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Preface 

The research included in this dissertation was conducted under the supervision of Dr. 

Chelsea Schelly and Dr. Richelle Winkler in the Environmental and Energy Policy 

Program, Department of Social Sciences, Michigan Technological University, between 

January 2016-April 2019. The work in this dissertation is the product of collaborative 

research.  

The Michigan Department of Agriculture and Rural Development (MDARD), the 

American Public Power Association’s (APPA) Demonstration of Energy & Efficiency 

Developments (DEED) program, and the Department of Energy Solar in Your 

Community Challenge Technical Assistance Grant funded the research conducted in this 

dissertation. The Upper Peninsula Solar Technical Assistance and Research Team 

(UPSTART) formed in March 2017 in response to the Solar in Your Community 

Challenge. I joined this team as one of several Michigan Technological University 

researchers. UPSTART wanted to bridge together knowledge, resources, and skills to 

help design and develop a community solar program in the Villages of L’Anse and 

Baraga. The team began as a partnership between both village administrators, WPPI 

Energy, and the Western Upper Peninsula Planning and Development Region 

(WUPPDR). The project evolved and expanded UPSTART membership and resources to 

include marketing and contract development with Michigan Energy Options, energy 

efficiency studies with LOTUS Sustainability & Engineering, the University of Michigan 

Dow Sustainability Fellows Program, and media development with a team of Michigan 

Tech students learning documentary production (CinOptics). My role was to help 

development and coordinate the social feasibility study conducted in each village. I 

collected and analyzed data from key stakeholder interviews, focus group discussions, 

and survey instruments. Each chapter in this dissertation has multiple co-authors; their 

contributions are described below. 

Chapter 2: Research for this manuscript was collected from Michigan energy laws and 

policies, utility case filings, and personal communications. As lead author, I was 

responsible for conducting all research and preparing the manuscript with oversight from 

my co-authors; one co-author is also a part of the APPA DEED team. Both co-authors 

were involved in idea-sharing and editing the manuscript for final submission. This 

chapter is published in the Energies Special Issue: Energy Policy.     

Chapter 3: This chapter describes the social and technical feasibility methodology that 

was conducted by the Upper Peninsula Solar Technical Assistance and Resource Team 

(UPSTART) from 2017-2018. I participated in collecting interview and focus group data 

collection, survey design, and analysis of the data. I am the lead author and responsible 

for preparing this manuscript with oversight and guidance from the co-authors and 

UPSTART members. Both co-authors helped develop the structure and content for this 

chapter, along with editing for the manuscript for final submission. This paper is 

published in a Social Sciences Special Issue: Engaged Scholarship for Resilient 

Communities.  
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Chapter 4: This chapter uses qualitative and quantitative data from interviews, focus 

group discussions, and community surveys conducted in 2017-2018. With guidance from 

UPSTART, I created interview and focus group protocols. I helped create the survey 

instrument used. I was responsible for collecting data in the field, transcribing, coding, 

and analyzing qualitative and quantitative data. As lead author on this manuscript, I 

identified the themes within the paper and prepared the manuscript with guidance from 

my advisor and other committee members. This paper will be submitted to the journal 

Renewable Energy Focus. Expected date of submission is May 2019.  

Appendix A and Appendix B includes two of my co-authored works that are relevant to 

the research background and findings for this project. The first paper is published in 

AIMS Energy. The second paper is guidebook completed for the APPA DEED project.  

Emily Prehoda, April 2019  
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Abstract 

Energy systems are complex, and this complexity requires diverse regulatory forms and 

strategies of management. Michigan’s energy system is situated within a multi-scalar 

governance structure reaching from national to local levels. As a result, the process of 

energy system decision-making can leave out smaller, remote communities and those 

without the economic, political, and knowledge capital necessary to engage in complex 

bureaucratic processes. These communities can become subject to high electricity prices 

and unreliable electrical service from long transmission and distribution lines, raising 

energy justice concerns. Additionally, resulting from utility regulatory practices, small 

remote communities are often not afforded the opportunity to explore alternative, local, 

and environmentally friendly energy generation sources. This dissertation utilizes data 

collected from two case study sites in Michigan to examine how decisions are made 

regarding energy system management, who participates in what forms of decision-

making, what implications community solar can have for improving energy justice, and 

the role of energy policy. Specifically, the research attempts to examine how community 

solar may create more just energy systems and the particular policy and governance 

dimensions that shape the use of community solar for the pursuit of energy justice. 

Chapter 2 explores how Michigan investor-owned utilities interpret and implement 

energy laws to hinder distributed generation proliferation in Michigan. Chapter 3 reflects 

on the community engaged research process used to determine the viability of a 

community solar program. It argues for incorporating collaborative governance principles 

to further improve the community engaged research process to help insert local control 

and affordability into energy systems. Finally, chapter 4 utilizes and analyzes interview, 

focus group discussion, and survey data to understand from a community perspective 

what factors are important for community solar viability. It situates this data within the 

community social context as it recognizes that perceptions alone do not explain program 

viability. Energy justice does not apply to just one level of policy making. The 

subsequent implementation and decision-making process of these existing policies can be 

determined through collaborative governance strategies, such as community solar, that 

align with energy justice values.  
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1 Introduction 

This dissertation includes chapters that explore aspects of community solar and its 

impacts on energy policy and energy justice. I seek to understand the opportunities and 

challenges of community solar for contributing to a more just energy system in the state 

of Michigan. This theme is based on previous work demonstrating that the level at which 

energy decisions are made (i.e. size and type) matters for distributing benefits and 

burdens to society, determining who participates in decision-making, and determining 

affordability and accessibility of energy systems (Banerjee et al. 2017). On the surface, 

community solar may present a solution or alternative to improving social injustices 

associated with the current U.S. energy system; however, its successful implementation is 

dependent on structural, contextual, and community factors.   

Injustices within the U.S. energy system can include different populations’ experiences 

with decreased access to affordable, clean, reliable, and safe energy technologies and 

decision-making surrounding these energy technologies (Lovins 1976). Many energy 

decisions rest in the hands of government and corporate decision-makers, including 

electric utilities. The electric utility model centers on recouping investment from  large 

scale, centralized systems or plants that the utility can build, own, and operate.(Tomain 

and Cudahy 2011). While some residential consumers can own and operate their solar PV 

systems, many either cannot afford the upfront cost of these systems or do not have the 

physical household characteristics to accommodate these systems. Community solar 

programs provide a solution that involves both utility interconnection and residential 

system ownership or leasing. Community solar is a relatively new solar PV application 

that includes different program definitions and designs (SEPA, 2018). While some of the 

chapters below will describe these different programs, this dissertation employs the 

following community solar description: a voluntary program where community 

subscribers pay for a portion of a locally-sited solar photovoltaic (PV) array and receive 

credit on their electricity bill proportional to the power produced (SEPA, 2018, 

Wanderscheid et al 2013).  

1.1 An overview of energy governance in the United States  

A complex network of centralized power plants and vast transmission and distribution 

infrastructure comprises the current U.S. electrical system. Regulatory bodies govern this 

network at the national, regional, and state levels. The Federal Energy Regulatory 

Commission (FERC ) regulates the interstate transmission of electricity, natural gas, and 

oil at the national  level (FERC, 2018)). Specifically, FERC regulates rates and services 

for interstate electric transmission and electric wholesale power sales by public utilities, 

transmission companies, and independent power producers. In efforts to increase 

competition in the wholesale electric marketplace and provide better management of 

multiple independent power supply companies, FERC issued two Orders (888 and 889)1 

                                                 
1 Orders and Public Acts can be found at ferc.gov and legislature.mi.gov, respectively 
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to introduce Regional Transmission Authorities (RTO) and Independent System 

Operators (ISO). These regional authorities are responsible for controlling, coordinating, 

and monitoring operations across multiple states or within a single state. A key task of 

RTOs and ISOs is to operate wholesale electricity markets allowing participant utilities to 

buy and sell power. Ideally, this system allows for reliable long- and short-term 

electricity supply for participants and their consumers at the lowest possible cost.  

However, electricity in remote communities is more costly as there are fewer consumers 

to share the costs of long transmission and distribution lines necessary to provide access 

to these areas (Davis and Caldeira, 2010, Day et al, 2016, Cust et al, 2007). A majority of 

Michigan’s electricity market is currently under the purview of the Midwest Independent 

System Operator (MISO), (FERC, 2017), with a small portion of Southwest Michigan 

participating in the Pennsylvania, Jersey, Maryland Power Pool (PJM) (PJM, 2018). 

There are three utility types in Michigan: (1) investor-owned, (2) electric cooperatives, 

and (3) municipal utilities. The Michigan Public Service Commission (MPSC) regulates 

electric utility interconnection as well as all investor-owned utilities. The 2008 energy 

law package allowed a pathway for Michigan’s electric cooperatives to become member-

regulated. Currently, Michigan electric cooperatives (P.A. 167, 2008) and municipal 

utilities regulate their electric rates. Investor-owned utilities (IOU) in the U.S. operate as 

a natural monopoly. In the early days of electricity, multiple companies would build 

multiple sets of power lines in the same cities attempting to capture electricity consumer 

business. The regulatory compact was created to reduce this mass waste of resources. 

Under the regulatory compact provides IOU’s exclusive service territories, and in 

exchange, state public service/utility commissions regulate electricity rates for consumers 

at fair and reasonable rates (Tomain and Cudahy, 2011). Regulators require utilities to 

satisfy performance standards for customers at the lowest feasible cost, to explore and use 

all cost saving opportunities, and function to the benefit of the consumer rather than 

internal business objectives. In return, regulators must establish a rate of return that is 

consistent with the utility’s performance.   

Ratemaking is a significant portion of the regulatory compact and is inherently political 

as it is concerned with a valuing a product that is deemed a social necessity (Tomain and 

Cudahy, 2011). The formula used to determine customer’s electricity rates in Michigan is 

(MPSC, 2014):  

RR= r(RB) + E + D + T- Other revenue 

 RR, the utility revenue requirement, is defined as the appropriate revenue provided to a 

utility to ensure service to customers and a fair return for utility shareholders. “r” is the 

overall rate of return provided to the utility. The MPSC determines the utility’s “r” or 

return on equity through a series of financial analyses that compares attributes from a 

group of utilities nationwide that are similar to the utility in question. Attributes such as 

generation capacity, equipment values and property plans, credit ratings, among others 

are factored into different financial analyses (Eubanks, 2018). These include discounted 

cash flow, capital asset pricing, or risk premium (Eubanks, 2018). The MPSC then 
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develops a range of return on equity figures to choose from. The decision for selecting an 

appropriate return on equity attempts to balance a fair and reasonable rate for both 

ratepayers and utility shareholders. Michigan’s current return on equity is roughly 10% 

(MPSC, 2018).   

Next, the rate base (RB) includes the net cost of the plant plus the working capital. The 

rate base is a portion of the ratemaking equation where utilities can earn a profit from 

their investment in energy infrastructure.  E, D, and T represent the utility’s operating 

expenses, depreciation and amortization, and taxes, respectively. In Michigan, IOU’s 

submit a rate case to the MPSC that includes requests for cost recovery of assets to be 

included in the rate base; more often than not, the MPSC has agreed to provide an 

increase in IOU electricity rates (MPSC, 2018). While ratemaking can function to serve 

as a balance between the public’s interest, electricity consumers, the IOU’s, and their 

shareholders, regulatory ratemaking goals conflict which can result in increased rates that 

negatively impact consumers. Exploring alternative utility models, such as municipal 

utilities, can function to circumvent hurdles to renewable DG generated by IOUs.   

A state grants power to municipal governments to develop and implement policies, laws, 

regulations, incentives and other programs to provide benefits from public services to its 

citizens. This level of control applies to energy governance as some municipalities own 

and operate their electric utility infrastructure. Municipal electric utilities allow 

municipalities to generate a large portion of income for use in local government matters, 

such as creating renewable energy initiatives, goals, or targets (Homsy and Warner, 2012, 

Lubell et la, 2009). Municipal governments that more sensitive and responsive to 

community needs (Homsy, 2015) and are simultaneously in control of the local electric 

grid can look to shift energy governance at the local level and beyond to benefit their 

communities.   

While state and local governments regulated most of the generation, transmission, 

distribution, and sales of electricity in the early 1900’s (Yergin, 2011), their attempts to 

regulate interstate electricity sales in the 1920’s resulted in the creation of the Federal 

Power Act (Tomain and Cudahy, 2011). The Federal Power Act serves to clearly define 

and preserve the division of authority between federal and state regulation of public 

utilities (U.S. Congress, 1920). However, as the U.S. looks to more renewable powered 

distributed generation sources, this defined line between federal and state regulatory 

authority becomes hazy. Three constitutional provisions exist to give energy regulatory 

authority over to the federal government to either facilitate or limit regulatory power. The 

first is the Commerce Clause which gives Congress authority to use a federal agency, 

FERC for example, to regulate interstate commerce (U.S. Constitution, Article I, Section 

8, Clause 3). The Supremacy Clause speaks to the inability of a state to pass a law that 

conflicts with federal law, an act of Congress, or more broadly the U.S. Constitution 

(U.S. Constitution, Article VI, Clause 2). The Supremacy Clause binds all judges, 

including at the state level, to adhere to constitutional principles over state law. The 

Takings Clause applies to actions by both the federal (U.S. Constitution, Fifth 

Amendment) and state governments (U.S. Constitution, Fourteenth Amendment). 
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Governments that wish to acquire private property, for both direct or indirect public use, 

can do so but with just compensation provided to the property owner.  

These jurisdictional boundaries are important for renewable energy development, but 

more broadly energy policy in that regulations cannot be enforced without first adhering 

to the Commerce, Supremacy, or Takings Clauses. As technology changes, these 

jurisdictional boundaries become blurry (Dennis et al, 2016). The Commerce Clause can 

be significant to federal regulation of renewable energy sources anytime they negatively 

impact interstate commerce. Most state energy laws or policy that look to benefit in-state 

economies at the burden of out-of-state economic competitors will result in a limitation 

of state regulatory authority by the federal government, or specifically Congress. The 

Supremacy Clause serves as a reminder that any state law that conflicts with federal law 

becomes subordinate to federal law. An example can be found with growing state 

deregulation of energy. As more states look to separate energy supply and delivery, 

competition emerges for different energy types from different energy suppliers across 

state boundaries. Federal jurisdiction and regulation over transmission across state lines 

may become more prominent and could impact the role of renewable powered distributed 

regulation. The Takings Clause is an important weapon in a utility’s arsenal, particularly 

when used as an argument for obtaining a fair return on investment for its assets. With 

the existing utility rate structure, utilities can place cost recovery into customers 

electricity rates. Utilities can cite the Takings Clause and engage state or federal 

regulators to address an impediment to the utility’s right to obtain a fair return on 

investment; such as distributed renewable generation.        

In 2008, Michigan enacted Public Act 295, also known as Michigan’s Renewable Energy 

Standard. P.A. 295 is a renewable portfolio standard (RPS) that required utilities to obtain 

10% of energy generation from renewables by 2015 (recently increased to 15% by 2021). 

Under P.A. 295, Michigan’s municipal utilities must file a renewable energy plan with 

the MPSC. The RPS was amended in December 2016 by Public Acts 341 and 342. The 

amendment includes requiring the MPSC to create a distributed generation program to 

replace net metering. Utilities must create and submit an integrated resource plan (IRP) - 

a utility roadmap to providing least cost service - to the MPSC.2 Michigan is also 

considered a restructured state that allows for 100% electric choice. This concept of 

100% electric choice in Michigan is misleading, though, as only 10% of a utility’s 

generation load can engage in electric choice (P.A. 286). Michigan’s regulatory climate 

supports the adoption of renewable energy technologies through its Renewable Energy 

Standard. However, in terms of net metering and its upcoming replacement, the 

distributed generation tariff, utilities can cap distributed generation adoption to 1% of the 

utility’s peak load, ultimately excluding customers from participating after meeting the 

legislative minimum. 

                                                 
2 Other brief amendment descriptions can be found at https://www.michigan.gov/mpsc/0,4639,7-159-80741---
,00.html 
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As Michigan is currently in the final stages of implementing P.A. 341 and 342, the 

community solar research in this dissertation can be used to help inform policymaking at 

the state level and implementation of these policies at other, local levels. Michigan’s 

energy structure is situated within a multi-scalar governance structure. As a result, the 

process of energy system decision-making can leave out smaller, remote communities. 

These communities can be subject to high electricity prices and unreliable electrical 

service from long transmission and distribution lines, raising energy injustice concerns 

(Chaurey et al, 2004, Sovacool et al, 2013). Additionally, resulting from utility practices, 

smaller remote communities are often not allowed to explore alternative, local, and 

environmentally friendly energy generation sources without utility approval or 

participation. Community solar is one form of an alternative energy system that has a just 

nature as it attempts to increase affordability, reliability, and environmental quality with 

more distributed ownership. Community solar arrays are smaller in scale and more 

localized. The design of a community solar array can closely align with energy justice 

forms. Locally owned and operated systems allow costs and benefits to be absorbed by 

participants rather than placing undue cost burdens on non-participants; additionally, as 

community solar is a renewable technology, it does not negatively impact environmental 

quality experienced by non-participants. Community solar program ownership is 

typically voluntary, allowing community members power over the decision to participate, 

contribute, or be impacted by the energy system. These characteristics contribute to the 

equitable allocation of benefits and burdens found in distributive energy justice and fair 

process and participation found in procedural energy justice.   

Federal energy laws currently lack coherent, enabling policies to support community 

solar. California, Colorado, Connecticut, Illinois, Maryland, Massachusetts, Minnesota, 

Oregon, Rhode Island, and Washington, D.C. represent a handful of states with 

community solar enabling policies (NREL, 2018). While Michigan is one state without a 

community solar enabling policy, the MPSC is currently conducting stakeholder 

workgroups to develop such a policy. This lack of institutional and policy support leaves 

decision making regarding community solar program design and development at the 

discretion of utilities. Continuing to support utility level decision-making reinforces a 

system of inequitable wealth generation and distribution that locks out community level 

participation and benefit sharing from energy systems.  

1.2 Exploring community solar to reconcile decision making scales  
 

At the close of the 19th century, Samuel Insull developed tiered demand metering into the 

electrical utility model to lower prices and sell electricity to as many people as possible, 

to democratize electricity access (Yergin, 2011).  

 In the current system, most people have very little influence on the technical experts who 

control production (Lovins 1976; Winner 1980). The development of the U.S. electrical 

grid involved processes rooted in political and economic power (Winner, 1980). 

Individuals with less wealth and access to information have little power in energy system 
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decision-making (Downey 2015; Lerch 2017). Development of renewable energy 

technologies at the utility scale allows those with political and economic power to 

continue influencing decision-making at the state level to benefit and further their 

agenda, while perpetuating injustices at the smaller, local levels. This idea reiterates the 

main theme of this dissertation: the level at which energy decisions (i.e. size and type) are 

made matters for distributing benefits and burdens to society, determining who 

participates in decision-making, and determining affordability and accessibility of energy 

systems (Banerjee et al. 2017). Additionally, these decisions can negatively impact the 

reliability and environmental quality obtained from the existing electrical systems. 

Taking this further, the scale at which energy possibilities are imagined matters. IOU’s 

may support integrating renewable energy technologies but only at scales that further 

support existing rate structures and the utility model (Yergin 2011; Lerch 2017).   

This dissertation utilizes data collected from two case study sites in Michigan to explore 

community solar innovation as an alternative level for energy decision making. These 

case studies provide context for who, what, and how energy decisions are made and what 

implications community solar can have for improving energy policy decision-making. 

The Villages of L’Anse and Baraga are rural and remote communities; a qualification 

that can result in the need for more infrastructure and higher costs to provide power to 

these communities. However, Village of Baraga and L’Anse utility customers (residents 

and businesses) pay lower electricity prices compared to investor-owned utilities in the 

region as they receive power from municipal electric grid. L’Anse and Baraga are both 

comprised of households (43% and 66%, respectively) that qualify as low-to-moderate 

income (MSHDA, 2017). These numbers are significant as LMI populations typically 

lack access to solar energy systems as well as community solar programs. There is 

relatively low solar radiation in the Upper Peninsula of Michigan compared to other U.S. 

states. The Villages of L’Anse and Baraga are exploring community solar projects as a 

potential application to increase solar PV adoption in their area. Focusing on these case 

studies can provide useful information regarding the lived experiences and challenges 

faced by communities to inform and develop future research. These cases are important 

because they represent two communities that encounter barriers and challenges that 

suggest it will be difficult to develop solar PV capacity successfully. Taking this further, 

decision makers may overlook developing supportive solar PV policies for communities 

with similar characteristics. Non-action is still a decision that can ultimately fail to serve 

the public interest. Learning from these cases can highlight the need for decision making 

beyond cost-effectiveness or economic reasoning; energy decision making can begin to 

lean on justification from broader social benefits communities can experience if allowed 

to explore community solar programs. In a broader context, exploring community solar in 

these two case studies seeks to provide an example to improve Michigan energy policy 

towards more just ideals through a collaborative governance approach.  
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1.3 The scholarship: energy justice, collaborative governance, how 

they relate, why they matter 

This dissertation relies on energy justice scholarship to consider how community solar 

applications represent a potential opportunity to reconcile with the social injustices that 

result from energy policy decisions implemented at certain levels. While renewable 

energy technologies promise to mitigate environmental injustices experienced by the 

scale of the contemporary energy system (Ottinger 2013), building them into the existing 

utility model may further the social injustices experienced by some populations. The 

following paragraphs provide a brief review of procedural and distributive energy justice 

and scale politics to establish the theories and framework used to explore community 

solar application’s potential to mitigate these injustices. A brief review of collaborative 

governance is included to describe an approach to the type of decision-making explored 

in this research.  

1.3.1 Energy Justice 

Energy justice is a field of scholarship that seeks to bridge justice theories and principles 

with energy systems, including policy, infrastructure, production, consumption, and other 

energy-related activities. As with most justice scholarship (theories and principles), 

energy justice is difficult to pin down to one particular definition. This proposal will lean 

on Sovacool and Heffron’s (2016) definition: “an energy just world [i]s one that 

equitably shares both the benefits and burdens involved in the production and 

consumption of energy services, as well as one that is fair in how it treats people and 

communities in energy decision-making” (pg 5).  

Energy systems are inescapable within society. Daily life and activities are dependent 

upon energy systems, from obtaining basic needs to facilitating financial transactions to 

powering water infrastructures. Energy justice scholarship places distributive justice 

theory at its focal point (Forman 2017; Fuller and McCauley 2016; Deutsch 1975; 

Grunewald 2017). Distributive justice, considered is one of two primary  forms of energy 

justice, (McCauley et al. 2013) articulates how “social goods are allocated across society” 

(Sovacool et al 2013). This form includes a spatial and temporal component - where and 

who receives these goods, how goods are distributed, and through what approach are 

these goods distributed? Specifically, goods can be distributed based on need, 

entitlement, cost effectiveness, benefit of least advantaged, utility, and/or equality 

(Dobson, 1998). Currently, energy systems distribute electricity one centralized grid to 

consumer. As rural, remote populations spread farther away from generation sources, 

they can be subject to higher transmission and distribution costs, with decreased 

reliability. These various impacts speak to distributive energy justice scholarship that is 

concerned with the benefits and burdens of energy experienced by different social 

groups.  
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Additionally, the distribution of energy systems can impact the distribution of power in 

social relations (Deutsch, 1975). As energy affords opportunities for access to education, 

health services, and clean air and water, etc., inequitable distribution of energy can 

impact the ability of society to maintain and foster power in social, economic, and 

political relations. Equitable distribution of energy thereby has the potential to equitably 

distribute economic and politic power. 

 

Procedural justice describes an adherence to due process and fair treatment of individuals 

and communities. It comprises the consideration of how decision makers engage with 

their communities (Jenkins et al. 2016). The main question here is: how are decisions 

made? Does the decision-making process involve full participation, allow full expression 

of opinions, provide sufficient and transparent information, and involve impartiality of 

decision-makers? In the context of energy, procedural justice considerations include 

governance of energy systems that is imbalanced (Goldthau and Sovacool, 2012). Due to 

our energy system’s complexity and participation by many actors with differing resources 

and power, governance strategies can be biased towards certain groups. Different energy 

policies, laws, and regulations reflect this bias by perpetuating inequitable wealth 

generation and distribution for a select few, while locking out populations from 

participating in benefits from these systems. Procedural energy justice also points social 

power, like distributive energy justice. However, it explores the inequitable social power 

manifestations in decision making. The complexities within energy systems leaves 

decision-making and control of these systems to technical and economic elites. 

Organizations with greater power mobilize and expand their political network to garner 

support, demobilize antagonistic organizations, and utilize monetary and other resources 

to bring adherents closer and push opponents out of decision making processes (Fuller 

and McCauley, 2016). Typically, rural, remote, and low-to-moderate income 

communities have the potential to be excluded from participation and decision-making 

regarding energy systems. A simple example points to energy system development in 

communities without free and fair informed consent or community participation 

(Sovacool and Dworkin, 2015). Broader community involvement (Forman, 2017) and 

participation can alleviate some of these ills.  

Each chapter provides specific case study examples that ultimately seek to shift Michigan 

towards more just energy policy through distributive and procedural energy justice 

considerations. The dissertation chapters each explores cases of community solar 

applications with energy justice considerations. The goal here is two-fold: (1) utilize 

energy justice forms to improve the just nature of community solar program design and 

(2) illustrate how more just community solar applications can influence more just 

Michigan energy policy.  
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1.3.2 Collaborative Governance 

This dissertation is based on an approach to decision-making known as collaborative 

governance. Specifically, it marries energy justice forms to collaborative governance, an 

arguably more just form of decision-making. Energy systems are complex and may 

require different forms of management strategies to deal with these complexities. A 

relatively new governance approach, collaborative governance, attempts to include  

multiple stakeholders to “engage in consensus-oriented decision making” (Ansell and 

Gash 2008; pg 543). For this dissertation, politics of scale informs the collaborative 

governance decision making process. Decision makers establish policies utilizing a 

particular rhetoric of scale to advance agendas (Tsing 2011). The level at which energy 

policies are created shapes the implementation and application of the existing policies. 

This approach becomes problematic if policies and an exclusive decision making process 

produce narrow access to practices in energy systems; for example, applying existing 

policies in a way that decreases affordability of community solar, which by nature 

attempts to improve affordability for consumers. 

Dietz et al (2008) argue that global and national environmental decision makers 

frequently ignore the advantages of tools within community-based governance, yet these 

tools can have a significant impact on success of mitigating negative impacts on 

environment and society. Collaborative governance can be an approach used to mitigate 

negative impacts on communities. Ansell and Gash (2008) describe six criteria that must 

be present in collaborative governance efforts: 1) Public agencies or institutions must be 

responsible for initiating decision-making, 2) the process must include non-state actors, 

3) these participants are directly engaged in the process, 4) collaboration between 

participants occurs in a formal setting, (5) the collaboration attempts to make decisions 

through consensus whenever possible and 6) efforts are focused on creating public 

policy. Benefits of collaborative governance can include improved effectiveness of 

decision-making by expanding an organization’s capacity and utilizing a shared network 

to improve the ability to solve complex problems (E. Rogers and Weber 2010).  

Community solar programs can be designed to align with energy justice, yet concerns 

have emerged about the potential negative impacts of community solar programs 

developed by actors external to the community.  So, while community solar programs 

have a just nature, they can be designed in a way that perpetuates injustices experienced 

by the existing energy system. As collaborative governance works to enhance decision 

making with regards to policy, it presents an opportunity to improve or aid the just nature 

of community solar programs. Collaborative governance aims to involve all potentially 

impacted stakeholders in decision making. It refocuses decisions regarding community 

solar program design around community members, emphasizing the need to include all 

impacted voices. Providing this sense of control aligns with energy justice considerations 

that point to the importance of community member control in outcomes. Collaborative 

governance maintains balance with the sense of local control in that it does not artificially 

give final decision making power to all stakeholders. While collaborative governance 

seeks to improve power relations between multiple levels of decision makers, it reminds 
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the process that ultimately one or a select few have decision making power. The 

emphasis lies in incorporating community members concerns and viewpoints into final 

decision making. Collaborative governance reconciles with this and energy justice by 

looking to full transparency throughout the process. Effectively communicating 

participation roles in community solar development can mitigate misconceptions about 

decision making process expectations.  Overall, collaborative governance can shift 

community solar program design and decision making efforts to better align with energy 

justice forms. Energy policy in Michigan can begin to transform to consider and 

incorporate voices from the local communities impacted by energy decision making. 

This dissertation uses a collaborative governance framework to assess community solar 

program design processes. Specifically, it illustrates a social feasibility study that 

incorporates formal and non-formal actors and direct engagement with potentially 

impacted community members. Local level decision-makers utilize community feedback 

to come to a consensus regarding the community solar design and implementation. Part 

of the community solar design is to create a project that can be replicable and inform 

Michigan energy policy.  

1.3.3 The link between justice and scales of collaborative governance  

Energy justice can help to improve the level at which policies are formulated and 

adopted. Energy justice is a field that attempts to place a renewed emphasis on the human 

dimension of energy systems, which is often missing or marginalized in contemporary 

energy studies (Forman 2017). Conventional energy systems are centralized and operated 

by top-down authorities (Sovacool et al, 2013) that generally inequitably distributes 

power and marginalizes those without political power, resulting in less democratic 

participation. Energy justice does not discount the capability of top-down changes, but 

rather calls for a transformation in how planners and policymakers make decisions at all 

levels. For example, shifting policy goals and leadership to focus on human rights at the 

top can begin to transform our energy systems at the bottom. Collaborative governance 

strategies can support implementing bottom-up policies and practices can be at local 

levels, such as local energy efficiency programs, community energy projects, and 

volunteer or civil society efforts to increase energy education access.  

Energy justice first intersects with collaborative governance strategies through the 

distribution of benefits, burdens, and power that can adversely impact those connected to 

energy systems. The current U.S. energy system operates on an imbalanced system of 

wealth generation that locks out different population from participating or receiving a 

portion of these benefits. Additionally, while distributive energy justice speaks to the 

allocation of benefits and burdens from energy systems across different populations, 

collaborative governance scholarship forwards a method to improve the impacts by 

energy system distribution choices. Distributive energy justice recognizes both spatial 

and temporal distributions of energy systems. As collaborative governance strategies can 

be iterative and constantly evolve throughout the process, it allows decision makers to 

think about and evaluate changes in energy system distributions over time. Because 
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collaborative governance places emphasis on involving stakeholders who are impacted by 

energy systems, it speaks to a shift in motivations behind the distribution of energy 

systems. Specifically, it can work to shape energy systems that produce benefits for less 

advantaged populations based on need. Ultimately, collaborative governance can 

contribute to creating a more equitable system of wealth generation that more equitably 

shares benefits across all populations.   

Secondly, energy justice intersects with collaborative governance through the process of 

decision-making and an equitable balance of who participates in decision making. Both 

energy justice and collaborative governance function at multiple levels of policy making, 

which is significant with regards to the complexities and multiple level actors of the U.S. 

energy system. Collaborative governance necessitates participation by affected 

stakeholders in decision-making. It begins with an assessment of power dynamics and 

imbalances that exist within a community and seeks to improve this by including 

stakeholder groups. This exploratory nature connects to procedural energy justice that 

looks to differing levels of social power and fairness in decision-making that allows full 

participation and expression of opinions. Both collaborative governance and energy 

justice forms attempt to improve the overall practice, effectiveness, and decision making 

with regards energy policy. 

Each chapter has implications for energy justice and collaborative governance, both in 

scholarship and non-academic applications. The second chapter describes the nuanced in 

the process of rulemaking and implementation of existing Michigan energy laws and 

regulations by utilities that deliberately limits the equitable distribution of benefits and 

burdens by energy systems. Michigan utility customers located in rural regions can be 

subject to uneven accessibility, affordability, and reliability issues. Current decision 

making perpetuates wealth generation for IOUs through preventing these customers from 

accessing distributed generation sources, such as community solar, that could improve 

affordability and reliability. Additionally, while utilities sometimes offer public forums 

for commentary regarding new energy policy and practice development, ultimate 

decision making is left at either state-level (MPSC) or utility level. This is just one 

example of exclusionary practices in decision making that can leave out relevant or 

affected stakeholders (i.e. ratepayers). This chapter forwards energy justice and 

collaborative governance scholarship by providing an in-depth exploration into how 

energy actors at multiple levels navigate energy laws to maintain the status quo of power 

relations and inequitable distribution of energy system benefits and burdens. It provides 

suggestions based on energy justice and collaborative governance theories and principles 

for real-world policy applications to improve energy policy development that goes 

beyond economic motivations.  

The third chapter advances a novel collaboration between community engaged research 

and consensus-oriented governance strategies to improve just decision making 

surrounding community solar program design. Michigan’s lack of enabling community 

solar policies and programs leaves decision making to develop community solar to IOUs. 

In this IOU ownership model, the utility retains benefits from the community solar while 
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the burdens from participating, such as increased energy costs, are left in the 

communities. This chapter forwards a research process that can be replicated by utilities 

and other community solar developers to help include these communities in decision 

making; however, this process can retain injustices experienced by communities (e.g. 

distribution of power to make final decisions). More broadly, this chapter describes a 

research methodology that can be incorporated into energy justice scholarship. In 

practice, energy justice considerations and collaborative governance strategies can guide 

community engaged research to improve how researchers work with communities to 

develop more just community solar programs. Ultimately, improving this research 

process can inform Michigan energy policy decision makers to incorporate community 

level participation from affected stakeholders; balancing out social power and equitably 

distributing benefits and burdens experienced by energy systems.  

The fourth chapter builds upon Michigan’s lack of community solar enabling policies and 

ownership models that are external to communities. It highlights a disconnect between 

the conceptualizations regarding viability of community solar development and the local 

community perspectives. Typically, energy industry decision making regarding 

community solar development centers around viability as a function of cost effectiveness. 

This conceptualization is arguably an unjust method to decide whether or not to develop 

community solar programs as it does not take into account the ways communities 

perceive multiple dimensions of program viability. This chapter advocates an 

unconventional approach to enhance the viability of community solar programs: to 

incorporate community perspectives that highlight community solar viability dimensions 

beyond economics. This chapter contributes to energy justice and collaborative 

governance scholarship by providing community level analysis and findings from a 

practical application of allowing full participation in a decision making process. The 

findings have implications for the industry to further strengthen the viability of 

community solar program design and development by incorporating community level 

perspectives. It improves the just nature of community solar program design by giving 

communities more equitably distributed power over program design; rather than leaving 

power with utilities and external third-party developers. This chapter also contributes to 

more just Michigan energy policy by emphasizing a need to move beyond energy 

decision making based upon positive economics for a select few.  

Energy justice serves to guide decision-making towards a just process that examines 

which populations are impacted by our energy choices and understands who makes these 

energy choices.  Additionally, the intersection of energy justice and collaborative 

governance’s goal of consensus-oriented decision-making aligns with community needs 

and shifting priorities to achieve equitable allocation of energy system benefits and 

burdens. Collaborative governance strategies, aligned with energy justice values, can 

ultimately determine the subsequent implementation and actual decision-making process 

of these existing policies. Utilizing a collaborative governance approach with these 

characteristics in mind can provide a process that results in equitable and equal 

distribution of benefits and burdens, full participation, and transparency.     
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1.4 Structure of the Dissertation 

The overarching goal of this dissertation is to explore community solar as an approach to 

creating more just energy systems and the particular policy and governance dimensions 

that shape the use of community solar for the pursuit of energy justice. This dissertation 

utilizes a case study of community solar program development that is informed by values 

of distributive and procedural energy justice. The research illustrates injustices resulting 

from decision-making regarding the application and implementation of Michigan energy 

policies. It then considers collaborative governance as an approach to reconcile these 

injustices and forwards community solar as the specific application to achieve this.  Each 

chapter explores the potential for community solar to lead to more just energy policy in 

the state of Michigan.  

The studies in this dissertation explore Michigan utilities operating within existing state 

and federal level energy regimes as well as provide case study analyses of community 

solar. Energy justice scholarship acknowledges that context matters (Sovacool et al, 

2013). This work utilizes the case study analyses to build a better understanding of what 

contextual factors matter for community solar adoption and participation in aligning with 

principles of energy justice. This methodology used can function to improve just 

processes and outcomes in energy decision-making practices.  

Chapter 2 provides a review of the existing policies and regulations of utilities within 

Michigan. This chapter considers how utilities exercise their power within and outside 

existing regulatory, policy, and legal regimes to hinder DG proliferation. Recent case 

study examples from Michigan utility strategies highlight the need to think about how 

utilities interpret and implement rules when designing energy legislation and policy to 

maximize the benefits for consumers and society. Policy recommendations and alternate 

strategies are provided to help enhance the role of energy policy to improve rather than 

limit the utilization of RE DG. This chapter is published in Energies Special Issue: 

Energy Policy (Prehoda et al, 2019).  

Chapter 3 describes the community engaged research process utilized to consider the 

viability of developing a community solar program in two Michigan Upper Peninsula 

communities. This chapter reflects on the obstacles the team encountered throughout the 

process rather than presenting the empirical findings from the research. It points to the 

importance of incorporating collaborative governance strategies to improve the 

community engaged research process for community energy projects. This chapter takes 

lessons learned to forward the conceptual argument that collaborative governance 

strategies can help to address challenges experienced throughout the community engaged 

research process. This chapter is published in Social Sciences Special Issue: Engaged 

Scholarship for Resilient Communities (Prehoda et al, 2019). 

Chapter 4 describes and analyzes findings from a social feasibility study conducted in 

two low-to-moderate income communities in Michigan’s Upper Peninsula. Data was 

collected and analyzed from qualitative interviews, focus group discussions, and 



14 

community surveys for factors that correlate that are important to community solar 

viability. Additionally, it considers the community social context of each community to 

help understand what contextual factors can influence program viability.  

These chapters acknowledge that there are opportunities and issues to consider when 

implementing community solar programs. Community solar is mainly accessible by more 

affluent communities, which continues to lock out populations from equitably 

experiencing economic and social benefits of our energy system. This dissertation seeks 

to shift decision making to better reflect added social benefits that community solar can 

provide. Chapter 2 provides policy recommendations for more and enhanced distributed 

generation proliferation in Michigan. Chapter 3 forwards contributes to the community 

engaged research field by incorporating community engagement in community energy 

projects. Additionally, it describes a methodology to improve decision making regarding 

energy systems. Chapter 4 looks to close the gap between solar industry and solar 

developer community solar decision making centered around economic viability without 

considering community perspectives. More broadly, this dissertation attempts to forward 

collaborative governance and community engaged research as tools to promoting 

community solar programs that are more aligned towards more procedurally just decision 

making regarding Michigan energy policy. The guidebook located in the appendix 

provides an applied tool for pursuing this aim.  
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Abstract: Because of its environmental damage and now often being the most expensive source for 

electricity production, coal use is declining throughout the United States. Michigan has no active coal 

mining and seemingly supportive legislation for distributed generation (DG) and renewable energy (RE) 

technologies. However, Michigan still derives approximately half of its power production from large 

centralized coal plants, despite the availability of much lower cost RE DG technologies. To understand this 

conundrum, this study reviews how Michigan investor owned utilities utilize their political power to 

perpetuate utility structures that work toward the financial interests of the utilities rather than the best 

interests of the state’s electricity consumers, including other firms and residents. Background is provided 

covering the concept of DG, the cost savings associated with DG, and utility regulatory regimes at the 

national, regional, state, and local levels. Recent case studies from specific utility strategies are provided in 

order to illustrate how Michigan utilities manipulate regulatory regimes via policy misinterpretation to deter 

or hinder the proliferation of DG in favor of maintaining the existing interests in centralized, fossil fuel-

based electrical energy production. The results of this study demonstrate how DG proliferation is hindered 

by Michigan regulated utilities via the exercise of political power within existing legal and regulatory 

regimes. This highlights the need to think about how utilities may interpret and implement rules when 

designing energy legislation and policy to maximize the benefits for consumers and society. Policy 

recommendations and alternate strategies are provided to help enhance the role of energy policy to improve 

rather than limit the utilization of RE DG. 

