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ABSTRACT 

Hsp70s are members of the heat shock proteins family with a molecular weight of 70-kDa 

and are the most abundant group in bacterial and eukaryotic systems, hence the most 

extensively studied ones. These proteins are molecular chaperones that play a significant role 

in protein homeostasis by facilitating appropriate folding of proteins, preventing proteins 

from aggregating and misfolding. They are also involved in translocation of proteins into 

subcellular compartments and protection of cells against stress. Stress caused by 

environmental or biological factors affects the functionality of the cell. In response to these 

stressful conditions, up-regulation of Hsp70s ensures that the cells are protected by balancing 

out unfolded proteins giving them ample time to repair denatured proteins. Hsp70s is 

connected to numerous illnesses such as autoimmune and neurodegenerative diseases, 

bacterial infection, cancer, malaria, and obesity. The multi-functional nature of Hsp70s 

predisposes them as promising therapeutic targets. Hsp70s play vital roles in various cell 

developments, and survival pathways, therefore targeting this protein will provide a new 

avenue towards the discovery of active therapeutic agents for the treatment of a wide range of 

diseases. Allosteric sites of these proteins in its multi-conformational states have not been 

explored for inhibitory properties hence the aim of this study. This study aims at identifying 

allosteric sites that inhibit the ATPase and substrate binding activities using computational 

approaches. Using E. coli as a model organism, molecular docking for high throughput 

virtual screening was carried out using 623 compounds from the South African Natural 

Compounds Database (SANCDB; https://sancdb.rubi.ru.ac.za/) against identified allosteric 

sites. Ligands with the highest binding affinity (good binders) interacting with critical 

allosteric residues that are druggable were identified. Molecular dynamics (MD) simulation 

was also performed on the identified hits to assess for protein-inhibitor complex stability. 

Finally, principal component analysis (PCA) was performed to understand the structural 

dynamics of the ligand-free and ligand-bound structures during MD simulation. 
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CHAPTER ONE: INTRODUCTION 

1.1 Background of the study 

Microorganisms are part of the normal flora of the gastrointestinal tract (GIT) of human and 

animals (Canny and McCormick, 2008), and over time evolved to withstand its acidic nature 

by secreting enzymes that neutralize the pH of the GIT (Hao and Lee, 2004). Among the 

microorganisms found in the GIT, the family Enterobacteriaceae are the most predominant 

(Leão-Vasconcelos et al., 2015). Enterobacteriaceae are a group of gram-negative bacteria 

that are facultative anaerobes and do not form spores (Health Protection Agency, 2013). This 

group of organisms can be symbionts, commensals or pathogens (Baylis et al., 2011). Of 

notable interest in this group is Escherichia coli (E. coli). Most strains of this organism are 

non-pathogenic (Nataro and Kaper, 1998) while the pathogenic strains  have been implicated 

as the most frequent causes of many common bacterial infections, including cholecystitis (J. 

Liu et al., 2015), bacteraemia (Davies et al., 2017), cholangitis (Ahmed, 2018), urinary tract 

infection (UTI) (Alanazi et al., 2018), and traveller’s` diarrhoea (Lääveri et al., 2018), and 

other clinical infections such as neonatal meningitis and pneumonia (Chalova et al., 2009). In 

addition to surviving in the guts of human and some animals, E. coli can also survive outside 

the human host when passed out through faeces (Lamprecht et al., 2014). E. coli has also 

being used as a model organism for drug discovery due to its ability to thrive in and out of its 

host (Samreen and Ling, 2014). Its survival can be affected by different environmental and 

biological factors such as the indigenous microbial communities, temperature, oxygen 

content, pH (Ishii and Sadowsky, 2008) and drug pressure. In response to these factors, E. 

coli is capable of producing stress response mechanisms that facilitate its survival (Chauret, 

2011).   

1.2 E. coli as a model organism 

E. coli is arguably the most understood and broadly studied free-living organism (Blount, 

2015). The extensive knowledge of E. coli makes it a useful model organism (Lee and Lee, 

2003). This is because the organism is a single-celled organism that can reproduce rapidly in 

simple culture media, multiplying averagely once in every 30 minutes (Taj et al., 2014). E. 

coli requires simple ingredients and nutrients to grow, and most naturally occurring strains of 

E. coli are non-pathogenic (Donnenberg and Whittam, 2001). The genetics of E. coli are well 

understood and can be easily manipulated or engineered (Samreen and Ling, 2014). The 

http://emedicine.medscape.com/article/171886-overview
http://emedicine.medscape.com/article/961169-overview
http://emedicine.medscape.com/article/184043-overview
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ability of E. coli surviving in its primary host which is the GIT of human and its secondary 

host which is soil and water is still unknown (Elsas et al., 2010). To withstand drastic 

environmental changes, various proteins including UspA (Nachin et al., 2005), sigma factors 

(Chung et al., 2006) and heat shock proteins (Hsps) (Benjamin and Mcmillan, 1998) are 

synthesized. Among these proteins, Hsps play a critical role in the organism’s survival 

(Nylandsted et al., 2004). In this study, we investigate this family of survival proteins. 

Currently, the full-length crystallized 3D structures of E. coli Hsp70 in both functionally 

essential conformations open and closed, are available on PDB (https://www.rcsb.org/). 

However allosteric intermediate of E. coli Hsp70 was retrieved from geometric clustering of 

Hsp70 trajectory reported by Penkler et al., 2017. 

1.3 Biological significance of heat shock proteins (Hsps) 

Hsps are a vast group of a protein family that are generally grouped based on their capacity 

and molecular weight in kiloDaltons (kDa) such as Hsp40, Hsp60, Hsp70, and Hsp90 (Li and 

Srivastava, 2004; Penkler et al., 2017). The presence of these different types of Hsps has 

been accounted for in every single living life form (Cakmak, 2009). For this research, we 

investigate the 70kDa family of Hsps. Each group is structurally different, and they work 

collectively in maintaining the total cellular protein homeostasis. Hsp90 and Hsp70 have 

been associated with signal transduction (Nollen and Morimoto, 2002). The Hsp40 group of 

proteins are essential activators of the Hsp70 chaperones (Young, 2010). Some members of 

the Hsps family are fundamentally expressed while others are induced as a response to 

various environmental stimuli or growth conditions (Genevaux et al., 2007). Hsps activity 

involves cycles of polypeptide binding and release (Bukau and Horwich, 1998). The 

biological significance of Hsps is highlighted by their enormous abundance in the cell (Park 

and Seo, 2015). In eukaryotic cells, they constitute about 1-2% of total proteins in unstressed 

cells (Buchner, 1996) and expanding to 4-6% of stressed cell proteins (Kim and Kim, 2011). 

Hsps are involved in numerous regulatory pathways, and they control the activity of 

regulatory proteins including heat shock transcription factors and plasmid replication initiator 

protein (Mayer et al., 2001). Cellular stress caused by either biotic or abiotic factors is an 

unseemly condition for a cell and as such affect its functional role. Under these stressful 

conditions such as heat shock, a shift in pH, oxygen deprivation, and osmotic changes 

expanded articulation of Hsps ensures the cell is protected by balancing out unfolded 

https://www.rcsb.org/
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proteins, giving them ample time to repair or re-incorporate denatured proteins (Pirkkala et 

al., 2001) 

1.4 Heat shock protein70 (Hsp70) 

Hsp70 are molecular chaperones that are essential for cell survival and play an important role 

in protein homeostasis (Fontaine et al., 2015).  They facilitate appropriate proteins folding, 

prevent aggregation and misfolding of proteins, transport of proteins into proper subcellular 

compartments, control of the cell cycle and signaling (Asea et al., 2002), and protection of 

cells from stress (Li and Srivastava, 2004). Hsps are ubiquitously expressed in most living 

organisms (Schlesinger, 1990). Hsp70s are also involved in distinct cellular functions which 

include assembly, translocation, and degradation of proteins (Chow, 2005). Hsp70 prevents 

the aggregation of other proteins by binding firmly to the exposed peptide arrangements 

which subsequently prevents these proteins from becoming non-functional (Rudiger et al., 

1997). Regulation of conformational changes affecting biological processes, such as signaling 

is also a function of  Hsp70s (Genevaux et al., 2007).  

1.5 Hsp70s architecture and nucleotide-dependent functional 

cycle 

Members of the Hsps family with a molecular weight of 70kDa (Hsp70) are by far the most 

extensively studied and abundant group in bacterial and eukaryotic systems (Benjamin and 

Mcmillan, 1998) and in some members of the Archaea domain (Gribaldo et al., 1999). In 

human, there are ten functionally and structurally distinct isoforms of Hsp70 proteins 

(Fontaine et al., 2015) that are located in cellular compartments such as cytoplasm, 

endoplasmic reticulum (ER), mitochondria, and nucleus (Shonhai et al., 2007). In 

Plasmodium, there are six functionally and structurally homologs of Hsp70 proteins 

(Hatherley et al., 2014) in bacteria, the major homolog of Hsp70, DnaK, is located in the 

cytosol (Calloni et al., 2012). Hsp70 consists of two integral domains; a nucleotide binding 

domain (NBD) located at the N-terminus and a substrate binding domain (SBD) located at the 

C-terminus (Figure 1). These domains are connected via a highly conserved hydrophobic 

linker region which is believed to facilitate inter-domain communication (Penkler et al., 

2017; Hatherley et al., 2014). The NBD contains ATP/ADP binding site and is made up of 

two lobes – I and II which form a clamp-like structure with a large cleft in the center (Powers 

et al., 2010). Each lobe consists of two subdomains – IA, IIA, IB, and IIB. The SBD contains 
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the substrate binding site which consists of a hydrophobic Beta-peptide binding pocket 

(SBDβ) and an alpha-helical lid  (SBDα) (Penkler et al., 2017; Bertelson et al., 2009 ).  

Hsp70 action relies on the intra-molecular interactions between its NBD and SBD, and also 

between the inter-molecular interactions with its cochaperone DnaJ (Li et al., 2016). The 

specificity of Hsps70s is greatly dependent on a co-chaperone DnaJ (Jiang et al., 2007). DnaJ 

is usually found in large numbers and in combination with Hsps70, function as a powerful 

molecular chaperone machine (Mayer and Bukau, 2005). The multi-functional nature of 

Hsp70 requires it to associate indiscriminately with misfolded proteins and also specifically 

with folded substrates (Laufen et al., 1999). Appropriate selection of substrates is 

hypothesized to be a role of DnaJ co-chaperone, which controls the ATPase cycle of Hsp70 

(Davis et al., 1999). Hsp70 cycle operates between two conformations induced by ATP 

binding: open and closed conformations (Figure 1.1). Experimental studies using E. coli 

Hsp70 as a model has shown that in its open conformation when bound to ATP (Figure 

1.1A), the hydrophobic linker is a highly-structured participant in the interdomain docking of 

the SBD onto the NBD such that both domains are dependent on each other (English et al., 

2017).  In contrast to its closed conformation when bound to ADP (Figure 1.1B), the 

hydrophobic linker is flexible such that both NBD and SBD are undocked, making them 

largely independent of each other (Penkler et al., 2017). Figure 1.3 provides s diagrammatic 

representation of the series of events taking place during the Hsp70 nucleotide-dependent 

functional cycle. Exchange of ADP for ATP governs the refolding role of Hsp70 and their 

affinity for substrates. In its open conformation, when bound to ATP, Hsp70 has a low 

affinity and high on-off transfer rates for peptide binding (Zhuravleva et al., 2012). Upon 

ATP binding, DnaJ facilitates the binding of a peptide substrate at the SBD balances out the 

NBD leading to an allosterically active intermediate state (Figure 1.2) in which the SBD 

partially separates from the NBD (Penkler et al., 2017). Hydrolysis of ATP destabilizes the 

SBD resulting in the eventual transition to the closed state (Fontaine et al., 2015). This brings 

about an unwinding of the SBD conformation, enabling substrates to withdraw and the 

binding of new substrates. The exchange of ATP for ADP by the nucleotide exchange factor, 

GrpE, initiates an allosteric signal at the NBD that is communicated to the SBD, which 

results in the partial docking of the SBD to the NBD and an allosterically active intermediate. 

Structural rearrangements at the SBD leads to the dissociation of the peptide substrate, 

bringing the chaperone back to the start of the cycle (Penkler et al., 2017). The hydrolysis of 

ATP is triggered by DnaJ proteins (Kampinga and Craig, 2010). In its closed conformation 
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where ATP is being hydrolyzed to ADP, Hsp70 has a high affinity for peptide binding, while 

there is a low affinity for peptide binding in its open conformation (Shonhai et al., 2007). 

  
Figure 1.1: A): Experimental crystal structure of Hsp70 in its open conformation (PDB ID 

4B9Q) (Kityk et al., 2012). NBD (blue) res 1-370, SBD (green) res 390-600, hydrophobic 

linker (pink), Mg2+ (yellow), ADP (Sky blue), ATP (red), and peptide substrate (Orange). B): 

Experimental crystal structure of E. coli Hsp70 in its closed conformation (PDB ID 2KHO) 

(Bertelsen et al., 2009). 
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Figure 1.2: Allosteric intermediate conformation of E. coli Hsp70 (Penkler et al., 2017).NBD 

(blue) res 1-370, SBD (green) res 390-600, hydrophobic linker (pink), Mg2+ (yellow), ADP 

(Sky blue), ATP (red), and peptide substrate (Orange).   
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Figure 1.3: Schematic demonstration of Hsp70 nucleotide-dependent cycle. In its open 

conformation, where the NBD and SBD are attached to each other, DnaJ facilitates binding of 

a peptide substrate in the SBD triggering the hydrolysis of ATP to ADP (A-B). Exchange of 

ADP for ATP with the help of GrpE stimulates a conformational change into a high-affinity 

stable substrate complex such that the NBD detaches from the SBD making them largely 

independent of each other. 

1.6 Hsp70s as therapeutic targets 

Alterations in proteins have been implicated as the reason for a vast number of human 

diseases also called protein conformation disorders (Morimoto and Cuervo, 2009). Hsp70s 

play critical roles in proteostasis, and the presence of these proteins in the organism can 

enhance its pathogenicity. These proteins are notably conserved across species and are 

important for cell survival making them a key factor for potential drug target (Przyborski et 

al., 2015). The SBD in Hsp70s enables its binding with a wide range of molecules which 

provides a cytoprotective role against different cell stress (Kumar et al., 2016). Hsp70s is 

connected to numerous illnesses, to a great extent by hereditary examinations or articulation 

investigation. Recent reviews have confirmed the connection of Hsp70 to cancer (Schlecht et 

al., 2013), neurodegenerative disease, autoimmunity, and other disorders (Li et al., 2016). In 

malaria, Plasmodium falciparum genome encodes six homolog Hsp70s (PfHsp70) which play 

distinctive roles in the parasite’s development, survival and pathogenesis (Przyborski et al., 

2015). The resistance of P. falciparum to available drugs is a significant concern, and the 
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quest for novel approaches in combating the disease caused by the parasite and eliminating 

the parasite is a continuous effort (Sinha et al., 2014). Targeting PfHsp70 whose presence 

suggests a possible role in the pathogenesis of the parasite and its life cycle represent novel 

therapeutic targets (Bell et al., 2011). Hsp70 has been linked to being a major cause of tumor 

cell resistance against different cells. Increased expression of this protein in cancer cells is 

associated with tumorigenesis and for tumor movement by conferring protection from 

chemotherapy. Targeting Hsp70 from being expressed diminishes the size of tumors and can 

cause their total relapse (Kumar et al., 2016). Numerous studies have implicated the presence 

of Hsp70 in Helicobacter pylori to the occurrence of gastric cancer. Hsp70 aids attachment of 

H. pylori to the gastric epithelia enhancing its pathogenicity in the gastric system of humans 

(Hoffman and Garduno, 1999).  

