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Preface

This dissertation is mostly comprised of the four published articles in Chapters 2-5.

Permissions to reuse the published articles have been obtained from the publishers,

and letters of permission can be found in Appendix A. The majority of Chapter 6 is

a draft of a paper which will be submitted for publication later.

The main contributions by the author to this research and to the body of knowledge

are:

1. The theory and simulation of the proposed loss mitigation and resolution en-

hancement methods for incoherent light.

2. The implementation, design, construction, and analysis of the experiment in

Chapter 6 to verify the proposed methods and extend them to far-field imaging.

3. The spectral SNR equation (Eq. 6.16) which quantitatively shows how to ma-

nipulate the pupil or transfer function of an imaging system to achieve a desired

high spatial frequency SNR.

The individual contributions for each chapter are as follows:
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1Chapter 2: W. Adams performed the literature review, organized the paper, and

wrote the body text. M. Sadatgol and D. Güney provided technical comments and

edited the manuscript.

2Chapter 3: W. Adams and M. Sadatgol performed modeling and wrote data analysis

code to obtain the primary results in the paper. W. Adams and M. Sadatgol organized

the paper. W. Adams wrote the body text. X. Zhang and D. Güney provided

technical comments. M. Sadatgol and D. Güney edited the manuscript.

3Chapter 4: W. Adams performed the modeling and data analysis to obtain the main

results in the paper. W. Adams organized and wrote the paper. A. Ghoshroy and D.

Güney provided technical comments. D. Güney edited the manuscript.

4Chapter 5: W. Adams performed the modeling and data analysis to obtain the main

results in the paper. W. Adams organized and wrote the paper. A. Ghoshroy and D.

Güney provided technical comments. D. Güney edited the manuscript.

Chapter 6: W. Adams, A. Ghoshroy, and D. Güney developed the underlying theory

and core concepts. W. Adams constructed the experimental imaging system, collected

1W. Adams, M. Sadatgol, and D. Ö. Güney, “Review of Near-field Optics and Superlenses for
Sub-diffraction-limited Nano-imaging,” AIP Advances 6, 100701 (2016).

2W. Adams, M. Sadatgol, X. Zhang, and D. Ö. Güney, “Bringing the ‘perfect lens’ into focus by
near-perfect compensation of losses without gain media,” New Journal of Physics 18, 125004 (2016).

3W. Adams, A. Ghoshroy, and D. Ö. Güney, “Plasmonic superlens image reconstruction using
intensity data and equivalence to structured light illumination for compensation of losses,” Journal

of the Optical Society of America B 34, 2161-2168 (2017).
4W. Adams, A. Ghoshroy, and D. Ö. Güney, ”Plasmonic Superlens Imaging Enhanced by Incoherent
Active Convolved Illumination,” ACS Photonics 5, 1294-1302 (2018).
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experimental data, performed modeling, designed the superlensing device, performed

all data and image processing, and wrote the chapter text. C. Kendrick printed the

spatial filter transparencies for the experimental imaging system. C. Middlebrook

provided the lab space and some of the optics equipment to obtain the experimental

results.
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Abstract

Much research effort has been spent in the 21st century on superresolution imaging

techniques, methods which can beat the diffraction limit. Subwavelength composite

structures called “metamaterials” had initially shown great promise in superreso-

lution imaging applications in the early 2000s, owing to their potential for nearly

arbitrary capabilities in controlling light. However, for optical frequencies they are

often plagued by absorption and scattering losses which can decay or destroy their

interesting properties. Similar issues limit the application of other superresolution

devices operating as effective media, or metal films that can transfer waves with large

momentum by supporting surface plasmon polaritons.

In this dissertation, new methods of mitigating the loss of object information in lossy

and noisy optical imaging systems are presented. The result is an improvement in the

upper bound on lateral spatial resolution. A concentration is placed on metamaterial

and plasmonic imaging systems, and the same methods are subsequently adapted to

more conventional far-field imaging systems.

First, through numerical simulation it is shown that a lossy metamaterial lens has

degraded imaging performance which can be partially compensated by deconvolution

post-processing of the resultant image. This post-processing procedure is then shown

xvii



to emulate a physical process called plasmon injection, which has been previously

implemented to effectively remove the losses in a plasmonic metamaterial.

Next, a more realistic scenario is considered; a thin film of silver acting as a near-field

plasmonic “superlens.” In this case, methods are implemented to model incoherent

light propagation so that the image can be reconstructed using only intensity data,

removing the need for phase measurement. The same procedure from above is fol-

lowed, and the resolution is enhanced. To push the resolution further, a spatial

filtering method called active convolved illumination is developed to overcome the

resolution limit set by the noise floor of the system.

Finally, the spatial filtering methods are applied to more a more conventional far-field

imaging system. Supported by experiment, the lateral resolution of a low numerical

aperture imaging system is improved by blocking photons at the Fourier plane. For

coherent light, a diffractive superlens is designed which uses the same principles from

the above theory, except it encodes the high spatial frequency waves into propagating

waves via a diffraction grating. The result is lateral resolution performance that

surpasses similar previously published devices by 10 nm at a wavelength more than

80 nm longer.

xviii



Chapter 1

Introduction

1.1 Overview

Much of what humans have learned about the universe can be attributed to light.

Points of visible light in the sky first notified humankind of the presence of stars and

the entire cosmos. Perhaps the cell would not have been discovered without the com-

pound light microscope. The discovery of the photoelectric effect led to the earliest

quantum theories of matter and won Einstein his Nobel prize. The development of

radio technology led to the telescopes which first viewed the cosmic microwave back-

ground. Fast forward to today, and it is hard to imagine what contemporary physics

research would look like without the highly coherent light provided by lasers. It seems
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ironic that the humble massless photon, which lays unassuming in the standard model

mostly consisting of massive particles, is the one which has revealed so much about

the material world.

Consequently, it can be argued that photonics is one of the most important fields

in all of science and engineering. As we increase our knowledge and control over

light, we not only increase our understanding of the photon and its interactions, but

also potentially further the reach of our senses to collect information about how the

universe works.

Until the current millennium, we had manipulated light using literally the matter

at hand, i.e., the elements readily available to us on Earth. A quick glance at the

periodic table suggests that this offers a finite set of optical properties, and in turn a

finite set of capabilities. However, arranging these given building blocks into carefully

designed sub-wavelength composite structures can yield interesting effective proper-

ties which are difficult, if not impossible, to find in natural materials. So-called

electromagnetic “metamaterials” have enabled a host of interesting phenomena and

applications, including negative refraction[1], cloaking[2], and superlensing[3].

Perhaps the most exciting prospect of metamaterials is their potential to achieve

high resolution imaging beyond the diffraction limit, the so-called “perfect lens” idea.

This has inspired much research (and skepticism) in recent years, and has proved

not without its unique challenges. There is not one single device which has given an

2



all-encompassing solution to the superresolution problem, as plasmonic superlenses,

hyperlenses, far-field superlenses, and many others, have appeared in the literature

but all have their limitations.

1.2 Problem Statement and Goals

Metamaterials and plasmonics have been proposed as a means or achieving hypo-

thetically unlimited image resolution[3]. However, all of the so-far developed super-

resolution devices have specific limitations than can be overcome to obtain images

with higher spatial resolution. The goal of the research contained in this disserta-

tion was to solve the following issues limiting the spatial resolution of metamaterial

and plasmonic lenses: the absorption of electromagnetic waves which reduces image

contrast and resolution, the reconstruction of images formed by plasmonic lenses us-

ing only intensity data, and the noise limit which imposes an upper bound on the

superresolution capabilities.

A peripheral goal was later taken on to improve the resolution performance of a

conventional far-field imaging system using the same principles that were applied

to the metamaterial and plasmonic lenses. This would provide both experimental

evidence for our theoretical models, as well as demonstrate the versatility of the

methods we developed.
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1.3 Summary of Research

In this dissertation, first provided is a review of near-field optics and superlenses

demonstrated in the literature which can achieve superresolution. Then an explana-

tion is systematically developed of how to improve the spatial resolution of imaging

systems by performing operations on their spatial Fourier spectra. These systems can

be metamaterials, plasmonic films, or even free-space optical systems.

Chapter 2 is a contemporary review of some near-field optical imaging techniques. In

particular, a focus is placed on the improvements afforded by integrating plasmonic

superlenses into scanning near-field optical microscopy (SNOM) systems. Also in-

troduced is the concept of plasmon injection as a possible route for improving the

imaging perfomance of such lenses and near-field optical systems.

In Chapter 3, a near-field imaging system is studied, which is composed of a homoge-

nous slab of material with refractive index n = −1 + in′′. The effect that n′′ has on

the imaging performance of the slab is characterized through numerical simulation,

and it is shown that deconvolution post-processing is one means to compensate for

the attenuation of the Fourier content in the object. It is then shown that this de-

convolution is essentially emulating the physical process of injecting a high spatial

frequency object into the lens at the outset, which can give the original object at the

4



output with no post-processing required.

In Chapter 4, the concepts of Chapter 3 are applied to a more realistic scenario; a

silver slab superlens which is excited by incoherent light. The incoherence of the light

allows for proper reconstruction of the images with only intensity data, removing the

need to perform delicate phase measurements in the near-field of the superlens. The

same physical emulation idea as in Chapter 3 is demonstrated, but this time with

incoherent intensity distributions and not coherent fields.

Chapter 5 is an expansion of the work in Chapter 4. Since the ultimate limit for

deconvolving images is the noise level in the image spectrum, a method is developed

to surpass this limit by spatially filtering the light emanating from the object with a

band-pass filter that has transmission beyond the original noise limit of the superlens.

By providing enough exposure to the object, an image with accentuated high spatial

frequencies can be detected at the output, and then reconstructed to obtain resolu-

tion of an object with only 25 nm separation at an illumination wavelength of 365

nm. The technique is termed ”active convolved illumination” and the spatial filter

required for implementation in this plasmonic system can be realized by a hyperbolic

metamaterial.

In Chapter 6, shot noise is identified as the main resolution limit for a conventional

imaging system, and the work of Chapter 5 is adapted to fit this problem. Put briefly,

the photons contributing to the image signal are reallocated to a portion of the Fourier

5



spectrum near the original noise limit. In the image, there is increased contrast for

the high spatial frequency objects. Experimental results are presented to support the

theory. Then, the design and simulation of a metamaterial “superlens” is shown using

the same Fourier principles. In contrast to many of the previous metamaterial and

plasmonic flat lenses, this device can project the evanescent, high resolution image

data into the far-field via a subwavelength diffraction grating. High fidelity and

signal transfer for the desired diffraction orders is obtained by spatial filtering with

an appropriately designed hyperbolic metamaterial. An imaging simulation shows

that the device can resolve two slit objects separated by 45 nm at an illumination

wavelength of 488 nm.

In short, the primary result for all these above applications is that an increase in

the spatial resolution is demonstrated through both physical manipulation of the

electromagnetic fields as well as through post-processing techniques.
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Chapter 2

Review of Near-field Optics and

Superlenses for Nano-imaging1

2.1 Introduction

The development of technologies such as scanning electron microscopy (SEM), scan-

ning tunneling microscopy (STM), and atomic force microscopy (AFM) offered a

dramatic new insight into physical structures at the nanometer scale. In contrast to

conventional optical microscopy, avoiding the use of photons to gather image infor-

mation at this length scale means that Abbe’s diffraction limit[1] poses no problem.

1Reproduced from W. Adams, M. Sadatgol, and D. Ö. Güney, “Review of Near-field Optics
and Superlenses for Sub-diffraction-limited Nano-imaging,” AIP Advances 6, 100701 (2016);
doi:10.1063/1.4964498, with the permission of AIP Publishing.
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However, the desire to do things such as imaging biomolecular processes in vivo and

characterizing subsurface features in nanoelectronics requires us to return to optical

methods and find a way to beat the diffraction limit. A simple analysis of optical

imaging systems reveals that the Fourier components of an image greater than ω/c

evanescently decay along the optical axis. Therefore, an obvious approach to imaging

beyond the diffraction limit is to access the near-field within a distance z ≪ λ where

the evanescent components containing high spatial frequency information are not yet

fully attenuated. This is the basis for applying near-field optics to imaging beyond

the diffraction limit.

The development of aperture scanning near-field optical microscopes (SNOM and

many other acronyms) in the mid-1980s broke the diffraction limit barrier and

achieved resolutions down to the 20-50 nm range.[2, 3, 4, 5, 6] This resolution was ex-

tended further by apertureless SNOM systems, which employed a nanoscale scattering

probe in the near-field instead of a subwavelength aperture.[7, 8, 9, 10, 11, 12, 13, 14]

At the turn of the new millennium, imaginative new approaches for controlling elec-

tromagnetic waves began to appear for imaging,[15, 16, 17, 18, 19, 20, 21, 22, 23]

photovoltaics,[24, 25, 26] quantum information processing and simulations,[27, 28,

29, 30, 31] wireless communications,[32, 33] and novel optical materials,[34, 35, 36,

37, 38, 39, 40] among many others. The advent of metamaterials with simultane-

ously negative permittivity and permeability[41] brought renewed interest in the

10



properties of left-handed materials first proposed by Veselago,[42] which Pendry

demonstrated could be applied to sub-diffraction-limited imaging with his perfect

lens.[15] Pendrys seminal paper inspired the experimental verification of negative re-

fractive index[43] and superlenses that demonstrate sub-diffraction-limited resolution

in the near-field.[17, 44, 45] However, these superlenses only operate in the elec-

trostatic limit, which restricts the operation to a single polarization of the light in

the near field of the superlens. While there are designs for isotropic negative in-

dex metamaterials (NIMs),[46, 47] there exists no experimental 3D isotropic optical

NIMs suitable for perfect imaging as envisioned by Pendry due to the constraints

of nanofabrication and absorptive losses.[16, 48] Fortunately, a number of promis-

ing loss compensation methods have appeared, including the employment of gain

media,[49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59] geometric tailoring,[60] and plasmon

injection.[61, 62, 63, 64, 65]

Somewhat surprisingly, there is less detailed treatment given in the literature to the

practical matter of extracting the image from a near-field superlens than one might

expect. Since the image is focused into the near-field, one may wonder why there is

any interest in superlensing at all if there is still a need for additional employment

of a scanning microscope. Consequently, a goal of this review is to point out some

recent exploration of this point and possible future directions, in addition to first

providing a comprehensive and contemporary background in relevant near-field optics

and superlenses for nano-imaging. We hope that this will provide both inspiration for

11



new research and a useful reference for researchers studying superlenses and related

topics.

2.2 Aperture Scanning Near-Field Microscopy

2.2.1 Aperture SNOM Concept

In a clear example of being ahead of his time, Synge first proposed the idea of em-

ploying a small subwavelength aperture scanned across a sample for nano-imaging in

1928.[66] His idea was essentially to illuminate an opaque screen with a subwavelength

hole to act as a light source, selectively illuminating small features of a specimen when

brought within a distance smaller than the aperture diameter. Fig. 2.1 shows an il-

lustration of his proposal. Synge even explored the application of piezoelectrics to

his microscope.[67] Due to the experimental constraints of the time however, he was

never able to realize his ideas in practice. A more developed proposal of the same

concept was also published in 1972.[68]

In the 1980s, the development of the STM at IBM essentially provided all of

the necessary micropositioning technology for Synge’s original proposal.[69] Aper-

ture SNOM systems were successfully demonstrated at IBM[2, 4, 70] and Cornell

University[3, 5, 6, 71] shortly afterwards. Instead of an opaque screen however, these

12



Figure 2.1: Illustration of the scanning aperture concept for nano-imaging.
(a) Two features of a specimen in free space are separated by a distance
∆ < λ0/2. When illuminated by a plane wave, the resulting intensity pattern
in the far-field is unresolved due to the diffraction limit. (b) A small aperture
of diameter a ≪ λ0 under the same illumination is brought within a distance
z < a to a specimen and scanned in the lateral direction. Since the near-field
radiation pattern is localized to the aperture itself, each feature is illuminated
separately provided that the spatial frequency characterizing the separation
of the two features is below the cutoff spatial frequency of the aperture. In
other words, a should be smaller than ∆. After the full scan is completed,
the result is a resolved image.

microscopes utilized a tapered fiber probe coated with a metallic film which formed

a small aperture at the probe tip.

2.2.2 Near-field of a subwavelength aperture

To understand the aperture SNOM concept, it is illustrative to very briefly analyze the

field distribution from an illuminated subwavelength aperture. As a simple example,
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consider a slit aperture of subwavelength width a ≪ λ0 in an infinite opaque screen

under monochromatic plane wave illumination with free space wavelength λ0 as in

Fig. 2.2. In this case, it is informative to analyze the fields in the spatial frequency

domain. The wave vector component along the optical axis is

kz =
√

k2
0 − k2

⊥ (2.1)

where k0 = 2π/λ0 and k⊥ are the magnitude and transverse component of the wave

vector, respectively. For an aperture of width a, it is evident that the highest spatial

frequency which can be discriminated is given by 2π/a, defining the cutoff spatial

frequency. To collect the highest spatial frequencies possible as one would like to

do with SNOM, it is appropriate to say that the aperture will function near cutoff

such that k⊥ ≈ 2π/a. Subsequently, k⊥ > k0 for the subwavelength aperture and

in accordance with Eq. 1, kz becomes imaginary and the resulting field from the

aperture is evanescent. Therefore, the resulting field distribution is highly localized

to the aperture. This is an important point, since this confinement of the field near

the aperture is what enables the aperture to locally probe features on a sample. The

resolution of the aperture SNOM is then not solely limited by the incident wavelength,

but rather is strongly dependent on the size of the aperture.

More rigorous electromagnetic calculations of the field distribution of a subwavelength
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Figure 2.2: Illustration of the field distribution from a subwavelength aper-
ture under plane wave illumination. In the near-field zone, the radiation is
strongly confined to the aperture. In the far-field, the resulting diffraction
pattern will become increasingly spread out as the aperture size is decreased,
however this poses no problem for SNOM since as in Fig. 2.1 only small fea-
tures of the sample are excited at each point in the image scan and highly-
resolved image contrast can be achieved.

aperture are given by Bethe[72] and Bouwkamp.[73] Similar calculations for the spe-

cific case of a SNOM aperture probe were later carried out by Drezet et al.[74, 75]

However, the brief analysis presented here is sufficient to understand the localization

of the near-field radiation relevant to the general aperture SNOM concept.

2.2.3 Aperture SNOM probes

SNOM aperture probes have been realized using a variety of fabrication techniques.

