
University of Redlands University of Redlands

InSPIRe @ Redlands InSPIRe @ Redlands

MS GIS Program Major Individual Projects Theses, Dissertations, and Honors Projects

7-2019

The Hyperwall: A Geospatial Education Exhibit for the Science The Hyperwall: A Geospatial Education Exhibit for the Science

Museum of Virginia Museum of Virginia

Alexander Walton

Follow this and additional works at: https://inspire.redlands.edu/gis_gradproj

 Part of the Geographic Information Sciences Commons

Recommended Citation Recommended Citation
Walton, A. (2019). The Hyperwall: A Geospatial Education Exhibit for the Science Museum of Virginia
(Master's thesis, University of Redlands). Retrieved from https://inspire.redlands.edu/gis_gradproj/282

This work is licensed under a Creative Commons Attribution 4.0 License.
This material may be protected by copyright law (Title 17 U.S. Code).
This Thesis is brought to you for free and open access by the Theses, Dissertations, and Honors Projects at
InSPIRe @ Redlands. It has been accepted for inclusion in MS GIS Program Major Individual Projects by an
authorized administrator of InSPIRe @ Redlands. For more information, please contact inspire@redlands.edu.

https://inspire.redlands.edu/
https://inspire.redlands.edu/gis_gradproj
https://inspire.redlands.edu/etd
https://inspire.redlands.edu/gis_gradproj?utm_source=inspire.redlands.edu%2Fgis_gradproj%2F282&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/358?utm_source=inspire.redlands.edu%2Fgis_gradproj%2F282&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:inspire@redlands.edu

University of Redlands

The Hyperwall:

A Geospatial Education Exhibit for

the Science Museum of Virginia

A Major Individual Project submitted in partial satisfaction of the requirements

for the degree of Master of Science in Geographic Information Systems

by

Alexander Walton

Ruijin Ma, Ph.D., Committee Chair

Douglas Flewelling, Ph.D.

July 2019

The Hyperwall: A Geospatial Education Exhibit for the Science Museum of Virginia

Copyright © 2019

by

Alexander Walton

 v

Acknowledgements

I would like to acknowledge the M.S. GIS faculty and staff for sharing their experience

and knowledge with me and aiding me throughout this year, especially my advisor Dr.

Ruijin Ma for guiding my project and keeping me on track.

Thank you to Thad Tilton with Esri’s ArcGIS Runtime SDK for .NET team for

answering my many .NET questions.

To my mom, thanks for your unconditional support in everything I’ve ever done. Even

when it didn’t make sense to you.

Amber, without your encouragement I would never have applied and without your patient

support I wouldn’t have succeeded.

 vii

Abstract

The Hyperwall: A Geospatial Education Exhibit for the Science Museum of Virginia

by

Alexander Walton

Modern museums rely on technologically advanced platforms to attract visitors and

convey information. The Science Museum of Virginia (SMV) proposed a new interactive

geospatial education exhibit called the EarthLab Data Hyperwall to support their mission

statement of “inspiring Virginians to enhance their lives through science.” A

hyperwall/video wall is a visualization tool composed of a large screen array used for

education and collaborative work. The SMV’s Hyperwall Exhibit consists of a high-

resolution video wall controlled by a connected, visitor-accessible touchscreen. The

exhibit educates visitors on several environmental and climatic topics using interactive

maps to increase comprehension. This project produced a .NET Framework application

that accesses the datasets and maps for each topic by implementing Esri’s ArcGIS

Runtime SDK for .NET. The Museum needed the Hyperwall platform to display the

underlying data through an interactive and accessible User Interface. The system’s design

considered Museum visitor’s varied demographics and recent educational theory relating

to cognition and spatial literacy. The educational goals of the exhibit are: teach visitors

about the Museum’s research into heat illness risks related to urban heat islands, improve

visitor’s wayfinding and overall spatial literacy, and educate visitors on environmental

conditions and the changing climate locally and the world over.

 ix

Table of Contents

Chapter 1 – Introduction ... 1

1.1 Client ... 1

1.2 Problem Statement .. 2

1.3 Proposed Solution ... 2

1.3.1 Goals and Objectives .. 4

1.3.2 Scope ... 4

1.3.3 Methods... 5

1.4 Audience ... 7

1.5 Overview of the Rest of this Report ... 7

Chapter 2 – Background and Literature Review .. 9

2.1 Hyperwalls .. 9

2.2 Spatial Literacy in the Modern Era ... 10

2.3 GIS-Based Museum Exhibits .. 11

2.4 Development Environment and the .NET Framework 12

2.5 Summary ... 13

Chapter 3 – Systems Analysis and Design .. 15

3.1 Problem Statement .. 15

3.2 Requirements Analysis ... 15

3.2.1 Functional Project Requirements .. 16

3.2.2 Non-Functional Project Requirements .. 18

3.3 System Design .. 20

3.3.1 System Architecture Design ... 20

 x

3.3.2 Data and Map Product Design .. 21

3.3.3 Hardware Design .. 23

3.3.4 Software Design / Development Environment ... 24

3.3.5 Web GIS.. 24

3.4 Project Plan ... 25

3.4.1 Original Plan ... 25

3.4.2 Plan Revisions ... 26

3.5 Summary ... 27

Chapter 4 – Database Design ... 29

4.1 Conceptual Data Model .. 29

4.2 Logical Data Model .. 31

4.2.1 Heat Vulnerability Dataset .. 33

4.2.2 Natural Disaster Dataset ... 34

4.2.3 Air Quality Dataset ... 35

4.3 Summary ... 36

Chapter 5 – Implementation .. 39

5.1 Development Environment ... 39

5.1.1 Non-GIS Software .. 40

5.1.2 GIS Software ... 42

5.2 Application Architecture ... 43

5.3 Preparing Map Products .. 45

5.3.1 Building the Heat Vulnerability Map and Model ... 46

5.3.2 Incorporating the Air Quality Feature Service and Model 48

 xi

5.3.3 Incorporating the Natural Disaster Imagery and Model 50

5.4 Creating Hyperwall Application Interaction Logic .. 52

5.5 Summary ... 53

Chapter 6 – Results and Analysis.. 55

6.1 User Experience .. 55

6.1.1 Heat Vulnerability Map Interaction .. 57

6.1.2 Air Quality Map Interaction.. 57

6.1.3 Natural Disaster Scene Interaction.. 57

6.2 Application Features ... 58

6.2.1 Touch Control for Maps.. 58

6.2.2 Custom Swipe Widget .. 59

6.2.3 Imagery Selector ... 60

6.3 Data Complications ... 61

6.4 Discussion of Results and Client’s Needs .. 62

6.5 Summary ... 62

Chapter 7 – Conclusions and Future Work ... 63

7.1 Summary ... 63

7.2 Future Work .. 64

Works Cited …………………………………………………………………………..66

Appendix A. Hyperwall Application Structure .. 71

Appendix B. Hyperwall How-To .. 87

 xiii

Table of Figures

Figure 1-1: Hyperwall Exhibit Design ... 3

Figure 2-1: Model-View-ViewModel Pattern ... 13

Figure 3-1: Hyperwall System Architecture .. 21

Figure 3-2: Hardware Architecture .. 23

Figure 4-1: Conceptual Data Model .. 30

Figure 4-2 : Logical Data Model ... 32

Figure 4-3 : Heat Vulnerability Dataset ... 33

Figure 5-1: System Architecture .. 39

Figure 5-2: MVVM Pattern Example in the Hyperwall Application 42

Figure 5-3: Window Object Creation .. 44

Figure 5-4: Event Handling and Messaging .. 45

Figure 5-5: Heat Vulnerability Dataset .. 47

Figure 5-6: Heat Vulnerability Map Model ... 48

Figure 5-7: Air Quality Sensor Locations (upper left), Surface (lower left), and

Overlay (right) ... 49

Figure 5-8: Air Quality Map Model ... 50

Figure 5-9: Natural Disaster Scene Model ... 52

Figure 6-1: Hyperwall Exhibit from Visitors Perspective ... 56

Figure 6-2: Swipe Widget Operation ... 60

Figure A-1: WPF Windows for Exhibit LCD Screens .. 71

Figure A-2: Map Models ... 72

Figure A-3: Map ViewModels ... 72

 xv

List of Tables

Table 1. Functional Requirements ... 17

Table 2. Non-Functional Requirements ... 19

Table 3. Original Project Timeline .. 26

Table 4. System Software .. 40

Table 5. Map Navigation in Hyperwall Application ... 59

 xvii

List of Acronyms and Definitions

API Application Programming Interface

ESRI Environmental Systems Research Institute

GIS Geographic Information System

GUI Graphical User Interface

IDE Integrated Development Environment

MVVM Model-View-ViewModel

RAD Rapid Application Development

SDK Software Development Kit

SDLC Software Development Life Cycle

SMV Science Museum of Virginia

VR/AR Virtual Reality / Augmented Reality

WPF Windows Presentation Foundation

XAML Extensible Application Markup Language

1

Chapter 1 – Introduction

The Science Museum of Virginia (SMV) planned a new educational exhibit called the

EarthLab Data Hyperwall. The SMV needed to share environmental research with

Museum visitors through an interactive map-based platform. They approached the

University of Redlands for help developing a Windows-based application to manage the

Hyperwall’s data and hardware. The application provided a graphical user interface

(GUI) that could engage the Museum’s visitors visually and kinesthetically. Further, the

application needed to incorporate a geographic information system (GIS) for accessing

and processing the Hyperwall’s spatial data.

The first section of this chapter discusses the project client. The second section

describes the problem that needed solving. The third section summarizes the proposed

solution including project goals, objectives, scope, and methodology. The final two

sections address the intended audience for this report and describes the structure of the

rest of the report.

1.1 Client

This project's client was the Science Museum of Virginia. The SMV is a science and

technology center located in Richmond, Virginia. Its mission is to educate visitors about

scientific topics. Dr. Jeremy Hoffman acted as the primary point of contact and liaison for

the Museum. In this role, Dr. Hoffman provided guidance throughout the project design

and development process. He aided in planning project goals/objectives, identifying key

elements of the system, and provided specifications about the exhibit's hardware.

2

1.2 Problem Statement

The Museum needed a system that managed the Hyperwall’s data, hardware, and

presented interactive, educational maps to visitors. Currently, the SMV engages hundreds

of thousands of visitors every year with their spatially-linked education exhibits. Two

exhibits, the Dome and Science on a Sphere, engage visitors in learning about

interplanetary and global phenomena. However, the design of the two exhibits precludes

the ability to display state, county, city, or other local data, nor does either exhibit contain

a system for supporting direct visitor interaction with the displayed data. They are only

available during museum staff-led presentations. As such, the SMV needed a more

versatile exhibit that encouraged visitor engagement and presented larger-scale data. The

overall goal for this exhibit is summed up by quoting the cognitive psychologist Jerome

Bruner, who said, “learners are encouraged to discover facts and relationships for

themselves” (Bruner, 1960).

The Museum needed the new exhibit to share research with visitors as easily

understood map products, to display large scale data, to allow individualized interaction

through a user-friendly interface, and to accommodate future datasets. Dr. Jeremy

Hoffman recognized the possibility of complimenting current museum installations with

a platform containing these features but needed a system to implement such features.

1.3 Proposed Solution

As designed, the Hyperwall Exhibit hardware consisted of a wall-mounted LCD screen

array controlled via a visitor-accessible touchscreen (Figure 1-1). This project proposed

to develop a Windows desktop application and a GIS for managing the system's hardware

and spatial data. The project’s GIS stored the Hyperwall's data in both a web-based

3

platform (Esri’s Portal for ArcGIS and ArcGIS Online) and a local Esri File Geodatabase.

The web-based data consisted of publicly available Feature Services accessed via REST

endpoints. The exhibit incorporated standard Esri map products (including imagery and

Mobile Map Packages) generated from locally stored datasets. The web-based and local

data were brought into the exhibit using Esri’s ArcGIS Runtime Software Developer Kit

(SDK) for .NET and implemented into a Model-View-ViewModel (MVVM) architecture

using Visual Studio’s Windows Presentation Foundation (WPF). The MVVM pattern

allows discrete handling of an application's business and presentation logic. The

application's GUI design process prioritized delivering an enjoyable visitor experience.

Visitors switch between topics presented in the Hyperwall and explore maps/imagery

using preset bookmarks or independently through standard map controls (zoom in/out,

rotate, pan).

Figure 1-1: Hyperwall Exhibit Design

4

1.3.1 Goals and Objectives

The goal of this project was to use a modern approach to present some of the Museum’s

research and other environmental subjects through an educational and interactive system.

The system educates visitors on environmental factors affecting their own neighborhood.

After leaving the Museum, visitors gain a better understanding of their environment by

applying this knowledge.

The Hyperwall Exhibit fulfilled the client’s goal by ensuring the system incorporated

a GUI with high-quality visualization and intuitive end-user interaction, and a GIS that

supported all current and future datasets. This project converted spatial data into

comprehensive map products with clear visual hierarchy, symbology, and intent to

maximize visitor comprehension and accessibility. The system supplemented symbolized

data with content like custom bookmarks emphasizing important areas and other features.

It also incorporated basic GIS analyses such as interpolated surfaces and widgets that

enabled comparison of layers. The system’s GUI used gesture controls like a smartphone

or tablet-based map applications to support intuitive map navigation for the end-user. The

maps incorporated high-resolution satellite imagery, vector feature data, and live-feed

web content to prove the system’s compatibility with any future data formats.

1.3.2 Scope

This project produced a Windows .NET Framework application for managing the

Hyperwall’s runtime environment, a hybrid web and local GIS, and a set of instructions

for maintaining the system. The three topics presented by the application contained maps

exported from ArcGIS Pro or accessed through ArcGIS Online. The map products

5

presented in the Hyperwall Application consisted of REST Feature Services, a Mobile

Map Package, and a set of georeferenced raster imagery.