1.6.1 E. coli Hsp70 as a therapeutic agent 

E. coli Hsp70 also known as DnaK interact with a host of different substrates or clients by 

binding to unprotected hydrophobic regions of partially folded or unfolded proteins. ATP 

binding and hydrolysis induces structural rearrangements in the NBD which perpetuates 

interdomain docking between the NBD and SBD. Allosteric communication between the 

domains is vital for protein function and the basic characteristics of this allostery have long 

been investigated using E. coli DnaK as a model (Leu et al., 2014). DnaK is important in 

maintaining proteostasis and has been characterized in certain pathogenic bacteria as an 

important factor in the pathogenicity and stress resistance in multi-drug-resistance bacteria 

(Chiappori et al., 2015). DnaK has proven to be extremely attractive targets for developing 

new treatments for several diseases such as microbial infections, neurodegenerative diseases, 

and other protein folding disorders (Julia I Ju Leu et al., 2014). Despite the incredible interest 

in the preclinical potential of small molecules targeting this protein, it has proved difficult to 

identify and characterize effective modulators for therapeutic use due to the scarcity of drug-

like inhibitors as a therapeutic target (Miyata et al., 2010). As a result, few selective 

inhibitors have been identified which include 2-phenylethynesulfonamide (PES) (Leu et al., 

2009), chlorinated derivative (PES-Cl) (Balaburski et al., 2013), 

triphenyl(phenylethynyl)phosphonium bromide (PET-16) (Leu et al., 2014) and the ATP 

analog VER-155008 (Schlecht et al., 2013).  
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Targeting Hsp70s has previously involved inhibiting the ATPase activity of the protein with 

natural compounds that acts as ATP-competitive inhibitors and thus prevents allosteric 

communication between NBD and SBD (Assimon et al., 2013; Schlecht et al., 2013). This 

process also includes targeting its interactions with important co-chaperone, DnaJ (Patury et 

al., 2009). Another approach includes preventing the SBD from binding to its substrates. 

Pyrrhocoricin, a member of the Proline-rich antibacterial peptide family and the most potent 

peptide, binds to the SBD of E. coli DnaK thereby inhibiting its ATPase activity (Kragol et 

al., 2002). Recent studies have demonstrated that proteins and enzymes, alongside their 

remarkably studied functional sites and allosteric sites, contain a lot of practically unexplored 

potential target pockets (Suplatov and Švedas, 2015). Though the molecular mechanisms of 

allosteric regulation in Hsp70 have been studied extensively at each functional and structural 

levels, the current understanding of allosteric inhibition of its activities by small molecules is 

indeed missing (Stetz and Verkhivker, 2016). 

In this study, we propose to explore the potentials of allosteric sites. We seek to discover 

druggable allosteric sites and subsequently screen these sites against a database of small 

molecules in a bid to find potential allosteric modulators.  

1.7 Project Motivation 

The multi-functional nature of Hsp70s predisposes them as promising therapeutic targets.  

Hsp70s play vital roles in various cell developments, and survival pathways, therefore 

targeting this protein will provide a new avenue towards the discovery of effective 

therapeutic agents for the treatment of a wide range of diseases. Allosteric sites of the full-

length 3D structures of this protein in its multi-conformation states have not been explored 

for antibiotic development. We proposed to target the potential allosteric sites of Hsp70 for 

antibiotic development using E. coli as a model organism. We also view the effect of selected 

inhibitory compounds on the protein.  

1.7.1 Knowledge gap 

To our knowledge, this research is the first study that is focused on targeting allosteric 

binding sites of E. coli Hsp70 in functionally important conformations, including a unique 

allosteric intermediate state, against natural compounds from the South African Natural 

Compounds Database (SANCDB) (https://sancdb.rubi.ru.ac.za/). 

https://sancdb.rubi.ru.ac.za/
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1.7.2 Research Hypothesis 

This research hypothesizes that targeting allosteric sites of E. coli Hsp70 and screening 

against compounds from the South African Natural Compounds Database (SANCDB) can be 

explored for inhibitory drug design purposes. 

1.8 Aims and Objectives 

1.8.1 Aims 

This study aims at identifying allosteric binding sites of E. coli Hsp70 in its open, closed and 

intermediate conformations, as well as exploring the inhibitory potentials of compounds from 

SANCDB (https://sancdb.rubi.ru.ac.za/) against these sites.   

1.8.2 Objectives 

1 Identification of potential allosteric sites of E. coli Hsp70 protein.   

2 Molecular docking of natural South African compounds from SANCDB 

(https://sancdb.rubi.ru.ac.za/) to identified allosteric sites.   

3 Analysis of stability and conformational changes of protein-ligand complexes.  

 

 

 

 
 
 
 

https://sancdb.rubi.ru.ac.za/
https://sancdb.rubi.ru.ac.za/
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CHAPTER TWO: ALLOSTERIC SITES 

IDENTIFICATION 

2.1 Chapter Overview 

Allostery is a key process to regulate the functional activity of a protein. Targeting allosteric 

sites rather than orthosteric sites in reference to drug designs can offer certain advantages 

such as target specificity, selectivity and low toxicity (Huang et al., 2017). Penkler et al., 

2017 identified allosteric hot residues on the open and closed conformation of E. coli Hsp70 

structure using perturbation response scanning (PRS) method in combination with MD 

simulation. The structures used in this study were structures from Penkler et al., 2017 

containing PRS data. These structures were extracted through geometric clustering of the 

protein’s RMSD. In this chapter, potential allosteric pocket prediction tools such as FTMAP 

(http://ftmap.bu.edu/login.php), SiteMap (https://www.schrodinger.com/sitemap), and 

Allosite (http://mdl.shsmu.edu.cn/AST) were used to predict allosteric sites that correlate to 

the results of Penkler et al., 2017. These tools utilize different techniques such as pocket-

based analysis, support vector machine (SVM), machine learning and energy based method to 

accurately predict ligand binding pockets other than those of known active site (Greener and 

Sternberg, 2018). Allosteric sites on the structures extracted from Penkler et al., 2017 are 

explored for inhibitory design and to discover new functions. Each structure without any 

endogenous ligand is uploaded in these servers, and ligands binding within 10 Å of the 

identified sites are noted. 

2.1.1 Allosteric sites 

The word allostery, coined from the Greek words: allos which mean “other” and stereos 

which mean “shape” (Christopoulos, 2002), describes the functional alteration at one site on a 

protein resulting from the change at another site distinct from each other (Greener and 

Sternberg, 2018). Figure 2.1 describes the definition of allostery. Alteration in the 

conformation of the protein structure can either be positive (allosteric effectors) thereby 

enhancing its catalytic activity or negative (allosteric inhibitors), reducing its catalytic 

activity (Helmstaedt et al., 2001). Allosteric communication between binding sites is 

necessary to transmit information (Schulze et al., 2016). The idea of allostery has evolved 

within the past century with improved experimental and computational technologies (Jin Liu 

and Nussinov, 2016). Experimental methods used in understanding allostery include high-

http://ftmap.bu.edu/login.php
https://www.schrodinger.com/sitemap
http://mdl.shsmu.edu.cn/AST
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resolution X-ray crystallography (Motlagh et al., 2014), nuclear magnetic resonance 

spectroscopy (NMR), high-throughput screening (HTS) (Sugiki et al., 2018), fragment-based 

screening (FBS) and electrophysiology (Nys et al., 2016). Computational methods such as 

normal mode analysis (NMA), machine learning methods, molecular dynamics (MD) 

methods, and evolutionary methods, have emerged to help in the understanding of allostery 

(Wagner et al., 2016). The initial models of allostery were first described by Monod-Wyman-

Changeux (MWC) and Koshland-Nemethy-Filmer (KNF) (Thayer et al., 2017). According to 

the MWC model, also known as the concerted model, allosteric proteins are oligomers 

consisting of the identical monomers arranged in a symmetrical order (Cui and Karplus, 

2008) and they exist in two conformational states, i.e. relaxed state (R)  i.e. high-affinity state 

and tensed state (T) i.e. low-affinity state (Hilser et al., 2012) . In this model, each monomer 

(subunit) must exist in the same state, either the R or the T state. These states are said to be in 

equilibrium in the presence or absence of the ligand (Rapp and Yifrach, 2017).  Binding of a 

ligand to a site other than the active site shifts the equilibrium to either of the two states 

(Bellelli and Brunori, 2011). Koshland-Nemethy-Filmer (KNF) model, also known as the 

sequential model, states that the subunits do not exist in the same state. The equilibrium can 

be shifted from one state to another through the binding of a ligand to one of the subunits 

(Freiburger et al., 2011). Other models of allostery such as Population Shift Model, 

Morpheein Model, and the Dynamically Driven Model extended the MWC and KNF models 

(Lu et al., 2014).  

Active site 

Enzyme  

Ligand  Altered active site 

Allosteric site 

 
Figure 2.1: A schematic representation of allosteric inhibition (adapted from 

Thermodynamics and Reactions, n.d.) 
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2.1.2. Characteristics of allosteric proteins 

Allosteric proteins are involved in biological processes control and regulation which are 

essential to the biological system. Distinctive features of allosteric proteins are that they 

comprise of different polypeptide chains with various active and allosteric sites (Einav et al., 

2016), and these proteins can react to a few distinct conditions in their surroundings. 

Allosteric proteins are larger and more complex than orthosteric proteins (Christopoulos et 

al., 2004) and can either be activated or inhibited by allosteric ligand(s). They often control 

key reactions in major pathways that need to be regulated. In allosteric sites, greater stability 

and hydrophobicity is observed than in orthosteric sites since hydrophobic residues are highly 

enriched in these sites (Xiaobai Li et al., 2013). Residues of allosteric sites are considerably 

less conserved than those of orthosteric sites which aid the specificity and selectivity of 

allosteric drugs (Shang et al., 2016). 

Despite the many potential benefits of allosteric therapy, identification of predictive 

approaches in the discovery of allosteric sites is one of the major hurdles in the development 

of allosteric drugs (Tee et al., 2018).  

2.1.3 Advantages of allosteric drugs 

Allosteric drugs offer certain advantages over orthosteric drugs that target protein’s 

functional site. Allosteric sites are evolutionarily less conserved and this confers higher 

selectivity and specificity on allosteric drugs. Allosteric drugs bind to non-conserved sites 

hence they are less toxic and have fewer side effects (Grover, 2013). Allosteric drugs do not 

compete with biological co-factors such as ATP and ADP that are present in the protein and 

can function in the presence of these ligands (Nussinov and Tsai, 2015). 

2.1.4. Methods to identify and characterize allosteric sites 

Identification and analysis of binding hot spots that contribute significantly to the binding 

free energy of ligands are critical steps in structural drug design (Landon et al., 2009). 

Current known allosteric drugs have been identified by experimental methods such as X-ray 

crystallography and high-throughput screening (Blundell and Patel, 2004). While these 

experimental methods have been successfully used, the cost, time constraints, and poor 

performances of these experiments limits their utilization in routine investigations of protein 

targets (Ekins et al., 2007).  In this study, we use different allosteric pocket prediction tools 

that utilize different algorithms such as machine learning to identify druggable cavities. 
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These cavities are then compared with the results from previously identified PRS hotspots. 

We propose that these identified consensus regions are most likely allosteric sites. 

2.1.4.1. FTMAP  

FTMap is a computational tool that was created as an equivalent of the experimental tools 

used in predicting binding hot spots on protein structures (Kozakov et al., 2015). This server 

predicts binding hot spots on protein structures that bind small organic molecules or probes 

by sampling the surface of the protein structure and finding residues with hydrophobic and 

polar pattern (Brenke et al., 2009). FTMAP algorithm scores the identified hotspots based on 

their average energy using the Fast Fourier Transform (FFT) (Mirzaei et al., 2015). FTMAP 

identifies these hot spots by screening the protein of interest against a set of 16 small organic 

molecules as probes (acetaldehyde, acetamide, acetone, acetonitrile, benzaldehyde, benzene, 

cyclohexane, dimethyl ether, ethane, ethanol, isobutanol, isopropanol, methylamine, N,N-

dimethylformamide  phenol, and urea) of different sizes, shapes and polarity (Ngan et al., 

2012). The regions in which several different probe clusters bind are identified as the hot 

spots and region with the largest number of these clusters is selected as the main spot (Beglov 

et al., 2018).  

2.1.4.2. SiteMap 

Schrodinger’s SiteMap is a computational tool for the identification and characterization of 

sites that contribute to the binding of small molecules in respect to drug discovery (T. A. 

Halgren, 2009). This tool provides a quick and efficient way of predicting potential binding 

sites with a high degree of certainty (T. Halgren, 2007). SiteMap uses an algorithm similar to 

the GRID algorithm of Goodford that uses interaction energies between the protein and grid 

probes to locate energy-efficient sites (Patschull et al., 2012). SiteMap defines sites by a 

combination of physicochemical properties measured at each site such as the degree of 

protein enclosure, the degree of solvent exposure, the degree to which a ligand is able to 

donate or accept hydrogen bonds, druggability score (D-score), hydrogen-bonding 

possibilities, hydrophilic and hydrophobic properties, Site score (S-score), size, and volume 

(Gudipati et al., 2018; Rodina et al., 2013). SiteMap identifies sites by linking site points that 

contribute significantly to the interaction between either protein-ligand or protein-protein and 

ranks these sites based on their physicochemical properties (T. Halgren, 2007). The top 5 

ranked potential ligand-binding sites are displayed. 
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2.1.4.3. Allosite 

Allosite is a web server that offers an effective way in the identification of allosteric sites and 

can be a useful tool for the discovery of allosteric drugs (Song et al., 2017). Allosite uses 

algorithms like pocked-based analysis and support vector machine (SVM) classifiers to 

predict the location of allosteric sites on protein (Huang et al., 2013). Allosite provides 

physicochemical properties of identified sites such as druggability score, feature score, 

perturbation score, total solvent-accessible surface area (SASA), and volume. The 

druggability score represents protein cavity druggability based on a knowledge-based logistic 

model which is trained with the largest number of druggable and non-druggable cavities. It 

ranks the identified sites as druggable, difficult to drug and undruggable (Schmidtke and 

Barril, 2010). The feature score is derived based on the physicochemical and topological 

feature of the predicted allosteric site. The perturbation score evaluates the allosteric effect of 

pseudo ligands using normal mode analysis. 