Ideally, the probe should combine small aperture size and high transmission to
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achieve both high resolution and signal-to-noise ratio, respectively. For the most

part, aperture probes consist of a tapered optical fiber coated with a metal that

forms an aperture at the very tip. The fiber taper can be realized by either chemical

etching[76, 77, 78, 79, 80] or heating and pulling.[77, 81, 82] Fig. 2.3 shows the typi-

cal processing techniques for producing tapered fiber aperture probes. The chemical

etching method was first performed by coating a fiber with an organic protective

layer and subsequently dipping it into a HF etching solution.[76] The taper is formed

by the meniscus between the organic layer and the HF, with the taper angle being

varied by the use of different organic protective layers.[78] This method does result

in some surface roughness on the sides of the taper, which leads to the formation of

unwanted pinholes in the subsequently deposited metallic coating. This problem was

solved by the so-called tube etching procedure, where the etching is done with the

fiber cladding intact, leaving a tube within which the etching takes place.[79, 80]

Alternatively, the heating and pulling method has been used to produce SNOM fiber

tips with a high degree of smoothness. In short, a fiber is heated by either a laser

or filament and simultaneously mechanically stretched to the breaking point. Here,

the transmission properties can be modified by the heating temperature, heating

area, and the pulling parameters.[81, 82] This method often results in a flat tip at

the aperture plane, but the resulting probe taper is relatively long compared to the

chemical etching technique. To achieve high transmission, the taper angle should be

as high as possible.[83] The ability to produce much shorter cones and high taper angle
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Figure 2.3: Typical fabrication techniques for tapered fiber aperture
probes. The two common approaches to producing tapered fibers are (a)
chemical etching and (b) heating and pulling. After formation of the fiber
tip, subsequent (c) metal deposition results in an aperture at the tip apex
which provides light confinement.

is therefore an advantage of the chemical etching method, since higher transmission

will lead to higher near-field signal during the microscope operation and in turn

higher signal-to-noise ratio. Further engineering of the taper properties can also

be beneficial, for example the triple-tapered probe[84] and the corrugated probe[85]

which both demonstrated dramatically improved light throughput.

After forming the taper at the fiber tip, the next step is to create the aperture. This is

usually done by evaporation of aluminum onto the sides of the fiber taper surface in a

configuration such that the apex of the taper is minimally exposed to the evaporated

metal. The result is commonly an aperture of diameter around 80-100 nm. There are

limitations to the aperture diameter other than the evaporation conditions however.
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The diameter can be no smaller than twice the skin depth of the metal coating,

and sufficient light throughput for very small apertures can cause substantial heating

which may adversely affect imaging results.[86, 87]

Aperture probes other than the tapered fiber have additionally been demonstrated.

Hollow pyramidal/campanile metallic probes produced by conventional semiconduc-

tor fabrication methods were demonstrated in Ref. [88]. Also, batch fabrication of

Si3N4 tips by plasma enhanced chemical vapor deposition was shown in Ref. [89].

These designs aimed to alleviate the problems associated with reproducible fabri-

cation of high quality probes and the relatively small taper angles offered by fiber

probes.

2.2.4 Implementation

Because it was the first form of scanning near-field optical microscopy, the earliest

applications of SNOM to sub-diffraction-limited imaging were of the aperture probe

type. An experimental setup diagram for a typical aperture SNOM system is shown

in Fig. 2.4. In the configuration shown, a laser beam is coupled into the untapered

end of an aperture probe. The probe is attached to an oscillated tuning fork or

similar mechanical device to provide shear force feedback for control of the probe-

sample distance.[90, 91] The probe then illuminates a sample, which is scanned and

18



positioned with piezoelectrics. The light scattered from the sample is collected by

a conventional microscope objective. The wavelength of interest is then selected by

a monochromator, dichroic mirror, or filter before reaching the detector. Amplitude

and phase contrast images can be formed by raster scanning the sample. The system

can be operated in either illumination, collection, illumination/collection, reflection,

or reflection/collection modes as outlined in Fig. 2.5.

2.3 Apertureless Scanning Near-Field Microscopy

2.3.1 Apertureless SNOM Concept

In the interest of historical completeness, it is worth mentioning that the concept

in Fig. 2.1 was not Synge’s only idea for sub-diffraction-limited imaging. He had

also proposed the employment of a small scattering particle situated very close to

a specimen in a correspondence to Einstein.[92] However, Einstein expressed some

concern about the ability to differentiate the scattered signal from artifacts due to

direct illumination of the specimen, leading to Synge’s published aperture design.

Due to the lower limit on aperture size for aperture SNOM, such microscopes can-

not achieve resolutions lower than about 20-30 nm. However, the development of

aperture SNOM was in large part the basis for future near-field optical microscopes.
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Figure 2.4: Experiment diagram of a typical aperture SNOM system. In
this configuration, a laser beam is coupled into a tapered fiber aperture
probe which illuminates a sample. The probe is attached to a shear force
mechanism, often a tuning fork, to provide mechanical feedback for control of
the probe-sample distance. Piezoelectric micropositioning hardware controls
the sample in all three directions. The light scattered from the sample is
collected with a conventional microscope objective, and then filtered before
reaching a detector.

The observation of strong field lobes at the edges of aperture probes suggested that

higher resolution is available by simply reducing the probe to a point.[83, 93, 94]

In direct analogy to STM, the photon scanning tunneling microscope (PSTM) was

demonstrated, which detected the evanescent waves on the boundary of a prism un-

der total internal reflection with a bare, tapered optical fiber.[95, 96, 97, 98, 99, 100]
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Figure 2.5: Operation modes for aperture type SNOM. Depicted from
left to right in the figure is illumination, collection, illumination/collection,
reflection, and reflection/collection modes.

Shortly after, researchers demonstrated similar apertureless SNOM systems that used

a nanoscale tip probe instead of an aperture probe.[7, 8, 9, 10, 11, 12, 13, 14] This type

of microscope is often constructed from an AFM with a cantilever tip that is formed of

either a dielectric, semiconductor, or metal. Apertureless SNOM quickly enabled res-

olutions down to the 1 nm scale.[11] Additionally, there are a number of possible probe

geometries which can be realized and exhibit distinct optical characteristics.[101] An

illustration of the apertureless SNOM concept is shown in Fig. 62.6.

As with any microscopy technique, some mechanism of contrast must be present for

apertureless SNOM. However, some of the earlier aperture and apertureless SNOM

results in the literature were plagued by the appearance of topographic artifacts with

the optical signal.[102] Generally, the desired contrast is resulting from a difference

in optical properties of the constitutive regions on a sample. To address this, an

improved interferometric detection technique was developed to achieve pure optical

contrast images in the absence of topographical artifacts.[103] This method involved
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Figure 2.6: Illustration of the apertureless SNOM concept. Two features
of a sample separated by a distance ∆ < λ0/2 can be resolved with local
excitation by a sharp probe.

demodulating the detected signal at harmonics of the probe tapping frequency by

lock-in amplification, which is discussed in more detail later.

2.3.2 Near-field of a sharp probe

Apertureless SNOM operates in general by introducing some optical perturbation in

the near-field with a sharp probe. The probe can be either treated as a scattering

center or a light source, depending on whether the fields resulting from sample il-

lumination (scattering center) or tip illumination (light source) are dominant. The

two conditions are not independent however, as the scattering efficiency in the former

is related to field enhancement in the latter. Generally, the light source scheme is
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Figure 2.7: Finite element simulation of the field distribution of an illumi-
nated gold probe tip with polarization (a) parallel and (b) perpendicular to
the probe axis. A strong field enhancement is shown at the tip apex in (a).

desired when the detected radiation is frequency-shifted from the excitation as in the

case of spectroscopy. To treat the probe as a source, there must be some enhancement

of the incident fields by the probe tip. It was discovered that the incident radiation

should be polarized parallel to the probe axis for maximum field enhancement at the

tip apex.[104, 105, 106] Field distributions of two different polarizations incident on

a metallic probe are shown in Fig. 2.7.

Qualitatively, two effects are present in the case of the illuminated probe, first be-

ing the lightning rod effect due to small radius of curvature,[107, 108] and second

being the plasmon resonance due to electron oscillations.[107, 109, 110] In reality

the field enhancement depends strongly on the probe geometry and sample surface

topography.[111] Naturally, numerical simulation provides a useful guide for design

when analytical approximations begin to break down. However, care must be taken

when simulating geometries with abrupt curvature and high field gradients. Detailed
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investigations of the field enhancement offered by different probe tips have been con-

ducted using the multiple multipole,[112, 113] finite element time domain,[114] fi-

nite difference time domain,[101, 115] and finite element[108] techniques. The field

enhancement at the apex of sharp probe tips has allowed for apertureless SNOM

fluorescence imaging[116] down to single molecules.[117, 118]

2.3.3 Apertureless SNOM probes

The probe tip geometry and material is of great importance to the SNOM imaging

performance. A fair amount of work has been published studying dielectric and semi-

conductor probes.[8, 11, 112, 118, 119, 120, 121, 122, 123] Metallic tips are usually

preferred due to their more favorable scattering, confinement, and field enhance-

ment characteristics.[14, 105, 116, 123, 124] Some study in the past decade how-

ever has shown that silicon tips are a promising solution for achieving the highest

resolution with apertureless SNOM due to more capable semiconductor fabrication

techniques.[113, 125]

One group combined the benefits of both the aperture and apertureless approaches

by growing a thin metallic wire on an aperture probe tip.[126] This method directly

coupled light from the aperture to the wire for sample excitation, and the background

signal caused by direct tip illumination is reduced. Other geometries include a small
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metallic particle situated on a dielectric tip.[127, 128, 129, 130, 131, 132] Also, a

microscope was demonstrated where a small metallic particle was trapped and posi-

tioned by optical forces.[133] Very recently, a novel corrugated probe geometry has

been proposed.[134] This probe takes advantage of the additional degree of freedom

in surface plasmon dispersion offered by engineering of so-called spoof SPPs first put

forth by Pendry.[135]

2.3.4 Application

Apertureless SNOM systems are often built around an AFM operated in tapping

mode. The amplitude of the probe tapping is controlled by a feedback mechanism

monitored by displacement of a beam deflected off the AFM cantilever head to a

position-sensitive photodiode. This tapping feedback control allows the tip to main-

tain a constant average tip-sample separation. A diagram of the typical experimental

setup is shown in Fig. 2.8. Due to significant background radiation, there is some ad-

ditional care needed for detection of the imaging signal of interest. Separation of the

near-field signal from the background is usually done by means of either homodyne or

heterodyne detection with a lock-in amplifier. In the homodyne detection scheme, the

near-field signal is collected at the tapping frequency or some higher harmonic (2nd or

3rd). In contrast, the heterodyne scheme collects the signal at the tapping frequency
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mixed with a known offset frequency. Harmonic generation occurs due to the nonlin-

ear dependence of the near-field signal on the tip-sample distance described by the

signal Fourier series expansion.[103, 136, 137, 138] The signal-to-background ratio is

increased by demodulation to higher order harmonics. Utilizing this technique allows

for interferometric collection of pure optical contrast images.[103, 139, 140] Further-

more, heterodyne detection can improve the suppression of background fields leading

to better imaging results.[138]

In addition to standard optical and fluorescence imaging, apertureless SNOM

can be employed in high resolution infrared microscopy and Raman spectroscopy.

Of considerable importance for many researchers in chemistry is the application

to Raman spectroscopy, which gives information about the low frequency vibra-

tional modes of molecules. The principle challenge of Raman spectroscopy is the

low light output. A revolution came when surface-enhanced Raman scattering

(SERS) was developed, which allowed for a large enhancement of the Raman light

yield.[141, 142, 143, 144] In SERS, samples are adsorbed onto a rough metallic sur-

face. The enhancement offered by SERS can be attributed to field enhancement by

excitation of localized surface plasmons near the adsorbed sample molecules. Tip-

enhanced Raman spectroscopy (TERS), operates on a similar principle. Leverag-

ing the increased Raman scattered light output of SERS with the highly localized

field enhancement of apertureless SNOM, it is possible to create sub-diffraction-

limited spectroscopic images with TERS that provide sufficient light output for
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Figure 2.8: Experimental diagram for the implementation of a typical
apertureless SNOM system. In principle, an apertureless SNOM can be
constructed by the addition of an optical source and the corresponding de-
tection hardware to an existing AFM. The configuration shown is excited by
a laser beam focused by a microscope objective onto the apertureless probe
on the opposite side of the sample. The resulting signal is collected by the
same objective, and the signal is then filtered before reaching a sensitive
photodetector. The detector signal is processed by lock-in amplification at
some harmonic nΩ of the probe tapping frequency Ω (homodyne) or a mixed
frequency ∆+nΩ (heterodyne), where ∆ is a controlled offset frequency. The
tapping amplitude is controlled by the deflection of a laser beam off the probe
head, which is detected with a position-sensitive photodiode. Positioning of
the probe is provided by piezoelectrics.

detection.[145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160]
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2.4 Superlens for Sub-diffraction-limited Imaging

2.4.1 Development of Superlenses

In 2000, Pendry proposed his original idea of a perfect lens that provides both focusing

of propagating modes and amplification of evanescent modes.[15] His original work

achieved this using a slab of material with refractive index n = 1 that perfectly

transfers the original fields at the object plane to the image plane opposite the lens,

as shown in Fig. 2.9. Pendry also mentioned in his paper that sub-diffraction-limited

imaging could be achieved in the electrostatic limit with a slab of silver. The reason

for this proposal was that silver, like other noble metals, behaves approximately as a

plasma at optical frequencies with dielectric function given by

ε(ω) = 1−
ω2
p

ω2
(2.2)

where ωp is the plasma frequency. Inspection of Eq. 2 reveals that ε becomes neg-

ative when ω < ωp, and is exactly 1 when ω = ωp/
√
2. This condition is where

superlensing occurs in free space, and also where there exists high-k surface plasmons

on the lens interface.[161] This suggests a link between sub-diffraction-limited imag-

ing by evanescent wave amplification and excitation of surface plasmons. It should
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Figure 2.9: (a) Focusing of propagating waves and (b) amplification of
evanescent waves with Pendry’s perfect lens.

be noted however that this simple model describes an ideal plasma and begins to fail

in the practical case where loss in the metal is nonzero. In this case, the permittiv-

ity becomes complex and damping of the electron oscillations occurs. Nonetheless,

the sub-diffraction-limited imaging capabilities of silver planar superlenses were first

demonstrated experimentally in 2005.[17, 45, 162] It should be mentioned however

that the cited resolutions with respect to the diffraction limit do not take into account

the shortening of the incident wavelength by the media immediately surrounding the

lens.

Other superlens designs include left-handed lenses for GHz frequencies,[163, 164, 165]

photonic crystal lenses,[166, 167, 168, 169] and metal-dielectric layered lenses.[19, 170,

171] In the next section, other designs will be reviewed that consider the implemen-

tation of SNOM with the superlens.
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2.4.2 Leveraging Superlensing and Near-field Optics for

Imaging

Upon initial inspection, the practical use of a superlens may be questionable to some,

since the image formed in the near-field must be read by a scanning microscope. This

begs the question as to what a superlens adds to an imaging system, since the image

could instead be directly read with SNOM. A principle objective of this review is to

point out that, in fact, there is evidence to support that employment of superlenses

in conjunction with SNOM provides benefits over SNOM alone.

In 2006, Taubner et al. demonstrated near-field microscopy with a SiC superlens.[172]

Their experiment was configured as in Fig. 2.10. A SiC slab was coated on both

sides with SiO2. The object was a gold film with subwavelength holes evaporated on

one side of the superlens structure. On the opposite side of the lens, the probe of an

apertureless SNOM operating in the scattering configuration was placed. Illumination

was provided by a frequency-tunable CO2 laser operating in the mid-IR regime. By

tuning the illumination wavelength to the superlensing condition around 11 µm, the

authors demonstrated sufficient amplitude and phase contrast with an interferometer

to distinguish the holes on the opposite side of the lens. However, when the wavelength

was tuned to around 9.25 µm where no superlensing occurs, the contrast disappeared.
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Figure 2.10: Experimental characterization of SiC superlens with near-
field microscopy. (a) Diagram of the experiment showing an SNOM probe
in the scattering configuration near a SiC superlens. Subwavelength holes in
a gold film shown in the SEM micrograph in (b) were imaged by the SNOM-
superlens system. (c) Amplitude and (d) phase contrast images were taken
showing resolution of the hole structures. (e) Sufficiently away from the
superlensing condition, the holes are not resolved. Reprinted with permission
from T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand,
Science 313, 1595 (2006). Copyright 2006 AAAS.

In 2011, Kehr et al. reported on a similar experiment using a perovskite oxide su-

perlens shown in Fig. 2.11.[173] As with the SiC superlens, an increase in contrast

was observed near the superlensing condition. Comparison of the resulting superlens

images with control images taken of bare objects with SNOM highlighted the per-

formance enhancement of the superlens. Additionally, a superlens-enhanced probe-

sample coupling was observed at some distance from the sample due to phonon po-

lariton resonance at a wavelength near but away from the superlensing condition.

Applications of this phenomenon include heat-assisted data recording, local thermal
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Figure 2.11: Experimental characterization of perovskite superlenses with
near-field microscopy. From left to right, each subfigure shows the experi-
mental configuration, AFM images of the sample topography, and near-field
images. (a) Bare SrRuO3 objects were imaged with SNOM. (b) Symmetric
and (c) asymmetric superlenses were deposited onto the objects resulting
in resolved images near the superlensing wavelength and an improvement
of the results in (a). Away from the superlensing wavelength, the objects
disappear. Reprinted with permission from S. C. Kehr et al., Nat. Commun.
2, 249 (2011). Copyright 2011 Macmillan Publishers Ltd.

sensors,[174] and metamaterial-based multifunctional circuits.[175, 176] Perovskites

are also attractive because there are multiple options that can satisfy superlensing in

the mid-IR and are ferroelectric so they may be tunable by an applied field. Conse-

quently, layered perovskite superlenses could be used as bandpass filters for near-field

spectroscopic imaging.[177]

2D materials like graphene are promising for superlens-type evanescent field growth
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for continuously-tunable imaging of subsurface structures at IR and THz frequencies

while additionally avoiding the practical challenges of depositing a high quality (i.e.

low loss) superlens.[178] In 2012, a broadband layered graphene lens was proposed

which displayed a simulated resolution of over λ/10.[179] Particular applications of

graphene superlenses include noninvasive imaging of nanowire doping concentrations,

material growth defects, subcellular biological imaging, vibrational absorption mi-

croscopy, and material identification. The problem of depositing a large high-quality

superlens can also be avoided by instead utilizing a local superlens.[180] Here a small

BaTiO3 lamella with subwavelength dimensions was placed over an imaging area in

free space. The resulting sub-diffraction-limited resolution underlines the localized

nature of the excited phonon polariton modes, and also opens the possibility of de-

positing local superlenses on areas of interest on a sample instead of a larger lens that

is likely to contain material defects or unwanted topographical features. Addition-

ally, SNOM scan times would be reduced by scanning a smaller area. Obviously, this

method inherently requires knowledge of where on the sample a useful image could

be obtained, which is not always the case with microscopy.

Recent investigations of a GaAs superlens by Fehrenbacher et al.[181] have reached

similar conclusions about superlens imaging enhancement as in Ref. [172] and Ref.

[173]. A doped GaAs (doping concentration n = 4×1018 cm3) superlens was deposited

between two intrinsic GaAs layers on top of 2 µm gold stripe objects. Comparison

with images collected without the superlens showed a clear contrast enhancement of
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the sub-diffraction-limited image by the superlens configuration. Also, exploration of

imaging a gold particle with SNOM and a 50 nm Si3N4 cap showed that the highest

SNOM resolution can likely be obtained at the superlensing condition of the cap layer

of any object (e.g. cap on a nanoelectronic device), provided that the imaginary part

of the cap material permittivity is sufficiently small.[182]

To avoid the need for a near-field readout of the image from a superlens, there has been

work on other classes of sub-diffraction-limited lenses which function by converting

evanescent modes into propagating modes. In 2006, a so-called far-field superlens

(FSL) was first developed which added a grating structure to a metallic film as in Fig.

