about 20Gb of physical memory to compute. 
The mean square fluctuation was performed for the same mode to assess the coarse-graining level 
suitability using the “meanSquareFluctuation.py” tool with coarse-graining levels of 4 and 9. The 
pyMODE-TASK plugin for use within PyMOL is very straight-forward for evaluating dimension
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Table 6.3: Performance for MODE-TASK scripts. Table used from [334].

Main parameters Time
Essential dynam ics scripts
pca.py SVD solver; linear kernel; 10000 

frames
26 secs

pca.py RBF kernel; 10000 frames 40 mins
internaLpca.py Phi angles; 1 000 frames 10 secs
mds.py RMSD; 10000 frames 88 mins
tsne.py 10000 frames 68 mins
N M A  scripts
coarseGrain.py 5C4W full capsid; Coarse grain level 

4; C  atoms; starting atom 3
<1s

ANM 5C4W coarse-grained; Cut off 50 A; 
2460 nodes

97 mins

conformationMode.py 4JGY full capsid; 5C4W coarse­
grained

26 secs

combinationMode.py 4JGY full capsid; 5C4W coarse­
grained

26 secs

visualiseVector.py 5C4W coarse-grained; mode 7 1 secs
assemblyCovariance.py 5C4W coarse-grained; mode 7 317 secs
meanSquareFluctuations.py 4JGY coarse-grain level 9; 5C4W 

coarse-grained; mode 7
275 secs

reduction methods on an MD trajectory and displays the normal mode tools in a sequential 
manner, as shown in Figure 6.13.

6.3.4 Conclusion

MODE-TASK provides an open source collection of diverse tools for examining modes of motion 
from static proteins in the case of normal mode analysis as per anisotropic network model, and also 
allows a high degree of parametrisation for performing essential dynamics using various methods. 
The set of command line scripts are convenient for batch and remote execution, while the graphical 
interface provides a more user-friendly option for the same functionality. Compatibility with both 
Python 2.7x and 3.x allow for a wider audience of users.

131



Figure 6.11: Scatter plot of the first two principal components obtained from standard PCA for the WT 
(A) and mutant (B) RAS complexes, coloured according to time. Colours denote time, in picoseconds. 
Figure taken from [334].

Figure 6.12: Expansion motion associated with the target conformation observed in the capsid uncoat­
ing intermediate, shown as the radially-expanded (right) and constricted (left) conformations obtained 
after stacking 50 frames of mode 33 onto the initial coarse-grained structure. The arrow heads and lengths 
reflect the direction and unit displacements along the respective components for the mode. Arrows for 
the viral capsid proteins VP1 (chain A), VP2 (chain B), VP3 (chain C) and VP4 (chain D) are coloured 
red, blue, ochre and purple respectively. Figure adapted from [334].
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(a )  Dimension reduction by PCA.

(b) Normal Mode Analysis interface.

Figure 6.13: The pyMODE-TASK graphical user interface. The dimension reduction tools can be used 
with various parameters, while numbered widgets suggest a flow of execution for normal mode analysis.
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General conclusions for Part II

These side projects showcase the development, testing and application of various tools developed 
in collaboration with members of the RUBi research group for which I have participated to various 
extents, as enumerated in the Publications and contributions section.

In side project 1, the RAS system was investigated via a weighted residue contact network that 
showed the local differences prevailing at a chosen homologous residue position between a mutant 
and a wild type complex. This tool provides a new functionality which enables a compact repre­
sentation of existing residue contacts and provides a non-energetic estimate of their strength via 
a simple frequency calculation and can be used in other contexts to locally analyse or compare 
protein systems, and is a useful supplement to traditional MD analysis approaches.

In side project 2, the contact map is generalised and packaged as part of the MD-TASK suite, 
in which various novel MD analysis tools are also showcased using HIV protease as an example 
system.

Finally, side project 3 mainly describes my involvement in evaluating the command-line and 
graphical user interfaces for the MODE-TASK tool kit, developed for a wide audience due to its 
simplicity, portability and convenience.
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