2.1.5. Structures used in this study 

Structures used in this study were provided by Penkler et al., 2017. Previous study by Penkler 

et al., 2017 identified allosteric hot residues on the E coli Hsp70 in its open and closed 

conformations using perturbation response scanning (PRS) in combination with molecular 

dynamics (MD) simulation. A total of 12 unique configurations of E coli Hsp70 were 

prepared using crystal structures 4B9Q (open conformation) and 2KHO (closed 

conformation) from the Protein Data Bank (PDB) as starting structures for the experiment. 

Conformational changes between the various nucleotide and substrate-bound configurations 

of the protein were analysed by applying PRS. PRS uses the Linear Response Theory (LRT), 

in which a particular protein conformation can be defined by the Hamiltonian disturbance of 

an alternative conformation and the shift in coordinates as a result of an external force 

including ligand binding. LRT determines the allosteric effect each residue has on all other 

residues in a given protein upon external perturbation (Gerek & Ozkan, 2011). Each 

configuration was subjected to all-atom MD simulation for a minimum of 100ns and a 

maximum of 200ns in order to obtain a 20ns equilibrated trajectory wherein the RMSD 

fluctuation of the backbone converged at around 2Å. Finally, prediction of intra-protein 

contact residues was determined using the protein interactions calculator (Penkler et al., 

2017).  
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Of the 12 configurations generated, two structures (H_prime and B_prime) (Figure 2.2) used 

in this study were extracted by geometric clustering of protein RMSD's on trajectory frames 

spanning the 20ns equilibrated time periods used in PRS calculations (Table 2.1).  

Table 2.1: MD Trajectories indicating the simulation length and the backbone RMSD 

fluctuation used to obtain the respective 20ns equilibrated region used in PRS calculations. 

Configuration Simulation length (ns) Equilibrated regions (ns) RMSD fluctuation (Å) 

H_prime 200 180-200 ~ 2.0 

B_prime 200 116-136 ~ 2.3 

 

The objective of this study is to identify compounds interacting with these residues and to 

analyze the inhibitory effects of these compounds. 

 

IA IB IIA IIB LNK SBDβ SBDα 

 

 

Figure 2.2: Structures retrieved from Penkler et al., 2017. Identified allosteric hot residues 

mapped to C  atom and coloured by subdomain. A: Structure in its closed conformation 

(H_prime). B: Structure in its open conformation (B_prime). 

A B 

NBD SBD 
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2.2. Methodology 

Identification of binding hotspots of small molecular fragments was done using 

computational tools like FTMAP, SiteMap, and Allosite. E. coli Hsp70 in its open (B_prime) 

and closed conformation (H_prime) was retrieved from Penkler et al., 2017. Both structures 

were prepared using Discovery studio. Endogenous ligands, metal ions, and water molecules 

were removed from the structures.  

2.2.1. FTMAP 

Most crystallized structures usually contain co-crystallized ligands, metal ions, co-factors, 

and water molecules. Protein structures from Penkler et al., 2017 were prepared using 

Discovery studio 2017. The protein preparation includes the removal of endogenous ligands, 

metal ions, water molecules, and other co-crystallized agents. The prepared structures are 

then uploaded to the FTMAP web server. FTMAP processes the PDB file by inspecting the 

structures to ensure that all bound ligands and water molecules are removed and adding any 

missing atoms, including polar hydrogens. The pre-docking minimization involves screening 

the entire surface of the protein structure using 16 small organic molecules as probes 

(acetaldehyde, acetamide, acetone, acetonitrile, benzaldehyde, benzene, cyclohexane, 

dimethyl ether, ethane, ethanol, isobutanol, isopropanol, methylamine, N,N-

dimethylformamide phenol, and urea) (Ngan et al., 2012). FTMAP utilizes the FFT method 

to sample these compounds while calculating accurate energies. After each probe is docked, 

the best 2000 poses are kept for each probe for further processing. The free energy of 2000 

poses produced after the rigid body docking is minimized using the CHARM potential. The 

minimized probes are clustered according to proximity. Based on their Boltzmann averaged 

energies, the clusters are ranked and six clusters with the lowest average free energies are 

retained for each probe.  Binding hotspots are determined by searching for clusters of 

different types of probes within several angstroms of each other. If several binding hot spots 

on the protein surface appear near each other, this is a strong indication of a potentially 

druggable binding site. The FTMAP algorithm steps used in generating the binding sites are 

outlined below (Figure 2.3). 
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Figure 2.3: A diagrammatic flow of the steps involved in FTMap. 

 

2.2.2. SiteMap 

In order to ensure correct starting structures, the protein structures from Penkler et al., 2017 

was subjected to protein preparation. Each protein structure was prepared using the protein 

preparation wizard protocol available in the Schrödinger suite (Maestro version 11.5.0.11 

MMshare version 4.1.011 Release 2018-1 Platform Linux-x86-64). Protein preparation 

wizard involves the pre-processing, optimizing and minimization of the protein structure. 

Pre-processing of the structure assigns bond orders, adds hydrogen atoms, fills in missing 

loops or side chains, creates zero-order bonds to metals, creates disulfide bonds, and deletes 

water molecules. Optimization involves the hydrogen-bond (H-bond) assignment. This is 

achieved by re-orientating the hydroxyl and thiol groups, water molecules, amine groups of 

Asparagine and Glutamine and the imidazole group in Histidine. This also predicts the 

protonation states of Histidine, Aspartic acid and Glutamic acid and the tautomeric state of 

Histidine (Schrödinger Suite 2012). This step eliminates atomic clashes, adds formal charges 

to the hetero groups and optimizes them at neutral pH using PROPKA (Olsson et al.,2011).  

The final step in the protein preparation step is the minimization of the structure. This is done 
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to restrain the heavy atoms in the structure so that the final result does not deviate so much 

from the starting structure. RMSD cut-off of 3.0 Å is specified and the OPLS3 force field is 

used (Schrödinger Suite 2012). Once the structures have been prepared, the binding site 

analysis was carried out. This was generated using SiteMap tool from Schrödinger suite. 

SiteMap finds, visualizes and evaluates protein binding sites (Schrödinger, 2016). SiteMap 

identified the top 5 ranked potential ligand-binding sites on structures from Penkler et al., 

2017. Detailed steps used in generating binding sites are outlined below (Figure 2.4).  

 
Figure 2.4: A diagrammatic flow of comparative SiteMap steps used in this chapter.  

 

2.2.3. Allosite  

The structures from Penkler et al., 2017 were prepared using Discovery studio 2017. All 

endogenous ligands, co-factors, metal ions and water molecules were removed. The prepared 

structures were then uploaded to the Allosite server (http://mdl.shsmu.edu.cn/AST/). Allosite 

uses the feature-based and perturbation-based methods in the identification of allosteric sites. 

It then ranks the sites in terms of their allosteric characteristics such as druggability of the 

site, its volume, and SASA. Figure 2.5 shows the diagrammatic flow of comparative Allosite 

steps used in this chapter. 

http://mdl.shsmu.edu.cn/AST/
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Figure 2.5: A diagrammatic flow of comparative Allosite steps used in this chapter. 

 

2.3. Results and Discussions  

2.3.1. FTMAP results of H_prime  

FTMAP identified ten binding hot spots on H_prime (Figure 2.6). What is interesting to note 

is that most of these identified sites are clustered together. For example, Sites 4, 5, 6, 9 and 

10 clustered together in the substrate binding domain (SBDα and SBDβ). These sites 

clustered around the sites occupied by the peptide substrate. Sites 1, 2, 3, and 7 assumed the 

same location in the nucleotide binding domain (IA, IIA, and IIB). These sites clustered 

around the sites occupied by the endogenous ligand (ATP). Site 8 (located in NBD 

subdomain IIA) distinctively stood out from clustering amongst the rest indicating a site of 

interest as it does not compete with the endogenous ligands present in the protein (Figure 

2.6).   
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Figure 2.6: Sites identified by FTMAP on H_prime. A: shows the sites mapped on the 

protein structure. B: shows the colours representing each site. 

 

2.3.2. FTMAP results B_prime 

The number of sites identified by FTMAP on B_prime was significantly greater than that of 

H_prime. FTMAP identified 16 sites on this protein structure (Figure 2.7). Some sites 

clustered together while others stood apart. Sites 1, 8, 11 and 13 clustered together in the 

subdomains (IIA and IIB) of the nucleotide binding domain. Sites 2 and 3 clustered together 

in the subdomain IIA of the NBD. Sites 5 and 10 also clustered together in the subdomain 

SBDα. Sites 4, 6, 12 and 16 were seen to cluster together in the subdomain IA. The sites that 

stood apart were Sites 7, 9, 14, and 15. 
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Figure 2.7: Sites identified by FTMAP on B_prime. A: shows the sites mapped on the 

protein structure. B: shows the colours representing each site. 

  

2.3.3. SiteMap results of H_prime 

SiteMap identified the five top sites on H_prime based on the S-score, D-score, size, and 

volume (Table 2.1). S-score greater than or equals to 0.80 could thus be potential ligand 

binding sites. The druggability of each site was measured as the D-score. The D-score is an 

important scoring function of potential ligand binding sites as it includes terms that propagate 

ligands binding such as adequate size and solvent isolation. Using the D-score criteria, sites 

as categorized as undruggable (highly hydrophilic sites that are comparatively smaller in size, 

having little or no hydrophilic characteristics and a D-score value lesser than 0.83), difficult 

to drug (adequately hydrophilic with less hydrophobic characteristics and having a D-score 

value greater than 0.83 but less than 0.98) and druggable (sites with favourable size, 

hydrophilic and hydrophobic characteristics and having a D-score value greater than 0.98) 

(Rodina et al., 2013). Table 2.3 shows the top five sites identified by SiteMap. Sites 1 and 2 

had significantly high S-score and D-score. 
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Table 2.2: Sites identified by SiteMap on H_prime. 

Binding site Position  S-score D-score Size Volume  

Site 1 

Site 2 

Site 3 

Site 4 

Site 5 

IB, IIA, and IIB 

IA, IB and IIA 

IIA 

IA and IB 

IA, SBDα and SBDβ 

1.050 

0.975 

0.933 

0.903 

0.724 

1.037 

0.982 

0.906 

0.522 

0.627 

257 

172 

60 

39 

45 

723.040 

429.440 

194.480 

92.950 

154.350 

 

2.3.5. SiteMap results of B_prime 

The top five potential ligand binding sites on B_prime were identified by SiteMap (Table 

2.2). All sites had an S-score of greater than 0.83 which signifies plausible ligand binding 

sites. However, only sites 1 and 2 had a druggable site as their D-score value was greater than 

0.98. Site 3 had a D-score of 0.927 which is categorized as difficult to drug while sites 4 and 

5 had D-scores less than 0.83 which is classified as undruggable. 

Table 2.3: Sites identified by SiteMap on B_prime 

Binding site Position S-score D-score Size Volume 

Site 1 

Site 2 

Site 3 

Site 4 

Site 5 

IIA and IIB 

IA, SBDα and SBDβ 

IIA and IIB 

IA and SBDα 

IIA and SBDβ 

1.160 

0.991 

0.906 

0.939 

0.895 

1.058 

1.029 

0.927 

0.719 

0.748 

103 

105 

74 

79 

65 

171.500 

276.460 

368.040 

189.680 

213.690 
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2.3.6. H_prime results predicted by Allosite 

Allosite uses the feature-based and perturbation-based methods in the identification of 

allosteric sites. The results from the allosteric site search on H_prime by Allosite are 

summarized in Table 2.3. A total of 9 potential ligand binding sites were predicted by 

Allosite. Allosite uses the physicochemical characteristics such as the hydrophobicity and the 

normalized polarity score of the amino acid residues lining the pock to predict its druggability 

score. These characteristics contribute positively to D-score which indicates that both 

hydrophobic and polar residues can significantly increase the druggability of the site. The 

prediction of druggability can then be based on the average score of 0.5 taking into 

consideration the standard deviation (a higher standard deviation value raises the cut-off to 

0.7 and vice versa) (Schmidtke and Barril, 2010). 

Table 2.4: Sites identified by Allosite on H_prime. 

Binding 

pocket 

Position Volume SASA D-

score 

Logit 

Prob 

Nma 

score 

Hit 

score 

Pocket 1 

Pocket 2 

Pocket 3 

Pocket 4 

Pocket 5 

Pocket 6 

Pocket 7 

Pocket 8 

Pocket 9 

IB and IIB 

IB and SBDβ 

IIA  

IA, IB and IIA 

IA 

IIA and IIB 

SBDα 

IB 

IA 

1177.958 

1438.481 

1035.300 

516.473 

619.370 

437.706 

148.114 

386.517 

212.944 

701.917 

640.068 

528.973 

366.091 

498.270 

248.777 

37.050 

275.921 

67.047 

0.540 

0.049 

0.330 

0.028 

0.025 

0.086 

0.884 

0.171 

0.147 

0.900 

0.606 

0.720 

0.391 

0.538 

0.493 

0.599 

0.480 

0.541 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

0.920 

0.685 

0.776 

0.513 

0.630 

0.595 

0.680 

0.584 

0.633 
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2.3.7. B_prime results predicted by Allosite 

Allosite predicted 9 potential ligand binding sites on B_prime as seen in Table 2.4. Allosite 

ability to estimate druggability certainly adds structural dimension and assesses the 

possibility that small drug-like molecules can bind to a specific target with the potency of 

altering its activity (Schmidtke and Barril, 2010).  

Table 2.5: Sites identified by Allosite on B_prime. 

Binding 

pocket 

Position Volume SASA D-

score 

Logit 

Prob 

Nma 

score 

Hit 

score 

Pocket 1 

Pocket 2 

Pocket 3 

Pocket 4 

Pocket 5 

Pocket 6 

Pocket 7 

Pocket 8 

Pocket 9 

SBDβ 

IIA and IIB 

IIA and SBDβ 

IIA 

SBDα 

IA and SBDβ 

SBDβ 

SBDα 

SBDβ 

819.628 

960.575 

1192.129 

277.559 

580.689 

445.796 

253.425 

357.036 

441.009 

417.703 

497.172 

668.567 

121.206 

241.483 

180.843 

141.084 

217.171 

176.161 

0.587 

0.203 

0.042 

0.036 

0.115 

0.016 

0.032 

0.014 

0.067 

0.841 

0.812 

0.696 

0.482 

0.543 

0.468 

0.437 

0.146 

0.452 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

0.872 

0.850 

0.757 

0.585 

0.635 

0.574 

0.550 

0.533 

0.562 
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2.3.8. Hotspot analysis  

Allosteric sites are designed to develop more selective and specific enzyme activity inhibitors 

and to discover new functions (Roca et al., 2018). Previous study by Penkler at al., 2017 

identified allosteric hot residues on E. coli Hsp70 using PRS in combination with MD 

simulation (Table 2.5). Conclusions drawn from this study suggests that allostery is solely 

determined by nucleotide-mediated conformational redistributions in the NBD and SBD and 

that these identified residues are critical for conformational stability and allosteric 

communication (Penkler et al., 2017).  
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Table 1.6: Allosterically relevant residues identified by Penkler et al., 2017 using PRS in 

combination with MD simulation. 