2.12 (a).[183, 184, 185] This lens can be thought of as operating similarly to structured

illumination microscopy,[186] where moiré fringes are formed at the spatial frequency

difference between an object field and incident patterned illumination. In the case of

the FSL, the patterned illumination is replaced by a grating with grating wavenumber

Λ. The resulting spatial frequency content of the image is then downconverted to

k′ = k − Λ, and for k ≤ 2k0 the image content can be transferred to the far-field.

Another attempt to bring superlensing to the far-field was also first proposed in

2006, called the hyperlens due to the employment of metamaterials with hyperbolic

dispersion.[18, 20, 22, 23, 187] Hyperbolic metamaterials are of interest for imaging

because they can convert arbitrarily large-k modes into propagating modes by specific

engineering of metal-dielectric interfaces. Fig. 2.12 (b) shows a schematic of an
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Figure 2.12: (a) Far-field superlens and (b) hyperlens for sub-diffraction-
limited imaging. (b) Reprinted with permission from Z. Liu, H. Lee, Y.
Xiong, C. Sun, and X. Zhang, Science 315, 1686 (2007). Copyright 2007
AAAS.

experimental hyperlens.

While these lenses bring high spatial frequency content into the far-field, they are

still near-field optical systems in the sense that the lens must be situated within the

near-field of the object. In this way, far-field superlenses and hyperlenses are com-

parable to apertureless SNOM where some structure in the near-field of an object

scatters evanescent waves to a detector in the far-field. This is in contrast to a conven-

tional lens which only sees propagating waves. Other far-field optical super-resolution

methods that rely on point spread function engineering or stochastic excitation like

stimulated-emission-depletion microscopy[188] and stochastic optical reconstruction

microscopy[189] do exist but are often subject to stringent illumination and sample

fluorescence conditions.
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There are a few obstacles to consider with the FSL and hyperlens as well. By in-

spection of the moiré fringe effect exploited by the FSL, it can be seen that there

will be resolution enhancement only up to 2k0 unless the numerical aperture is in-

creased or some nonlinear harmonic response is introduced, as appearing in saturated

fluorophores.[190] Also, the lens grating must be reoriented rotationally multiple times

to cover the entire bandwidth |k′| = |k−Λ|, adding complexity to a scheme which al-

ready requires substantial postprocessing. With the hyperlens, the object plane is con-

strained to a small size near the inner surface of the lens. Also, the problem of geomet-

ric aberration exists while under plane wave illumination, as in most practical cases.

The highest image resolution that has been experimentally achieved so far using hy-

perlenses corresponds to about one third of the free space optical wavelengths.[23, 191]

This is mainly due to the inherent losses[23, 60, 65] in the constitutive components of

the hyperlens and finite discretization of the metamaterial.[192, 193] It is still worth

pursuing the development of the hyperlens, since there may be methods found that

alleviate these concerns. Another possibility is new ways to utilize the hyperlens such

as illuminating it in reverse as a subwavelength focusing device for nanolithography

or high-density optical data storage.[194, 195]
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2.5 Future Outlook

2.5.1 Future Research for Superlens Imaging

Many of the superlenses demonstrated in the literature take the form of a planar slab

of some conventional material, e.g. silver or silicon carbide, which can be deposited

or grown by traditional microfabrication techniques. These lenses largely function in

the electrostatic limit for a single polarization of the light in the near field, though

for general imaging purposes the superlens ideally would exhibit both an electric and

magnetic response so that arbitrarily polarized fields can be focused and resolved.

This requires the development of bulk isotropic NIMs or suitable photonic crystals.

Unfortunately, the problems of absorptive loss and the fabrication of miniaturized

metamaterials have been major hurdles for the realization of isotropic NIMs operat-

ing in the optical spectrum. Methods for compensating losses in optical metamaterials

have emerged in the last decade. Most notably, the application of gain media has

appeared in the literature.[49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59] There are prob-

lems, however, with the employment of gain media in metamaterials as Stockman

has pointed out.[196] Notably, full or overcompensation of losses with gain leads to

instability that brings the metamaterial into a spaser state. Particularly for imaging

it will be difficult to preserve in the metamaterial the required amplitude and phase
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relations of the underlying optical modes imposed by the object to be imaged.

Recently, a novel method for achieving full loss compensation in negative index meta-

materials was developed, known as the plasmon injection (Π) scheme.[63] In contrast

to many other loss compensation methods, the Π scheme requires no gain medium,

thus eliminates its associated complexities. Instead, full compensation is achieved not

by traditional amplification but by the coherent superposition of externally-driven

“auxiliary” modes with the eigenmodes of a NIM. Surface plasmon polaritons are

injected from auxiliary ports through a metallic grating structure, which are then

superimposed with the native eigenmodes in the metamaterial. The Π scheme allows

for diverging figure-of-merit (i.e., loss free metamaterial), and has been demonstrated

to provide near-perfect loss compensation for superlenses[63, 64] and hyperlenses[65]

applied to sub-diffraction-limited imaging. For imaging, applying the Π scheme is

equivalent to a simple spatial filtering procedure, or superposition of the original

source with an auxiliary source as shown in Fig. 2.13. Further development of the

Π scheme concept could realize the goal of enhanced sub-diffraction-limited imaging

with lower losses. There are also experimentally demonstrated imperfect negative in-

dex flat lenses[197, 198] at optical wavelengths which can benefit from the Π scheme

for resolution beyond diffraction limit.

Based on the literature reviewed here, further exploration into leveraging the imaging
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Figure 2.13: Loss compensation in a superlens with the Π scheme. The
object to be imaged is superimposed with an auxiliary object, compensating
the high spatial frequency components that are attenuated due to loss in
the lens. The result on the image plane is a reconstruction of the original
object. The same result can be achieved through post-processing by inverse
filtering the raw image produced by the lens.

capabilities of SNOM and superlensing could lead to more readily available sub-

diffraction-limited imaging capabilities. One further key point to clarify would be

if superlenses can provide any relaxation of the experimental constraints of SNOM,

for example the mechanical wear on tapping-mode probes, the need for a feedback

system to maintain constant tip-sample distance, and long scan times due to low near-

field signal. In particular, plasmonic and phononic interactions in SNOM-superlens

systems has emerged as a non-trivial and highly complicated physical problem which

should inspire more research. Applying loss compensation techniques such as the

Π scheme to existing superlens designs and novel optical metamaterials for imaging
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could be further investigated. Furthermore, integration of nano-optics and superlenses

with microfluidic devices could provide lab-on-a-chip capabilities for imaging and

characterization of biomolecular structures.[199]

2.6 Conclusion

In this paper, near-field optics and superlenses for imaging beyond Abbe’s diffraction

limit were reviewed. A main focus of the review is the integration of apertureless scan-

ning near-field optical microscopy (SNOM) with superlenses for new sub-diffraction-

limited imaging applications. It should be noted that there are some finer points of

SNOM that were left out of this review. The reader is encouraged to refer whenever

necessary to other reviews that cover some of these points in detail[200, 201, 202] and

the textbook by Novotny and Hecht.[203]
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Chapter 3

Bringing the ‘perfect lens’ into

focus by near-perfect compensation

of losses without gain media1

3.1 Introduction

Metamaterials provide unprecedented control of light for diverse applications such as

wireless communications[1, 2], novel optical materials[3, 4, 5, 6, 7, 8], optical analog

simulators[9, 10], photovoltaics[11, 12, 13], quantum manipulation of light[14, 15, 16],

1Reproduced from W. Adams, M. Sadatgol, X. Zhang, and D. Ö. Güney, “Bringing the ‘perfect lens’
into focus by near-perfect compensation of losses without gain media,” New Journal of Physics 18,
125004 (2016); doi:10.1088/1367-2630/aa4f9e.
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and imaging[17, 18, 19, 20, 21, 22, 23, 24, 25, 26], among many others. The extent to

which an imaging system is capable of capturing high spatial frequency components of

an incoming wave determines its resolution. Those components with spatial frequency

greater than ω/c, where ω is the angular frequency of the wave and c is the speed of

light in a medium, constitute evanescent modes that decay rather than propagate. In

a conventional imaging system, the image detector is located far enough away from the

source so that the evanescent modes are decayed beyond the sensitivity and noise level

of the detector, i.e. in the far-field. Consequently, conventional imaging systems can

only detect spatial frequencies up to ω/c. This is the so-called diffraction limit first

discovered by Abbe[27]. In order to increase the resolution of imaging systems and

retain spatial frequency components greater than ω/c, imaging with a slab of negative

refractive index material was proposed[17]. This approach relies on the negative index

material for focusing of propagating modes and amplification of evanescent modes

incident on the slab. Unfortunately, current negative index metamaterial designs are

not suitable for optical imaging due to the extreme sensitivity to absorptive losses in

the constitutive components[28, 29]. A number of metamaterial loss compensation

schemes using gain media have been proposed[30, 31, 32, 33, 34, 35]. However, the

use of gain media for loss compensation can result in instability and spasing[36].

Previously, a loss compensation scheme that provides full compensation in negative

index metamaterials without the need for a gain medium was proposed, called the

plasmon injection or Π scheme[25]. In the Π scheme, loss compensation is achieved by
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coherent excitation of the eigenmodes of a plasmonic negative index metamaterial by

superimposing externally injected surface plasmon polaritons (SPPs) with the lossy

domestic SPPs in the metamaterial[25, 37, 38]. Here, in analogy with optical am-

plifiers, the externally injected and domestic SPPs resemble the ’pump’ and ’signal,’

respectively. The plasmonic resonator structure presented in [25] is solely a proof-

of-concept device that functions only for normal incidence. However, the underlying

loss compensation mechanism can be generalized to any negative index metamaterial

structure or even homogeneous material and arbitrary angle of incidence, as long as

the physical configuration is such that the injected fields can be superimposed coher-

ently with the eigenmodes of the metamaterial or the homogeneous material. In the

supplemental material of [25], a brief analytical calculation is carried out to demon-

strate how the Π scheme could be applied to a flat silver superlens operating for a

single polarization (i.e., so called ’poor man’s superlens’ under the electrostatic limit

as considered in [17]) to compensate the absorption losses in the superlens. Inter-

estingly, this purely physical phenomenon for loss compensation in the superlens has

been shown to be equivalent to a simple spatial filtering post-processing algorithm.

However, no imaging procedure is carried out explicitly, nor is any demonstration of

imaging with the Π scheme intended in [25]. The question which naturally arises is

’can we use the Π scheme to enhance the performance of a metamaterial superlens,

particularly ’Pendry’s negative index flat lens’ that is known to be extremely sensitive
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to losses[28, 29, 30, 39]. In the current work, we exactly answer this important ques-

tion, which is not considered in [25]. Therefore in the present work we demonstrate,

for the first time, application of the Π scheme to sub-diffraction-limited imaging with

a ’non-ideal Pendry’s negative index flat lens’ (referred to as NIFL for short in the

rest of the paper). By applying this loss compensation scheme, we achieve resolution

of a previously unresolved sub-diffraction-limited object.

Unlike previous near-field negative index flat lens imaging systems, this technique

does not benefit from a lossless negative index material and has no gain require-

ments. The technique developed here is based on a NIFL with a practical value for

loss. Recently, a similar spatial filtering approach to countering losses was proposed

which also considered tuning the material parameters of the NIFL and surrounding

media[40]. However, the optimum values for loss in the NIFL that were assumed

are around one to two orders of magnitude lower than what is used to obtain the

imaging results presented here. Also, there is little deviation between the optimized

material parameters for different spatial frequencies, which suggests the results may

be sensitive to any small changes in those values.
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Figure 3.1: Block diagram of the Π loss compensation scheme for imaging
with a non-ideal Pendry’s negative index flat lens.

3.2 Methods

Figure 3.1 shows the block diagram of the Π scheme applied to imaging with a NIFL.

The procedure begins by producing an image with a NIFL. Then, a filter is applied

to the image that compensates the attenuation of the high spatial frequency compo-

nents. This compensation filter is the inverse of the NIFL transfer function, which

can be calculated analytically or numerically. We should note that the method of

inverse filtering is well known in the field of image processing, however there are two

distinctions to be made between the work presented here and traditional inverse fil-

tering. First, the method in this paper provides compensation for evanescent waves.

Secondly, the compensation of these decayed evanescent waves is intimately related to

a physical phenomenon for loss compensation in metamaterials as described in [25].

The remainder of this paper explains the methods used to perform the scheme loss

compensation procedure and form the resulting resolved image.
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As previously mentioned, the transfer function of the NIFL can be found through

either analytical or numerical calculation. Here, a numerical approach for determining

the NIFL transfer function is presented. For any spatial frequency component, the

transfer function can be described by the relationship between the electric field at the

object plane and image plane. Therefore, in order to find the transfer function it is

sufficient to send known plane waves with different spatial frequency ky and measure

the electric field at the image plane. Figure 3.2 shows the geometry for the NIFL

transfer function calculation using the finite element commercial software package

COMSOL Multiphysics. Periodic boundary conditions (PBC) are imposed on the

top and bottom boundaries, however the simulation domain itself has limited extent

in the y-direction. As a result of the applied PBC in the y-direction, ky becomes a

discretized quantity which can have values of ky = ±m
2π

Wy

, where Wy is length of the

simulation domain in the y-direction and integer m = 0, 1, 2, ... Therefore, an increase

in Wy results in more accurate transfer function in terms of number of data points,

but also increases the computational domain and in turn the simulation time.

After defining the geometric parameters of the NIFL transfer function simulation, the

next step is to define the optical properties of the NIFL itself. Consider εr = −ε′+jε′′

to be the relative complex permittivity and µr = −µ′+jµ′′ to be the relative complex

permeability of the NIFL, where µ′, µ′′, ε′, ε′′ > 0 and j =
√
−1. Then, the refractive
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(a) (b)

Figure 3.2: (a) COMSOL simulation geometry for calculation of the NIFL
transfer function. Plane waves with spatial frequency ky are sent from the
input port on the left and measured at the image plane on the opposite side of
the NIFL. A perfectly matched layer (PML) is added at the right boundary to
suppress the transmitted waves. (b) Cross section of the simulation showing
the location of the object and image planes with respect to the NIFL.

index n of the NIFL is

n = −√
εrµr = −(ε′µ′ − j(µ′ε′′ + ε′µ′′) + ε′′µ′′)1/2. (3.1)

Since ε′′, µ′′ ≪ ε′, µ′, the ε′′µ′′ term can be neglected, and the expression for the

refractive index is simplified to

n ≈ −(ε′µ′ − j(µ′ε′′ + ε′µ′′))1/2 = −
√

ε′µ′

(

1− j

(

ε′′

ε′
+

µ′′

µ′

))1/2

. (3.2)
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Using the binomial approximation, equation 3.2 can be further reduced to

n ≈
√

ε′µ′

(

−1 + j
1

2

(

ε′′

ε′
+

µ′′

µ′

))

. (3.3)

If the real part of the relative permittivity and relative permeability are considered

to be 1, the relations for the refractive index and impedance z of the NIFL can be

written as

n = n′ + jn′′ = −1 + jn′′ ≈ −1 + j
(ε′′ + µ′′)

2
(3.4)

and

z =

√

µr

εr
=

(−1 + jµ′′

−1 + jε′′

)1/2

=

(

(−1 + jµ′′)(−1− jε′′)

1 + ε′′2

)1/2

≈ 1 + j 1
2
(ε′′ − µ′′)

1 + 1
2
ε′′2

≈ 1 + j
(ε′′ − µ′′)

2
. (3.5)

Considering the result of equation 3.5, it can be seen that setting ε′′ = µ′′ results in

an impedance match with free space. However, the effect on the imaging performance

of an impedance mismatch introduced when ε′′ 6= µ′′ is small compared to the effect

of the imaginary part of the refractive index n′′ in equation 3.4, which characterizes

the absorptive loss in the NIFL. As an example to illustrate this, consider the case

of ε′′ = 0.2 and µ′′ = 0.1. From equations 3.4 and 3.5, the resulting n′′ would be

0.15, however the imaginary part of z would be only 0.05. Therefore, for simplicity of

analysis the case of ε′′ = µ′′ can be chosen without much consideration of the effect of
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impedance mismatch. By inspection of figure 3.3, it can be determined that ideally

the loss in the NIFL would be small in order to preserve the higher spatial frequency

components of an image. Unfortunately, fabrication of negative index metamaterials

with low loss operating at optical frequencies is difficult. Therefore, an n′′ of 10−1

is selected for the rest of the analysis, which is reasonable given current fabricated

structures[24]. This corresponds to a figure-of-merit of |n′/n′′| = 10. Although having

such realistic loss levels in the base materials that form the NIFL is sufficient to

benefit from the Π scheme, any further improvement in the loss characteristics of the

base materials using different techniques[12, 30, 41, 42, 43, 44] can have a profound

effect on the Π scheme results.

To conclude the methods used here for characterization of the NIFL, a discussion of

the effect of the NIFL thickness on the performance of the imaging system is required.

Figure 3.4 shows the transfer function as the NIFL thickness 2d changes from λ0/2 to

2λ0. As the results suggest, a decrease in the NIFL thickness reduces the attenuation

of high spatial frequency components, which in turn increases the resolution of the

imaging system. However, the thickness of the NIFL cannot be decreased arbitrarily

for two reasons. First, the NIFL would be constituted by a metamaterial structure,

the minimum thickness of which would be constrained by the size of the corresponding

unit cell. Secondly, as the thickness of the NIFL decreases, the working distance of

the lens also decreases, making mechanical alignment of the imaging system more

difficult.
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Figure 3.3: Transfer function H(ky/k0) of the NIFL imaging system for
different values of ε′′ with εr = −1 + jε′′, µr = −1 + jε′′, d = 0.25µm, and
λ0 = 1µm.

After characterizing the NIFL itself, the next step is to numerically evaluate the

imaging performance. Figures 3.5(a) and (b) show the simulation geometry and

material settings used to produce an image of some arbitrary object with the NIFL

using COMSOL Multiphysics. The object is formed by defining the z-component of

the electric field Ez over the object plane, and image is produced by recording Ez on

the image plane. In figure 3.5(c), an object with three Gaussian features separated by

1µm is defined on the object plane, and the corresponding electric field on the image

plane is recorded. Figure 3.5(d) shows a surface plot of the resulting field distribution
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(
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)

as the NIFL thickness 2d is changed from λ0/2 = 0.5µm to 2λ0 = 2µm.
The results suggest the employment of a thinner NIFL will result in better
imaging performance.

over the simulation domain.