Keywords distributed generation; energy policy; renewable energy; electric utilities; utility regulation 

 

1. Introduction 

Nearly half of electrical generation in Michigan is provided by coal-fired electrical power plants that 

are concentrated in the Lower Peninsula [1]. Although there are some coal resources underground in 

Michigan, the state has no active coal mines [2]. This requires Michigan to import all of its fuel for these 

coal-fired power plants, moving money out of the state [3]. Yet, Michigan has substantial renewable energy 

(RE) resource potential in the form of biomass from an abundance of forestland area [4], hydroelectric power 

along many rivers [5], as well as ample wind [6] and solar energy [7,8]. Modern solar photovoltaic (PV) [9] 

and wind energy [10] technologies provide a lower levelized cost of electricity [11–13] than coal-fired 

electricity [14,15]. In addition, they can be inherently distributed (e.g. each electricity consumer produces 

some or all of their electricity on site). Distributed generation (DG) has several technical advantages, 
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including improved reliability and reduced transmission losses [16,17]. RE resources in general and DG RE 

in particular increase access to more affordable and locally (or even individually) owned energy systems, 

arguably a more socially just technological application for the provision of electrical energy services [18–

22]. Despite these benefits, Michigan’s RE profile remains low [1] and some of Michigan’s residential 

electricity consumers are paying approximately 20% more for electricity than the United States (U.S.) 

averages [9]. To understand why Michigan continues to use more expensive and less environmentally benign 

electricity generation technologies, this study investigates the utility structures and regulatory regimes in 

Michigan. It explores how existing utility entities in the state navigate the implementation of existing energy 

policy, finding that policy interpretation and implementation serve to perpetuate the existing, fossil fuel 

dependent energy regime.  

As with other U.S. states, electrical energy is provided to Michigan’s customers by various utility 

entities organized in three utility structures: (i) municipally owned entities, (ii) cooperative electric 

associations, and (iii) investor owned utilities (IOUs). Municipal utilities and rural electric cooperatives or 

rural electric associations are organized as public entities. IOUs, on the other hand, are private and for-profit 

firms that provide electricity to 67% [23] of U.S. and 84% of Michigan customers [24]. As privately owned 

utility companies, IOUs must comply with regulatory measures that are set by the state. 

However, the implementation of regulatory measures involves interpretation. In the past, Michigan 

utilities’ interpretation and implementation of existing federal and state energy laws functioned to 

disincentivize DG proliferation, which limited the growth of RE deployment. For example, Michigan 

maintains a Renewable Energy Standard (RES) that requires regulated utilities to obtain 15% of electrical 

generation from renewables by 2021 [25]. A net metering program that provides DG customers with credit 

for excess generation is within the RES; Michigan legislation states that “An electric utility or alternative 

electric supplier is not required to allow for a distributed generation program that is greater than 1% of its 

average in-state peak load for the preceding five calendar years” [26]. Some IOUs operating in the state 

interpret this as a maximum and cap net metering capacity to 1% of the peak generation load [27]. Michigan 

legislation also provides choice of electric supplier to consumers, yet the legislation limits participation to 

10% of the generation load [28]. These are just two examples of how utility interpretation and implementation 

of energy legislation function to limit DG within the state of Michigan. As a result, the DG capacity of 

Michigan at the end of 2017 was roughly 30 MW [29], totaling 10% of Michigan total energy usage [30].  

The purpose of this study is to investigate how IOUs in Michigan utilize their political power to 

perpetuate utility structures that work in the financial interests of the utilities rather than the best interests of 

the state’s electricity consumers, including other firms and residents. Background is provided covering the 

concept of DG, the cost savings associated with DG, and utility regulatory regimes at the national, regional, 

state, and local levels. Recent case studies of specific utility strategies are provided to illustrate how Michigan 

utilities use policy interpretation and implementation to deter or hinder the proliferation of DG in favor of 

the maintenance of existing interests in centralized, fossil fuel-based electrical energy production. Finally, 

policy recommendations and alternate strategies are provided to help in enhancing the role of energy policy 

to improve rather than limit RE DG. 

2. Background  

This section begins with a brief description of DG including the cost savings associated with DG for 

Michigan utility customers before turning to the Michigan Public Service Commission (MPSC) compliance 

requirements to the Michigan legislature regarding DG reporting. It then describes the multilevel governance 

structures within which U.S. utilities operate. The Federal Energy Regulatory Commission (FERC) oversees 

the wholesale electricity market along with the interstate transmission of electricity. Public Service 

Commissions (PSC), which are also known as Public Utility Commissions (PUC), regulate the retail rates of 
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utilities within each state. Different utility types are regulated differently in each state; this section describes 

utility regulation only as specifically applicable in Michigan.  

2.1. What is Distributed Generation?  

Distributed generation refers to technology that generates electricity at or near where it will be used 

[31–33]. DG has different scales and applications, including a residence [34,35], a business [31], or a larger 

system [36] operating as a microgrid for resilience or security [37]. Utility scale energy generation, by 

contrast, and regardless of energy source, involves much larger systems, which are often located further away 

from the site of use, which are owned and operated by or for utility needs first. DG can be powered with RE 

sources, such as solar [31], wind [32], and hydro [38], as well as other conventional fuels, such as diesel-

powered [39] generators and various hybrid arrangements of multiple sources [34,40]. This paper specifically 

focuses on DG from RE sources for their ability to promote locally owned and operated energy systems as 

well as the improvement of electrical grid operations by decreasing load and stress on transmission and 

distribution lines [41–45]. The environmental benefits of RE production as an alternative to conventional 

fossil fuels are also well established [19–21], such as reduced pollution [46], lower rates of morbidity and 

mortality from air pollution [47], and lessened environmental degradation [48].  

On average, Michigan residential consumers pay $0.1512/kWh for electricity [9]. In order to show that 

DG technologies, particularly solar PV, can provide electricity savings to residential customers in almost all 

Michigan counties, the following analysis was conducted. A state of Michigan county shapefile was obtained 

from the GIS Open Data database [49]. The electricity rates for each IOU were obtained from the Michigan 

Public Service Commission bank of electric rate books [50]. Potential savings for each county were 

calculated using the levelized cost of energy following the method outlined by Branker et al. [11] from the 

electric rates using the following assumptions: inputting average sun hours/county, an average 5 kW solar 

residential system capacity, and average $/W cost of $2.50/W (The PV $/W cost was obtained through 

personal communication with solar development firms in Michigan, including Chart House Energy, LLC, 

Quality Solar, and Strawberry Solar. The value used is the average of PV suppliers and it does not include 

any tax credit). In addition, the LCOE is based on average annual sun hours between 3.4 and 4.4 kWh/m2/day 

in each county, the capacity factor calculated from sun hours, inverter replacement period of 10 years, PV 

system warranty of 30 years, solar PV system degradation rate of 0.5% per year, and 3.0% annual discount 

rate for present-value calculations. Subsequently, the savings were calculated by subtracting the solar LCOE 

from the IOU rates then geolocated onto each Michigan county utilizing ArcMap version 10.6.1. Table 1 

breaks down each county by IOU residential rates, LCOE, sun hours [51], and the PV savings per kWh. The 

average monthly savings of a residential consumer that utilizes 600 kWh/month is shown in Figure 1. It is 

important to note that most counties contain municipal, electric cooperative, and IOUs. As this paper 

specifically focuses on IOU strategies to hinder DG proliferation, that is the utility type reflected in both 

Table 1 and Figure 1. It should also be pointed out that no incentives of any kind were assumed (e.g. current 

30% federal investment tax credit), so the PV savings are an extremely conservative estimate. 

Table 1. Michigan County solar photovoltaic (PV) savings for residential systems breakdown per kWh. 

County Utility 

Solar Flux 

(kW/m2/da

y) 

PV LCOE 

$/kWh 

Residential 

Rates $/kWh 

PV Savings 

$/kWh 

Alcona 
Consumers 

Energy 
3.75 $0.109 $0.162 $0.052 
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Alger 

Upper 

Peninsula 

Power Co 

(UPPCo) 

3.57 $0.115 $0.185 $0.070 

Allegan 
Consumers 

Energy 
3.80 $0.108 $0.162 $0.054 

Alpena 
Alpena 

Power Co. 
3.71 $0.110 $0.133 $0.023 

Antrim 
Consumers 

Energy 
3.65 $0.112 $0.162 $0.049 

Arenac 
Consumers 

Energy 
3.79 $0.108 $0.162 $0.054 

Baraga UPPCo 3.62 $0.113 $0.185 $0.072 

Barry 
Consumers 

Energy 
3.79 $0.108 $0.162 $0.054 

Bay 
Consumers 

Energy 
3.78 $0.108 $0.162 $0.054 

Benzie 
Consumers 

Energy 
3.74 $0.109 $0.162 $0.052 

Berrien 

Indiana 

Michigan 

Power (IMP) 

3.79 $0.108 $0.125 $0.017 

Branch 
Consumers 

Energy 
3.81 $0.107 $0.162 $0.054 

Calhoun 
Consumers 

Energy 
3.81 $0.107 $0.162 $0.054 

Cass IMP 3.82 $0.107 $0.125 $0.018 

Charlevoix 
Consumers 

Energy 
3.68 $0.111 $0.162 $0.051 

Cheboygan 
Consumers 

Energy 
3.68 $0.111 $0.162 $0.051 

Chippewa non-IOU 3.66 $0.000 $0.000 $0.000 

Clare 
Consumers 

Energy 
3.73 $0.110 $0.162 $0.052 
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Clinton 
Consumers 

Energy 
3.79 $0.108 $0.162 $0.054 

Crawford 
Consumers 

Energy 
3.70 $0.111 $0.162 $0.051 

Delta UPPCo 3.70 $0.111 $0.185 $0.074 

Dickinson UMERC 3.69 $0.111 $0.138 $0.027 

Eaton 
Consumers 

Energy 
3.80 $0.108 $0.162 $0.054 

Emmet 
Consumers 

Energy 
3.66 $0.112 $0.162 $0.049 

Genesee 
Consumers 

Energy 
3.79 $0.108 $0.162 $0.054 

Gladwin 
Consumers 

Energy 
3.76 $0.109 $0.162 $0.052 

Gogebic Xcel 3.65 $0.112 $0.115 $0.003 

Grand Traverse 
Consumers 

Energy 
3.69 $0.111 $0.162 $0.051 

Gratiot 
Consumers 

Energy 
3.78 $0.108 $0.162 $0.054 

Hillsdale 
Consumers 

Energy 
3.82 $0.107 $0.162 $0.054 

Houghton UPPCo 3.64 $0.112 $0.185 $0.073 

Huron DTE 3.73 $0.110 $0.133 $0.023 

Ingham 
Consumers 

Energy 
3.80 $0.108 $0.162 $0.054 

Ionia 
Consumers 

Energy 
3.78 $0.108 $0.162 $0.054 

Iosco 
Consumers 

Energy 
3.77 $0.109 $0.162 $0.052 

Iron UMERC 3.67 $0.112 $0.138 $0.026 

Isabella 
Consumers 

Energy 
3.76 $0.109 $0.162 $0.052 
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Jackson 
Consumers 

Energy 
3.81 $0.107 $0.162 $0.054 

Kalamazoo 
Consumers 

Energy 
3.81 $0.107 $0.162 $0.054 

Kalkaska 
Consumers 

Energy 
3.67 $0.112 $0.162 $0.049 

Kent 
Consumers 

Energy 
3.78 $0.108 $0.162 $0.054 

Keweenaw UPPCo 3.63 $0.113 $0.185 $0.072 

Lake 
Consumers 

Energy 
3.73 $0.110 $0.162 $0.052 

Lapeer DTE 3.77 $0.109 $0.133 $0.024 

Leelanau 
Consumers 

Energy 
3.66 $0.112 $0.162 $0.049 

Lenawee 
Consumers 

Energy 
3.84 $0.107 $0.162 $0.054 

Livingston DTE 3.81 $0.107 $0.133 $0.026 

Luce non-IOU 3.63 $0.000 $0.000 $0.000 

Mackinac non-IOU 3.70 $0.000 $0.000 $0.000 

Macomb DTE 3.81 $0.107 $0.133 $0.026 

Manistee 
Consumers 

Energy 
3.73 $0.110 $0.162 $0.052 

Marquette UPPCo 3.63 $0.113 $0.185 $0.072 

Mason 
Consumers 

Energy 
3.76 $0.109 $0.162 $0.052 

Mecosta 
Consumers 

Energy 
3.74 $0.109 $0.162 $0.052 

Menominee UMERC 3.75 $0.109 $0.138 $0.029 

Midland 
Consumers 

Energy 
3.77 $0.109 $0.162 $0.052 

Missaukee 
Consumers 

Energy 
3.69 $0.111 $0.162 $0.051 
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Monroe DTE 3.85 $0.106 $0.133 $0.027 

Montcalm 
Consumers 

Energy 
3.76 $0.109 $0.162 $0.052 

Montmorency 
Consumers 

Energy 
3.70 $0.111 $0.162 $0.051 

Muskegon 
Consumers 

Energy 
3.78 $0.108 $0.162 $0.054 

Newaygo 
Consumers 

Energy 
3.76 $0.109 $0.162 $0.052 

Oakland DTE 3.80 $0.108 $0.133 $0.025 

Oceana 
Consumers 

Energy 
3.77 $0.109 $0.162 $0.052 

Ogemaw 
Consumers 

Energy 
3.75 $0.109 $0.162 $0.052 

Ontonagon UPPCo 3.61 $0.113 $0.185 $0.072 

Osceola 
Consumers 

Energy 
3.72 $0.110 $0.162 $0.052 

Oscoda 
Consumers 

Energy 
3.72 $0.110 $0.162 $0.052 

Otsego 
Consumers 

Energy 
3.68 $0.111 $0.162 $0.051 

Ottawa 
Consumers 

Energy 
3.80 $0.108 $0.162 $0.054 

Presque Isle 
Consumers 

Energy 
3.68 $0.111 $0.162 $0.051 

Roscommon 
Consumers 

Energy 
3.73 $0.110 $0.162 $0.052 

Saginaw 
Consumers 

Energy 
3.78 $0.108 $0.162 $0.054 

St. Clair DTE 3.66 $0.112 $0.133 $0.021 

St. Joseph 
Consumers 

Energy 
3.80 $0.108 $0.162 $0.054 

Sanilac DTE 3.78 $0.108 $0.133 $0.025 
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Schoolcraft UPPCo 3.82 $0.107 $0.185 $0.078 

Shiawassee 
Consumers 

Energy 
3.74 $0.109 $0.162 $0.052 

Tuscola DTE 3.77 $0.109 $0.133 $0.024 

Van Buren 
Consumers 

Energy 
3.81 $0.107 $0.162 $0.054 

Washtenaw DTE 3.83 $0.107 $0.133 $0.026 

Wayne DTE 3.84 $0.107 $0.133 $0.026 

Wexford 
Consumers 

Energy 
3.70 $0.111 $0.162 $0.051 

 

 

Figure 1. Savings ($/kWh) provided to each Michigan county from residential solar PV.  

2.2. Utility Regulatory Regimes: National, Regional, State, and Local 

The current U.S. electrical system is largely comprised of a complex network of centralized power 

plants, transmission and distribution infrastructure. Regulatory bodies at the national, regional, and state 

levels govern this network. At the national level, the Federal Energy Regulatory Commission (FERC) 

regulates electricity markets. Broadly, FERC regulates interstate transmission of electricity, natural gas, and 
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oil [52]. Specifically related to electricity, FERC regulates the rates and services for interstate electric 

transmission and electric wholesale power sales by public utilities, transmission companies, and independent 

power producers. FERC maintains its legal authority from the Federal Power Act, which allows the 

commission to “prescribe, issue, make, amend, and rescind orders, rules, and regulations” regarding public 

utility activity [53]. FERC does not have authority over the local distribution of electric energy, sales of 

energy to customers, or determining what generation and transmission is built.  

In efforts to increase competition in the wholesale electric marketplace and to provide better 

management of multiple independent power supply companies, FERC issued two Orders in 1998 [54], to 

introduce Regional Transmission Authorities (RTOs) and Independent System Operators (ISOs). These 

regional authorities are responsible for controlling, coordinating, and monitoring operations across multiple 

states or within a single state. A key task of RTOs and ISOs is to operate wholesale electricity markets, 

allowing for participant utilities to buy and sell electrical power. Ideally, this system allows for reliable long- 

and short-term electricity supply for participants and their consumers at the lowest possible cost. However, 

electricity in remote communities becomes costly for consumers based on a centralized model of distribution, 

as long transmission and distribution lines are necessary to provide access to these areas. A majority of 

Michigan’s electricity market is currently under the purview of the Midwest Independent System Operator 

(MISO), with a small portion participating in the Pennsylvania, Jersey, Maryland Power Pool (PJM) [55].  

State legislatures consider energy matters that are brought forth by the governor or other state 

congressional and committee members. They create energy legislation and subsequent laws that PSCs must 

comply with and enforce. For example, the Michigan Public Service Commission (MPSC) is required to 

produce a report [27] to summarize the previous year’s electric utility RE growth. The report serves two 

purposes: to ensure that electric utilities comply with RE standards in existing Michigan energy laws as well 

as ensure that the MPSC is properly monitoring electric utilities’ utilization of RE resources. The MPSC 

compiles data from each electric utility’s reports and presents it to the senate and house committees on an 

annual basis.  

The MPSC regulates electric utility interconnection, reviews rate cases, and regulates the state’s 

renewable energy mandates. Currently, Michigan electric cooperatives [56] and municipal utilities are 

allowed to regulate their own electric rates. The 2008 energy law package allowed a pathway for Michigan’s 

electric cooperatives to become member regulated [56]. While electric cooperatives can still choose to be 

rate regulated by the MPSC, all of them remain unregulated in terms of electric rates. This allows electric 

cooperatives to be accountable to their members rather than a governmental agency [57,58]. The MPSC still 

regulates electric cooperative interconnection as well as cooperative and municipal adherence to renewable 

portfolio standard and energy waste reduction standards.  

3. Policy Review 

This paper reviews the existing regulations and laws that address DG proliferation at both the national 

and state levels. First, Public Utility Regulatory Policy Act (PURPA), the Clean Renewable and Efficient 

Energy Act and its amendments, and the Customer Choice and Reliability Act of 2000, are discussed 

[25,26,28]. Examples from utility legal and rate cases, in addition to direct firsthand experiences working 

with utilities, are provided to illustrate how IOUs in Michigan manipulate regulation through practices of 

interpretation and implementation and how these practices limit the growth of DG.  

Michigan is currently undergoing deliberations regarding net metering, electricity provider choice, 

integrated resource planning (IRP) rulemaking, along with annual rate cases [59]. Therefore, this section 

provides a timely review of Michigan IOUs’ interpretation and implementation of existing legislation. 

Federal and Michigan energy laws are reviewed to provide a foundational understanding of the environment 

within which Michigan utilities must operate. The PURPA review provides the federal legal context through 

which regulated utilities must buy power from independent power producers. P.A. 295 [26] describes 
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Michigan’s 2008 energy law that implemented the renewable energy standard and subsequent net metering 

program. P.A. 341 [25] and 342 [60] are the recent 2016 amendments to P.A. 295. P.A. 141, 142, and 286 

[28] are the energy laws regarding customer choice in Michigan. This section only reviews the portions of 

the above laws that are related to DG.  

3.1. Public Utilities Regulatory Policies Act (PURPA), 1978 

The Public Utility Regulatory Policy Act (PURPA) was passed in 1978 in response to the 1973 oil 

shocks. Legislatures hoped to promote generation from alternative energy sources and energy efficiency, and 

to diversify the electric industry [61–63]. PURPA requires utilities to buy power from independent companies 

or qualified facilities (QF) that can produce power for less than what it would have cost for the utility to 

generate the power, called “the avoided cost”. While FERC and state Public Utility Commissions (PUC) 

share the enforcement of PURPA, FERC designates the QF, as well as setting the general regulatory 

framework. PUCs calculate and set the avoided cost and determine PURPA contract terms. In order to 

compromise with contestations against PURPA’s mandatory purchase obligation, Congress amended 

PURPA through EPAct 2005. Legislatures found that, as QF have nondiscriminatory access to wholesale 

power markets, utilities are no longer obligated to purchase power from QF with 20+MW. FERC’s final 

order keeps the purchase obligation in place, but allows for utilities to apply for relief from the obligation; 

QF’s can rebut the application if they are not receiving nondiscriminatory access. The purchase obligation 

remains wholly in place with QFs of less than 20MW. FERC can respond to petitions for action by choosing 

to intervene in state utility operations during interstate electricity commerce issues or if a ruling is needed 

during PURPA contestations [64].  

PURPA has been instrumental in creating a market for power from non-utility power producers. This is 

especially true with DG, as current PURPA avoided cost rates are based on natural gas generation and the 

RE costs continue to drop below this [14]. This is due to the interpretation of FERC orders that utility avoided 

cost should be based on the cheapest available marginal power (natural gas combined cycle) [65], whereby 

DG is competing against a lower avoided cost than the relatively high cost of coal-fired electricity in 

antiquated power plants that make up the majority of Michigan’s power plants [13]. Before PURPA, only 

utilities could own and operate electric generating plants. However, recent contestations to PURPA include 

cuts to contract terms [66], reductions in avoided cost rates [67], and issues with providing open access to 

interconnection [68].  

The MPSC recently issued a new framework for PURPA contracts in the state. Despite PURPA’s 

significance in driving RE development, Michigan utilities met the new framework with strong resistance. 

The MPSC recently ordered 20-year contracts at a standard rate for projects that are up to 2MW and a PURPA 

avoided the cost rate of ~$0.10/kWh [62]; PURPA avoided cost rates had not been updated in 30 years, which 

are not reflected in the cost of electricity to consumers, which has increased by over 50%% in 30 years in 

Michigan [69]. As the new avoided cost rate is favorable ($0.10/kWh), independent power producers can 

now secure financing more easily with a 20-year contract term [70]. Michigan utilities simply object to being 

forced to buy power from PURPA projects, despite the fact that RE systems provide power at lower costs 

than the utilities can produce from their less-efficient power plants [71]. 

3.2. Clean Renewable and Efficient Energy Act Public Act (P.A.) 295, 2008 

In 2008, Michigan enacted Public Act 295, which is also known as Michigan’s Renewable Energy 

Standard. P.A. 295 is a renewable portfolio standard (RPS) that required utilities to obtain 10% of energy 

generation from renewables by 2015 (recently increased to 15% by 2021) [26]. Under P.A. 295, Michigan’s 

municipal utilities must file a renewable energy plan with the MPSC. Every year following P.A. 295 

enactment, the MPSC is required to submit a report to the Michigan Senate and the House of Representatives 

detailing the implementation of P.A. 295.  
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Under P.A. 295, Michigan regulated utilities are required to provide a net metering program to DG 

prosumers [72,73]. This is different from the required interconnection service that was established under the 

Energy Policy Act of 2005, as EPAct 2005 amended net metering and interconnection standards with regards 

to PURPA [74]. Although this is the law, a recent study has found widespread inconsistencies in the net 

metering policies throughout the U.S., within states, and even within individual companies, with a tiny 

percentage offering retail rate compensation [75]. P.A. 295 language states that a minimum of 1% of the 

utility’s peak generation load could apply and participate in the net metering program.  

The net metering program separated and defined credits for excess energy from DG systems into three 

different levels. The first level represented systems up to 20 kW. These systems received “dollar for dollar” 

compensation, which is otherwise known as retail credit. The second level included consumers considering 

installations between 20 KW and 150 KW. These customers receive less than retail credit. Finally, the third 

level comprises DG systems with grid-tied generation of 150 KW or more [76]. These generators receive 

zero credit for excess generation under current legislation. The 2016 amendment, however, allows for 

150+kW methane digesters to receive partial credit (amount subject to each utility’s discretion) in a modified 

net metering program. The act also included capacity requirements for utilities in Michigan that served 

between 1–2 million retail customers and two million customers or more. The first designation required these 

utilities to install 500 MW of renewable energy capacity by 2015; 600 MW for the second designation. Only 

two utilities, Consumers Energy (1.9 million customers) and DTE (1.2 million customers), qualify under 

these designations.  

3.3. P.A. 341 

P.A. 341 updated legislation regarding utility rate cases, electric choice, and capacity, and established 

an integrated resource planning process. For utility rate cases, P.A. 341 no longer allows for utilities to 

institute rate increases if the MPSC has not issued a final order six months after receiving the rate case. P.A. 

341 updates provisions to electric choice, specifically with regards to the reliability and capacity of alternative 

suppliers. The alternative suppliers must show that they can meet the energy needs of their customers. The 

MPSC is now required to determine the rate that the utility must pay qualifying facilities for energy 

generation under PURPA. P.A. 341 creates a process to review avoided cost rates, which had not been 

conducted in Michigan since August 27, 1982 [77].  

P.A. 341 also requires utilities to create and submit an integrated resource plan (IRP) to the MPSC, 

which is a utility roadmap to the provision of least cost service. The roadmap is supposed to assess the full 

range of options regarding energy generation and savings to a utility. The IRP must include 5-, 10-, and 15-

year projections regarding utility load obligations as well as plans to meet each obligation. Projections also 

include utility sales, generation type to satisfy proposed capacity needs, RE purchases, and eliminated energy 

waste, among other considerations. Utilities must provide projected rate impacts that are based on the 

proposed plan. Once a utility submits an IRP, the MPSC reviews and can approve, deny, or request revisions 

from the utility. At the close of 2018, Consumers Energy Company was the only regulated Michigan utility 

to have filed an IRP, which has not been approved. The MPSC and Consumers Energy are currently in 

settlement negotiations regarding the IRP. Utilities have varying filing dates and requirements as determined 

by the MPSC [78].  

3.4. Clean and Renewable Energy and Energy Waste Reduction Act, P.A. 342 

P.A. 342, passed in 2016, updated RE, energy waste reduction, DG, and on-bill financing laws. This 

section focuses on the amendments that are related to RE and DG. First, P.A. 342 increased the RE 

requirement for Michigan utilities from 10% by 2015 to 15% by 2025. Utilities are now required to offer 

green pricing programs to retail customers. Language remained from P.A. 295, whereby utilities must allow 
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a minimum of 1% of peak generation load to participate in the net metering program, yet the wording allows 

for an interpretation whereby they can continue to treat this as a limit.  

P.A. 342 required the MPSC to create a new DG program; part of this legislation required the MPSC to 

conduct a cost of service study to determine an appropriate tariff for DG customers. The DG program 

calculates credit for excess energy based on an inflow/outflow methodology. DG customers will pay for all 

inflow of electricity delivered by the utility that is based on their regular cost of service (or retail rate), while 

the outflow from the solar PV system back to the electrical grid will receive a credit that is yet to be 

determined. Two utilities (UPPCo and Detroit Edison) have already submitted the proposed DG tariffs for 

MPSC review. Both utilities that have submitted their rate case proposals to value DG at a wholesale cost 

[79,80].  

3.5. Customer Choice and Reliability Act of 2000; P.A. 141, 142, 286 

Until the 1990’s, most U.S. utilities were vertically integrated monopolies that maintained control over 

generation, transmission, and distribution of energy. However, states with high electricity rates reconsidered 

this structure and then sought ways to lower prices and provide more efficient utility operations [81]. Broadly, 

restructuring essentially establishes new legal ground rules for electricity, generation, and transmission; the 

exact definition is specific to each aspect of the electricity industry. In Michigan, restructuring introduced 

provisions to allow customers to purchase energy from alternative suppliers, to require regulated utilities to 

either join a RTO or divest transmission facilities, to lower residential rates, and to freeze rate increases.  

High energy costs and aging electricity infrastructure in the late 1990’s catalyzed the Michigan 

legislature to act. The Customer Choice and Reliability Act of 2000 (P.A. 141) amended Public Act 3, 1939, 

the legislation that directed the regulation of public utilities by the MPSC. The amendment served to shift 

Michigan’s electricity industry towards deregulation or restructuring. The legislature intended to bring 

competition into electric supply as well as to encourage investment in more efficient generating capacity. 

The main component of Michigan’s restructuring involves functional unbundling. Rather than having 

generation, transmission, and distribution as one package deal, the services have been separated into discrete, 

separately priced components. The Michigan power supply is available to competitive suppliers, while the 

transmission and distribution remain under the regulated utilities. Public Act 142 allowed for incumbent 

utilities to secure compensation for their costs that are incurred pre-restructuring that are higher than the costs 

during competition and in the overall transition to the competitive market. 

Michigan is considered to be a restructured state in that it allows for 100% electric choice in energy 

supply. This is misleading, though, as, in 2008, an amendment stipulated that only 10% of a regulated utility’s 

retail sales can engage in electric choice (P.A. 286, amendment to P.A. 141). While Michigan’s choice model 

states that it allows all consumers the option for electric and gas choice of suppliers, utilities cap the number 

of customers that can participate in retail choice opportunities. Even though the legislative language sets 

choice at 100%, the reality is that some services are mandatory (transmission and distribution), while some 

are subject to choice (supply). Additionally, alternative suppliers cannot directly provide electricity to each 

customer contract. This may be due to the regulatory compact guiding utility and regulator engagement; the 

MPSC regulates utility rates, while the utility is guaranteed a service territory [82]. This means that customers 

do not directly receive power from an alternative supplier. Some areas where other non-incumbent utilities 

do not provide service, the incumbent serves as the default service provider. For example, the Village of 

L’Anse in the Upper Peninsula of Michigan is a municipal utility that is located adjacent to territory served 

by UPPCo, an IOU. The Village utility electric rates are roughly $0.07–$0.14 lower when compared to 

UPPCo, motivating consumers in UPPCo territory to seek out lower rates. For example, an industrial park 

that is entirely located within the Village limits contracted services from UPPCo for a limited timeframe; 

after this contract closed, the industrial park sought power directly from the Village because of the cost 

savings [83]. UPPCo is now currently pursuing litigation against the Village of L’Anse.  
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4. Policy Interpretation and Implementation as Utility Driven Manipulation  

The history of the electricity industry credits Samuel Insull with the consolidation of utilities into larger, 

investor owned, centralized electrical generation stations [84]. Since this time, utilities have increasingly 

operated according to the main goal of maximizing profits. Decisions surrounding how to maximize profits 

do not usually occur without a precedent or prior experience of the firm or regulators [85]. Profits and 

previous experience shaped and explained utility companies’ behaviors during the first half of the 20th 

century [86]. However, contemporary IOUs, as examined here in the case study of Michigan utilities, 

continue to rely on these considerations to manipulate the interpretation and implementation of laws in ways 

that align with business as usual utility operations and cost recovery goals.  

4.1. Rate Cases and the New Inflow/Outflow Methodology 

The first way that a public utility can manipulate the law is through proposed rate cases. IOUs are 

subject to state regulation by PSCs [82], and the PSCs set prices for different customer types as well as 

determining the rate of return on investment for a utility. This is a measure of profitability for the utility and 

therefore it is constantly updated with each rate case that a utility proposes. Prior to Michigan’s 2016 

legislation, regulated utilities could self-implement rate increases if the MPSC had not issued a final order 

within six months of receiving the rate case.  

As stated above, the MPSC recently accepted an inflow/outflow methodology of crediting DG 

customers for their excess generation. This means that utilities will use instantaneous metering to read any 

electricity that flows into the customer’s home, business, or building as well as excess generation from the 

DG system. As per the 2016 energy legislation (section 460.1177), “the credit per kilowatt hour for kilowatt 

hours delivered into the utility’s distribution system shall be either of the following: 

(a) The monthly average real-time locational marginal price for energy at the commercial pricing node 

within the electric utility's distribution service territory, or for the distributed generation customers on a time-

based rate schedule, the monthly average real-time locational marginal price for energy at the commercial 

pricing node within the electric utility's distribution service territory during the time-of-use pricing period. 

(b) The electric utility's or alternative electric supplier's power supply component, excluding 

transmission charges, of the full retail rate during the billing period or the time-of-use pricing period.” 

Utilities can choose to select one of these two options to credit DG customers. Option (a) utilizes 

locational marginal pricing from the MISO Michigan Hub. Utilities that select this option would essentially 

credit DG customer outflow at a wholesale rate, or $0.03/kWh (2017 average MISO Michigan Hub price) 

[87]. MPSC staff was not aware of any utility selecting this option to credit DG customers under the current 

net metering program (Personal communication with MPSC staff on October 31st, 2018.). However, DTE 

recently submitted their proposed DG tariff [79], in which they propose to credit customers with the locational 

marginal pricing, in which power from DG sources is less valued and it does not reflect DG’s contribution 

to reducing overall DTE operations costs, capacity, and other factors that would be considered in a Cost of 

Service Study, such as avoided transmission, distribution and voltage control costs [88]. Several studies have 

shown that DG actually lowers the electric grid operational costs that are incurred by the utility and they 

should be valued higher than the proposed LMP [88]. Accepting an outflow credit at this rate would create a 

great deterrent in the development of grid-connected DG systems. Under this model, utilities would be the 

only grid-connected entity that is able to take advantage of the economics and benefits from DG. Given the 

economics of DG solar in Michigan, this could catalyze grid defection [89] with utility customers choosing 

to produce their own power with a hybrid system that is made of up solar, batteries, and gas cogeneration 

units [11]. This risks creating a utility death spiral [90].  

4.2. Legal maneuvers  
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Utilities can use litigation strategies, such as maneuvering or stalling, to delay legal proceedings to 

change public perception. One specific example is the use of the narrative that DG customers that are enrolled 

in net metering place extra cost burdens on traditional and lower income customers; put another way, some 

claim that traditional customers subsidize DG customers [91,92]. For example, DTE states that DG 

“customers are not supporting the costs of the infrastructure required for their service” [93]. However, as 

shown above, DG can actually reduce the costs for the utility and its customers [88], yet DTE appears to 

make the above claim without conducting its own study assessing the benefits of DG. In response to a cross-

examination question regarding analyses on beneficial impacts of DG on the electrical grid, a DTE witness 

stated, “we have not performed those studies” [94]. DTE’s proposed DG tariff seeks to reflect the discrepancy 

between DG and non-DG customers costs. However, in response to including DG cost assessments in 

historical or projected figures to justify the proposed higher costs for DG customers, another DTE employee 

and witness stated that such evidence was “not in mine [testimony]” [94]. 

A second example of IOU tactics to hinder DG is to use lobbying as a way to influence new legislation 

or amend existing legislation. Electric utilities fund organizations and committees to elect governors, state 

legislators, and attorneys general, who can enact laws and implement rules to support utility positions. The 

electric utility industry has the third largest lobbying contribution, spending roughly $2.4 billion [95]. 

Utilities have contributed some of the highest amounts of campaign money this current election cycle [96] 

as compared to the election cycles from 2010 onward. While utilities contributions typically lean towards the 

Republican Party [96], they generally support candidates in the lead, evenly contributing when elections are 

competitive [97]. 

Utilities can also use stalling tactics to buy more time during negotiation periods. This can come in the 

form of requesting new information [98], establishing arbitrary timelines [99], or advocating for the need for 

additional research before a decision can be made [30]. Utilities can slow legal proceedings to support a 

traditional cost recovery model where they own and operate generation [100].  

In many states, the prices of utility scale DG have decreased dramatically, matching a utility’s avoided 

costs. There has been recent pushback regarding PURPA’s contract lengths, rates, and other changes, such 

as the need for capacity. The MPSC recently underwent a process to revise and redefine the avoided costs of 

qualifying facilities under PURPA, which had not been done in roughly 30 years. The MPSC revised the 

PURPA contract length to 20 years and increased the capacity to 2 MW; the previous contract project size 

was capped at 100 kW [101]. They halted implementations to work out challenges with utilities. Specifically, 

the Consumers Energy Company argues that they should not be required to purchase power from PURPA 

qualified facilities because they do not need any new generation in the next 10 years, yet they plan to close 

two coal fired power plants and ramp up RE energy generation to 40% and utilize clean energy, meaning 

both RE systems and energy efficiency projects [102]. This could be in response to the number of PURPA 

projects Consumers is facing (Per personal communication with MPSC staff, Consumers Energy has 2700 

MW of potential contracts in the PURPA queue.). Even if regulators rule against Consumers Energy, this 

legal maneuver has the potential to halt any progress or implementation of PURPA projects, as it could take 

several months for the MPSC to successfully argue whether Consumers Energy needs capacity.  

4.3. Shifting Control  

Diversification activity is another response by utilities to maneuver around regulations. Specifically, 

utilities can expand their business dealings into loosely regulated arenas [94]. Put another way, utilities can 

attempt to shift control away from PSCs. They can do this through implementing various forms of demand 

charges, over which PSCs can have little control. They also have discretion with treating minimum legislative 

targets as caps and with shifting to fixed charges for energy use. All of these can function to increase the 

costs for customers that are interested in installing DG systems [94], but they can also be detrimental if they 

do not accurately reflect the costs that are imposed by DG systems [42]. Instituting arbitrary net metering 
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caps without fully factoring in DG impacts to cost recovery can lead to further issues and ultimately “under-

deployment of distributed generation” [94, page I0721]. Shifting control using these price signals 

inaccurately assigns and misrepresents the costs and benefits that are associated with DG, resulting in lower 

adoption levels. Michigan already lags in DG installations as compared to the neighboring states of 

Minnesota (~750MW [103]) and Illinois (400MW by 2030 [104]), both of which employ supportive DG 

policies [105,106]. Shifting control away from regulators in this way could function to halt DG development 

in Michigan. 

4.3.1. Demand Charges 

Michigan utilities are shifting costs over to demand charges [79,80,107]. This portion of their rate of 

return has traditionally only been implemented on large industrial users with high demand. However, utilities 

are now moving to implementing various demand equivalent charges on commercial consumers as well as 

all types of DG customers (residential, commercial, and industrial). A utility must maintain enough capacity 

to satisfy all customers and demand charges cover the cost of supplying energy at peak times. Typically, 

commercial and industrial consumers with a large energy demand at certain times of day face demand 

charges. Currently, Michigan utilities impose charges on systems that are above 150kW, which is known as 

standby service [31]. Utilities contract standby service to provide energy supply to DG customers when their 

system experiences outages. Michigan utilities charge DG customers when this occurs. DTE included a 

“System Access Contribution (SAC)” for residential and commercial DG consumers in its most recent 

proposed Distributed Generation Tariff [79]. Specifically, “customers attaching to this rider to residential 

secondary rate schedules, or to commercial secondary rate schedules that do not have delivery demand 

charges, shall be subject to the SAC charge.” This is essentially a demand charge that is imposed onto 

residential and commercial consumers who do not typically require the same amount of demand when 

compared to larger industrial consumers.  

4.3.2. Utility Discretion with Net Metering “Caps” 

The original P.A. 295 legislation included a minimum peak load percentage who could participate in 

net metering. “An electric utility or alternative electric supplier is not required to allow for net metering 

greater than 1% of its in-state peak load for the preceding calendar year.” In 2016, the legislature amended 

this to include a five-year average: “An electric utility or alternative electric supplier is not required to allow 

for a distributed generation program that is greater than 1% of its average in-state peak load for the preceding 

5 calendar years.” 

First, the limit that is discussed in this legislation is at the discretion of the utility. UPPCo was the first 

Michigan utility to reach the 1% minimum [108], as the peak generation load is much smaller when compared 

to other Michigan utilities. The UPPCo service area struggles economically and consumers pay some of the 

highest base electricity rates in the nation, sometimes amounting to >$0.25/kWh [109]. According to 

UPPCo’s CEO, rates are high due to the rural nature and sparse population of UPPCo’s service territory 

[109]. This can contribute to reliability and vulnerability issues during harsh winter months in the UP. UPPCo 

is also the incumbent utility in the Western Upper Peninsula region. Because of the 10% cap on choice that 

is used by large institutions, no alternative power suppliers are available to allow for residents to seek 

alternative power supply at lower rates. Alongside this, IOUs are for profit entities that must bring money 

back to their shareholders. Municipalities, such as the Village of L’Anse discussed above, have lower 

electricity rate prices due to their non-profit designation. Additionally, they participate in member ownership 

of a power supply company with many different municipalities to offer more competitive pricing to their 

customers.  