Structure  Position  Allosterically relevant residues 

 

 

 

 

H_prime 

IA 11, 12, 17-19, 113, 116, 117, 142, 143, 144, 146, 148, 149, 

150, 156, 157, 167, 370, 373, 374, 376, 377, 380 

IB 59, 60, 66, 68, 70, 71, 73, 96-99 

IIA 195-201, 202, 203, 219-223, 225-227, 311-321, 324, 325, 

329, 330, 333, 353, 356 

IIB 228, 229, 231-235, 252, 255, 256, 261, 264, 265, 281, 283, 

284 

Linker 392 

SBDβ 396-414, 417, 429-444, 448, 450, 451-455, 457, 464-467, 

478, 479, 485, 486, 498, 500-502 

SBDα 503-508, 511, 512, 514, 515, 516, 517, 520, 530-538, 540, 

546-568, 571, 581-602 

 

 

 

B_prime 

IA 7, 113, 120, 127, 139-141, 143-146, 148, 149-153, 156, 164, 

166, 167, 170, 171, 381 

IIA 192, 193, 195, 198-201, 205, 207, 216,-218, 224-227, 310-

314, 316, 338-340, 344-347, 349-351, 354, 361, 362 

IIB 228-240, 243, 267, 270, 271, 273-281, 297-299, 303-309 

Linker 392, 393 

SBDβ 398, 400-410, 413, 414, 419, 425-440, 446, 449-451, 453-

490, 493, 494, 497-502 

SBDα 503-505, 515, 520, 539, 540, 543, 550, 551, 554, 582 
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In this study, we utilized a combination of computational tools to obtain a consensus 

prediction of protein druggable sites. Each of the servers used in the identification of 

potential ligand binding sites on both protein structures utilizes different techniques. FTMAP 

samples the surface of the protein with 16 different probes. SiteMap identifies sites based on 

the D-score, size, S-score, and volume of the sites respectively. Allosite identifies sites based 

on the volume, druggability and the total solvent-accessible surface area of the predicted 

allosteric sites. Validation on known allosteric sites is important in this study. As seen in 

Figure 2.8, there was at least one consensus site between all three prediction tools on both 

protein structures. Ligands binding to these consensus sites will be selected and evaluated for 

inhibition purposes. We identified residues around the consensus sites and these residues 

were in agreement with results from PRS data, hence the reason for selection as seen in Table 

2.6 and Table 2.7.  Hence, these sites will be screened for potential allosteric modulators in 

Chapter 3. 

 
Figure 2.8: Venn diagram of results comparison by methods used in the identification of 

allosteric sites. A: FTMAP, SiteMap, and Allosite all identified 2 common sites in H_prime. 

These sites according to SiteMap have D-scores of 0.982 and 0.906 and S-scores of 0.975 and 

0.933 respectively. B: FTMAP, SiteMap, and Allosite all identified 1 common site in 

B_prime having D-score of 0.927 and an S-score of 0.906 respectively. 
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Table 2.7: Residues of the consensus site found in H_prime. 

Allosteric site Position  Residues 

Site 1 IA, IB and IIA G6, I7, D8, L9, S14, V16, A17, I18, M19, P24, R25, V26, 

L27, E28, D33, R34, T35, R75, R76, T141, V142, P143, 

A144, Y145, F146, N170, E171, F200, D201, I202, T221, 

N222, G223, D224, P367, D368, E369, A370, V371, 

A372, I373, G374, A375, A376 

Indicated in red are residues identified by Penkler et al., 2017 using PRS in combination with 

MD simulation 

 

Table 2.8: Residues of the consensus sites found in B_prime. 

Allosteric sites Position Residues 

Site 1 IA, SBDβ and 

SBDα  

I73, G74, R75, A95, A96, D97, N98, G99, D100, A101, 

D148, A149, Q150, R151, Q152, A153, T154, K155, 

D156, A157, K166, G167, I168, L382, T383, K452, S453, 

L454, G455, D479, A480, D481, G482, I483, L484, S504, 

S505, G506, L507 

Site 2 IIA, Linker 

and SBDβ 

D201, I202, S203, V218, L219, A220, T221, N222, G223, 

D224, T225, D311, L312, N314, R315, S316, I317, E318, 

P319, L320, L321, V322, A323, L324, Q325, D326, 

A327, G328, L392, D393, V394, T395, P396, L397, 

S398, A413, K414, N415, T416, T417, I418, P419, T420, 

K421, H422 

Indicated in red are residues identified by Penkler et al., 2017 using PRS in combination with 

MD simulation 
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2.4. Conclusion 

The identification of druggable sites in therapeutic studies is crucial for structure-based drug 

design in order to discover allosteric sites and to design small molecules with therapeutic 

effects that bind to these sites (Roca et al., 2018). Two protein structures were extracted from 

Penkler et al., 2017. These structures were subjected to allosteric site search using three 

different computational tools. Using a combination of methods may give better predictions 

rather than either method individually. Each tool utilizes different algorithms in the 

prediction of potential allosteric sites and scores these identified sites based on different 

physicochemical properties such as D-score, perturbation score S-score, size, total solvent-

accessible surface area, and volume.  A search for consensus sites identified by all three 

servers was done and this search revealed that these servers identified two consensus sites in 

H_prime and one consensus site in B_prime. The first consensus site found in H_prime was 

within the nucleotide binding domain IA, IB, and IIA, while the second site was also found in 

the nucleotide binding domain IIA. The only consensus site found in B_prime was located 

within the nucleotide binding domain IIA and IIB. Residues around one of the consensus site 

in H_prime (IA, IB and IIA) were in agreement with residues identified by Penkler et al., 

2017, hence this site can be considered as an allosteric site. Residues around the only 

consensus site in B_prime were not in agreement with PRS data; hence we selected two sites 

identified by SiteMap whose surrounding residues were in agreement with residues identified 

by Penkler et al., 2017. These sites (IA, SBDβ, and SBDα) and (IIA, Linker, and SBDβ) were 

partly identified in other tools as SiteMap predicted druggable regions beyond FTMAP and 

Allosite. Ligands selection in Chapter three will be based on those binding to the selected 

sites whose surrounding residues correspond with PRS data. 

In conclusion, these servers have displayed a level of competency in the prediction of 

potential allosteric binding sites. Further analysis will be carried out evaluate these predicted 

sites in the discovery of potential inhibitors. 
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CHAPTER THREE: HIGH THROUGHPUT VIRTUAL 

SCREENING 

3.1. Chapter overview 

Allosteric inhibitors bind to sites distinct from the active site and are capable of inducing 

conformational change on a protein structure. This chapter aims at the discovery of new 

allosteric modulators from compounds from SANCDB (https://sancdb.rubi.ru.ac.za). The 

entire surface of each structure will be screened against 623 small molecule compounds 

retrieved from SANCDB using Autodock Vina. Protein and ligand preparation will be done 

using AutoDock4 tools. The docking protocol was validated by redocking co-crystallized 

ATP to the protein structure. After that, exact docking parameters will be implemented in the 

virtual screening procedure. Ligands were selected based on their interactions with the 

allosteric sites identified in Chapter 2. Ligand poses interacting with low binding energies 

from each conformation will be identified as potential allosteric inhibitors and further 

analysis will be done on them.  

3.1.1. High throughput virtual screening 

The quest for a new means of drug discovery is a continuous effort as there is a global rise in 

various diseases afflicting the world (Truglio et al., 2012). For many years, the development 

of small molecules as therapeutic agents for the prevention and treatment of diseases has 

played a crucial role in medical practice (Schiavone and Trabace, 2018). Previous methods 

used in the discovery of drugs were done through the random screening i.e. trial and error of 

medicinal plants. Although inefficient, this method yielded the identification of lead 

compounds (Giridhar, 2012). New experimental techniques such as high-throughput 

screening (HTS) have emerged in the discovery of novel potential molecules and have 

enhanced random screening efficiency (Michael et al., 2008). The emergence of this new 

technique has caused an increase in the amount of available compound and biomedical data 

over the past decade and has become the standard method for drug discovery (Chen et al., 

2018). Amid its massive contributions to drug discovery, this standard method is expensive 

and unsatisfactory as it does not provides information such as the compound’s toxicity and 

bioavailability prior to its development (Proudfoot, 2008). Virtual screening is an in vitro 

analogue of HTS that provides structural information of compounds and is cost, resource and 

time effective (Ballester et al., 2012).  

https://sancdb.rubi.ru.ac.za/
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Virtual screening (VS) is a potent computational technique for the identification of lead 

molecules in drug discovery (Lavecchia and Giovanni, 2013). It is a structurally based 

method in the discovery of novel compounds as it relies on structural information of the 

target protein. This method screens large compound databases for compounds that 

complement protein targets with known structures and experimentally test those that are 

expected to bind well (Shoichet, 2004). For the purpose of the study, protein structures will 

be screened against compounds from SANCDB (Hatherley et al., 2015). VS methods are 

divided into two distinct categories: ligand-based virtual screening (LBVS) and structure-

based virtual screening (SBVS). LBVS is based on ligand similarity and it draws on the fact 

that ligands structurally similar to a biologically active ligand are more likely to be active 

than random ligands (Hamza et al., 2012). This method is only suitable when there is no 3D 

target protein structure. Examples of LBVS include fingerprints, ligand-based 

pharmacophore modeling, and quantitative structure-activity relationship (QSAR). SBVS, 

unlike LBVS, is based on protein-ligand docking and it utilizes 3D structural information of 

the target protein to predict binding modes and affinities of ligands (Lionta et al., 2014). The 

3D information of proteins are mostly determined by experimental techniques such NMR, X-

ray crystallography or by computational techniques such as homology modeling (Lavecchia 

and Giovanni, 2013). This chapter includes the SBVS approach to successfully identify 

potential allosteric inhibitors of Hsp70. A well-established approach used in SBVS is 

molecular docking (Drwal and Griffith, 2013). Other methods used in SBVS include de novo 

drug design and structure-based pharmacophore.  

3.1.2. Molecular docking 

The identification of new lead molecules that demonstrate pharmacological activity against 

natural targets and the knowledge of the potency of these molecules remains one of the most 

important stages in drug discovery (Lionta et al., 2014). Molecular docking is a vital tool in 

SBVS that investigates the predominant binding modes of small molecules in protein pockets 

(protein with known 3D structure). A large number of algorithms and scoring functions are 

currently used to evaluate the protein-ligand interactions as well as the fundamental 

biochemical processes at an atomic level (Morris and Lim-Wilby, 2008). Molecular docking 

has become an extremely important part of the current efforts to discover and design drugs 

(Brooijmans and Kuntz, 2003). Over the past two decades, more than 60 different docking 

tools and programs with different algorithms have developed for both academic and 

commercial usage. These include AutoDock, Autodock Vina, DOCK, GLIDE, GOLD, 
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LigandFit, MOE-Dock, etc. (Pagadala et al., 2017). Autodock Vina was used in this chapter.  

The process of molecular docking comprises two fundamental steps: ligand conformation, 

orientation and position prediction within the target sites and binding affinity assessment. It is 

important to note that the efficiency of the docking process increases when the location of the 

binding site is known (Meng et al., 2011). In some cases, the binding site of a target protein is 

known before the ligand is docked into it. This type of docking is called targeted docking. 

Without knowledge of binding sites, cavity detection programs or online servers may be used 

for the identification of potential binding sites within the protein. This type of docking is 

called blind docking (Meng et al., 2011). In this study, online servers such as FTMAP, 

Allosite, and Schrodinger’s SiteMap was used to identify potential allosteric sites on the 

protein structures. 

3.2. Methodology 

 
Figure 3.1: A diagrammatic representation of the different steps and tools used for docking 

studies. 
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The aim of molecular docking is to predict the position and orientation of a ligand when 

bound to protein structure (Ghersi and Sanchez, 2009). High throughput virtual screening was 

carried out on both conformations of protein structures obtained from Penkler et al., 2017, 

using 623 novel compounds from SANCDB. These compounds were ready to dock as they 

have been previously minimized by Hatherley et al., 2015. Autodock4 tool, Autodock Vina, 

Discovery studio visualizer, and PyMol was used to prepare, visualize and dock the ligand. 

Figure 3.1 shows a summary of the steps and tools used for docking studies. 

3.2.1. Protein and ligand preparation  

Protein structures H_prime and B_prime were extracted from Penkler et al., 2017 as 

explained in Chapter 2. Both structures contained a co-factor (ATP) and a metal ion (Mg2+). 

The structures were prepared using Discovery studio and Autodock4 tool. Polar hydrogen 

was added using Discovery studio. Gasteiger charges were assigned using Autodock4 tool 

prepare_receptor4.py for the protein structures (receptor) and prepare_ligand4.py for the 

ligand structures. This converted both the protein and ligand structures to a pdbqt format. The 

non-polar hydrogens were also merged.  

3.2.2. Docking Parameter Setup  

The proteins and ligands were prepared for docking as described above. Blind docking was 

carried out on both protein structures. The Autodock Vina plugin in PyMol (Seeliger and De 

Groot, 2010) was used to design a docking box centers prior to the docking simulation. Table 

3.1 shows blind docking parameters covering the entire surface of the protein structures. The 

dimension of the box was calculated such that each side of the box had a clearance of 10Å 

and default 0.375Å grid spacing was used. An exhaustive of 320 was used. 
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Table 3.1: Docking parameters used for H_prime and B_prime 

Protein Box size Center 

 

H_prime 

X = 110Å 

Y = 110Å 

Z = 110Å 

X = 49.00 

Y = 74.00 

 Z = 40.00 

 

B_prime 

X = 100Å 

Y = 100Å 

Z = 100Å 

X = 48.88 

Y = 60.67 

Z = 39.55 

 

3.2.3. Docking validation 

Autodock Vina’s ability to reproduce correct poses was first evaluated. Template structure 

(4B9Q) used in generating one of the structures (B_prime) from Penkler et al., 2017 and its 

co-factor (ATP) was used to validate the docking parameters used in this study. 4B9Q was 

obtained from PDB. Water molecules and co-crystallized ligands were removed from 4B9Q 

using Discovery Studio Visualizer. The protein (4B9Q) and ligand (ATP) were prepared 

using the receptor and ligand preparation function in Autodock4 tool. ATP was docked to the 

prepared 4B9Q and its docking pose was compared. Docking protocol was done using 

Autodock Vina. Re-docked results were compared, and it assumed similar interactions with 

template structure. 