This imaging simulation can be repeated to produce the image from any object with

arbitrary feature size. Once the image is formed, the resolution can be improved by

applying an inverse filter to emulate the Π scheme for compensation of losses in the

NIFL.
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Figure 3.5: (a) The geometry and material settings used to perform nu-
merical simulation of the NIFL imaging system. The extent of the model
in the y-direction is chosen to be 24µm, though the figure shown here is
compressed in the y-dimension to better fit the page. (b) A cross section of
the imaging system showing the working distance of the object and image
planes from the NIFL. (c) The z-component of electric field Ez on the ob-
ject and image planes with incident wavelength λ0 = 1µm and 2d = 0.5µm.
(d) Surface plot of the Ez distribution over the imaging system simulation
domain.
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3.3 Results

In order to improve the resolution of the image obtained by the NIFL, it is important

to amplify the suppressed spatial frequency components. A compensation filter is

required to undo this attenuation made by the imaging system. Obviously, a proper

choice for the compensation filter would be the inverse of the imaging system transfer

function. This corresponds to the Π scheme loss compensation technique for imaging,

where a portion (i.e., pump or auxiliary object) of the total incident field in the object

plane can be thought of as coherently exciting the underlying modes of the system

in order to compensate the losses in the other portion (i.e., signal or actual object to

be imaged) [25]. The equivalent is applying a filter in the spatial frequency domain

that amplifies the components with ky > k0. Figure 3.6(a) shows the compensation

filter for the NIFL imaging system described in figure 3.5. As an example, an object

with features separated by a distance λ0/4, twice beyond the diffraction limit, was

imaged by the NIFL. The results of this procedure are shown in figure 3.6(b). It can

be seen that the sub-diffraction-limit features of the object are not resolved in the

raw image produced by the NIFL. However, after applying the compensation filter a

perfect reconstruction of the original object is achieved.

This procedure can be replicated for any arbitrary object field, provided that enough

of the spatial frequency components required to reproduce the field are available
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Figure 3.6: (a) Fourier spectra for the object, raw image produced by
the NIFL, and compensated image with the corresponding filter H(ky/k0)

−1

resulting from an object with three Gaussian features separated by a distance
λ0/4. (b) Electric field intensities for the original object, raw image produced
by the NIFL, and the compensated image after applying the filter shown in
(a).

to be compensated by the post-processing. Therefore, the limitation to the smallest

feature size one could resolve with this technique would solely be the noise floor of the

detection mechanism at the image plane, in this case the numerical simulation. Since

inverse filtering is prone to noise amplification, it is required to roll off or truncate

the filter at some spatial frequency where the noise floor is reached on the image

plane. In figure 3.6(a), it can be seen that the raw image spectrum begins to flatten

around ky = 2.5k0-3k0. Therefore, simply truncating the filter at 3k0 gives a good

compensated image that avoids noise amplification at high-ky. It is important to note

that truncating the filter in this way requires no a priori knowledge of the object; only

the detected raw image is needed. While this noise limitation is present in practice,

there is no theoretical limit imposed on the compensation scheme presented here.
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The compensated image shown in figure 3.6(b) results solely from post-processing the

raw image with the inverse filter in figure 3.6(a) without using any auxiliary source.

To explain the link between the Π scheme and such inverse filtering step, it can be

shown that providing the appropriate auxiliary source with the original object field

is equivalent to the inverse filter compensation scheme with no auxiliary source. By

adding the auxiliary source, the imaging system is essentially being ’pre-processed’

to physically inject high spatial frequency components of the incident field at the

necessary magnitudes to reconstruct the original object at the image plane. This

is analogous to providing power to the auxiliary ports in the plasmonic structure

presented in [25]. For the present imaging system, the total field incorporating the

appropriate auxiliary field can be calculated from the compensated image spectra in

figure 3.6(a) using the transfer function of the NIFL. The resultant auxiliary input

field, which is simply the difference between the total field and the object field, is

plotted in figure 3.7.

The images resulting from the inverse filter alone and total input are compared in

figure 3.8. There is some small deviation in the two images, which can likely be at-

tributed to the numerical methods used. In the case of the inverse filtered image with

no auxiliary source, Maxwell’s equations are solved with the finite element method,

and then that result is processed with discrete Fourier transforms. These two steps

are also used to calculate the superposition of the original object and auxiliary input

(i.e. total input), however the finite element method is again applied to obtain the
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Figure 3.7: Auxiliary input electric field source. If the original object is
thought of as the ‘signal,’ the field plotted here can be thought of as the
‘pump.’ The superposition of the auxiliary input and original object then
becomes the total input field. The inset shows the finer structure of the
auxiliary source. Fortunately, there is no need to ‘pre-process’ the imaging
system in this way, since excitation of the NIFL with the superposition of
this auxiliary input and the original object is equivalent to simply applying
the inverse filter alone to the raw image in post-processing as evidenced in
figure 3.8.

resulting image. The accumulation of numerical error as the imaging system is solved

multiple times could likely be the source of the small discrepancy between the sole

inverse filter and total input images. Another source of error which is important to

point out is the width of the auxiliary input field in the spatial domain. In figure 3.7,

it can be seen that the auxiliary input has a width of 80 µm. This large aperture

90



k
y
/k

0

0 0.5 1 1.5 2 2.5 3

|F
(E

)|

10
-4

10
-2

10
0

10
2

10
4

10
6

(a)

original object

raw image

inverse filtered image

total input

image from total input

(a)

y/λ
0

-0.75 -0.5 -0.25 0 0.25 0.5 0.75

|E
|2

0

0.2

0.4

0.6

0.8

1

1.2

1.4
(b)

original object

raw image

inverse filtered image

image from total input

(b)

Figure 3.8: (a) Fourier spectra for the total input field incorporating the
auxiliary field in figure 3.7 calculated for an object plane length of 15 µm
(same simulation setup as figure 3.5) and image resulting from the total
input. Fourier spectra for the original object, raw image produced by the
NIFL with no auxiliary source, and the corresponding compensated image
resulting from the inverse filter are reproduced from figure 3.6(a) for com-
parison. (b) Electric field intensities of the original object, image resulting
from the total input field and the inverse filter with no auxiliary source are
compared. Electric field intensity of the raw image (same as figure 3.6(b))
is also shown. It can be seen that the images from inverse filtering with no
auxiliary source and the total input are equivalent with some small discrep-
ancy in the total input image likely resulting from accumulated numerical
error.

auxiliary input is used to calculate the image in figure 3.8(b) in order to minimize

the error resulting from truncating the aperture size, however this error was observed

to not have a strong effect on the image resolution after the width was increased to

approximately 15 µm.

It can be hypothesized that the Π scheme could be applied to compensation of de-

cayed evanescent components in the absence of absorptive loss or negative index.

To test this, calculations were performed to determine if the same compensation

91



scheme can be applied to the loss of high spatial frequencies due to diffraction in free

space. This was done by performing the same calculations as in figure 3.6, but with

the NIFL replaced by free space. The results are shown in figure 3.9. In contrast

to the NIFL imaging system where absorptive loss dominates the transfer function

characteristics[28, 29, 30, 39], in this case diffraction dominates and the transfer func-

tion drops more steeply. Upon initial inspection of figure 3.9(a), the spatial frequen-

cies ky/k0 > 1 which are lost due to diffraction in the raw image can be somewhat

recovered, though only up to ky/k0 ≈ 1.9 where the noise floor is reached. This is as

expected, since the evanescent components of the image decay faster and the noise

floor is reached at a smaller spatial frequency for free space compared to the NIFL

imaging system, where despite some material absorption, the NIFL still provides am-

plification for the evanescent components with respect to the free space. Also, free

space does not perfectly preserve the phase of the propagating field components as

is the case for the NIFL imaging system. Consequently, the compensation scheme is

less successful and works for a narrower band than with the NIFL as in figure 3.6,

limiting the resulting resolution. This is evident in figure 3.9(b), where an attempt

to recover the object with λ0/4 feature size is unsuccessful. Therefore, the advan-

tages of applying the compensation scheme with the NIFL instead of free space is

that the NIFL preserves a larger band of spatial frequencies that can be recovered

by the compensation scheme, and it also provides perfect phase compensation for the

propagating field components with ky/k0 < 1. In other words, it is still important to
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Figure 3.9: Results of simulations performed as in figures 3.2 and 3.5 with
the NIFL replaced by free space. (a) Fourier spectra for the original object,
raw image, and compensated image, along with the inverse filter calculated
from the free space transfer function. In this case, the filter compensates
the loss of high spatial frequencies due to diffraction in free space rather
than absorptive loss. (b) Electric field intensities for the original object,
raw image, and compensated image are shown. Applying the compensation
scheme to free space for the λ0/4 object is clearly unsuccessful since the high
spatial frequency components in the raw image are too quickly attenuated
to recover.

include the negative index slab in the imaging system in order to successfully recon-

struct images with sub-diffraction-limited feature size. However, it would be possible

to preserve more spatial frequency components of the free space image if the image

plane is moved closer to the object plane.

3.4 Conclusion

In this paper, a study of the optical characteristics and near-field imaging performance

of a NIFL with a practical value for loss was performed. The optical properties of
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the NIFL were investigated analytically, and a numerical calculation of the transfer

function was performed and studied. The simulation results yielded an unresolved

image from the NIFL, which subsequently underwent loss compensation using an

inverse filter that emulates the Π scheme from [25]. This involves the simple post-

processing step of multiplying the raw image produced by the NIFL with the inverse

of the transfer function in the Fourier domain. There are no requirements for electric

or magnetic gain in the NIFL and surrounding media. The demonstrated result is

a perfect reconstructed image with sub-diffraction-limited feature size. Our findings

decouple the more-than-a-decade-long loss problem from the general problem of how

to realize a practical ’perfect lens’ operating in the optical frequencies, and reduce

the problem mainly to amenable design and fabrication issues[45, 46, 47, 48, 49, 50,

51, 52]. Further developments in metamaterials and the Π scheme approach can

lead to advances in other applications besides ultra-high resolution imaging such as

photolithography and optical storage technologies.
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Chapter 4

Plasmonic superlens image

reconstruction using intensity data1

4.1 Introduction

The wave nature of light intrinsically imposes an upper bound on the resolution of far-

field imaging systems[1]. However, the so-called diffraction limit has proved not to be

unsurmountable. Notably, metamaterials enabling extreme control of light[2, 3, 4, 5,

6, 7] entered the arena of superresolution imaging after Pendry’s original proposal of

1Adapted with permission from W. Adams, A. Ghoshroy, and D. Ö. Güney, “Plasmonic super-
lens image reconstruction using intensity data and equivalence to structured light illumination
for compensation of losses,” Journal of the Optical Society of America B 34, 2161-2168 (2017);
doi:10.1364/JOSAB.34.002161, © The Optical Society.
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a “superlens realized by a slab of negative index material or, in the electrostatic limit,

by a film of metal excited below the plasma frequency[2]. A review of metamaterial

super-resolution imaging and near-field microscopy can be found in [8].

Practical realization of a true negative index superlens at optical frequencies is largely

limited by the constraints of modern 3D nanofabrication capabilities[9], the complex-

ity of isotropic designs[10, 11, 12], and the inherent absorptive loss in the metal com-

ponents of negative index metamaterials[13, 14]. Plasmonic superlenses operating for

TM-polarized waves, however, have been fabricated[3, 4, 15, 16, 17, 18, 19, 20, 21],

but their performance is still limited by losses. Our research has taken a winding

path toward solving the loss issue by unconventional means, as illustrated in Fig. 4.1.

In the literature, losses in metamaterials are often countered by implementation of

a pumped gain medium[22, 23, 24, 25, 26, 27, 28, 29, 30, 31]. However, this is not

a desirable approach because the metamaterial can transition to an unstable spaser

state, and the negative refraction can be destroyed due to the requirement for obeying

causality[32]. Also, the few options for gain media operating at specific wavelengths

or limited lifetimes preclude the design of a robust, low-loss metamaterial incorpo-

rating a gain medium. Modifying the geometric structure of the base metamaterial

to alter the induced current distribution also has shown to be beneficial but can only

produce limited compensation[33].
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Figure 4.1: Illustration of our journey in the field of metamaterial loss
compensation for super-resolution imaging. To avoid the use of gain me-
dia, we proposed a new method for compensating losses in metamaterials
(plasmon injection) by adding extra energy with an auxiliary beam and co-
herently superimposing the auxiliary light with the lossy surface plasmon
polariton modes in a metamaterial. We have at this point considered a few
imaging devices for which to apply the plasmon injection scheme (1). They
include a hypothetical imperfect negative index flat lens (NIFL) modeled as
an effective medium with refractive index n = −1 + i0.1, a hyperlens based
on a cylindrical layered hyperbolic medium, and a single-negative plasmonic
superlens (SNPSL) realized by a thin film of silver. The next step (2a) then
became determining the physical field structure with which to excite the
device to implement the compensation scheme. Interestingly, we found that
the result (4) from the structured illumination is equivalent to the result
from a simple image post-processing (2b). Demonstrating the equivalence
(3) and the improved image result (4) for the practical SNPSL under inco-
herent illumination is the purpose of this work.

As an alternative to the above loss-compensation methods, we have recently demon-

strated a novel scheme[34] relying on the coherent superposition of lossy surface

plasmon polariton (SPP) modes in a base plasmonic metamaterial[35, 36] with an

auxiliary beam. This design allowed for additional power to be introduced into the
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system to compensate absorption in the base metamaterial without destroying the ef-

fective negative refractive index. This was termed the plasmon injection scheme but,

in principle, need not be applied to a plasmonic metamaterial design; the underlying

superposition concept is generalizable to an arbitrary field configuration. Because

the application of interest to us is imaging, we equated the physical superposition of

an auxiliary field and the object field with a simple computational deconvolution of

the raw image field produced by an imperfect negative index flat lens, up to a small

numerical error[37]. In other words, we showed numerically that compensating the

loss in the metamaterial lens can be reduced to a simple matter of post-processing the

original image with a reconstruction algorithm determined by the known transmis-

sion properties of the lens system. This was also shown to improve the resolution of

a realistic cylindrical hyperlenses constructed from concentric layers of dielectric and

lossy metal[38, 39]. In fact, we have shown in [39] that this technique can compensate

all major forms of loss in a metamaterial imaging system, including absorption loss,

diffraction or propagation loss, impedance mismatch loss, and loss due to discretiza-

tion of the metamaterial.

Our previous results in [37] have been based on a hypothetical optical effective medium

with refractive index n = −1 + i0.1 illuminated with coherent light, which Fourier

optics theory tells us is linear in complex field amplitude[40]. In practice, however,

at optical wavelengths we can only produce a plasmonic superlens operating for TM

polarization such as in [3], and detecting the phase information for visible and UV
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wavelengths becomes difficult. In this work, we show that, by supplying incoherent

illumination, such as that from a light-emitting diode (LED), the image from a sil-

ver plasmonic superlens can be reconstructed using only real-valued intensity data.

Some inspiration for this approach was found from similar work applied to near-

field microscopy in the absence of a metamaterial lens[41, 42, 43, 44]. The practical

consequence is that a high-quality sub-diffraction-limited image can be formed by

a compact device, as suitable commercially available light sources are packaged at

the millimeter scale[45]. Also, only the image intensity data needs to be detected

for a proper reconstruction, relaxing the difficulties related to phase measurement

at nanometer length scales or the complexity and proper convergence of various ex-

isting phase-retrieval algorithms[46]. This paper describes the underlying theory,

procedure for simulating the incoherent light and imaging system, and the results

for reconstructed super-resolution near-field images from metallic double-slit objects.

Also, the reconstruction results are equated with illumination from a high spatial fre-

quency structured light source to physically compensate the components attenuated

by loss in the imaging system.
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4.2 Imaging Theory and Simulation

The complex degree of coherence γ12(τ), which quantifies the mutual coherence of

waves at two points in space r1 and r2, can be calculated by

γ12(τ) =
Γ12(τ)

[Γ11(0)Γ22(0)]1/2
, (4.1)

where

Γ12(τ) = 〈u(r1, t+ τ)u∗(r2, t)〉 (4.2)

is the cross-correlation of the complex scalar waves u(r1, t) at points r1 and r2, and

Γ11(0), Γ22(0) follow similarly as the autocorrelations of the waves at each point

evaluated at time lag τ = 0[47]. From Schwarz’s inequality, it can be shown that

0 ≤ |γ12(τ)| ≤ 1. (4.3)

Perfectly coherent light is characterized by |γ12(τ)| = 1 and can be realized by a

wave with a perfectly temporally and spatially correlated light source. In contrast,

perfectly incoherent light has |γ12(τ)| = 0 and can be produced by a random light

source. Consider the case where we evaluate only the temporal coherence of the

source, i.e., when r1 = r2, and we have γ12(τ) → γ(τ). For a source with finite
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temporal bandwidth, the coherence time

τc =

∫ ∞

−∞

|γ12(τ)|2dτ (4.4)

characterizes the time interval over which the phase is predictable. For a source with

Gaussian lineshape, the integral from Eq. 4.4 gives

τc =

√

2 ln 2

π

1

∆ν
(4.5)

where ∆ν is the half-power bandwidth of the source, and the pre-factor comes from

normalization of the power spectral density. Therefore, from Eqs. 4.1-4.5, the phase

correlation of a source and, in turn, its degree of coherence are decreased when it

becomes less monochromatic.

Additionally, if we separate r1 and r2, the spatial distribution of the source also be-

comes important to account for when characterizing its coherence. Directly analogous

with temporal coherence, we can characterize the phase correlation of the waves at

two distinct points with a spatial correlation function. Consider an LED, which emits

light by spontaneous emission from a p-n junction, resulting from the radiative recom-

bination of electronhole pairs. The radiative recombination in the junction volume

can be interpreted intuitively as an ensemble of random emitters, which are separated

by a distance much smaller than the center emission wavelength. Consequently, the
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spatial correlation is small such that it is likely negligible. Therefore, we can say that

the LED is totally spatially incoherent in addition to having finite τc.

The coherence of light waves has a well-studied impact on imaging systems. Under

coherent illumination, image formation can be described by the complex amplitude

equation

i(r) = h(r)⊗ o(r), (4.6)

where i(r) is the image, h(r) is the point spread function (PSF) of the imaging system,

o(r) is the object, r is a spatial coordinate, and ⊗ denotes the convolution. For the

incoherent case, Eq. 4.6 becomes an intensity equation

|i(r)|2 = |h(r)|2 ⊗ |o(r)|2. (4.7)

In the presence of additive noise, Eq. 4.7 is modified to be

|i(r)|2 = |h(r)|2 ⊗ |o(r)|2 + n(r), (4.8)

where we consider n(r) a random variable of zero-mean Gaussian probability density

with standard deviation σn determined by the signal-to-noise ratio (SNR) of the

imaging system. From convolution theorem, Fourier transforming Eq. 4.8 gives

I(k) = H(k)O(k) +N(k), (4.9)
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where the capital letters denote the Fourier transforms of the respective intensity

signals and k is the spatial frequency. For small k such that |I(k)| > |N(k)|, by

inspection of Eq. 4.9 it becomes obvious that we can reconstruct the object by

performing the operation

H−1(k)I(k) = H−1(k)(H(k)O(k) +N(k))

≈ H−1(k)H(k)O(k) = O(k).

(4.10)

This is the well-known inverse filter for image deconvolution. For larger k such that

|I(k)| ≤ |N(k)|, however, we have

H−1(k)I(k) ≤ H−1(k)N(k), (4.11)

which dominates the contribution from Eq. 4.10 to the total inverse filtered spectrum

because H(k) → 0 for large k. To avoid this noise amplification, instead of using a

näıve inverse filter, we can use our knowledge of the system SNR as a regularization

parameter to linearly find an estimate Õ(k) of O(k). A common choice for this

estimation is the Wiener deconvolution given by

Õ(k) =

[

H∗(k)So(k)

|H(k)|2So(k) + Sn(k)

]

I(k)

= H−1(k)

[ |H(k)|2
|H(k)|2 + SNR−1(k)

]

I(k)

= DW (k)I(k),

(4.12)
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where SNR(k) = So(k)/Sn(k) is the ratio of the power spectral densities of o(r) and

n(r). It is worth noting here that, for a good realistic detector, a SNR corresponding

to a random noise intensity with Gaussian probability density having σn = 10−6

added to a normalized image intensity spanning the interval [0,1] is a reasonable

estimate[48]. We use this figure for adding noise to the simulated images in the

results section. Noise also can result from roughness on the silver film surface, and

the image contrast may be reduced. However, high-contrast photolithography with

experimental silver superlenses has been achieved[49, 50].