In P.A. 295, the 1% was calculated based on a one-year average, whereas the 2016 amendment is 

calculated based on a five-year average. A second amendment to P.A. 295 limits which technology can 
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participate in the new DG program. Specifically, only methane digesters that are above 150kW can participate 

in the DG program. The MPSC conducted a cost of service study to determine a fair and reasonable rate for 

DG customers; however, a full study is still needed, as this study only analyzed the inflow pricing effects. In 

this cost of service study, MPSC staff found that DG customers were overcharged roughly $106/year [29]. 

Once the MPSC conducts a full study, and the fair and reasonable rate is determined, it will arguably no 

longer make sense to set a limit on the number of customers or the type of technology that can participate in 

the DG program. 

4.3.3. Utility Shifting from Rate to Monthly Charges 

Typically, utilities charge customers in two ways: a fixed charge ($/month) and an electric rate based 

on electric consumption ($/kWh). The fixed charge usually comes in the form of a “system access” fee (or 

equivalent) for monthly connection to the utility’s electricity infrastructure. This allows for the utility to 

recover some of the costs that come with serving a customer, regardless of whether they use electricity or 

not. However, electricity demand has been plateauing, requiring utilities to seek alternative ways to continue 

profiting from cost recovery mechanisms [110–112]. Some examples across the U.S. include transferring 

distribution charges to fixed charges and including equipment costs in the time of use rate schedules [113]. 

A Michigan example can be found in DTE’s most recent rate case [79]. DTE proposed two pilot programs, 

the Weekend Flex Pilot and the Fixed Bill Pilot. These pilots propose two different types of fixed charges on 

a weekend and monthly basis for electricity consumption. Customers pay a fixed charge, regardless of their 

actual electricity consumption. This can provide incentive for customers to use more electricity [114], as well 

as discouraging the use of customer-owned DG and allowing DTE opportunities to maximize profits without 

providing a direct benefit to consumers.  

4.4. Modeling in Cost of Service Studies 

Finally, utilities can alter the regulatory process through choice of modeling scenarios. Michigan energy 

legislation requires utilities to forecast and issue a plan for generation and capacity needs several years into 

the future. Utilities use cost benefit analysis (CBA), risk analysis, and scenario comparisons to determine 

their trajectory. Utilities also use CBA to assess the impacts that are associated with infrastructure 

investments. These analyses can help to determine which projects a utility should pursue, how to recover 

costs, what technologies to invest in, etc. Utilities manipulate modeling scenarios by choosing which factors 

to include in an assessment.  

Specifically, many Michigan utilities create scenarios to maintain their control of generation. 

Consumers Energy Company used modeling with assumptions such as market prices, future energy demand, 

and varying levels of clean energy resources to determine the best strategy to meet customer’s needs [102]. 

As a result of the declining costs of RE, Consumers Energy plans to focus on RE generation through Power 

Purchase Agreements (PPAs), alongside energy efficiency measures and demand response strategies. These 

strategies allow Consumers Energy to maintain all control over generation resources. With regard to utility 

scale RE generation, Consumers Energy proposed a financial compensation mechanism that would allow 

them to continue profiting from generation in the PPA as if they owned the asset [102].  

Additionally, Detroit Edison (DTE) conducted a CBA and risk analysis in preparation for their proposed 

IRP. The CBA includes assumptions that heavily weight generation without time of generation being 

considered (Information obtained from personal attendance at DTE IRP workshop on November 12th 2018). 

DTE chose to include factors and assumptions in their methodology that resulted in increased costs associated 

with more RE generation [114]. This allows for them to implement demand response programs, conservation 

voltage reduction, and additional demand charges without considering options to help in demand reduction 

that actually decrease the total or peak load.  
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5. Policy Implications and Recommendations 

This review of existing regulations and laws regarding DG installations in Michigan finds that utilities 

interpret and implement legislation in ways that can be detrimental to DG proliferation. This section will use 

specific examples regarding how utilities interpret these laws to inform policy recommendations to assist 

decision makers to support an energy transition with DG. Specific recommendations include the removal of 

net metering caps, support for time of use rates, electric choice, annual avoided cost calculations, transparent 

bookkeeping, and municipalization.  

5.1. Net Metering Cap Removal  

The December 2016 energy laws P.A. 341 and 342 maintain language that allows utilities to keep the 

net metering capacity at 1%. Utilities rely on the narrative that traditional utility customers subsidize net 

metering customers to prevent any further net metering DG proliferation. The 2016 legislation required the 

MPSC to conduct a cost of service study to place a value on distributed generation for the inflow/outflow 

model [25]. The MPSC cost of service report concluded the opposite—that DG customers subsidize all other 

utility customers [29]. This is consistent with other studies [41,42,115,116] that DG customers provide a net 

benefit not only to non-DG customers but also to the overall electrical grid [42]. If the MPSC value is 

considered to be a fair and reasonable value, per utility ratemaking, there should be no need to place a cap 

on net metering. Additionally, most values of solar studies conclude that net metering programs undervalue 

solar [42], which also provides support for the removal of a net metering cap. State legislation such as in 

Massachusetts [117] and South Carolina [118] recently failed to lift caps on net metering capacity, arguably 

to the utility’s benefits to halt DG growth. A policy change could lift the cap, allowing for increased DG 

proliferation in Michigan for the benefit of all electricity customers.  

5.2. Support for Time-of-Use Rates 

Both DTE and UPPCo’s recently submitted DG Tariff Rate Case proposed charging residential DG 

customers demand charges, a charge that usually falls upon heavy end users such as industrial or commercial 

consumers. This demand charge is reflective of the traditional utility goal: cost recovery. However, cost 

recovery does not provide any information regarding the real cost of electricity. Regulators and policymakers 

could turn to a commonly used rate design that attends to other objectives, such as transparency, peak and 

overall load reduction, and customer awareness. Time-of-use rates can be used to properly compensate for 

DG, as they more accurately reflect the electricity cost variations [119]. Additionally, time-of-use rates can 

help to change customer’s behavior to actually reduce demand and overall usage [120]. Pennsylvania’s time-

of-use rate pilot saw success in reducing peak load demand along with saving customer’s money, especially 

in senior and low-income populations [121]. After the tweaking and massaging of their time-of-use program, 

a south Mississippi utility’s customers began to see significant savings, both on an individual level and a 

consumer type level [122]. While Michigan utilities do offer time-of-use rates, utilities such as Consumers 

Energy place a focus on strategies such as demand response and conservation voltage reduction to maintain 

control over energy supply and demand. Utilizing a time-of-use rate can help reduce utility costs by 

preventing the ramp up of additional generation and satisfying legislation to support energy efficiency and 

decrease use while allowing for continued support and proliferation of DG.  

5.3. Electric Choice 

Michigan’s electric choice legislation caps the capacity to participate in choice at 10%. This excludes 

residential and commercial consumers from participating, as the larger industrial consumers demand more 

power that is more favorable to the utility, as they sell larger amounts of power to one customer in addition 

to implementing demand charges to the large users. Stating that individuals, for example, in the Upper 
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Peninsula, have the freedom to choose their electric suppliers, however, does not mean that they will actually 

be able to voluntarily choose an alternative electric supplier. This is because they do not have an alternative 

to choose from. While these customers are “free to choose,” they are unable to due to the lack of alternatives 

[123] unless they actually opt to grid defect. Ultimately, utility consumer choices will be considered to be 

voluntary when they make these choices on the basis that there are viable alternatives; not having an 

alternative choice preempts an ability to choose from multiple electric suppliers. As larger industrial and 

commercial consumers are able to choose their alternative supplier, the 10% cap is swiftly used, leaving no 

electric choice options for smaller residential consumers or small and medium sized enterprises (SMEs). 

Policy recommendation to fix this oversight include considering  incremental increases to the electric choice 

structure in Michigan. Michigan schools’ energy usage come to roughly 1% of Michigan’s energy load. 

Legislation could be changed to target different sectors, providing them with an opportunity for choice. This 

steady increase would come at greater ease when compared to a drastic increase in choice, which proved 

disastrous in other states [124–126].  

5.4. Annual Avoided Cost Calculations 

PURPA-based contracts remain critically important in diversifying electrical generation while 

decreasing generation costs. Non-utility power producers also provide more jobs in more diverse locations 

than utility projects [127,128]. Utilities argue that long stable contracts for power increase power rates, but 

that is simply not true, especially if the MPSC conducts more frequent cost of service studies to accurately 

reflect the avoided costs. Utility companies such as Consumers Energy argue that they do not need capacity 

from PURPA contracts, yet Consumers Energy plans to close two coal-fired power plants [102]. 

The PURPA rate was established by the MPSC using a “cost of service” study that results in a lower 

cost for the utilities to operate and, though conditions might change in the future, those stable contracts will, 

by nature, produce capacity and energy at a lower cost than the utility themselves would have created them. 

Alongside this, the cost of service studies should be annually conducted for each type to accurately reflect 

fuel costs and appropriately assign avoided rate costs.  

5.5. Transparent Bookkeeping 

The regulatory compact that exists between a government and utility guarantees a service territory to 

the utility. This ensures that the utility does not have competition with other energy providers. Increasingly, 

utilities view DG customers as another form of competition [129,130]. If regulators and utilities want to 

maintain an energy system by continuing this monopoly, transparency should be in place for regulators to 

assist utilities in making better decisions regarding energy generation, transmission, and distribution. 

Regulated utilities are guaranteed a 10% rate of return [50] on energy infrastructure investments. This is 

guaranteed on top of electric utility executive compensation that reaches into the millions of dollars per year 

and it is currently not structured to maximize benefit for customers or the greater society [131]. Utilities that 

wish to operate in a minimally competitive environment should provide full transparency of their 

bookkeeping. This would allow the state to see exactly how money is being spent and where it is allocated. 

This could translate into more informed financial models to better serve the utility customer base.  

5.6. Municipalization 

In Michigan, IOUs must comply with policies and laws regarding DG proliferation. Electric 

cooperatives and municipalities have an obligation to their customers rather than strictly to shareholders. As 

a result, they have flexibility in offering DG programs to satisfy their customers. One route for cities that 

currently receive power from a regulated utility is to municipalize. With respect to electricity, 

municipalization is a transfer of electric service from an IOU to municipal ownership and service [132]. This 



35 

can allow the municipality to lower the electricity rates [133] through member ownership of energy supply 

(e.g.). Additionally, they can explore DG programs and opportunities that are currently unexplored in existing 

IOU territories. In 2010, Boulder, Colorado began the process of exploring municipalization as an option to 

reach their clean energy goals. The process of municipalization typically involves an initial feasibility study 

and subsequent decision-making. Every state varies in the regulatory and legal channels that are required to 

municipalize. Michigan law allows cities to municipalize to provide electricity [134,135], among other 

services; however, the price of facility infrastructure is typically determined through an agreement with the 

IOU [82]. The municipalization process can take time (10+ years for Boulder, Colorado [136]), but can also 

allow cities more control over what DG programs they offer to customers. 

6. Conclusions 

A recent study has noted that 42% of the world’s coal plants are currently operating at a loss and that 

the proportion is estimated to rise to ~ 75% by 2040 [137]. In the U.S., 70% of coal plants run at a higher 

cost than new RE and by 2030 all of them will [137]. Thus there is a clear need, not only in Michigan but 

throughout the rest of the U.S. and the world, to move away from coal technology as rapidly as possible on 

economic grounds alone. While RE DG has the potential to provide reliable electricity that benefits 

consumers and electrical grid, Michigan’s DG proliferation remains low in favor of antiquated coal pants. 

This study reviewed existing energy policies and laws with respect to DG to obtain a sense of institutional 

support surrounding the continued use of coal or RE DG. PURPA contestations have placed a hold on the 

release of several hundred to thousand MW contracts of DG. Recent legislation has sparked deliberations in 

Michigan’s RE rulemaking. Similarly, net metering and electric choice caps prevent customers from seeking 

energy from renewable sources. The results of this study clearly show that DG proliferation is hindered by 

Michigan regulated utilities exercising political power within the existing legal and regulatory regimes. 

This review highlights the need to think about how utilities interpret and implement rules for developing 

legislation and policies to better suit the needs of consumers. Specifically, Michigan utilities hinder DG 

proliferation through rate cases, legal maneuvers, shifting control from regulators, and selective modeling in 

the cost of service studies. Utilities can propose little compensation as well as added fees on DG customers, 

making DG customers’ investment in RE technologies unattractive. To prevent headway in building systems 

under PURPA contracts, utilities utilize legal maneuvers to slow or even halt the process. Utilities can attempt 

to shift control away from regulators by implementing demand equivalent charges on DG customers, 

instituting caps on program participation, and shifting to fixed charges for a customer’s energy use. Finally, 

utilities can conduct biased cost of service studies by including factors that provide little support for DG 

system adoption.  

There are several policy recommendations that can support higher DG proliferation in Michigan that 

are relevant to other states and regions in the rest of the world. If an appropriate cost of service study finds 

fair and reasonable compensation for net metering customers, then the Michigan legislature should increase 

the minimum requirement in net metering programs. Michigan utilities can place increased emphasis on time 

of use rates to accurately reflect electricity cost variations and help to determine appropriate DG 

compensation. The cap on electric choice should be increased to allow for more participation from non-

industrial consumers. Annual avoided cost calculations can help in reflecting fuel costs to appropriately 

compensate for PURPA contracts. More broadly, regulated utilities that wish to remain a natural monopoly 

should utilize transparent bookkeeping to allow for state legislatures and regulators to monitor spending to 

determine the best way to serve a utility customer base. Finally, cities that set clean energy goals can explore 

municipalization if the incumbent utility is reluctant to support satisfying these goals through DG 

proliferation. Just as there are several strategies that Michigan utilities use to prevent the large proliferation 

of DG systems, this study has shown there are several strategies to explore shifting existing legal and 

regulatory regimes towards the support of DG proliferation. 
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Abstract: Community solar involves the installation of a solar electricity system that is built in one central 

location with the costs and benefits distributed across voluntary investors who choose to subscribe and 

receive credits based on the generated energy. Community solar is gaining attention because of its potential 

to increase access to renewable energy and to democratize energy governance. This paper reflects on 

community-engaged research experiences in two rural community case studies in Michigan, USA, focusing 

on obstacles that were experienced during the research process rather than empirical findings from the 

research. We highlight difficulties we experienced to help advance a conceptual argument about 

incorporating collaborative governance strategies to improve community-engaged research for community 

energy projects. Our reflections illustrate challenges in community-engaged research that are associated 

with identifying who should be included in the decision-making process, sustaining participation and 

avoiding exploitation, establishing and communicating final decision-making power, and giving attention 

to outputs and outcomes of the research. We argue that collaborative governance strategies can help to 

address these challenges, as we experienced firsthand in our project. 

Keywords: community solar; community engaged research; collaborative governance; disadvantaged 

 

1. Introduction 

The U.S. energy system is currently undergoing a transition to include increasing amounts of renewable 

energy that distributed generation powers. Energy transitions are characterized by a significant set of long-

term structural changes to the patterns of energy use in society, which can have a significant impact on quality 

of life, economic organization, and the activities and practices of individuals (Sovacool et al. 2016). 

Community members have an important stake in how energy transitions occur; however, they do not often 

have much say in when, where, or how renewable energy projects are built (Catney et al. 2014). Engaging 

communities in these processes has several potential benefits (Kim 2017). It can reflect local interests and 

priorities (Petersen 2016), keep economic gains from energy savings local (Magnani and Osti 2016), build 

community pride and cohesion (Burchell et al. 2016), and help to create awareness and transparency on 

energy issues that may be unclear or confusing (Rogers et al. 2012). 

One increasingly popular way that communities can be directly involved in energy transitions is through 

community solar. Community solar involves a solar electricity system being built in one central location, 

while the costs and benefits are distributed across voluntary investors who choose to subscribe and receive 

credits based on the generated energy. Community solar is gaining attention because it aims to democratize 

energy by bringing ownership and control of energy generation to a large number of people (NREL 2018; 

mailto:ewprehod@mtu.edu
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Hoffman and High-Pippert 2015). Local community members can then become personally invested through 

a common interest in local energy generation. Community solar provides a forum for awareness, education, 

and discussion regarding how energy systems can work on a local scale (Klocke et al. 2017). Finally, 

community solar attempts but ultimately struggles to promote social responsibility through access and 

affordability to energy systems (Brummer 2018). For these reasons, agencies and organizations, such as the 

Department of Energy, the National Renewable Energy Lab, the Solar Energy Industries Association, and 

the Smart Electric Power Alliance (to name a few), increasingly promote community solar. The number of 

community solar projects in the U.S. has grown from only 36 kW in 2006 to 1226 MW through Q2 2018 

(SEIA 2018). 

Still, community solar projects tend to be accessible only to relatively wealthy people (NREL 2018; 

SEPA 2015; LOTUS 2015), and they are often designed (and ultimately controlled) by the same energy-

providing utilities that control our other energy systems (Lerch 2017; Catney et al. 2014). Given these 

problematics, our project team implemented a community-engaged research project to explore the potential 

costs, benefits, and local contexts of starting community solar. The research project aimed to give local 

communities control over the process of deciding whether or not to build a community solar system, and, if 

so, how to design a program that would elicit broad interest and be affordable and accessible to low-to-

moderate income households. 

The purpose of this paper is twofold. First, we critically reflect on the community-engaged research 

process that we employed in two case communities in the Upper Peninsula of Michigan to illustrate how 

community-engaged research (CER) can insert more local control and affordability into community energy 

systems. Second, we use these reflections to advance a conceptual argument about some of the challenges 

that community-engaged research faces and how incorporating principles of collaborative governance may 

help to address those limitations. We contend that CER can incorporate principles of collaborative 

governance to become better equipped for community solar program development. 

2. Background and Literature Review 

2.1. Community Energy 

Community energy projects are increasingly being promoted as a path toward renewable and 

decentralized energy structures that will help to promote a more sustainable and resilient society while 

offering communities legitimacy, consensus, and voice (Barr and Devine-Wright 2012). Community energy 

projects aim to pay specific attention to ‘community’ or, in other words, who develops and controls the 

project, who is impacted by the project, and how they are impacted (Walker and Devine-Wright 2008). The 

community energy literature stresses keeping local control and operation when developing community 

energy projects as well as keeping benefits local (Catney et al. 2014). Some community energy projects are 

conceptualized as grassroots initiatives that utilize local leaders and stakeholders to represent the local 

situation, interests, and values of the involved community (Seyfang and Smith 2007). In reality, however, 

community energy projects are often subject to external motivations, management, and control, meaning that 

they are not always community engaged or driven (Catney et al. 2014). 

Martiskainen (2018) argues that community-engaged energy projects are inherently political. National 

community energy initiatives use the tactic of emphasizing the benefits of local energy generation; however, 

control of these energy systems still remains in federal governance structures or powerful decision-makers, 

rather than the communities within which they operate (Smith 2005; Walker et al 2007). Community energy 

projects tend to lack a unifying vision as there can be tensions between who spearheads the project versus 

who participates in designing and implementing the project (Catney et al. 2014). Some community energy 

projects rely on centralized government funding from initiatives that articulate local energy in national energy 

policy (Walker and Devine-Wright 2008; Catney et al. 2014; Walker et al. 2010). People are viewed as 
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objects rather than subjects of change in the energy infrastructures of these communities. These community 

energy projects continue to support individual rather than collective strategies for project success (Cameron 

2010; Catney et al. 2014). This means that there is an emphasis on individual behavior change towards some 

predetermined goal, which can be defined without or with minimal community input (Martiskainen 2018; 

Batel et al. 2013; Maniates 2001). Many local communities have difficulty accessing decisions regarding 

energy systems that can adversely impact their communities (Martiskainen 2018; Rau et al. 2012). For 

example, in our project, participants repeatedly described a wind project that was initiated by a larger energy 

development firm that ignored community input and values. 

Substantial resources (e.g., human, financial, political, social, and built capital) are required for 

communities to really control the process of deciding on, developing, and implementing a community energy 

project. Rural (or otherwise structurally disadvantaged) communities may either lack these resources or not 

be in a position to devote limited resources to investigating community energy potential. There may be 

internal barriers, such as a lack of knowledge regarding energy systems, skills to navigate governance and 

political structures, or monetary resources that can affect community energy project success (McKenzie-

Mohr 2000; Dóci and Vasileiadou 2015). Moreover, communities may struggle to engage and maintain the 

role of civil society in the decision-making process (Batel et al. 2013). 

Our research focused specifically on community solar as a community energy project. However, 

community solar is not limited to one specific model, as three community solar types dominate the growing 

field: utility-scale, non-profit, and special purpose entity. In the utility-sponsored model, utilities build, own, 

and operate the system. Ratepayers can voluntarily participate by contributing a payment (upfront or ongoing) 

to support the system (NREL 2010). In the second model, non-profit organizations partner with the 

surrounding community or businesses who can provide donations to finance the project. Donors in this type 

do not receive direct benefits from the system, but do share in indirect benefits through tax deductions and 

social benefits (NREL 2010). In the final model, individuals, groups, or organizations come together to form 

a small business to take advantage of commercial tax benefits that accompany solar photovoltaic (PV). 

Benefits from this model can be realized by the organizers themselves or in a partnership between a 

community and special-purpose entity (NREL 2010). 

How to develop and design a community solar project ultimately depends on the enabling policy 

context, which varies by state in the U.S. For example, some states (i.e., California, Minnesota, and 

Maryland) have formal laws that allow community solar program implementation directed by various 

different actors. Michigan does not, which leaves community solar program development to the utility’s 

discretion. In Michigan, most community solar programs are spearheaded by members of an electric 

cooperative (e.g., Cherryland Electric) or by municipal utilities (e.g., the Traverse City Board of Power and 

Light, and the Marquette Board of Light and Power) (GLREA 2013). The Consumers Energy Company, an 

investor-owned utility, owns and operates a community solar program in the lower peninsula. The key 

takeaway here is that, in Michigan, a community solar program relies on and requires the ability to partner 

with a utility to install panels, establish leases, sell PV power, and/or ensure sound investments. More 

innovative solutions may be necessary to encourage change in community solar policies, laws, and adoption 

(Klein and Coffey 2016); however, this project focuses on community solar development within the context 

of the existing electrical energy policy regime. 

Regardless of the policy context, we believe that community-engaged research (CER) could help to 

improve the process of community energy project development. Collaborative partnerships between 

communities, research institutions, and utilities designed around the principles of CER can arguably bring 

the necessary resources while preserving community control and decision-making in the community energy 

process. The process could empower community members to speak out about potential impacts of a local 

energy project and begin to take ownership by participating in the program’s design. Ultimately, CER 
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projects could help decision-makers to develop community energy projects that reflect community beliefs, 

goals, and values. 

2.2. Community-Engaged Research 

Community-engaged research improves the meaningful participation of community members by 

creating collaborative spaces between community members, community organizations, and academic 

researchers to address community issues or problems (Bhattacharjee 2005; Learned et al. 2017; Duran et al. 

2013; Kantamneni et al. 2019; Klocke et al. 2017). We use the term “community-engaged research” or (CER) 

as synonymous with “community-based participatory research (CBPR)”, “participatory action research 

(PAR)”, and other similar concepts. Following CER principles, community members play an important role 

in determining the trajectory of the research questions, project design, and data collection and analysis. 

Action research in particular emphasizes the goal of improving community practices and empowering 

community members in addition to increasing knowledge (Stoecker 2012; Huang 2010; Ferrance 2000). 

CER processes can improve the relevance of research, ensuring that projects are important to 

communities and benefit communities (Israel et al. 2017; Hacker 2013; Strand et al. 2003; Wallerstein and 

Duran 2010). Still, CER is a relatively new practice in most fields (outside of public health) and particularly 

for community energy projects. Our team has not been able to find any other published work that explicitly 

uses community-engaged research principles for community energy projects. As a relatively new (and 

different!) endeavor, several articles, chapters, and briefs offer protocols and principles for conducting CER 

(e.g., Burns et al. 2011; Israel et al. 2017; Strand et al. 2003). Yet, in practice, CER still faces some important 

challenges for teams to grapple with that are not easily answered with a clear principle or protocol. 

One common CER challenge is defining the scope of the community with whom researchers collaborate 

(Long et al. 2016; Kantamneni et al. 2019). Contentions lie in whether to define communities based upon 

geography, different demographics, common interests, or community identity (Agrawal and Gibson 2001; 

Long et al. 2016). Who are the partners? Who is represented and how? What are their various roles? (Goold 

et al. 2016). Ultimately, who is included, and to what degree, drives the direction of the research, 

representation in the data, and likely outcomes (Hibbard and Madsen 2003, 2004). While CER scholarship 

recognizes this complication, it has not been fully resolved. CER principles suggest that all stakeholders 

should be included as partners at the table; however, including every affected individual is not feasible. 

Projects that seek community representatives (Goold et al. 2016) to serve as the voice of a broader community 

(Stoecker 2012) may function to empower those who are already relatively powerful, leaving out the most 

disenfranchised voices (Tumiel-Berhalter et al. 2005). CER principles note the importance of forming a 

collaborative, equitable partnership, but they fall short on providing clear indications of who should be 

involved in the partnership, under what conditions, and how. 

A second challenge to community-engaged research is sustaining participation as a result of a history 

of exploitation within the community (Morris 2017). This is particularly difficult to overcome in 

disadvantaged and low-to-moderate income communities (Ansari 2005). Many disadvantaged communities, 

and particularly tribal communities, have experienced a history of research abuse and projects that have done 

little to benefit their communities (Israel et al. 2017; Hacker 2013). CER is specifically designed to combat 

community exploitation by offering community members the opportunity to participate and collaborate in 

research that will empower participants and be directly used for the community’s benefit. The Department 

of Energy’s SunShot Initiative and Solar in Your Community Challenge attempts to expand access to, and 

the affordability of, solar PV in these communities. Still, the time and effort required of community members 

to participate as full collaborators in research projects is immense (Baker et al. 1999; Koné et al. 2000). This 

can be especially troublesome in disadvantaged and low-to-moderate income communities (Ansari 2005; 

Flicker et al. 2007; Adhikari et al. 2014; Tosun 2000). Requesting this effort may inadvertently result in 

another form of community exploitation: taking people’s time without being able to guarantee results. This 



48 

creates an ethical dilemma (Long et al. 2016), and also can create challenges in recruiting and maintaining 

sustained participation among community members who often have many other competing time demands. 

CER, and especially Action research, comes from the perspective of undertaking research with the 

purpose of facilitating social change (Carr and Kemmis 2003). Yet, CER scholarship focuses almost entirely 

on the process of conducting research, with little attention to how teams use the research results to make 

decisions or facilitate change. Action research aims to disrupt existing power relations by specifically shifting 

the role of research participants to active contributors helping to shape knowledge about their community 

and its problems, and then using this knowledge to push for change (Cawston et al. 2007; Kimura and Kinchy 

2016). Scholars provide valuable roadmaps for partnering with community members to collect and analyze 

data, interpret results, and report out (Hacker 2013; Balazs and Morello-Frosch 2013; Israel et al. 2017); yet 

it provides little direction regarding what to do with this information to ultimately improve community 

conditions. The process of engaging in research can be empowering, but even engaged research is not always 

easily translated into action and may not lead to changes in programs, services, or access. 

2.3. Collaborative Governance 

Collaborative governance (CG) is a decision-making and management approach whereby multiple 

stakeholders at various levels or scales “engage in consensus-oriented decision-making” (Ansell and Gash 

2008, p. 543). CG is generally used to enhance decision-making in policy areas, such as economic 

development, public health, environmental protection, and land use (Rogers and Weber 2010). It is 

increasingly being regarded as a strategy to build shared meaning, to learn, and to incorporate change (Innes 

and Booher 1999). The management of energy systems in the United States is complex and involves actors 

at the federal (i.e., the Federal Energy Regulatory Commission), regional (i.e., independent system 

operators), state (i.e., public utility/service commissions), and some local (i.e., municipal utilities) levels. 

Often, local communities are removed from decision-making regarding energy systems and can be adversely 

impacted by decisions made at other, higher levels (Lerch 2017). CG approaches in community energy 

systems could help to shift towards more inclusive decision-making and more successful projects. Two 

similar approaches that also have merit are participatory design and collective impact, which tend to focus 

on non-formal actors designing the systems they use (Muller and Kuhn 1993; Schuler and Namioka 1993) 

and collective decision making for behavior change (Kania and Kramer 2011, 2013), respectively. CG 

specifically focuses on governance strategies to facilitate collective decision-making in policy arenas, which 

makes it a more appropriate approach in the context of both CER and community solar program design. 

CG scholarship has paid some attention to applications in energy systems and transition decisions. 

Studies focusing on the U.S. show that, while collaborative planning was a strategy used to improve and 

advance energy systems, they fell short of participant representation and inclusion due to power imbalances 

(Purdy 2012). Additionally, U.S. collaborative planning strategies typically slow after the planning stage, 

with a lack of action following the collaborative stage (Pitt and Congreve 2017). Margerum (2002) argues 

that CG commits participants to implementation. Yet previous employment of CG strategies in energy 

systems struggled to successfully implement energy system changes. Despite this, we believe that 

collaborative governance approaches show good potential for planning and decision-making on community 

energy projects. It is especially helpful for addressing some of the challenges (summarized above) that are 

associated with community-engaged research, including defining the scope of community collaborators, 

sustaining project participation, and decision-making to move research into action. 

Chrislip and Larson (1994) argue that the inclusion of all affected and/or interested stakeholders is 

necessary for successful collaboration. This is important for propelling the collaboration towards a more 

democratic process. Not including impacted members can impact the legitimacy (Johnston et al. 2010) of the 

project, ultimately influencing its viability. A best practice strategy emphasizes a deliberative planning 
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process, which involves an extended group discussion to ensure the inclusion of all affected stakeholders 

prior to moving out of the planning stage (Hicks et al. 2008; Roussos and Fawcett 2000; Johnston et al. 2010). 

In order for CG collaborations to be successful, issues must have salience for participants (Selin and 

Chevez 1995). Generating and maintaining participation can be difficult due to the time and effort involved 

(Emerson et al. 2011). CG’s solution to this problem is appropriately compensating collaborative participants 

for their efforts in the decision-making process (Bingham 2009). This mechanism was employed in the city 

of Seattle to support citizen engagement during a neighborhood planning initiative in the 1990s (Page 2010). 

CG scholarship provides a helpful and practical reminder that some collaboration members will be more 

responsible for final decision-making than others (Ansell and Gash 2008; Stoker 2004). In some cases, 

multiple levels of decision-making (where stakeholders at different scales collaborate) allow the process to 

become more adaptable to change (Newig and Fritsch 2009). Still, there is an ultimate decision-maker(s) of 

the collaborative deliberation process (Newig and Fritsch 2009). A key step here is to lay out process 

transparency from the beginning (Ansell and Gash 2008), including which and how these decisions will be 

made, by whom, and with what input from whom else (Ansell and Gash 2008). 

CG emphasizes the outputs of successful collaborations. Outputs might be a report detailing analyses 

and recommendations from the collaboration team to the final decision-makers (Thomas 2008; Page 2010), 

a guide book for management strategies (Herrick et al. 2009), or a management program (Kallis et al. 2009). 

Clearly defining outputs at the start of the CG process is important for effective decision-making (Thomson 

and Perry 2006; Ansell and Gash 2008), yet collaborative governance strategies tend to overemphasize 

outputs and ignore outcomes (Koontz and Thomas 2006; Thomas 2008). 

3. Purpose 

This paper critically reflects on a case study experience employing CER principles to inform community 

solar projects in two rural communities. It is a reflective essay meant to illustrate how applying principles 

from collaborative governance might improve community-engaged research. Ultimately, we argue that 

community-engaged researchers can integrate principles from collaborative governance to enhance decision-

making for action outcomes. Reflecting on our team’s experiences, we recognize challenges we experienced 

and consider how insights from CER and CG can be combined to ultimately improve community energy 

projects. 

4. The Case Study 

Academic researchers at Michigan Technological University partnered with community leaders from 

the villages of L’Anse and Baraga (MI, USA), WPPI Energy (a local energy-supply cooperative utility), and 

planners at the Western Upper Peninsula Planning and Development Region to explore the social feasibility 

of starting a community solar project in each community. Each of these actors participated as equitable 

partners in the research endeavor. In both cases, village administrators were interested in the possibility of 

starting a community solar project but did not want to move forward without engaging directly with the 

broader community and learning more about whether local people were interested in such a program and how 

it might be designed so that it would be accessible and attractive to a broad range of community members. 

The research team generally followed the principles of community-engaged scholarship (the methods are 

described in more detail below) to evaluate this social feasibility. The research project idea and specific 

research questions originated from leaders in the community. Decisions about methods and specific details 

about how, when, and where to engage in research were made collaboratively. Academic researchers and a 

class of students at Michigan Technological University did the majority of the data collection and analysis. 

Interpretations were vetted and discussed collaboratively among the full team. Results were shared at public 

meetings where all local area residents were invited to to share their own insights and ideas. 
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4.1. The Communities 

The case study sites are the neighboring villages of L’Anse and Baraga, Michigan (Figure 1). We 

defined our case study community by geographic boundaries. Both villages operate their own municipal 

electric utilities, both of which are adjacent to the service territory of an investor-owned utility. While some 

customers in each village receive power from the investor-owned utility, participation in the potential 

community solar programs can only be offered to the village utility customers. Each village has a population 

of about 2000 residents, and they are located approximately 3 miles from one another along the Keweenaw 

Bay on the southern shore of Lake Superior in Baraga County. These are rural and remote communities, 

located more than three hours away (by car) from the nearest metropolitan area (Green Bay, WI, USA). The 

cases represent places where community solar projects might be especially challenging. Low-to-moderate 

income households make up a large proportion of the population in both villages (43% and, 66%, 

respectively) (MSHDA 2017), which could present a hurdle to participation in community solar given that 

upfront subscription costs are often substantial and more affluent people are generally more likely to 

subscribe (LOTUS 2015; SEPA 2015; NREL 2015). These two communities have a large tribal presence, 

with almost 50% of Baraga’s population identifying as American Indian (alone or in conjunction with another 

race, U.S. Census, ACS 2016). Also, in comparison to very sunny places and to places with high electricity 

costs, the potential financial return on investment in solar is low here, because there is relatively low solar 

radiation (3.4–4.4 kWh/m2/day, NREL 2017) in this northern region and because electric rates are near the 

state and national average ($0.10–0.13/kWh, Village of L’Anse and Village of Baraga Utility3). Selling a 

fairly small amount of solar-produced electricity at moderate rates yields only moderate returns on the 

investment. 

 

Figure 1. The location of the L’Anse and Baraga villages in the Upper Peninsula. 

4.2. Methods 

Data for the social feasibility study included semi-structured interviews with key informants, “world 

cafe”-style community meetings (Jorgenson and Steier 2013; Brown 2010), a full sample survey in each 

community, and financial analyses. Each of these steps is described in more detail below. This multifaceted 

research approach allowed the team to get a sense of the complexities behind support or lack thereof for the 

                                                 
3 These numbers were obtained from personal communication with Village Utility operators.  
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proposed community solar program (gleaned from qualitative data) while also making an informed estimate 

of general program support and projected participation levels (based on quantitative estimates). The semi-

structured interviews provided a first glance into potential opportunities and challenges associated with 

community solar in the local community context, as well as raised awareness about the project idea among 

community leaders, and helped the team to advertise the first community meeting. Community meetings 

provided in-depth insights from a broad cross-section of community members, offered people a public chance 

to express concerns, and offered a unique opportunity to hear how community members talk to one another 

about the project idea. Because we assume that residents of a small town will discuss the program with one 

another and that it would be most successful if spread by word-of-mouth, understanding how community 

members converse with one another was important. The community meeting structure also allowed for data 

interpretation from community participants responding and reacting to points raised by one another and in 

the survey results and talking through ideas and themes to ultimately interpret what points are most important 

locally. The results from the interviews and community meetings both informed the survey design. The 

primary functions of the surveys were to obtain a basic understanding from a broad representation of 

community members on support for local community solar, key factors that impact that support, and to 

estimate the likelihood of participation under different scenarios. Survey results were imperative to 

demonstrate broad interest to key project leaders. Altogether, this multifaceted approach allowed the team to 

expand community participation by involving a large number of diverse community members in every 

research step.  

The team started by conducting a critical review of existing community solar programs to draw lessons 

for successes and failures that we could learn from. We conducted 15 interviews (5 in L’Anse and 10 in 

Baraga) with community and tribal leaders and social service providers to gain initial insight regarding 

potential barriers to, or motivations for, local participation in a community solar program. Interviews were 

audio-recorded for later analysis. We worked with the Keweenaw Bay Indian Community (KBIC) Committee 

for Alternative and Renewable Energy to determine what initiatives would spark interest in the tribal 

community and to design data collection strategies that would engage tribal members. 

Community meetings offered the general population (beyond the specific research partners) an 

opportunity for meaningful participation. We held an initial public community meeting in L’Anse to share 

information about community solar and to facilitate discussion among community members. A total of 49 

people attended. The meeting followed a “world cafe” format (Jorgenson and Steier 2013; Schieffer et al. 

2004; Brown 2010), where participants were asked to sit at round tables of approximately five people each 

and to respond in small groups to questions, then to report out to the broader group for general discussion 

and interpretation. Questions included: (1) what do you like about the idea of L’Anse doing a community 

solar project? (2) what concerns you most about this idea or makes you think it might not work? (3) would 

you purchase shares? And why or why not? (4) What are some things that the team needs to consider in 

designing the program? (5) Do you think that L’Anse should move forward with this? Why or why not? A 

second community meeting was held three months later where the research team shared survey results (see 

below), and participants were again asked to discuss community solar possibilities in small groups and report 

out in a similar format. Notes from each of the small tables as well as the full group discussion were recorded 

and analyzed for key themes (see Appendix A). 

A community survey (designed collaboratively among project partners) was distributed in two 

separately to all Village of L’Anse and Village of Baraga utility customers to determine community 

members’ interest in participating in a community solar program as well as to provide additional feedback 

regarding community solar program design. Survey respondents were provided a $5 community currency 

upon submitting and requesting the $5 as an incentive. Researchers administered community solar surveys 

through each Village’s utility bill. Community members were provided a stamped envelope to return surveys 

through mail to WUPPDR, or surveys could also be returned to each Village office. Students canvassed door-
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to-door (convenience sampling) in densely populated neighborhoods to drop off additional surveys face-to-

face, answer questions, listen to community feedback on the project idea, and collect completed surveys as 

available. We geolocated neighborhoods in the Village of Baraga with low initial response rates and then 

specifically targeted canvassing efforts there to provide further information about the project as well as give 

residences additional opportunities to respond to the survey. A total of 174 and 158 Village of L’Anse and 

Baraga (respectively) utility customers responded to the survey. The response rate was 14% of all residential 

customers in L’Anse and 24% in Baraga. Survey data were cleaned, coded, and analyzed using the Stata 

statistical software to estimate support for, and knowledge of, community solar, and to consider variation in 

these variables by age, income, length of residence, gender, education, and tribal affiliation. This information 

was then used to help the team (a) estimate who might be likely to participate in the community solar program 

and (b) understand different demographic needs to improve our community solar program. Additionally, we 

calculated the predicted number of solar panels that respondents said they would purchase under various 

program designs in order to understand what kinds of program design were most popular, how they would 

work for low-to-moderate income residents, and whether a community solar program would likely sell 

enough shares to be feasible. Survey results were important for demonstrating broad public support for 

moving forward with a community solar program to research partners, additional village leaders, the electric 

utility, and the broader community. They also offered a means of participation in decision-making that was 

(while minimal) accessible to all utility customers (stakeholders). 

Finally, the project team integrated results from the interviews, the first community meeting, surveys, 

and the existing program review to generate program design options that might work for local communities. 

Research partners reviewed the financial costs associated with building, maintaining, and administering a 

community solar project of the appropriate size to meet community interest and developed initial models for 

investment options that both reflected community interests and covered the required costs. The team’s goal 

was to design program options that were both financially sound and affordable and accessible to community 

members. The team presented initial program options and solicited feedback in the second community 

meeting, and then adjusted the program design options accordingly. At this writing, L’Anse has decided to 

start a community project and has started to pre-sell shares following a program design that was generally 

(with some exceptions) what the project team recommended. The project team in Baraga is still in the process 

of reviewing and interpreting results. 