3.3. Results and Discussions 

3.3.1. Docking validation 

Assessing docking procedures is crucial to drug discovery. 4B9Q was used to assess the 

docking quality of this study. 4B9Q is E. coli Hsp70 protein in its open conformation and 

contains a co-factor (ATP) and a metal ion (Mg2+). This protein structure is the bacteria 

homologue of Hsp70. The co-factor ATP was redocked to the co-crystallised structure 

(4B9Q) which was the on of the template structures used in generating the structures used in 

this study. The redocked ATP assumed a similar orientation in comparison to its native state 
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as shown in Figure 3.2. Ligplot+ version v.2.1 was used to view and compare the interactions 

between the redocked poses. The redocked ATP had a binding energy of -8.7kcal/mol. 

 
Figure 3.2: Docking validation results: 4B9Q was re-docked with its co-factor (ATP) It 

assumed similar binding sites in both protein and interacted with the same residues. A: shows 

the template structure (4B9Q) and its interactions with its co-crystallized co-factor (ATP). B: 

shows ATP redocked to 4B9Q.  

 

3.2.2 Blind docking analysis 

Blind docking involves the docking of ligands on the entire surface of a protein structure 

without prior knowledge of the catalytic binding sites. H_prime and B_prime were subjected 

to blind docking using 623 ready to dock compounds from SANCDB. Figure 3.3 shows the 

overall binding affinities of these compounds indicating the stability of ligands when docked 

to the respective structures. High specificity of the compounds from SANCDB was observed 

in both protein structures as 57% of these compounds had binding energies higher than that 

of ATP (used in validating docking parameters) while 6% of the compounds had similar 

binding energies with that of ATP. This could be attributed to the presence of many 

functional groups in the compounds. Interestingly, different binding patterns were observed 

in both H_prime and B_prime. Ligands with the highest binding affinity (lowest binding 

energies) observed in H_prime had a relatively high binding affinity in B_Prime. For 

example, SANC00662 had the highest binding affinity with binding energy of -12.5kcal/mol 

in H_prime, had binding energy of -7kcal/mol when bound to B_prime. Similarly, 

SANC00628 which had the lowest binding affinity with binding energy of -5.2kcal/mol in 
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H_prime, had binding energy of -7.3kcal/mol in B_prime. From Figure 3.3, it is evident that 

H_prime was more receptive to compounds from SANCDB as compared to B_prime.  

 
Figure 3.3: A heat map plot showing the binding energies across both protein structures. 

Ligands binding to H_prime had the best (lowest) binding energies. 

 

3.2.2.1 H_prime 

Figure 3.4 shows the docking results on this protein. Ligand binding was distributed across 

all domains and subdomain of the protein. Ligands binding to the ATP and substrate binding 

sites were discarded as the aim of this study is to identify potential allosteric modulators and 

not ligands competing with either ATP or peptide substrate. Other criteria used in the 

selection of ligands include ligands binding within 10Å of the identified allosteric sites 

(Chapter 2), ligands interacting with identified allosteric hot residues and ligands with 

binding energy less than -6kcal/mol. Ligands binding to H_prime had binding energies 

ranging from -5.2 to -12.5 kcal/mol (Figure 3.3).  
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Figure 3.4: A: Blind docking results of SANCDB compounds on H_prime. Ligand binding 

was distributed across all domains and subdomains of the structure. B: Allosteric residues 

identified by Penkler et al., 2017 mapped by Cα atom   

 

3.2.2.2. B_prime 

Ligands binding in B_prime was not evenly distributed as seen in H_prime as the majority of 

the ligands scattered on the surface of the protein (Figure 3.5). Ligands were not observed in 

the ATP and substrate binding sites, indicating that compounds from SANCDB did not 

compete with ATP. Majority of the ligands can be seen binding to the NBD and just a few 

bound to the SBDα. Ligands binding to H_prime had binding energies ranging from -4.5 to -

10.6 kcal/mol (Figure 3.3).  
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Figure 3.5: A: Blind docking results of SANCDB compounds on B_prime. Ligand binding 

was distributed across all domains and subdomains of the structure. B: Allosteric residues 

identified by Penkler et al., 2017 mapped by Cα atom   

 

3.2.3 Criteria for ligand selection 

Selection of ligands was done based on the criteria in Figure 3.6. These criteria include 

selecting ligands binding within 10Å of the allosteric sites identified in Chapter 2, ligands 

make significant interactions with allosteric residues identified by Penkler et al., 2017, and 

ligands with binding energies of ≥-6kCal/mol. Discovery studio visualizer was to visualize 

the various interactions between the ligand-protein complexes. A bash script was used in 

selecting ligands binding within 10 Å of the identified allosteric sites. The x, y, z coordinates 

were determined from the log file provided by SiteMap. The following equation (Lambers, 

2009) was used to calculate the distance between the allosteric site and the central point of 

each ligand, where x1, y1, and z1 represent the coordinates of the allosteric site and x2, y2, and 

z2 represent the central point of each ligand.  
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Figure 3.6: Criteria for selecting ligands. 

 

 
 Figure 3.7: Selected ligands binding on their respective protein structures. A: H_prime and 

B: B_prime 

 

3.2.3.1 H_prime 

In order to identify allosteric modulators, we performed virtual screening on H_prime using 

623 compounds from SANCDB. Results from Chapter 2 identified potential allosteric sites 

using three different prediction tools. A consensus site was identified between these tools and 

this site was further validated as an allosteric site as the residues surrounding the site were in 

agreement to the allosteric residues identified by Penkler et al., 2017. Ligands binding to this 

site were isolated and analysed. Most of the sites identified by these tools clustered together, 

hence, some of the ligands notably bound to more than one allosteric region. This explains 

the reason why each ligand had different interactions with residues surrounding the allosteric 

site (Table 3.9).  

Of the 623 compounds from SANCDB screened against this protein structure, 295 

compounds bound partially or totally to the identified allosteric site. Seven of these ligands 

A B 
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selectively bound the identified allosteric site were selected based on the distance between 

the ligands and allosteric sites, their interactions with allosteric residues identified by Penkler 

et al., 2017 and their binding energies (Figure 3.7A). These interactions include conventional 

hydrogen bonds, Van der Waals, Alkyl, Pi-Alkyl, Pi-Cation, Pi-Sigma, Pi-Pi T-shaped, Pi-Pi 

Stacked interactions (Figure 3.8).  Due to the 10Å cut-off distance used in selecting ligands, 

majority of the ligands interacted with the same residues, while a few had unique interactions 

with identified allosteric residues. 

Interestingly, SANC00378 and SANC00430 bound the allosteric sites identified in both 

protein structures and showed good interactions with identified allosteric hotspot as seen in 

Table 3.2 and Table 3.4. In H_prime, SANC00378 and SANC00430 had binding energies of 

-7.7kcal/mol and -7.6kcal/mol respectively, while in B_prime they had binding energies of -

6.9kcal/mol and -7.4kcal/mol respectively. Although these compounds bound to the allosteric 

sites identified in H_prime and B_prime, they had different types of interactions with 

different allosteric residues as seen in Table 3.2 and Table 3.4. Residues highlighted in red in 

Table 3.2 are allosteric hot residues identified by Penkler et al., 2017.  

Table 3.3 shows the characteristics of the ligands in terms of its compounds name, 2D 

structure, source organism(s), classifications and uses. Although the uses of most of the 

ligands have not been recorded, SANC00499 have recorded cytotoxic activity on leukemia ( 

Kuroda et al., 2001; Kuroda et al., 2002) while SANC00430 have recorded anticancer 

activity (Fouche et al., 2008).  
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Table 3.2: Selected ligands binding to the allosteric site and making substantial interactions 

with identified allosteric residues in H_prime. 

Ligands BE (kCal/mol) Hydrogen bonds 

interactions 

Other interactions 

SANC00499 -10.1 R76, N98, R151, 

T221, N222, T417, 

P419, K421 

D97, A144, Y145, F146, N147, 

D148, K214, T215, F216, E217, 

V218, A220, D326, L391, T416,  

T420, D479, A480  

SANC00685 -9.7 N98, Y145, F146, 

D148, R151, T221 

R76, Q78, D79, D97, A144, N147, 

F216, E217, V218, L219, A220, 

N222, D326, P419, T420, K421 

SANC00492 -8.8 N222, G223 G74, R75, R76, F77, Q78, D79, 

V82, P143, A144, Y145, F146, 

T199, F200, D201, I202, S203, 

T221, N224, T225    

SANC00340 -7.8 N98, Y145, F146, 

D148, R151, K421 

A144, N147, F216, E217, V218, 

T416, P419, T420, D479 

SANC00357 -7.8 F200, N222, G223 R75, R76, F77, Q78, D79, V82, 

T199, D201, T221, D224, T225  

SANC00378 -7.7 R76 G74, R75, F77, Q78, D79, V82, 

P143, A144, Y145, F146, T199, 

F200, D201, T221, N222, G223, 

D224, T225  

SANC00430 -7.6 R76, G223 R75, F77, Q78, D79, V82, Y145, 

T199, F200, D201, I202, T221, 

N222, D224, T225    

Other interactions include Van der Waals, Alkyl, Pi-Alkyl, Pi-Cation, Pi-Sigma, Pi-Pi T-

shaped, Pi-Pi Stacked interactions. Indicated in red are residues identified by Penkler et al., 

2017 using PRS in combination with MD simulation 
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Figure 3.8: Protein-ligand interactions in H_prime as listed in the table above using 

Discovery studio visualizer. 
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Table 3.3: Characteristics of ligands selected in H_prime. 

Ligand Compound Name 

 

2D 

Structure 

Source 

organisms 

Classificatio

ns 

Uses References 

SANC00499 16β-[(α-L-

Arabinopyranosyl)o

xy]-3β-[(β-D-

glucopyranosyl)oxy]

-17α-

hydroxycholest-5-

en-22-one 
 

Galtonia 

candicans 

Cholestane, 

Glycoside 

 

Cytotoxic 

activity on 

HL-60 

leukemia 

cells 

(Kuroda et 

al., 2001) 

(Kuroda, et 

al., 2002) 

SANC00685 Ornithosaponin B 

 

 

 

Ornithogalum 

thyrsoides 

Unclassified None 

recorded 

(Kuroda et 

al., 2006) 

SANC00492 Methanone, 

phenyl[2,4,6-

trihydroxy-3-(3-

methyl-2-buten-1-

yl)phenyl] 
 

Helichrysum 

asperum 

Acylphloro

glucinol 

None 

recorded 

(Jakupovic et 

al., 1989) 

SANC00340 1,6,8-Trihydroxy-

2,3,4,7-

tetramethoxyxanthon

e  

Securidaca 

longepeduncul

ata 

Xanthone None 

recorded 

(Meyer et al., 

2008) 

SANC00378 Pronuciferine 

 

Cissampelos 

capensis 

Alkaloid, 

Aporphine 

None 

recorded 

(De Wet et 

al., 2011) 
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SANC00430 Eucannabinolide 

 

Schkuhria 

pinnata 

Sesquiterpe

ne, 

Terpenoid 

 

Anticancer 

activity 

(Fouche et 

al., 2008) 

SANC00357 4'-Demethyl-3,9-

dihydroeucomin 

 

Resnova 

humifusa, 

Eucomis 

montana, 

Drimiopsis 

maculata 

Flavonoid, 

Homoisofla

vonoid 

None 

recorded 

(Koorbanally 

et al., 2006) 

(Koorbanally 

et al., 2006) 

(Koorbanally,  

et al., 2006) 

(Du Toit et 

al., 2005) 

 

 

 

3.2.3.2 B_prime 

Results from Chapter 2 identified potential allosteric sites using three different prediction 

tools. Two consensus sites were identified between these tools and these sites were further 

validated as an allosteric site as the residues surrounding the site were in agreement to the 

allosteric residues identified by Penkler et al., 2017. Of the 623 compounds from SANCDB 

screened against this protein structure, 163 ligands bound partially or totally to Site 1 while 

143 ligands bound partially or totally to Site 2. A total of six ligands were selected, three 

ligands were selected from each site based on the distance between the ligands and allosteric 

sites, their interactions with allosteric residues identified by Penkler et al., 2017 and their 

binding energies (Figure 3.9). These ligands were isolated and analysed. Residues highlighted 

in red in Table 3.2 are allosteric hot residues identified by Penkler et al., 2017. Table 3.5 

shows the characteristics of the ligands in terms of its compounds name, 2D structure, source 

organism(s), classifications and uses. Antiviral activity was recorded on SANC00284 

(Bessong et al., 2005), while SANC00676 have recorded Murine P388 lymphocytic leukemia 

(PS) cell-growth inhibition, and tubulin inhibitory activity (Singh and Pettit, 1987). 

SANC00477, SANC00556, SANC00378, and SANC00430 have no recorded uses. 
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Table 3.4: Selected ligands binding to the allosteric sites and making substantial interactions 

with allosteric residues identified by Penkler et al., 2017 in B_prime.  

 

Other interactions include Van der Waals, Alkyl, Pi-Alkyl, Pi-Cation, Pi-Sigma, Pi-Pi T-

shaped, Pi-Pi Stacked interactions. Indicated in red are residues identified by Penkler et al., 

2017 using PRS in combination with MD simulation. 

Ligands BE (kCal/mol) Hydrogen bond 

interactions 

Other interactions 

SANC00284 -7.1 R76, N98, D100, 

S505 

D97, M404, K452, S453, L454, G455, 

A503, S504 

SANC00477 -8.4 G74, R75, D100, 

G506 

L72, I73, G75, A101, W102, A111, P112,   

P113, A149, Q150, A153, K452, S505, 

N508, E509, D510, E511 

SANC00556 -7.3 R76, N98, A503 D97, D100, M404, H439, K452, S453, 

L454, G455, S504, S505 

SANC00676 -6.6 D224, R445 Y145, N222, G223, L227, R315, E318, 

P319, V322, K414, E444, K446, R447 

SANC00378 -6.9 Y145 N222, G223, D224, L227, R315, E318, 

P319, V322, K414, E444, R445, K446, 

R447 

SANC00430 -7.4 Y145, N222, D224, 

R315, R445, K446 

G223, T225, H226, L227, S316, E318, 

P319, V322, K414, E444, R447 
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 Figure 3.9: Protein-ligand interactions in B_prime as listed in the table above using 

Discovery Studio Visualizer. 
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Table 3.5: Characteristics of ligands selected in B_prime. 