The client was responsible for providing tabular data from their Heat Vulnerability

research about heat-related illnesses in the City of Richmond. The client was also

responsible for determining and building the hardware for the Hyperwall as well as

creating a space to house the exhibit.

The Hyperwall Application was developed using Windows Presentation Foundation

(WPF) v4.5, ESRI’s Runtime SDK for .NET v100.5, the C# programming language, and

Microsoft’s Extensible Application Mark-Up Language (XAML). Visual Studio was the

Integrated Development Environment (IDE) used to implement the programming syntax,

toolkit class references, and MVVM pattern. The project produced a hybrid GIS for

storing and accessing the required data from web/local sources and creating exhibit maps.

Specifically, the GIS accessed exhibit data through ArcGIS Online REST Endpoints

and a local File Geodatabase. The completed system needed to reliably display the maps

interactively for users and enable implemented features/widgets on the GUI. The client

received the data and application upon project completion. The team also developed a set

of instructions for maintaining and updating the system.

1.3.3 Methods

The project's time constraint for creating the exhibit application and supporting GIS

required selection of methodologies oriented towards reducing time spent on each stage

of the software development life cycle (SDLC). The project utilized Rapid Application

Development (RAD) workflows to manage the SDLC. RAD is an Agile project

management system used for quickly developing software products. RAD workflows

6

encourage methodology that organizes software development into basic categories for

achieving tasks and objectives. RAD defined tasks operate under the umbrella of the

Planning, Design, and Development/Testing (Martin, 1991). For this project, each phase

was expected to require approximately 2-3 months.

The Planning phase was constrained to three objectives that supported the following

phases. The first phase of the planning phase was conducting a requirements analysis

with the client. Based on these requirements, the second phase involved determining the

development environment for the project, including programming languages used, code

editors, necessary Software Development Toolkits (SDKs), and additional code libraries

required for the project. In the final planning stage, the datasets supporting each of the

three subjects in the Hyperwall Application were collected and collated into formats from

which two and three-dimensional map products could be made. The three datasets were

the City of Richmond Heat Vulnerability dataset, an air quality index produced by the

Environmental Protection Agency (EPA) and hosted on Esri’s ArcGIS Online, and a

satellite imagery dataset showing the effects of natural disasters throughout the world.

Following the completion of the planning objectives, the Design phase began. The

objective for the design phase was to determine all graphical elements, features, and

functions for the controlling WPF application and hybrid GIS. During design, the

system’s conceptual model was created and revised based on client input. The conceptual

model outlined the broad relationships between data storage structures, analyses, map

production, IDE structures, hardware, and other system entities. The logical model

expanded on the conceptual model’s entities according to the features that were best

7

suited to facilitate system processes. Simplistic structures were favored to support future

maintenance and modification of the Hyperwall Exhibit.

The application was built, tested, demonstrated, and refined during the

Development/Testing phase according to RAD workflows and best practices for Object-

Oriented Programming. The objective of this phase was to convert the entities and

relations in the logical model into a functional system that fulfilled the project

requirements. This included building a method of data storage appropriate for the

system’s data types, implementing the hybrid GIS to manage both web and locally stored

data, and building an application that worked with the entire system and fulfilled end-user

requirements. The map, Feature Services, and imagery used in the Hyperwall exhibit

were established programmatically using ArcGIS Runtime SDK for .NET. Finally, the

completed application was tested to ensure smooth operation within the entire system.

The development and testing process followed the Software Development Life Cycle

wherein the application was tested as each new feature was added.

1.4 Audience

The intended audience for this report is the client, University of Redlands faculty, GIS

developers who have a basic understanding of .NET development, and anyone wishing to

learn about the development of spatial education tools, GIS software, or interactive

museum exhibits. Most of these individuals possess at least a high-level understanding of

geographic information systems, application development, and geospatial education.

1.5 Overview of the Rest of this Report

Chapter 2 is an overview of project-related background material including interactive

museum exhibits, geospatial education strategies, and an explanation of Windows 10

8

desktop application development. Chapter 3 lists the project requirements, project plan,

and system design. Chapter 4 discusses the conceptual and logical models required for

the project and how project data were prepared and stored. Chapter 5 discusses project

implementation including development strategies and system architecture. Chapter 6

shows how RAD strategies were used to test and improve system features, functionality,

and maintainability. Chapter 7 summarizes the project and discusses possible future

work.

9

Chapter 2 – Background and Literature Review

This chapter introduces how geospatial education improves spatial thinking, spatial

literacy, wayfinding, and understanding of abstract data. Interactive applications and

museum exhibits are useful platforms for teaching map comprehension and exposing

members of the public to new research about climate change and environmental factors.

Section 2.1 introduces the concept of hyperwalls/video walls as visualization, learning,

and collaboration tools. Section 2.2 compares approaches to spatial literacy. Section 2.3

discusses examples of museums using interactive exhibits to expose visitors to new

places and concepts. Section 2.4 discusses .NET Framework development environments.

2.1 Hyperwalls

It is worth noting here that hyperwall systems differ from video walls or screen banks.

Hyperwalls are purpose-built, incorporate more processing power and more complex

architecture. The NASA Ames Research Center created the first hyperwall display

system in the early 2000s. NASA used its hyperwall design for collaboration between

professionals and researchers. Users interacted with the system’s visual data via a flat

panel LCD screen array (or video wall) powered by several high-end processors

(Sandstrom et al., 2003). Since then, NASA has built additional versions of its system to

pace technological advancement (Sellers, 2011). Private companies have since built their

own hyperwalls and accompanying software. A company called “Hiperwall” has

successfully marketed the format to private and governmental organizations for use as

operations dashboards, corporate AV, education, and entertainment (Hiperwall, 2018).

However, the hyperwall designs created by NASA and Hiperwall were large-scale

10

installations, which required a significant initial investment in hardware and software to

run successfully.

2.2 Spatial Literacy in the Modern Era

Before discussing work dealing specifically with spatial literacy, it is important to briefly

discuss the epistemological underpinnings of educational theory and the learning process.

Jean Piaget focused on child cognitive development throughout the first half of the 20th

century. He theorized that as children grow, they adopt new schemas

(information/models) and adapt elements of their prior learning to new domains (Piaget,

1936). This is a recursive method wherein an individual learns something new and

applies it repeatedly to different situations. Piaget’s model is embedded in many

pedagogical topics. Spatial literacy is a relatively new field derived from the need for

better geographic information systems that humans can operate intuitively (Mark &

Egenhofer, 1995), the need for more empirical data to inform geographic education

(Downs 1994), and the need for cohesive lexicon when teaching geospatial concepts to

various age groups (Marsh et al., 2007).

 Spatial literacy is as necessary for modern life as reading, writing, and arithmetic

(Goodchild, 2006). Benchmarks for critical spatial thinking and spatial problem-solving

skills is a preeminent problem in GIS (Bednarz & Kemp, 2011). It is also difficult to

measure the success of geospatial educational endeavors even when using purpose-built

spatial learning materials (Ang & Wang, 2006; Bartoschek et al., 2013; Downs &

DeSouza, 2006; Marsh et al., 2007). Last, it is challenging to engage non-professionals in

spatial thinking. There are examples where researchers successfully circumvented this

problem by taking advantage of naturally developed schema while avoiding jargon-laden

11

explanations and providing adequate support systems through software and other

educational tools (Egenhofer & Mark, 1995; Goodchild, 2011; Piaget, 1936).

 Creators of spatial education tools have struggled to measure how successful a

given tool is at achieving its goals. Goal achievement is difficult to gauge, and

researchers have used several approaches to qualitatively or quantitatively measure a

tool’s success. Researchers in Cyprus implemented multiple augmented reality exhibits,

TouchTable exhibits, and virtual tour installations. Users were then asked to rate their

personal experiences using each installation on a qualitative scale of personal enjoyment

(Michael et al, 2010). Other researchers gauged the success of their wayfinding app game

(called “Ori-Gami”) by measuring user ability to achieve in-game objectives. They took

statistics on how well users completed the orienteering tasks within the app (path

efficiency, time to complete objectives) and created heat-maps showing where users were

pressing the tablet’s screen (Bartoschek et al., 2013). Other approaches have stuck to

more traditional survey-type questionnaires based on ontology and lexicological ability

(Kim & Bednarz, 2013; DeSouza & Downs, 2006).

2.3 GIS-Based Museum Exhibits

Modern museums are centers for research, education, and public outreach. Museum

GIS’s can be used to model spatial data for visual analysis in an immersive manner using

augmented or virtual reality systems (Hirose, 2006; Lepouras & Vassilakis, 2004;

Michael et al, 2010). Alburshaid (2012) from the University of Redlands designed a

multi-touch table exhibit for the San Bernardino County Museum to display important

geological features of San Bernardino County. Other forms of interactive museum

12

exhibits include using virtual reality for tours of faraway places, using an interactive,

large curved screen to navigate the Mayan ruins of Copan (Hirose, 2006).

 There is enormous potential for museums in newer technologies such as

interactive, virtual exhibits that are educational and entertaining. However, the

technological cost and design requirements for virtual exhibits are high. The requirements

for virtual reality and augmented reality (VR/AR) exhibits need to be carefully

considered (Lepouras & Vassilakis, 2004). Augmented reality allows museum guests to

do things like taking an active role in the exhibit through game technology (Sylaiou et al.,

2015). Alternatively, augmented reality can be used to create accessible ‘virtual

museums’ for physically disabled guests (Liarokapis, 2004). Thinking about the

audiences’ preferences and abilities is necessary when designing an VR/AR or other form

of exhibits. Additionally, the design needs to ensure the technology (VR/AR, or

otherwise) supports the educational/entertainment goals of the exhibit.

2.4 Development Environment and the .NET Framework

Software development often requires a customized software suite for writing and

compiling code called the Integrated Development Environment (IDE). Visual Studio is a

widely used code editor that is regularly maintained and updated and will be supported by

Microsoft indefinitely. Visual Studio supports many languages and development formats,

making it an essential part of many IDE’s. Windows Presentation Foundation (WPF)

with C# and XAML (Extensible Application Markup Language) is an established sub

system of Visual Studio used for creating .NET Framework applications. WPF is

especially useful for creating user interfaces that mesh well with C# business logic. C#

was introduced in 2002 and continues to be one of the most heavily used object-oriented

13

languages. This language allows developers to exert some of the fine-grain control of

C++ while avoiding its complexity (Sørensen & Mihailesc, 2010). WPF uses C# and

XAML in tandem to manage an application’s business logic (C#) and its appearance

(XAML) on the .NET Framework (Nathan, 2013).

 The Model-View-ViewModel (MVVM) structure (introduced by Microsoft in

2005) allows software developers to write readable and easily maintained code (Sørensen

& Mihailesc, 2010). MVVM abstracts the application’s graphical user interface (GUI)

away from the business logic dictating its behavior. This results in a cleaner and easier to

maintain code. Figure 2-1 is an illustration of how the MVVM design pattern operates in

a WPF application (adapted from Hakeem, 2017).

2.5 Summary

This chapter briefly discusses examples of hyperwall hardware architecture, the

significance of spatial literacy for modern people, example implementations of spatial

education tools, and museum installations that rely on spatial data. The SMV’s Hyperwall

project incorporates elements of previous hyperwalls while maintaining a simple,

modifiable design. In consideration of recent and traditional sources of educational

theory, the user interface and operability of the Hyperwall Application needed to engage

laypersons using the exhibit while still conveying the intended information.

Figure 2-1: Model-View-ViewModel Pattern

14

15

Chapter 3 – Systems Analysis and Design

This chapter examines the design requirements for the EarthLab Data Hyperwall Exhibit.

The system is a geographic information system (GIS) built using the Windows .NET

Framework. Designing the project required taking the client’s vision for the Hyperwall

Exhibit and then translating it into practical software and GIS development plans.

Section 3.1 reiterates the problem statement. Section 3.2 describes the project’s

functional and non-functional requirements. Section 3.3 examines the design of the

system used in the project. Section 3.4 outlines the project plan and discusses the changes

that occurred during the project.

3.1 Problem Statement

The Science Museum of Virginia (SMV) needed a new exhibit capable of presenting

spatial data over various geographic regions and sharing environmental research

conducted by the SMV and others with visitors. The exhibit needed to be a

comprehensive platform for sharing information about environmental subjects by

displaying related spatial data at large and small scales. The exhibit’s learning material

needed to be delivered to museum visitors interactively and be modified to accommodate

new data. The solution that fulfilled these four basic requirements was the proposed

EarthLab Data Hyperwall Exhibit. This project specifically dealt with designing and

building the GIS application used for controlling and managing the Hyperwall Exhibit.

3.2 Requirements Analysis

The undertaking of this project necessitated breaking its intended purpose into clear

statements describing the project’s technical needs, behaviors, and goals. The client

16

wanted the platform to educate visitors about environmental topics such as the Museum’s

own research. The client selected the hardware for this project based on previous

hyperwall installations. Additionally, the client knew they wanted the project’s maps to

incorporate three datasets: heat illness vulnerability data collected by the Museum in the

city of Richmond, VA; an air quality index for the United States; and a series of

before/after satellite images of areas affected by natural disasters and other events. The

client delivered the Heat Vulnerability data as a spreadsheet. The other two datasets

needed developing. The three datasets needed conversion into map products that the

Hyperwall’s application could load and display.

A requirements analysis occurred after consulting with the client about long-term

goals for the project and discussing the reasons for the project’s inception. The purpose

of the requirements analysis was to convert the client’s abstract desires for the project

into objectives geared towards accomplishing the client’s needs. The needs were

documented using precise and specific language outlining the capabilities, functions, and

features of the system. This process required consideration of the project’s deadline.

Requirements analysis included capturing both functional and non-functional

requirements (Tomlinson, 2007). Functional requirements refer to what the system should

accomplish, and non-functional requirements detail how the system achieves those goals.