5. Discussion and Reflection 

Overall, the project team felt that employing a community-engaged research approach that took 

participation from a diverse set of community members seriously improved the viability of starting 

community solar and designing program options that reflect the community’s unique interests and needs. A 

diverse set of local people provided feedback about a community energy project that would be located in 

their community. This was something that they had not experienced with previous community energy 

projects. Moreover, the entire project idea was driven by local actors, and the research process helped to build 

knowledge of community solar, support for the project, and trust in the project development process. 

Ultimately, the program design incorporated voices from the community that expressed concerns over how 

people limited by geography or money could participate and what happens to a community solar subscription 

if you move or no longer want your subscription. The L’Anse program was designed with three different 

payment/credit options, which together met the interest and needs of the broader community, and it includes 

ideas from the community, such as collaboration with local non-profit community organizations to facilitate 

donating solar panels. Overall, the team believes that CER helped to improve the process of designing a 

community energy program. The community is generally supportive, and the utility is starting to use the 

process we employed as a model for other communities. 
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Still, the team encountered challenges that could be addressed by incorporating principles of 

collaborative governance to inform the community-engaged research process for community solar. We failed 

at inclusively defining “the community” who participated as core members in our CER process, and we 

struggled to sustain broader community engagement. We did not clearly communicate who the final decision-

makers were, which created some confusion and tension for team members. Finally, we focused on the 

process of the CER while giving less attention to how our report and program may ultimately impact the 

environment, people’s lives, and the energy mix. These challenges are described below with a discussion of 

how principles from collaborative governance (CG) can help to address and improve these common 

challenges associated with community-engaged research. While these challenges are not novel among CER 

projects, we show how they play out in a new context (community solar program development), and we 

believe that drawing on principles from collaborative governance can help to address them for various CER 

projects ranging from socio-ecological to socio-technical systems. 

5.1. Identifying Community Participants 

A key issue in community engaged research is dealing with the complexities of defining communities 

and subsequently identifying which members to include in the research and decision-making process. 

Collaborative governance reconciles this complication by suggesting that inclusion should be based upon 

impact, such that all parties affected by a decision should have a say in decision-making. This usually takes 

the form of a representative to speak for themselves, an agency, a business, a community, or a large group of 

public stakeholders (Emerson et al. 2009). The key piece is to ensure that not only do the impacted parties 

have a voice, but the relative power of collaborators does not outweigh or become railroaded by the other in 

agreements or collective decisions. 

Drawing on CG’s principles for defining community partners, CER might first consider who is impacted 

and then strive to incorporate representatives of all impacted groups into the partnership team. This is 

important for propelling the collaboration towards a more democratic process. Leaving out impacted 

community members can affect the legitimacy (Johnston et al. 2010) of the project, ultimately influencing 

its viability. CER is good at collaborating with well-organized community groups, but often falls short of 

incorporating others who may be most vulnerable (Tumiel-Berhalter et al. 2005). In CG, this vulnerability is 

viewed as a disparity of resources, such as funding, time, expertise, and even power (Bryson et al. 2006; 

Huxham and Vangen 2005). CG utilizes facilitated leadership to (a) prevent any one party from exercising 

power over the others (Chrislip and Larson 1994; Bryson and Crosby 1993; Huxham et al. 2000) and (b) 

push the collaboration to redistribute and share the resources for the common vision or goal of the group 

(Emerson et al. 2011; Milward and Provan 2000). 

Previous studies grapple with defining the community by shared geography, demographics, or sense of 

identity (Agrawal and Gibson 2001; Long et al. 2016). Geographic communities can be defined by physical 

boundaries, such as streets or landmarks (Burns et al. 2011). In our community solar study, we defined the 

community based on electric utility area geographic boundaries, which were superficially inclusive of all 

impacted parties (utility customers of the utility considering the community solar project). Still, the core 

research team only included village managers (who also control the municipal utility), a regional planner, 

academic scientists, and a representative of the energy provider. The general public (customers) were not key 

participants in the full research or implementation process, but rather were invited to participate at key stages 

in the research (answering questions, sharing attitudes/feelings, and interpreting results). Even then, the 

public’s voice was heard and considered, but they were not well-represented in decision-making, other than 

by the village managers, who also had other concerns (managing the utility). In this sense, our community-

engaged research fell short in its inclusiveness of community members. Our community participant definition 

was skewed towards authority figures that may make decisions based on a different set goals, values, 

priorities, and perspectives (Israel et al. 2005) compared to all impacted community members. Following CG 
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principles would have offered the team a clearer framework and reasoning for including additional 

community voices as members of the core CER team and better allowed all impacted community members 

a voice, thus improving the democratic nature of the decision-making process and bolstering the legitimacy 

of our research findings. 

5.2. Sustaining Participation and Avoiding Exploitation 

Some research projects have difficulties sustaining inclusive engagement. This is especially true in 

disadvantaged communities with a history of exploitation, including tribal communities (Morris 2017; 

Bullard 2008). Tribal communities have a long history of exploitation by state-based and academic authority 

figures, which can complicate establishing collaborative research projects (Doherty 2007; Smith 2013; 

LaVeaux and Christopher 2009). CER aims to avoid exploitation, and is specifically designed to incorporate 

community members into the research process rather than taking the knowledge gained elsewhere. Still, CER 

projects may inadvertently exploit community members by requiring considerable time and energy, often 

without corresponding compensation. 

Drawing lessons from collaborative governance, CER projects should explicitly incorporate 

compensation for community members into project design and budgeting. Some CER projects already do 

this (i.e., Black et al. 2013); however, it is not well-established in CER practice. Incentives, such as proper 

compensation for time invested, must exist for impacted members to participate and collaborate in the 

process. A CG approach would suggest creating a fully compensated position to facilitate dialogue between 

the represented group and collaborators, as well as provide expertise and guidance to the represented group 

(Page 2010; Bingham 2009). 

Following CG strategies with regards to power dynamics might also prove useful for helping to sustain 

community participation in CER projects and avoid exploitation. CG recommends understanding the system 

context, such as power dynamics (Ansell and Gash 2008) and/or historical trust and conflict issues (Radin 

and Romzek 1996; Thomson and Perry 2006). Understanding the system context can help to see what 

dynamics might emerge and further initiate the direction of the collaboration towards decision-making based 

on mutual trust. Applying this to CER, the community trusts the representatives to make decisions reflecting 

their needs, values, and goals. The partnership remains, and the community and decision-makers 

continuously work together to improve those decisions. 

As mentioned above, some CER projects have used compensation to sustain participation (Israel et al. 

2005). Others emphasize empowering community members to develop control over the research process as 

a way to sustain participation (Israel et al. 2001). Members of our core project team participated, at least in 

part, because it was part of their job. Team activities fit well enough with formal work responsibilities that 

they could participate as part of their regular work day. For this reason, sustained participation and 

commitment were not particularly problematic. Still, village managers did, at times, struggle to find time to 

devote. Village managers faced multiple competing demands, which presented a challenge to participation; 

however, the team maintained expectations that participation was part of the community partner’s role. 

Soliciting broader community participation for community meetings, however, proved more difficult. 

The Villages of L’Anse and Baraga had differing levels of community participation regarding the community 

solar program design. More L’Anse community members attended the community meetings, while the 

Baraga survey had a larger response rate. One reason for this could be our discovery of a recent example of 

exploitation in these communities. Our community research was conducted while, simultaneously, 

community leaders and the broader community were at odds regarding a large wind development project. 

The community leaders supported a wind development project in the area, yet the broader community 

opposed the project as they expressed skepticism of the wind developer’s motives and feared being exploited 

by the large, external development companies. Our team felt that building trust, creating an open dialogue, 

and otherwise providing opportunities to empower locals to speak up about the project would be enough to 
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bring community members to table. While we did not provide adequate compensation for all the time and 

effort that was necessary to participate in our research project, we did incentivize participation at community 

meetings by bringing food, door prizes, such as LED light bulbs, and a raffle for a larger energy efficiency 

appliance. Due to the project’s timeline, each meeting and survey occurred at different times of the year, 

which contributed to community members’ conflicting schedules and prior commitments to community 

events. Our participation levels might have increased had we involved more general community members as 

representatives. These representatives could have been compensated for their time on this project. 

Additionally, the team could lean upon each representative’s social network to recruit community meeting 

participants. 

5.3. Turning Research into Action: Power to Make Decisions 

While action towards social change is a goal of the research process (Stoecker 2012; Huang 2010), CER 

principles themselves provide little direction on how to take this research and use it to make decisions. We 

experienced several facets of this (discussed below) with our community solar project. Collaborative 

governance attempts to make the decision-making process more inclusive and more localized. We can use 

the CG literature to remind community-engaged scholarship that there are some people with final decision-

making authority (Newig and Fritsch 2009), which requires transparency for the community to understand 

who that will be. Specifically, the involvement and power of these actors in decision-making may outweigh 

community suggestions and community energy desires. 

We utilized the CER methodology in both villages to provide the opportunity for all village utility 

customers to give feedback about the community solar program’s design. We planned to use this information 

to determine if the community should move forward with the program. For example, with the L’Anse 

community solar case study, the CER results suggested that the community wanted to move forward with a 

community solar project. Community members were interested in creating a community advisory board to 

oversee the program. Survey results indicated that multiple financing options (including a no down payment 

option) would function to increase community solar access to all community members, including low-to-

moderate income populations. Suggestions also included a donation model either from community members 

outside the utility service territory or more affluent to less affluent community members. This methodology 

appeared to place power in community members designing the program for their community. Still, the 

ultimate decision-making process proved to be less democratic and transparent. Community members did 

not make a collective decision to move forward with the community solar program; rather, the village utilities 

and the energy provider had the final say. The factors, timing, and process of the post CER decision-making 

was not communicated to team members or the community. While the research team attempted to organize 

member participation across research, government, and private sectors, we mainly partnered with people in 

official power roles rather than the broader community. Because of this, we ultimately failed to explicitly 

outline decision-making as a series of iterative points and to clarify exactly who held decision-making power 

at each of these points. 

Collaborative governance suggests that an inclusive, participatory strategy involving multi-level actors 

is effective for decision-making. A key component of this process is transparency (Ansell and Gash 2008). 

This includes communicating transparent ground rules and the shared vision with team members and all 

impacted community members to have the same expectations about final decision-making. Some CER 

findings (Israel et al. 2005; Johnson and Johnson 2003; Schulz et al. 2002) deal with transparency by 

including communication strategies external to community meetings (in the form of email, telephone, 

mailings, minutes, etc.). Utilizing CG strategies would have led us to do things differently in L’Anse and 

Baraga. Ideally, we would have included all affected community members in the final decision-making 

process. A step down from this involves transparency. While it is extremely difficult to provide information 

about every detail in the decision-making process, we should have been forthcoming about how and why 
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these decisions were made. Being explicit about the incorporation of CG principles into the design of this 

community-engaged research project would have likely improved processes and outcomes. 

5.4. Focus on Outcomes versus Outputs 

Community-engaged research places great emphasis on the process portion of conducting research, with 

the ultimate goal of facilitating social change (an outcome). However, integrating specific outputs and 

outcomes (evaluating the change) into the research design is not a well-established practice in CER. CER 

projects often emphasize community empowerment as an outcome (whether or not the team is successful in 

improving conditions), but neither are commonly assessed. Focusing more explicitly on outputs and 

outcomes may help teams to achieve this social change. CG projects are driven by an intended output, and 

communicating about the intended outputs (deliverables) is critical from the planning phase. Thomas and 

Koontz (2011) indicate that many projects that lack agreement on a shared vision from the project’s beginning 

result in unfocused or incomplete outputs. The CG literature speaks to finding a shared motivation as key in 

communicating the goals (outputs). Committing to the process, outputs, and outcomes can help keep the 

researchers accountable. 

With the L’Anse and Baraga project, our deliverable was a report for the utility and village council to 

make a final decision regarding the community solar program. Team members focused on the process of 

ensuring that the project would keep benefits local and improve quality of life by empowering community 

members to participate in the project as well as producing the final report. We did not build an assessment of 

how well our research process achieved these aims following our report and the subsequent program 

implementation. We could have utilized an assessment based on factors such as improved knowledge or 

clarity on key issues, perceived legitimacy of the project, improved trust, and how deliberations and final 

decisions were perceived (Emerson et al. 2011). In the planning phase, the team could have discussed and 

agreed upon the best way to operationalize and measure these outcomes. Including some sort of evaluative 

measure of outcomes of our work could help to demonstrate the real impacts of our research and open 

opportunities for adaptation to improve the process and program in favor of community needs. 

6. Conclusions 

In this paper, we reflect on our experiences using community-engaged research practices in one 

particular case study examining the potential of community solar projects in two communities. We also 

recognize that the challenges we experienced may not be novel, but that our reflections here build others’ 

findings while being unique due to the community solar context. This conceptual reflection indicates four 

possible ways of improving community-engaged research by borrowing from research on collaborative 

governance. First, while community-engaged research projects often grapple with the complexities of 

defining communities and identifying appropriate members of communities to include in collaborative 

research, collaborative governance suggests that inclusivity should be broadly based on impact, in that 

anyone who will be impacted by a decision should have a seat at the table for decision-making. This can help 

to circumvent some of the conceptual challenges involved in defining community while also providing a 

question for ground truthing community engagement to ensure that the partnerships are inclusive of everyone 

who will be impacted by a project. 

Second, sustained inclusion and engagement can be a challenge for community-engaged research; 

collaborative governance suggests the imperative of structuring participation to ensure that participants are 

compensated for their involvement and that their voices are empowered as equitable decision-makers on the 

team. For collaborative governance, this may mean involving those who are paid to be stakeholder 

representatives or may mean only involving those who have a professional or personal stake in the decision; 

for community-engaged research, this may mean balancing the possibilities of stakeholder representative 

involvement or providing compensation when asking those who have no professional duty to be involved. 
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Third, community-engaged research is often focused on ensuring just and inclusive engagement with 

the research process, while tending to ignore ultimate decision-making and the power differentials that shape 

it. Collaborative governance principles are attentive to ensuring that final decision-making power is 

established and communicated clearly prior to deliberative activities, a lesson that community-engaged 

researchers may benefit from bearing in mind. 

A fourth, final, and related point is that community-engaged researchers’ focus on a just and inclusive 

process may be overshadowing the need to also have inclusive conversations about the intended outputs and 

outcomes of community-engaged research; collaborative governance research may also struggle with 

operationalizing and measuring outcomes but is more attentive to establishing shared understandings of 

intended outputs. Processes, outputs, and outcomes are all important, and attention to each may be improved 

by also paying attention to—as indicated by the lessons offered by collaborative governance—decision-

making power, forms of compensation that can be offered for involvement and the diverse forms of 

representation that involvement can take, and the necessity of being both inclusive but also pragmatic in 

defining communities for research. 

Funding: This research was partially supported by the Michigan Department of Agriculture and Rural Development, 

grant #791N7700467 and the American Public Power Association, grant #CG-2135. 

Acknowledgments: We thank our team members, Brad Barnett, Brett Niemi, Jay Meldrum, Robert LaFave, and LeAnn 

LeClaire, who provided insight and expertise that greatly assisted this research. We would also like to show our gratitude 

to the Village of L’Anse and Village of Baraga community members for sharing their knowledge, insights, and concerns 

during the course of this research. 

Conflicts of Interest: The author declares no conflict of interest. 

References 

Adhikari, Sunit, Tanira Kingi, and Siva Ganesh. 2014. Incentives for community participation in the governance and 

management of common property resources: The case of community forest management in Nepal. Forest Policy 

and Economics 44: 1–9. 

Agrawal, Arun, and Clark C. Gibson, eds. 2001. Communities and the Environment: Ethnicity, Gender, and the State in 

Community-Based Conservation. New Brunswick: Rutgers University Press. 

El Ansari, Walid, and Elisa S. Weiss. Quality of Research on Community Partnerships: Developing the Evidence Base. 

Health Education Research 21:175-180.  

Ansell, Chris, and Alison Gash. 2008. Collaborative governance in theory and practice. Journal of Public 

Administration Research and Theory 18: 543–71. 

Baker, Elizabeth A., Sharon Homan, Sr Rita Schonhoff, and Matthew Kreuter. 1999. Principles of practice for 

academic/practice/community research partnerships. American Journal of Preventive Medicine 16: 86–93. 

Balazs, C.L. and R. Morello-Frosch. 2013. The Three R’s: How Community Based Participatory Research Strengthens 

the Rigor, Relevance, and Reach of Science. Environmental Justice 6.  

Barr, Stewart, and Patrick Devine-Wright 2012. Resilient communities: Sustainabilities in transition. Local 

Environment 17: 525–32. 

Batel, Susana, Patrick Devine-Wright, and Torvald Tangeland. 2013. Social Acceptance of Low Carbon Energy and 

Associated Infrastructures: A Critical Discussion. Energy Policy 58: 1–5. 



58 

Bhattacharjee, Yudhijit. 2005. Citizen Scientists Supplement Work of Cornell Researchers: A Half-Century of 

Interaction with Bird Watchers Has Evolved into a Robust and Growing Collaboration between Volunteers and a 

Leading Ornithology Lab. Science 308: 1402–4. 

Bingham, Lisa Blomgran. 2009. Collaborative governance: Emerging practices and the incomplete legal framework for 

public and stakeholder voice. The Journal of Dispute Resolution 2009: 269. 

Black, Kristin Z., Christina Yongue Hardy, Molly De Marco, Alice S. Ammerman, Giselle Corbie-Smith, Barbara 

Council, Danny Ellis, Eugenia Eng, Barbara Harris, Melvin Jackson, and et al. 2013. Beyond incentives for 

involvement to compensation for consultants: Increasing equity in CBPR approaches. Progress in Community 

Health Partnerships 7: 263. 

Brown, Juanita. 2010. The World Café: Shaping Our Futures through Conversations That Matter. Surry Hills: 

ReadHowYouWant. 

Brummer, Vasco. 2018. Community energy–benefits and barriers: A comparative literature review of Community 

Energy in the UK, Germany and the USA, the benefits it provides for society and the barriers it faces. Renewable 

and Sustainable Energy Reviews 94: 187–96. 

Bryson, John M., and Barbara C. Crosby. 1993. Policy Planning and the Design and Use of Forums, Arenas, and 

Courts. Environment and Planning B: Planning and Design 20: 175-194.  

Bryson, John M., Barbara C. Crosby, and Melissa Middleton Stone. 2006. The design and implementation of Cross-

Sector collaborations: Propositions from the literature. Public Administration Review 66: 44–55. 

Bullard, Robert D. 2008. Dumping in Dixie: Race, Class, and Environmental Quality. Westview Press.  

Burchell, Kevin, Ruth Rettie, and Tom C. Roberts. 2016. Householder engagement with energy consumption feedback: 

The role of community action and communications. Energy Policy 88: 178–86. 

Burns, J. C., D. Y. Cooke, and C. Schweidler. 2011. A Short Guide to Community Based Participatory Action 

Research. Advancement Project-Healthy City. Available online: www.advancementprojectca.org (accessed on 

10/17/2018). 

Cameron, David. 2010. Big Society Speech, Transcript of a Speech by the Prime Minister on the Big Society. Liverpool. 

19 July. Available online: http://www.number10.gov.uk/news/big-society-speech/ (accessed on 11/10/2018). 

Carr, Wilfred and Stephen Kemmis. 2003. Becoming Critical: Education Knowledge and Action Research. Routledge.  

Catney, Philip, Sherilyn MacGregor, Andrew Dobson, Sarah Marie Hall, Sarah Royston, Zoe Robinson, Mark 

Ormerod, and Simon Ross. 2014. Big society, little justice? Community renewable energy and the politics of 

localism. Local Environment 19: 715–30. 

Cawston, Peter G., Stewart W. Mercer, and Rosaline S. Barbour. 2007. Involving deprived communities in improving 

the quality of primary care services: Does participatory action research work? BMC Health Services Research 7: 

88. 

http://www.advancementprojectca.org/
http://www.number10.gov.uk/news/big-society-speech/


59 

Chrislip, David D., and Carl E. Larson. 1994. Collaborative Leadership: How Citizens and Civic Leaders Can Make a 

Difference. San Francisco: Jossey-Bass Inc Pub, Volume 24. 

Dóci, Gabriella, and Eleftheria Vasileiadou. 2015. ‘Let׳ s Do It Ourselves’ Individual Motivations for Investing in 

Renewables at Community Level. Renewable and Sustainable Energy Reviews 49: 41–50. 

Doherty, Robert. 2007. Old-time origins of modern sovereignty: State-building among the Keweenaw Bay Ojibway, 

1832–1854. American Indian Quarterly 31: 165–87. 

Duran, Bonnie, Nina Wallerstein, Magdalena M. Avila, Lorenda Belone, Meredith Minkler, and Kevin Foley. 2013. 

Developing and Maintaining Partnerships with Communities. In Methods for Community-Based Participatory 

Research for Health. Hoboken: John Wiley & Sons, pp. 43–68. 

Emerson, Kirk, Patricia J. Orr, Dale L. Keyes, and Katherine M. McKnight. 2009. Environmental conflict resolution: 

Evaluating performance outcomes and contributing factors. Conflict Resolution Quarterly 27: 27–64. 

Emerson, Kirk, Tina Nabatchi, and Stephen Balogh. 2011. An integrative framework for collaborative governance. 

Journal of Public Administration Research and Theory 22: 1–29. 

Ferrance, Eileen. 2000. Action Research. Waltham: LAB, Northeast and Island Regional Education Laboratory at 

Brown University. 

Flicker, Sarah, Robb Travers, Adrian Guta, Sean McDonald, and Aileen Meagher. 2007. Ethical dilemmas in 

community-based participatory research: Recommendations for institutional review boards. Journal of Urban 

Health 84: 478–93. 

Great Lakes Renewable Energy Association (GLREA). 2013. A Guidebook for Community Solar Programs in 

Michigan. Available online: 

https://www.michigan.gov/documents/mdcd/Michigan_Community_Solar_Guidebook_437888_7.pdf (accessed 

on 11/10/2018). 

Goold, Susan Dorr, Zachary Rowe, Lisa Szymecko, Chris Coombe, Marion Danis, Adnan Hammad, Karen Calhoun, 

and Cengiz Salman. 2016. The State as Community in Community-Based Participatory Research. Progress in 

Community Health Partnerships: Research, Education, and Action 10: 515. 

Hacker, K. 2013. Community Based Participatory Research, 1st ed., Sage Publications.  

Herrick, Sarah, Joe Kovach, Eunice Padley, Carmen Wagner, and Darrell Zastrow. 2009. Wisconsin’s Forestland 

Woody Biomass Harvesting Guidelines. Madison: WI DNR Division of Forestry and Wisconsin Council on 

Forestry. 

Hibbard, Michael, and Jeremy Madsen. 2003. Environmental resistance to place-based collaboration in the US West. 

Society &Natural Resources 16: 703–18. 

Hibbard, Michael, and Jeremy Madsen. 2004. Response to Sturtevant and Bryan. Society & Natural Resources 17: 

461–66. 

https://www.michigan.gov/documents/mdcd/Michigan_Community_Solar_Guidebook_437888_7.pdf


60 

Hicks, Darrin, Carl Larson, Christopher Nelson, David L. Olds, and Erik Johnston. 2008. The influence of 

collaboration on program outcomes: The Colorado nurse—Family partnership. Evaluation Review 32: 453–77. 

Hoffman, Steven M., and Angela High-Pippert. 2015. Community Solar Programs and the Democratization of the 

Energy System. Paper presented at the European Consortium for Political Research, Montreal, QC, Canada, 26–

29 August. 

Bradbury-Huang, H. 2010. What is Good Action Research? Action Research 11: 9-28.   

Huxham, Chris, and Siv Vangen. 2005. Managing to Collaborate: The Theory and Practice of Collaborative 

Advantage. New York: Routledge. 

Huxham, Chris, Siv Vangen, Christine Huxham, and Colin Eden. 2000. The Challenge of Collaborative Governance. 

Public Management Review 2: 337–58. 

Innes, Judith E., and David E. Booher. 1999. Consensus building and complex adaptive systems: A framework for 

evaluating collaborative planning. Journal of the American Planning Association 65: 412–23. 

Israel, B. A., P. M. Lantz, R. McGranaghan, D. Kerr, J. R. Guzman, J. R. Guzman, and Robert J. McGranaghan. 2001. 

Detroit Community-Academic Urban Research Center. Ann Arbor 1001: 48109-2029. 

Israel, Barbara A., Edith A. Parker, Zachary Rowe, Alicia Salvatore, Meredith Minkler, Jesús López, Arlene Butz, 

Adrian Mosley, Lucretia Coates, George Lambert, and et al. 2005. Community-based participatory research: 

Lessons learned from the Centers for Children’s Environmental Health and Disease Prevention Research. 

Environmental Health Perspectives 113: 1463. 

Israel, B.A., A.J. Schuz, E.A. Parker, A.B. Becker, A.J. Allen, J.R. Guzman, and R. Lichtenstein. 2017. Critical issues 

in Developing and following CBPR principals, in Oetzel, John G., and Meredith Minkler (eds.) Community-based 

participatory research for health: advancing social and health equity. San Francisco, CA, USA: Joey-Bass, 31-

45.  

Johnson, David W., and Frank P. Johnson. 2003. Joining Together: Group Theory and Group Skills. Boston: Allyn and 

Bacon. 

Johnston, Erik W., Darrin Hicks, Ning Nan, and Jennifer C. Auer. 2010. Managing the inclusion process in 

collaborative governance. Journal of Public Administration Research and Theory 21: 699–721. 

Jorgenson, Jane, and Frederick Steier. 2013. Frames, framing, and designed conversational processes: Lessons from the 

World Cafe. The Journal of Applied Behavioral Science 49: 388–405. 

Kallis, Giorgos, Michael Kiparsky, and Richard Norgaard. 2009. Collaborative governance and adaptive management: 

Lessons from California’s CALFED Water Program. Environmental Science & Policy 12: 631–43. 

Kania, John, and Mark Kramer. 2011. Collective impact. Stanford Social Innovation Review 36–41. 

Kania, John, and Mark Kramer. 2013. Embracing emergence: How collective impact addresses complexity. Stanford 

Social Innovation Review 1–8. 



61 

Kantamneni, A, R. Winkler, and K. Calvert. 2019. Incorporating Community: Opportunities and Challenges in 

Community-Engaged Research. In A Research Agenda for Environmental Management. Cheltenham: Edward 

Elgar Publishing. Forthcoming. 

Kim, Hana. 2017. A Community Energy Transition Model for Urban Areas: The Energy Self-Reliant Village Program 

in Seoul, South Korea. Sustainability 9: 1260. 

Kimura, Aya H., and Abby Kinchy. 2016. Citizen science: Probing the virtues and contexts of participatory research. 

Engaging Science, Technology, and Society 2: 331–61. 

Klein, Sharon J. W., and Stephanie Coffey. 2016. Building a sustainable energy future, one community at a time. 

Renewable and Sustainable Energy Reviews 60: 867–80. 

Klocke, S., E. Prehoda, S. Pudas, L. Schimmel, K. Valenti, and R. Winkler, R. 2017. L’Anse Community Solar Social 

and Economic Feasibility Study. Available online: http://www.mtu.edu/social-sciences/research/reports/lanse-cs-

report2.pdf (accessed on 09/25/2018). 

Koné, Ahoua, Marianne Sullivan, Kirsten D. Senturia, Noel J. Chrisman, Sandra J. Ciske, and James W. Krieger. 2000. 

Improving collaboration between researchers and communities. Public Health Reports 115: 243. 

Koontz, Tomas M., and Craig W. Thomas. 2006. What do we know and need to know about the environmental 

outcomes of collaborative management? Public Administration Review 66: 111–21. 

LaVeaux, Deborah, and Suzanne Christopher. 2009. Contextualizing CBPR: Key principles of CBPR meet the 

Indigenous research context. Pimatisiwin 7: 1. 

Leach, William D. 2006. Collaborative public management and democracy: Evidence from western watershed 

partnerships. Public Administration Review 66: 100–10. 

Leach, William D., Neil W. Pelkey, and Paul A. Sabatier. 2002. Stakeholder partnerships as collaborative 

policymaking: Evaluation criteria applied to watershed management in California and Washington. Journal of 

Policy Analysis and Management: The Journal of the Association for Public Policy Analysis and Management 

21: 645–70. 

Learned, Kelly, Holly Kinas, and Danah Duke. 2017. Community Engaged Research at Mount Royal University. 

Calgary: Mount Royal University. 

Lerch, Daniel. 2017. The Community Resilience Reader: Essential Resources for an Era of Upheaval. Washington: 

Island Press. 

LOTUS Engineering and Sustainability. 2015. Analysis of the Fulfillment of the Low Income Carve-Out for 

Community Solar Subscriber Organizations. Available online: 

https://www.colorado.gov/pacific/sites/default/files/atoms/files/Low-

Income%20Community%20Solar%20Report-CEO.pdf (accessed on 11/15/2018). 

Long, Jonathan W., Heidi L. Ballard, Larry A. Fisher, and Jill M. Belsky. 2016. Questions that won’t go away in 

participatory research. Society & Natural Resources 29: 250–63. 

http://www.mtu.edu/social-sciences/research/reports/lanse-cs-report2.pdf
http://www.mtu.edu/social-sciences/research/reports/lanse-cs-report2.pdf


62 

Magnani, Natalia, and Giorgio Osti. 2016. Does civil society matter? Challenges and strategies of grassroots initiatives 

in Italy’s energy transition. Energy Research & Social Science. 13: 148–57. 

Maniates, Michael F. 2001. Individualization: Plant a tree, buy a bike, save the world?. Global Environmental Politics 

1: 31-52.  

Margerum, Richard D. 2002. Evaluating collaborative planning: Implications from an empirical analysis of growth 

management. Journal of the American Planning Association 68: 179–93. 

Martiskainen, Mari, Eva Heiskanen, and Giovanna Speciale. 2018. Community Energy Initiatives to Alleviate Fuel 

Poverty: The Material Politics of Energy Cafés. Local Environment 23: 20–35. 

McKenzie-Mohr, Doug. 2000. Fostering sustainable behavior through community-based social marketing. American 

Psychologist 55: 531. 

Milward, H. B., and K. Provan. 2000. How networks are governed. In Governance and Performance: New 

Perspectives. Edited by C. J. Heinrich and L. Lynn. Washington: Georgetown University Press, pp. 238–62. 

Minkler, Meredith. 2004. Ethical challenges for the “outside” researcher in community-based participatory research. 

Health Education & Behavior 31: 684–97. 

Minkler, Meredith, and Nina Wallerstein, eds. 2011. Community-Based Participatory Research for Health: From 

process to Outcomes. Hoboken: John Wiley & Sons. 

Morris, Craig. 2017. Community Power Projects in Denmark and Germany Have Inspired Politicians Worldwide but 

Have Failed to Translate to Other Countries. Sometimes the First Step Is to Let People Say No. Available online: 

https://www.nature.com/articles/d41586-017-07508-x?WT.feed_name=subjects_scientific-community-and-

society (accessed on 09/17/2018).  

Michigan State Housing Development Authority. 2017. Available online https://www.michigan.gov/mshda/ (accessed 

on 10/01/2018).  

Muller, Michael J., and Sarah Kuhn. 1993. Participatory design. Communications of the ACM 36: 24–28. 

Newig, Jens, and Oliver Fritsch. 2009. Environmental governance: Participatory, multi-level—And effective? 

Environmental Policy and Governance 19: 197–214. 

National Renewable Energy Lab (NREL). 2010. A Guide to Community Solar: Utility, Private, and Non-Profit Project 

Development. National Renewable Energy Laboratory and U.S. Department of Energy. 

https://www.nrel.gov/docs/fy11osti/49930.pdf (accessed on 11/30/2018). 

National Renewable Energy Lab (NREL). 2015. Shared Solar: Current Landscape, Market Potential, and the Impact of 

Federal Securities Regulation. National Renewable Energy Laboratory and U.S. Department of Energy. Available 

online: www.nrel.gov/docs/fy15osti/63892.pdf (accessed on 09/17/2018). 

National Renewable Energy Laboratory (NREL). 2015. Community Shared Solar: Policy and Regulatory 

Considerations. Available online: www.nrel.gov/docs/fy14osti/62367.pdf (accessed on 09/17/2018). 

https://www.nature.com/articles/d41586-017-07508-x?WT.feed_name=subjects_scientific-community-and-society
https://www.nature.com/articles/d41586-017-07508-x?WT.feed_name=subjects_scientific-community-and-society
https://www.michigan.gov/mshda/
https://www.nrel.gov/docs/fy15osti/63892.pdf


63 

National Renewable Energy Laboratory (NREL). 2017. Direct Normal Solar Resource of Michigan. Available online: 

https://www.nrel.gov/gis/solar.html (accessed on 09/17/2018) 

National Renewable Energy Laboratory (NREL). 2018. Rooftop Solar Technical Potential for Low-to-Moderate 

Income (LMI) Households. Available online: https://www.nrel.gov/docs/fy18osti/70901.pdf (accessed on 

09/17/2018) 

Page, Stephen. 2010. Integrative leadership for collaborative governance: Civic engagement in Seattle. The Leadership 

Quarterly 21: 246–63. 

Petersen, Jens-Phillip. 2016. Energy Concepts for Self-Supplying Communities Based on Local and Renewable Energy 

Sources: A Case Study from Northern Germany. Sustainable Cities and Society 26: 1–8. 

Pitt, Damian, and Alina Congreve. 2017. Collaborative approaches to local climate change and clean energy initiatives 

in the USA and England. Local Environment 22: 1124–41. 

Purdy, Jill M. 2012. A framework for assessing power in collaborative governance processes. Public Administration 

Review 72: 409–17. 

Radin, Beryl A. and Barbara S. Romzek. 1996. Accountability Expectations in an Intergovernmental Arena: the 

National Rural Development Partnership. Publius: The Journal of Federalism 26: 59-81.  

Rau, Irina, Petra Schweizer-Ries, and J. Hildebrandt. 2012. The silver bullet for the acceptance of renewable energies. 

Vulnerability, Risks, and Complexity: Impact of Global Change on Human Habitats 2012: 177–91. 

Rogers, Ellen, and Edward P. Weber. 2010. Thinking Harder about Outcomes for Collaborative Governance 

Arrangements. The American Review of Public Administration 40: 546–67. 

Rogers, Jennifer C., Eunice A. Simmons, Ian Convery, and Andrew Weatherall. 2012. Social Impacts of Community 

Renewable Energy Projects: Findings from a Woodfuel Case Study. Energy Policy 42: 239–47. 

Roussos, Stergios Tsai, and Stephen B. Fawcett. 2000. A review of collaborative partnerships as a strategy for 

improving community health. Annual Review of Public Health 21: 369–402. 

Schieffer, Alexander, David Isaacs, and Bo Gyllenpalm. 2004. The world café: Part one. World 18: 1–9. 

Schuler, Douglas, and Aki Namioka, eds. 1993. Participatory Design: Principles and Practices. Boca Raton: CRC 

Press. 

Schulz, Amy J., David R. Williams, Barbara A. Israel, and Lora Bex Lempert. 2002. Racial and spatial relations as 

fundamental determinants of health in Detroit. The Milbank Quarterly 80: 677–707. 

Selin, Steve, and Deborah Chevez. 1995. Developing a collaborative model for environmental planning and 

management. Environmental Management 19: 189–95. 

Solar Energy Industries Association (SEIA). 2018. Community Solar. Available online: 

https://www.seia.org/initiatives/community-solar (Accessed on 09/07/18).  

https://www.nrel.gov/docs/fy18osti/70901.pdf
https://www.seia.org/initiatives/community-solar


64 

Smart Electric Power Alliance (SEPA). 2015. Community Solar Program Design: Working Within the Utility. 

Available online: https://sepapower.org/resource/community-solar-program-design-working-within-the-utility/ 

(accessed on 10/15/2018). 

Seyfang, Gill, and Adrian Smith. 2007. Grassroots innovations for sustainable development: Towards a new research 

and policy agenda. Environmental Politics 16: 584–603. 

Smith, Adrian. 2005. The alternative technology movement: An analysis of its framing and negotiation of technology 

development. Human Ecology Review 12: 106. 

Smith, Linda Tuhiwai. 2013. Decolonizing Methodologies: Research and Indigenous Peoples. London: Zed Books Ltd. 

Sovacool, Benjamin K., Raphael J. Heffron, Darren McCauley, and Andreas Goldthau. 2016. Energy Decisions 

Reframed as Justice and Ethical Concerns. Nature Energy 1: 16024. 

Stoecker, Randy. 2012. Research Methods for Community Change: A Project-Based Approach. Thousand Oaks: Sage 

publications. 

Stoker, Gerry. 2004. New Localism, Participation, and Networked Community Governance. University of Manchester. 

Available online: http://www.ipeg.org.uk/papers/ngcnewloc.pdf (accessed on 09/17/2018).  

Strand, Kerry J., Nicholas Cutforth, Randy Stoecker, Sam Marullo, and Patrick Donohue. 2003. Community-Based 

Research and Higher Education: Principles and Practices. Hoboken: John Wiley & Sons. 

Thomas, Craig W. 2008. Evaluating the performance of collaborative environmental governance. Paper presented at 

Consortium on Collaborative Governance Mini-Conference, Santa Monica, CA, USA, 10–12 April. 

Thomas, Craig W., and Tomas M. Koontz. 2011. Research designs for evaluating the impact of community-based 

management on natural resource conservation. Journal of Natural Resources Policy Research 3: 97–111. 

Thomson, Ann Marie, and James L. Perry. 2006. Collaboration processes: Inside the black box. Public Administration 

Review 66: 20–32. 

Tosun, Cevat. 2000. Limits to community participation in the tourism development process in developing countries. 

Tourism Management 21: 613–33. 

Tumiel-Berhalter, Laurene M., Robert Watkins, and Carlos J. Crespo. 2005. Community-based participatory research: 

Defining community stakeholders. Metropolitan Universities Journal 16: 93–106. 

Vangen, Siv, and Chris Huxham. 2003. Enacting leadership for collaborative advantage: Dilemmas of ideology and 

pragmatism in the activities of partnership managers. British Journal of Management 14: S61–S76. 

Walker, Gordon, Patrick Devine-Wright, Sue Hunter, Helen High, and Bob Evans. 2010. Trust and community: 

Exploring meanings, contexts, and dynamics of community renewable energy. Energy Policy 38: 2655-2663. 

Walker, Gordon, and Patrick Devine-Wright. 2008. Community Renewable Energy: What Should It Mean? Energy 

Policy 36: 497–500. 

http://www.ipeg.org.uk/papers/ngcnewloc.pdf


65 

Walker, Gordon, Sue Hunter, Patrick Devine-Wright, Bob Evans, and Helen Fay. 2007. Harnessing community 

energies: Explaining and evaluating community-based localism in renewable energy policy in the UK. Global 

Environmental Politics 7: 64–82. 

Wallerstein, Nina, and Bonnie Duran. Community-based Participatory Research Contributions Intervention Research: 

the Intersection of Science and Practice to Improve Health Equity. American Journal of Public Health 100: S40-

S46.   

© 2018 by the authors. Submitted for possible open access publication under the terms and 

conditions of the Creative Commons Attribution (CC BY) license 

(http://creativecommons.org/licenses/by/4.0/). 

 

 

  

 

 

 



66 

4 It takes a Village: Exploring community solar program 

viability in the Upper Peninsula, Michigan, USA 

Emily Prehodaa 

Michigan Technological University 1400 Townsend Dr, Houghton, MI 49931, 

Department of Social Sciences, ewprehod@mtu.edu 

Abstract   

Energy systems are undergoing a shift away from large utility-scale solar energy systems 

to a model characterized by decentralized and renewable energy powered community-

based energy systems. Community solar is one such model that can be developed to 

emphasize local ownership of energy systems. While community solar presents a 

relatively new and arguably beneficial way to increase access, affordability, and 

reliability of energy systems, program development mainly occurs in more affluent 

communities. Additionally, community solar program decision making is typically based 

upon economic viability. This study utilizes social feasibility study data to understand 

community perspectives regarding program viability. It relies on semi-structured 

stakeholder interviews, focus group discussion, survey data collection, and community 

social context examined in a multi-site case study in two villages in the Upper Peninsula 

of Michigan, USA to answer these questions. The qualitative results show that 

community identity, trust, economic status, and environment are important considerations 

for support and project success. The community surveys point to knowledge, 

environment, and trust as being significant factors in influencing viability. Community 

social context highlights that multiple factors, including the presence of a local champion, 

site availability, grant funding, state assistance programs, accurately presenting results, 

and community history with renewable development projects can all influence the 

viability of a community solar program.   