Ligand Compound Name 

 

2D 

Structure 

Source 

organisms 

Classificatio

ns 

Uses References 

SANC00284 Bergenin 

 

Peltophorum 

africanum 

Glycoside Antiviral (Bessong et 

al., 2005) 

SANC00477 3,5-Dihydroxy-7-

methoxy-3-(4'-

hydroxy-3'-

methoxybenzyl)chro

man-4-one  

Albuca 

fastigiata 

Flavonoid, 

Homoisofla

vonoid 

None 

recorded 

(Koorbanally 

et al., 2005) 

(Du Toit et 

al., 2005) 

 

SANC00556 6,12,13-

Trihydroxychina-

5,8,11,13-tetraen-7-

one 
 

Harpagophytum 

procumbens 

Terpenoid, 

Triterpene 

None 

recorded 

(Clarkson et 

al., 2006) 

SANC00676 Combretastatin A-2 

 

Combretum 

caffrum 

Unclassified Murine 

P388 

lymphocytic 

leukemia 

(PS) cell-

growth 

inhibition, 

Tubulin 

inhibitory 

activity 

(Singh and 

Pettit, 1987) 

SANC00378 Pronuciferine 

 

Cissampelos 

capensis 

Alkaloid, 

Aporphine 

None 

recorded 

(De Wet et 

al., 2011) 



49 
 

SANC00430 Eucannabinolide 

 

Schkuhria 

pinnata 

Sesquiterpe

ne, 

Terpenoid 

Anticancer 

activity 

(Fouche et 

al., 2008) 

 

3.4 Conclusion 

The use of computational tools in drug discovery can speed up the challenging design and 

optimisation process for a new drug candidate. Due to the rapid development of faster 

architectures and better algorithms for high - level computations, the impact of computer 

structure-based drug design (SBDD) on drug discovery has increased in the last decade (De 

Vivo et al., 2016). In this chapter, 623 small molecules from SANCDB were screened against 

both conformations of E. coli Hsp70 with the aim of searching for allosteric modulators. 

Potential allosteric ligand binding sites were identified in Chapter two using three different 

allosteric prediction tools and consensus sites were identified among these tools. Consensus 

sites whose surrounding residues where in agreement with allosteric residues identified by 

Penkler et al., 2017 were isolated and ligands binding to these sites were isolated for 

inhibitory designs.  Ligands binding to H_prime displayed good binding energies ranging 

from -12.5 to -5.2 kcal/mol. Ligands binding to B_prime had binding energies ranging from -

10.6 to -4.5kcal/mol. A heat map was plotted to show overall binding energies of the 

compound when bound to the respective protein structures. Seven ligands binding to the 

consensus sites identified in H_prime was isolated. These ligands conformed to the criteria 

which include binding within 10Å of the identified sites, overlapping with PRS data and with 

binding energies of ≥ -6kcal/mol. Selection of ligands in B_prime was quite difficult as most 

ligands scattered on the surface of the protein structure. However, six ligands were finally 

selected, and these ligands made reasonable interactions with identified allosteric residues. 

These ligands were taken to molecular dynamics simulation to assess for ligand stability 

complex.  
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CHAPTER FOUR: MOLECULAR DYNAMICS 

SIMULATION 

4.1 Chapter overview 

The knowledge of the interactions between the protein-ligand complexes is central to many 

biological processes as well as modern drug development processes (Arcon et al., 2017). 

Protein activity and interactions are dependent on their structural stability, dynamics, and 

flexibility at their atomic level (Hospital et al.,2015). In this chapter, all-atom molecular 

dynamics (MD) simulations will be performed to examine the stability and folding behaviour 

of the protein-ligand complexes and also investigate the structure, dynamics, and 

thermodynamics of these complexes. GROMACSv1.5.1 simulation tool will be used. Each 

protein conformation, including inhibitor-free and inhibitor-bound systems, will be subjected 

to energy minimization, equilibration of the constant number of particles, Volume, and 

Temperature (NVT), and constant number of particles, Pressure, and Temperature (NPT), and 

100ns production runs. In total, 15 MD simulations will be performed, 8 simulations for 

H_prime and 7 simulations for B_prime. Importantly endogenous ligands will be included in 

all our systems to retain the allosteric intermediate state, which, based on the functional 

mechanism, only exists in the presence of bound ATP. Using Gromacs tools gmx rmsd, rmsf, 

gyrate, trajectories will be analyzed, and conclusions will be drawn. Further, the free energy 

of binding of the ligands to the protein structures will be estimated using the MMPBSA tool 

in GROMACS to assess the robustness of protein-ligand associations.  

4.1.1 Molecular dynamics simulation 

Protein structures undergo conformational changes due to their dynamic nature and the study 

of these changes can provide vital information in drug design (Teague, 2003). Dynamic 

occurrences at the molecular-level can play a key role in controlling processes that affect 

biomolecular functional properties. Several experimental and computational techniques have 

been created to understand the conformational dynamics of protein structures (Srivastava et 

al., 2018). Computational techniques are very common in the pharmaceutical industry and 

used to test the properties of a molecule without synthesizing it. This method is less 

expensive than experimental techniques and has provided spatial and temporal resolution that 

experimental methods do not provide (Abraham et al., 2015). Molecular dynamics (MD) 

simulations is a computational technique in which classical equations of motion (Newton’s 
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equations) are solved based on the force between atoms in the initial configuration to find the 

next configuration. The laws of Newton tell us how these forces affect the movement of 

atoms (F = ma, where F is the force applied on the atom, m is the mass of the atom, and a is 

the acceleration of the atom). MD calculates the time-dependent behaviour and movement of 

a molecular system (Llorach-Pares et al., 2017). Simply put, MD assesses the movements of 

atoms due to their interactions. These interactions could be as a result of bond extension, 

angle bending and dihedral torsions of the bonded atoms. Non-bonded atoms interactions are 

as a result of the interactions between Van der Waals and electrostatic forces.  In MD, atoms 

move at a constant speed between perfectly elastic collisions and the dynamic problem can be 

solved without making approximations within the limits imposed by the precision of the 

machine. It provides quantitative and/or qualitative information on the fluctuations and 

conformational changes of large macromolecules such as proteins, nucleic acids (DNA, 

RNA) and membranes. Thermodynamics depicts the driving force behind chemical processes 

and kinetics describes the mechanism through which these chemical processes are carried out 

(Win & Budhraja, 2007). The enormous application potential of MD simulation in 

understanding the dynamics of protein structures has led to implementations of MD in many 

software packages, including GROMACS (Berendsen et al., 1995), AMBER (D.A. Case et 

al., 2018), NAMD (Phillips et al., 2005), CHARMM (Brooks et al., 1983), LAMMPS 

(Plimpton, 1995) and Desmond (Bowers et al., 2006). This different software has distinct 

features. For this study, we utilize GROMACS v1.5.1 simulation tool. The force field is a 

collection of equations that describe the time evolution of bond lengths, bond angles, and 

torsions, including the non-bonding Van der Waals and electrostatic interactions between 

atoms. It is designed to replicate molecular geometry and selected structural properties and 

also to calculate the system's total energy. 

4.2. Methodology 

4.2.1. Topology generation 

4.2.1.1. Protein topology 

Visualization of protein structure was done using Discovery studio visualizer. Protein 

topology file was generated using pdb2gmx program of the GROMACS 5.1.2 package 

employing parameters from the GROMOS96 43a1 force field. This file contains all the 

information necessary to define the molecule within a simulation such as non-bonded 

parameters (atom types and charges) and bonded parameters (bonds, angles and dihedrals). A 
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compatible configuration (.gro) file that contains the coordinates of the molecule in the 

system and its corresponding parameter file (.itp) which shows the connection of atoms in the 

molecules were also generated. 

4.2.1.2. Ligand topology 

Ligand preparation is one of the most difficult MD simulation tasks. Ligand topology file was 

prepared with an external tool that is compatible with the force field chosen in the protein 

topology generation. This tool PRODRG 2.5 (http://davapc1.bioch.dundee.ac.uk/cgi-

bin/prodrg)  is an automated server for ligand topology generation (Schüttelkopf and Van 

Aalten, 2004). Each molecule in pdb format was uploaded to the server. A compatible 

configuration (.gro) file that contains the coordinates of the molecule in the system and its 

corresponding parameter file (.itp) which shows the connection of atoms in the molecules 

were also generated. 

4.2.2. Definition of box and Solvation 

Once the protein and ligand topology files have been generated, they are merged as a single 

file to obtain the final starting structure and topology file for each protein-ligand complex. 

All MD simulations were carried out under periodic border conditions (PBC) using a triclinic 

box to avoid problems with boundary effects caused by the finite size and to create an infinite 

simulation environment. A box dimension of 1.75nm was used in order to ensure that the box 

was large enough to hold each system. This places the protein 1.75nm from the edge of the 

box. The systems were solvated using SPC water model (spc216). Solvation of the system 

ensures easy movement and interactions between the protein and ligand. VMD was used to 

visualize the shape and size of the solvent box surrounding the whole protein. Selection of an 

appropriate box is important as a wrong box has an impact on the simulation results.  

4.2.3. Addition of ions 

The solvated system now contains a charged protein; therefore, a certain number of Na+ 

(Sodium) and Cl- (Chloride) ions were added to neutralize the system. The addition of ions is 

dependent on the total net charge of the system.  

4.2.4. Energy minimization 

The aim of minimizing the system is to ensure that the system has no steric clashes that 

resulted from the addition of ions and water molecules or inappropriate geometry. This is 

http://davapc1.bioch.dundee.ac.uk/cgi-bin/prodrg
http://davapc1.bioch.dundee.ac.uk/cgi-bin/prodrg
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done using the GROMACS MD engine mdrun. A successful energy minimization generates 

the potential energy and the maximum force.  

4.2.5. Equilibration 

The solvent and the ions surrounding the protein were equilibrated to stabilize the system. 

The temperature and pressure of the system were equilibrated using the typical canonical 

NVT at 293K and the isothermal-isobaric NPT ensemble for 100ps.  

4.2.6. Production MD 

Once the equilibration processes have been completed, the system is now equilibrated at the 

desired temperature and pressure. The next step is to release the position restraints and run 

production MD. The equilibrated system was then subjected to the production MD for 100ns. 

4.2.7. Analysis 

Now that our protein has been simulated, we should carry out some system analysis. The first 

analysis is the MD trajectory analysis (trjconv) and this is a post-processing tool used to 

remove the periodic boundary conditions generated during the simulation and also to center 

the system in the box for further analysis. The second analysis is the root mean square 

deviation (RMSD) and this analysis is done to visualize the structural stability of the protein. 

The third analysis is the root mean fluctuation which is a measure of the local chain 

flexibility. The final analysis is calculating the radius of gyration (Rg) and this is a measure 

of the structural compactness. Each of the analyses excluding the first was calculated for both 

structures and plotted using R studio (https://www.rstudio.com/). Interactions between each 

ligand and corresponding protein structure were visualized using Discovery studio visualizer 

and PyMOL. 

 

https://www.rstudio.com/
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Figure 4.1: Summary of MD work-flow. 

4.3. Results and Discussion 

MD simulations were performed to probe the conformational dynamics of both structures in 

the Apo state and when bound to their respective ligands at atomic resolution. The Apo 

structures were simulated in complex with its co-factor ATP and Mg2+ without any ligand. 

Structural mobility analysis in MD plays an important role in data interpretation, especially in 

the simulation of biomolecules. MD simulation results were analyzed in terms of their 

backbone root mean square deviation (RMSD), root mean square fluctuation (RMSF) and 

radius of gyration (Rg). The RMSD and RMSF of the structures are the most common 

mobility measures calculated from simulations (Martínez, 2015). In this chapter, a total of 15 

MD simulations will be performed, 8 simulations for H_prime and 7 simulations for 

B_prime. This also includes simulating the protein structures (Apo) without any ligand. 

Importantly endogenous ligands will be included in all our systems as they are important in 

the functionality of the structures. Each simulation was submitted to MD simulation of 100ns.  

4.3.1. H_prime 

4.3.1.1. RMSD  

The root mean square deviation (RMSD) in MD simulation is an invariably used 

measurement of the differences between two set of values, and in this context between the 

ligand-free (Apo) and ligand-bound. It is often used to determine the structural stability of a 

structure (ligand-bound) in the time scale of the simulations and to discern its differences 

from the initial coordinates (Apo). 100ns MD simulations of the Apo and respective ligands 
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bound were conducted to provide a direct comparison of conformational deviation. Figure 4.2 

shows the deviation of the protein structure when bound to the respective ligands. One thing 

that is common is the stability of the complexes at the beginning till the end of the simulation. 

The various protein-ligand complexes converged early evenly which indicates a stable system 

with exception to SANC00357 and SANC00492. SANC00357 had the largest RMSD value. 

Backbone RMSD analysis of the protein structure, when bound to its respective ligand 

converged at different values. When bound to SANC00499, SANC00685, SANC00340, 

SANC00378, and SANC00430, the RMSD of the protein backbone converged at around 

0.30nm at the beginning of the simulation with the highest convergence at 0.40nm as seen in 

SANC00685 and 0.420nm as seen in SANC00499. SANC00492, when bound to the structure 

converged at around 0.30nm during the first 30ns of simulation, but as seen in Figure 4.2, 

there was a shift to 0.50nm which is visible after 35ns of simulation. When in complex with 

SANC00357, there was a noticeable difference between the protein-free and protein-bound 

complexes as the average RMSD value of the complex is 0.40nm while the average RMSD 

value of the ligand-free system is 0.23nm.  
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Figure 4.2: RMSD plot of ligands bound to H_prime.  

 

4.3.1.2. RMSF 

The root mean square fluctuation (RMSF) is a measure of the local chain flexibility. RMSF 

measures of the displacement of a certain atom or group of atoms over the number of atoms 

in relation to the reference structure (Martínez, 2015). Residues in protein-ligand complexes 

displayed higher RMS fluctuation values as compared to the ligand-free complex which 

indicates that ligand binding affects the structure. Conformational fluctuations in the NBD 

subdomains were observed with particularly large movement in the subdomains IIA and IIB 

(residues 250 – 300) in all ligand-bound state (Figure 4.3). Protein-SANC00499 displayed 

conformational fluctuations in the subdomain IIA (residues 300 – 340). Protein-SANC00685 

displayed conformational fluctuations in the subdomain IIB (residues 230 – 260). Protein-

SANC00357 also displayed some conformational fluctuations in the subdomains IA and 

SBDβ (residues 370 – 400).  
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Figure 4.3: RMSF plot of ligands bound to H_prime. 

 

4.3.1.3. The Radius of gyration (Rg) 

The overall shape of the entire protein structures in its ligand-free (Apo) and ligand-bound 

states have been monitored for each MD run by calculating the corresponding radius of 

gyration. Rg is defined as the root mean distance from the atom collection from its common 

center of gravity and this describes the overall spread of a molecule.  As shown in Figure4.4, 

the Rg values for the protein structures when bound to its respective ligands was 2.9±0.1nm. 

Rg analysis shows a decrease in value when the structure is in complex with its respective 

ligand indicating that the various ligands induce a more relaxed state when bound to the 

H_prime.  
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Figure 4.4: Rg plot of ligands bound to H_prime. 

 

VMD was used in visualizing the trajectories after MD simulation. Binding of some of the 

ligands to the allosteric site triggered some form of structural rearrangements in the various 

subdomains in H_prime. Video S1 shows the movement of H_prime in its ligand-free states 

while Video S2, S3, S4, and S5 show the movement of H_prime when bound to 

SANC00499, SANC00685, SANC00492, and SANC00357 respectively. When bound to 

SANC00499 and SANC00685, the alpha-helical lid (SBDα) appears to block the SBDβ. 