To conclude this discussion of coherence effects on imaging, by illuminating an imag-

ing system with incoherent light from an LED, the image can be deconvolved or

reconstructed using only knowledge of the intensity data, in contrast with the coher-

ent case where the complex image field must be known.

The finite-difference time-domain (FDTD) technique is a widely used numerical tech-

nique for simulating the scattering of electromagnetic waves at subwavelength scales.

An advantage of a time-domain computation such as FDTD is that a short simulation

in time can give the system response to a wide range of temporal frequencies after the

time-series data are Fourier transformed. Because we are interested in modeling in-

coherent illumination, FDTD is desirable over a frequency domain technique because

it requires only one simulation to obtain a broadband result. However, directly sim-

ulating realistic incoherent light by defining a random wave is not practical because
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the coherence time for most real physical sources is long compared with the simulated

time, which for optical frequencies is often on the order of 10−15 s. Additionally, en-

semble averaging of a distribution of random emitters would require tens or hundreds

of simulations to converge to a statistically robust result to mimic spatial incoher-

ence. These difficulties are especially apparent when simulating plasmonic structures

that exhibit large field enhancements and require a high mesh resolution because the

required memory and computing time for a 2D simulation scales approximately by

the square and the cube, respectively, as the Yee cell size is decreased.

Fortunately, these problems can be sidestepped rather conveniently. To efficiently

model the temporal and spatial incoherence, we can use mathematically the results

from a FDTD simulation of a short coherent light pulse, which is easy to simulate.

First, calculating the response due to the finite coherence time of a real physical light

source, such as an LED, can be done by sampling the portion of the broadband FDTD

data in the frequency domain, obtained by a Fourier transformation, corresponding to

the LED band. The resulting spectral simulation data are then only nonzero within

the nonzero portion of the LED spectrum. Second, calculating the response due to

spatial incoherence can be done by simulating each slit of the double slit object we

wish to individually image in Fig. 4.2. Because the object is large compared with

the spatial correlation length of an LED source, the single-slit simulation results on

the image plane can be added in intensity due to the linearity from Eq. 4.7. The

same technique could be applied to simulate a more arbitrary slit object with different
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slit sizes and separations and results in a similar image quality. Increasing the slit

size while keeping the separation constant can slightly increase the image contrast

due to an increase in the center-to-center separation; however, for simplicity we will

consider slit sizes equal to the separation. This technique has an effect similar to

[44], where interference fringes from an image formed with coherent light are reduced

when the spatial coherence of the source is destroyed. The equation describing the

total incoherent simulation procedure used here is given by

〈|Hz(ω0)|2〉 =
∫

W (ω;ω0)|Hz,1(ω0)|2dω +

∫

W (ω;ω0)|Hz,2(ω0)|2dω

=

∫

W (ω;ω0)[|Hz,1(ω0)|2 + |Hz,2(ω0)|2]dω,
(4.13)

where 〈|Hz(ω0)|2〉 is the total time-average intensity result for the double-slit object

under TM-polarized incoherent illumination with center frequency ω0, W (ω;ω0) is

the selected physical source line function with center frequency ω0, and |Hz,1(ω0)|2

and |Hz,2(ω0)|2 are the broadband intensity results from each single-slit simulation.

For this work, we employed MIT electromagnetic equation propagation (MEEP), a

free, open-source FDTD software package developed at MIT[51]. The simulation

geometry can be found in Fig. 4.2. A tAg = 35 nm thick silver superlens is placed

in the computational domain bounded by perfectly matched layers (PML). A tCr =

100 nm thick chromium mask is situated half the silver thickness, tAg/2, above the

superlens interface. The slit width and separation is ∆x. In the actual simulation, we
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Figure 4.2: Two-dimensional FDTD simulation geometry for a double-slit
chromium mask object (green) imaged by a silver superlens (gray). In our
real simulation, only one slit is open, and then the results are flipped along
x and added in intensity to the original to obtain the double-slit result.
Perfectly matched layer (PML) boundaries are implemented to truncate the
computational domain. A TM-polarized magnetic field source (purple line)
is applied to the inner boundary of the upper PML layer. A nondispersive
ǫbackground = 1.88 is added to the background to match −Re[ǫ̂lens] at the
center wavelength λ = 365 nm. The thicknesses of the Cr and Ag layers are
100 and 35 nm, respectively. The image and object planes are situated half
of the silver thickness away from the lens surfaces. The Yee cell size is set
to 1 nm to accurately resolve the fields near the mask interfaces.

only set one of the slits open, then flipped the image plane results along x and added

the intensity result to the unflipped intensity result in accordance with Eq. 4.13

to mimic spatial incoherence. The object and image planes are defined at ±tAg/2

relative to the superlens interfaces. A TM-polarized source is placed at the inner

boundary of the +y PML. The source introduces a Gaussian light pulse in time with

an FWHM of about 0.33 fs. The total simulation time is about 100 times the pulse
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Figure 4.3: Lorentz-Drude complex permittivity ǫ̂r(λ) = ǫ′(λ) + iǫ′′(λ) as
a function of wavelength λ for silver and chromium using the model from
Eq. 4.14. Fit parameters were taken from [52].

width to ensure full decay of all the reflected and absorbed waves.

To account for dispersive permittivity in the silver superlens and chromium mask,

the Lorentz-Drude model[52] was used, given by

ǫ̂r(ω) = 1−
f0ω

2
p

ω(ω − iΓ0)
+

k
∑

j=1

fjω
2
p

(ω2
j − ω2) + iωΓj

(4.14)

where ωp is the plasma frequency, f0 is the oscillator strength for intraband or free-

electron effects, Γ0 is the intraband damping constant, ωj is the jth interband or

bound-electron oscillator frequency, fj is the jth interband oscillator strength, and

Γj is the jth interband damping constant. A plot of the fitted model from Eq. 4.14

with the parameters given in [52] is shown in Fig. 4.3.
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At λ = 365 nm, the silver is excited below its plasma frequency and exhibits rel-

atively low loss, conditions that are amenable for superlensing. Also, there exist

real physical sources with this center wavelength[3]. For these reasons, we select 365

nm as the center wavelength for the FDTD simulation source. The permittivity of

silver at λ = 365 is calculated from Eq. 4.14 to be ǫ̂ = −1.88 + i0.51. Because

ideal superlensing occurs when Re[ǫ̂background] = −Re[ǫ̂lens], a background medium

with nondispersive ǫbackground = 1.88 was applied to the entire simulation domain.

Changing this parameter to a more practical value should not detrimentally affect

the imaging results; rather, it is likely that typical dielectrics to be integrated with

a real fabricated silver superlens would have larger permittivity. This would increase

the numerical aperture and make the effective wavelength shorter. We performed a

PSF calculation with ǫbackground = 2.4 to verify the performance with a more realistic

dielectric[3, 49, 50] and determined that the FWHM was only 1-2 nm larger than the

PSF with ǫbackground = 1.88. The results for this simulation procedure and the image

reconstructions using the deconvolution in Eq. 4.12 are given in the following section.

4.3 Results

After performing the simulations, the time-series data extracted from the image plane

is Fourier transformed in MATLAB, and the magnitude is squared to give |Hz,1(ω)|2+

|Hz,2(ω)|2 from Eq. 4.13. To represent a real physical LED source such as given by

119



[45], W (ω;ω0) from Eq. 4.13 is chosen as a Gaussian line function with a center

wavelength of 365 nm and a bandwidth of 9 nm. The FDTD source spectrum, which

excited the simulation geometry, is given in Fig. 4.4(a), along with W (ω;ω0). The

image plane result |Hz,1(ω)|2+ |Hz,2(ω)|2 for a ∆x = 60 nm double-slit object is given

in Fig. 4.4(b). This is then multiplied with W (ω;ω0) for all x to give the result in

Fig. 4.4(c).

After integrating the result from Fig. 4.4(c) according to Eq. 4.13, the time-average

image plane intensity from the incoherent illumination is obtained. We repeated

this process for two other double-slit objects with ∆x = 30 nm and ∆x = 20 nm.

Using the incoherent PSF measured from a single 20 nm slit simulation using the

same procedure as above, the images were then reconstructed using the linear Wiener

deconvolution from Eq. 4.12. The results are shown in Fig. 4.5, plotted with the

intensity on the object and image planes as indicated in Fig. 4.2. The spikes in the

object plane data are a result of field enhancements at the edges of the Cr mask and

are clearly not transferred to the image plane. It can be seen in Fig. 4.5 that the

reconstructions easily achieve super-resolution of the double-slit objects. Particularly

in Fig. 4.5(c), the distinct slits, which were previously unresolved, are now visible in

the deconvolved image, with a resolution better than λ/18.

Further inspection of Fig. 4.5 reveals that the reconstructed images have smaller

FWHM than the slits themselves, which can be explained by the properties of the
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Figure 4.4: Frequency domain results for the FDTD simulation. (a) FDTD
simulation (black line) and real LED source W (ω;ω0) (purple line) spectra.
The center wavelength for the simulation source is set to 365 nm, but a
blueshift resulted from some numerical error introduced by turning on the
source. The final calculated image is not adversely affected, however, because
the portion of the spectrum sampled by W (ω;ω0) does not vary significantly.
(b) Frequency domain image plane data from the simulation in Fig. 4.2 of a
∆x = 60 double-slit object. This is the bracketed quantity of the integrand
in Eq. 4.13. (c) Result from (b) multiplied by the physical source band
W (ω;ω0) in (a). This is the integrand of Eq. 4.13, which, when integrated
over the frequencies, gives the time-average intensity on the image plane.

PSF, |h(x)|2. We determined the PSF by illuminating a single 20 nm slit and measur-

ing the image plane result. The FWHM of this measurement is comparable with the

FWHM of the image from a single 60 nm slit; thus, it is reasonable to say that slits

below 60 nm in size are described approximately by a delta function. Mathematically,
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Figure 4.5: Linear deconvolution results for image data from (a) ∆x = 60
nm, (b) ∆x = 30 nm, and (c) ∆x = 20 nm double-slits with noise added.
The object and image plane intensities are also plotted and normalized for
comparison. The reconstructions have negative values due to the loss of
information to random noise in the imaging process. Therefore, a physical
result cannot be ensured by applying the filter DW (kx) because the time-
reversal symmetry is broken.

it can be written as

|i∆x(x)|2 = |h(x)|2 ⊗ |o∆x(x)|2

≈ |h(x−∆x)|2 + |h(x+∆x)|2

= |h(x)|2 ⊗ [δ(x−∆x) + δ(x+∆x)],

(4.15)
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where |i∆x(x)|2 is the image resulting from double-slit object |o∆x(x)|2 with charac-

teristic dimensions ∆x as defined in Fig. 4.2. From the first and third lines of Eq.

4.15, we then have

|o∆x(x)|2 ≈ δ(x−∆x) + δ(x+∆x). (4.16)

In other words, having a smaller FWHM in the reconstruction is allowed because small

slits, such as the ones simulated here, produce the same images as delta functions,

so the reconstruction FWHM is only limited by the noise level in the system and not

the slit dimensions.

Another curiosity of Fig. 4.5 is the appearance of negative values in the reconstruc-

tion. Obviously, this result is nonphysical because we cannot measure a negative num-

ber of photons. The origin of this is solely the fact that we apply no non-negativity

constraints in the linear Wiener deconvolution DW (kx) from Eq. 4.12. Because the

forward process in time of imaging the object O(kx) with the optical transfer function

H(kx) includes a loss of information due to added random Gaussian noise, the time-

reversal symmetry is broken. Therefore, trying to reverse the process in time with

the linear filter DW (kx) allows a nonphysical result. We can, however, apply a nonlin-

ear iterative reconstruction that rejects negative values at each iteration. A common

such approach is given by the Richardson-Lucy (RL) algorithm[53, 54]. Employing

the RL algorithm to our double-slit images using the built-in MATLAB function

(deconvlucy) gives the results in Fig. 4.6. After 20 iterations, the algorithm offers
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Figure 4.6: Nonlinear Richardson-Lucy deconvolution results for noisy data
from (a) ∆x = 60 nm, (b) ∆x = 30 nm, and (c) ∆x = 20 nm double-slits.
To obtain these results, the algorithm was run for 20 iterations.

satisfactory reconstructions of the images, which exclude negative values. As in Fig.

4.5, the deconvolved images in Fig. 4.6 show resolution well beyond the diffraction

limit, again better than λ/18 in Fig. 4.6(c) for a previously unresolved object.

Aside from reconstructing superlens images with intensity data, another objective of

this work is to show the equivalence between the linear post-processing technique in

Fig. 4.5 with loss compensation realized by structured light illumination. An obvious
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way to do so analytically is to show the total structured object Ototal(k), which, after

passing through the system, gives rise to a total image equal to the reconstruction

result Õ(k). This can be determined mathematically by

Ototal(k) = DW (k)Õ(k), (4.17)

as propagating through the lens system gives

H(k)Ototal(k) = Itotal(k)

= H(k)DW (k)Õ(k)

≈ Õ(k).

(4.18)

We call them the total object and images to draw comparison with our previous

work[37, 38, 39]. In those cases, an auxiliary coherent structured field is superimposed

with the original object field to give a total object, which is the imaging equivalent

to the plasmon injection scheme from [34], where an auxiliary beam supplies addi-

tional energy to the metamaterial to combat absorption. The total object intensity

distribution, which satisfies Eq. 4.17 for the result in Fig. 4.5(a), is shown in Fig.

4.7.

As previously in Fig. 4.5, because we applied a linear filter with no non-negativity

constraints, the result of Eq. 4.17 before any further manipulation exhibits negative
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Figure 4.7: Total object distribution ototal(x) calculated from Eq. 4.17
for ∆x = 60 nm. A DC offset is applied to make all the intensity levels
positive. (b) Image itotal(x) calculated from Eq. 4.18 resulting from the
object distribution in (a) with the DC offset removed for comparison with
the deconvolved image õ(x).

values in the spatial domain, which are obviously nonphysical. However, a DC offset

simply can be added to the total object to make it non-negative, as in Fig. 4.7(a), and

the resulting image would just be offset accordingly. This procedure is not directly

useful in a practical imaging scenario since it requires knowledge of the reconstruction

Õ(k) but could be useful for photolithography, where the desired intensity on the

image plane is known. For this work, however, it is important to emphasize that Fig.

4.7 shows the equivalence of image reconstruction by post-processing and the physical
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injection of a high-spatial frequency object.

4.4 Discussion and Conclusion

We have recently shown that a similar active reconstruction scheme for metamaterial

lenses can recover even noise-obscured spatial frequency components of an image by

injecting an appropriate high-spatial frequency source covering a finite band convolved

with the object field of interest using coherent light[48]. Practical implementation is

then only dependent on the development of a near-field spatial filter or metasurface

that can physically produce the structured light convolution. This procedure could

then be extended to incoherent light simply by appropriately configuring the physical

filter, in accordance with the intensity linearity from Eq. 4.8. Such an active imple-

mentation of our reconstruction method could dramatically improve the resolution of

metamaterial lenses even in the presence of high absorption loss. Also, it would be

much more convenient to implement with incoherent light because only the intensity

information is required. We plan to perform this implementation in future work.

In summary, we showed the simulation of incoherent imaging of subwavelength

double-slit objects with a plasmonic superlens using the FDTD method. The resulting

images were reconstructed using the linear Wiener deconvolution and the nonlinear

Richardson-Lucy deconvolution. Both algorithms gave reconstructions with improved
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contrast and decreased FWHM. Resolution better than λ/18 was achieved with both

algorithms. The linear deconvolution results were unified with the physical injection

of structured light, corresponding to the compensation of the losses in the superlens

imaging system. The results of this work show that our previous loss compensation

methods can be carried out using only intensity data if incoherent light is provided.

The practical implication is that a high-quality super-resolution image can be formed

by a thin film plasmonic lens illuminated by a compact, inexpensive light source such

as a light-emitting diode and subsequently reconstructed with only intensity data.
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[42] N. Garćıa and M. Nieto-Vesperinas. Direct solution to the inverse scattering

problem for surfaces from near-field intensities without phase retrieval. Optics

Letters, 20(9):949–951, May 1995.
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[44] Luiz Gustavo Cançado, Roxana Rezvani Naraghi, and Aristide Dogariu. Passive

near-field imaging with pseudo-thermal sources. Optics Letters, 42(6):1137–1140,

March 2017.

[45] UV-LED/NICHIA CORPORATION.

[46] J. R. Fienup. Phase retrieval algorithms: a comparison. Applied Optics,

21(15):2758–2769, August 1982.

[47] Joseph W. Goodman. Statistical Optics. John Wiley & Sons, April 2015. Google-

Books-ID: 9Ol8CAAAQBAJ.

[48] Anindya Ghoshroy, Wyatt Adams, Xu Zhang, and Durdu Ö Güney. Active plas-
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Majewski. Optical properties of metallic films for vertical-cavity optoelectronic

devices. Applied Optics, 37(22):5271–5283, August 1998.

[53] William Hadley Richardson. Bayesian-Based Iterative Method of Image Restora-

tion*. JOSA, 62(1):55–59, January 1972.

[54] L. B. Lucy. An iterative technique for the rectification of observed distributions.

The Astronomical Journal, 79:745, June 1974.

137





Chapter 5

Plasmonic Superlens Imaging

Enhanced by Incoherent Active

Convolved Illumination1

5.1 Introduction

The theory and experimental demonstration of metamaterials has inspired interesting

avenues of imaging,[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] lithography,[13, 14] and beam

generation[15] beyond the diffraction limit, particularly motivated by the prospect of

1Reprinted (adapted) with permission from W. Adams, A. Ghoshroy, and D. Ö. Güney, ”Plasmonic
Superlens Imaging Enhanced by Incoherent Active Convolved Illumination,” ACS Photonics 5,
1294-1302 (2018); doi:10.1021/acsphotonics.7b01242. Copyright 2018 American Chemical Society.
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a perfect lens[16]. Researchers have quickly realized superlenses[1, 2, 3, 4, 5, 6, 13, 14],

hyperlenses[7, 8, 9, 10], integrated metalenses,[11, 15] and non-resonant elliptical

lenses,[12] which can either amplify or propagate evanescent waves carrying the pre-

cious high spatial frequency information of an object. However, these efforts have

stopped short of creating a truly perfect lens, since their resolution is limited by

losses and they cannot focus light of arbitrary polarization especially at optical wave-

lengths. Metasurfaces[17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28] with unprecedented

wavefront manipulation capabilities have also emerged to overcome challenging fab-

rication and attenuation issues[29, 30, 31, 32, 33, 34] relevant to three-dimensional

metalenses and other metadevices.

We have previously shown a technique for compensating the loss in a plasmonic

metamaterial[35] by injecting additional surface plasmon polaritons into the meta-

material via a coupled external beam[36]. This allows the introduction of ad-

ditional energy into the system to compensate for absorption loss in the metal-

lic structures without detrimentally altering the effective negative refractive index.