3.2.1 Functional Project Requirements

Project stakeholders produced a list containing the Hyperwall Exhibit's core capabilities

from cycles of discussing and refining project needs. The Museum needed interactive

two- and three-dimensional maps to support the Hyperwall’s educational topics. The

Hyperwall needed a touchscreen user interface that visitors could use to interact with the

17

maps. The touchscreen needed to interact with the rest of the system and update the

display screen array with visitor input. Achieving the functional requirements supported

the system’s overall goal of allowing visitors to explore dramatically different datasets

about their immediate environment and the global climate. Ideally, visitors would also

improve their map comprehension abilities. Table 1 contains the functional requirements

for the system.

Table 1. Functional Requirements

Requirement Description

Presentation of data in

application

The system should present the three chosen spatial

datasets as interactive maps using ArcGIS Runtime SDK

for .NET.

Natural Disaster Scene

data management

The system should allow users to compare before/after

event imagery in the Natural Disaster module with gesture

controls.

Air Quality Index Map

data features

The system should provide a search widget for users to

locate areas of interest on the Air Quality Index Map

module.

Heat Vulnerability Map

Management

The system should present the SMV's research into Heat

Vulnerability in the city of Richmond, VA as a Map

module in the exhibit's application.

18

3.2.2 Non-Functional Project Requirements

The non-functional requirements defined how the system achieved the goals and

objectives of the project. The non-functional requirements determined software and

hardware related concerns, determinations related to the integrated development

environment (IDE), and interaction with web-based data. The development environment

included Visual Studio 2017 (the IDE), Windows Presentation Foundation (the API),

ArcGIS Runtime Software Develop Kit for .NET (the SDK) and was built using the C#

programming language and the XAML declarative language. This environment

developed based on the technical and operational requirements outlined in Table 2.

19

Table 2. Non-Functional Requirements

The core requirements for the Hyperwall Exhibit's application included the need for

accommodating current and future datasets/features, stable loading of the chosen maps,

and smooth runtime operation. The application's framework and system architecture were

carefully developed based on a few key factors to meet these requirements.

Requirement Description

Application Reliability

The WPF application wrapper for the project should not

have any critical errors during runtime.

.NET Framework use The system must be compatible with Windows 10.

Project wrap-up

documentation

Documentation for system operation, maintenance, and

adding data shall be delivered with the software.

Extending Natural

Disaster Map module

The application should enable system administrators to

easily add additional imagery to the Natural Disaster Map

module.

Accessing ArcGIS

Online/Enterprise

The system should interact with the client’s ArcGIS

Enterprise or Online account to access exhibit maps.

Use of Esri Software

Developer Kit

The system should use Runtime SDK for .NET to manage

data presentation and visual features (compass, legend,

etc.).

Visitor Accessibility
The system should be easy to use for young children and

adults with no prior GIS knowledge.

20

3.3 System Design

The system design phase consisted of taking the system’s core functionalities and

developing them into a series of technical solutions. The final system needed to

successfully read spatial data from the web and local sources and engage visitors through

a well-designed user interface. The methodology for creating the system covered several

areas: overall system architecture, hardware architecture, development environment, and

web GIS.

3.3.1 System Architecture Design

The system architecture determined where each component of the system belonged,

including hardware, software, and web-based system components. It also loosely defined

the interactions and relationships between each part of the system. Figure 3-1 depicts the

system architecture for the entire Hyperwall Exhibit.

21

 The system included both local and web-based GIS data and supporting educational

media. The system should access the online data through Esri’s Web Services using the

Museum's Esri license, while local data resided on the control computer's hard drive in a

file Geodatabase or local directories. The system's design includes both online and offline

data options because the Museum wanted to further develop the system's maps, data, and

supporting materials. Ideally, the client could create content on their ArcGIS Portal or

locally using ArcGIS Pro, and the system would use Esri’s Runtime SDK for .NET to

bring the content into the exhibit.

3.3.2 Data and Map Product Design

Three maps were produced for the system: Heat Vulnerability in Richmond, Live Air

Quality for the Contiguous United States, and Natural Disasters of the World. The

Figure 3-1: Hyperwall System Architecture

22

Museum produced the data for the Heat Vulnerability Map and stored the data in a table.

The table was spatially linked to Census Block Groups to create vector Feature Layers.

The Heat Vulnerability map teaches visitors (many of which are Richmond and Virginian

locals) about factors that contribute to dangerous Urban Heat Islands within the city.

The Live Air Quality Map contains two layers: an air quality sensor location feature

layer, and an interpolated surface feature layer derived from the sensor locations. The Air

Quality Index (AQI) displayed in the map is displayed ordinally by the interpolated

surface and numerically at each sensor location. This map shows visitors a little about the

process of air quality monitoring and contextualizes it within their own communities.

The final map consists of before and after imagery of natural disasters and events

(volcano eruptions, hurricanes, flood, etc.). This Natural Events Map needed

georeferenced imagery (satellite or aerial), which could be overlaid and compared. The

imagery was sourced from NASA’s Earth Observatory and placed onto a 3D virtual

globe that visitors can explore through bookmarked locations or through gesture controls.

Each of these maps required different data formats such as feature layers derived

from table data, live data from federal sources, and high-res satellite imagery

(georeferenced .TIFs). The air quality surface for the Live Air Quality Map is hosted on

Esri’s ArcGIS Online and produced by the EPA. Because of the high computational and

storage cost of caching imagery through ArcGIS Online, the imagery for the Natural

Disasters of the World map needed to be stored locally on the control computer.

23

3.3.3 Hardware Design

The client determined the hardware needs for the Hyperwall Exhibit. Figure 3-2 depicts

the proposed hardware architecture. The exhibit's hardware includes the video wall,

touchscreen, and control computer. Visitors to the Museum interact with the video wall

through a graphical user interface (GUI) hosted on the touchscreen. A Windows 10

station hosts the software for controlling each display and manages

transactions/communication between the displays. The control computer is outfitted with

a multiplexer for managing the video wall. A multiplexer is a device used for splitting a

computer's display across multiple LCD screens.

The number of individual screens composing the video wall is still being discussed

internally by the client, who will build and implement the final hardware components for

the exhibit.

Figure 3-2: Hardware Architecture

24

3.3.4 Software Design / Development Environment

The Hyperwall Application consists of a custom-built Windows Presentation Foundation

4.5 (WPF) application that accesses the Hyperwall Exhibit’s three maps from web-based

and local sources with Esri’s ArcGIS Runtime Software Developer Kit (SDK) for .NET

v100.5. The application was developed in Microsoft’s versatile Integrated Development

Environment (IDE), Visual Studio 2017. The Hyperwall Exhibit Application used Esri’s

Runtime SDK for .NET, which managed the GIS aspects of the application such as

bringing in map data, defining feature functionality, and accessing Feature Services

through REST endpoints.

Based on the requirements, the final project needed to be a Windows 10 .NET

Framework application that implemented best practices for the MVVM design pattern

and incorporated Esri’s Runtime SDK for .NET to manage the three currently selected

maps. The software was designed to be able to accept future map products and supporting

information.

3.3.5 Web GIS

The system incorporated web-based Feature Services through Esri’s online server.

ArcGIS Runtime SDK for .NET can access Feature Services through the URLs of their

REST Endpoint. The Runtime SDK creates C# objects from the URLs. The URLs are

then used to create map layers in the application. By building a model in the application

that accomplished this task, the client can implement maps or feature layers through

ArcGIS Online or through their Portal for ArcGIS Enterprise.

25

3.4 Project Plan

The project plan came from a combination of Rapid Application Development (RAD)

workflows and project deadlines laid out by the GIS department. The basic structure of

any RAD project is divided into four basic phases: Requirements Planning, Prototyping,

Testing, and Implementation. These four stages applied to the development process of the

Hyperwall Application. Adjustments were made to the project plan throughout the

project, based on reevaluation of system architecture and the need for additional time to

developing proficiency with Object-Oriented Programming and C# language syntax.

3.4.1 Original Plan

The original plan was scheduled based on program deadlines and topics taught in project

management courses. Concepts from those courses determined the format, structure, and

timeline for the project plan. The client provided the data during project initiation, and a

requirements analysis occurred early in the planning process. However, project

stakeholders only understood the basics of the Software Development Life Cycle

(SDLC), which caused problems later in the project. The plan split into major phases (a

combination of program milestones and RAD/SDLC stages), which were then divided

according to tasks signaling phase objective completion (Table 3).

26

Table 3. Original Project Timeline

3.4.2 Plan Revisions

The original plan needed revision when it became clear that the system’s application

would need additional time for development and testing. Initially, the plan allotted two

months to prototyping the application. However, synchronizing the system’s GUI with

the video wall proved more difficult programmatically than initially thought. Scope

Phase Task Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug

Project

Initiation Proposal
X X

Establish client

contact
 X X

Self-

Training
Workshops,

online training
 X X X X X X

Planning Scoping X

Requirements

Capture
 X

Literature

Review
 X

Build

Development

Environment

 X X

 Finalize Plan X

Data

Preparation
table data to

vector format
 X

Collect raster

imagery
 X

System

Design
Create

conceptual model
 X X

Determine C#

toolkits
 X

Prototyping
Write executable

code
 X X

Testing
Run and debug

code
 X X X X

Deployment

Create

application

installer

 X

Finalization
Prepare system

for transfer
 X

 Deliver to client X

User

Conference Present
 X

Defense X

27

reduction occurred to accommodate the extra time needed for redesigning the system

architecture. As a result, two planned application features were removed from the scope.

3.5 Summary

The project design combined several related areas crucial to the project’s success. The

three distinct elements of the project were the requirements analysis, system design, and

project plan. The client’s requirements were identified through a process of consultation

and documentation based on the stated problem, goals, and client needs. The

requirements constrained the system design to specific deliverables and structures. The

perceived labor required for developing each part of the system determined the time

allotted to a given phase or objective. Problems encountered during the project were

contextualized within the system and addressed in relation to the corresponding

components. Through careful planning and conceptual design of the entire system,

problems related to data, features, or functionality did not affect the overall project’s

success.

29

Chapter 4 – Database Design

The methods of data storage and access determine many structural components of a

system incorporating different formats of spatial data from various sources. Well-

designed data storage ensures that data is stored safely, permanently, and is free of

redundancy. Best practices for data storage design assume the domain closure axiom;

stating that only elements contained within the system are relevant to the system. The

closed world assumption supposes that all elements within the system are considered true

in the system design. Any data absent from the system is false. Following these principles

while examining the data and data storage needs for the Hyperwall Application ensured

that all data types had a place in the system, no unused data or datatypes existed in the

system, and that every dataset had one storage location and one access point.

The one caveat to these guiding principles was the core project requirement allowing

the client to add datasets for future use to the EarthLab Data Hyperwall Exhibit. Some

assumptions about future datasets: only vector or raster data readable by Esri’s ArcGIS

Pro, ArcGIS Online, or ArcGIS Runtime SDK for .NET belongs in the system; all data

processed by the system display as Feature Layers or Raster Layers; and all datasets

render as standard map products.

4.1 Conceptual Data Model

The conceptual model abstractly considered the interaction of all entities involved in the

system. This included physical entities, such as the Museum and its visitors, and

conceptual entities more directly linked to data processing and control. Organization of

the model aided understanding of the relations between system operators, data, and

30

hardware/software components. By exploring these relationships, a model of how they

operate in the real world developed. Concrete behaviors governing the system could then

be inferred and used in system implementation.

The structure of the conceptual model diagram involved all real-world entities

interacting with the system. The system includes human elements, spatial data, data

outputs, software entities, and hardware entities. It was made using Unified Modeling

Language as the format for visualizing entities within the system.

The conceptual model diagram (Figure 4-1) shows the relationship between each part

of the system. Environmental Data represents the most basic element in the system and

the client’s inspiration for the exhibit. The system takes raw environmental data inputs

and shares it with the system’s users, represented by the Visitor class. The Museum

Figure 4-1: Conceptual Data Model

31

maintains the exhibit and supplies the Visitor with consumable information through the

aggregated Hyperwall Exhibit platform.

The Museum plans to use up to nine LCD screens for the Video Wall portion of the

Exhibit. The Video Wall will rely on the User Interface for its display and change when

Visitors interact with the User Interface. This tripartite relationship is the most crucial

functional part of the system. Further, several of the project requirements dealt with

Visitor interaction with the exhibit, such as needing a mild learning curve and providing

overall enjoyable user experience.

4.2 Logical Data Model

The conceptual model abstractly rendered the entities involved in the project's data

system. The conceptual model aided in identifying the relationships between the entities

and understanding the organization of components within the system. The next step was

building a logical data model. The logical data model outlined a data structure for the

Hyperwall Application that was derived from real-world requirements. The logical model

identified datasets with specific operational elements and represented each element in

tabular structures.

The Environmental Data entity in the conceptual data model represented all datasets

accessed and displayed by the Hyperwall Application. It also represented the core

information the Museum visitors explore in the Hyperwall Exhibit. There are three

datasets comprising the Environmental Data entity, each containing data about different

aspects of the environment. The organization and preparation of the Heat Vulnerability

dataset, Natural Disaster dataset, and Air Quality dataset determined several aspects of

the system’s usability. First, how consistently and easily the data is converted to

32

map/information products that can be read by the Hyperwall Application. Second, the

process needed to be repeatable so the client could augment the data in the future. The

design of each data entity accounted for these two considerations.

After reviewing the available data management options, it was decided that a file

Geodatabase associated with an ArcGIS Pro Project would be the best data storage

platform. Use of a file Geodatabase coincided with to goal of easing the client’s handling

of the data. The client was familiar with Esri’s ArcGIS Pro/ArcGIS Online and had

access to the software through the SMV’s Enterprise account. Figure 4-2 shows the

implemented data design, including the Geodatabase and web GIS storage structure. Also

shown are the information products (as read by the Hyperwall Application) in the system.

The datasets were output to ArcGIS Online Feature Services, a Mobile Map Package, and

two folders containing imagery and pyramid files. ArcGIS Runtime SDK for .NET can

access and display these formats.