SANC00357 triggers a slight docking of the SBD to the NBD. When bound to SANC00492, 

structural rearrangements were observed in the SBD, most especially the SBDα. Also, the 

subdomains IA and IB which make up the ATP binding cleft appears to close up when bound 

to SANC00492 as opposed to its open nature in the ligand-free state.  

4.3.2. B_prime 

4.3.2.1. RMSD 

The RMSD is useful in determining the global stability of the protein-ligand complex over 

the entire simulation period. It is also used in analysing time-dependent structure motions. As 

seen in Figure 4.5, when bound to its respective ligands, each of the protein structure showed 
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a significant deviation from its initial structure (Apo). Ligand-free structure (Apo) appears to 

be very unstable as the RMSD flips throughout the simulation and converged towards the end 

of the simulation. It was stable during the first 40ns and then jumps at about 45ns with 

RMSD of 0.57nm and finally converged at 0.5nm at about 75ns. This indicates the highly 

flexible nature of the structure. The inclusion of the ligands seems to improve the stability of 

the structure as seen in Figure 4.5. The various ligands showed different RMSD values, the 

largest being SANC00284 (gold). Open_430 (blue) and Open_477 (red) showed the most 

stability. The RMSD of the protein structure when bound to SANC00477 (red), SANC00556 

(magenta), SANC00676 (aquamarine) and SANC00430 (blue) converged almost evenly and 

early. When bound to SANC00284, the RMSD converged early to 0.25nm, but a jump was 

observed after 10ns to about 0.41nm. SANC00378 (green 4) showed the most irregular 

pattern of stability as the RMSD showed different shifts in its values. 

Figure 4.5: RMSD plot of ligands bound to B_prime. 

 

4.3.2.2. RMSF 

RMSF was calculated to understand protein flexibility. Conformational fluctuations in the 

SBD subdomains were observed with particularly large movement in the subdomains SBDα 

also known as the alpha-helical lid in all ligand-bound state except when bound to 

SANC00430. The protein structure, when bound to SANC00378 showed the most 

fluctuations in the SBDα subdomain. When bound to SANC00676 and SANC00430, 

conformational fluctuations were observed in the hydrophobic linker and SBDβ also known 

as the Beta substrate binding domain. 
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Figure 4.6: RMSF plot of ligands bound to H_prime. 

 

4.3.2.3. Radius of gyration 

The system, when bound to its respective ligand remained compact throughout the entire 

simulation as shown in the Rg plot (Figure 4.7). SANC00284, SANC00676, and 

SANC00430, when bound to the protein structure had very similar Rg values. When bound to 

all compounds except SANC00378, the complex experiences a decrease in Rg value as 

compared to its ligand-free state. This suggests a more relaxed state.   

Figure 4.7: Rg plot of ligands bound to B_prime. 
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VMD was used in visualizing the trajectories after MD simulation. Binding of some of the 

ligands to the allosteric site triggered structural rearrangements in B_prime. Video S6 shows 

the movement of B_prime in its ligand-free states while Video S7, S8, S9, and 10 shows the 

movement of H_prime when bound to SANC00284, SANC00477, SANC00556, and 

SANC00676 respectively. In its ligand-free state, the SBDα and SBDβ are detached from 

each other and docked to different elements of the NBD (Kityk et al., 2012). SANC00556 

triggers some conformational changes when bound to the structure especially in the 

subdomain SBDα. The SBDα appears to undock itself from the subdomain IA and reattach 

itself to the SBDβ. SANC00477 and SANC00685 also triggered some structural changes in 

the subdomain SBDα.  

4.3.3. Ligand stability 

Assessing the stability of the binding pose of a ligand to a protein is important in evaluating 

the drug-likeness of the ligand. In order to determine the stability of the various ligands when 

bound to its respective protein structures, the RMSD of their Cα were plotted. Figures 4.8 and 

4.9 showed the ligand stability in H_prime and B_prime respectively. All ligands remained 

stable throughout the entire simulation period, thus, this MD run was regarded as a qualified 

run.   

 

 
Figure 4.8: RMSD of ligand poses during MD simulations for H_prime. This shows the 

stability of the ligand when bound to H_prime 



62 
 

 
Figure 4.9: RMSD of ligand poses during MD simulations for B_prime. This shows the 

stability of the ligand when bound to B_prime. 

 

4.3.4. MM-PBSA  

The strength of a protein-ligand complex interaction involved in catalysis can be measured in 

terms of its binding free energy (Kumari et al., 2014). Molecular Mechanics energy 

combined with the Poisson-Boltzmann and Surface Area continuum solvation (MM-PBSA) is 

a method for estimating the binding free energy of small molecules (ligands) to protein 

structures (Genheden and Ryde, 2015). Previous methods such as free energy perturbation 

(FEP) and thermodynamic integration (IT) have been explored in free energy calculations. 

Compared to these methods, MM-PBSA is less rigorous and more computationally highly 

efficient (Hou et al., 2011). MM-PBSA is usually based on molecular dynamics simulations 

of the protein-ligand complex and is very successful in approximating the solvent 

contribution to the free energy (Wang et al., 2018). MM-PBSA uses the Poisson-Boltzmann 

equation to calculate the Van der Waals, electrostatic, polar and non-polar solvation 

contributions to the binding free energy of the ligand to the protein structure.  

In MM-PBSA, binding free energy (ΔGbind) between a ligand and a protein structure to form 

a protein-ligand complex is calculated as (Wang et al., 2018): 
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Where ΔEMM, ΔGbind, solv
, and − TΔS represents a change in molecular mechanical energy 

during the gas phase, a change in solvent-free energy and a change in conformational entropy 

following binding, respectively. All of these changes are calculated by averaging the 

ensemble over a wide range of sampled conformations. ΔEMM consists of three energetic 

terms calculated using molecular mechanics (MM): the covalent energy change (ΔEcovalent), 

the electrostatic energy change (ΔEelectrostatic), and the Van der Waals energy change (ΔEvdW). 

ΔEcovalent comprises changes in the bond terms (ΔEbond), the angle terms (ΔEangle), and the 

torsion terms (ΔEtorsion). The change in solvation free energy (ΔGbind, solv) is usually separated 

into polar and non-polar contributions (ΔGpolar and ΔGnon-polar). The conformation entropy 

change – TΔS is calculated on a set of snapshots taken from MD simulations by normal mode 

analysis (Wang et al., 2018). 

4.3.4.1. MM-PBSA calculations 

MM-PBSA calculations were performed for 13 ligands bound to both conformational of the 

protein structure; 7 ligands bound to H_prime and 6 ligands bound to B_prime. GROMACS 

(g_mmpbsa) version 1.6 tool was used for this calculation. The last 15ns of the equilibrated 

MD trajectories were used to perform binding free energy calculations. g_mmpbsa tool 

calculates binding energy components using the MM-PBSA approach (Kumari et al., 2014). 

This tool requires four input files; a trajectory file (trr or xtc) containing system snapshot 

during MD simulation, a topology file (tpr) containing all the information necessary to define 

the molecule within a simulation., an index file (ndx) containing the protein and ligand atoms 

in the system, and a file with solvation parameters (mdp) containing the necessary analytical 

conditions and controls. The complete g_mmpbsa tool includes many python scripts for the 

final statistical analysis using the energy terms obtained and also for the estimation of per-

residue energy contributions in the protein-ligand complex (Kumari et al., 2014).  
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Figure 4.10: MM-PBSA workflow utilized in binding free energy calculation. 

 

4.3.4.2. MM-PBSA results of H_prime 

In all the protein-ligand complexes studied, Van der Waals energy contributed significantly 

to the binding free energy of each compound except Cl_378 and Cl_430 which had positive 

values. A summary of the binding energy components is shown in Table 4.1. Figure S1 

shows a bar plot of the binding energy components.  
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Table 4.1: Binding energy components (kJ/mol) obtained from GROMACS g_mmpbsa tool 

for the seven protein-ligand systems of H_prime. 

Protein-ligand 

complex 

ΔEvdW    (kJ/mol) ΔEelectrostatic 

(kJ/mol) 

ΔGpolar 

(kJ/mol) 

ΔGnon-polar 

(kJ/mol) 

ΔGbinding 

(kJ/mol) 

Cl_499 -252.976±0.397 -4.944±0.122 79.342±0.291 -20.697±0.029 -199.276±0.373 

Cl_685 -201.095±0.434 5.427±0.173 39.005±0.360 -17.034±0.038 -173.713±0.391 

Cl_492 -169.589±0.369 -14.757±0.082 73.447±0.290 -13.183±0.022 -124.094±0.303 

Cl_340 -126.142±0.289 -3.060±0.073 37.252±0.227 -10.428±0.026 -102.391±0.309 

Cl_378 -0.000±0.000 0.803±0.053 4.366±0.960 -0.039±0.086 5.102±0.960 

Cl_430 -0.000±0.000 0.803±0.025 4.372±0.956 -0.043±0.088 5.120±0.973 

Cl_357 -197.281±0.210 -3.721±0.053 61.888±0.243 -14.274±0.019 -153.390±0.286 

 

4.3.4.3. Per-residue contribution of H_prime 

In order to determine the significant residues that influence the strength of the interactions in 

each protein-ligand complexes, the per-residue contribution was plotted for each protein-

ligand complexes using g_mmpbsa. Protein-ligand complexes with positive binding free 

energies were excluded as this implies a false experiment. The per-residue contribution plots 

were done for protein-ligand complexes with negative binding energy (ΔGbinding) (Figure S3). 

Figure 4.11, Figure 4.12 and Figure 4.13 show important residues contributing either 

positively or negatively to the binding free energies of the protein-ligand complexes.  
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Figure 4.11: A histogram showing the per-residue contribution of SANC00499 and 

SANC00685 when bound to H_prime. 

 



67 
 

Figure 4.12: A histogram showing the per-residue contribution of SANC00492 and 

SANC00340 when bound to H_prime. 

 
Figure 4.13: A histogram showing the per-residue contribution of SANC00357 when bound 

to H_prime. 

 

4.3.4.4. MM-PBSA results of B_prime 

Van der Waals energy contributed significantly to the binding free energy of each compound 

except for Open_430 in all the protein-ligand complexes. Table 4.2 shows a summary of the 

binding energy components and Figure S2 shows a bar plot of the binding energy 

components.  
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Table 4.2: Binding energy components (kJ/mol) of B_prime obtained from GROMACS 

g_mmpbsa tool. 

Protein-ligand 

complex 

ΔEvdW    (kJ/mol) ΔEelectrostatic 

(kJ/mol) 

ΔGpolar 

(kJ/mol) 

ΔGnon-polar 

(kJ/mol) 

ΔGbinding 

(kJ/mol) 

Open_284 -217.848±0.262 -14.491±0.124 65.352±0.205 -16.887±0.021 -183.862±0.299 

Open_477 -223.546±0.261 -8.046±0.094 78.213±0.252 -16.707±0.20 -170.080±0.323 

Open_556 -168.873±0.448 -1.737±0.290 62.628±0.619 -13.763±0.034 -121.718±0.508 

Open_676 -134.384±0.448 -0.460±0.057 35.041±0.269 -12.797±0.027 -112.590±0.320 

Open_378 -119.927±0.247 -18.381±0.126 49.811±0.478 -9.021±0.031 -97.497±0.493 

Open_430 0.000±0.000 -0.856±0.009 61.720±2.219 -0.007±0.148 60.969±2.256 

 

4.3.4.5. Per-residue contribution of B_prime 

In addition, per residue contribution plot was performed using g_mmpbsa tool to determine 

the energy contribution of each protein residue that binds to the ligand. The per-residue 

contribution plots were done for protein-ligand complexes with negative binding energy 

(ΔGbinding) (Figure S4). Figure 4.14, Figure 4.15, and Figure 4.16 show the residues 

contributing significantly to the binding free energy of the protein-ligand complex. 
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Figure 4.14: A histogram showing the per-residue contribution of SANC00284 and 

SANC00477 when bound to B_prime. 

 

 
Figure 4.15: A histogram showing the per-residue contribution of SANC00556 and 

SANC00676 when bound to B_prime. 
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Figure 4.16: A histogram showing the per-residue contribution of SANC00378 when bound 

to B_prime. 

4.4. Conclusion 

One of the most difficult problems in drug design is the prediction of a protein-ligand binding 

pose. Although molecular docking can effectively generate hypothetical binding poses, the 

correct pose among many candidates is still difficult to predict  (K. Liu and Kokubo, 2017).  

Molecular dynamics and associated methods are close to becoming routine drug discovery 

computing tools in determining the conformational evolution of protein structures when 

bound to small molecules  (De Vivo et al., 2016). In this chapter, 13 compounds were 

simulated with their respective protein structures. Also, the ligand-free (Apo) structure was 

simulated and this was used as a reference structure in determining the conformational 

changes when the protein structures are bound to the various ligands. A total, 15 MD 

simulations were be performed, 8 simulations for H_prime and 7 simulations for B_prime. 

Post MD analysis such as RMSD which is a measure of the conformational stability of a 

structure during simulation revealed conformational changes in the protein structures when 

bound to their respective ligands. RMSF identified residues with the highest fluctuations. 

H_prime exhibited the largest flexibility around the NBD subdomains IIA and IIB in all 

ligand-bound state. B_prime exhibited the greatest flexibility around subdomains SBDα also 

known as the alpha-helical lid in all ligand-bound state except when bound to SANC00430 

(Open_430) which showed conformational fluctuation in the hydrophobic linker and SBDβ 

also known as the Beta substrate binding domain. Rg analysis revealed that all protein 

structures remained compact during the entire simulation. MM-PBSA was done to calculate 

the binding free energy of the protein-ligand complex. Van der Waals energy has been 

identified as the principal energetic term contributing to the ligand binding. Per-residue 

contribution identified residues contributing favourably to the binding free energy. Of notable 

importance are some of the allosteric residues identified by Penkler et al., 2017. This includes 
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G196, G197, F216, E217, L219, A220, T221, N222, L320, K321, V322, D326, A583, A586, 

K587 and I601 for H_prime. Allosteric residues contributing significantly to B_prime 

includes P143, A144, Y145, F146, A153, V165, L392, D393, G405, V407, T409, V436, 

I438, V440, K446, D450, N451, V474, T475, F476, I478, D479, A480, D481, K502, A503, 

S504, S505. Of the 7 protein-ligand complexes of H_prime subjected to MM-PBSA, 5 

complexes had negative binding energy (ΔGbinding). Of the 6 protein-ligand complexes of 

B_prime subjected to MM-PBSA, 5 complexes had negative binding energy (ΔGbinding). 