In contrast to traditional loss compensation methods which often implement gain

media[37, 38, 39, 40, 41, 42, 43, 44, 45, 46], the so-called “plasmon injection” (Π)

scheme does not suffer from the instability introduced by gain or any issues of

causality[47]. The desired effective parameters of the metamaterial can then be pre-

served, and the many practical problems of implementing gain media can be avoided,

including the selection of suitable materials and pump sources for specific wavelengths
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and their limited lifetimes. We subsequently translated the Π scheme to superres-

olution imaging with a homogeneous negative index flat lens (NIFL) with nonzero

loss[48], a hyperlens[49, 50], and a silver superlens[51]. Our findings showed that

linear deconvolution of the image produced by a lossy metamaterial lens is equivalent

to physically compensating the loss with injection of an additional structured source,

as originally demonstrated with the Π [36]. However, passive post-processing can

only recover spatial frequency components which are not lost to random noise in the

imaging process.

To push the performance of our compensation method further, we developed an active

version which relies on the coherent convolution of a high spatial frequency function

with an object field focused by a lossy NIFL[52]. Selective amplification of a small

band of spatial frequencies by spatially filtering the object under a strong illumination

beam can favorably alter the transfer function so that spatial frequency components

which would originally be lost to noise can be successfully transferred to the image

plane. In this article, we present a more advanced and versatile method that alterna-

tively employs a simple plasmonic superlens structure illuminated by incoherent UV

light, avoiding the complexity and practical difficulties related to phase retrieval or

phase detection of coherent fields. Numerical imaging results with this method can

resolve point dipole objects separated by a few tens of nanometers, an improvement

over passive post-processing. Additionally, we identify that signal-dependent noise

provides a limitation to this method and discuss potential strategies for experimental
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implementation.

5.2 Theoretical Description and Noise Character-

ization

Incoherent linear shift invariant imaging systems can be conveniently described by

the intensity convolution relation

i(r) = h(r) ∗ o(r), (5.1)

where i(r) is an observed intensity image, h(r) is the incoherent point spread function

(PSF) of the system, o(r) is the object intensity, r is a position coordinate, and ∗

denotes the convolution operation. Here we will treat the intensities as normalized

quantities. Since convolution in position space is equivalent to multiplication in fre-

quency space, Fourier transformation of eq 5.1 gives the resulting spatial frequency

content on the image plane as

I(k) = H(k)O(k), (5.2)

where k is the spatial frequency and the capital letters denote the respective Fourier

transforms. Observing the theoretical and experimental transmission properties of
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lossy near-field superlenses shows that H(k) has a low-pass filtering effect on the

image[16, 53, 54, 55, 56]. Consequently, many of the high spatial frequency compo-

nents of the object are not transferred to the image plane. This is problematic for the

imaging of nanometric objects, since the absence of the high-k information reaching

the detection plane can result in an indiscernible blurry image.

To combat the attenuation of this information, we propose a method to recover it by

adding additional energy to the system, which we call active convolved illumination

(ACI). Consider an ”active” object oACI(r) obtained by the convolution

oACI(r) = o(r) ∗ a(r) + a0, (5.3)

where o(r) is the object distribution we wish to obtain, a(r) is a function that passes

high spatial frequencies which we use to inject extra energy to compensate the decay-

ing transmission, and a0 is a “DC offset” to ensure that ∀r : oACI(r) ≥ 0. The choice

of a0 will be evidently dependent on the term o(r)∗a(r), and we select it as a constant

for simplicity. However, in a real imaging system, the non-negativity of oACI(r) will

automatically enforced by the physical propagation, meaning that no knowledge of

the object o(r) would be required. The spatial frequency content is then

OACI(k) = O(k)A(k) + a0δ(k). (5.4)
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The relation in eq 5.4 is not very informative until we specify the mathematical form

of A(k). Therefore, let us define

A(k) = 1 + P (k) (5.5)

where P (k) is of a form convenient in terms of mathematical simplicity and practical

considerations, such as a Gaussian function. To perform the ACI compensation, we

can then define a series of Gaussian P (k) and subsequently convolve A(k) with O(k).

Explicitly, P (k) can be written as

P (k) =
∑

j

Pj exp

[

−(k− kj)
2

2σ2
j

]

, (5.6)

where j is the Gaussian number, σj is a parameter proportional to the spatial fre-

quency bandwidth of the jth Gaussian, and Pj and kj are the amplitudes and center

spatial frequencies for the jth Gaussian, respectively. Propagation of the ACI object

through the superlens system to the image plane gives

H(k) [O(k)A(k) + a0δ(k)]

= H(k)O(k) +H(k) [O(k)P (k) + a0δ(k)]

= I(k) + IACI(k).

(5.7)

The term H(k) [O(k)P (k) + a0δ(k)] represents the ACI contribution to the image

plane spatial frequency content, IACI(k). In order to collect deterministic information
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on the image plane for a selected k within the bandwidth of P (k), we then must satisfy

the inequality

|H(k)O(k)A(k)| > |N(k)|, (5.8)

where |N(k)| is the noise level. In summary, the reason this method can provide more

spatial frequency content than simple passive propagation is that we can control

the “effective” transfer function so that high-k components of O(k) can reach the

image plane without being fully attenuated below the noise level, provided that Pj is

sufficiently large.

To evaluate the prospects of our ACI method in a practical imaging scenario, the

effects of noise must be taken into account. Particularly in the case of intensity

measurements, since the optical power applied with the active convolution will become

large, understanding the signal-dependent nature of the noise is crucial, since the

resulting image will possess a substantial mean pixel value. In turn, the signal-

dependent noise level will be inherently increased compared with passive imaging. To

obtain a noisy image in(r) we assume a parametric noise addition of the form

in(r) = i(r) + i(r)γu(r) + v(r), (5.9)

where i(r) is the noiseless image, u(r) and v(r) are independent zero-mean Gaussian

random variables, and γ is a parameter satisfying |γ| ≤ 1. In this case, we take each

term of eq 5.9 to represent the corresponding photon counts read out by the detector.
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Additionally, in all following calculations, the photon counts and their corresponding

standard deviations are normalized to the maximum count value of the original object

distribution that we wish to image. We maintain the same notation for i(r) as eq

5.1 since we treat both the intensities and photon counts are normalized. Due to the

independence of u(r) and v(r), we can then write the standard deviation of in(r) as

σn =
√

i(r)2γσ2
u + σ2

v , (5.10)

where σ2
u and σ2

v are the variances of u(r) and v(r), respectively. For our ACI method,

i(r) will become large such that v(r) is negligible, assuming σu and σv have similar

orders of magnitude. Therefore, we can simplify eq 5.10 to be

σn = σui(r)
γ. (5.11)

Let us then define a signal-to-noise ratio (SNR),

SNR =
i(r)

σn

=
i(r)

σui(r)γ
=

i(r)1−γ

σu

. (5.12)

Optical detectors can reach a SNR of around 60 dB[52, 57]. If we select γ = 1 in eq

5.12, σu becomes 10−6 for a 60 dB SNR. However, for most realistic detectors γ = 0.5
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due to the Poisson distribution of photon noise [58]. In this case, eq 5.12 becomes

SNR =

√

i(r)

σu

, (5.13)

and the SNR is evidently dependent on the signal.

5.3 Imaging Simulation

To model a realistic silver superlens structure, we consider a geometry similar to an

already experimentally realized superlens which transfers image intensity data onto a

photoresist (PR) layer[1]. In order to obtain the PSF for this superlens structure, we

simulated the point dipole response with the commercial finite-difference time-domain

solver Lumerical FDTD Solutions. The simulation geometry and calculated PSF can

be found in Figure 5.1. In principle, the image plane for a flat silver superlens should

lie at the z-position where the phase is matched to the object plane. However, there

is no such well-defined image plane in Figure 5.1 since the object lies further than a

lens thickness from the lens interface on the object side, and the developed PR on

the imaging side will have a topographical distribution with varying z. Therefore,

we somewhat arbitrarily selected an image plane 40 nm from the lens interface in

the PR layer for our calculations. This actually highlights that even a defocusing of

the image can be overcome with our ACI method. The dipole source is defined as
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a y-oriented magnetic dipole with center wavelength λ0 = 365 nm and bandwidth

∆λ = 9 nm to mimic the spectrum of a commercially available UV light-emitting-

diode (LED) [59]. Dispersion in the silver is modeled with a fit to experimental data

[60]. The time-average intensity signal in the simulation is finally obtained by an

average of the squared modulus of the y-component of the magnetic field, |Hy(x, y)|2,

over the bandwidth of the LED source[51]. In Figure 5.1, the PSF is asymmetric and

narrower along x. This is expected, since the Ag superlens has negative permittivity

at λ0 = 365 nm and can only effectively focus the magnetic field in the direction

perpendicular to the dipole orientation. Therefore, illumination with an unpolarized

source may slightly worsen the achievable spatial resolution.

To obtain the image resulting from a spatially-incoherent distributed object, we can

define a distribution of dipole sources on the object plane. Simulating the spatially-

incoherent object is then easily performed by adding the contributions of each dipole

to the image plane time-average intensity separately. For example, if we consider an

object consisting of n dipoles each with intensity aj and located at position rj, to

obtain the resulting image plane distribution i(r) we perform the summation

i(r) =
n
∑

j=1

[h(r) ∗ ajδ(r− rj)] , (5.14)

following from the imaging theory in eq 5.1. An example simulation is shown in Figure

5.2 with n = 4, a1 = a2 = a3 = a4, r1 = (0, 0) nm, r2 = (25, 0) nm, r3 = (−100, 0)
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Figure 5.1: Three-dimensional FDTD superlens simulation. A single mag-
netic dipole embedded in a polymethyl methacrylate (PMMA) dielectric
layer is oriented along y and situated 40 nm above the superlens. The image
plane (dashed line) in the photoresist (PR) layer is chosen to lie 40 nm be-
low the superlens. The lower plot shows the resulting image plane intensity
distribution, which is the PSF of the superlens structure for y-polarization
of the magnetic field.

nm, and r4 = (−25, 50) nm. It can be seen that the two sources near the origin, which

are separated by a distance of 25 nm, are unresolved even after deconvolution with

the iterative Richardson-Lucy algorithm [61, 62]. The low-pass filtering due to H(k)

therefore cuts off some of the spatial frequencies that are required for reconstruction

of the object. Using our active convolution method, we can recover the lost spatial

frequencies that are beyond the cutoff of the passive imaging system.
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Figure 5.2: Superlens incoherent imaging simulation example of four arbi-
trarily positioned magnetic point dipole sources. (a) The source distribution
at the object plane. (b) Intensity distribution on the image plane. (c) Pas-
sive deconvolution of the image in (b) using the Richardson-Lucy algorithm.
The two sources near the origin separated by 25 nm are clearly unresolved
after deconvolution.

5.4 Results and Discussion

The imaging simulation from Figure 5.2 (a) and (b) was used as an example to

implement the ACI method. The parameters of P (k) from eq 5.6 were chosen to be

P1 = P2 = 104, |k1| = 7nk0, |k2| = 8nk0, and σ1 = σ2 = 1.5nk0/2
√
2 log 2, where

n = 1.6099 is the refractive index of the PR imaging medium and k0 = 2π/λ0 is

the free space wave number. The resulting ACI object was then propagated through

the system using the transfer function H(kx, ky) calculated by Fourier transformation

of the simulated PSF h(x, y). The resulting spatial frequency content is shown in

Figure 5.3. In Figure 5.3 (c), it can be seen that a larger band of spatial frequencies

are recovered on the image plane compared to (b) due to propagation of the ACI

object. After reconstruction with the Richardson-Lucy algorithm and the “active”
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Figure 5.3: Active convolved illumination in the spatial frequency domain.
(a) Fast Fourier Transform (FFT) magnitude of the object distribution in
Figure 5.2 (a). (b) FFT magnitude of the image distribution in Figure 5.2
(b). (c) FFT magnitude of the image using the ACI method. (d) FFT
magnitude of the image from (c) after deconvolution with the Richardson-
Lucy algorithm. All plots are on a logarithmic scale.

PSF

hACI(x, y) = h(x, y) ∗ a(x, y), (5.15)

the object spectrum is mostly recovered in Figure 5.3 (d). Note that the DC compo-

nent introduced by the ACI procedure is excluded in eq 5.15 since it only contributes

to the k = 0 component and in turn has no effect on the the reconstruction. The

calculation in Figure 5.3 was performed with σu = 0 and σv = 10−6 to better explicate

the impact of the ACI on the imaging process. However, it is crucial to evaluate the

ACI imaging performance in the presence of signal-dependent noise. To do so, we

added simulated noise with γ = 1, corresponding to a constant SNR, and γ = 0.5

for a signal-dependent SNR. We have chosen these values of γ to represent both the

expected Poissonian counting statistics (γ = 0.5) and a “worst case” scenario (γ = 1)

to both compare the effects of signal-dependent and signal-independent SNR as well

as evaluate the robustness of our method to a variety of noise conditions. Figure 5.4
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Figure 5.4: Active convolved illumination imaging in the presence of signal-
dependent noise. (a)-(c) The calculated images after applying the ACI
method for γ = 1 and different values of σu from eq 5.11. These are the
“measured” images that would be detected in an experiment. (d)-(f) The
final reconstructed images after deconvolution with the Richardson-Lucy al-
gorithm and the active PSF defined in eq 5.15. (a) and (d) are the ideal
results with σu = 0. Qualitatively, it can be seen that the image in (c) is
corrupted by noise, and the reconstructed image in (f) consequently suffers.
However, the noise in (b), corresponding to a 60 dB SNR, is small enough
to achieve a good reconstructed image in (e).

shows the imaging results for γ = 1 with varied σu. Figure 5.4 (a) and (d) respresent

the ideal ACI image and corresponding reconstruction with σu = 0. The ACI image

in (b) and the corresponding successful reconstruction in (e) consider a 60 dB SNR

attainable with modern photodetectors. Unfortunately, decreasing the SNR to 50 dB

in (c) leads to an image almost fully corrupted by noise that cannot be reconstructed

in (f). In contrast, Figure 5.5 considers the case of Poisson-distributed noise with

γ = 0.5 and varied σu. As shown in eq 5.13, when γ = 0.5 the SNR becomes depen-

dent on the signal level. Therefore, the σu value we can define as a “realistic” noise in

152



 (a)

<u = 10!6; . = 0:5

736.42

736.425

736.43

 (b)

<u = 10!5; . = 0:5

736.42

736.425

736.43

 (c)

<u = 10!4; . = 0:5

736.41

736.415

736.42

736.425

736.43

 (d)

0

0.5

1

 (e)

0

0.5

1

 (f)

0

0.5

1

Figure 5.5: Active convolved illumination with γ = 0.5 and three different
values of σu. (a)-(c) The noisy ACI images and (d)-(f) the corresponding
reconstructions. (d) and (e) successfully resolve the object, however the
image in (c) is too noisy to obtain a good reconstruction in (f).

Figure 5.5 is not explicit. However, if we inspect eq 5.13 and take i(r) ≈ i(r), where

i(r) is the mean pixel value, we can solve for the σu corresponding approximately to

a 60 dB SNR. We can make this approximation since the variations in i(r) are four

orders of magnitude smaller than i(r) for this specific imaging example. The ACI

imaging results for these parameters are shown in Figure 5.6, and it can be clearly

seen in (b) that the object can again be successfully resolved.

There are a few aspects of the ACI method that require some qualitative discussion, in

particular the limitations of incoherent ACI for increasing the resolution of an imaging

system. So-called “perfect” imaging exhibiting a flat effective transfer function could

in principle be approached with this method by iteratively applying multiple P (k)
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Figure 5.6: Active convolved illumination imaging with γ = 0.5 and SNR ≈
60 dB. (a) The noisy ACI image and (b) the corresponding reconstruction.
In (b) the object is successfully resolved, despite the addition of realistic
noise in (a).

passing distinct spatial frequency bands so that the full spectrum of the object can

be recovered from the noise. However, since the main objective of ACI is to add

energy to a narrow band of the object’s spatial spectrum in order to overcome the

attenuation of those spatial frequencies by the imaging system, it becomes evident

that shifting this band to higher k will require larger intensities. Therefore, we are met

with a trade-off between increasing the detectable spatial frequencies and reducing

the noise to an acceptable level. We have identified this trade-off as the theoretical

limit of the spatial resolution achievable with the ACI method. Using the simulations

and parameters described above, we found that the best resolution we could obtain
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was about 20 nm while considering a 60 dB SNR. However, this could be improved

by better optimizing the phase and impedance match between the object and image

planes by appropriately tuning the refractive indices of the dielectrics surrounding the

superlens along with the locations of each plane. As an example, in our simulation

from Figure 5.1, it is reasonable to expect a better resolution when the dipole is

moved slightly closer to the Ag layer, since more of the evanescent components from

the source will reach the superlens. We expect these steps would better optimize the

results in terms of spatial resolution. Our ACI method could be just as effectively

applied to any of these different geometries.

The most pressing obstacle for implementation of the ACI method into an experi-

mental system is creating the physical convolution in eq 5.4. One way to do this

would be to illuminate the object with a high-intensity beam and then spatially filter

the near-field intensity distribution. We have shown the design of a near-field spatial

filter[63] based on hyperbolic dispersion for a similar function to approximate the be-

havior of P (k) in eq 5.6 and used the filter under “coherent” convolved illumination

for enhanced superlens imaging[64]. We can use a similar configuration for realization

of ACI even when we do not have access to the phases of the fields and the light is not

strictly perfectly coherent. Suppose we want to image the intensity pattern formed

by a periodic Chromium (Cr) grating object illuminated with TM-polarized light as

shown in Figure 5.7. Here we consider the same LED light with λ0 = 365 nm and

∆λ = 9 nm as in the previous simulations. To realize the convolution, we place below

155



the grating a hyperbolic spatial filter we have designed which passes a small band of

the spatial frequencies near 6k0 which are present in the selected grating. The filter

is formed by alternating layers of Aluminum (Al) and Titanium dioxide (TiO2) with

thicknesses of 16 nm and 15 nm, respectively. Each pair of metal-dielectic layers con-

stitutes a unit cell of the hyperbolic metamaterial (HMM). In this case, we only need

to use 4 unit cells to construct the filter since the low spatial frequencies which would

otherwise tunnel through the filter are automatically rejected by the grating. This

also has the positive side effect of better transmission compared to the corresponding

filter we previously designed[64]. The red dashed line in Figure 5.7 (a) at the exit

interface of the HMM is the plane at which the active convolution exists. To tie the

physical system in with our theory, the HMM spatial filter essentially performs the

operation in eq. 5.4, and the amplitude of P (k) can be controlled by simply modulat-

ing the intensity of the illumination incident on the grating object. The ACI image

is then formed at the image plane (white dashed line) within the PR layer. Using

FDTD solutions, we performed simulations of this geometry, and also the passive

configuration in Figure 5.7 (b), in order to provide a physical proof-of-concept for our

ACI method and its potential for enhancing the resolution. In this case we increased

the illumination intensity by selecting P1 = 108 to fully overcome the added 60 dB

signal-independent noise, but decreasing this value by about two orders can still give

good results. A 10-20 dB signal-dependent SNR was also found to be tolerable using

these parameters. The simulation results can be found in Figure 5.8. The intensity
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profile induced on the Cr grating mask shows “hot spots” that occur every 60 nm

at the sharp edges of the grating (see black solid line in Figure 5.8 (a)). The spa-

tial frequency corresponding to a 60 nm period is within the passband of the HMM

spatial filter, and in Figure 5.8 (a) this frequency is accentuated in the ACI image

(blue solid line) compared to the passive image (turquoise solid line). The magnitudes

of this frequency for the data in (a) are shown in (b) for comparison. Finally, the

deconvolution of the ACI image with the PSF (calculated by removing the grating

and placing a point source on the object plane) gives a better representation of the

intensity induced on the grating than the passive deconvolution (i.e., compare the red

solid line with the purple). This result can in principle be improved by tuning the

spatial filter to higher spatial frequencies, provided that it passes one of the primary

grating frequencies.