Figure 4-2 : Logical Data Model

33

4.2.1 Heat Vulnerability Dataset

The Science Museum of Virginia (SMV) produced the Heat Vulnerability Dataset, which

contained information about heat illness risk in the City of Richmond. A Heat

Vulnerability Index demonstrated the heat-illness risk using a nominative scale. The

index derived from several climatic measurements divided geographically based on

Richmond’s Census Tract numerical designations.

The data provided by the SMV was in a Microsoft Excel table. The table needed to

have excess leading and trailing spaces stripped from the fields and needed associating

with polygon features for use in ArcGIS Pro. A Python script was created and ran to

remove the extra spaces. The second issue was remedied by splitting the GeoID field on

the table (see Figure 4-3) and joining the newly created Tract and Block Group fields to a

shapefile containing the corresponding boundaries for Richmond.

Each row in the feature classes corresponded to a Census Block Group number that

was spatially joined to a polygon layer using Block Group as the joining field. After

generating a feature class in ArcGIS Pro from the Heat Vulnerability table data, the data

was split into five separate feature classes corresponding to fields in the table: Average

Temperature Change (MeanTemp), Average Tree Canopy Coverage (Mean_Canop),

Average Impervious Surfaces (Mean_Imp), Richmond Poverty Level (Poverty), and a

Figure 4-3 : Heat Vulnerability Dataset

34

Heat Vulnerability Index (Richmondln) derived from the first three measurements. The

Museum ranked the Heat Vulnerability Index using a qualitative scale ranging from

“Lowest” to “Highest” in the Vulnerable field.

These five classes became each of the five layers for the final Mobile Map Package

(.mmpk) read into the Hyperwall Application. The rationale for generating a .mmpk

instead of reading the feature layers individually from the geodatabase was so the feature

symbology would be retained in the application. The alternative would be to designate

the symbology using the ArcGIS Runtime SDK for .NET. This would have made it

difficult for the client to modify the dataset without potentially impacting the

application’s runtime reliability.

4.2.2 Natural Disaster Dataset

The Natural Disaster dataset came from gathering satellite imagery from NASA’s Earth

Observatory, a massive repository of imagery and other materials provided free for public

and commercial use (Levy & Przyborski, 2019). The imagery used in the Hyperwall

Application was collected by instruments on a variety of satellites including Earth

Observing-1 ALI, Terra MODIS, Landsat 8 OLI, and Landsat 7 ETM+. The system

stored all images in a geo-referenced TIFF format. After downloading the imagery, it was

opened in ArcGIS Pro to build pyramids for faster loading. Two folders within the

geodatabase (Before Imagery and After Imagery) contain all the imagery. The application

accessed the imagery through these two folders, and any additional imagery is accessed

in the same manner (see Chapter 5 for a complete discussion of the workflow).

35

4.2.3 Air Quality Dataset

The third dataset the SMV wanted for the Hyperwall Exhibit was an Air Quality Index

(AQI) represented as vector geometries. This dataset needed to derive from regularly

sampled air quality sensors. Developing an AQI surface from raw data was outside of the

scope of this project but will likely be completed for use in the Hyperwall Exhibit in the

future. However, to prove the system’s ability to access and display similar “live” air

quality data, a substitute was found.

The US Environmental Protection Agency (EPA) maintains an extensive network of

sensors, which detect airborne ozone and particulate matter. The EPA regularly samples

sensors and disseminates the data through an ArcGIS Online Web Map. The web map is

named AirNow Interactive Map of Air Quality, US EPA, OAR, OAQPS. The AirNow

web map contains point geometry layers of sensor locations, and interpolated vector

surfaces generated based on sensor readings. The interpolated surfaces show current,

past, and forecasted air quality information for the contiguous United States. This web

map is publicly available and has no use restrictions (Smith, 2019).

The web map consists of dozens of layers containing past, present, and forecasted air

quality measurements. To ensure accessibility for visitors of varying technical ability, the

application only used two layers of the AirNow web map. The first was a point collection

of air sensor locations (labeled based on city of residence). The second consisted of an

interpolated surface updated every hour. The surface feature layer displays an AQI

derived from ozone and particulate matter measurements. The layers are stored as feature

services hosted by the same account as the EPA’s AirNow ArcGIS Online account. As a

result, no additional preparation was needed for the Air Quality data prior to setting up

the web GIS portion of the application.

36

4.3 Summary

The data design phase of the project ensured that there was a comprehensive plan for

creating, storing, and managing the data required for the project. Additionally, this phase

ensured the data used in the project supported the purpose of the project and had clearly

defined relationships with other entities involved in the project. All dependencies

between the data, .NET application, and the real world were identified. Following this, a

logical model detailed the process of building, cleaning, and preparing the three datasets

used in the project. The design of the datasets accounted for modification after project

completion.

This project was unusual because of its use of three discrete datasets as input, with

relatively little analyses or output datasets. The outcome of the data design was instead to

ensure the client would be able to manage the datasets in the context of the Hyperwall

Exhibit as a whole, according to the client’s needs. Consideration of the entire system has

several implications for the datasets: all data needed publicly available sources with no

restrictions on re-use or display, data needed to be permanently available, and the data

design needed to operate reliably within the client’s existing GIS infrastructure.

The data design was revised as needed throughout the project to account for ArcGIS

Runtime SDK for .NET data access requirements. A new version of the SDK was

released during the project and the data storage needed revaluating to ensure reliable

access. The datasets were modified over time to interact better with the SDK and be more

maintainable for the client. Time was spent improving file naming conventions and

associated file directory structure. The map/information product outputs were modified to

37

improve visual hierarchy and overall comprehensibility, which required occasional

modification of the root data throughout the project.

39

Chapter 5 – Implementation

Development of the EarthLab Data Hyperwall’s control application required the

implementation of GIS and Windows 10 software to manage the exhibit’s hardware,

Geodatabase, and Web GIS. This chapter discusses the process of creating a development

environment that incorporated Esri and non-Esri software to build the application, which

managed the Hyperwall Exhibit’s hardware architecture, GIS data, and graphical user

interface (GUI). Figure 5-1 illustrates the overall system architecture indicating the flow

of data from storage formats to the Hyperwall application. The application contained

logic dictating a set of rules and behavior for managing the transfer of information

between the end user and the project’s data. Additional code defined processes managing

user input and response.

5.1 Development Environment

The first step in the construction of the Hyperwall Application was building the

development environment. The software packages used were selected based on the

client’s project requirements. The client planned for the exhibit’s control computer to run

the Windows 10 operating system and access data through both a file Geodatabase and

Figure 5-1: System Architecture

40

the client’s Enterprise account. The final application needed to synchronize the

Hyperwall’s video wall display with the touchscreen in response to user input. Meeting

the client’s needs required the implementation of a suite of GIS and non-GIS software.

Table 4 summarizes the software used for the development of the Hyperwall Application.

5.1.1 Non-GIS Software

Visual Studio 2017 Community Edition was selected as the Integrated Development

Environment (IDE) for this project. An IDE is different from a simple code editor in that

it incorporates options for multiple programming languages, Application Programming

Interfaces (APIs), and Software Development Kits (SDKs). The Visual Studio IDE was

created by Microsoft primarily for use with Windows Operating Systems. Visual Studio

is well-established and widely used with reliable support for Windows 10. Another

important benefit to using Visual Studio was the ease of adding third-party packages to

an in-progress solution, necessary for managing the different data types and operations

present in the Hyperwall Application. The application’s system architecture changed as

Software Usage Name Version

Operating System Windows 10 -

Framework Windows .NET 4.7.2

Integrated

Development

Environment

Visual Studio Community Edition

2017

15.8.7

APIs
Windows Presentation Foundation

4.5

GIS Software

ArcGIS Pro

ArcGIS Online

2.3.2

-

SDKs
ArcGIS Runtime

ArcGIS Runtime Toolkit

100.5

100.4

Table 4. System Software

41

the project progressed, which required frequent modification to the development

environment; a process that Visual Studio simplifies.

Visual Studio supports several APIs for creating .NET Framework applications.

Windows Presentation Foundation (WPF) 4.5 was chosen as the API for this project.

Windows Presentation Foundation was designed for use with Window’s .NET

Framework, which ensured compatibility with the other software or code toolkits used in

this system. The API incorporates the C# programming language for application business

logic and Extensible Application Markup Language (XAML) for GUI design logic.

Additionally, the Model-View-ViewModel (MVVM) pattern used to structure the

business and design logic for the Hyperwall Application was created specifically for use

on WPF. This pattern decouples the presentation logic (GUI appearance) from the

business logic (operations) of an application (See Chapter 2.4 for a full discussion of

MVVM).

The application's Models and ViewModels were written using C# syntax, and the

Views were written using XAML. XAML largely consists of definitions for front-end

GUI controls (Buttons, TextBoxes, etc.). Many XAML controls respond to explicitly

defined user behaviors, such as a user pressing or clicking a button on the GUI. A

property in the GUI control detects the change and activates a C# event in the View-

Model. Events are blocks of C# code that execute when activated by their corresponding

XAML control. An important part of the MVVM pattern is handling these events and

ensuring that user input notifies the correct program elements and updates the rest of the

program. Figure 5-2 illustrates an example implementation in the Hyperwall Application.

42

 In Object-Oriented Programming, the code is divided into objects (also called

instances), which are class definitions loaded into the memory during runtime that inherit

behavior from referenced class libraries. The application primarily inherited classes from

.NET Framework class libraries to reduce the complexity of its infrastructure and internal

behaviors. The development environment needed supplemental GIS class libraries for

handling spatial data and managing the application’s maps.

5.1.2 GIS Software

The development environment described so far provided a platform for building the

Hyperwall Application, but there was no built-in spatial data management. By

supplementing the developer environment with Esri’s ArcGIS Runtime SDK for .NET,

the application could be built to accept spatial inputs such as maps, scenes, and spatial

data formats. The Runtime SDK exposes capabilities of the ArcGIS platform’s

programming and contains many of the same rendering abilities as ArcGIS Pro, such as

displaying vector and raster data on maps, applying geolocation services, and

geoprocessing tools. The advantage of the Runtime SDK is it provides finer GUI control

compared to ArcGIS Pro. The Runtime SDK connected to the IDE through Visual

Studio’s built-in NuGet Package Manager. At this point, the development environment

was ready to accept the prepared spatial datasets, build models to display the accessed

Figure 5-2: MVVM Pattern Example in the Hyperwall Application

43

data as symbolized maps with basemaps and incorporate operational logic for handling

events throughout the application.

5.2 Application Architecture

A significant challenge for the Hyperwall Application’s architecture was managing the

system’s proposed display hardware. The system design included a video wall comprised

of an LCD screen array (treated as a single display within the Hyperwall Application) and

touchscreen. The application needed to detect changes to the touch-screen GUI and

update the video wall with those changes. The application’s back-end architecture was

designed to manage these two requirements, regardless of what map models were

implemented.

Designing the system architecture required adherence to the principles of Object-

Oriented Programming. For the application to show the same map data, with the same

symbology (different extents and GUI controls), on two separate screens required

creation of multiple instances of map classes that relied on the system architecture to

communicate changes and remain synchronized.

Following the MVVM-based design pattern, the application is divided into Views,

ViewModels, and Models. The application’s Views correspond to XAML documents that

contain only the GUI control definitions. The ViewModels contain the logic that dictates

the behavior of the GUI controls (such as Buttons) and exposes properties of the Models.

The Models contain logic for accessing the application’s input datasets and implementing

the INotifyOfPropertyChanged interface. The INotifyOfPropertyChanged interface is a

set of commands that ensure all code objects are updated with changes happening either

at the data-level or user interface-level of the application.

44

The Hyperwall Application’s structure did not perfectly follow the MVVM pattern

because some elements of the ViewModel classes directly referenced GUI controls in the

Views, but it is a convenient way to organize the discussion of different classes in the

Hyperwall Application.

The ViewModel corresponding to the GUI managed creation and placement of the

two displays. If there are two screens available, it detects which is the primary screen,

and which is the secondary screen. This operation queries the display settings of the

computer for the settings of the primary and secondary screens. The GUI window is

assigned to the primary screen/display, and the video wall window is assigned to the

secondary screen/display. If only one screen is available, the application implements

error handling to ensure that only the user interface window is created and prevent

runtime error. Figure 5-3 displays the logic of this process.

After creating the User Interface Window and Video Wall Window on the

appropriate displays, the Hyperwall Application needed to synchronize the two windows.

When visitors enact change on the GUI, such as changing a map extent through touch

controls or pressing a button, the map-object being held in the video wall window must

Figure 5-3: Window Object Creation

45

also show the change. Synchronizing the displays is conducted through programmatic

event handling and messaging (Figure 5-4).

 The visitor enacts some changes on the GUI, such as dragging the open map to a

new extent or pressing a button. The control manipulated notifies the associated object of

a change through databinding of a control property to an event or through the

INotifyOfPropertyChanged interface. This fires an event handler, which executes some

code. For a map extent change, this code would get the new map extent from the GUI and

update the map hosted in the video wall. When the receiving object (in this case the map

hosted on the video wall display) receives that information, it updates the corresponding

data-level property with this new information. Fortunately, messaging between the

sending object and the listening property is handled through the

INotifyOfPropertyChanged interface and did not require explicit definition.

In summary, the Hyperwall Application system architecture detects the hosting

computers display configuration and relies on a system of change detection for user-

driven GUI changes and passes that information to an event handling and messaging

service to notify data-level properties of the update.

5.3 Preparing Map Products

The client wanted the Hyperwall to have three topics for their visitors to explore and

learn about. These topics each have an associated spatial dataset presented in the

application as 2-D or 3-D maps alongside a set of user interface controls. The three

Figure 5-4: Event Handling and Messaging

46

educational topics were Heat Vulnerability, Air Quality, and Natural Disasters.