 

Keywords: Community solar, viable program design, solar energy, trust, community 

identity  

4.1 Introduction  

Community solar is an emerging solar energy application that is locally owned and 

operated (Lerch, 2017). While several states are beginning to adopt mandatory 

community solar carveouts through energy legislation (SEPA, 2018), some states are 

only just beginning to grapple with defining community solar, implementing supportive 

policies, and designing viable community solar programs. Predominantly, the solar 

industry couches conceptualizations of community solar programs in terms of economic 

viability (SEIA, 2019, SEPA, 2018, GTM, 2019). While some solar industry 
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organizations recognize a need to increase low-to-moderate income (LMI) participation 

into community solar, the narrative still focuses on economics (NREL, 2018, VoteSolar, 

2018). Decision makers are beginning to explore broadening motivations for policy 

making beyond economics. This paper describes findings from a social feasibility study 

to understand what makes a community solar program viable from the community’s 

perspective. There can be a mismatch between the solar industry itself developing a 

community solar program at a particular site, and the desires of the communities within 

which such a program is ultimately located.  This can impact overall program viability. 

The qualitative results, community surveys, and community social context evaluated in 

this study can inform decision making by both solar industry players and communities in 

the hopes of increasing proposed project viability.   

While there are many ways to define community solar, this paper utilizes the traditional 

model where system subscribers pay for a portion of a locally-sited solar photovoltaic 

(PV) array and receive credit on their electricity bill proportional to the power produced 

(SEPA, 2018). Community solar can be hosted, owned, and/or administered by various 

entities including utilities, third-parties such as solar developers, municipalities, other 

non-profit organizations, as well as for profit entities (Feldman et al, 2015). System 

participants can own, lease, or subscribe to the program and receive credits on their utility 

bill. The local nature of community solar programs provides an opportunity for a 

community engagement process which aids in contributing to program viability (Prehoda 

et al, 2019, Barnett et al, 2019).  

Solar industry experts are beginning to evaluate and develop community solar 

guidebooks that detail ways to improve the financial viability of community solar 

programs and implementation (SEPA, 2017, NREL, 2018). While community solar 

programs intend to increase access and affordability of solar energy systems, these 

reports point to growing community solar program adoption mainly in more affluent 

communities (NREL, 2018, LOTUS, 2015, SEPA, 2015). Therefore, a broad challenge 

appears to exist with regards to developing financially viable community solar programs 

in LMI communities.  

Most studies regarding the viability of community energy projects point to a narrow 

dimension of project economic viability (Seyfang et al, 2013, Walker, 2008, Byrnes et al, 

2016, Nigim et al, 2004). There is a need to understand what factors beyond economics 

can influence the viability of these projects. The results from the current study indicate 

that community needs and values may impact subsequent community solar program 

implementation in a particular community. Utilizing the current results to expand or 

broaden policy decision making beyond economic motivations may open new market 

opportunities for industry experts and solar developers. Project viability can be 

strengthened by combining community perspectives and community needs with existing 

economic viability considerations.  

This study evaluated the usefulness of utilizing community perceptions and values as an 

additional dimension of community solar program viability. Data was collected from 
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social feasibility studies in two Michigan Upper Peninsula communities. Data was 

collected and analyzed from interviews, focus group discussions, participant 

observations, and community surveys to understand the relationships between and among 

these variable factors as they potentially relate to program viability. Alongside 

environmental values and knowledge, various concepts of community identity (i.e. 

community culture, pride, and empowerment), trust, and economic status were included. 

Historically from a community perspective, dimensions of program viability can include 

both degrees of support or opposition to energy development (Devine-Wright, 2011a, 

Firestone et al, 2009) and/or willingness to participate in local community energy 

projects (Kalkbrenner and Roosen, 2016, Borchers, 2007, Rogers, 2008). Because relying 

on just one dimension may fail to capture potential program viability, this study analyzes 

both dimensions in two separate logistic regression analysis. We recognized the need to 

connect studies of project viability to understandings of the actual social context that can 

shape benefits and barriers to influence viability (Byrnes et al, 2016, Chwastyk and 

Sterling, 2015). Contextual factors such as the presence of a local champion, site 

availability, identifying funding assistance, accurately presenting feasibility results, and a 

community’s history with renewable projects can be crucial to determining the viability 

of a project. This study goals are embodied in the following question:  

 

1) What social factors should industry decision makers consider to strengthen local 

community solar program viability?  

 

4.1.1 Literature review 

The viability of community solar programs is dependent upon technical, economic and 

social factors. Programs are designed to meet optimal customer participant mix, provide 

multiple financial options, and lower costs through customer acquisition (NREL, 2018). 

Industry efforts have mainly focused on producing cost-effective community solar 

programs, while discounting social factors that may further contribute to program 

viability. The following literature review provides a brief background of the viability of 

existing community solar programs and various social factors to be considered for overall 

program viability.  

4.1.2 Community solar  

The definition of viable used in this paper is: capable of working or functioning (Smith, 

2010; pg. 22). System and program economics have typically formed the basis of 

community solar program viability. However, the use of “capable” above suggests a 

subjective component to the definition: the project might have the capacity to work or 

function, but there may be additional factors that influence its overall viability. 

Community solar programs offer a means of increasing access to solar energy, reducing 

the up-front costs associated with accessing electricity generated by solar PV systems, 
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and mitigating challenges associated with onsite solar installations. Community solar also 

emphasizes a model based around local system ownership. While community solar 

programs call attention to the above benefits, typically more affluent communities adopt 

community solar programs (NREL, 2018, Vote Solar, 2018, LOTUS, 2015). Federal 

initiatives, such as the Department of Energy Solar In Your Community Challenge, and 

state policies and mandates, are focusing efforts on engaging LMI households and 

communities (Gagne and Aznar, 2018).    

Most community solar studies describe differing community solar design options 

(Feldman et al, 2015, Coughlin et al, 2013). While industry experts provide guides on 

implementation of community solar, these industry visions are primarily financially 

motivated: looking to provide stable and fair rates for all, scalable markets to reduce 

costs, and innovating products around costs and technology (Vote Solar, 2018). States 

with mandatory community solar provide some form of incentive (e.g. Minnesota) or 

solar renewable energy credit market (IPA, 2018) that appear to be the only catalyst for 

solar developers to build community solar. The Illinois Power Agency Adjustable Block 

Program created large incentives to invest in community solar, so much so that the 

amount of funding available did and does not meet the demand for project development 

(Stark, 2019). Economic viability has been the cornerstone of the bulk of evaluation 

community solar viability to date. 

The community solar industry is experiencing massive growth (SEPA, 2018, SEIA, 

2019) due to large community solar demand in states with enabling policies, while 

simultaneously a majority of these projects are not fully subscribed (SEPA, 2018). This 

lack of participation questions the suitability of current community solar program design. 

While it is important to look at financial viability, it is potentially only one variable 

encompassing the complex energy production paradigm. Community solar programs 

attempt to break the mold of traditional solar adoption. It includes benefits of access and 

affordability, along with an emphasis on other social benefits for communities and 

participants. Understanding community perceptions of program viability can therefore 

narrow the gap between industry narrative of community solar economic viability and 

overall project viability.  

4.1.3 Environmental values and knowledge 

 

Environmental motivation and knowledge are well documented as factors that can 

influence viability in energy projects (Zahran et al, 2008, Schelly 2010, and Kwan, 2012, 

Catney et al, 2013, Denis and Parker, 2009, Hargreaves et al, 2013, Seyfang et al, 

2013).). Participants are conceptualized as those individuals who incorporate improved 

social and environmental performance into their perceptions and actions in energy 

systems (Gadenne et al, 2011). Gilg et al (2005) also discussed dimensions such as 

environmental values and concerns that influence participation in energy systems. 

Additionally, socio-demographic variables (such gender and level of education) can 

contribute to positive perceptions of community energy production (Batel et al, 2013, 

Rogers et al, 2008). Prior experience or awareness of renewable energy projects leads 
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community members to consider community energy as desirable (Rogers et al, 2008, 

Catney et al, 2013, Denis and Parker, 2009). In this study, knowledge and environment 

are analyzed from the qualitative interviews obtained; and the quantitative survey is 

coincidentally evaluated to capture the relationship between factors with community solar 

viability.  

4.1.4 Social factors influencing community solar viability   

 

The historic dialogue on factors impacting community solar viability has mainly centered 

on economics. The importance of social factors that work in conjunction with economic 

viability are evaluated in the current study. We focused on three community factors to 

assess their contribution(s) to viability (in terms of community members’ favoring the 

development of a community solar program and willingness to participate in the 

program) for community solar program development: (1) trust, (2) community identity, 

and (3) status as an LMI household.  

4.1.5 Trust 

Greenberg (2014) defines trust as when an individual “believes that a person(s) or 

organization(s) can be relied upon to accomplish objectives because they are competent 

and possess values and intentions that are consistent” (pg 153). Trust is fundamental to 

relationships, as one accepts a level of vulnerability when expecting positive intentions or 

behaviors from another (Kalkbrenner and Roosen, 2016). Research indicates that trust of 

the energy industry can facilitate community energy viability (Simpson and Clifton, 

2015, Eyre et la, 2010). Walker et al (2010) place heavy emphasis on trust as necessary to 

the viability of a community energy project. Distrust surrounding government or 

associated agencies that spearhead community energy projects can create skepticism and 

hurdles to community energy participation and overall viability (Claudy and O’Driscoll, 

2008, Simpson and Clifton, 2015). Building and maintaining trust in the project is 

integral to achieving successful outcomes in community energy projects (Van Der Schoor 

and Scholtens 2015). The type of actors involved (local versus non-local) (Devine-Wright 

and Wiersma 2013), community history, and execution of past community projects can 

all influence the level of trust surrounding community energy projects.   

4.1.6 Community identity 

A strong sense of community identity can influence a resident’s willingness to contribute 

to local initiatives (Kalkbrenner and Roosen, 2016).  Characteristics of community 

identity include instilling pride and striving for continuous improvement (Hoffman and 

High-Pippert, 2010). A strong sense of community can encourage cohesiveness and 

collaboration towards action. This is especially true if the community project involves or 

seeks local ownership. Community identity can facilitate solidarity in action regarding 

energy initiatives and can largely contribute to the viability of community energy projects 

(Walker et al, 2010, Warren and McFadyen, 2010). Additionally, linking community 
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energy projects to existing local initiatives increases program viability (Klein and Coffey, 

2016).  

4.1.7 Income and economic status 

While solar PV costs have dropped dramatically in the past ten years, high up-front costs 

continue to be a barrier for solar PV adoption. To reiterate from above, although 

community solar attempts to improve access and affordability of solar energy, it is still 

mainly accessible to more affluent households (NREL, 2018, SEPA, 2015, LOTUS, 

2015). Program structures that require up-front investment often result in excluding LMI 

households from participation. In this study, LMI households are defined based on the 

State of Michigan’s Housing and Urban Development “Low Income Limit” (HUD, 

2018). Because lower income households typically do not have income tax reduction as 

an incentive (versus higher income wage earners), they are unable to access existing solar 

tax incentives available to other consumers. Additionally, those with a poor credit history 

could face challenges securing financing. This data suggests that many LMI households 

may see upfront costs as a barrier to investing in a community solar program.   

4.1.8 Study background 

4.1.9 Case study background 

The case study villages of L’Anse and Baraga, Michigan, were selected because their 

village administrators were interested in exploring the possibility of community solar 

programs. These villages are remote, rural communities located roughly 5 miles apart in 

the Upper Peninsula of Michigan. They each have a population of ~2,000 permanent 

residents with a large LMI population (43% in L’Anse and 66% in Baraga). Each Village 

administrator controls the municipal utility operations. As a result, they can seek 

opportunities to increase electricity reliability as well as continue to provide lower utility 

costs for all of their utility customers (Prehoda et al, 2019) by generating power from 

local resources. While community solar is promising, program implementation can be 

difficult, with challenges that are not specific these villages. The results from the case 

studies of these two village may be significant not only for researchers community 

members participating in community energy development, but also industry experts and 

solar developers looking to improve program viability particularly in rural and LMI 

communities.    

Both villages formed a partnership with the Upper Peninsula Solar Technical Assistance 

and Research Team (UPSTART) to conduct a social feasibility study. The UPSTART 

team is comprised of university researchers, the Western Upper Peninsula Planning and 

Development Region (WUPPDR), and WPPI, the  energy supply company for both 

villages. UPSTART had two main aims in conducting the social feasibility study to 

satisfy a goal of increasing community solar accessibility to LMI households:  
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1) Is community solar something each village wants?  

2) How can the villages design a program that meets community interests and needs?  

4.1.10 Social feasibility study research methods 

This paper utilizes a mixed methods approach that triangulates data from qualitative 

interviews and focus group discussions, community-wide surveys, and participant 

observation to help inform the community context. The interviews and focus group 

discussions allowed UPSTART to get a sense of the social complexities that emerged 

with community solar program design. It afforded community members a medium to 

communicate concerns and provide feedback to further inform program design. The 

community surveys estimated the community members participation levels and explored 

key factors that could impact participation levels. The qualitative and quantitative data 

work together to link complex social factors to estimated participation levels. UPSTART 

members relied on participant observation throughout the feasibility study period to gain 

a holistic understanding of community viability situated within the community context.  

4.1.11 Key stakeholder interviews 

A total of fifteen qualitative interviews (5 in L’Anse and 10 in Baraga) were conducted 

with key informants in both villages. Participants were determined through a snowball 

sampling strategy. The goal of the interviews was to develop understanding of the local 

context and incorporate community stakeholder viewpoints into the rest of the study. The 

interviews examined how residents and business owners felt about a potential community 

solar program and provided insight about potential drivers or barriers to participation. 

Additionally, researchers investigated specific community factors that could impact the 

success of the project. 

4.1.12 Focus group discussions  

Three community meetings, two in the Village of L’Anse and one in the Village of 

Baraga, were held throughout the feasibility study period to build upon interview data. 

UPSTART utilized newspaper, radio, and community organization outlets to advertise 

and invite all community members to attend the event. Meetings were held at local high 

school buildings as they could accommodate attendance from many community 

members. UPSTART offered attendees door prize incentives, such as LED lightbulbs and 

entry into a drawing for an energy efficiency appliance. In the initial L’Anse and Baraga 

community meetings, UPSTART members generally described community solar to the 

community and invited discussions and feedback about the possibility of developing a 

community solar program in each village. A total of fifty-nine community members 

participated in providing feedback based on 5 open-ended questions (Table 1) about the 

project. Community members were divided into groups of 5-6 participants to reflect a 

“World Café” style meeting (Jorgenson and Steier, 2013, Brown, 2010). This 

methodology includes structured conversation between groups of participants who 
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discuss different topics at several tables for a set time period. Once time is completed, 

groups move to a different table to discuss a different topic. As new participants arrive, 

the table host reports the results of the previous discussion, allowing participants to build 

upon one another’s knowledge sharing. The village of L’Anse and Baraga community 

meeting methodology was similar in that participants were split into groups. The meeting 

host announced one question at a time, allowing for 10-15-minute discussions of each 

question. At the end of the meeting, the host aggregated feedback from each table’s 

discussions allowing for a broader group reflection on community solar concerns and 

considerations. Following the preliminary program design, UPSTART presented the 

community solar program in the second meeting in L’Anse and a smaller meeting with 

the Baraga County Chamber of Commerce. At these meetings, researchers asked for 

feedback regarding any concerns and suggested improvements to the initial program 

design.  

Table 1. Questions asked to community participants during focus group discussions.  

What do you like about the idea of your village developing a community solar project? 

What concerns you about this idea or makes you think it might not work? 

If this happens, do you think you will buy one or more shares for your home/business? Why or 

why not? 

What are some things that the team really needs to consider in designing a program? 

Do you think that L’Anse should move forward with this? Why or why not? 

4.1.13 Community survey 

A survey was distributed to all Village utility customers totaling 1,577 customers (925 

residential customers in L’Anse and 652 in Baraga). These numbers represent the total 

population of residential electric utility accounts. In L’Anse, surveys were distributed in 

the mail along with the household’s electricity bill. In Baraga, survey mailers were sent 

separately from the utility bill. An online link to the survey was provided to village of 

utility customers. In total, 339 residential customers responded to the survey for a 21% 

response rate. The survey was generally successful at achieving a reasonable 

demographic representation of the population of both villages. Women and men are 

slightly underrepresented in the L’Anse and Baraga surveys, respectively. Both surveys 

underrepresented respondents with ages below 45. Respondents who reported LMI status 

are overrepresented in both surveys.  

The survey’s main goal was to determine overall village utility customers’ interest in 

participating in a community solar program. Additionally, researchers were interested in 

learning the perceived barriers to participation in the community solar program. As the 

survey asked questions regarding project participation, the survey was also used to assess 

the perceived economic feasibility of the community solar program. In L’Anse, 
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researchers utilized neighborhood canvassing to boost response rates after distributing the 

first round of surveys. UPSTART members partnered with undergraduate students to 

canvas neighborhoods door to door to provide surveys and discuss the project with 

community members. Team members provided community participants with a stamped 

envelope to easily return the survey once completed. Some community members chose to 

complete and return the survey in the presence of UPSTART members. Canvassing 

afforded community members the opportunity to discuss the potential project further and 

raise any questions or concerns. This drop-off/pick-up methodology provides a personal 

interaction that is used to increase survey response rates (Trentelman et al, 2016). 

Another advantage of this method is to reduce non-coverage error (Steele et al, 2001). In 

Baraga, neighborhoods with low response rates were geolocated and targeted for 

neighborhood canvasing. In both surveys, respondents were provided a $5 Baraga County 

gift certificate for returning the survey.  

4.1.14 Measures 

This section describes this study’s knowledge, environment, trust, community identity, 

and economic status constructs. Researchers analyzed qualitative interviews and focus 

group discussions following an inductive process. The constructs mentioned above 

emerged from the qualitative data as important and were then operationalized in the 

survey designs with the questions described below.  

During the semi-structured interviews and focus group discussions researchers asked 

questions about the perceived advantages and disadvantages of community solar program 

design, opening discussions to many social and economic considerations. Qualitative data 

was evaluated for key wording or patterns related to social value concepts such as trust 

and community identity. Specifically, discussions where respondents mentioned 

community improvement, community culture, community pride, and/or empowering the 

community were consolidated into the community identity category. Discussions 

emphasizing each community’s economic status as a whole or a large LMI presence in 

the community were evaluated as economic considerations.   

The survey contained questions about trust, community identity, and economic status. 

Likert scales (e.g. Mogey,1999, Bertram, 2007, Huijts et al, 2007, Yuan et al, 2011) were 

developed and employed to measure these constructs. The survey also included a 

measure of whether or not respondents favor community solar development and reported 

willingness to purchase shares. These two variables were combined into a viability index 

that served as the dependent variable of interest.  

The environmental variable was operationalized from Farhar (1994) and Gadenne et al, 

2011). Respondents were asked their level of agreement with the statement “It is 

important that my electricity comes from renewable sources.” Following Rogers et al 

(2013), knowledge was operationalized as direct awareness of community solar and/or 

experience through knowing someone with a solar energy installation. A reliability 

statistic was computed to measure internal consistency of these two variables. The 
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Cronbach’s alpha for “knowing about community solar before the survey” and “knowing 

anyone who currently owns solar panels” was 0.9005, suggesting high internal 

consistency. These variables were included in a single knowledge index.  

Community identity was operationalized- taking pride in the community and a goal of 

making the community a better place- following Hoffman and High-Pippert’s model 

(2010). The three response items (1) a community solar program would make L’Anse or 

Baraga a better community to live in; (2) a community solar program would attract more 

residents and businesses to L’Anse;  and (3) a community solar program would increase 

my pride in my community, were assessed using a 5-point Likert-type scale from 0 

(strongly disagree) to 4 (strongly agree). These three measures were included into a 

single community identity index. The Cronbach’s alpha for the community identity index 

was 0.8818, suggesting a high level of internal consistency between these variables. The 

community identity index is an interval variable.  

To measure trust, researchers asked respondents for their reported level of trust of 

electricity provider. This question allowed for a measure of general trust of the 

community member’s local administrators as opposed to specific trust of community 

solar program. Responses were assessed using a 5-point Likert Scale of 0 (strongly 

disagree) to 4 (strongly agree).  

Economic status was analyzed by asking respondents to report annual household income. 

Income scale was replicated from U.S. Census income brackets. The responses were then 

recoded to a dichotomous variable such that household incomes at or above $50,000 are 

categorized as non-LMI and those below as LMI households. 

4.1.15 Data analysis  

Data from both qualitative and quantitative research methods was collected, analyzed, 

and triangulated to understand what community members thought was important for 

community solar viability. The interviews and focus group discussions informed the 

survey design and contributed to a portion of the overall community context regarding 

program viability. Data analysis involved utilizing the survey to understand interest in 

and perceived barriers to participating in the community solar program. A theory-

informed stepwise logistic regression was used to analyze data. Each model was 

compared with the Akaike information criterion and Bayesian information criterion for 

the purpose of identifying the “best” model (Burnham and Anderson, 2004, Kuha, 2004).  

Researchers explored for any resonance by combining qualitative interviews and 

community meetings with survey analysis. The data provide insight that may help to 

explain factors influencing the viability of community solar programs.  

Interview transcripts and focus group discussions were analyzed in a hybrid fashion 

following ground theory characteristics (Glaser and Strauss, 1967, Charmaz 1996) for 

thematic coding along with inductive analysis to discover any patterns or concepts that 

emerged. Stata (version 15) was used to carry out a descriptive and logistical regression 
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of the survey data. This provided information regarding the likelihood that respondents 

would state they are willing to participate in the community solar program.  

4.1.16 Interview and focus group findings 

While there was a general lack of knowledge regarding community solar, participants in 

interviews and focus groups considered the community solar project to be a good idea for 

the community. Reasons for support included increasing or instilling pride in the 

community, increasing community education, and developing a more sustainable energy 

source. Respondents liked the possibilities for community empowerment, local control, 

and energy independence associated with community solar. They focused on local 

benefits and designing the project to increase the local returns as much as possible, 

including the possibility of bringing in more business that could hire local labor.  

“Well if we did have it, it would show that we are acceptable to that 

[renewable energy]- if a business wanted to come in and wanted to 

put up a big thing to run, that would be a good thing. Hey, we're 

friendly to it. That could be a positive thing.” 

Participants said community solar program could create a sense of community pride for 

both villages. They could be seen as regional and national leaders. For these villages 

(characterized by long-term job loss and historical population loss), community pride is a 

really important dimension, as one participant described: 

“I think that it would give them some more pride in the community. 

It's something I think the people really need. They really need to be 

proud of the community and right now it's kind of neutral.”  

Prioritizing sustainability in energy resource use was also cited as important. Maintaining 

a level of environmental concern was viewed as a motivation to invest in the community 

solar project. Respondents liked that community solar provides a sustainable, green 

energy and local energy source. Community members identified this as a reason to 

support the project. One interviewer described: 

“It could provide a more sustainable electric force. I can see it being 

a good solution for environmental challenges we may face.” 

Participants felt that businesses and organizations may not consider solely the economic 

benefits, thinking they may participate for reasons other than financial benefits. For 

example, investing in environmental and social stewardship for the community that 

could result in broader, positive recognition. One participant said that this project could 

help them: 
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 “be a steward of the community. Our company have a fairly 

significant investment in environmental health and safety programs 

so something like this would get attention.” 

One challenge expressed by participants is that the community’s trust of outsiders is low. 

This is different from the survey instrument that measured trust of the electric provider. 

While survey respondents and interview and discussion participants indicated trust was 

important, they referred to different targets of trust. Building trust in the community is a 

process that takes time. For instance, one participant stated:  

“I can tell you with this community, from my experience of being 

an outsider, things are great, but I've had to slowly build my 

reputation up with them; which is going super, it takes time, people 

don't like to let go of the past. I think people are a little more cautious 

up here.” 

Dimensions of trust were also discussed with regards to economics. One participant 

wanted to know who would benefit economically from this project and was skeptical 

that community members themselves would see any benefits:  

“I am concerned about who benefits. Because here it is becoming a 

money-making scheme. That's what I'm saying, people need not be 

making money. This should not be a money-making scheme. I'm 

just defending the poor here. The cost should not be filtering down 

to the poor even though they may get a miniscule benefit. How will 

this benefit the residences. Who is benefitting from this? There are 

grants, loans, and other resources to get this system going. We are 

an impoverished community.” 

 

Another challenge is associated with the culture and the past experiences of the 

community. Participants shared their concerns about the community’s culture of 

unwillingness or resistance to change. One participant stated:  

“You're just going to be fighting culture. People may want to go 

forward, but a lot of the attitude around here is: if it ain't broke don't 

fix it. You could do all this research and all this work and it falls flat 

on its face because of the culture; not because its solar. It’s funny 

how people dig their feet in about these things.”  

Stakeholders also felt that cost would be a huge determining factor in the success of this 

project. The villages are home to a relatively large proportion of LMI households who 

may be unable to afford the upfront cost for participation. Economic concerns are huge, 
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and participants felt costs should be reduced as much as possible to include LMI 

households. For example, participants stated:  

“There are a lot of low-income people here. It is very low. If you 

could find a way that they could pay for 20 years on their light bill 

rather than have some set at 10. Let these people under lower 

income, extend down the road.” 

“We are very low income, we got into WPPI because UPPCo was 

soaring. many years ago before I got on the council, they were on a 

10 year plan with the Village, when they came time to renew it, the 

Village wouldn't do it; WPPI came around and knocked down rates. 

We joined up, WPPI made it easy for us to pay our membership. 

We've been very pleased, rates are just phenomenal. I come from a 

poor family and I can’t see burdening people anymore than you have 

to. We try to keep it as low as we can.”  

Another participant linked the Village’s stagnation over time to the lack of funding to 

support changes:  

“So you can't make a lot of big changes because there's not a lot of 

funds there, so if something like this were to come in there would 

have to be some sort of grant format to back it, because it would 

never take off if it were full prices. Some people can't afford to put 

food on the table. So they're not going to pay thousands of dollars to 

put solar panels on the their home.” 

Overall, respondents were encouraged by the potential pride and empowerment the 

project might instill in the community. They indicated the sustainable impacts of this 

project could make them a regional leader. Respondents expressed concern that other 

factors could reduce peoples’ support of the community solar project and further prevent 

the project from moving forward. Any project inertia that solar developers experience 

could be explained by community members culture of unwillingness to change, level of 

trust of outsiders, an economic status that will ultimately impact project viability.  These 

findings informed and were operationalized into the survey design and statistical analysis 

variable selection.  

4.1.17 Survey findings  

4.1.18 Community Solar Viability Measures 

Respondents were asked “Are you in favor of the Village developing a community solar 

program for Baraga/L’Anse electric utility customers?” Descriptive statistics can be 

found in table 2. The responses were originally coded categorically with “Yes”, “No”, 

and “I don’t know” responses and are reported descriptively. This variable was then 
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recoded to a binary variable for analysis, “0” being “No” and “1” being “Yes.” This 

variable was explored in the first logistic regression analysis. A second logistic regression 

explored the dichotomous variable that asked community members if they were willing to 

participate in the community solar program. Responses were coded into “0” representing 

“No” responses and “1” reflecting “Yes” responses. Each survey provided scenarios with 

different dollar values to community members. In the Village of L’Anse, respondents 

were asked how likely they would be willing to purchase shares with different upfront 

and on-bill financing values. The Village of Baraga survey asked respondents how likely 

they would be to purchase community solar shares at incremental upfront cost increases 

(e.g. $100, $200, $300, etc.). A follow-up question asked respondents how many shares 

they would purchase. This scenario was repeated with a pay-as-you-go option. As each 

survey asked this question differently, a dummy variable was created to be used in the 

logistic regression analysis. Table 2 illustrates the frequencies of responding yes, no, or 

no response to willingness to purchase shares. This dummy variable does not capture the 

original nuanced survey responses. For example, the Village of Baraga survey provided 

both up front or financing options. While Village of Baraga respondents generally 

selected one option over the other, they were aggregated into the “yes” category for 

willing to purchase shares.  

 

Table 2 summarizes the descriptive statistics of factors used in the logistic regression 

analysis. Tables 3 and 4 report the results of the two logistic regression models utilized in 

this analysis. This statistical analysis utilized a theory-informed step-wise regression that 

allowed for examination of each variable separately, while other variables are held 

constant.  

 

The first logistic regression (Table 3) was determined to be the best model with 

community identity and all trust factor categories predictors of support. These variables 

are statistically significant with p-values less than 0.05. The McFadden’s R-squared is 

also interpreted in conjunction with AIC/BIC values; the pseudo r-squared=0.1203 

indicating that ~12% of the variation in viability results from variations in community 

identity and environmental values. Community identity has a positive relationship with 

program viability which is consistent with the literature. We find that the for each unit 

increase the odds of moving from the “No” to “Yes” category of willingness to purchase 

shares is 1.54. The logistic regression elicited a positive relationship between 

environmental values and willingness to purchase which is consistent with the literature 

(Odds ratio for categories include “disagree” =8.42, “agree” =9.54, and “strongly agree”= 

12.12). Gender, knowledge, economic status and trust are not significant in this model.  

 

The second logistic regression (Table 4) was determined to be the best model with 

community identity and environmental values factor categories of “disagree”, “agree”, 

and “strongly “agree” significant predictors of willingness to purchase shares. These 

variables are statistically significant with p-values less than 0.05. The McFadden’s R-

squared is interpreted in conjunction with the AIC/BIC values; the pseudo r-

squared=0.4362 indicating that ~44% of the variation in viability results from variations 

in community identity and trust. Community identity has a positive relationship with 
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program viability which is consistent with the literature. We find that the for each unit 

change the odds of moving from the “No” to “Yes” category of being in favor of 

community solar development is 29.05. The logistic regression elicited a positive 

relationship between trust and support which is consistent with the literature (Odds ratio 

for categories include “disagree”=0.221 “neither”=0.0030, “agree”=0.0068, and “strongly 

agree”= 0.0012). Gender, knowledge, economic status and environmental values are not 

significant in this model.  

 

 

Table 2. Descriptive statistics of factors. 

Variable Observations Level Frequency 

Gender 300 Male 

Female 

48% 

52% 

Favor of 

program 

336 Yes 

No 

I do not know 

61% 

5% 

34% 

 

Willingness to 

purchase shares  

336 Yes 

No 

No response 

55% 

43% 

2% 

Village location 336 Baraga 

L’Anse 

51% 

49% 

Knowledge of 

community solar 

330 Yes 

No  

I do not know 

48% 

50% 

2% 

Know someone 

with solar 

331 Yes 

No 

I do not know 

44% 

53% 

3% 

LMI Status 307 Below $50,000 

Above $50,000 

Prefer not to answer 

49% 

47% 

4% 

Environment 305 Strongly Disagree 

Disagree 

Neither 

Agree 

Strongly Agree 

No answer 

4% 

4% 

26% 

33% 

23% 

10% 

Better place to 

live* 

310 Strongly Disagree 

Disagree 

Neither 

Agree 

Strongly Agree 

No answer 

3% 

4% 

43% 

28% 

13% 

9% 
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Attract more 

residents and 

businesses* 

304 Strongly Disagree 

Disagree 

Neither 

Agree 

Strongly Agree 

No answer 

5% 

10% 

49% 

20% 

6% 

10% 

Increase pride* 304 Strongly Disagree 

Disagree 

Neither 

Agree 

Strongly Agree 

No answer 

5% 

4% 

44% 

26% 

11% 

10% 

Trust 303 Strongly Disagree 

Disagree 

Neither 

Agree 

Strongly Agree 

No answer 

5% 

3% 

28% 

41% 

13% 

10% 

 

*These variables were included in the community identity index but are summarized 

independently here. 5-Point likert scale is measure from 1=Strongly Disagree to 5= 

Strongly agree 

 

Table 3. Logistic Regression Output Summary Model 1 

 Odds Ratio (AIC/BIC of Model) 

Constant 1.831 1.853 1.933 2.325 2.877 7.042 2588 

Village 0.8152 

(439/446) 

0.8267 0.8063 0.7452 0.6914 .6385 0.5270 

Gender  1.017 

(393/405) 

1.005 1.007 0.9548 0.7356 0.7144 

Knowledge   1.242 

(391/405) 

1.193 1.096 1.117   0.9420 

Economic 

status 

   0.8442 

(375/393) 

0.8566 0.8455 0.7985 

Environment        



82 

Disagree     0.7165 0.4313 0.2060 

Neither     0.6336 0.3440 0.2915 

Agree     1.070 0.8342 0.6628 

Strongly 

Agree 

    1.160 

(341/372) 

0.8593 0.9502 

Community 

Identity 

     13.05* 

(221/256) 

29.05* 

Trust        

Disagree       0.0221* 

Neither       0.0030* 

Agree       0.0068* 

Strongly 

Agree 

      0.0012* 

(200/249) 

*p-value < 0.05  

 

Table 4. Logistic Regression Output Summary Model 2 

 Odds Ratio (AIC/BIC of Model) 

Constant 1.292 1.444 1.447 1.918 0.5140 0.3729 0.4200 

Village 0.9863 

(457/465) 

0.9220 0.9011 0.9193 0.8298 0.8752 0.9042 

Gender  0.8628 

(412/423) 

0.8700 0.8216 0.6800 0.5824 0.5769* 

Knowledge   1.091 

(413/428) 

1.158 1.123 1.147 1.133 

Economic 

status 

   0.78 0.8821 0.8947 0.8869 
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(393/411) 

Environment        

 Disagree     5.803* 8.990* 8.420* 

Neither     1.857 2.598 2.474 

Agree     6.110* 9.953* 9.538* 

Strongly 

Agree 

    9.063* 

(336/368) 

13.57* 12.12* 

Community 

Identity 

     1.546* 

(307/342) 

1.541* 

Trust        

 Disagree       0.3312 

Neither       0.8801 

Agree       0.9914 

Strongly 

Agree 

      1.090 

(312/361) 

McFadden’s 

R 

     0.1164 0.1203 

*p-value < 0.05  

4.1.19 Community context discussion 

This section describes data collected from participant observation throughout the social 

feasibility study period. The findings remind industry experts and solar developers to 

situate viability within the community context. The community context can be related to 

formal, institutional and policy support, or more specifically to community 

characteristics, events, and/or lived experiences that can help shape the community’s 

perception as a whole to community solar. This section describes the importance of 

looking to a local champion, identifying an available site that fits with community 

perceptions of the energy project, identifying funding assistance that can help lower 

project costs, accurately presenting results so they become meaningful to community 

members, and understanding community history with previous development projects.  
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4.1.20 Presence of a local champion 

Adoption of solar PV is not exclusively correlated with economic status, community 

trust, or supportive policies or incentives. Rather each community varies with respect to 

these factors that influence adoption levels. Local champions can assist the project in 

various ways that are dependent upon their resources, knowledge, and skills, but 

ultimately, they help guide the community to a shared vision of the community energy 

transition.  

In this case, village administrators established relationships with the research team to 

conduct the social feasibility study. One village administrator responded to the economic 

concerns surrounding the project viability voiced by the community. The administrator 

applied for additional grant funding to further reduce project costs, making the project 

more financially attractive to community members. Villages aided by a local champion 

who is integrated into and supports the development of a community solar program are 

more likely to experience a viable program.  

4.1.21 Community solar site 

Developing a community solar program requires an available site with three 

considerations: technical, perceptual, and legal. Technically, the site must have the 

capacity to host a larger solar array and must be viable for energy production. 

Perceptually, both community solar subscribers and non-subscribers must deem the 

location acceptable. Finally, there are legal considerations as to who owns the land in 

terms of solar land lease agreements. 

First, a technical feasibility site study determined the site viable for installing a solar 

array. The next portion of the feasibility study was devoted to working with the 

community to determine potential locations in each village. There are varying 

perspectives on the aesthetics of solar PV that can impact the solar array location. The 

villages have access to a large industrial park where a site was devoted to hosting the 

community solar array should the project be successful. The industrial park is located off 

the main road with minimal visibility to community members. Additionally, the park 

provides ample space to expand the solar array, should the village need increased 

capacity in the future.  Finally, varying land ownership could impact the community solar 

viability by introducing additional complications such as managing lease agreements.  

4.1.22 Identifying funding assistance 

Grant funding can be a way to reduce renewable energy project costs. Not-profits, 

governmental agencies, and LMI households cannot monetize tax benefits generated 

from the federal renewable energy tax credit. Local governments and rural communities 

can access existing federal and state initiatives and grant programs to help fund and 

forward clean energy goals with specific LMI and non-profit carve outs. The US 

Department of Agriculture’s Rural Development program periodically solicits 
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applications for loan and grant funding through the Rural Energy for America Program 

(REAP). The Michigan Department of Agriculture and Rural Development (MDARD) 

awards applications for community renewable energy project research and development. 

The Department of Energy (DOE) SunShot initiative offers many solar grant funding 

opportunities and competitions to lower solar project costs for LMI communities. 

Additionally, the DOE offers a Tribal Energy Program Grant to promote tribal energy 

sufficiency, economic growth, and employment through clean energy projects in tribal 

communities. The State of Michigan Agency for Energy (MAE) exists to advance 

Michigan’s energy future towards affordable, reliable, and environmentally friendly 

sources. The MAE also promotes community economic growth and environmental 

sustainability through energy efficiency and renewable energy measures. These represent 

just a few of the available opportunities for local governments to submit competitive 

applications to forward their renewable energy project goals. 

MAE invested in Michigan’s first community solar program developed by Cherryland 

Electric to fund a carveout of LMI participation. On behalf of the Village of L’Anse, 

UPSTART negotiated a similar funding carve out with the MAE to provide 10 panels 

each for 25 LMI customers. This model eliminates a portion of the upfront cost for a 

panel in the upfront/on-bill financing option for LMI households. MAE also requires 

these subscribers to participate in a no cost energy efficiency review and weatherization 

measures. 

4.1.23 Accurately present results 

Interview and focus group discussion participants cited possible economic reluctance 

resulting from estimated participation costs that could influence viability or future 

participation in a community solar program. UPSTART expressed the system economics 

in terms of a simple payback period (years to make participant money back) which could 

be responsible for economic reluctance. While simple payback period is an easier way to 

understand over more complex financial models, it does not include time value of money, 

panel degradation, inflation, changes in credit ratings, or other investment benefits. In 

later financial analyses, UPSTART utilized the Net Present Value (NPV) of a potential 

customer’s investment over the subscription term.  

Solar photovoltaic systems save money in the long term, however reluctance to deploy or 

participate in solar energy programs results from a perceived unsatisfactory or long 

payback time (Pearce et al, 2009). UPSTART may have found more success by looking 

to a return on investment (ROI) calculation to illustrate cases where participants can 

receive a greater return from solar energy systems compared to other investment options.  

From the social feasibility study, UPSTART provided three different financing options 

for community solar program participants (Table 3). The first was an upfront payment 

plan option where participants pay a flat upfront fee of $450 and receive monthly savings 

over the program lifetime of 25 years. UPSTART developed two on-bill financing 

options for program participants. The first, a short-term payment plan combined a partial 
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upfront payment of $250 and a monthly payment of $2.00/month for 10 years of the 25-

year program lifetime. The second, a long-term payment plan requires only monthly 

payments of $2.50/month for the 25year program lifetime.    