These complexes with negative binding energy (ΔGbinding) were isolated for further analysis 

in the next chapter.  The next chapter will be focused on examining the major conformational 

differences between ligand-free and ligand-bound structures. 
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CHAPTER FIVE: PRINCIPAL COMPONENT 

ANALYSIS 

5.1. Chapter overview 

Protein structures when bound to ligand(s) undergo relatively small conformational changes 

that are essential for biological activity. These changes range from a small movement of 

loops or side chains in the nucleotide-binding site to large-scale domain bending or even 

partial folding and unfolding of the protein structure (Brylinski and Skolnick, 2008). The 

characterization of these changes and their mechanism of interconversion are essential for 

biological processes. In this chapter, we aim to understand/analyse the severity of these 

changes resulting from the binding of ligands using principal component analysis (PCA). 

PCA reveals the most important motions in protein caused by the interactions with small 

molecules. H_prime and B_prime in both ligand-free and ligand-bound forms will be 

subjected to principal component analysis using both gromacs and MODE-TASK tools.  

5.1.2. Principal component analysis (PCA) 

The dynamics of proteins are established as changes in molecular structures or conformation 

depending on time. MD simulations of protein structures provide the positional movement of 

each atom in relation to a fixed reference frame of time (Ross et al., 2018). This method 

although useful in characterizing the fluctuations in individual atom cannot be used in 

describing the inherent dynamic motion of protein structures due to its shortness of 

achievable times, hence the need to incorporate principal component analysis (PCA) that 

study long time dynamics by reducing the degree of freedom (DOF) to a few collective DOF 

which accounts for the essential dynamics of the system (Balsera et al., 1996). PCA is a 

standard statistical tool used to analyse large multivariate data. This tool identifies patterns in 

data and expresses these patterns to emphasize their degrees of similarities and differences 

(Gkeka et al., 2015). By definition, PCA is used to reduce the size of a data set consisting of 

a large number of interrelated attributes, while retaining as much of the variation as possible 

in the original data set. In respect to this study, PCA which is a covariance-matrix-based 

mathematical technique was used as a technique in the identification of global, correlated 

motions in atomic simulations of protein (Maisuradze et al., 2009). PCA is a method that 

takes the trajectory of a simulation of molecular dynamics in terms of a small number of 

variables, sometimes referred to as essential degrees of freedom and extracts the most 
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important nodes in the movement of the molecule and this is performed on the Cartesian 

coordinates of the molecule (Haider et al., 2008). This process is carried out by transforming 

the original set of attributes into a smaller set of attributes known as the principal components 

(PCs). The principal components are not correlated and ordered so that the first few 

components retain most of the variation in all the original characteristics. PCA acts on the 

covariance matrix, C, of the protein structure acquired from any length simulation of MD. 

The covariance matrix describes the protein’s accessible DOF, such as the Cartesian 

coordinates that define atomic displacements in each conformation that comprises a 

trajectory. In order to obtain the covariance matrix, C, the protein coordinates are first 

superimposed on a reference structure which is usually the initial or average coordinates. To 

obtain C, first the protein coordinates are superimposed on a reference structure, usually the 

initial coordinates, or the average coordinates. The displacement vector described as the 

Cartesian coordinates for each residue at a time point t is obtained as ΔRi(t). For a set of M 

coordinates, these are organized in the trajectory fluctuation matrix of order 3N x 3M.  

 

 

 

 

 

 

 

 

5.2. Methodology 

PCA was performed on the MD trajectory of protein. The first step in PCA is the preparation 

of the trajectory obtained from MD simulation. Preparation of trajectory includes removal of 

periodicity (periodic boundary conditions) and removal of water molecules. GROMACS tool 

was used for used for the preparation of trajectory. Once the trajectory files are prepared, the 

next step is to run PCA. This tool requires two input files; a trajectory file (xtc) and a 

topology file (tpr). This was performed using MODE-TASK which is a range of tools for 

analysing and comparing protein dynamics from MD simulations. Running PCA includes 

standardizing the data and calculating the correlation matrix. The eigenvalues and 

eigenvectors of the correlation matrix are calculated, and these values are examined and 

interpreted.  Finally, the transformed values are plot using a 2D plot using a python script. 
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Figure 5.1: Summary of PCA workflow using MODE-TASK. 

 

5.3 Results and Discussion 

5.3.1. H_prime 

The overall motion of H_prime was obtained from MD simulation; however, this motion was 

divided into principal components where each component represents a functional protein 

movement. Each component has its own set of coordinates which explains the motion of each 

atom in the system. The first two principal components (PC1 and PC2) retain the majority of 

the variance in the original distribution, providing a useful description of the system’s 

conformational space. We first executed PCA for the ligand-free protein structure and 

compared the plots with that of the ligand-bound protein structures using the Cartesian 

coordinates of all backbone atoms. Figure 5.2 depicts the motion of the protein structures in 

both states during MD simulation and are displayed along PC1 and PC2, each colour is coded 

for each trajectory time. A represents the projection of Apo structure dynamics along PC1 

and PC2; PC1 explained 38% of the variance while PC2 explained 29%. B represents the 

projection of protein in complex with SANC00499 along PC1 and PC2; PC1 explained 48% 

of the variance while PC2 explained 25%. C represents the projection of protein in complex 

with SANC00685 along PC1 and PC2; PC1 explained 45% of the variance while PC2 

explained 26%. D represents the projection of protein in complex with SANC00492 along 

PC1 and PC2; PC1 explained 54% of the variance while PC2 explained 24%. E represents 
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the projection of protein in complex with SANC00340 along PC1 and PC2; PC1 explained 

53% of the variance while PC2 explained 20%. F represents the projection of protein in 

complex with SANC00357 along PC1 and PC2; PC1 explained 42% of the variance while 

PC2 explained 29%. 

 

 
Figure 5.2: Principal component analysis showing the structural relationship in terms of the 

conformational differences described by PC1 and PC2.  

 

PC1 and PC2 accounts for the most variance in the protein’s motion and these motions are 

responsible for the change in protein conformation observed during MD simulation. Figure 

5.2 shows how the coordinates of the ligand-free and ligand-bound change significantly over 

time for each component 1 and 2. Some motions were observed when the protein structure 

was in complex with some of the ligands. Protein-ligand complexes that displayed significant 

movement during the simulation include protein in complex with SANC00499, 

SANC00357and SANC00492, and SANC00685. SANC00340 varied less over the MD 

simulation.  
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5.3.2. B_prime 

Figure 5.3 shows the 2D plots of the first two PCs (PC1 and PC2). This plot also shows the 

essential dynamics of the protein structures during MD simulation. A represents the 

projection of Apo structure dynamics along PC1 and PC2; PC1 explained 77% of the 

variance while PC2 explained 13%. B represents the projection of protein in complex with 

SANC00284 along PC1 and PC2; PC1 explained 59% of the variance while PC2 explained 

19%. C represents the projection of protein in complex with SANC00477 along PC1 and 

PC2; PC1 explained 71% of the variance while PC2 explained 10%. C represents the 

projection of protein in complex with SANC00477 along PC1 and PC2; PC1 explained 65% 

of the variance while PC2 explained 17%. D represents the projection of protein in complex 

with SANC00556 along PC1 and PC2; PC1 explained 52% of the variance while PC2 

explained 21%. E represents the projection of protein in complex with SANC00676 along 

PC1 and PC2; PC1 explained 50% of the variance while PC2 explained 23%.  F represents 

the projection of protein in complex with SANC00378 along PC1 and PC2; PC1 explained 

59% of the variance while PC2 explained 19%.  
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Figure 5.3: Principal component analysis showing the structural relationship in terms of the 

conformational differences described by PC1 and PC2. 

 

In order to understand the conformational changes induced by the bound ligands, trajectories 

from MD simulation were projected into the two-dimensional subspace spanned by PC1 and 

PC2 as seen in Figure 5.3. From the above figure, we observed differences in motion between 

the ligand-free and ligand-bound structures. SANC00284, SANC00477, SANC00556, and 

SANC00676 showed very strong alteration of the motion during MD simulation. 

SANC00378 varied less during the simulation as it clustered together in the above figure.   
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5.4. Conclusion 

Several biological functions such as allosteric regulation which is the basis of this study, are 

strongly linked to protein conformational transitions (Harada et al., 2015). One of the most 

attractive features of PCA is the ability to identify the overall patterns of motions and to 

present data findings in some informative plots. PCA identifies configurational space with 

only a few degrees of freedom in which harmonic motion occurs by reducing the 

dimensionality of the data obtained from molecular dynamics simulations (Haider et al., 

2008). From this study, the dominant motions observed during MD simulation were 

identified. When bound to its respective ligands the motions were not similar indicating some 

effects the ligand has on the protein structures. 
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CHAPTER SIX: CONCLUSION AND FUTURE 

PROSPECTS 

5.1 Concluding remarks 

Hsp70s are the most extensively studied members of the heat shock family of proteins and 

are abundant in the bacterial and eukaryotic systems. These powerful molecular chaperones 

play a significant role in client (substrate protein) homeostasis and as such are important for 

cell development, and survival. Their wide distribution among different species, besides its 

connection to various diseases of global importance, such as malaria and cancer predisposes 

them as a promising therapeutic target. In this study, E. coli Hsp70 was used as a model 

organism. Allosteric sites of this protein in its multifunctional states prior to this study have 

not yet been explored for inhibitory design. Allosteric sites contain a lot of unexplored 

potentials in drug discovery, therefore; targeting allosteric sites of the protein will provide a 

new avenue towards the discovery of selective therapeutics agents for the treatment of a wide 

range of diseases. Targeting allosteric sites can offer limited advantages, therefore, in order to 

utilize allostery, it is fundamental to predict allosteric sites, allosteric modulators and residues 

implicated in the propagation of allosteric signals (Greener and Sternberg, 2018). FTMAP, 

SiteMap, and Allosite were employed in the identification of potential allosteric ligand 

binding sites. These tools revealed that Hsp70s in its open and closed conformation contains 

an immense number of unexplored binding sites. In its closed conformation (H_prime); 

FTMAP identified 10 allosteric binding sites, SiteMap identified 5 allosteric binding sites, 

while Allosite identified 9 allosteric binding sites. In its open conformation (B_prime); 

FTMAP identified 16 allosteric binding sites, SiteMap is identified 5 allosteric binding sites, 

while Allosite identified 9 allosteric binding sites. Consensus sites were then identified from 

these 3 prediction tools and the sites whose surrounding residues overlap with allosteric 

residues identified by Penkler et al., 2017 were isolated. Ligands binding to the isolated sites 

were selected for further analysis.  

The protein structures were subjected to high throughput virtual screening against 623 

SANCDB compounds and ligands were selected based on their binding poses, binding 

energies, and interactions to identified allosteric residues. Ligands fulfilling these criteria 

were isolated and taken to molecular dynamics (MD) simulations. In total 13 ligands were 

identified; 7 for H_prime and 6 for B_prime. Ligands binding to H_prime include 

SANC00499, SANC00685, SANC00492, SANC00340, SANC00357, SANC00378, and 
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SANC00430. Ligands binding to B_prime include SANC00284, SANC00378, SANC00556, 

SANC00676, SANC00477, and SANC00430.  

Post-MD simulations analysis revealed the structural dynamics of the protein structures when 

bound to the selective ligands. RMSF identified residues with higher fluctuation and Rg 

revealed that when bound to the various ligands, the complexes remained compact. MM-

PBSA calculations also revealed residues contributing significantly to binding free energy 

(BFE) of the complex and some of the residues contributing to BFE are residues identified as 

allosteric residues by Penkler et al., 2017. Results from these analyses revealed potential 

allosteric modulators which are SANC00499, SANC00685, SANC00492, SANC00340 and 

SANC00357 for H_prime and SANC00284, SANC00477, SANC00576, SANC00676, and 

SANC00378. The impacts of the allosteric modulators were determined using principal 

component analysis which revealed the dominant motions observed during MD simulation. 

5.2 Future prospects 
Future work of this experiment includes an extension of the MD simulations to 200ns in 

order to provide a comprehensive evaluation of the compounds (SANC00499, SANC00685, 

and SANC00477). Other databases containing chemical compounds can be explored for 

compounds with inhibitory effects. Other future prospects include the analysis of ligands 

binding to other promising allosteric sites that were identified by the servers used in this 

research. 
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SUPPLEMENTARY DATA 

Video S1: Movement of the ligand-free structure in H_prime after 100ns MD simulation. The 

protein is represented as a cartoon while ATP (blue) is represented in licorice, and Mg2+ 

(blue) is represented as a ball. 

Video S2: Movement of the protein-SANC00499 structure after 100ns MD simulation. The 

protein is represented as a cartoon, ATP (blue) is represented in licorice, Mg2+ (blue) is 

represented as a ball, and SANC00499 (lilac) is represented in licorice. 

Video S3: Movement of the protein-SANC00685 structure after 100ns MD simulation. The 

protein is represented as a cartoon, ATP (blue) is represented in licorice, Mg2+ (blue) is 

represented as a ball, and SANC00685 (lilac) is represented in licorice. 

Video S4: Movement of the protein-SANC00492 structure after 100ns MD simulation. The 

protein is represented as a cartoon, ATP (blue) is represented in licorice, Mg2+ (blue) is 

represented as a ball, and SANC00492 (lilac) is represented in licorice. 

Video S5: Movement of the protein-SANC00357 structure after 100ns MD simulation. The 

protein is represented as a cartoon, ATP (blue) is represented in licorice, Mg2+ (blue) is 

represented as a ball, and SANC00357 (lilac) is represented in licorice. 

Video S6: Movement of the ligand-free structure in B_prime after 100ns MD simulation. The 

protein is represented as a cartoon, ATP (blue) is represented in licorice, and Mg2+ (blue) is 

represented as a ball. 

Video S7: Movement of the protein-SANC00284 structure after 100ns MD simulation. The 

protein is represented as a cartoon, ATP (blue) is represented in licorice, Mg2+ (blue) is 

represented as a ball, and SANC00284 (lilac) is represented in licorice. 

Video S8: Movement of the protein-SANC00477 structure after 100ns MD simulation. The 

protein is represented as a cartoon, ATP (blue) is represented in licorice, Mg2+ (blue) is 

represented as a ball, and SANC00477 (lilac) is represented in licorice. 

Video S9: Movement of the protein-SANC00556 structure after 100ns MD simulation. The 

protein is represented as a cartoon, ATP (blue) is represented in licorice, Mg2+ (blue) is 

represented as a ball, and SANC00556 (lilac) is represented in licorice. 
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Video S10: Movement of the protein-SANC00676 structure after 100ns MD simulation. The 

protein is represented as a cartoon, ATP (blue) is represented in licorice, Mg2+ (blue) is 

represented as a ball, and SANC00676 (lilac) is represented in licorice. 

Figure S1: Binding free energy components on H_prime in complex with respective ligands 
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Figure S1: Binding free energy components on B_prime in complex with respective ligands 
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Figure S3: Bar plot showing per residue contribution to the total binding free energy of 

protein-ligand bound complexes in H_prime 
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Figure S4: Bar plot showing per residue contribution to the total binding free energy of 

protein-ligand bound complexes in B_prime 
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Figure S5: PCA of H_prime plotted on R 
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Figure S6: PCA of B_prime plotted on R 

 