Developing the application required the deployment of several Runtime SDK library

classes because each subject’s associated dataset was of a different spatial data format

and had a different educational intent.

5.3.1 Building the Heat Vulnerability Map and Model

The Museum expected the final platform to disseminate the Museum’s research to

visitors. Dr. Jeremy Hoffman, client representative and climate scientist with the Museum

conducted research exploring the Urban Heat Island effect in the City of Richmond. He

and his team with the Museum collected data for each Census block group in Richmond

and created a measurement of Heat Vulnerability. Three separate metrics comprised the

Heat Vulnerability attribute: mean daily temperature change, average impervious surface

coverage (pavement, asphalt, concrete buildings, etc.), and average tree canopy coverage.

The Museum created the Heat Vulnerability risk range from these layers. The values

ranged from 0.00 – 4.00. The values were then sorted into five nominative categories

ranging from “Lowest” to “Highest” risk to ease comprehension of the index. This

dataset was the basis for creating the Heat Vulnerability subject for the Hyperwall

Application. The dataset also contained a Poverty in Richmond layer that does not

contribute to the Heat Vulnerability Index but was instead included so visitors using the

Hyperwall could draw their own conclusions about the connection between impoverished

47

areas and heat illness vulnerability. Figure 5-5 illustrates the relative relationships

between these layers.

The primary educational goal for the Heat Vulnerability section of the application

was to teach visitors about the danger of heat illness in the City of Richmond (the home

for many of the Museum’s visitors). The secondary educational goal was not to spread

public health data, but instead to improve visitor’s spatial literacy through map

interaction. These two goals guided the process of turning the Heat Vulnerability tabular

data into a fully interactive portion of the application.

As discussed in Chapter 4, the raw Heat Vulnerability data were spatially joined to a

polygon Census block group feature layer through the shared block group identification

field. The Heat Vulnerability was stored in the project file Geodatabase as feature layers

representing each field in the table. Originally, the plan was to have the layers load

directly into the application from the File Geodatabase. However, ArcGIS Runtime SDK

for .NET does not support direct loading from a File Geodatabase. Instead, the layers

Figure 5-5: Heat Vulnerability Dataset

48

were exported from an ArcGIS Pro map project as a Mobile Map Package (.mmpk) with

custom symbology. The .mmpk format is intended for offline map use, which is

appropriate for the Heat Vulnerability data. After export, the .mmpk was placed into the

MobileMapPackages folder within the Visual Studio project’s file directory. The

application used the Runtime SDK’s MobileMapPackage Class to open the

HeatVulnerabilityMap.mmpk from the MobileMapPackages folder. After reading the

.mmpk file, the Heat Vulnerability Map Model created a map object and generated a

basemap on the fly through Esri’s online basemap service. At this point, the Model

inserted the map into a XAML control via the corresponding ViewModel. Figure 5-6

depicts this workflow.

5.3.2 Incorporating the Air Quality Feature Service and Model

The second topic in the application is Air Quality. The original plan called for deriving an

air quality index from a JavaScript Object Notation (JSON) format document from a

company called PurpleAir that posts their sensor data daily and makes it freely available

to researchers and educators. However, due to the time constraints of the project, creating

Figure 5-6: Heat Vulnerability Map Model

49

the logic for reading the JSON, generating an AQI from its attributes, and symbolizing it

as a map format that the ArcGIS Runtime SDK could read was not possible. Fortunately,

the Environmental Protection Agency (EPA) produces a Web Map called AirNow, which

is publicly available through ArcGIS Online and contains hourly updated air quality

information for the contiguous United States. The feature service for the AirNow Web

Map contains air quality readings tied to point geometry sensor locations and interpolated

air quality surfaces derived from these points.

The AirNow Web Map contains over a dozen layers representing different types of

air quality measurements over different temporal ranges and with different geometry. The

layers measure Particulate Matter (PM) of various sizes, ozone, and some layers display

AQI values. The map layers include point geometry of approximate sensor locations and

interpolated surfaces generated from the sensor readings. For the purposes of this project,

Figure 5-7: Air Quality Sensor Locations (upper left), Surface (lower left), and

Overlay (right)

50

pulling many different layers and attempting to organize them would be detrimental to

both the visitor’s comprehension and the Hyperwall’s ability to hold their interest. Figure

5-7 shows the two layers selected for use in the Air Quality section of the application.

For the Museum’s visitors to learn about what air quality indexes represent, the Air

Quality Map pulled two feature layers from the AirNow Web Map via ArcGIS Feature

Service REST endpoints (Figure 5-8). The first is a vector point collection that represents

sensors in major U.S. cities. Each point is marked with the current Air Quality Index for

that city. The second layer is an interpolated vector geometry surface with a nominative

scale ranging from “Good” to “Hazardous”. The symbology of the two layers follows the

same color ramp to ease visitor comprehension. The Air Quality Map uses the two layers

to illustrate the difference between data points and created surfaces. Also, museum

visitors can explore the map to find current air quality indices in areas that personally

interest them.

5.3.3 Incorporating the Natural Disaster Imagery and Model

The intent for the Natural Disaster section of the application is to allow visitors to explore

the Earth’s changing surface through the imagery of natural disasters and other events

including volcanic eruptions, country-sized power outages, major floods and more. The

client wanted the imagery placed onto an interactive map for this section of the

Figure 5-8: Air Quality Map Model

51

Hyperwall Application. Visitors using the application would compare paired imagery

from before and after large scale disasters or events. The map was designed based on this

need.

The application stored the imagery for the Natural Disaster dataset in the

working/local directory. Two folders, appropriately called "BeforeImagery" and

"AfterImagery", contained the imagery. When the application launches, the Natural

Disaster Model creates two Scenes containing only basemaps from Esri’s online services.

These two Scenes are the virtual globes for displaying the imagery. After creating the

Scenes, the model loads the imagery into the application from the folders.

 The client planned on expanding the available imagery in the future, so the method for

loading the imagery from the folders into the Scenes needed to be flexible to minimize

the amount of work required for this process. To add images to the Natural Disaster

section, the client places a georeferenced TIFF image or another raster into the

appropriate folder and the application manages the process of building the raw imagery

into a format applicable to an ArcScene.

The Natural Disaster Model loads the georeferenced TIFF files by first querying the

relative file directory path to each folder. Then the model iterates through each item in

the folders. For each image the model encounters, it loads the image as an instance of the

ArcGIS Runtime SDK Raster Class. Then the model creates a Raster object in the

memory and applies it to an ArcScene displayed by the application. The Model identifies

the geographic location and extent for each image and places a bookmark at that location

that has a scale of 1.5 times the images extent (to show more of the surrounding area).

The model finally names each bookmark according to the file name for the image after

52

the file extension is removed. Figure 5-9 demonstrates the workflow for accessing the

imagery from storage, adding it to the application’s Scenes, and creating bookmarks.

5.4 Creating Hyperwall Application Interaction Logic

At this point in the project implementation, the data models built for accessing the Heat

Vulnerability Mobile Map Package, Air Quality Feature Services, and Natural Disaster

.TIFF imagery was completed. Each model produced a Map or Scene object that displays

the data on top of a basemap generated through Esri’s Online Services. In the next part of

the project implementation, the ViewModels and Views needed defining. The

ViewModels contained the logic for meshing the Map/Scene objects with the system

architecture. The Views contained the mark-up definitions for the GUI appearance and

implemented the data binding of specific visual elements to the relevant event handlers

and methods in the ViewModels.

Figure 5-9: Natural Disaster Scene Model

53

WPF has three levels of ‘wrappers’ for hosting visual elements of applications:

Windows, Pages, and UserControls. The Hyperwall Application used Windows and

UserControls. Both a Window and a UserControl contain a XAML-based View with

information like the color, size, shape, animation or other visual aspects. They also

contain a class document similar in structure to a ViewModel, but specifically contains

logic dictating the behavior of user-facing controls and ensures that the correct messages

are sent based on user input.

The User Interface and Video Wall are WPF Windows, each with their own View

and ViewModel. The Heat Vulnerability Map, Air Quality Map, and Natural Disaster

Scene are WPF UserControls, each with corresponding Views and ViewModels. The

User Interface’s View contained a XAML control called a ContentControl, used for

hosting a UserControl. The Video Wall also hosted a ContentControl in its View. To

ensure that both the User Interface and Video Wall were displaying the same UserControl

at any given time, the User Interface’s ViewModel implemented the system’s event

handling and messaging (see section 5.2) to create instances of the UserControls and

notify the Video Wall of which UserControl was currently active in the GUI and what it

was doing. The User Interface and Video Wall each host one instance of the active

UserControl in their respective Views. The system architecture syncs these two instances

based on user input.

5.5 Summary

The implementation of this project consisted of designing a hybrid GIS for managing

web and locally stored data, processing the data into formats compatible with the ArcGIS

Runtime SDK for .NET, and using the Runtime SDK to incorporate them into a .NET

54

Framework application. The application went through many cycles of planning,

developing, and testing of system elements/features. The system architecture went

through many iterations and changes to determine the best pattern for managing the

Hyperwall’s proposed hardware. The final application implemented a system that meets

the client’s basic hardware for the proposed exhibit. The system generates separate map

objects that interact via a series of event handlers, which in turn notify different

properties of changes as they occur. The next chapter explores the results of the

development process, framed around the user experience.

55

Chapter 6 – Results and Analysis

The project successfully produced a GIS-based application that demonstrated the

potential usefulness of the proposed EarthLab Data Hyperwall to the Science Museum of

Virginia (SMV). The application incorporates data prepared by ArcGIS Online and

ArcGIS Pro, which are platforms the client can access through its ArcGIS Enterprise

account. This is beneficial because the system needs some additional development and

feature implementation before deployment as part of the Hyperwall.

6.1 User Experience

The Hyperwall Application’s system architecture was designed to satisfy the client’s

hardware requirements, but the layout of the GUI and the application’s methods were

designed based on the desired visitor experience. Although the Museum’s target

demographic is school-aged children, it attracts visitors of all ages. To accommodate the

varied audience, the Hyperwall Exhibit needed as broad an appeal as possible. To this

end, the Hyperwall Application was designed to maximize accessibility and

comprehension.

The layout for the GUI implemented straightforward controls and contained maps

with clear intent and symbology. This project’s limited scope precluded structured testing

of the application through museum visitors or similar focus groups. However, the

principles of accessibility of material and simplicity of interaction drove the development

process. The following paragraphs contain a discussion of the user experience framed

like a use-case scenario or user story. Figure 6-1 shows a conceptual design for the

56

Hyperwall, which incorporates the current layout of the application and how the exhibit

may appear to the operating visitor.

The visitor operating the Hyperwall’s touchscreen kiosk first sees the starting page of the

GUI, which contains just three buttons. Each button is an image representing the subject

matter of the map or Scene. The goal in this case, and throughout the application is to

reduce reliance on text-based directions.

After pressing one of the buttons, a map opens on the Video Wall and a smaller

version of the same map opens on the GUI. Visitors control the map with the same touch

controls they would use for a smartphone navigation app. This assumes that many of the

visitors are familiar with operating a smartphone. The three environmental topics

contained in the application contain drastically different datasets, but similar modes of

interaction. Museum visitors have the option of exploring the Heat Vulnerability Map,

Air Quality Map, or Natural Disaster Scene.

Figure 6-1: Hyperwall Exhibit from Visitors Perspective

57

6.1.1 Heat Vulnerability Map Interaction

Visitors compare layers on the Heat Vulnerability Map by turning the five available

layers on and off. The visitor operating the exhibit can zoom in to specific areas of

Richmond and visually compare the layers. Through comparison of the Heat

Vulnerability Index to the three layers contributing to it (Daily Heating, Impervious

Surfaces, and Tree Canopy) visitors develop an understanding of why parts of Richmond

have a higher vulnerability to heat and heat-related illness than other areas. As many of

the visitors are local to Richmond, perhaps this public health dataset will help them in

their daily life navigating the city.

6.1.2 Air Quality Map Interaction

After selecting the Air Quality button in the GUI, visitors see a map of the contiguous

United States that loads the two live air quality layers. Visitors can turn the layers on and

off independently using buttons on the GUI and use touch controls to explore the map

and see current AQI readings for the United States.

6.1.3 Natural Disaster Scene Interaction

In the Natural Disaster Scene, visitors see an ArcScene, or virtual globe, which has high-

resolution imagery from NASA’s Earth Observatory draped over its surface in spatially

accurate positions. Visitors can explore the globe using touch controls or use a drop-

down menu to select specific images. Upon selection, the globe will automatically go to

the bookmarked image. Visitors use the custom swipe widget to compare the ‘before’ and

‘after’ of each pictured event. Through this, they can instantly see the effects of glacial

melt, volcanic eruptions, flooding, and other examples of the Earth’s ever-changing

surface.

58

6.2 Application Features

Programmatic methods and events define the implemented features and connect feature

behavior to the system architecture. When a visitor interacts with a feature on the GUI, a

method or event activates and sends change notifications throughout the application to

ensure that the video wall reflects the change. Project time constraints restricted the

number of implemented features, but the following is a discussion of the currently

implemented features exposed in the GUI.

6.2.1 Touch Control for Maps

Visitors interact with the Hyperwall via touch controls like smartphone-based mapping

applications. When the visitor using the exhibit selects one of the three subjects, the

corresponding map, and its controls load onto the screen. In addition to touch-responsive

buttons exposed on the GUI, standard gesture map controls are applied. Visitors control

the video wall portion of the exhibit by manipulating the map visible on the GUI with

their fingers. Any changes made to the GUI’s view are immediately replicated on the

video wall. Visitors can pan, rotate, zoom in, and zoom out on the map using dragging,

pinching, and rotational movements with one or two fingers. Additionally, when

exploring the Natural Disaster subject, visitors can adjust the pitch of the camera to look

across the surface of the virtual globe by dragging two fingers up or down the face of the

tablet. Table 5 provides instructions for navigating the application’s maps.