 

Table 3. Social feasibility study estimated community solar financing options  

Community Solar Subscription Options and Savings Estimates 

Payment 

Plans (per 

panel) 

Upfront 

Payment 

Monthly 

Payment 

Monthly 

Savings 

Net 

Lifetime 

Savings 

Payback 

Length 

(Years) 

Long-term $ -- $2.5/month 

for 25 years 

$3 $150 21 

Short-

Term 

$250 $2.00/month 

for 10 years 

$3 $410 14 

Upfront $450 $ -- $3 $450 13 

 

As this is an issue with perception by community members, UPSTART members should 

have reported multiple payback options. Specifically, an inclusion of the calculated ROI 

when reporting out the three different financing options available would have helped to 

provide a different perspective. Pearce et al (2009) provide a ROI calculation that was 

used in this study. In the upfront cost option, over the program lifetime of 25 years, 

participants would receive an ROI of ~6%. In the short-term payment plan over the 25-

year program lifetime, participants would receive a 5% ROI. In the long-term payment 

plan, participants would receive a <1% ROI. In the Upfront and Short-term payment 

plans, participants would receive better ROI than investing in a savings account (2.5%), 

certificate of deposit (3%), treasury securities (2.5%), or money market accounts (2%), to 

name a few (Sraders, 2018). While payback length may have been daunting to 

community members, converting payback to ROI terms illustrates that higher ROIs can 

still occur given longer payback periods, allowing the results to become more meaningful 

and ultimately more viable to community members.   

4.1.24 Understanding community history 

Some communities have difficulties in developing and maintaining interest in community 

projects. This struggle could result from a history of exploitation (Morris, 2017; Bullard, 

1990) that shapes perceptions of currently proposed projects. Communities that 

experienced a history of exploitation for natural resource extraction, industrial pollution, 
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or large energy development projects (for example) can become communities skeptical of 

outsiders. Some communities experience a local project as providing benefits outside of 

the community (Catney et al. 2014; Devine-Wright and Wiersma 2013). It is important 

for community members to conceive the project as local. Communities who do not 

perceive benefits to stay local may become apathetic or in some cases develop extreme 

opposition. There may be conflicting institutional priorities that influence a project 

(Wirth, 2014). These community projects may be driven by goals that do not reflect 

community goals, values, or beliefs. 

This was consistent with findings from this case study. Many community members cited 

opposition to this project based on experiences with previous renewable energy projects. 

An external community developer proposed building a large wind farm near the two 

villages. Community members were reluctant to support the development of this project, 

which was further aided by the developer’s decision to remove community members 

from the project development process. A second example is the existing “renewable” 

energy facility which is located within the Village of L’Anse yet sells power to an 

electric utility located in the lower peninsula. The L’Anse Warden Biomass Plant claims 

a renewable status as it burns a percentage of its fuel as wood chips. However, the plant 

also utilizes old tires and treated railroad ties for fuel, resulting in air pollution to the area. 

Community members expressed frustration with a plant located in their community 

where the benefits do not stay local, but the environmental burdens do.   

4.1.25 Discussion 

 

This paper utilized data triangulated from interviews and focus group discussions, 

community surveys, and participant observations to explore the social factors that 

industry decision makers should consider to strengthen local community solar program 

viability. Specifically, it explored factors such as community identity and trust, in 

conjunction with knowledge, environmental values, and economic status. These last three 

factors are well cited in the broader community energy literature and so are 

acknowledged as important to community solar viability. While community identity 

(both models), trust (model 1), and environmental values (model 2) are significant 

predictors in the logistic regression models, it is important to remember the problems 

with relying on data that utilizes reported intentions rather than observed behavior. 

Respondents who reported a willingness to purchase shares may or may not actually buy 

shares when the program is developed. Leaning on qualitative data in conjunction with 

survey findings can help to improve the program viability in this respect.       

 

Trust appears to have a positive relationship with support but not with willingness to 

purchase shares. While this is consistent with the literature, it is slightly inconsistent with 

findings from the qualitative data. The qualitative interviews and focus group discussions 

pointed to building trust as an important avenue for project viability. However, the 

specific dimensions of trust operationalized in the survey instrument and qualitative 

findings are different. The survey instrument captured only trust in the electric utility 
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whereas the qualitative data collection highlighted trust in outsiders that may be equally 

relevant to the story. This may be a limitation to the study. It is important that decision 

makers build upon multiple dimensions of trust to strengthen program viability.  

Economic status as LMI or non-LMI household is not significant in this model. Status as 

an LMI household was not significant with willingness to purchase shares in the 

regression model, which is inconsistent with both interview and focus group discussion 

findings, where participants felt cost and income would impact the project viability. The 

information surrounding these types of project is available from industry experts and 

reports along with solar developers who view project viability in terms of economics. 

Additionally, community solar is still a new application that involves a different adoption 

scale compared to other solar energy installations.  This means there may be a challenge 

in looking to literature to explain solar adoption in terms of economic status. 

  

Community identity has a significant positive relationship with both support and 

willingness to purchase. This is consistent with the prior literature evaluated and our 

findings from the qualitative data. Community solar is dramatically growing across the 

U.S. It is still a new and different application of solar energy technology that seeks to 

provide social along with economic benefits to community members. The environmental 

value variable was significant in the second logistic regression model. This is consistent 

with the literature we evaluated that pointed to environment values as important to 

influencing action, in the form of willingness to purchase, in energy systems (Gilg et al, 

2005, Gadenne et al, 2011).    

Overall, survey findings with regards to knowledge are not significant predictors is 

consistent with the literature. The literature and qualitative data both point to the 

importance of considering other social values when developing community energy 

projects. The survey was developed from qualitative interviews with key leaders in the 

community and focus group discussions from community members interested community 

solar. The awareness and experience with community solar, or broadly solar PV found 

with interview and discussion participants may not be representative of the broader target 

populations of L’Anse and Baraga.    

The qualitative data and community context illustrate areas to improve industry and solar 

developer practices towards incorporating community needs and values. Qualitative study 

participants generally felt positively about the idea of developing a community solar 

project. The interviews and discussions uncovered themes that industry and solar 

developers should consider in designing and marketing a potential community solar 

program. The resistance to change culture prevalent in each village could reduce peoples’ 

willingness to adopt community solar. This may be a culture prevalent in locations 

beyond L’Anse and Baraga. Clearly communicating the positive benefits and pointing to 

demonstration projects can be beneficial to combatting project inertia. Building trust is a 

process that takes time. Industry and solar developers should partner with trusted 

community organizations to build rapport in the community.  Linking a community solar 
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project to ideas that locals are more familiar/experienced with and feel positively about 

may help produce more project success.   

Economic concerns remain an important component to community solar viability and 

implementation. Rather than basing projects solely on economic benefits for those 

building community solar, industry and solar developers can expand the economic focus 

to provide flexibility in project design. Multiple financing programs can not only improve 

subscriber rates overall, they can increase access to lower income residents. The 

possibility for bringing economic returns is also important and attractive, but this must be 

communicated in a way that becomes meaningful for potential community participants.  

Participants pointed to several dimensions of community identity such as community 

empowerment, community pride, local control, and energy independence associated with 

community solar. These are factors industry decision makers can use when marketing 

these programs. The message should center on keeping benefits local, such as creation of 

local jobs, local energy generation, dollars circulated locally, local skills and education 

opportunities, and attracting new visitors and residents to the area. Finally, environmental 

values are important to community members. Building the components of sustainable, 

green energy and local energy source into the overall community solar program 

development message can help community members identify with and find important, 

convincing reasons to subscribe. Ultimately, these factors can help to enhance or improve 

relationships between program developers and strengthen program viability.  

4.1.26 Conclusions 

Village administrator approved the development of the community solar programs. This 

study sought to provide solar industry experts a better understanding of factors that are 

important for program viability from the community’s perspective. It combined 

qualitative interviews and focus group discussion data with quantitative survey data and 

statistical analyses to measure viability in terms of trust, community identity, and 

economic status. Study findings are juxta positioned within the social context of the 

communities that can shape the viability of community solar projects beyond financial 

viability itself (Walker et al, 2010, Wirth, 2014, Ruggiero et al, 2018).  

Combining interviews, focus group discussions, and working within the community 

context can influence program viability in terms of program support and willingness to 

buy shares. Industry experts and external program developers can focus on building trust 

in communities and linking program design to community identity to ultimately 

strengthen community solar viability. Additionally, the community social context 

presents factors including presence of a local champion, accessing available and 

appropriate sites, pursuing funding to reduce costs, communicating results in a way that 

becomes meaningful, and understanding the community history which can contribute to 

the likelihood that a community solar program will succeed.  Refocusing efforts to 

advertise community solar not only as a model to increase affordability of solar energy to 
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all populations but as a tool to bring additional community benefits beyond economics 

can help broaden the viability scope.  

This study looked to address a perceived gap between industry experts and individual 

communities with respect to adoption and success of community solar programs. 

Community solar program viability has generally been assessed through an economic 

lens. However, there is desire for policy to broaden its scope to consider other benefits 

that a community solar program can provide. While community solar is growing in the 

U.S. program participation/subscription has struggled. By understanding how a 

community views program viability can help to connect the mismatch between industry 

experts and community members. This article highlights the importance of social factors 

such as trust and community identity, along with social context that can contribute to 

community solar viability. By understanding and linking the project to a sense of 

community identity, building trust in the community, and teasing apart community 

context and dynamics can help aid project viability.  
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5 Conclusions 

Energy is the main way we produce and obtain basic goods and needs for our existence. 

The current U.S. energy system is problematic as there is a mismatch between the level 

of decision-making regarding existing policies and the level at which those decision 

makers implement policies. The scale at which energy decisions (i.e. size and type) are 

made matters in terms of recognizing energy injustices (i.e. outcome distribution, access 

and affordability, procedural fairness, etc.) that occur as a result these decisions. Case 

studies of community solar program development suggest that engaging communities can 

be a more just approach to energy decision making.   

This dissertation utilizes procedural and distributive energy justice and scale politics 

scholarship to analyze community solar case study data in two Upper Peninsula, 

Michigan, USA communities. The research above applies a collaborative governance 

approach to the type of decision making explored in this research. The dissertation 

examines how community solar can or cannot reconcile with issues of scale to improve 

energy justice outcomes of energy systems. This dissertation includes three chapters and 

three additional background works (Appendix A, Appendix B, and Appendix C) that each 

seek to understand: the opportunities and challenges of community solar to contribute to 

more a just energy system in Michigan. ? 

5.1 Chapter review and policy suggestions 

Each chapter attempts to answer the research question from a different vantage point. 

Chapter 2 provides a review of Michigan energy policies, legislation, and regulatory 

regimes. It describes how utilities exercise their power within and outside these existing 

regimes to hinder DG proliferation. A limitation of this chapter is that it does not address 

the dominant approach to ratemaking that exists for Michigan IOUs. Explaining this 

process is crucial to understand the main reason behind utility reluctance to compete with 

DG. MPSC regulation allots a fair rate of return at 10% for Michigan utility investments 

(MPSC, 2018). The rate base is the net of capital costs and depreciation value. The rate 

base is essential to each utility’s profitability as it is directly multiplied by the rate of 

return. Continuing with this dominant and traditional utility regulatory model provides 

little incentive for IOUs to accept DG.  

Due to ratemaking, a utility is disincentivized to promote, support, or accept DG systems. 

Broadly, the ratemaking formula utilizes variables to produce a revenue requirement that 

is key to cost of service regulation (MPSC, 2014). The revenue requirement represents 

the total amount that utilities can collect from all ratepayers to earn a reasonable rate of 

return. Michigan utilizes cost of service regulation to allocate the revenue requirement 

across different customer types. Each customer type, or grouping of customers (i.e. 

residential, commercial, industrial) share characteristics such as energy demand or usage. 

By doing this, the MPSC can then provide a target rate each customer type pays to the 

utility to ensure the fair return on investment. Utilities bill based on kilowatt per hour 
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usage (volumetric sales) which means a portion of their return comes from customers 

using more electricity. Utilities justify reluctance to support DG due to its impact total 

usage: customers who install DG systems may use less electricity, resulting in decreased 

sales for utilities. However the infrastructure costs the same amount regardless of the 

amount of electricity flowing. Ultimately, the traditional ratemaking model 

disincentivizes a utility to accept DG systems because they ultimately impact the utility’s 

profits.  

This chapter left out a crucial piece when looking to policy recommendations to support 

DG proliferation that suggests alternative ratemaking models which are addressed here. 

The first is marginal cost pricing that charges customers average rates based on a utility’s 

financial data from the prior year (Cudahy, 1976). Another option is to keep a utility’s 

profit incentive but place the burden of producing profits on the utility rather than the 

ratepayer. For example, the price of power is capped or set at a level and the utility must 

work to lower costs below this level to continue obtaining profits (Kirsch and Morey, 

2016) . Other alternatives exist, such as rate decoupling or straight fixed variable, 

however these function to remove a utility’s incentive to sell more electricity volume and 

shift cost recovery to fixed monthly charges (Tomain and Cudahy, 2011). A final 

suggestion includes a multi-year rate plan that looks to actual utility costs outside utility 

control, such as fuel costs, rather than internal profits. This allows utilities to explore 

opportunities to cut costs for profitability (DOE, 2015). While both benefits and 

shortcomings accompany each of these options, they each provide opportunities to 

encourage the increased adoption of DG systems.  

Chapter 3 reflects upon the social feasibility methodology used in a specific case study to 

both describe the research process used and incorporate collaborative governance 

principles to both inform and improve community engagement. Broadly it promotes a 

more just approach to improve procedural energy justice by (1) describing community 

engaged scholarship as a means to insert local control and affordability into energy 

systems and (2) utilizing collaborative governance principles to help the research 

approach overcome limitations to achieve local control and affordability of energy 

systems in Michigan.  

A policy suggestion for engaging communities is to look to environmental impact 

statements (EIS) for guidance. An EIS is an assessment that describes potential impacts 

for proposed activities on the environment. The National Environmental Policy Act 

requires major federal actions must undergo review and analysis (NEPA, 1969). The 

broad statute language extends these requirements to private projects that must obtain 

some form of federal approval (Hayes and Hourihan, 1985). Conducting similar analyses 

for community level energy projects may be an answer to the energy justice call for 

integrating humans into our energy systems. In recent discussions, a DTE spokesperson 

noted the large expense of conducting community engagement. This ties into making 

decisions based on cost-effectiveness. A state level policy could require a community 

level impact assessment before building community energy projects without community 

approval. This requirement could allow utilities to work with communities to better 
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understand their needs and values to determine if the project should move forward. It can 

also help to build better utility-community trust relations.   

Chapter 4 analyzes interviews and focus group discussions, survey data, and the 

community context collected from a social feasibility study conducted in two villages in 

the Upper Peninsula of Michigan. The chapter aims to understand what community 

members deem important for community solar program viability.  

This chapter serves to inform industry experts and solar developers that social factors and 

community context can be significant in determining the viability. Incorporating these 

factors and considerations can help strengthen community solar viability. This chapter 

noted the challenge with engaging LMI households into community solar systems. One 

major policy suggestion would be to include community solar supportive policies with 

specific targets for LMI customers. Several states such as California, Colorado, Oregon, 

Minnesota, and Illinois, among others (NREL, 2018) have existing and emerging LMI 

community solar carveouts. Michigan could look to these programs and develop policies 

that increase LMI participation in community solar systems. Additionally, understanding 

the broader social benefits of community solar, industry decision makers could look to 

recruiting local labor forces from the communities within which these projects are 

located.    

5.2 Reconciling with  energy justice 

Ultimately, each chapter attempts to illustrate a different way of exploring how 

community solar can be used to improve Michigan’s energy future. Each chapter 

recognizes the perceptual, social, economic, technical, leadership, governance, or 

institutional dimensions by which community solar development interfaces with existing 

policy and future policy development. Decision making can also be associated with 

dimensions that can vary in terms of procedural energy justice and influence the just 

distribution of energy system outcomes. Current U.S. energy decision making centers 

around the cost-effectiveness or technical viability of energy systems. Decision making 

power rests with the government and corporate actors who have the economic, political, 

and knowledge necessary to engage in decision making. Actors with political power and 

the ability to influence energy policy perpetuate power imbalances and shape the 

disconnect between who makes decisions, at what scales (local, regional, national), and 

the different populations impacted by those decisions (Banerjee et al, 2017, Prehoda et al, 

2019). Specifically, rural, remote, and low-to-moderate populations experience 

inequitable distribution of the benefits and burdens of energy systems. These populations 

pay higher costs for energy infrastructure that is less reliable compared to other urban and 

more affluent communities. As an indirect result of energy distributions, these 

populations experience social power imbalances that lock them out of participating or 

sharing in wealth generating benefits of energy systems.  

Community solar program development presents an opportunity to shift the decision 

making process. It can involve local participation and ownership in energy decision 
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making that attempts to place control at the community level. Community solar can be 

designed to spread system costs and benefits equitably among program participants. 

Community solar also seeks to remove any potential placement of community solar 

burdens (e.g. cost or aesthetic concerns) on non-participant community members. While 

community solar presents a relatively new and arguably more beneficial way to increase 

access, affordability, and reliability of energy systems, one concern is that top-down or 

external decision making to implement community energy projects on local scale without 

community input perpetuate procedural energy injustices (Catney et al. 2014, Devine-

Wright and Wiersma 2013, Ruggiero et al. 2018). Energy justice does not apply to just 

one level of decision making. A lack of institutional and policy support at the state level 

leaves decision making regarding community energy systems with corporate actors who 

center decisions around financial bottom lines. This practice  shifts benefits from 

communities to a select few (i.e. IOUs), while the system financial, environmental, and 

other social costs are left behind.  

Inherently, community solar is a just application of solar technology. It is an 

unconventional energy application that does not fit the mold of our energy generation, 

transmission, and distribution. While it attempts to reconcile experiences with power, 

benefits, and burdens imbalances through local siting and ownership, external (to the 

community) parties continually strive to position community solar within existing utility 

regulatory regimes. As a result, community solar program design can fall short of 

attaining its goals of increasing access, affordability, and reliability for communities, 

ultimately perpetuating imbalances and injustices that currently exist.  Social burdens are 

a product of continuing to make energy decisions regarding community solar based on 

cost-effectiveness for profitability alone rather than looking to community input and 

needs. This approach does not provide full participation, is biased, and ignores the 

benefits and burdens that may be experienced by smaller scales, i.e. communities (Catney 

et al, 2014). This dissertation recognizes the opportunities and challenges for community 

solar to influence more just Michigan energy policy. It calls for energy decision making 

to move beyond economics and consider the broader social benefits available to 

communities that otherwise experience adverse impacts of our energy system. Social 

benefits can include enhanced energy education, increased community pride, increased 

trust and relations with community decision makers, and the potential for job creation, to 

name a few. Guided by procedural and distributive energy justice and collaborative 

governance strategies, decision makers can refocus community solar program design to 

emphasize its merits as a just technology. Creating and implementing community solar 

enabling policies can be a first step to signal the Michigan energy policy transition 

towards more just decision making and benefit, burden, and power distribution.   

 Chapter 2 addresses how current energy policies can shift towards energy systems that 

support DG. It explores actors operating within larger legal and regulatory regimes that 

do not align with procedural and distributive energy justice forms. Sharing in benefits and 

burdens of energy systems are skewed towards those with more economic, political, and 

social power who exercise their power to maintain the status quo of wealth generation. 

Chapter 3 looks at how involving community members at the local scale can be improved 



102 

to better align with procedural and distributive energy justice. As a researcher, I 

experienced challenges throughout the community solar program design process that fell 

short of aligning with energy justice considerations. This chapter leaned on collaborative 

governance strategies to help improve the research process of involving community 

members in community solar program design. Chapter 4 investigates and reports 

community perspectives of community solar program viability. Traditionally, solar and 

the broader energy industry conceptualize program viability in terms of economics. This 

disconnect does not allow community solar to reach its full potential as a procedural and 

distributive energy just application. However, incorporating community member 

perspectives from a full participation research process into program development 

decisions can further strengthen the viability of community solar programs.   The 

chapters combine synergistically to argue for a collaborative governance approach to 

community solar development as a means to improve Michigan energy policy decision 

making. As collaborative governance and energy justice operate at multiple levels, 

energy systems can begin to reflect viewpoints and needs of those previously left out of 

participating and benefiting from energy systems. Affected communities that are 

involved in decision making deem the process as fair, a dimension that matters to people 

(Colquitt et al, 2001). Leaning on procedural and distributive energy justice 

considerations can guide energy policy decision making towards a more equitable 

allocation of benefits, burdens, and power relations.   

5.3 Future research 

My research findings focused on the process of developing more just energy policy in 

Michigan. Future research related to Michigan energy policy could look to an evaluation 

of how well the community solar process reconciled with procedural energy justice. For 

example, this research was conducted within two communities. Future research could 

return to those communities after program implementation to assess if the program 

adequately addressed community needs. A post social feasibility study can evaluate 

community solar program itself for its ability to attain and retain broader social benefits. 

As community solar intends to increase access and affordability of energy systems an 

evaluation of the impact on LMI households would be helpful. For example, Michigan 

utilities offer the Low Income Home Energy Assistance Program (LIHEAP) funds to help 

LMI households manage energy bills and costs, alongside investments in weatherization 

repairs. Future research could explore existing programs for decreased use of LIHEAP 

funds. An additional evaluation would measure changes after program implementation. 

For example, assessing if LMI homes that participate in community solar programs 

experience less electricity disconnect. As chapter 4 highlights, there is a disconnect 

between solar industry reports that conceptualize community solar in economic viability 

terms and communities’ perceptions of overall project viability needs. Future work would 

explore how solar developers conceptualize community solar and compare this to 

community data. Themes that emerge from solar developers’ conceptualizations could 

function to weaken any potential program viability. The work conducted in this 
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dissertation and future work could be integral to evaluating community solar in a way 

that catalyzes stronger community solar institutional support.  
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Abstract: Energy justice is increasingly being used as a framework to conceptualize the 

impacts of energy decision making in more holistic ways and to consider the social 

implications in terms of existing ethical values. Similarly, renewable energy technologies 

are increasingly being promoted for their environmental and social benefits. However, little 

work has been done to systematically examine the extent to which, in what ways and in 

what contexts, renewable energy technologies can contribute to achieving energy justice. 

This paper assesses the potential of renewable electricity technologies to address energy 

justice in various global contexts via a systematic review of existing studies analyzed in 

terms of the principles and dimensions of energy justice. Based on publications including 

peer reviewed academic literature, books, and in some cases reports by government or 

international organizations, we assess renewable electricity technologies in both grid 

integrated and off-grid use contexts. We conduct our investigation through the rubric of 

the affirmative and prohibitive principles of energy justice and in terms of its temporal, 

geographic, socio-political, economic, and technological dimensions. Renewable 

electricity technology development has and continue to have different impacts in different 

social contexts, and by considering the different impacts explicitly across global contexts, 

including differences between rural and urban contexts, this paper contributes to 

identifying and understanding how, in what ways, and in what particular conditions and 

circumstances renewable electricity technologies may correspond with or work to promote 

energy justice. 

Keywords: energy justice; renewable energy; intergenerational justice; energy poverty 

socioeconomic justice  

 

1. Introduction 

Whereas the global economy runs on oil, it is electricity that powers it. Electricity 

pervades the residential, commercial, and industrial sectors providing lighting, heating, and 

cooling services whilst ensuring that assembly lines are moving and metros deliver their 

passengers on time. As a source of energy, electricity can be easily used, accessed, and 
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demand-adjusted [1]. Historically, hydrocarbon and nuclear resources, especially coal, 

were used in electricity production propelling the developed countries towards prosperity 

[2]. However, this prosperity came at the high environmental, social, and political costs 

associated with extraction, transportation, and combustion of fossil  

fuels [1]. Additionally, the intensive use has limited easy to access and economically 

competitive non-renewable fossil fuel reserves [2,3]. It is thus essential to look for 

alternatives to continue electricity production to meet future energy demands.  

Whilst hydro has served as an affordable and reliable renewable source since the dawn 

of electrification, other renewable energy resources, solar and wind, in particular, have 

emerged as economically viable options to meet current and future energy needs with 

significantly lower environmental, social, and political impacts. Globally, investments in 

renewable resource-based electricity (RE) have been made at an unprecedented rate [4]. 

This has led to a momentous worldwide increase in the number of RE facilities and the 

overall capacity including 1064 gigawatts (GW) of hydropower, 433 GW of wind power, 

and 231 GW of solar power in 2015 [5]. The scale of RE operation required to significantly 

reduce societal dependence on fossil-fuel energy can be imagined as colossal [6,7,8].  

The transition of electricity production from fossil fuel to non-fossil fuel energy 

sources is fundamentally changing how energy is produced around the world. The 

proliferation of new RE technologies not only alters supply chains and energy 

infrastructure – RE projects change social and political structures in the nations, regions, 

and communities in which they are implemented. Such new developments also open a 

floodgate of positive and negative externalities affecting people with the ills or benefits of 

RE projects. Thus, the impacts of RE externalities have been subject of research 

specifically to examine these effects [9-263]. In some cases, new RE projects affect the 

connections people have with the place where they live [9,10,11,12], leading to societal 

acceptance [13,14], rejection [15], or other mixed responses towards RE projects [16]. 

These reactions can be based on actual or perceived injustices of the negative externalities 

resultant from RE development that can impact social life [17]. The burdens resulting from 

RE development may also be unequally distributed within societal groups, affecting 

different groups differently [18,19]. Apart from the impact of the socio-physical realities 

of new RE developments, other issues may also arise related to the capability of RE in 

mitigating energy poverty from access and affordability constraints [20,21,22]. 

In order to envisage the emergent RE sector as an integral part of a sustainable future, 

it is critical to avoid and if not possible, minimize negative externalities that give rise to 

injustices associated with energy development while transitioning to a low-carbon future. 

Therefore, at the current juncture when traditional ways of producing energy are 

increasingly being replaced by new RE, there is a need to take stock of the interlinkages 

among RE and energy justice. Recent scholarship tends to highlight the energy justice 

potential of renewable sources (for  
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example, [17,19,23,24,25]). Also, there is a line of scholarship targeting qualitative 

assessment and effective measurement tools for energy-related injustices (mainly fossil 

fuel and nuclear) [1,26,27]. However, there is perhaps no existing work where an energy-

justice related framework is used to assess the justice and injustice potential of RE projects.  

A sustainable energy future calls for energy systems to be guided by principles of 

justice. This requires inclusion of justice goals in RE planning and development and 

necessitates understanding how RE projects can adhere to principles of energy justice. 

Given this development, the goal of this paper is to assess existing research to find out to 

what extent the literature on RE development worldwide addresses energy justice 

considerations. We use the energy justice assessment framework proposed by Sovacool et 

al. [1]. In this work, the scholars use the framework to mainly discuss energy justice related 

to fossil fuels and nuclear energy. We use this framework to assess the energy justice of 

RE development, identifying dimensions of energy justice in RE development discussed 

in current literature, noting the tradeoffs and challenges ensuring energy justice and 

pointing out the future research needs.  

This paper focuses specifically on electricity generation technologies based on the 

three leading forms of RE worldwide, according to recent data, i.e. wind, solar, and hydro 

[5]. We selected these three forms of renewable resources given their global scope of 

operation. Further, wind, water, and solar technologies can be scaled up or down to address 

electricity demands without substantial changes in technologies or to operationalizing its 

use. Additionally, wind, solar hydro, and hydro resources can potentially provide energy 

to the transportation sector with required technological and infrastructural development. 

We conduct our review via systematic appraisal of existing original research analyzed in 

terms of the dimensions and principles of energy justice. In the following sections, we first 

introduce the conceptual framework regarding energy justice used in our analysis. Then, 

taking note of RE development in both highly centralized electrically and electrically 

dispersed contexts, we review the literature and analyze it in terms of geographic, temporal, 

technological, economic, and socio-political dimensions and based on the affirmative and 

prohibitive principles of energy justice. 

2. The Analytical Framework  

Justice is a highly contested concept with diverse meanings. One definition of energy 

justice is “a global energy system that fairly disseminates both the benefits and costs of 

energy services, and one that has representative and impartial decision-making” ([27], p. 

436). In the fair dissemination of benefits and costs, future generations should also be 

represented so that they do not bear the burdens resulting from current energy consumption 

[28]. However, when considering low-carbon energy transition, researchers have 

recognized energy poverty, fuel poverty, energy insecurity, energy deprivation, and other 

problems of associated with lack of access and affordability of energy [29,30]. Therefore, 
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energy justice should also be defined to consider that all people need energy to meet 

necessities and thus should be able to access and afford energy. McCauley et al. [31] 

summarizes these aspects in their work proposing energy justice should be based on three 

central tenets: distributive justice (where ills and benefits are justly distributed), procedural 

justice (where procedures equitably allow the participation of all stakeholders), and 

recognition justice (inclusion of the needs of the energy poor, the people opposing power 

plants in their communities etc. in decision making).  

Energy justice is an emerging field of study and there are many ways in which energy 

justice is being theorized (notably [31,32,33]). However, what lacks in most of this work 

is how we can use the tenets and put them in practice to evaluate research emerging on RE 

developments. In their work, Sovacool et al. [1] developed a framework to highlight how 

current and future development of energy systems (relying on traditional sources) have a 

tendency to interfere with populations ability to meet basic needs and obtain basic goods. 

Critiquing fossil fuel and nuclear resource-based energy projects in this work, Sovacool et 

al. [1] establish that: (i) energy justice can be explained using two principles, affirmative 

and prohibitive; and (ii) energy injustices can be categorized as occurring in often 

overlapping geographic, temporal, technological, economic, and sociopolitical dimensions.  

The philosophical underpinning of understanding energy justice foundational to Sovacool 

et al. [1] aligns with the philosophical conceptions of justice as reviewed in Sovacool and 

Dworkin [33]. In this work, the authors apply six philosophical concepts found in justice 

theory: (1) human rights, (2) procedure, (3) welfare and happiness, (4) freedom, (5) 

posterity, and (6) fairness, responsibility, and capacity when studying energy 

developments. The prohibitive and the affirmative principles proposed by Sovacool et al. 

[1], by their definition, directly or indirectly encompass justice principles. The prohibitive 

principle states that “energy systems must be designed and constructed in such a way that 

they do not unduly interfere with the ability of people to acquire those basic goods to which 

they are justly entitled” ([1], p. 3). The affirmative principle asserts that “if any of the basic 

goods to which people are justly entitled can only be secured using energy services, then, 

in that case, there is also a derivative entitlement to the energy services” ([1], p. 3). As 

energy services help people attain essential access to goods and other services for human 

flourishing, a just energy system should ensure that everyone has access to energy sources 

(affirmative principle) and the ills and benefits of an energy system does not unduly affect 

anyone in such a way that they lose access to other goods (prohibitive principle).  

We utilize this framework to consider renewable energy projects to operationalize 

energy justice in evaluating RE developments. As justice is a highly debated concept, we 

use the prohibitive and affirmative principles to frame justice simply as equity and equality 

of distribution of burdens and benefits and then explore how existing RE scholarship 

addresses these tenets via five dimensions – geographic, temporal, technological, 

economic, and sociopolitical. However, going beyond the anthropocentric definition of 
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energy justice, while conducting our research we broaden the scope of energy justice by 

adding inter-species impacts of RE systems, proposing that a just energy system is also one 

that also does not endanger species critical for ecological systems to survive, which is 

important in itself and extremely useful in supporting human life.  

The geographic dimension focuses on the spatial allocation of energy services and the 

costs and benefits associated with them.  Uneven energy development that affects one place 

more than others also involves changes to the ecological and environmental conditions in 

the area, impacting local communities in ways that can even lead to degradation or even 

displacement. This section considers RE in terms of the affirmative and prohibitive energy 

justice principles. In which a just energy system would include characteristics that lessen 

the uneven geographic impacts associated with energy development projects and improve 

access to energy to obtain basic needs.   

The temporal dimension of energy justice stresses energy systems as an 

intergenerational issue, where the negative externalities of energy production and use of 

current generation continue to impact future generations (hence capturing intergenerational 

ethical obligations). Therefore, this section considers how just RE systems can elicit 

externalities that prevent or hinder future generation’s abilities to obtain their basic goods, 

either through the provision of fuels or access to energy to satisfy basic goods. Therefore, 

a just energy system should have characteristics that lead to reduced or negligible impacts 

on future generations and the ways and means essential for maintained quality of life. 

Temporal dimensions explore intergenerational and also inter-species energy justice issues, 

where energy injustices will affect the generations to come who will be impacted by 

climate change, degraded landscapes, biodiversity loss, air pollution and associated health 

implications in the future stemming from current energy use.  

The technological dimension explores inherent ethical deficiencies of energy systems 

in relation to their safety, efficiency, reliability, and vulnerability to external security 

threats. This section considers whether the technical components of the energy system itself 

have the capacity to reconcile with these principles. A just technical energy system would 

provide non-interference, reliable, safe, and non-vulnerability with the provision of basic 

goods. The economic dimension of energy justice mainly concerns the social distribution 

of energy services and the costs and benefits associated with them. Sovacool et al. [1] point 

out that energy services should be distributed in such a way that people across social groups 

can have access to energy that is affordable enough to cover at least the basic requirements 

to maintain a dignified life. Often the lack of physical access or the costs of energy services 

prohibits people from accessing its benefits. Therefore, a just energy system addresses both 

principles by considering RE projects that do not elicit negative economic impacts or cause 

an imbalance to different economic groups. The sociopolitical dimension of the energy 

system is closely tied with the economic dimension. A just energy system from the 

sociopolitical viewpoint would uphold the principles of human rights, democracy, and 



110 

political process devoid of any dysfunctional nexus between energy producers and the 

government. A just energy system should also ensure that no social groups are 

marginalized from or given access to energy based solely on their social status.  

3. RE Through the Lenses of Energy Justice  

We organize the results in terms of their closest relevance to the geographic, temporal, 

technological, economic, and sociopolitical dimensions of energy justice. Each subsection 

below first highlights the major trends that emerged from our review. The review was 

compiled based on a systematic search for peer reviewed literature, books, and in some 

cases reports by government or international organizations reporting empirical research 

findings on the impacts of RE technology. The Google Scholar database was used and 

articles published between 2010 and 2017 were included. Initial search terms were based 

on the dimensions of energy justice used to organize the analysis; additional search terms 

developed based on the preliminary trends resulting from this initial search.  For example, 

to assess the geographical dimension of RE projects, we targeted articles and reports 

specifically related to developing nations, with special focus on the sub-Saharan Africa, 

Asia, and in other rural areas of the Global South. Articles were searched utilizing key 

terms such as “RE and developing nations,” “rural electrification,” “energy poverty,” 

“energy access,” “Africa,” “India,” and “developed versus developing.” To search 

literature for the technical dimension keywords like “water impacts of solar/wind/hydro 

power”, “mining impact of renewable energy” and “ecological impacts of renewable 

energy” was used. After identifying the trends, specific key words like “wind power 

impacts on bats” or “water use of Concentrated Solar Power” were used. A similar method 

was employed when searching for articles in the technological dimension. Keywords in 

this search included “RE and technology,” “fossil fuel impacts, and health.” For economic 

dimension, search terms were mainly like “energy poverty and renewable energy” and 

“renewable energy and energy poverty in developing countries.” Similarly, for 

sociopolitical dimensions search terms were based on the key themes like “land acquisition 

renewable energy”, “green lobby and renewable energy”, “public participation in 

renewable energy decision making” were used.   

As the main purpose of this work is to develop an understanding of how RE 

development is conceptualized in terms of the range of energy justice impacts, the sampling 

frame focused on sampling for diversity, finding a range of perspectives and trends, rather 

than a quantitative count of content. Given that we were more interested in finding the 

range of emerging trends of RE related to energy justice and injustice rather than the 

number of papers that reported on a thematic area, use of a single database sufficed this 

purpose, as we could find a broad range of issues covered in the articles selected for review. 

Delimiting our search between 2010–2017 (even though, for example, lifecycle analysis-

based articles of RE technologies have been published since the 1990s) had two purposes. 

This date range helped focus the review on the impacts of current technology used rather 
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than on older technologies. Moreover, understanding of the impacts of RE have also 

evolved with time as prices of technologies have fallen, scale of operation has enlarged, 

and penetration of RE has made it more or less contested due to socio-political reasons in 

recent years. In some cases, when recent articles were not available, search periods were 

extended. Thousands of articles came up in these searches, and articles were selected that 

reported original research that narrowed down to 20–30 articles for each dimension and 

numerous articles that address multiple dimensions with a total inclusion of over 200 

studies in this review. Each article was analyzed to assess whether RE development aids 

or attenuates the affirmative and/or prohibitive principles. Articles were also distinguished 

based on the types of RE systems, either centralized or distributed, where scale plays a role 

in aiding or attenuating energy justice. Where possible and when possible depending on 

the availability of literature, we also tried to separate the impacts of decentralized energy 

systems from the impacts of centralized energy systems. However, it was always not 

possible due to lack of clarity in the reported research.  

3.1. Geographic dimension of justice in renewable electricity 

A basic requirement of development is access to energy. As mentioned above, energy 

is instrumental for human flourishing. Energy influences many quality of life indicators, 

including access to drinking water, life expectancy, mortality, education, and poverty 

reduction [34]. A key for improving these indicators is electrification [35]. Currently, 1.2 

billion people (about 17%) live without access to electricity whereas 2.7 billion cook by 

using the traditional biomass, which results in 3.5 million deaths due to indoor air pollution 

[36]. Lack of electricity has adverse impacts on socioeconomic conditions in developing 

countries and rural regions of developed countries highlighting the inequitable geographic 

distribution of energy services [37].  

As mentioned above, energy poverty is intertwined with lack of access to energy and 

energy services. Populations that are said to live in energy poverty are unable to maintain 

daily activities that require energy use. Many rural regions and developing nations live in 

energy poverty due to a lack of affordable energy services, lack of energy infrastructure, 

or both [26]. Most populations (about 95%) experiencing energy poverty live in sub-

Saharan Africa and Asia, with about 80% living in rural regions [36].  

Adverse impacts of living in energy poverty include health issues. Many households 

in developing nations and rural regions rely on renewable energy sources (i.e. biomass) for 

cooking, which, as noted above, has severe health implications. Problems such as 

respiratory infections, lung cancer, asthma, and many others arise out the indoor biomass 

combustion. Many developing nations and rural regions lack access to electrification, 

which negatively impacts education as many children who attend primary school in these 

communities do not have access to electricity. Finally, energy poverty can be linked to 

lackluster development in these communities. Electricity is instrumental for having 
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running water and modern sanitation, which in turn are keys to overall improved health 

care, high life expectancy, lower mortality, and poverty reduction. It is important to note 

that traditionally, overall energy consumption was directly linked to economic 

development. While the direct link has been refuted in relation to developed nations, there 

is still overwhelming evidence such a connection exists in developing nations where it 

further linked to reducing overall poverty level [38].  

The issue of energy poverty as a function of energy access has been in the purview of 

several international organizations, including the United Nations, World Health 

Organization, and International Energy Agency. In addition, various private and public-

private partnerships have been contributing to resolving the energy poverty problem. While 

some studies have suggested large-scale RE installations for electrification in these areas, 

they may not be suitable for all rural areas and developing regions hindered by lack of 

electricity access [39,40,41]. A more pragmatic approach suggests utilizing RE powered 

mini-grids to provide lighting, heating, clean cooking, and other energy needs to local 

communities [42,43,44]. Smaller, decentralized RE grids can provide the optimal option 

for increasing energy access [45,46,47], and many feasibility studies have analyzed the use 

of RE systems to increase energy access and subsequent well-being in developing nations 

and rural regions including studies projections for future energy access [48-50].  

Seventy percent of India’s population lives in rural areas, making up twenty-five 

percent of the world’s poor population [51]. Therefore, India serves as a preliminary case 

study and major driver for energy access studies, in light of the affirmative energy justice 

principle [52,53]. Similar studies have been conducted in sub-Saharan African nations 

[54,55,56]. Additionally, several studies have been conducted assessing the progress and 

success of energy access initiatives in rural regions in India [57], with a majority of projects 

focused on solar PV RE technologies [52,58,59]. These studies provide continuing 

evidence in support of decentralized RE powered micro-grid systems versus large-scale 

RE utility projects. Specifically, rural electrification in India provides many benefits, 

including improved education, increased employment, improved health, and overall 

reduction in poverty [60]. In studies in the African context, most researchers address 

optimal ways to increase energy access, through international development funds, clean 

energy programs, and rural electrification initiatives [48,49,61]. Within the geographical 

dimension, common topics include addressing energy poverty in terms of health, 

education, drinking water, and overall poverty.  