It is interesting to note that such spatial filters integrated with a superlens cavity and

type I hyperbolic metamaterial have also been recently proposed for nanofocusing of

Bessel beams[15] and an implementation of a hyperbolic dark-field lens[11], respec-

tively. Additionally, spatial filtering has been shown to reduce the line edge roughness

of photolithographic exposures in the presence of surface roughness[65]. Therefore,

one natural extension of our work would be the studying of these intriguing high-

resolution imaging systems from the ACI method perspective to not only experimen-

tally confirm our theoretical predictions but also improve their performances. The

actual transmission properties of the filter may not exactly replicate P (k) from eq 5.6,
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Figure 5.7: (a) Simulation geometry for the physical realization of ACI
superlens imaging with a hyperbolic metamaterial spatial filter. The black,
red, and white dashed lines indicate the object, active convolution, and image
planes, respectively. The image plane is set 5 nm below the Ag superlens in
order to make the total propagation distance in the PMMA and PR equal to
the lens thickness. (b) The passive simulation geometry used for comparison
with the results from (a). The PMMA layer separating the Cr mask and the
Ag superlens is set to 30 nm in order to match the total propagation distance
in the PMMA in (a).

but the important property is the ability to selectively amplify a band of high spatial

frequencies relative to the spatial frequencies in the original passband of the superlens.

We showed in Ghoshroy et al.[52] that simply amplifying the entire object spectrum

(the “strong illumination” case) will only result in a deleterious amplification of the
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Figure 5.8: (a) Electric field intensities at the object and image planes for
the ACI and superlens imaging configurations from Figure 5.7 considering 60
dB SNR, along with the reconstructions calculated with the Richardson-Lucy
deconvolution algorithm. Deconvolution of the ACI image (red solid line)
better matches the sharp peaks in the object plane (see black solid lines) as
compared to deconvolution of the image formed by Figure 5.7 (b) (see purple
solid line). (b) FFT magnitudes of the data in (a) within the passband of the
HMM spatial filter. A clear enhancement of the spatial frequency content
near kx/k0 = 6.1 can be seen for the ACI image (blue solid line) as compared
to the image formed by the silver superlens alone (turquoise solid line). For
the ACI image, the ratio of this spectral component to the DC component
is increased by more than 18% over the unfiltered superlens image.

signal-dependent noise in the image. This is why the selective amplification of a finite

portion of the spatial spectrum is required. A secondary obstacle for experimental
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implementation is the near-field detection of the subwavelength intensity distributions

produced by this method. Near-field images produced by silver superlenses operating

in the UV are often read out by exposing a negative tone PR layer on the imaging side

of the lens, developing the PR, then characterizing the developed PR topography with

an atomic force microscope. The ACI imaging system we have shown in Figure 5.7 (a)

is within the capabilities of modern nanofabrication. However, it is likely that scaling

the experiment to infrared, terahertz, or microwave frequencies would be more con-

venient in terms of both fabrication and detection. There is no theoretical restriction

to scaling our ACI method to other frequencies. The images could then be directly

read out with a subwavelength near-field probe[2, 6, 66, 67, 68, 69, 70, 71, 72, 73, 74]

or detector[75, 76, 77, 78, 79, 80, 81, 82, 83, 84] small enough to resolve the important

features.

5.5 Conclusion

We developed a loss compensation method to improve the resolution of a near-field

silver superlens using incoherent active convolved illumination. A theoretical descrip-

tion of the imaging method for incoherent light is developed and implemented in nu-

merical simulations using a combination of the finite-difference time-domain method

and linear shift-invariant imaging theory. The presence of signal-dependent noise is
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taken into account to represent a realistic imaging scenario. The imaging method pre-

sented can achieve a resolution of around λ0/15 or better under optimal phase and

impedance matching conditions even when corrupted by realistic noise. The theory

was then implemented in the design and simulation of a superlens imaging system

that uses a hyperbolic metamaterial spatial filter to perform the required convolution

operation physically to improve the imaging performance. The results do not only

indicate the power of superlenses for enhanced sub-diffraction imaging but also the

efficacy of the Π loss compensation scheme by decently connecting and attempting

to resolve two grand issues of optics, namely loss compensation and imaging beyond

diffraction limit. The experimental implementation of the imaging method was also

discussed.
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[20] Anders Pors, Michael G Nielsen, René Lynge Eriksen, and Sergey I Bozhevolnyi.

Broadband focusing flat mirrors based on plasmonic gradient metasurfaces. Nano

Lett., 13(2):829–834, 2013.

[21] Carl Pfeiffer and Anthony Grbic. Metamaterial huygens surfaces: tailoring wave

fronts with reflectionless sheets. Phys. Rev. Letters, 110(19):197401, 2013.

[22] Paul R West, James L Stewart, Alexander V Kildishev, Vladimir M Shalaev,

Vladimir V Shkunov, Friedrich Strohkendl, Yuri A Zakharenkov, Robert K

Dodds, and Robert Byren. All-dielectric subwavelength metasurface focusing

lens. Opt. Express, 22(21):26212–26221, 2014.

[23] Mohammadreza Khorasaninejad, Francesco Aieta, Pritpal Kanhaiya, Mikhail A

165



Kats, Patrice Genevet, David Rousso, and Federico Capasso. Achromatic meta-

surface lens at telecommunication wavelengths. Nano Lett., 15(8):5358–5362,

2015.

[24] Yun Bo Li, Ben Geng Cai, Qiang Cheng, and Tie Jun Cui. Surface fourier-

transform lens using a metasurface. J. Phys. D, 48(3):035107, 2015.

[25] Francesco Aieta, Mikhail A Kats, Patrice Genevet, and Federico Capasso. Multi-

wavelength achromatic metasurfaces by dispersive phase compensation. Science,

347(6228):1342–1345, 2015.

[26] Xiaoliang Ma, Mingbo Pu, Xiong Li, Cheng Huang, Yanqin Wang, Wenbo Pan,

Bo Zhao, Jianhua Cui, Changtao Wang, ZeYu Zhao, and Xiangang Luo. A

planar chiral meta-surface for optical vortex generation and focusing. Sci. Rep.,

5:10365, 2015.

[27] Yihao Yang, Huaping Wang, Faxin Yu, Zhiwei Xu, and Hongsheng Chen. A

metasurface carpet cloak for electromagnetic, acoustic and water waves. Sci.

Rep., 6:20219, 2016.

[28] Patrice Genevet, Federico Capasso, Francesco Aieta, Mohammadreza Khorasa-

ninejad, and Robert Devlin. Recent advances in planar optics: from plasmonic

to dielectric metasurfaces. Optica, 4(1):139–152, 2017.

[29] Costas M Soukoulis and Martin Wegener. Optical metamaterials-more bulky

and less lossy. Science, 330(6011):1633–1634, 2010.

166



[30] Costas M Soukoulis and Martin Wegener. Past achievements and future chal-

lenges in the development of three-dimensional photonic metamaterials. Nat.

Photonics, 5(9):523–530, 2011.
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Chapter 6

Enhanced Lateral Spatial

Resolution in Far-field Imaging

6.1 Introduction

Imaging is an indispensable tool in the toolbox of nearly every field of science, engi-

neering, technology, and medicine. Unfortunately, encoding the desired information

into electromagnetic waves imposes a limit to the performance of imaging systems at

the outset – the detection of the fields by the interaction of photons (the light signal)

and matter (the light detector) means that the signal-to-noise ratio (SNR) for long

exposures will always be limited physically by shot noise. A näıve analysis would
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reveal that adding up more photons in the detector would lead to higher SNR. This

is true, however for incoherent light, the magnitude of the optical transfer function for

an imaging system with an unobstructed pupil monotonically decreases with increas-

ing spatial frequency[1]. It follows that the spectral SNR then also decreases with

increasing spatial frequency, since the shot noise variance is constant in the spatial

frequency domain, as will be shown later. Consequently, adding up more photons

does not lead to much increase for the SNR of high spatial frequencies. In the lab,

one also does not have the freedom to arbitrarily increase the number of photons col-

lected, since at some point the detector will become saturated. Each specific imaging

modality will also have its specific limitations. For example, in fluorescence imaging

only a certain exposure can be obtained before photobleaching occurs.

Our research in loss compensation for metamaterial and plasmonic imaging systems[2,

3, 4, 5, 6, 7, 8, 9, 10] led us to obtain a unique perspective on the noisy imaging

problem. We first determined that the fundamental resolution limit to superresolving

lenses is not determined by the diffraction limit, but rather by a shot noise limit, i.e.

where the shot noise overcomes the transfer function in the spatial frequency domain.

We then found that by rejecting the detection of low spatial frequency harmonics in an

object field, the resulting image can have large SNR for high spatial frequencies, due

to reduction of the overall noise level and amplification of the high spatial frequencies

by increased illumination intensity or exposure. These previous works, along with

some inspiration from other research in far-field imaging[11, 12], led us to construct
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the current work.

In this paper, a theory is presented that shows how to improve the SNR for the high

spatial frequencies of an image obtained from an object illuminated with incoherent

light. The theory is implemented in numerical simulations to predict the resolution

enhancement, and experimental images are collected using a low numerical aperture

imaging system to confirm the predictions. Richardson-Lucy deconvolution is used

to reconstruct the images. Point spread function measurements are also performed

in order to further support the theory. Then end result is an image with higher

resolution and improved contrast for the high spatial frequencies as compared to the

control image. It is also shown that this method can help prevent pixel saturation

for longer exposures.

6.2 Theory

6.2.1 Incoherent Imaging

Consider a uniform beam of spatially incoherent, narrowband light with photon flux

density Φ0 [photons/m2 · s] striking a planar, transmissive object. After passing

through the object, the light has spatial variations and the resulting transmitted

photon flux density is given by O(r), with r ∈ R
2 denoting the position coordinate
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on the plane. The process of mapping this light distribution with an imaging system

can be represented by a convolution

I(r) = H(r) ∗O(r), (6.1)

where I(r) is the photon flux density on the image plane, H(r) is the point spread

function of the imaging system, and ∗ denotes the convolution. Here it should be

noted that I(r), O(r) ∈ R≥0 since they represent flux densities and not complex

fields. Fourier transforming Eq. 6.1 gives

Ĩ(k) = H̃(k)Õ(k) (6.2)

using the corresponding Fourier transform pair

S̃(k) =

∫

R2

S(r)e−i2πk·rd2r, (6.3a)

S(r) =

∫

R2

S̃(k)ei2πk·rd2k, (6.3b)

and it becomes evident that in general Ĩ(k), H̃(k), Õ(k) ∈ C. Here, Ĩ(k) and Õ(k) are

the image and object spectra, respectively, and H̃(k) is the optical transfer function

(OTF) of the imaging system. For later use, we define |H̃(k)| as the modulation

transfer function (MTF).
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6.2.2 Detection and Noise

Eqs. 6.1 and 6.2 assume continuous signals in position and reciprocal space. To

incorporate practical detection of the deterministic signal I(r), let us consider the

case where we collect an image on the image plane using a photoelectric detector

with np pixels. The center of the pth pixel (p ∈ Z+) is at rp = (xi, yj), and the

pixels are rectangular with side lengths ∆x and ∆y along the x and y dimensions,

respectively. Then, at the pth pixel, the expected number of detected photons is given

by

Īp = ηT

∫

Ap

I(r)d2r

= ηT

∫ yj+∆y/2

yj−∆y/2

∫ xi+∆x/2

xi−∆x/2

I(x, y)dxdy

≈ ηT∆x∆yI(xi, yj),

(6.4)

where η is the quantum efficiency of the pixel and T is the exposure time or integration

time. The approximation in the third line of Eq. 6.4 assumes that the signal I(r)

is slowly varying across the area of the pixel, i.e. the signal is well sampled. Since

Eq. 6.4 describes a sampling of a spatial distribution of discrete particles (photons),

there will be an intrinsic randomness due to shot noise in the photon signal Ip,γ. In
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this case, the probability mass function (PMF) is

P
(

Ip,γ|Īp
)

=

(

Īp
)Ip,γ

Ip,γ!
e−Īp . (6.5)

This is of course coming from the fact that the counting of discrete particles at a

constant rate follows a Poisson distribution, for which

Var(Ip,γ) = Īp. (6.6)

In most photoelectronic imaging detectors, such as complementary metal-oxide-

semiconductor (CMOS) or charge-coupled device (CCD) cameras, there are primarily

two sources of noise. The first is due to the statistics of Eq. 6.5, the shot noise which

is dependent on the photon signal. The second is noise from the readout electronics,

which is independent of the photon signal. We can then write the detected signal as

Ip = Īp +Np,γ +Np,e, (6.7)

where Np,γ is a discrete random variable representing the shot noise with PMF de-

scribed by Eq. 6.5, and Np,e is a discrete random variable representing the electronic

readout noise.

In order to show how the noise addition in Eq. 6.7 affects the image spectrum, we
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compute the discrete Fourier transform

Ĩq =
∑

p

Ipe
−i2πkq ·rp

=
∑

p

(Īp +Np,γ +Np,e)e
−i2πkq ·rp

=
∑

p

Īpe
−i2πkq ·rp +

∑

p

Np,γe
−i2πkq ·rp +

∑

p

Np,ee
−i2πkq ·rp

= ˜̄Iq + Ñq,γ + Ñq,e,

(6.8)

where q ∈ Z+ and {kq = (kx,l, ky,m) | 1 ≤ q ≤ np} ⊂ {k ∈ R
2} is the Fourier space

corresponding to the pixelated position space {rp | 1 ≤ p ≤ np}. We then consider

the statistical properties of Ñq,γ and Ñq,e. Since the shot noise variance is known

from Eq. 6.6 (replacing Ip,γ with Np,γ) and we can assume the pixels are statistically

independent, we can write[10, 11, 12]

Var(Ñq,γ) = Var

(

∑

p

Np,γe
−i2πkq ·rp

)

=
∑

p

Var(Np,γ)|e−i2πkq ·rp |2

=
∑

p

Īp = nγ, (6.9)

where nγ is the total number of photons in the entire image. In words, Eq. 6.9 states

that the variance in Fourier space is constant, and is controlled by the total number

of photons collected on the detector. We can write a similar equation for the readout
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noise[12],

Var(Ñq,e) = Var

(

∑

p

Np,ee
−i2πkq ·rp

)

=
∑

p

Var(Np,e)|e−i2πkq ·rp |2 =
∑

p

σ2
p,e, (6.10)

where σ2
p,e is the readout noise variance at pixel p and again the assumption is made

that the pixels are statistically independent. Let us also assume that σ2
p,e = σ2

e ,

meaning every pixel has similar electrical performance in terms of noise. Then Eq.

6.10 becomes

Var(Ñq,e) = npσ
2
e . (6.11)

Therefore, the spectral readout noise variance is also a constant, and scales linearly

with the number of pixels. For modern cameras, the readout noise is usually minimal

such that it is neglected, though we keep it here for completeness.

6.2.3 Tailoring the Spectral SNR

From imaging theory, we know that the optical transfer function of an incoherent

imaging system is given by the autocorrelation[1] of the system’s pupil function P̃ (k),

or

H̃(k) =

∫

P̃ (κ)P̃ ∗(κ− k)d2κ
∫

|P̃ (κ)|2d2κ
= P̃ (k) ⋆ P̃ (k). (6.12)
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In the discrete notation described in the previous section, we can write the autocor-

relation as

H̃q =

∑

κ
P̃κP̃

∗
κ−kq

∑

κ
|P̃κ,o|2

= P̃q ⋆ P̃q, (6.13)

where P̃κ,o is a reference pupil. To normalize 6.13, the reference pupil is conventionally

chosen as the pupil itself, making the DC pixel of H̃q = 1, similar to Eq. 6.12.

However we define a reference pupil in Eq. 6.13 in order to later directly compare two

different pupil functions. Consider an incoherent imaging system in air with maximum

resolvable spatial frequency k = 2NAk0, where NA is the numerical aperture, k0 =

1/λ0, and λ0 is the center free space wavelength of the illumination source. The pupil

function is assumed to have circular symmetry about the optical axis (which is along

z-direction) and we define it as

P̃q =



















1 if k− ≤ |kq| ≤ k+

0 otherwise,

(6.14)

where k− ≥ 0 and k− < k+ ≤ k/2. From Eq. 6.14 we can see that setting k− = 0

and k+ = k/2 gives a typical diffraction-limited imaging system with open pupil.

We choose this case as our reference pupil P̃q,o. However, if we make k− nonzero,

we introduce an obstruction in the central portion of the pupil, which has the effect

of lowering the overall transmission with respect to the reference pupil, and also

preferentially passing larger spatial frequencies with respect to the smaller ones in
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comparison to the reference pupil.

An important metric for an imaging system is its ability to discern image spectrum

content from noise, or its spectral SNR. To relate the pupil function to the spectral

SNR, we first use Eqs. 6.2 and 6.13 to rewrite the expected image spectrum as

˜̄Iq =
[

P̃q ⋆ P̃q

]

Õq. (6.15)

Using a standard definition of SNR, we then can write

SNRq =
| ˜̄Iq|

√

nγ + npσ2
e

=

∣

∣

∣

[

P̃q ⋆ P̃q

]

Õq

∣

∣

∣

√

nγ + npσ2
e

(6.16)

as the image spectrum SNR. In Eq. 6.16, the numerator is the expected image

spectrum, which can be engineered by manipulation of the pupil function, and the

denominator is the total standard deviation of the signal from the photonic and

electronic noise terms in Eqs. 6.9 and 6.10. An obvious consequence of 6.16 is that

reducing nγ will decrease the constant noise floor in the image spectrum. The signal

in the numerator will also decrease similarly, but can be engineered through P̃q to

enhance different portions of the spectrum. This is the central idea of this chapter,

engineering the system to preferentially pass a certain band of the image spectrum,

reducing the overall noise and improving SNRq for that band. To put into analogy, you

are given a “photo-budget” nγ, and you can freely decide how to spend that budget
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Figure 6.1: Imaging experiment configuration. A diffused LED source illu-
minates an imaging target, which is then processed by a 4f system consisting
of two achromatic doublet lenses and a transparency in the Fourier plane.
The images are detected with a CMOS camera.

in the image spectrum via P̃q so that you achieve an improved SNR for certain spatial

frequencies.

6.3 Experiment

In order to implement the above spectral SNR engineering into an experimental imag-

ing system, we simply need access to the Fourier plane in order to manipulate the

pupil function. Therefore, we chose to construct a typical 4f system with no mag-

nification as shown in Fig. 6.1 in order to simplify the analysis and experiment.

However, it should be emphasized that the concepts presented should be generally

applicable to any imaging system which is linear and shift-invariant, provided there

is a mechanism with which to manipulate the Fourier content of the light.