59

6.2.2 Custom Swipe Widget

The two Natural Disaster Scenes each display within an ArcGIS Runtime SDK

SceneView. A SceneView is like a WPF ContentControl, but specifically for hosting

Maps and Scenes in the GUI. The two SceneViews overlap on the GUI with the Before

Scene on top of the After Scene. Museum visitors control the visibility of the After Scene

Table 5. Map Navigation in Hyperwall Application

60

through a custom swipe tool that peels back the Before Scene to reveal the After Scene.

Figure 6-2 illustrates how this feature works.

6.2.3 Imagery Selector

The Natural Disaster View/ViewModel incorporated a drop-down menu allowing visitors

to select from bookmarked image locations as an alternative to exploring the imagery

with touch controls. At startup, The ViewModel executes a method for populating the

View's drop-down menu. This entire workflow executes within the loop that iterates

through the imagery folder and loads each image. After loading, the application converts

the image into an ArcGIS Runtime Raster, adds it to either the Before Scene or After

Scene, detects the raster's geometry, creates a bookmark 1.5 times the extent, assigns a

name to the bookmark and adds the name to the BookmarksChooser drop-down menu on

the View.

Figure 6-2: Swipe Widget Operation

61

6.3 Data Complications

The Natural Disaster and Air Quality datasets were developed during the project.

Originally, a File Geodatabase would house all three datasets. Each subject’s dataset as

locally stored feature layers and imagery directly from the File Geodatabase. After some

testing and discussion with the ArcGIS Runtime SDK for .NET development team, it was

discovered that the Runtime SDK is not compatible with file Geodatabases. The Runtime

SDK is compatible with Mobile Geodatabases. However, the Mobile Geodatabase is an

inconvenient and inflexible structure for data storage and access.

The Hyperwall Application loads each dataset from either the project’s File

Geodatabase or through ArcGIS Online. The Heat Vulnerability map layers export from

ArcGIS Pro as a Mobile Map Package (.mmpk). After exporting, the .mmpk went inside

the application’s directory for accessibility during runtime. However, this workflow

could not be replicated for the Air Quality data. Although the ArcGIS Online feature

service containing the two layers could be brought into an ArcGIS Pro map project and

referenced in the project’s Geodatabase, the map layers did not stay updated with the

corresponding ArcGIS Online Feature Services. To ensure data integrity for the Air

Quality section of the application, the feature layers were instead accessed directly by the

application through their REST Endpoints. Although this potentially creates extra steps

for the client if they wish to add to or modify one of the two datasets, the chosen map

product formats meet project needs better. Also, using a Mobile Map Package and

Feature Service URIs ensures compatibility with the ArcGIS Runtime SDK.

62

6.4 Discussion of Results and Client’s Needs

This project provided the client with a system that supports further development and

deployment of the EarthLab Data Hyperwall Exhibit. The system consists of a GIS and

.NET Framework application. The system incorporated Esri map products including

satellite imagery, online feature data services, and ArcGIS Pro Mobile Map Packages.

The .NET Framework application's interaction and presentation logic were decoupled

through the implementation of the Model-View-ViewModel pattern. The MVVM pattern

simplifies the process of maintaining and expanding the application. If the client wanted

to change the layout or design of the GUI, they could modify the XAML directly through

Blend for Visual Studio without changing the application's code.

6.5 Summary

The goal of the Hyperwall Exhibit is to complement the currently existing spatially

linked exhibits through providing an interactive platform for museum visitors interested

in learning about both local and global environmental topics potentially affecting them

personally. The .NET Framework application and GIS produced by this project fill the

Science Museum of Virginia’s need for a platform that presents local data and

encourages visitors to engage with environmental topics.

63

Chapter 7 – Conclusions and Future Work

This project set out to provide the Science Museum of Virginia with a system for

managing the presentation of the data for their planned EarthLab Data Hyperwall exhibit.

The goal for the exhibit is to teach the Museum’s visitors about environmental factors

affecting their everyday lives and the Earth through interactive 2-d and 3-d maps. The

system brings both web-based and local spatial data into a custom .NET Framework

application, which creates the maps and handles visitor inputs.

The exhibit's hardware consists of a multi-screen video wall and a touchscreen user

interface. Museum visitors use the touchscreen's GUI to navigate the exhibit’s three

maps, which sync to the video wall. The maps derive from three different datasets

containing live web-based air quality data, museum research into heat vulnerability for

census block groups in the city of Richmond, and georeferenced imagery. The .NET

Framework application implements Esri’s ArcGIS Runtime SDK for .NET to access the

data from REST endpoints and a File Geodatabase on the exhibit controlling personal

computer. In addition to the system, the project produced a written guide containing

workflows for adding imagery to the Natural Disaster Scene, changing map data and map

visualization.

7.1 Summary

The system is a novel approach to help the Science Museum of Virginia share

educational environmental and climatic data with its visitors by utilizing GIS

visualization. Additionally, it supports the creation of additional maps/scenes, and

64

implementation of additional or updated data through some pre-planned workflows

requiring little, if any, modification of the Hyperwall Application’s source code.

By implementing a system that accepts web-based and offline data, the Science

Museum of Virginia has maximum flexibility for improving this exhibit over time and

ensuring that visitors immerse themselves in the interactive spatial learning experience.

Through this system, the Museum can successfully implement the EarthLab Data

Hyperwall exhibit to augment its other educational exhibits and continue the Museum’s

mission of “inspiring Virginians to enrich their lives through Science.”

7.2 Future Work

The current system architecture supports visitor learning through interaction and

encourages the Museum’s visitors to contextualize environmental data in their own lives

and allows visitors to improve their map comprehension and spatial literacy. There are

additional features that could be implemented to improve the visitor experience and the

exhibit’s functionality.

The maps in the application require accompanying text or other multimedia. Before

system deployment, it needs this feature so visitors could understand the data presented in

the exhibit. Different dialogs would appear on the video wall depending on the map,

layers, or imagery currently displayed.

Implementing a sub-system for collecting usage telemetry could greatly augment the

Museum’s ability to improve the Hyperwall exhibit over time. There are two ways to

collect user data for analysis: generating a heat map showing where on the user interface

visitors are touching, or outputting the application’s journal to a table.

65

The Natural Disaster Scene included a small set of imagery demonstrating how the

Scene operated within the system. Additional imagery could be added for visitors to

enjoy and explore. The new imagery could be downloaded from NASA’s Earth

Observatory or another data source. Any georeferenced raster file formats compatible

with the Raster class in ArcGIS Runtime SDK for .NET could be used.

Migrating the locally stored datasets to the client’s Enterprise Portal would allow the

client to manage the data without needing to change the code. The application can

already open data from REST endpoints, so if all the data were exposed in that format,

the client could make desired changes to the maps or data through their Enterprise

deployment and maintain the same REST endpoints. This would simplify the workflows

for maintaining and updating the exhibit as a whole and provide more flexibility for the

application’s data and presentation.

66

Works Cited

Alburshaid, Y. (2012). A Multi-touch GIS-Based Tour for Museum Exhibits. Redlands:

InSPIRE@Redlands. Retrieved from https://inspire.redlands.edu/gis_gradproj/16

Ang, K. H., & Wang, Q. (2006). A Case Study of Engaging Primary School Students in

Learning Science by Using Active Worlds. Proceedings of The First International

LAMS Conference 2006: Designing the Future of Learning (pp. 5-14). Sydney:

LAMS Foundation. Retrieved April 10, 2019, from

http://lamsfoundation.org/lams2006/papers.htm

Bartoschek, T., Li, R., Schwering, A., & Munzer, S. (2013). Ori-Gami - An App fostering

spatial competence development and spatial learning of children. 16th AGILE

Conference on Geographic Information Science. Castellon: ResearchGate.

Retrieved October 17, 2018, from

https://www.researchgate.net/publication/236341079_Ori-Gami_-

_An_App_fostering_spatial_competency_development_and_spatial_learning_of_

children

Bednarz, S. W., & Kemp, K. (2011). Understanding and Nurturing Spatial Literacy. In Y.

Asami (Ed.), International Conference: Spatial Thinking and Geographic

Information Sciences (pp. 18-23). Tokyo: Elsevier Ltd. Retrieved October 17,

2018, from

https://www.sciencedirect.com/science/article/pii/S1877042811013279

Bruner, J. S. (1960). The Process of Education. New York: Harvard.

Downs, R. M. (1994). The Need for Research in Geography Education: It Would be Nice

to Have Some Data. Journal of Geography, 93(1), 57-60.

67

Downs, R. M., & de Souza, A. R. (2006). Learning to Think Spatially. Washington D.C.:

National Academies Press. doi:10.17226/11019

Egenhofer, M. J., & Mark, D. M. (1995). Naive Geography. National Center for

Geographic Information and Analysis. UC Santa Barbara. Retrieved from

https://escholarship.org/uc/item/3r80v86f

Goodchild, M. F. (2006, Fall). The Fourth R? Rethinking GIS Education. ArcNews

Online. Retrieved October 27, 2018, from

https://www.esri.com/news/arcnews/fall06articles/the-fourth-r.html

Goodchild, M. F. (2011). Spatial Thinking and the GIS User Interface. In Y. Asami (Ed.),

International Conference: Spatial Thinking and Geographic Information Sciences

(pp. 3-9). Tokyo: Elsevier Ltd. Retrieved October 17, 2018, from

https://www.sciencedirect.com/science/article/pii/S1877042811013255

Hakeem, H. (2017, September 7). Android by example: MVVM + Data Binding ->

Introduction (Part 1). San Francisco, California, United States of America.

Retrieved from https://medium.com/@husayn.hakeem/android-by-example-

mvvm-data-binding-introduction-part-1-6a7a5f388bf7

Hiperwall Headquarters. (2018, March 15). Hiperwall: See the Big Picture. Retrieved

April 25, 2018, from Hiperwall: https://www.hiperwall.com/

Hirose, M. (2006). Virtual Reality Technology and Museum Exhibit. The International

Journal of Virtual Reality, 5(2), 31-36.

Lepouras, G., & Vassilakis, C. (2004, December 15). Virtual museums for all: employing

game technology. Virtual Reality, 8, 96-106. doi:10.1007/s10055-004-0141-1

68

Levy Robert, P. P. (2019, June). Image Use Policy. Retrieved June 20, 2019, from Nasa

Earth Observatory: https://earthobservatory.nasa.gov/image-use-policy

Liarokapis, F., Sylaiou, S., Basu, A., Mourkoussis, N., White, M., & Lister, P. (2004). An

Interactive Visualization Interface for Virtual Museums. VAST 2004: The 5th

International Symposium on Virtual Reality (pp. 1-10). Oudenaarde: The

Eurographics Association. doi:10.2312/VAST/VAST04/047-056

Marsh, M., Golledge, R., & Battersby, S. E. (2007, December). Geospatial Concept

Understanding and Recognition in G6-College Students: A Preliminary Argument

for Minimal GIS. Annals of the Association of American Geographers, 97(4), pp.

696-712. Retrieved 10 30, 2018, from https://www.jstor.org/stable/4620307

Martin, J. (1991). Rapid Application Development. Indianapolis, IN, USA: Macmillian

Publishing Co.

Michael, D., Pelekanos, N., Chrysanthou, I., Zaharias, P., Hadjigavriel, L., &

Chrysanthou, Y. (2010). Comparative Study of Interactive Systems in a Museum.

Cyprus: Springer-Verlag Berlin Heidelberg.

Nathan, A. (2013). WPF 4.5 - Unleashed. Indianapolis, Indiana: SAMS. Retrieved

January 20, 2019, from https://dl.acm.org/citation.cfm?id=2564751

Piaget, J. (1936). Origins of intelligence in the child. London: Routledge & Kegan Paul.

Sandstrom, T. A., Henze, C., & Levit, C. (2003). The Hyperwall. NASA, Ames Research

Center. Exploratory Computing Environments Group. Retrieved October 17,

2018, from https://www.researchgate.net/publication/4024207_The_hyperwall

SCN Staff. (2013, December). Look Around You. AV Network - Systems Contractor

News, pp. 64-65. Retrieved May 28, 2019, from

69

https://www.avnetwork.com/avnetwork/eiki-international-promotes-steve-rubery-

to-national-sales-manager

Sellers, P. (2011). NASA's Hyperwall Revealing the Big Picture. NASA Goddard Space

Flight Center, Greenbelt, MD. Retrieved from

https://ntrs.nasa.gov/search.jsp?R=20120002556

Smith, J. (2019, May 10). AirNow Interactive Map of Air Quality, US EPA, OAR,

OAQPS. Retrieved June 20, 2019, from ArcGIS Online:

http://univredlands.maps.arcgis.com/home/item.html?id=92e772c4f65a4848a29b

cc24c8f61bab

Sørensen, E., & Mihailesc, M. I. (2010). Model-View-ViewModel (MVVM) Design

Pattern using Windows. University of Southern Denmark, Computer Engineering,

Odense. Retrieved May 5, 2019, from

https://www.researchgate.net/publication/283571344_Model-View-

ViewModel_MVVM_Design_Pattern_using_Windows_Presentation_Foundation

_WPF_Technology

Sylaiou, S., Mania, K., Liarokapis, F., White, M., Walczak, K., Wojciechowsk, R., . . .

Patias, P. (2015, November). Evaluation of a Cultural Heritage Augmented

Reality Game. In Cartographies of Mind, Soul, and Knowledge (pp. 153-185).

Thessaloniki: School of Rural and Surveying Engineers. doi:978-960-89320-7-4

Tomlinson, R. (2007). Thinking About GIS: Geographic Information System Planning for

Managers. Redlands: Esri Press.

70

71

Appendix A. Hyperwall Application Structure

This appendix contains the class diagrams and code for each part of the Hyperwall

Application. The class diagrams are in the first section, and each subsequent section

contains the code for the Models and ViewModels, respectfully. The Views have been

omitted because they are merely mark-up documents and do not contribute the

application’s functionality, only its appearance. It is worth noting here that for methods

that have functionally identical logic, only one of the methods is shown completely, and

the others have been collapsed to save space.