This review found a dearth of information surrounding RE projects in the context of 

the geographical dimension of justice through the prohibitive principle lens. Rural 

communities are especially impacted by conventional energy systems, and energy planning 

and policy must balance the inequitable distribution of impacts and access across 

geographical scales. Large-scale standalone RE projects may not have the capacity to solve 

all rural energy scarcity problems (other than basic lighting services), as appliances and 
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methods of heating and cooking differ from urban and rural areas, especially in energy 

poor remote communities [62,63,64]. Therefore, large-scale RE may have limited scope in 

mitigating energy poverty-related justice issues in rural and remote communities. 

However, smaller decentralized RE powered microgrid systems maybe provide a more 

appropriate solution. In addition, such projects can aid in developing communication 

infrastructure, commerce, health, education, and mobility in rural areas [65–72]. The 

affirmative principle is also addressed. Most articles focus on rural regions in developing 

nations of sub-Saharan Africa and India. Researchers acknowledge RE technology’s 

capacity to improve existing conditions of energy poverty in these regions, using indicators 

such as better drinking water, education, health, and reduced poverty levels. In terms of the 

global geography of poverty, RE development offers a key tool for addressing energy 

injustice by both providing energy access and mitigate the environmental harms associated 

with energy provision. There is a lack of research surrounding energy poverty issues and 

rural regions in developed nations. While this problem may not be as prominent compared 

to some least developed regions, it is still important to acknowledge access and 

affordability to energy in these regions as well. 

3.2. Temporal dimension of justice in renewable electricity 

The prohibitive principle illustrates how transitioning to RE is justified in the face of 

climate change from greenhouse gas emissions, resource scarcity, pollution, increasing 

water stress, and how the impact on other species all of which is essential for current and 

future generations ability to acquire basic goods. Based on the affirmative principle, our 

review also included articles on the scope of RE to be able to provide for essential 

electricity needs for the future generations. Applying the prohibitive and affirmative 

principles of RE justice involved reviewing existing literature and examining the designs 

and structures of RE systems that can unduly interfere with future generations ability to 

acquire essential goods and access to energy services. It is important to recognize here that 

conclusive results on the capabilities or restrictions of RE to provide future generations 

with essential goods and services cannot be determined entirely at present time as such 

impacts can only be evaluated at a future date; currently we can only predict some of the 

temporal impacts with much certainty.  Elaborating further, the current dominant energy 

system, which utilizes fossil fuels can negatively impact future generations’ ability to 

obtain basic goods and services, particularly under changed climate conditions as a result 

of GHG emissions and depleted natural resources leading to intergenerational injustices 

[73,74,75]. Therefore, shifting energy production to renewable resources can significantly 

decrease the climate-impacting GHG emissions from power generation [76], saving future 

generations from the increased likelihood of catastrophic climate events. Other positive 

externalities of RE include the positive impacts on public health from reduced atmospheric 

pollution levels [77,78]. As a result of this shift, future generations can benefit from clean 

water and air required which are two of the essential life sustaining basic good. By reducing 
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the climate impacts of fossil fuels, RE can significantly further energy justice potential 

based on prohibitive principle. When compared with fossil fuels, RE systems can be 

comparatively low on emissions yet RE systems are structural realities that are becoming 

increasingly common; like any other system of production, RE development entails the use 

of nature as a source and a sink. Therefore, the energy justice potential of RE in its temporal 

dimension must thus be explored holistically. The cumulative effect of a large RE sector 

on some environmental goods and services critical to human welfare can limit future 

generations’ ability to access basic goods. Like other energy technologies, the proliferation 

of RE to meet future energy demands will have GHG emissions in manufacturing, 

installation and operation and differ in terms of materials used in manufacturing and 

construction, technology, location, and climate conditions, yet such emissions are less 

when compared with fossil fuels.    

Expansion of RE will likely increase the demand for mineral resources including gold, 

copper, aluminum, lithium and other metals used for manufacturing RE systems 

components [79–82]. The growth of the RE industry can stress readily available metal ore 

deposits, making metal extraction costly and energy intensive [80,83] potentially impacting 

the availability and affordability of these resources for other purposes in the future. 

Additionally, metal mining comes with a host of negative environmental externalities, 

which is likely to have negative intergenerational justice consequences. These impacts are 

less clearly defined by the scale of RE development (either large-scale centralized RE 

projects or a large number of decentralized RE projects) than by the material used in a 

specific technology and the source of that material [83].   

Many energy projects require significant water resources [84]. Climate change will 

severely stress water resources in many parts of the world, leading to water scarcity for many 

communities [85,86]. This will also impact some forms of RE production as well, 

specifically HE [87,88]. Water use in RE projects is technology specific [89,90]. In the 

case of SE, water is used for cleaning dust from solar installations [91] and suppressing 

dust in the area surrounding a facility [89].  

Water use is particularly high in certain technologies like concentrated solar power 

plants that require water for cooling. If wet cooling or hybrid cooling methods are used, 

the quantity of water utilized is often higher than in thermal coal and natural gas power 

plants [92–95]. However, results differ when dry-cooling technologies or synthetic nitrate 

in place of mined nitrates salts are used, and studies suggest that SE saves water [78,96]. 

Therefore, to assess the water needs of SE, the particular form and scale of the technology 

used are of critical consideration, with water impacts lessened in large-scale centralized 

projects with dry-cooling alternative methods or decentralized grid connected systems.  

WE, on the other hand, has limited water needs and has a significant edge in water 

use when compared with conventional hydrocarbon-based electricity production. 
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Therefore, WE can mitigate water scarcity-related problems in water-stressed areas [97–

100]. HE also has a high water footprint due to the water consumed or evaporated during 

electricity production [101,102,103]. However, the footprint differs based on local climate 

differences and structural specifications of the HE  

facilities [104] and the ecosystem benefits of reservoir water serving multiple purposes 

[105]. 

RE developments interact with other drivers of the global environment to have 

intergenerational effects on water resources that are critical to sustaining human life and 

on landscape-level impacts such as biodiversity. Preserving biodiversity for future 

generations is critical due to its known and as of yet unknown benefits arising out of having 

a healthy and diverse gene stock [106]. Research suggests that RE developments have 

mixed impacts on biodiversity [107–112]. Several studies report WE projects’ adverse 

impacts on birds and bat populations as they collide with the blades of the wind turbine 

[107,113–120]. Bats provide critical ecosystem services [121, 122] and have a very slow 

rate of reproduction that limits their population recovery [123]. Some studies have 

suggested that offshore WE installations may be detrimental to marine ecosystems 

[124,125], yet further research is required for a definitive conclusion [126]. Although 

limited in definitive and conclusive results, some studies have also evaluated the impacts 

of displacement of other species from suitable habitats due to land acquisition for WE, 

raising concerns regarding large scale WE  

development [110, 111,127–130].  

The biodiversity impacts of SE have not been studied rigorously enough to come to 

definitive conclusions [110]. Yet many researchers have pointed to the environmental 

impacts of solar energy like altered microclimates over SE projects and land fragmentation 

creating barriers for free movement of wildlife [110,131–134]. Others point to the impacts 

of transmission lines on biodiversity [135,136]. SE also offers opportunities for mixed land 

use through agrovoltaic development, where land is used for both energy and agricultural 

purposes [137].  

In the case of HE, river flows are critical to ecosystems [138], and any alterations of 

the river flow can impact aquatic ecosystems [139]. Like other forms of RE, studies have 

identified different negative biodiversity impacts of large HE projects [140–143]. 

Therefore, the scale of the dams and their impacts on local ecosystems being prominent 

elements for consideration of the justice dimensions of HE development [144,145,146]. 

On the other hand, small HE projects can be operated without large dams and their 

subsequent negative ecological impacts, yet considerable research is required to understand 

the true ecological impacts of large number of small HE projects required to meet energy 

demands adequately [147,148].   
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To explore the affirmative principle of energy justice in the temporal dimension, we 

analyzed how RE can meet essential electricity requirements of the future generation. In 

2030, the projected end-use energy demand worldwide would be 17 trillion watts (TW) 

[149]. Researchers project that the large-scale expansion of wind, hydro, and solar energy 

technologies required to meet the future energy demand worldwide is possible 

economically and technologically but would require social and political impetus [6,7,8].  

Therefore, our review and analysis regarding whether the RE projects aid or attenuate 

the prohibitive principle of energy justice in the temporal dimension found RE has many 

positive externalities furthers the prohibitive principle., i.e. RE on in the temporal 

dimension has the potential to drastically reduce the negative impacts currently 

experienced by conventional energy systems. This will allow populations to obtain goods 

and services with decreased harm caused by shifting to RE systems. However, the overall 

beneficial effect is partially offset by a few major negative externalities. Although these 

negative externalities may be of less consequence when compared with the impacts of 

negative externalities of fossil fuels, exploring alternative options to reduce these negative 

externalities should be a priority for socially just RE transition. Not surprisingly, recent 

research has moved in this direction, aiming to find technological options that can 

counterbalance some of the negative impacts. For example, constructing solar PV modules 

on agricultural land where shade adapted crops are cultivated can maximize land use and 

reduce competition for  

land [150,151,152]. In addition, covering HE reservoirs with floating photovoltaic (PV) 

arrays reduces water loss from evaporation and overheating of the PV cells [153]. Through 

the affirmative principle lens, RE projects increase access to energy based on the nature of 

these systems: utilizing renewable resources. Future generations must have the ability to 

obtain basic goods and services. Through a continued reliance on non-renewable resources, 

these future generations ability to obtain goods and services may be jeopardized. Research 

also suggests that altering wind turbine speed with marginal annual power loss can have 

significant impact in reducing bat mortality in nighttime operations [154,155]. Other 

researchers have found that altering colors of the wind turbine [156], type of turbine used, 

location of the wind farm [157] matter in increasing the negative impacts of WE on 

ecological systems.  At best, the energy justice potential of RE in temporal dimensions is 

work-in-progress and coming to definitive conclusions requires further research and many 

of negative externalities can be solved with proper planning, implementation, and 

management.  

3.3. Technological dimension of justice in renewable electricity 

The technological dimension of energy justice highlights inequities stemming from 

safety, reliability, security, and vulnerability shortcomings ingrained in certain energy 

technologies. Significant technological innovations are constantly advancing to allow for 

further exploration, mining, and extraction of existing energy sources to meet growing 
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energy demands. The quest for meeting these demands resulted in creation of the largest 

machine, the U.S. electrical grid [158]. This is a centralized fossil fuel-powered system 

that aims to provide affordable and reliable energy. This system also produces many 

negative externalities, including but not limited to pollution, land degradation, health 

effects, and climate change impacts [159,160], impacting its safety and reliability. Most 

national economies rely on centralized fossil fuel-based electrical grid to provide essential 

energy services. Therefore due to its interconnected nature, an electrical grid failure has 

the potential to impair economic and social functions in the event of a power outage 

[161,162,163]. Therefore, secure and reliable electricity supply is called into question. This 

section focuses on how existing studies and projects utilizing RE technologies have 

addressed the safety, security, reliability, and vulnerability of RE technologies using the 

prohibitive and affirmative energy justice lens.  

As mentioned above, a significant negative externality associated with traditional 

energy technologies comes in the form of GHG emissions. While fossil fuel power plants 

produce GHG emissions throughout the entire lifecycle of the technology (extraction of 

resource to combustion of fuel), emissions related to RE technology are limited to the 

manufacturing, installation, and maintenance stages [164]. Additionally, externalities 

differ for each RE technology. For example, HE results in habitat disruption and 

microclimate changes. WE includes noise pollution, land aesthetic impacts, and avian and 

bat mortality. SE can require a significant amount of land. However, most negative 

externalities associated with RE technologies can be mitigated [165]. Alternatively, RE 

technology benefits tend to outweigh the burdens. RE technologies generally do not 

produce emissions through operation and use, resulting in overall decreased GHG 

emissions. Global welfare and increased employment are found to correlate with increased 

adoption of RE technologies. Some studies have shown that the RE development has a 

more significant positive effect when the technology is produced locally [166].   

Scholars and technical experts agree that the continued use of fossil fuel energy 

technologies is no longer necessary to meet society's electrical needs because of advances 

in renewable energy source technologies [42,167,168]. Most RE technologies produce no 

emissions during use and have a well-established ecological balance sheet [169–171]. The 

technical community also supports a direct solution to address the technical vulnerability 

of the electrical grid: distributed generation and microgrids [172,173,174]. Based on this, 

this review aims to determine how RE technology addresses emission reduction (safety), 

reliability and efficient energy operations, and decreased vulnerabilities to energy 

generation.  

Many technical and feasibility studies have analyzed the use of RE technologies that 

can replace fossil fuels through the prohibitive justice lens. Several articles review a 

decentralized RE system approach [175,176,177]. These reviews consider utilizing RE 

technology as a cost-competitive alternative to centralized generation technologies through 
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off-grid or micro-grid systems power by renewables yet there is often no mention of 

utilizing a decentralized RE technology as a security and reliability measure. Most original 

research articles gear towards RE technology development design and measure optimal RE 

technology installations that function to reduce costs along with decrease emissions as a 

matter of public health [178,179]. Therefore, the safety component is addressed. However, 

the majority of research focused on the context of core nations considers RE technologies 

at a centralized, the utility scale, to ultimately shift away from traditional fossil fuel based 

energy sources but not to change the scale of energy technology development [180,181]. 

Some research uses applications and models to project and understand how policies work 

in conjunction with advancing technologies to influence diffusion of renewables at the 

centralized level [41,182–185]. Few look at RE technology applications in both the 

centralized and decentralized designs [186,187], yet these findings conclude that 

decentralized RE technology designs can be integrated to the grid with optimal policies 

and communication systems.  

While both fossil fuel based and RE technologies produce GHG emissions in their 

lifecycle, RE technology and infrastructure can decrease GHG emissions and 

consequential adverse health impacts, and some existing studies do examine the 

technological dimensions of RE that contribute to its energy justice contribution through 

the prohibitive justice lens [39,41,175,186,188,189]. These researchers acknowledge the 

detrimental impacts of current energy technologies on the environment and human health 

and that RE technologies pose a viable solution to address mitigation and reduction in harm 

to health from fossil fuel based energy technologies.  

This analysis suggests that there is currently a narrow discussion and study of RE 

technologies through the prohibitive lens in existing research and policy scholarship; i.e. 

the ability of RE to provide safe, efficient, reliable and non-vulnerable electricity. Only a 

handful of articles mention RE technology through prohibitive energy justice lens, and 

those that do acknowledge RE technology’s capacity to provide safe power: reduced GHG 

emission that present harm to humans. This suggests an area for further research into other 

technological dimensions of RE that relate to energy justice, including the capacity of RE 

to change the influence of vulnerability on the existing electrical grid, the impacts on land 

use through the prohibitive lens, and to ultimately provide an understanding of RE 

technologies viability as an efficient, safe, and reliable energy source. The affirmative 

principle potential of current RE technological remains inconclusive. Authors address RE 

technological systems as they relate climate related impacts through GHG and in terms of 

issues of scale. However, there is much room left for discussing issues of safety, security, 

vulnerability, and reliability as they relate to RE technological capacity in providing access 

to energy.  

3.4. Economic dimension of justice in renewable electricity 
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Cheap and abundant energy generated from fossil fuel resources is often linked to the 

rapid increase of economic prosperity witnessed in the last three centuries [190,191]. 

Energy is necessary for human beings to access goods and services to which they are justly 

entitled. Yet in many parts of the world including developed nations and more so globally 

peripheral countries, energy deprivation arising out of affordability and access inequalities 

challenges human flourishing [192,193,194]. Energy poverty can contribute to or 

aggravate income poverty, time poverty, and can curtail social progress [195,196,197]. 

Moreover, energy generation and distribution fall under the primary economic activities of 

a nation and most fossil fuel energy production systems are owned and operated by a small 

number of citizens in any country who disproportionately enjoy most of the profits of the 

sector [1]. To assess how RE projects follow the prohibitive and affirmative principle in 

the economic dimension, this section focuses on assessing existing scholarship regarding 

how RE development has addressed and can address energy poverty and deprivation issues 

resulting from expensive electricity prices and how diversifying energy portfolios has 

affected energy affordability.  

Energy poverty arises when people are unable to maintain or sustain their socially and 

materially essential and customary daily activities due to lack of energy [30]. This can 

occur due to a lack of affordable energy (fuel poverty) or access to energy infrastructure 

(energy poverty) [30], or a combination of both [26]. One way of solving energy poverty 

problems is through large-scale RE projects to diversify national energy portfolios so that 

energy infrastructure is accessible to all. One way of doing so is to construct large-scale 

RE projects must be in areas that would benefit from low-cost access to the grid or low 

initial costs of construction, transmission, and distribution Historically, to be cost-

competitive with conventional forms of electricity production, such projects were made 

possible by government subsidies, making them hard to implement in poor countries 

[39,40,62,198,199]. However, some studies have pointed out that large-scale stand-alone 

RE projects may not have the capacity to solve all rural energy scarcity problems (other 

than basic lightning services) as appliances and methods of heating and cooking differ from 

urban and rural communities [62–65]. This problem can be solved to a large extent by 

household, community-level, and other distributed RE projects in such a way that energy 

services are delivered to fulfill local needs [65–70,200].   

Many technical and feasibility studies have analyzed cost-competitiveness (vis-à-vis 

centralized systems) of decentralized WE [40,200], SE [59,200,201], micro HE [59,202], 

and hybrid renewable energy systems [47,203,204,205]. Several studies identified 

numerous obstacles in enabling RE to solve energy poverty. Some suggest that the cost of 

RE systems is the principal impediment to adoption at the household or community-levels 

[206,207]. Others suggest lack of awareness, change-adverse consumer behavior, market 

failures, technical and institutional problems and regulatory support as the main barriers 

[22,207-215]. Community characteristics and the entrepreneurial abilities of community 
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members can also slow down RE uptake where richer and more well connected 

communities can opt for renewable energy technologies than poorer communities [216–

219]. These limiting factors may not be inherent in the technology itself, but demonstrate 

that considering technologies in terms of their justice impacts requires attention to the 

social and situational contexts in which technologies are developed. 

Apart from addressing energy poverty related to physical access, RE should also be 

assessed in terms of its impact on electricity prices or fuel poverty, which determine the 

extent to which a person can access energy services. Some authors have pointed out that 

currently producing electricity from RE resources is not always cost effective and in some 

cases it raises electricity prices, making energy access unaffordable to the economically 

marginalized [220–225]. This, in turn, affects the rate of RE adoption [210], as well as the 

preferences for adopting particular RE technologies [226]. The cost of RE is often 

disproportionately borne by residential, commercial, and small-scale industrial consumers 

rather than energy-intensive industries [227] as the former are often unable to retrofit with 

energy efficient appliances [228]. In addition, several studies also have shown that people 

with higher income are willing to pay more for RE [229,230,231]. Therefore, fuel poverty 

arising from affordability-related issues remains a concern worldwide, as large income 

inequalities exist both in developed and peripheral nations [231]. Others have refuted the 

claim that RE development results in electricity price increases [232] or have proposed that 

greater policy involvement is required to align demand and supply, hence stabilizing prices 

[233,234]. Therefore, there is considerable debate in how switching to RE affects energy 

affordability issues in the short and long run and policy contexts matter in recognizing the 

energy needs of different segments of society. 

This analysis suggests that although there are multiple opportunities in RE 

development to attain energy justice potential in the economic dimension, much attention 

is needed to develop the social, political, and economic contexts in which these 

technologies are embedded to develop economically just RE systems. Some authors 

address the prohibitive principle by considering RE system pricing impacts on adoption 

levels. Additionally, researchers address the potential for disproportionate RE adoption to 

negatively impact pricing for other consumers. However, there is still room to fully explore 

the negative economic impacts of RE systems. The affirmative principle is highly prevalent 

as many authors discuss energy and fuel poverty. While RE is seen as a solution to 

mitigating these issues that are currently experienced due to fossil fuel powered energy 

systems, there is still a need to explore how RE may function to perpetuate energy and fuel 

poverty issues. The potential for RE to increase access to energy services depends on the 

political, technological, and geographical elements involved in development, and the 

potential for RE to increase economic affordability of energy services is largely depended 

on the existing economic and policy contexts that shape the organization of energy systems 

and resultant energy pricing [235,236]. In other words, RE technology may not inherently 
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cause an increase in energy prices making energy unaffordable, rather it is largely about 

the how the energy market operates. Therefore, without significant changes in the social 

and political setup within which energy markets operate, the energy justice potential of RE 

in facilitating energy access and affordability in the economic dimensions remains 

inconclusive.  

3.5. Sociopolitical dimension of justice in renewable electricity 

The growth of the RE sector is contingent upon the construction of associated 

infrastructure. RE also requires significant research and development investment. Energy 

infrastructure development is a high-cost enterprise, making it susceptible to a variety of 

risks [1]. Profit maximization motives underlining such significant investments require 

being protected from shocks external to the system like sociopolitical upheavals based on 

resistance to such developments. Such resistances can result in political suppression and 

persecution, as well as human rights abuses. Just energy systems can create avenues where 

such problems are minimized – when inclusive processes or procedural justice enable 

democratic participation resulting in coexistence of profit maximization and equitable 

distribution of benefits. Therefore, this review examines existing research to assess how 

RE systems are addressing or failing to address the prohibitive and affirmative principle in 

the sociopolitical dimension of energy justice.  

Scholars have pointed out that transitioning from high energy density fossil fuels to 

low energy density RE technologies requires a lot of land, which may result in struggles 

for land  

rights [237,238,239]. Using case studies, some scholars point out that such property 

transfers to often large and foreign investors for utility scale RE development deliver no or 

little benefit to local communities [198,199,240]. Meanwhile, these communities have 

strong cultural, economic and environmental ties to their land. The distribution of benefits 

from RE development based solely on the socio-politics of land ownership and access can 

even lead to social and economic  

marginalization [240,241,242]. Such impacts can unjustly restrict people from acquiring 

goods and services falling under their rightful entitlements. Popular discourses of 

environmental benefits of RE can snub the voices of the rural periphery where land is cheap 

for constructing RE projects [241]. Several marine renewable energy projects have also 

limited the access rights of coastal and indigenous communities in different countries 

dependent on the marine resources [243]. There are also instances where renewable 

industry lobbies have strongly impacted energy policies [244], which may not always favor 

all stakeholders [245]. Therefore, these cases show that if not properly implemented, RE 

projects can create injustices based on the prohibitive principles at times working at the 

interest of large corporations.  



122 

However, some studies have found that alternative models like community-based RE 

projects can mitigate these concerns and, thus, help to facilitate just energy transitions. It 

is possible where organizational structures allow for non-constrained participation of local 

community members in RE projects and who can enjoy all the benefits of the projects 

whilst navigating the risks with the use of local knowledge [246,247]. Community scale 

RE projects have wider local sociopolitical support and participation. This attributed to 

local distribution of project benefits, more stringent protection of local natural resources, 

as well as elevated community spirit and community identity and stakeholder agreeing to 

projects that are inclusive and follow democratic decision making processes [230,248–255]. 

Though these results are encouraging, the existing institutional and organizational barriers 

continue to pose concern regarding the increase in public participation in RE projects [256–

260]. These studies show that community owned and operated energy generation by default 

may not ensure community participation and how energy projects construction and design 

can prohibit people’s ability to access basic goods and services may largely depend on how 

the projects are organized and developed. 

What emerges from the above discussion is that although large-scale RE projects can 

lead to sociopolitical injustices especially regarding land rights, smaller-scale RE 

development such as community energy projects can further the prohibitive principle by 

virtue of inclusive participation, collective ownership, and community empowerment. In 

other words, the prohibitive principle is addressed to the extent that RE systems potentially 

cause negative sociopolitical impacts through land use disputes. The affirmative principle 

is not addressed in this dimension. This dimension leaves space for further exploration into 

how RE can either improve or decline the quality of participation, ownership, social 

stratification, and community empowerment. These represent only a handful of factors 

surrounding RE ability to impact access to basic goods and services. Therefore, the scale 

of development matters significantly more than the particular technology for promoting 

sociopolitical energy justice. The advantage of RE technology is the ability to develop 

projects at local scales and to shift ownership models to promote participation and 

community benefit sharing. These advantages are themselves based on the technological 

aspects of RE, which allow for such flexibility in the scales of development [261].  

4. Conclusion 

Ethical issues of justice are central to understanding energy choices and energy 

impacts. The current generation of humans living on the earth arguably has an obligation 

to overhaul ways and means of producing energy to alternative low-carbon emitting 

resources to benefit future generations who do not yet exist [28]. Further, social and 

economic systems are based on energy systems, and renewable electricity can create new 

opportunities but also jeopardizes existing stabilized systems. Yet these ethical 

considerations fail to provide a systematic lens for conceptualizing and evaluating the 
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justice components of energy systems in terms of decision making, access, and impacts; 

these are the purview of energy justice.  

Review of existing work on renewable electricity technology development illustrates 

that energy injustices spanning temporal, economic, sociopolitical, geographic, and 

technological dimensions are all apparent in the context RE development and use. 

However, despite the numerous studies that point to dimensions of energy justice in RE 

development, very few of these studies are explicitly framed in terms of energy justice. Yet 

studies often offer evaluative conclusions including recommendations for policy or future 

research. This work would arguably benefit from explicit grounding in energy justice 

concepts and systematic use of an energy justice framework to frame analysis and anchor 

recommendations. There are multiple tradeoffs to consider when ensuring justice, but in 

general terms, energy system planning and policies can be formulated to aid in solving 

persistent problems like social inequality, marginalization, and environmental damage 

rather than perpetuating them. This review aims to identify how the dimensions of energy 

justice are discussed in terms of RE; future research must grapple with the tradeoffs among 

impacts across dimensions.  

Further, the review illustrates that some components of RE development that are 

arguably essential to realizing its justice potential are relatively absent in the literature. 

Specifically, in the technological dimension, the safety and reliability benefit of distributed 

RE technology is overlooked, indicating a possible avenue for a productive research agenda 

in the future. Utilization of an energy justice framework can help identify gaps in the 

literature and potential research silos in which key questions are not yet being asked and 

significant impacts of RE development are not yet being explored.    

Review of existing scholarship RE demonstrates that, apart from the intergenerational 

climate change benefits, other dimensions of energy justice are not inherent to RE. Rather 

than being inherent in the technology itself, many of the justice implications of RE 

technology development are related to choices regarding the technology, including choices 

regarding scale, locational siting, and organization of ownership. In general, RE 

development that involve distributed rather than centralized technologies, are sited to avoid 

ecologically or culturally significant landscapes, and are designed with community 

involvement is more likely to have positive implications for energy justice. One specific 

consideration is the impact of electricity technology on water resources; water is extremely 

important, given the certain future of water scarcity due to climate change, so water 

intensive RE development is likely to create temporal injustice.  

The energy justice framework used herein provides a valuable tool for assessing the 

justice implications of electricity choices. One potential weakness in the use of dimensions 

as an organizational tool is that they necessarily involve some overlap and some ambiguity 

in demarcation; the dimensions are not isolated in reality and thus cannot be fully isolated 
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in conceptualization and application. However, areas of overlap can provide for fruitful 

consideration of intersecting impacts or social intersectionalities across dimensions that 

deserve particular consideration. While there are certainly other ways of conceptualizing 

energy justice [262, 263], the framework used here provides a concrete tool for assessing 

both the energy justice potentials of technology and the avenues available for future 

research given gaps in how these potentials are articulated in the literature. As this review 

demonstrates, particular technological choices do not inherently align with particular 

justice implications and there is still more work to be done to understand regarding the 

energy justice potential of renewable energy technologies.  
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Executive Summary 

This Guidebook summarizes how public power utilities can use community engagement 

as a tool for exploring and ultimately designing community solar programs for rural and 

small communities in ways that promote community support for the project and LMI 

household engagement. Community solar allows for the use of solar electric generation 

technology without requiring a single upfront source of investment, as community 

members can voluntarily participate and pay in to the system over time. However, 

community solar programs can be designed in many different ways and involve a 

complex set of technical, economic, legal, and social considerations. This Guidebook 

demonstrates how working with a team that has expertise spread across these factors and 

how intentional, proactive, and iterative engagement with community members can 

inform and ultimately improve community solar program design. Based on the 

experiences of the Upper Peninsula Solar Technical and Research Team (UPSTART), 

this Guidebook examines a case study of community solar program design that included 

community engagement and study of the social feasibility of the program. This work 

involved interviews with community leaders, a survey of community members, and 

community meetings that served as informational sessions and a source of data for the 
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project team when thinking about community interests and ways to incorporate them into 

program design. Based on this case study, UPSTART recommends that public power 

utilities considering a community solar program should build flexibility into the entire 

study and design process; emphasize community involvement; offer affordable and 

flexible payment options; select the program design components based on community 

input and engagement; integrate energy efficiency into program study and design; and 

engage in community partnerships to build capacity.  

Introduction to Community Solar  

The U.S. Department of Energy declares that a clean energy revolution is taking place 

across America. The renewable energy sector is expanding, with the solar industry 

growing at a record pace.4 Dominant models for solar energy are either large utility-scale 

systems that feed into the grid or small residential systems that serve the owner’s home.  

Interest is growing in a shift towards decentralized, renewable energy projects.5 Yet, 

adoption of solar technology at the household level faces a number of barriers including 

high upfront hard costs,6 poor sites for installation,7 and operations/maintenance 

concerns.8 Community solar is an emerging model that attempts to place control and 

ownership of energy generation in the hands of community members, while mitigating 

challenges experienced in residential adoption.  

 

Community solar is a relatively new application in the solar PV industry,9  and many 

states do not yet provide enabling policy.10 However, states’ existing regulatory 

structures may still allow public power utilities to facilitate access to community solar for 

their customers. Federal initiatives (such as the Department of Energy Sunshot Solar in 

                                                 

4
 See https://www.seia.org/solar-industry-research-data 

5
 Lerch, Daniel, ed. The Community Resilience Reader: Essential Resources for an Era of Upheaval. Island Press, 

2017. 

6
 Hirshberg, Alan and Richard Schoen (1974), ‘Barriers to the widespread utilization of residential solar energy: 

the prospects for solar energy in the US Housing Industry’, Policy Sciences, 5(4), 453-468.  

7
 Mills, Bradford F. and Joachim Schleich (2009), ‘Profits or preferences? Assessing the adoption of residential 

solar thermal technologies’, Energy Policy, 37(10) 4145-4154.  

8
 Rai, Varun, D. Cale Reeves and Robert Margolis (2016), ‘Overcoming barriers and uncertainties in the adoption 

of residential solar PV’, Renewable Energy, 89, 498-505. 

9
 The first community solar program in the U.S. was piloted in 2006 in Ellensburg, Washington.  

10
 With the exception of: California, Minnesota, Maryland, etc. Available in SEPA report, 2018.  
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Your Community Challenge) promote community solar as a tool to assist low-to-

moderate income (LMI) household solar adoption.11     

While community solar is promising, public power utilities face challenges implementing 

programs in LMI and rural and small town communities. Designing a community solar 

program requires a series of decisions related to whether, when, where, and how a project 

may be built, sold, and managed. Public power utilities in LMI and rural communities  

may lack the resources and expertise to spearhead, organize, and design a successful 

program. At the same time, turning to partnerships with organizations outside the 

community for guidance may lead to skepticism in the community. Many existing 

community solar programs struggle to achieve customer participation targets, particularly 

for LMI households, and may require more marketing and customer acquisition costs 

than anticipated.12  

Structuring a successful program can be difficult without engaging local community 

members to better understand their unique interests, values, and potential constraints to 

participation. For example, community engagement can help inform how best to size a 

system, to construct attractive participation/payment options, and to market to local 

residents. This guidebook serves as a roadmap for public power utilities to navigate 

community solar program design, with a special focus on community engagement  in 

LMI and rural communities.  

About this Guidebook 

In this guidebook, community solar is described as a voluntary program where 

community subscribers pay for a portion of a locally-sited solar photovoltaic (PV) array 

and receive credit on their electricity bill proportional to the power produced.13 Rural 

public power utilities and their partners can use this guidebook to develop community 

solar programs that are inclusive to LMI households. Its purpose is to describe and 

promote a community engaged social feasibility research model that public power 

utilities can use to design community solar programs that are tailored to specific 

community needs, emphasizing the needs of LMI households and rural and small town 

                                                 

11
 Paulos, Bentham (2017), ‘Bringing the benefits of solar energy to low-income consumers: A guide for states and 

municipalities’, Clean Energy States Alliance. https://www.cesa.org/assets/2017-Files/Bringing-the-Benefits-of-Solar-

to-Low-Income-Consumers.pdf, accessed on 15 March 2018;  

 

12
 Brummer, Vasco. "Community energy–benefits and barriers: A comparative literature review of Community 

Energy in the UK, Germany and the USA, the benefits it provides for society and the barriers it faces." Renewable 
and Sustainable Energy Reviews 94 (2018): 187-196. 

13
 See https://sepapower.org/resource/community-solar-program-designs-2018-version/ 
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communities.14 Many rural communities  are characterized by a high proportion of LMI 

households in the population15 as well as limited access to affordable and reliable 

electricity.16 This guide offers a model and example case studies that communities might 

follow to help mitigate challenges experienced in the rural community context, including 

direction on income qualified programs and energy efficiency measures. The suggestions 

in this guidebook are based on the logic that every community is unique, that top-down or 

large utility-scale design models may not meet specific community needs or interests, and 

that residents deserve some say in how their energy systems are structured. The 

guidebook should first be used to assess whether to explore a community solar program, 

and then as a model for how teams might move forward with more detailed assessment 

and project development. 

Community Solar Project Development Overview 

The guidebook covers aspects of program design and implementation along with key 

recommendations. It relies on specific examples from the Upper Peninsula Solar 

Technical and Assistance Resource Team’s (UPSTART) case study sites to highlight key 

steps. It also leverages experience gained from two community solar pilot projects 

implemented by WPPI Energy in New Richmond, WI and River Falls, WI . The Guide 

begins by setting expectations for a timeline for community solar project development. It 

then continues into the different phases of developing and designing a community solar 

program. Figure 1 provides a general overview of the various activities and phases that 

community solar project teams should consider from initially forming a team through 

project implementation. It is an example, meant to give teams a sense of the full scope of 

the project and to demonstrate how the various phases of the project are connected.  

 

                                                 
14

 Brummer, 2018 

15
 Flora, Cornelia Butler. Rural communities: Legacy+ change. Routledge, 2018. 

16
 Lerch, 2017 
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Figure 1. Community Solar Project Development Process  

First, it is important to assemble a team that brings the necessary knowledge, skills, and 

resources for project success. Once the team is established, community engaged social 

feasibility research is a good way to engage the broader community in learning about and 

getting involved in decision making about community solar. The research process gathers 

data about whether the community is receptive to starting a community solar program, 

what kinds of pricing structures might work, who the relevant partner organizations are, 

and what kinds of values, beliefs, and practices might offer opportunities or pose 

challenges along the way. The next section summarizes various aspects of program 

design and structure that could be considered. A case study example illustrates how this 

process might look in real life along with suggestions for how to navigate challenges as 

they arise. The Guide concludes with general recommendations for public power utilities 

when considering a community solar program, specifically focused on using a 

community engaged approach to address community solar program design, LMI 

engagement, and incorporation of energy efficiency, especially in rural and small 

communities.  

 

Getting Started 

Timeline 

The sequence of stages illustrated in Figure 2 is meant to emphasize the iterative nature 

of the community solar project development process. Public power utilities should plan 

for the process to take about two years; however every community is different and this 

timeframe can vary. While integrating robust research into the project development 
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process does take time, it is an important means to understand the local context and to 

give communities a say in the ultimate project design.  

 

 

 

 

Community Engagement & Building a Team 

Unlike many utility energy programs, a successful community solar project requires the 

support of a wide array of community stakeholders and decision makers. In addition, a 

community solar program requires a combination of technical, economic, social, legal 

and policy considerations in order to work.  The public power utility should develop a 

team and determine a shared understanding of the project goals, which can help shape the 

community solar program type as well as team needs. Once goals are established, the 

team can seek out and extend partnerships to others (i.e. local government, nonprofits, 

research institutions, etc.) who possess the knowledge, networks, resources, or skills to 

help achieve program goals.  

 

Assembling a team with the right mix of skills and expertise is an important step in the 

project development process.  Including stakeholders early in the development process 

can also help to achieve support for the project and identify key challenges and 

considerations when considering the program’s design.  Leadership teams can take 

different shapes and sizes. A helpfulful strategy to identify key team members is to 

consider the following:   

● What community members and/or organizations have relevant skill sets?: 

○ Energy, electrical engineering, and solar technology 



148 

○ Financing 

○ Tax law 

○ Public outreach 

○ Public zoning and permitting 

○ Public housing and other social programs serving LMI households 

○ Marketing and communications 

○ Environmental sustainability 

○ Utility operations and programs 

○ Other relevant skill sets 

● What community members and/or organizations represent different segments or 

key stakeholders in our community?  Examples include: 

○ Local government 

○ Service and philanthropic groups 

○ Local businesses 

○ Educational and research institutions  

○ Religious and faith-based organizations 

○ Environmental and conservation groups 

○ Economic development organizations 

○ Tribal organizations 

○ Other relevant groups 

● What community members and/or organizations serve in a decision making 

capacity that facilitates or impedes the development of the community solar 

program?  

○ The utility administrator 

○ Local elected officials 

○ Community administrators 

○ Appointed individuals to boards such as planning commissions, zoning 

boards; permitting officials, etc. 

○ Other relevant departments or organizations 

 

Once the team is in place, it is important to define partner roles. A program manager or 

equivalent will be helpful in keeping the team on track to meet incremental goals, satisfy 

deadlines, and orchestrate external meetings to help the team meet their needs. Other 

team member roles can include liaison between the team and broader community leaders, 

media outlets, or the entire community. Conducting social and technical feasibility 

studies will require adding experienced researcher(s) to the team. Researcher roles and 

goals must align with the team’s needs and interests, so that the project remains 
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community driven. Researchers who follow a community-based participatory research 

model17 will be most appropriate. 

**Call out box:  

The Upper Peninsula Solar Technical Assistance and Research Team: 

UPSTART formed in March 2017 to respond to a Department of Energy Solar in Your 

Community Challenge. The idea was to bring together knowledge, resources, and skills 

to help design and develop a community solar program in two rural Upper Peninsula 

Communities. The team began as a partnership between the Villages of L’Anse and 

Baraga Administrators, WPPI Energy, the Western Upper Peninsula Planning and 

Development Region (WUPPDR), and researchers at Michigan Technological 

University. As the project evolved, UPSTART membership and resources expanded to 

include marketing and contract development with Michigan Energy Options, energy 

efficiency studies with LOTUS Sustainability & Engineering, development of a  cost-

benefit analysis tool with the University of Michigan Dow Sustainability Fellows 

Program, and media development with a team of Michigan Tech students learning 

documentary production (CinOptics). All of these team members worked together to 

design and build a community solar program for L’Anse and Baraga.  

Decision-making process 

Discussing and defining the decision-making process and decision-making power early 

can improve clarity and understanding throughout the project. There will be multiple 

levels of decision-making within the core team, among the utility management, and 

extending out to the community on issues ranging from whether and when to move 

forward, to system design components, research design, project timeline, pricing 

structures, and more. Teams should start a dialogue about this process when they first 

form. They may choose to follow any number of decision-making models18. There may 

be one team member or a small portion of the team who ultimately decides if the project 

should and can move forward, or it may be a unanimous decision. Some decisions may 

require one type of process, while others require a different process. The key is to discuss 

how this will be handled and to remain transparent about how decisions are made both 

within the team and with the broader community. In many energy projects, the 

community is left out of decision-making, which can defeat one of the goals of a 

community solar project- to have local ownership over the energy system. Engaging the 

                                                 

17
 Burns et al, 2011. A short guide to community based participatory action research. Available at: https://hc-

v6-static.s3.amazonaws.com/media/resources/tmp/cbpar.pdf 

18
 DEFG. 2019. Low Income Consumer Solar Working Group Final Report. Available 

at:http://defgllc.com/publication/low-income-consumer-solar-working-group/   
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community in decision-making where possible and remaining transparent throughout the 

process for how decisions will be made can increase trust and buy-in.  