The experiment in Fig. 6.1 images an object (target) illuminated by a narrowband
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Figure 6.2: (a) Open (reference) and (b) annular pupils with (c) cor-
responding OTFs calculated from 6.13 as a function of radial spatial fre-

quency kr =
√

k2x + k2y used in the experiment in Fig. 6.1. Both pupils have

k+ = k/2. In (a), k− = 0 and in (b), k− = k/2
√
2. In the actual exper-

iment, we chose an outer pupil diameter of 5 mm for (a) and (b), making
NA= 0.0066.

incoherent light source (Thorlabs LIU525B). Before hitting the target, the light is

focused onto a diffuser in order to decrease the spatial coherence and to avoid imaging

the light source onto the Fourier plane. Then the light is roughly collimated by a

second lens before hitting the target. The light distribution exiting the target is

Fourier transformed by an achromatic-doublet lens (Space Optics Research Labs) with

a focal length of f = 38.1 cm. On the Fourier plane, a pupil transparency is placed

188



that has either a circular or annular opening, as shown in Fig. 6.2. For all the images,

we chose an outer pupil diameter of d = 5 mm, making NA= 0.0066 using the formula

NA= d/2f . The transparencies were printed with a photoplotter onto transparent

plastic sheets, then cut out and mounted in standard optical mounts. After passing

through the pupil on the Fourier plane, the light is again Fourier transformed by a

second identical achromatic-doublet which then focuses the resulting image onto a

CMOS camera (Thorlabs DCC1645C).

The goal of this experiment was to show directly an enhancement in image resolu-

tion by modifying the pupil to improve SNRq for the largest spatial frequencies in

accordance with 6.16. This led to the annular pupil configuration in Fig. 6.2 (b).

To show quantitatively the improvement in the resolution performance afforded by

the annular pupil configuration over the open pupil, we replaced the resolution target

with a 10 µm diameter pinhole. Since this diameter is below the diffraction limit for

the chosen numerical aperture defined by k+ and f , the resulting image of the pinhole

is the PSF of the imaging system. These PSF images were taken with both the open

and annular pupil transparencies with varying exposure times. From these images,

the transfer functions and corresponding object-independent SNRq can be computed

for each exposure.
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6.4 Results

6.4.1 Point Spread Functions and Transfer Functions

Examples of the experimentally measured PSFs and MTFs are presented in Figs. 6.3

and 6.4 for the open and annular pupils, respectively. Also shown are the theoretical

PSFs and MTFs determined from scalar diffraction theory. A good agreement can be

seen with both the PSF and MTF between theory (black lines) and experiment (red

and blue lines), indicating that the imaging system is well aligned and not inducing

any unwanted aberrations. Also, the calculated standard deviation (black dashed

line) seems to accurately predict where the MTF is overcome by the shot noise,

providing evidence supporting our noise theory. Since σe = 0 in this calculation, it

is apparent that the readout noise is in fact likely negligible. Setting σe = 1 (and

np = 2.5× 105) leads to a similar agreement with the experimental spectra, but any

larger value begins to deviate from the observed noise level.

6.4.2 Spectral SNR

From the OTFs computed from the measured PSFs in Figs. 6.3 and 6.4, it is then

straightforward to compute SNRq for each exposure using Eq. 6.16, assuming that
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Figure 6.3: Measured PSF and MTF for full, unobstructed pupil with
NA= 0.0066 and exposure time of T = 2 s. (a) The PSF collected from the
setup in Fig. 6.1. (b) The MTF calculated by fast Fourier transformation
of (a). (c) Cross-sections of (a) through the origin along x (red line) and y
(blue line). The theoretical prediction is given by the black line. (d) Cross-
sections of (b) through the origin along kx (red line) and ky (blue line). The
theoretical prediction is given by the solid black line. The dashed black line
denotes the calculated shot noise standard deviation using Eq. 6.16.

the experimental pixel values and the number of photons at each pixel are about

linearly related. These are plotted in Fig. 6.5, where the solid lines indicate the open

pupil SNRq and the dashed lines indicate the annular pupil SNRq.

For a direct comparison of the SNRq for the two pupil configurations, we define a
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Figure 6.4: Measured PSF and MTF for annular pupil with k− = k/2
√
2,

NA= 0.0066, and exposure time of T = 4 s. The subfigures are defined in
the same manner as Fig. 6.3.

spectral SNR improvement metric

SNRiq =
SNRq,a,T

SNRq,o,T0

, (6.17)

where SNRq,a,T is the annular pupil spectral SNR for exposure time T and SNRq,o,T0

is the open pupil spectral SNR for exposure time T0. Plotted in Fig. 6.6 is the SNRiq

for T0 = 2 s and three different values of T . It can be seen that a clear enhancement

in the SNR for spatial frequencies near 0.83k0 can be obtained using an annular pupil
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Figure 6.5: Measured spectral SNR for open (solid lines) and annular
(dashed lines) pupils for different exposure times. The crossover by the
black solid line over the red and blue lines is due to distortion of the PSF
by pixel saturation at T = 3 s for the open pupil.

provided a sufficient exposure.

6.4.3 Test Images

To verify that the high spatial frequency improvement in spectral SNR with sufficient

exposure manifests as improved image resolution, we imaged a USAF-1951 resolution

test target (Thorlabs R1DS1N) using the setup in 6.1. The collected images for the

open and annular pupil are shown in Fig. 6.7 for three values of T . Also shown

is the corresponding reconstructions obtained by deconvolving the images with the
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Figure 6.6: Spectral SNR improvement SNRiq corresponding to the data
in Fig. 6.5 with T0 = 2 s. The black dashed line indicates SNRiq = 1.

Richardson-Lucy algorithm as implemented in MATLAB. In Fig. 6.7, it can be

seen that three bar target in element 5 is always blurred together by the open pupil,

however even for low exposure (e.g. T = 10 ms), the bars become qualitatively visible

in the annular pupil case. After reconstruction for 30 iterations, element 5 remains

unresolved in the open pupil images, but the annular pupil images of element 5 are

further improved. Particularly for elements 2-4, the annular pupil image is improved

greatly by the reconstruction since those spatial frequencies were originally attenuated

with respect to the open pupil. The spectral SNR for those frequencies remained

above 1, so they could still be easily reconstructed computationally.
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(a) T = 10 ms

i ii iii iv

(b) T = 30 ms

i ii iii iv

(c) T = 50 ms

Figure 6.7: Experimental images of a USAF-1951 resolution test target
collected from the setup in Fig. 6.1 with (a) T = 10 ms, (b) T = 30 ms,
and (c) T = 50 ms exposure times. The individual images in each subfigure
correspond to the following: i. Raw image collected with open pupil in the
Fourier plane and NA=0.0066. ii. Raw image with annular pupil in the
Fourier plane and same NA as i. iii. Image from part i deconvolved by
the Richardson-Lucy algorithm after 30 iterations. iv. Image from part ii
deconvolved by the Richardson-Lucy algorithm after 30 iterations.
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6.5 Discussion

6.5.1 Pixel Saturation

Upon viewing the open pupil SNRq from Fig. 6.5, it would seem that simply increasing

T would lead to an improvement in SNRq itself, without having to modify the pupil.

However, the pixels in typical digital cameras only have finite well depth and dynamic

range, meaning they can experience saturation for long exposures and/or intense

illumination. The saturation causes a nonlinear response of the pixel as a function of

the input photon signal. Therefore, one cannot arbitrarily increase T or illumination

intensity to increase SNRq. In terms of spatial resolution, saturation can manifest as

an effective blurring due to clipping of the pixel values and blooming of photoelectrons

to adjacent pixels.

Along with provided improved resolution and contrast for larger spatial frequencies,

the proposed method of engineering SNRq for high spatial frequencies can also provide

resistance to pixel saturation in cases when long exposure or intense illumination and

high resolution is required. We collected images in which the pixels become saturated

for the open pupil system, and compared them to images of similar exposure in the

annular pupil system. They are shown in Fig. 6.8. Since a portion of the Fourier
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i ii iii iv

Figure 6.8: Images demonstrating the resistance of annular pupil to dele-
terious effects caused by detector saturation. Parts i-iv are defined similar to
Fig. 6.7. For the open pupil, T = 150 ms, and for the annular pupil, T = 300
ms. It can be seen that even for twice as long exposure time, the annular
pupil image quality is mostly maintained compared to the open pupil image,
which is severely blurred due to pixel saturation.

plane is blocked by the annular pupil, the total number of photons reaching the

detector is decreased. As evidenced by Fig. 6.2, the blocked photons correspond to

lower spatial frequencies which are more likely to contribute to pixel saturation, since

the transmission for these portions of the object will be high due to the larger local

photon flux.

6.5.2 Relationship to Previous Works

We have previously published some articles in which we utilize a high spatial

frequency passband function, in conjunction with an increased exposure, to en-

hance the resolution performance of thin metal films acting as near-field plasmonic

“superlenses.”[5, 7, 8, 9, 10] This passband function was used to not only compensate
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the losses inherent in the metal film, but also to improve the image spectrum SNR

similar to what we have shown in this chapter. We have called this method ‘active

convolved illumination’ for a couple reasons. First, the term ‘active’ was chosen since

an increased illumination intensity or exposure time is needed to obtain enhancement

over the control (a bare superlens). Secondly, the term ‘convolved’ was chosen since

the applied passband function is physically convolved with the fields emanating from

the object.

For coherent illumination, this passband function can easily be realized by a type-II

hyperbolic metamaterial (HMM). While there is no “Fourier plane” in the near-field

configuration, the HMM can modify the Fourier components of the incident evanes-

cent waves by its dispersion. In this case, the “pupil function” can then simply

be thought of as the OTF of the cascaded HMM-superlens system, which for the

p-polarization passes evanescent waves with large spatial frequency and rejects low

spatial frequencies. Subsequently, the SNR for the large spatial frequencies is en-

hanced with respect to the control. In fact, a principal goal of the experimental work

of this chapter was to show that our theories both accurately represent real noisy op-

tical signals, and can be straightforwardly extended to conventional imaging systems.

Put briefly, the theory and experiment we have applied to far-field incoherent imaging

systems in this chapter is for the most part an extension of our previously published

methods for near-field superresolution enhancement. In the next section, we present

another such enhanced superresolution system, though the image detection can now
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be performed in the far-field.

6.6 An application to Superresolution Imaging

6.6.1 Far-field Superlensing

To explore the versatility of this idea, we chose an extreme realm of imaging in which

sub-diffraction-limited objects can be imaged with a specially designed device which

transfers their spatial content to a far-field detector. There have been numerous stud-

ies of so-called “far-field superlenses” published previously[13, 14, 15]. These lenses

usually operate by resonantly exciting surface plasmons on a thin metal film, and

then diffracting the surface waves into free-space propagating waves with a subwave-

length grating structure. However, there are some issues with these structures which

preclude their application to more arbitrary scenarios. First, the working wavelength

cannot be chosen freely, since the frequency at which the surface plasmon resonance

occurs is essentially fixed for a silver slab in a given dielectric medium. Second, the

signal strength of the propagating Fourier components in the object must be small

compared to the evanescent components in order to properly reconstruct the object.

In other words, if the waves from the zeroth and first diffraction orders have similar

strength, the relative values of the two orders cannot be determined after detection,
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since they will be overlapped in Fourier space. These problems were partially solved

by a new design which replaced the single metal film with a metal-dielectric mul-

tilayered structure[16]. In this design, the dispersion of the multilayered material,

essentially a HMM, can be easily tuned by changing the working wavelength, con-

stituent materials, and geometric parameters of the layers. We briefly present here

a similar implementation of a HMM-superlensing device that can be thought of as

applying the SNR engineering idea from the previous sections for coherent light.

6.6.2 Theory

First, we explore the relevant theory for multilayered HMMs which can guide the

design of our our high-pass “pupil function.” The perpendicular (with respect to the

optical axis along z) and parallel components of the permittivity tensor for a layered

HMM are given by[17]

ǫ⊥ =
ǫmtm + ǫdtd
tm + td

(6.18)

and

ǫ‖ =
tm + td

tm/ǫm + td/ǫd
, (6.19)

where tm, td are the metal and dielectric layer thicknesses, respectively, and ǫm, ǫd and

the metal and dielectric permittivities. From the permittivity tensor, the dispersion

200



relation for the TM-polarization can be derived as

k2
⊥

ω2µǫ‖
+

k2
z

ω2µǫ⊥
= 1. (6.20)

Inspection of Eq. 6.20 reveals that if ǫ‖ > 0 and ǫ⊥ < 0, for small k⊥, kz becomes

imaginary and the waves in the HMM are evanescent. If we set kz = 0, we can find

the k⊥ at which the waves are no longer evanescent inside the material. The result is

a “cutoff” k⊥ given by

k⊥,c = ±ω
√
µǫ‖, (6.21)

which tells the minimum value of k⊥ propagating waves can have inside the HMM.

However, real metallic films will introduce an imaginary part to the permittivity of

the HMM, making the ǫ‖ and ǫ⊥ complex. Then the dispersion relation becomes

k2
⊥

ω2µ(ǫ′‖ + iǫ′′‖)
+

k2
z

ω2µ(ǫ′⊥ + iǫ′′⊥)
= 1 (6.22)

with corresponding cutoff condition

k⊥,c,lossy = ±ω
√

µ(ǫ′‖ + iǫ′′‖). (6.23)

From Eq. 6.23, it can be seen that k⊥,c,lossy is actually a complex quantity. The

physical consequence of this is that there is some allowed transmission of the waves

with |k⊥| < |k⊥,c|. Plotted in Fig. 6.9 is the dispersion for a lossy HMM along with
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Figure 6.9: Dispersion plots for a multilayered HMM with tm = td = 15
nm, ǫm = −7.241+ i0.248, and ǫd = 4.285. The black solid lines in the right
plot show Re[kz] and red dashed lines indicate Re[k⊥,c,lossy].

the calculated Re[k⊥,c,lossy]. It can be seen that the complex value of ǫm introduces

not only absorption in the HMM, but also changes the nature of it’s dispersion.

6.6.3 Design and Simulation

An example HMM far-field superlensing device is shown in Fig. 6.10. This design

gives a huge parameter space for us to explore, as the materials, layer thicknesses,

grating parameters, and working wavelength can all be modified. To narrow down

the design space, we first chose a wavelength of λ0 = 488 nm as a starting point for

the device. This blue wavelength is the same as that emitted by argon ion lasers

and commercially available solid state lasers. At this wavelength, the permittivity for

silver was determined to be ǫm = −7.241 + i0.248 using the most accurate available

ellipsometry measurements of pure silver films[18, 19]. As the dielectric material,
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Figure 6.10: Hyperbolic diffractive “far-field superlens” design. The waves
emanating from the object plane are filtered by a HMM consisting of 20 unit
cells. The filtered waves are then coupled into the far-field by a diffraction
grating with thickness tg, period d, and metal fill ratio f . The gray portions
indicate silver and the blue portions indicate Si3N4.

we chose Si3N4, which at λ0 = 488 nm has a permittivity of ǫd = 4.285[20]. Using

rigorous coupled-wave analysis[21], we calculated the transmittance of the p- and s-

polarizations in Fig. 6.11 for a HMM with 20 unit cells embedded in a background

medium with permittivity ǫb = 2.25. After designing the HMM which defines our

“pupil function,” the next step is to design a grating which will efficiently transfer

the Fourier components passed by the HMM to the far-field via the −1 diffraction

order. Since Re[k⊥,c,lossy] = 4.57k0, from the grating equation we can determine that a

grating period of d = 110 nm should give minimal overlap of the transmitted Fourier

components while still maximizing the amount of information contained in the free-

space passband. Then the metal fill ratio f = 0.3 and grating thickness tg = 85
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Figure 6.11: HMM transmittance for (a) p-polarization and (b) s-
polarization. The red dashed lines in (a) denote the predicted cutoff value
of Re[kx,c,lossy]. The number of unit cells (metal-dielectric layer pairs) in the
HMM is 20 and the background permittivity is ǫb = 2.25.

nm were chosen to give good overall transmission. Again using rigourous coupled-

wave analysis, we calculated the transfer functions of the superlens for the p- and

s-polarizations. These are shown in Fig. 6.12. In Fig. 6.12 (a), the zeroth order

transfer function magnitude for p-polarized light is plotted, giving the ratio of the

input wave to output wave as a function of kx and ky. Similarly in (b), the transfer

function is shown for p-polarized light, except the output waves are shifted so the

output kx = kx,in ± (2π/d), giving the first order transfer function. For kx,in < 0, the

+ is taken, while for kx,in > 0 the − is taken. These wave components can be directly

calculated from the RCWA code. In (c) and (d), the zeroth and first order transfer

functions are plotted for s-polarized light. It can be seen that no transmission occurs

beyond the free space passband for s-polarization.

Using the transfer functions in Fig. 6.12, we performed an imaging simulation in

which a double-slit object with 45 nm separation and 45 nm slit opening size is
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Figure 6.12: (a) Zeroth and (b) first order transfer functions of the designed
superlens for p-polarization. (c) Zeroth and (d) first order transfer functions
for s-polarization.

illuminated and imaged by the designed superlens. From Fig. 6.13, it can be seen

that the object with characteristic size smaller than λ0/10 can be reconstructed from

the data the superlens transfers to the detector through the p- and s-polarizations.

Through the s-polarized zeroth order transfer function, the free space passband can

be detected as indicated in Fig. 6.12 (c). This alone gives the diffraction-limited

result indicated by the blue lines in Fig. 6.13 after deconvolution. To obtain the

higher spatial frequencies, p-polarized light is provided, and the object information

is encoded into the first order transfer function in Fig. 6.12 (b). After obtaining this
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Figure 6.13: (a) Double-slit object, diffraction-limited image, and recon-
structed superlens image spectra, (b) reconstructed superlens image, and (c)
1D object and image cross-sections. The legend in (c) also applies to (a).

diffraction-limited image, the detected Fourier components must be shifted back to

their original position by a factor of ±2π/d and deconvolved, essentially reversing

the effects of diffraction and attenuation through the superlens. The result of this

procedure, after being added with the low frequency waves obtained from the s-

polarization, is given by the dashed red lines in Fig. 6.13, showing reconstruction of

the high-kx Fourier components and successful resolution of the double-slit object..
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6.7 Conclusion

In this chapter, a resolution enhancement method for far-field imaging systems was

presented and demonstrated experimentally. This method relies on manipulation of

the Fourier plane in the imaging system in order to engineer the image spectrum SNR.

Placing an annular pupil transparency in the Fourier plane leads to improved SNR

for larger spatial frequencies, which gives improved resolution over an imaging system

with unobstructed pupil and the same numerical aperture. Also, the annular pupil

increases resistance to pixel saturation, since a portion of the Fourier plane is blocked

and the number of photons at the detector is decreased. Also, the connection between

the proposed method and previous metamaterial implementations is discussed. These

methods are then implemented into the design of a new far-field superlensing device

which can achieve resolution of an object with edge-to-edge separation less than λ/10.

In summary, the contributions of this dissertation to the body of knowledge by the

author are the theory and simulation of the proposed loss mitigation and resolution

enhancement methods for incoherent light, the experiment to verify and expand upon

the proposed methods, and the spectral SNR equation (Eq. 6.16) which quantitatively

shows how to manipulate the pupil or transfer function of an imaging system to

achieve a desired high spatial frequency SNR.
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