Figure A-1: WPF Windows for Exhibit LCD Screens

72

NOTE: There is no separate Map Model for the Natural Disaster topic. This is because

the accessing and loading of the imagery dataset is built into the NaturalDisaster

ViewModel.

Figure A-2: Map Models

Figure A-3: Map ViewModels

73

UserInterface Class

using Esri.ArcGISRuntime.Geometry;
using Esri.ArcGISRuntime.Mapping;
using System;
using System.Diagnostics;
using System.Linq;
using System.Windows;
using System.Windows.Controls.Primitives;
using System.Windows.Forms;
using System.Windows.Media;

namespace Hyperwall3
{
 /// <summary>
 /// The UserInterface acts as the controller for the entire application, it handles all object
 /// creation and event handling between the exhibit's touchscreen and video wall
 /// Hyperwall Application Created By: Alex Walton
 /// Affiliation: University of Redlands, Department of Geographic Information Sciences
 /// Last Updated: July 25, 2019
 /// </summary>
 public partial class UserInterface : Window
 {
 // Object creation for UserInterface Window (MapName1) And the VideoWall Window (MapName2)
 NaturalDisaster NaturalDisaster1 = new NaturalDisaster();
 NaturalDisaster NaturalDisaster2 = new NaturalDisaster();
 AirQuality AirQuality1 = new AirQuality();
 AirQuality AirQuality2 = new AirQuality();
 HeatVulnerability HeatVulnerability1 = new HeatVulnerability();
 HeatVulnerability HeatVulnerability2 = new HeatVulnerability();
 VideoWall videoWall = new VideoWall();

 /// <summary>
 /// Constructor initializes ViewModel creation and handles viewpoint changes from user.
 /// </summary>
 public UserInterface()
 {
 InitializeComponent();
 // Fires the ViewPointChanged events whenever UserInterface ViewPoint Changes
 if (AirQuality1.AirMap != null)
 {
 AirQuality1.AirMap.ViewpointChanged += ViewpointChanged;
 }
 if (HeatVulnerability1.HeatVuln != null)
 {
 HeatVulnerability1.HeatVuln.ViewpointChanged += ViewpointChanged1;
 }
 if (NaturalDisaster1.NaturalDisasterBefore.Camera != null)
 {
 NaturalDisaster1.NaturalDisasterBefore.ViewpointChanged += CameraChanged;
 NaturalDisaster1.thumb.DragDelta += ThumbChanged;
 }

 // Syncs Click Events between Windows
 AirQuality1.AQLatest.Click += videoWallChangeLayerAQLatestVis;
 AirQuality1.AQToday.Click += videoWallChangeLayerAQTodayVis;
 HeatVulnerability1.AvgTempButton.Click += AvgTempButton_Click;
 HeatVulnerability1.HeatVulnButton.Click += HeatVulnButton_Click;
 HeatVulnerability1.ImperviousSurfacesButton.Click += ImperviousSurfacesButton_Click;
 HeatVulnerability1.PovertyButton.Click += PovertyButton_Click;
 HeatVulnerability1.TreeCanopyButton.Click += TreeCanopyButton_Click;
 // Method for creating video wall display on secondary monitor
 // ADD OR REMOVE "//" TO FRONT OF "VideoWallShow()" BELOW TO TURN VIDEOWALL ON/OFF
 //VideoWallShow();
 }

 /// <summary>

74

 /// Button_Click events manage the turning on/off layers, according to user input.
 /// </summary>
 private void TreeCanopyButton_Click(object sender, RoutedEventArgs e)
 {
 if (HeatVulnerability1.HeatVuln.Map.OperationalLayers[2].IsVisible == false)
 {
 HeatVulnerability2.HeatVuln.Map.OperationalLayers[2].IsVisible = false;
 }
 else
 {
 HeatVulnerability2.HeatVuln.Map.OperationalLayers[0].IsVisible = false;
 HeatVulnerability2.HeatVuln.Map.OperationalLayers[1].IsVisible = false;
 HeatVulnerability2.HeatVuln.Map.OperationalLayers[2].IsVisible = true;
 HeatVulnerability2.HeatVuln.Map.OperationalLayers[3].IsVisible = false;
 HeatVulnerability2.HeatVuln.Map.OperationalLayers[4].IsVisible = false;
 }
 }
 private void PovertyButton_Click(object sender, RoutedEventArgs e)
 {
 …
 }
 private void ImperviousSurfacesButton_Click(object sender, RoutedEventArgs e)
 {
 …
 }
 private void HeatVulnButton_Click(object sender, RoutedEventArgs e)
 {
 …
 }
 private void AvgTempButton_Click(object sender, RoutedEventArgs e)
 {
 …
 }
 private void videoWallChangeLayerAQLatestVis(object sender, RoutedEventArgs e)
 {
 if (AirQuality1.AirMap.Map.OperationalLayers[0].IsVisible == false)
 {
 AirQuality2.AirMap.Map.OperationalLayers[0].IsVisible = false;
 }
 else
 {
 AirQuality2.AirMap.Map.OperationalLayers[0].IsVisible = true;
 }
 }
 private void videoWallChangeLayerAQTodayVis(object sender, RoutedEventArgs e)
 {
 …
 }

 /// <summary>
 /// VideoWallShow() method detects computer display settings and applies windows to
 /// correct screens
 /// </summary>
 public void VideoWallShow()
 {
 try
 {
 var primaryScreen = System.Windows.Forms.Screen.PrimaryScreen;
 var secondaryScreen = Screen.AllScreens.First(screen => screen != primaryScreen);
 videoWall.Left = secondaryScreen.Bounds.Left;
 videoWall.Top = secondaryScreen.Bounds.Top;
 videoWall.Width = secondaryScreen.Bounds.Width;
 videoWall.Height = secondaryScreen.Bounds.Height;
 videoWall.WindowState = WindowState.Normal;
 videoWall.Loaded += (_s, _e) => videoWall.WindowState = WindowState.Maximized;
 videoWall.Show();
 }
 catch (Exception ex)
 {

75

 Debug.WriteLine(ex.Message);
 }
 }

 // Opens the Air Quality Map and sends it to the video wall mapview
 private void AirQualityMap_Click(object sender, RoutedEventArgs e)
 {
 ActiveMap.Content = AirQuality1;
 videoWall.VideoWallDisplay.Content = AirQuality2;
 AirQuality2.AQLatest.Visibility = Visibility.Collapsed;
 AirQuality2.AQToday.Visibility = Visibility.Collapsed;
 }

 // Opens the Heat Vulnerability mmpk and gives it a basemap
 private void HeatVulnerabilityMap_Click(object sender, RoutedEventArgs e)
 {
 ActiveMap.Content = HeatVulnerability1;
 videoWall.VideoWallDisplay.Content = HeatVulnerability2;
 HeatVulnerability2.HeatVulnButton.Visibility = Visibility.Collapsed;
 HeatVulnerability2.ImperviousSurfacesButton.Visibility = Visibility.Collapsed;
 HeatVulnerability2.AvgTempButton.Visibility = Visibility.Collapsed;
 HeatVulnerability2.PovertyButton.Visibility = Visibility.Collapsed;
 HeatVulnerability2.TreeCanopyButton.Visibility = Visibility.Collapsed;

 }

 // Opens the Natural Disaster Scenes
 private void NaturalDisasterMap_Click(object sender, RoutedEventArgs e)
 {
 ActiveMap.Content = NaturalDisaster1;
 videoWall.VideoWallDisplay.Content = NaturalDisaster2;
 NaturalDisaster2.BookmarkChooser.Visibility = Visibility.Collapsed;
 }

 // syncs the UI's view and the Video Wall's viewpoints as needed
 private void ViewpointChanged(object sender, EventArgs e)
 {
 try
 {
 Viewpoint UIMapViewpoint = AirQuality1.AirMap.GetCurrentViewpoint(ViewpointType.Bo
undingGeometry);
 var UIMapViewGeometry = UIMapViewpoint.TargetGeometry.Extent;
 EnvelopeBuilder newEnvelope = new EnvelopeBuilder(UIMapViewGeometry);
 // The video walls map extent is 1.5x the UI's extent
 newEnvelope.Expand(1.5);
 AirQuality2.AirMap.SetViewpoint(new Viewpoint(newEnvelope.Extent));
 }
 catch (Exception ex)
 {
 Debug.WriteLine(ex.Message);
 }
 }

 private void ViewpointChanged1(object sender, EventArgs e)
 {
 try
 {
 Viewpoint UIMapViewpoint = HeatVulnerability1.HeatVuln.GetCurrentViewpoint(Viewpoi
ntType.BoundingGeometry);
 var UIMapViewGeometry = UIMapViewpoint.TargetGeometry.Extent;
 EnvelopeBuilder newEnvelope = new EnvelopeBuilder(UIMapViewGeometry);
 // The video walls map extent is 1.5x the UI's extent
 newEnvelope.Expand(1.5);
 HeatVulnerability2.HeatVuln.SetViewpoint(new Viewpoint(newEnvelope.Extent));
 }
 catch (Exception ex)
 {
 Debug.WriteLine(ex.Message);
 }

76

 }

 // syncs the UI's camera and the video wall's camera as needed
 private void CameraChanged(object sender, EventArgs e)
 {
 try
 {
 Camera cam1 = NaturalDisaster1.NaturalDisasterBefore.Camera;
 cam1.Elevate(100000);
 if (cam1 != null)
 {
 NaturalDisaster2.NaturalDisasterBefore.SetViewpointCamera(cam1);
 }
 }
 catch (Exception ex)
 {
 Debug.WriteLine(ex.Message);
 }
 }

 // syncs the thumb drag from NaturalDisaster1 and 2
 private void ThumbChanged(object sender, DragDeltaEventArgs e)
 {
 var transform = (TranslateTransform)NaturalDisaster2.thumb.RenderTransform;
 transform.X = Math.Max(0, Math.Min(transform.X + e.HorizontalChange,
 NaturalDisaster2.ActualWidth - (NaturalDisaster2.thumb.ActualWidth - 8)));
 NaturalDisaster2.NaturalDisasterAfter.Clip = new RectangleGeometry()
 { Rect = new Rect(0, 0, transform.X, NaturalDisaster2.ActualHeight) };
 }
 }
}

77

VideoWall Class

using System.Windows;

namespace Hyperwall3
{
 /// <summary>
 /// allows creation of an empty window to host the Video Wall maps
 /// </summary>
 public partial class VideoWall : Window
 {
 public VideoWall()
 {
 InitializeComponent();
 }
 }
}

78

AirQualityMapModel Class

using System;
using System.ComponentModel;
using System.Runtime.CompilerServices;
using Esri.ArcGISRuntime.Mapping;

namespace Hyperwall3.MapClasses
{
 /// <summary>
 /// AirQualityMap Class exposes Feature Services from the EPA’s AirNow Web Map
 /// </summary>
 public class AirQualityMap : INotifyPropertyChanged
 {
 // Property for REST endpoint for the "Ozone and PM (PM2.5 and PM10) - Current" Contours
 private Layer _AirNowLatest_Combined = new FeatureLayer(new Uri(
 "https://services.arcgis.com/cJ9YHowT8TU7DUyn/arcgis/rest/services/AirNowLatestCon
toursCombined/FeatureServer/0"));

 // "Ozone and PM (PM2.5 and PM10) - Today's Forecast" Sensor Locations
 private Layer _AirNowTodaysForecast = new FeatureLayer(new Uri(
 "https://services.arcgis.com/cJ9YHowT8TU7DUyn/arcgis/rest/services/Air_Now_Current
_Monitors_Ozone_and_PM/FeatureServer/0"));
 public Layer AirNowTodaysForecast
 {
 get { return _AirNowTodaysForecast; }
 set { _AirNowTodaysForecast = value;
 OnPropertyChanged();}
 }

 protected void OnPropertyChanged([CallerMemberName] string propertyName = null)
 {
 PropertyChanged?.Invoke(this, new PropertyChangedEventArgs(propertyName));
 }
 public event PropertyChangedEventHandler PropertyChanged;
 }
}

79

HeatVulnerabilityMapModel Class

using System.ComponentModel;
using System.IO;
using System.Runtime.CompilerServices;

namespace Hyperwall3.MapClasses
{
 /// <summary>
 /// Opens the Mobile Map Package (.mmpk) for the Heat Vulnerability Map for Richmond
 /// </summary>
 public class HeatVulnerabilityMap : INotifyPropertyChanged
 {
 private string _filepath = Path.Combine(Directory.GetCurrentDirectory(), "MobileMapPackage
s\\HeatVulnerabilityMap.mmpk");
 public string Filepath
 {
 get { return _filepath; }
 set { _filepath = value;}
 }

 protected void OnPropertyChanged([CallerMemberName] string propertyName = null)
 {
 PropertyChanged?.Invoke(this, new PropertyChangedEventArgs(propertyName));
 }
 public event PropertyChangedEventHandler PropertyChanged;
 }
}

80

AirQuality ViewModel Class

using Esri.ArcGISRuntime.Geometry;
using Esri.ArcGISRuntime.Mapping;
using System.Windows;
using System.Windows.Controls;

namespace Hyperwall3
{
 /// <summary>
 /// This UserControl accesses the AirQualityMap class
 /// </summary>
 public partial class AirQuality : UserControl
 {
 /// <summary>
 /// Constructor initializes instance of class and creates AirQualityMap Instance/Layers
 /// </summary>
 public AirQuality()
 {
 InitializeComponent();
 Initialize();
 }

 /// <summary>
 /// Method creates instance of AirQualityMap for display and adds map layers
 /// </summary>
 public void Initialize()
 {
 var mapClass = new MapClasses.AirQualityMap();
 var airQualityContour = mapClass.AirNowLatest;
 var airQualityCities = mapClass.AirNowTodaysForecast;
 Map airMap = new Map(Basemap.CreateDarkGrayCanvasVector());
 airMap.OperationalLayers.Add(airQualityContour);
 airMap.OperationalLayers.Add(airQualityCities);
 AirMap.Map = airMap;
 AirMap.Map.InitialViewpoint = new Viewpoint(new Envelope(-134.44, 12.8577894, -
57.1276444, 57.91, new SpatialReference(4326)));
 }

 // Toggles Contours on/off
 private void AQLatest_Click(object sender, RoutedEventArgs e)
 {
 if (AirMap.Map.OperationalLayers[0].IsVisible == false)
 {
 AirMap.Map.OperationalLayers[0].IsVisible = true;
 }
 else
 {
 AirMap.Map.OperationalLayers[0].IsVisible = false;
 }
 }

 // Toggles Sensor Points on/off
 private void AQToday_Click(object sender, RoutedEventArgs e)
 {
 if (AirMap.Map.OperationalLayers[1].IsVisible == false)
 {
 AirMap.Map.OperationalLayers[1].IsVisible = true;
 }
 else
 {
 AirMap.Map.OperationalLayers[1].IsVisible = false;
 }
 }
 }
}

81

HeatVulnerability ViewModel Class

using Esri.ArcGISRuntime.Mapping;
using System;
using System.Linq;
using System.Windows;
using System.Windows.Controls;
using Hyperwall3.MapClasses;

namespace Hyperwall3
{
 /// <summary>
 /// Creates Heat Vulnerability Map and Button Events
 /// </summary>
 public partial class HeatVulnerability : UserControl
 {
 // Exposes instance of model class
 HeatVulnerabilityMap mapClass = new HeatVulnerabilityMap();

 /// <summary>
 /// Constructor initializes methods for opening the mobile map package and adding layers
 /// </summary>
 public HeatVulnerability()
 {
 InitializeComponent();
 OpenMMPK();
 }

 // Opens Heat Vulnerability Map .mmpk and adds layers to view
 private async void OpenMMPK()
 {
 var filepath = mapClass.Filepath;
 Basemap heatBase = Basemap.CreateImageryWithLabels();

 try
 {
 // Load directly or unpack then load as needed by the map package.
 if (await MobileMapPackage.IsDirectReadSupportedAsync(filepath))
 {
 // Open the map package.
 MobileMapPackage heatMap = await MobileMapPackage.OpenAsync(filepath);
 Map HeatVulnerabilityMap = heatMap.Maps.First();

 // Check for map in .mmpk and give to corresponding views
 if (heatMap.Maps.Count > 0)
 {
 HeatVuln.Map = HeatVulnerabilityMap;
 HeatVuln.Map.Basemap = heatBase;
 HeatVuln.Map.OperationalLayers[0].IsVisible = false; // Avg Temp / Daily H
eating
 HeatVuln.Map.OperationalLayers[1].IsVisible = false; // Impervous Surfaces
 HeatVuln.Map.OperationalLayers[2].IsVisible = false; // Tree Canopy
 HeatVuln.Map.OperationalLayers[3].IsVisible = true; // Heat Vulnerability
 HeatVuln.Map.OperationalLayers[4].IsVisible = false; // Richmond Poverty
 }
 }
 else
 {
 // Create a path for the unpacked package.
 string unpackedPath = filepath + "unpacked";

 // Unpack the package.
 await MobileMapPackage.UnpackAsync(filepath, unpackedPath);

 // Open the package.
 MobileMapPackage package = await MobileMapPackage.OpenAsync(unpackedPath);

82

 // Load the package.
 await package.LoadAsync();
 }
 }
 catch (Exception e)
 {
 System.Windows.MessageBox.Show(e.ToString(), "Error");
 }
 }

 // Layer Visibility Click Events
 private void AvgTemp_Click(object sender, RoutedEventArgs e)
 {
 if (HeatVuln.Map.OperationalLayers[0].IsVisible == false)
 {
 HeatVuln.Map.OperationalLayers[0].IsVisible = true;
 HeatVuln.Map.OperationalLayers[1].IsVisible = false;
 HeatVuln.Map.OperationalLayers[2].IsVisible = false;
 HeatVuln.Map.OperationalLayers[3].IsVisible = false;
 HeatVuln.Map.OperationalLayers[4].IsVisible = false;

 }
 else
 {
 HeatVuln.Map.OperationalLayers[0].IsVisible = false;
 }
 }
 private void ImperviousSurfaces_Click(object sender, RoutedEventArgs e)
 {
 …
 }
 private void TreeCanopy_Click(object sender, RoutedEventArgs e)
 {
 …
 }
 private void HeatVulnerability_Click(object sender, RoutedEventArgs e)
 {
 …
 }
 private void RichmondPoverty_Click(object sender, RoutedEventArgs e)
 {
 …
 }
 }
}

83

NaturalDisaster ViewModel Class

using Esri.ArcGISRuntime.Geometry;
using Esri.ArcGISRuntime.Mapping;
using Esri.ArcGISRuntime.Rasters;
using System;
using System.Diagnostics;
using System.IO;
using System.Linq;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Controls.Primitives;
using System.Windows.Media;

namespace Hyperwall3
{
 /// <summary>
 /// UserControl class for creating/managing Natural Disaster Before/After Scenes
 /// </summary>
 public partial class NaturalDisaster : UserControl
 {

 /// <summary>
 /// Constructor handles creation of scene objects and manages Swipe widget
 /// </summary>
 public NaturalDisaster()
 {
 InitializeComponent();
 Initialize();
 thumb.RenderTransform = new TranslateTransform() { X = 0, Y = 0 };
 NaturalDisasterAfter.Clip = new RectangleGeometry() { Rect = new Rect(0, 0, 0, 0) };
 NaturalDisasterBefore.ViewpointChanged += ViewpointChanged;
 InfoText.Opacity = 0.25;
 }

 // This event handler was originally written by Thad Tilton with the Runtime SDK for .NET
team at Esri and adapted to fit my system
 private void Thumb_DragDelta(object sender, DragDeltaEventArgs e)
 {
 try
 {
 var transform = (TranslateTransform)thumb.RenderTransform;
 transform.X = Math.Max(0, Math.Min(transform.X + e.HorizontalChange, this.ActualWi
dth - thumb.ActualWidth));
 NaturalDisasterAfter.Clip = new RectangleGeometry() { Rect = new Rect(0, 0, transf
orm.X, this.ActualHeight) };
 }
 catch (Exception ex)
 {
 Debug.WriteLine(ex.Message);
 }
 }

 // Syncs camera between Before and After Map
 private void ViewpointChanged(object sender, EventArgs e)
 {
 try
 {
 Camera beforeCamera = NaturalDisasterBefore.Camera;
 if (beforeCamera != null)
 NaturalDisasterAfter.SetViewpointCamera(beforeCamera);
 }
 catch (Exception ex)
 {
 Debug.WriteLine(ex.Message);
 }
 }

84

 // Event handler corresponds to ComboBox on NaturalDisasterView.xaml
 private void OnBookmarkChooserSelectionChanged(object sender, SelectionChangedEventArgs e)
 {
 // Get the selected bookmark and apply the view point to the map
 Bookmark selectedBookmark = (Bookmark)e.AddedItems[0];
 Camera cam1 = NaturalDisasterBefore.Camera;
 NaturalDisasterBefore.SetViewpoint(selectedBookmark.Viewpoint);
 }

 // Initialize creates the Map objects, assigns rasters, and creates bookmarks
 private async void Initialize()
 {
 // add imagery basemap to both scenes
 Scene BeforeMap = new Scene(Basemap.CreateImageryWithLabels());
 Scene AfterMap = new Scene(Basemap.CreateImageryWithLabels());

 // wait for scenes to load
 await BeforeMap.LoadAsync();
 await AfterMap.LoadAsync();

 // Assigns Scene objects to View
 NaturalDisasterBefore.Scene = BeforeMap;
 NaturalDisasterAfter.Scene = AfterMap;

 // List containing paths to each "before" raster
 string[] beforeimages;
 String fpath = Path.Combine(Directory.GetCurrentDirectory(), "BeforeImages\\");

 beforeimages = Directory.GetFiles(fpath, "*", SearchOption.AllDirectories).Select(x =>
 Path.GetFileName(x)).ToArray();

 // List containing paths to each "after" raster
 string[] afterimages;
 String fpath2 = Path.Combine(Directory.GetCurrentDirectory(), "AfterImages\\");

 afterimages = Directory.GetFiles(fpath2, "*", SearchOption.AllDirectories).Select(x =>
 Path.GetFileName(x)).ToArray();

 // Iterate through "before" raster list and add each one to the BeforeMap
 foreach (var item in beforeimages)
 {
 // specify filepath to raster location
 string filepath = Path.Combine(Directory.GetCurrentDirectory(), "BeforeImages\\" +
 item);

 // Load the raster file
 Raster myRasterFile = new Raster(filepath);

 // Create the layer
 RasterLayer myRasterLayer = new RasterLayer(myRasterFile);

 // Add the layer and bookmark to the map
 BeforeMap.OperationalLayers.Add(myRasterLayer);

 // Wait for the layer to load
 await myRasterLayer.LoadAsync();

 //Creates an envelope for the current Raster
 var rasterGeometry = myRasterLayer.FullExtent;
 EnvelopeBuilder newEnvelope = new EnvelopeBuilder(rasterGeometry);
 newEnvelope.Expand(1.5);

 // Creates an envelope for comparison to bookmark location
 EnvelopeBuilder textEnvelope = new EnvelopeBuilder(rasterGeometry);
 textEnvelope.Expand(2.5);

 var xMax = newEnvelope.XMax;
 var yMax = newEnvelope.YMax;

85

 var xMin = newEnvelope.XMin;
 var yMin = newEnvelope.YMin;
 var spatialreference = newEnvelope.SpatialReference;

 // Converts newEnvelope to a geometry object that can be read as a Viewpoint
 Envelope rasterEnvelope = new Envelope(xMin, yMin, xMax, yMax, spatialreference);

 // Create Bookmark location and name for current raster
 // Raster needs spatial reference to load
 try
 {
 if (rasterEnvelope.SpatialReference != null)
 {
 Viewpoint viewpoint = new Viewpoint(rasterEnvelope);
 Bookmark bookmark = new Bookmark
 {
 Name = Path.GetFileNameWithoutExtension(item),
 Viewpoint = viewpoint
 };
 NaturalDisasterBefore.Scene.Bookmarks.Add(bookmark);
 BookmarkChooser.Items.Add(bookmark);
 }
 }
 catch (Exception ex)
 {
 Debug.WriteLine(ex.Message);
 }
 }

 // Iterate through "after" raster list and add each one to the AfterMap
 // Same as the one for the BeforeMap
 foreach (var item in afterimages)
 {
 // specify filepath to raster location
 string filepath = Path.Combine(Directory.GetCurrentDirectory(), "AfterImages\\" +
item);

 // Load the raster file
 Raster myRasterFile = new Raster(filepath);

 // Create the layer
 RasterLayer myRasterLayer = new RasterLayer(myRasterFile);

 // Add the layer and bookmark to the map
 AfterMap.OperationalLayers.Add(myRasterLayer);

 // Wait for the layer to load
 await myRasterLayer.LoadAsync();

 }
 }
 }
}

87

Appendix B. Hyperwall How-To

The following manual describes the process for updating the maps in the Hyperwall

Application.

Adding Imagery to the Natural Disaster Scene

Step 1: Get georeferenced Raster format (preferably TIFF) images from Before and After

the natural disaster or event. Change the file name for each image to be the name that will

show up on the bookmark selector within the application. Example:

v0i31mv030g10202015.tif → Seti Valley Flooding.tif

Step 2: Add the images to an ArcGIS Pro project and build pyramids for the images.

Step 3: Save the before image (with .ovr pyramid file) to the BeforeImages folder. Find

this folder by going to the file directory of the Hyperwall Application and open the

following directory: C:\…\Hyperwall3\Hyperwall3\bin\Debug\BeforeImages.

Step 4: Save the after image (with .ovr pyramid fil) to the AfterImages folder. Find this

folder by going to the file directory of the Hyperwall Application and open the following

directory: C:\…\Hyperwall3\Hyperwall3\bin\Debug\AfterImages.

Step 5: The application handles the rest. Run the Hyperwall Application, open the

Natural Disaster Scene and ensure the images load correctly in the application.

Updating the Heat Vulnerability Map

Step 1: Open the data for the Heat Vulnerability Map in ArcGIS Pro.

Step 2: Customize the layers to show the legend and symbology of choice.

88

Step 3: Package the map as a Mobile Map Package (under the “Share” tab).

Step 4: Navigate to the MobileMapPackages folder within the application’s file directory:

C:\…Hyperwall3\bin\Debug\MobileMapPackages.

Step 5: Ensure the file name matches the Mobile Map Package currently in the

MobileMapPackages folder. “HeatVulnerabilityMap.mmpk”.

Step 6: Run the Hyperwall Application then open the Heat Vulnerability Map and ensure

the map was updated.

Updating the REST Endpoints for the Air Quality Index

Execute this workflow when updated air quality feature services are desired.

Step 1: Copy URLs of the REST Endpoints for the sensor locations and the air quality

surface.

Step 2: Open the Hyperwall3.csproj file in Visual Studio. The file can be found in your

file directory at: C:\...\Hyperwall3.

Step 3: Open the AirQualityMap.cs class file located in the MapClasses folder.

Step 4: Navigate to Line 15 of the class file and replace the URL there with the new URL

of the selected REST Endpoint for the air quality index surface.

Step 5: Navigate to Line 25 of the class file and replace the URL listed with the new URL

for the sensor locations.

Step 6: Run the Hyperwall Application and ensure the new air quality feature services

load.

	The Hyperwall: A Geospatial Education Exhibit for the Science Museum of Virginia
	Recommended Citation

	University of Redlands