Where will the system go?  

Determining potential sites for the community solar array can be tricky. The utility has to 

find a viable site for energy production that is acceptable to both participating and non-

participating community members.  The site needs to be large enough to install the 

system, be free of obstacles creating shade, and have access to the utility distribution 

system.   It can be helpful to work with the community to determine potential locations. 

Some community members may not appreciate the aesthetics of a solar PV system in 

their neighborhood while others may want to see the panels in which they have 

subscribed. Some locations may be more susceptible to vandalism or theft.  While having 

some site locations in mind prior to engaging with the broader public is a good idea for 

generating conversation, teams should keep these potential sites preliminary, and draw 

upon the social feasibility study to determine final system size and location.  

**Call out box: 

Like any land use decision, local zoning ordinances can play a pivotal role in shaping a 

project’s physical characteristics and even the overall performance and economics of a 

community solar program.  Often times, large solar projects are classified as industrial 

projects in local zoning codes which may require screening around the project site.  This 

requirement can add additional costs and cause shading which may decrease the systems 

overall efficiency.  Zoning practices that allow solar projects to remain visible can help 

avoid this concern and help the utility more effectively market the project to attract 

participants. Many communities believe their zoning codes help to facilitate solar 

development because the codes don’t specifically restrict solar projects.  Unfortunately, 

staying “silent” on solar may actually do the opposite by leaving the community open to 

legal challenges from individuals who oppose solar development.  Adopting zoning 

practices that allow for solar through conditional or special use permits proactively 

confirms opportunities for solar land use19.    

Who will the program serve?  

One of the project team’s first tasks  should be to define who the target participants will 

be. This will help to shape which community solar model is chosen and determine 

availability of supporting resources and opportunities for engaging additional 

stakeholders. Projects might choose to target LMI households and/or other groups who 

are often left out of community solar participation.  

                                                 

19
 For additional guidance on best practices for solar zoning visit http://www.solsmart.org.  

http://www.solsmart.org/
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Community solar attempts to increase access and affordability of our energy systems. 

Yet, a majority of community solar programs exist and operate within affluent 

communities20. Making community solar more accessible is possible and is often an 

important goal. While there are special considerations and challenges in designing 

programs for less advantaged participants, there are also opportunities for engaging 

different groups, expanding the stakeholder base, and accessing resources. Some possible 

targeted participants include: 

● Low-to-moderate (LMI) income: there are many existing federal and state 

definitions for LMI households. A first step is to select a definition that fits 

program goals. UPSTART utilized the U.S. Department of Housing and Urban 

Development definition21. These populations may not have a tax liability to be 

able to access existing tax incentives for solar (30% Renewable Energy Tax 

Credit).   

● Non-profits: 501c3 organizations cannot access existing tax incentives (30% 

Renewable Energy Tax Credit and/or 100% Bonus Modified Accelerated Cost 

Recovery System depreciation) for solar because of their tax benefits.  

● Renters: Renting households are generally more transitory than homeowners. It 

doesn’t make sense for them to invest in solar panels in a rental unit, so 

community solar may be appealing. Still, renters may require extra considerations 

in thinking about transferability of panel shares should they move. 

● Tribal communities: Tribal communities are often leaders in renewable energy 

generation, and may be particularly interested in participation that meets the needs 

of tribal members. Tribal involvement could open access to federal funding 

initiatives that emphasize clean energy goals in tribal communities.  

Additionally, team members need to consider other factors that can shape program 

participation. Some projects can be predetermined by geographic boundaries. For 

example, regulated utilities operate within mandated service territories and recruiting 

program participants from this service territory into the community solar program 

violates the state regulated utility service agreement. Therefore it is important to identify 

                                                 

20
 National Renewable Energy Lab. Feldman, David, Anna M. Brockway, Elaine Ulrich, and Robert Margolis. 

2015. Shared Solar: Current Landscape, Market Potential, and the Impact of Federal Securities Regulation. 
National Renewable Energy Laboratory and U.S. Department of Energy. Available at: 
www.nrel.gov/docs/fy15osti/63892.pdf; also Lotus Engineering and Sustainability. 2015. “Analysis of the 
Fulfillment of the Low Income Carve-Out for Community Solar Subscriber Organizations”. Available at: 
https://www.colorado.gov/pacific/sites/default/files/atoms/files/Low-
Income%20Community%20Solar%20Report-CEO.pdf; see also Smart Electric Power Alliance. 2015. Community 
Solar Program Design: Working Within the Utility”. Available at: https://sepapower.org/resource/community-
solar-program-design-working-within-the-utility/.  

21
 See https://www.huduser.gov/portal/glossary/glossary_l.html for a full understanding of the definition; see 

also XXX  for other LMI definition options.  
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the geographic boundaries to structure a program that fits within these boundaries while 

simultaneously satisfying program goals of including LMI households. 

Research Process 

Before making too many decisions about whether to start a program or how to design the 

specifics of one, it is important to engage with the local community in a meaningful 

research process to evaluate both technical and social considerations. A project can 

struggle with program participation, support, or acceptance if it does not consider the 

needs or values of the community. Social considerations can include project location, 

program costs, and awareness and perceptions surrounding community solar systems, to 

name a few. The most important piece is to determine if the community even wants a 

project like this. Engaging the community can help teams understand local perspectives 

on these issues and potentially lead to improved program design.  

Technical feasibility and specifications 

The Solar Market is changing quickly and it is important for the utility to have a good 

feel for the energy output, size, and cost of a system before starting a social feasibility 

study.  In the past few years, energy density on solar panels has increased from <250 

watts per panel to >400 watts per panel at similar costs.  This is likely to continue much 

the same as in the 1970’s when handheld calculators increased in speed, size, and 

functionality with no change in price.  Likewise, inverters and monitoring systems have 

similarly improved in sophistication. Taking all these improvements into consideration 

can be a difficult task for a smaller public power utility that may not have staff 

experienced with solar PV installations.  Novice utility staff should partner with a 

reputable and experienced installer or site assessor to help develop the initial system 

specifications.  

  

This said, there are web tools readily and publicly available to facilitate this process.  

Two such tools are available from the National Renewable Energy Labs (NREL) in 

Golden, Colorado- PVWATTS and SAM22.  PVWATTS is a simplified tool that allows 

homeowners and small businesses to make good estimates of the size and cost of solar 

installations with minimal data.   

SAM (System Advisory Module) is a more sophisticated program. To use this tool, 

minimal information is needed, including: 

1.      Site Location (address or GPS coordinates) 

                                                 

22
 https://www.nrel.gov/; PVWATTS tool https://pvwatts.nrel.gov/; System Advisory Model 

https://sam.nrel.gov/ 

https://www.nrel.gov/
https://pvwatts.nrel.gov/
https://sam.nrel.gov/
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2.      Target Nameplate Power Generation (usually in Kilowatts) 

3.      Estimated Budget (note items 2 and 3 will require some iteration) 

To use the SAM program, you simply enter the required information.  The software will 

use weather data and the location’s irradiance (energy from the sun) for the site to 

estimate the potential energy production.  The software will also select a default solar 

panel from its database as well as required electronics to come up with an estimate of 

total system cost and annual energy production.  The user can change the solar panels 

used and the electronics to match available equipment from local suppliers.  This tool 

thus can be used to compare different vendor quotes when RFP’s are submitted.  Fine 

tuning of the model can be done as well to explore parameters like the altitude angle of 

the solar panels and the use of microinverters versus full system inverters.  With this tool 

the team can play “What if?” games to explore larger or smaller systems.  

In addition to experienced installers and site assessors, educators from local Universities 

might also be a good resource for assisting with making these estimates.  Solar panels are 

an attractive area of study and make for a great student project.  UPSTART worked with 

Michigan Technological University undergraduate students to do an initial technical 

feasibility analysis and cost estimate. The resulting student report is available in 

Appendix A.  

Social feasibility study 

Many projects address technical and broader economic feasibility, but fail to research 

social feasibility. A social feasibility study (also known as a social impact analysis) is a 

methodology, framework, or process that elicits and incorporates social information and 

feedback to design and implement a project. Public power utilities can utilize social 

feasibility studies to prioritize, gather, and analyze information obtained from and with 

their communities to best design a project for the community. Overlooking social 

conditions (interests and concerns) puts the success of the project at risk and limits its 

potential for positive impact23.  

Utilizing a social feasibility study in community solar program design can help public 

power utilities to better understand how to design programs that satisfy project goals and 

fit community needs. Existing community solar programs that included a social 

feasibility study felt they influenced the project’s success by identifying concerns early 

on that could later be addressed in the project design phase24.  Social feasibility studies 

                                                 

23
 Wüstenhagen, Rolf, Maarten Wolsink and Mary Jean Bürer (2007), ‘Social acceptance of renewable energy 

innovation: An introduction to the concept’, Energy Policy, 35(5), 2683-2691. 

24
 see https://www.nppd.com/innovation/solar/sunwise-community-solar/ 
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can also help identify key stakeholders, determine key community considerations, and 

translate project information to the community. While there are many benefits,  not all 

public power utilities possess the skills or resources to successfully conduct social 

science research. Partnering with a research institution can provide access to these skills, 

and also ensure appropriate human subjects ethics protocols are followed. 

Teams should first conceptualize social feasibility study goals. What exactly does the 

team want to learn? How do they plan to use that information? How will the team know 

if the results indicate the project is feasible or not? Is one of the goals simply sharing 

information with the community and increasing broad participation? And, if so, how 

much participation (and from who) should be expected? These are all important questions 

that teams should collaborate with researchers to define at the start of the project, and 

which will ultimately inform the research design and analysis process. Once the team 

decides what the aims will be, they can begin to craft the study design.  

There are various tools and research approaches that teams might choose to employ, 

depending on the project goals. These might include:  qualitative interviews with key 

informants, community meetings, focus groups, surveys, charettes, bus or walking tours, 

and/or a critical review of existing community solar projects. Each are described below. 

Teams might choose to combine several of these into their research design. 

● Interviews: Qualitative interviews with key informants are a good first step to 

explore the local context and possible opportunities and challenges that may arise.  

Interviews examine how residents and business owners feel about a community 

solar project in their community, what hurdles might come up in if the utility 

pursues a community solar project, and what cultural, economic, social, or 

institutional factors could impact the success of a project. Researchers should 

collaborate with non-academic and local team members to develop interview 

questions and to select appropriate interviewees to ensure that the views of 

important community stakeholder representatives are heard. Key informants are 

often community leaders who know the community well, and they should come 

from a variety of backgrounds and be affiliated with various institutions (e.g. 

schools, local businesses, social service organizations, religious organizations, 

political organizations, sports teams, or servers/bartenders in popular gathering 

places). Additional contacts for interviewing can be found through snowball 

sampling, where interviewers ask interviewees who else they should talk to in 

order to hear important or different perspectives. The interviews themselves are 

often audio-recorded and later transcribed so that team members can review them 

to identify key themes.  UPSTART’s interview protocol and summary of 

interview results can be found in Appendix B.  

● Community meetings: Community meetings allow for larger community 

discussions and broad information sharing. They can be structured so that the 

community solar team can share preliminary information about the proposed 

community solar project, and offer discussion time to gain insight into how 

community members feel about the possibility of beginning a community solar 

project and about potential opportunities and obstacles for designing a project that 
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meets community interests. They might target a specific group or be open to the 

public and broadly advertised, in order to garner the most participation and 

diversity of views possible. A World Cafe25 format is a meeting design that is 

particularly well suited for both sharing and receiving information with a broad 

set of community members in an informal, relaxed atmosphere where participants 

sit and discuss specifically-posed questions in small groups, combining aspects of 

a community meeting with those of a focus group.  Community meetings offer 

community members an opportunity to learn about the potential project and to 

expand the decision-making process widely. Opening a dialogue with the 

community can help to reduce local skepticism and increase community 

empowerment by allowing participation. UPSTART’s community meeting 

protocol can be found in Appendix C.  

● Focus Groups:  Focus groups gather input from a small group of stakeholders on 

pertinent program features or topics.  Focus groups are usually comprised of five 

to eight pre-selected stakeholders who can represent key target audiences.  

Generally, the group is led through a series of predetermined questions by a 

facilitator allowing for discussion between the participants.  An important element 

of a focus group session is the ability to explore potentially unanticipated topics 

brought to light by the group’s discussion.  These can be challenges to 

participating in the program or creative program design options not yet identified 

by the project team.  This may help identify important concerns or benefits of a 

project. Depending on a community’s resources, multiple focus group sessions 

could be held with different sets of stakeholders. 

● Surveys: A survey of public power utility customers is a good way to gather basic 

information from a large number of households. Surveys help to determine if the 

perspectives of people who participate in interviews, focus groups, or community 

meetings are more broadly shared and generalizable across the broader 

community.  Survey aims might be to determine broad interest levels in 

participating in a community solar program, what price points are most attractive, 

to generate a rough estimate of how many panels a project might sell, to 

determine how widespread potential perceived barriers to participating in the 

program may be, or to provide another channel through which people can voice 

concerns and generally stay involved in the decision-making process with 

minimal time and effort committed. Survey sampling strategies and questionnaire 

design are critical and will require expert input in order to ensure reliable results. 

Getting representative response rates is another concern, and may require door-to-

door canvassing or other follow-up measures. Altogether, the information 

gathered should help the team develop a preliminary business model that could 

later be presented to the community for further feedback. UPSTART’s survey 

protocol can be found in Appendix D.     

                                                 
25

 Jorgenson, Jane, and Frederick Steier. 2013. Frames, framing, and designed conversational processes: Lessons 
from the World Cafe. The Journal of Applied Behavioral Science 49: 388–405; see also Brown, Juanita. 2010. The 
World Café: Shaping Our Futures through Conversations That Matter. Surry Hills: ReadHowYouWant. 
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● Charrettes: Charrette sessions are often intense, multi-day workshops where 

participants help craft a vision and design for a major development project.  For 

community solar planning, this approach can be leveraged to help design a more 

socially acceptable project site or location or for overall community solar program 

design.  This process is often led by a trained facilitator and can help build 

consensus for the project and help community members better understand the 

dynamics influencing a successful project.  

● Bus or walking tours: Walking and bus tours allow communities to collect 

feedback from stakeholders on key land use decisions that influence community 

solar projects.  Tours can be used to allow stakeholders to visit existing solar 

projects in order to become more familiar with project development outcomes or 

to visit potential project sites to better understand the challenges and opportunities 

to site development. The process allows community members to share feedback 

with utility officials and project team members on proposed projects or offer new 

alternatives to the project’s design. 

● Evaluate existing projects: While community solar is still relatively new, several 

projects exist across the country. It is important to learn from the range of 

different projects and the challenges, successes, and failures they have 

experienced. Several resources exist26 to serve as a starting point, but teams can 

also conduct their own evaluation of community solar; especially in regions with 

similar demographic characteristics and climate conditions.  

● Financial analysis: Ultimately, at the end of a social feasibility study, both 

utilities and community members are going to want to know: (1) how much 

subscribing to a panel or share in a community solar project will cost; and (2) 

what will be potential returns on investment. This all comes down to the size of 

the system, installation costs, “soft” costs of administration, operation, and 

maintenance, how many people are willing to participate (estimated from the 

social feasibility), and how costs will be distributed. In order to determine 

program design options, teams will ultimately need to balance costs of 

implementing a program that the utility will incur with meeting the needs and 

designing a program that is affordable, attractive, and accessible to community 

investors. This is discussed in more detail in the section on Determining Customer 

Costs and Payment Structures below.  

Reporting out 

                                                 

26
 See https://sepapower.org/resource/community-solar-program-designs-2018-version/; See also 

https://www.mtu.edu/social-sciences/research/reports/lanse-cs-report2.pdf; see also 

https://www.nrel.gov/docs/fy11osti/49930.pdf 
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For broader communities to be engaged in the community solar process, they need to 

know the results of the feasibility research described above. A summary of study results 

can be shared via press releases, presentations to key stakeholder groups (e.g. school 

boards, city/village/town councils, chamber of commerce) or other community 

organizations (religious gatherings, community economic development offices, 

community action meetings, etc), radio conversations, social media, hosting a community 

meeting, or through online or print publications. It is helpful to utilize media outlets to 

advertise these events. Teams might use study results to design a preliminary program 

structure (or a set of buy-in options or scenarios). They can then share these publicly, 

along with the more general study results, and request additional feedback. This allows 

community members to generally see where the community lies in terms of community 

solar program support, as well as to provide additional feedback on the program design.  

Program Design 

Policy Context 

 

The state and local policy context can heavily influence the success of community solar 

programs. Some states27 have formal laws to support and promote community solar 

program implementation while others leave program development to the utility’s 

discretion. Still, other states’ energy legislation prevent non-utility owned community 

solar by prohibit aspects of community solar program design (i.e. virtual net metering or 

power purchase agreements). The policy context can influence who owns the project, 

how and who reaps the benefits and costs, system siting, and other program design 

elements. Reviewing state and local policies ensures the project is in compliance with 

existing laws, regulations, and rules.  

Tax incentives  

Solar projects may be eligible for the 30% Federal Investment Tax Credit (ITC). The ITC 

allows the system owner to deduct 30% of the solar project cost from Federal taxes. The 

30% amount is available through 2019, after which the tax credit steps down to 26% in 

2020, 22% in 2021, and 10% for commercial and industrial systems thereafter.  

Additionally, systems owned by commercial businesses are eligible for the Modified 

Accelerated Cost Recovery System (MACRS) Depreciation. The 2017 Tax Laws allow 

for 5 years of 100% bonus depreciation for systems installed after September 27, 2017. 

This means that eligible systems can essentially expense a portion of the project cost 

within the first year of commissioning.  

                                                 
27

 California, Minnesota, Maryland are a few examples 
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Other incentives, such as solar energy property tax exemptions, vary by state and locality. 

The Property Assessed Clean Energy (PACE) mechanism allows commercial and 

residential property owners to use government financing for up-front costs of eligible 

projects. In exchange property owners repay the up-front cost through special 

assessments on property taxes over a period of time. PACE programs exist at the state, 

regional, and local government levels and can vary in financing structures and eligibility 

measures28. Some municipalities are located in Opportunity Zones which allows investors 

to take additional tax deferrals when investing in LMI and rural communities. Again, 

these vary state to state and by location29.  

While all of these incentives can function to lower total community solar program cost, 

they are available only to residential, commercial, or industrial consumers that have a tax 

appetite. LMI communities, non profit organizations, governmental agencies, and 

municipalities cannot monetize these tax benefits. Seeking alternative funding options or 

partnership opportunities (discussed below) can reduce community solar project costs.  

Program Costs 

There are many factors that will influence the overall cost of a community solar program, 

with installed capacity being the largest contributor.   PV system and construction costs 

increase as the capacity of the array increases, but the installed cost/capacity ratio will 

also gradually decrease with economies of scale as system capacity increases.   Other 

“soft” costs that affect the overall cost of the program include operation and maintenance, 

marketing and administration, insurance, permitting, interconnection, financing and site 

development.  Some of the effects of system size and soft costs on the  financial model of 

the overall program are discussed in more detail in the remainder of this section and 

Program Implementation section. 

Ownership Models 

When implementing a community solar project, a public power utility doesn’t necessarily 

have to own and operate the PV system.  Although the most common model is for the 

utility to own the array, a developer, community organization, or other entity can build, 

own, and maintain the system for the utility.  In this model, the utility purchases the 

energy output from the third party owner via a power purchase agreement (PPA), 

customers purchase subscriptions from the utility, and the utility credits the customer.  

For public power utilities, utilizing a third party ownership model can lower 

implementation costs with the federal ITC.  Although financially attractive, managing 

                                                 

28
 To find out if your project is eligible for PACE financing, please visit https://www.energy.gov/eere/slsc/state-

and-local-solution-center 

29
 To find out if your intended solar PV site is located in an Opportunity Zone, please visit 

https://esrimedia.maps.arcgis.com/apps/View/index.html?appid=77f3cad12b6c4bffb816332544f04542 
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additional contracts and agreements from a third party ownership model becomes 

complex for public power utilities. The utility must find a party willing to accept the 

financial liability and be dependable over the life of the project or until the assets can be 

transferred to the utility. It should be noted that third party financing and ownership may 

not be an option for public power utilities that have all-requirements wholesale power 

supply agreements. 

**Call out box** 

WPPI Third Party Ownership Model 

In 2016 WPPI Energy implemented 250 kW community solar pilot programs with each 

of their member public power utilities located in River Falls, WI and New Richmond, 

WI.  In the design phase, the goal of the project was to implement community solar in 

each of these communities to meet customer demand with no adverse rate impacts to non-

participating utility customers.   As WPPI Energy was developing the financial model for 

the program, it became obvious that under the utility ownership model, subscription rates 

would have to be set too high and would discourage customer participation.  To lower 

costs, they successfully worked with a third party owner that could bring in the benefits 

of ITC and accelerated depreciation into the financial model.  

Identify Program Funding 

Identifying appropriate and sustainable sources of funding is key to financing up-front 

solar and other soft program costs. Public power utilities may be unable to take advantage 

of existing solar tax benefits, but they may be able to cooperate with other entities that 

can through creative ownership models, as described above. Many community energy 

projects begin with some portion of grant-funding that they ultimately turn into a 

revolving clean energy fund30. Some options to consider can include:  

● Partnerships: These can be important sources of financing as third parties may 

allocate funds strictly for investment in LMI communities. Examples include: 

corporations, banks, and project developers. Businesses may have internal 

initiatives for corporate responsibility, such as engaging low-to-moderate income 

communities or environmental sustainability. The Community Reinvestment Act 

encourages commercial banks and savings to meet the needs of borrowers in all 

segments of their communities, including LMI households. New Markets Tax 

Credits help project developers lower the cost of participation for LMI customers.  

● Tax equity: Similar to third party partnerships, a tax equity partner finances the 

community solar program up-front, owns the system, and monetizes and passes 

                                                 

30
 See Dubuque, Iowa and Pennsylvania as examples: https://dced.pa.gov/programs/solar-energy-program-

sep/.  
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along existing tax benefits. Depending upon the agreement, system subscribers 

can realize a portion of the tax benefits through decreased subscription costs. The 

investor also realizes a favorable return on investment and may be more likely to 

invest in future projects. 

● Grants: Existing federal and state initiatives and grant programs are available 

help fund and forward clean energy and energy efficiency goals. Some of these 

can be accessed by local governments in rural communities. The US Department 

of Agriculture’s Rural Development periodically solicits applications for loan and 

grant funding through the Rural Energy for America Program (REAP). The 

Department of Energy (DOE) SunShot initiative offers many solar grant funding 

opportunities and competitions to lower solar project costs for LMI communities. 

Additionally, the DOE offers a Tribal Energy Program Grant to promote tribal 

energy sufficiency, economic growth, and employment through clean energy 

projects in tribal communities. Some State Departments of Agriculture and Rural 

Development may offer funding opportunities for renewable energy and energy 

efficiency projects as well.  

● Low interest loans: Community solar programs are increasingly targeting low-

to-moderate income populations. To make financing more feasible to these 

populations, some external funding entities can provide low or no-interest loans.  

Additionally, some banking institutions maintain a local funding pool to help 

promote sustainable development initiatives in municipalities31.   

**Call out box 

Cost-Benefit Analysis: 

An accurate depiction of the costs and benefits of a community solar project is an 

important piece of information in the decision making process.  A cost-benefit analysis 

(CBA) attempts to monetize costs and benefits of a project or program to determine if it 

results in a positive net benefit for a  customer, utility, or community.  CBAs are a 

common decision making tool for policy makers and utilities since it allows for current 

and future project costs and benefits to be measured using today’s dollars.   The analysis 

can include direct project expenses and benefits (e.g. the cost of equipment and value of 

energy produced) as well as other important values that often are included in project 

budgets (e.g. the value of carbon emission reductions).  The utility can use CBAs to 

determine if community solar projects financially makes sense for the utility to build the 

array and whether or not community members would benefit from subscribing.   

                                                 

31
 See https://www.cdfifund.gov/Pages/default.aspx  
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The capacity to develop CBAs can vary by community and utility.  UPSTART formed a 

relationship with the University of Michigan’s Dow Fellowship program, who developed 

a web based cost-benefit analysis tool for this project.  By simply manipulating variable 

cost and financing inputs, a utility can use this tool to develop a program and evaluate 

how different financial models will affect both the utility and its customers.  The cost-

benefit tool can be found under the listing for this project on the DEED project database 

at https://www.publicpower.org/deed-project-database  

Determining Customer Costs and Payment Structures 

In order to increase participation and accessibility, especially among LMI households, it 

is critical to keep customer buy-in costs as low as possible. At the same time, public 

power providers must ensure community solar projects are fiscally responsible and 

balance the interests of non-subscribing customers. This means that several factors and 

tradeoffs need to be considered when determining customer costs, payment structures, 

and buy-in options. 

Enhancing LMI participation in the program increases the difficulty of the balancing act. 

Public power utilities must consider reserving a portion of the system capacity with 

payment options specific for LMI customers; specifically lower upfront costs and on-bill 

financing can be used to increase access for these customers. Without outside funding, 

this will typically increase non-LMI customer costs to balance lower rates offered to LMI 

customers. Cash flow for the utility can be an issue if on-bill financing is offered and 

minimal upfront payments are collected.  Program costs can also increase as the utility 

attempts to fill reserved LMI capacity with additional marketing and customer 

verification efforts. Offering different subscription costs to different customer types can 

help to prevent or alleviate these issues. 

Determining the size of the system can also affect program pricing for subscriptions.  

While economies of scale can reduce construction costs as system capacity is increased, 

the utility’s liability increases if the program is oversized for customer demand and is not 

fully subscribed.  Enlisting or pre-subscribing an “anchor tenant” to the program can help 

reduce the risk to the utility while helping to increase customer demand and maximize the 

capacity of the system.  Ultimately, a successful program ensures a good investment to 

both the customers and the utility.   Net Present Value (NPV) analysis can be used to 

model the value of the customer’s investment over the term of the subscription.  Simple 

payback is typically easier to calculate and understand than other financial analysis 

methods such as NPV or internal rate of return (IRR), but this method does not account 

for the time value of money, panel output degradation, customer credit rate changes, 

inflation, risk, financing, or the benefits of the investment after the payback is achieved.  

**Call out box 

Solar Destination Ypsilanti:  

https://www.publicpower.org/deed-project-database
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Solar Destination Ypsilanti formed in early 2017 with the SunShot Solar In Your 

Community Challenge. This is a partnership between a private firm, Chart House Energy, 

a nonprofit grassroots company, Solar Ypsi, and the City of Ypsilanti to bring community 

solar and job training to LMI communities and nonprofit organizations. In this ownership 

model, Chart House Energy helps to bring the solar array cost down for non-profit 

organizations by owning the solar assets to monetize the tax benefits. The system owner 

rents the host facility roof, while the host facility receives discounted power through an 

equipment lease. Solar Destination Ypsilanti then uses their portion of energy savings to 

re-invest in additional solar projects. The team also recruits and trains individuals from 

LMI communities on solar installation, general construction, and safety practices in 

hopes these community members find employment in general construction or solar 

installation careers.   

** Call out box:  

Sunwise Community Solar Program: 

The Nebraska Public Power District (NPPD) is a public power utility that piloted its first 

community solar project in 2017. NPPD held several forums to disseminate project 

information and use feedback to best design their community solar program. In this 

model, program participants can purchase shares of solar energy from the community 

solar system that offsets a portion of their home’s electricity demand. NPPD owns the 

system and charges customers an enrollment fee that is returned 3 years after the 

enrollment date. Customers are charged a monthly rate, paying a higher premium for the 

solar energy vs traditional power. Although customers pay a higher rate to participate in 

the community solar program, NPPD locks these rates for 25 years. This means that 

community solar customers do not see the rate increases that a traditional customer 

would. NPPD is currently accepting applications for two additional community solar 

programs located in Venango and Kearney, NE.  

** Call out box: 

Powered by the Northern Sun:  

The Marquette Board of Light and Power is a publicly owned utility company. MBLP 

started the first community solar garden in the Upper Peninsula of Michigan in 2017. As 

a municipal utility, they are unable to monetize tax benefits associated with solar PV. 

They use a different ownership model to help their customers access these tax benefits. 

Utility customers that choose to participate in the community solar program can purchase 

actual panels and apply for the 30% renewable energy tax credit on their own.   

Transferability of Subscriptions 

The operational lifetime of solar panels is 25 years or more. Paying for a long-term 

subscription can be a main concern of public power utility customers who choose to 

move within or leave the service territory during the program lifetime. While these 
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customers may be unable or unwilling to subscribe for the entirety of the program, 

transferability can be an attractive program design component.  The utility can consider 

allowing customers to do the following with their subscriptions: 

·         transfer to a new electric account held by the owner 

·         resell to another customer 

·         donate to a non-profit customer (e.g., church or school) 

·         gift to a friend or family member 

Whatever option a customer decides, transferability adds flexibility to a community solar 

program that functions to address varying customer concerns and needs. 

Partnership Opportunities 

Community partnerships can play a critical role to access project capital and gain 

program participants, particularly LMI customers.  Community organizations like 

schools, religious institutions, hospitals, tribal entities, and charitable organizations serve 

the dual role of both institutional power purchasers and also key community convenors 

and thought leaders.  Utilities seeking a potential anchor tenant may find it helpful to start 

with key community organizations like these who have both large power demands and a 

variety of motivating factors for participating in solar programs (e.g. cost savings, 

environmental sustainability, social sustainability, etc.).  Often times, these organizations 

have access to special funding resources (e.g. grants, loans, membership bases) to support 

investment in renewable energy and energy efficiency that businesses and residents 

cannot access.  Membership networks like alumni, donors, tribal members, and 

congregations extend beyond a utility service territory. These groups can provide 

organizational investment in community solar programs.  In addition, programs can 

explore the potential of developing “donor models” where panels subscriptions are 

purchased and donated to qualifying non-profit organizations resulting in tax deductions 

for individual donors.  This can be an effective technique to engage businesses and 

philanthropic groups seeking to provide support to visible community organizations.   

On the other hand, partnering with these organizations can help project teams promote 

the program to key target audiences.  For example, human service organizations and 

religious institutions may already have lists for and relationships with income qualified 

households eligible to participate in programs targeting LMI customers.  This can help 

reduce the soft costs of recruiting participants as well as identify potential members most 

likely to participate in the program.  These organizations can serve as champions within 

the community by promoting community solar participation to their individual 

memberships.   

Energy Efficiency 
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Energy efficiency programs employ measures to help maximize energy savings benefits 

received from community solar programs. Energy efficiency programs require initial 

investments that can be significant depending on the type of building or home and 

measures taken; this is especially true for LMI populations. The return on investment of 

energy efficiency measures can vary significantly based on project, building type, and 

energy use characteristics. This is why it may be advantageous to consider integrating 

energy efficiency into the program structure to increase accessibility to energy efficiency 

programs for LMI communities. An on-bill financing purchasing option with 0% interest 

can be a way around this. Under this structure, it is possible for community members to 

realize energy efficiency savings on a monthly basis. Reducing electricity consumption is 

a common focus for energy efficiency measures, but it ultimately depends on the energy 

use characteristics.  For example, a home may have lower cost natural gas service for 

heating, but still rely on electricity  to power heating appliances that utilize natural gas. 

Public power utilities can also partner with community organizations to identify 

opportunities to market energy efficiency to LMI households (see the above section on 

Partnership Opportunities). Public power utilities can establish a charitable donation arm 

of the community solar program to facilitate tax-deductible donations towards the 

program at large or for the benefit of LMI households specifically. Donations can be used 

to offset the upfront cost of energy efficiency measures.   

Program Implementation 

Soliciting and Evaluating Proposals 

Once the utility has identified a feasible site and the desired capacity of the solar array, 

it’s time to solicit, evaluate, and select proposals from installers.  Below are some key 

points to remember through this process: 

● If a public power utility is unfamiliar with local or regional solar PV installers, 

find renewable energy networks or associations to help solicit installers and/or 

advertise the request for proposals (RFP). 

●  Provide specifications on the system requirements and details regarding the 

installation site in the RFP.  Things to consider include:  system capacity, tilt 

angle, azimuth, panel type, inverter type and configuration, system output voltage 

requirements, monitoring capabilities, installer certifications and experience, 

operation and maintenance training, external disconnects, security fencing, 

warranties, energy production estimate, system efficiency, racking design, 

foundation/anchor type, commissioning, and final landscaping. 

● Warranties will vary for separate components.  Identify warranties for PV 

modules, power inverters, optimizers (if used), racking systems, and 

workmanship. 

● Be prepared to provide site maps, soil analysis, and location of adjacent trees, 

buildings, etc. 
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● The installer may require additional site prep to ensure proper grading and access 

roads for heavy equipment to the site.  If needed, check to see if it is included in 

the proposal. 

● Developing specifications and providing site information for the project will help 

return comparable proposals. This will make the evaluation and selection process 

easier and reduce the amount time and analysis on behalf of the installer.  Be sure 

to allow enough time for development of the proposals depending on the 

information the utility can provide. 

● Once the proposals are received, consider the following items in the project 

timeline before the unit can be commissioned:  evaluation of the proposals, 

preparation a recommendation and presentation to the governing board for 

approval, site preparation, interconnection, and testing. 

Program Administration, Operation and Maintenance 

Alongside securing program funding, it is important to determine who will administer the 

community solar program. Utilities, or third parties such as solar installers/developers can 

fill this role. An important step is to first determine the public power utility’s capacity for 

program administration. This is especially significant if your program utilizes different 

customer financing options: upfront, on-bill, or a combination of these.  

Marketing and outreach is an administrative role that should be started at the genesis of 

and carried out throughout the lifetime of the program.  Conducting a feasibility study is 

an effective way to start customer outreach with surveys and community meetings.  

Marketing efforts are needed to communicate program design information to the 

customers so they can decide if they want to participate.  Reaching and convincing LMI 

customers to participate in the program can be challenging, but contact through ongoing 

partnerships with community action agencies or other existing LMI programs can help 

the utility facilitate communications and avoid skepticism about opportunities that may 

sound too good to be true to LMI customers32.   

 

Once the program is up and running, ongoing outreach and marketing may be needed to 

fill open subscriptions or promote renewable energy educational opportunities in the 

community.  In addition to typical outreach channels such as bill inserts, radio & 

television ads, and social media, web access monitoring can be used to promote the 

program, keep customers engaged, and provide an educational resource for schools.   

                                                 

32
 NREL. 2018. Design and Implementation of Community Solar Programs for Low and Moderate-Income 

Customers. https://www.nrel.gov/docs/fy19osti/71652.pdf 
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The utility will also have to develop and maintain customer application forms and/or 

contracts for the lifetime of the program.  Customer contracts should contain specifics on 

availability, eligibility, subscription length, method of bill credit, subscription transfers, 

energy credit rates, and payment options.  Legal review of contracts developed for a 

community solar program is highly encouraged before issuing them to customers. 

Operation and maintenance is relatively low for solar PV systems in comparisons to other 

generators, but the utility needs to consider managing vegetation control, cleaning panels, 

angle adjustment (if capable), snow removal, component failures, and vandalism in order 

to keep the system operating at maximum capacity. 

UPSTART Case Study Example 

UPSTART established the main goal to extend community solar access to low-to-

moderate income households in two small Villages in a relatively rural area located in 

Michigan’s Upper Peninsula. In both cases, the village managers oversee operations of 

the public power utilities for their respective municipalities as opposed to an independent 

utility commission.  Each village manager expressed interest in developing a community 

solar project but did not want to move forward without understanding whether the 

broader community would support such a program. Additionally, moving forward 

required designing a program that was accessible and attractive to all community 

members. Each village partnered with UPSTART to achieve explore developing and 

designing  a community solar program.  

We tasked ourselves with 1) conducting a technical site analysis and building an 

engineering design for a community solar array to assess the project’s viability in these 

villages and 2) conducting a social feasibility study by engaging the community to 

identify both support for and sociocultural barriers to the project. By designing the 

program this way, we hoped to help each public power utility to design a community 

solar program that was accepted by the community and suited community needs first.  

The case study sites are the neighboring Villages of L’Anse and Baraga, Michigan (Figure 

1). The case study community was defined by existing village utility service territory. 

These are remote, rural communities, located about 5 miles apart. Each village has a 

population of roughly 2,000. At a first glance, these cases do not seem to present viable 

locations for community solar programs. They are characterized by low-to-moderate 

income households (43% and, 66% respectively)33, presenting a hurdle to participation. 

Also, there is relatively low solar radiation (3.4-4.4 kWh/m2/day34) and residential electric 

rates in comparison to neighboring electric utilities ($0.1211 and$0.1250/kWh, Village of 

                                                 

33
 Please see https://www.michigan.gov/mshda/#!/ul_45866 for LMI housing information 

34
 See NREL Geospatial Data Science: https://www.nrel.gov/gis/data-solar.html 

https://www.michigan.gov/mshda/#!/ul_45866
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L’Anse and Village of Baraga Utility respectively). All of these factors can reduce the 

return on investment.  

 

Figure 1. Obtained from google maps. The Villages of L’Anse and Baraga are located 5 

miles apart in the Keweenaw Bay in the Upper Peninsula of Michigan.  

Policy Context 

Michigan does not currently have any supportive community solar policies or programs; 

however Michigan legislators proposed a bill in 2018 to change this35. Michigan does not 

allow power purchase agreements that are not included in the Public Utility Regulatory 

Policies Act, 1978. Instead, solar equipment leases are allowed, which essentially 

function like a power purchase agreement. This means that community solar program 

design and development is typically left to the utility’s discretion. 

L’Anse and Baraga each operate a municipal electric utility that serves Village residents. 

This local ownership allows the village flexibility to design and construct a community 

solar program if each village supports the project.  This helps to mitigate some challenges 

that may surface with solar project development in other Michigan regions, such as 

permitting requirements, interconnection, site control and zoning. 

Community Solar Study Findings 

UPSTART conducted a series of key interviews and forum discussions to understand 

how both communities felt about the possibility of community solar project in their 

village.  The primary goals were to get a general sense of what issues could arise if each 

Village pursued a community solar program. UPSTART used forums as way to spread 

information about the potential project as well as obtain feedback about community 

                                                 

35
 Please see 

http://www.legislature.mi.gov/(S(bqb5euxs5wamxdsi244ve301))/mileg.aspx?page=GetObject&objectname=2
018-HB-5861 
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concerns.  The team used interview and forum discussion information to design the 

community survey and incorporate community specific program design components.   

L’Anse 

Overall, the L’Anse community expressed positive feelings and support for our proposed 

community solar program. The community felt the program was important to help the 

community be forward thinking and strive for a cleaner future. They felt that this project 

would make the community’s needs and interests a priority, something not quite 

experienced in the past. Finally, they felt that this project would instill community pride, 

maintain their young population, and overall increase education.  

Many considerations emerged from this portion of the study: trust with the utility, 

environmental/sustainable thinking, local ownership, affordability, and leadership. Trust 

was a big cited factor in support for the program. Others focused on the environmental 

benefits from utilizing cleaner energy sources. All income levels in the community must 

be able to participate in this program. Local ownership with the potential to provide 

community training was a positive for the community. Minor concerns such as more 

information and transferability were outweighed by all the potential positives that could 

influence community member’s support for community solar. We compiled these 

considerations into three main themes: (1) environmental benefits, (2) 

economics/affordability, and (3) local empowerment. Focusing program design and 

structure around these three themes should provide the greatest success in L’Anse.  

Baraga 

 

The community generally felt positively (beyond economic reasons) about the idea of 

Baraga doing a community solar project. The study uncovered several important 

considerations that overlap with the Village of L’Anse, as well as novel findings 

compared to L’Anse. Community members liked the idea for a combination of reasons, 

primarily combining environmental benefits with social benefits.  

Economic concerns are huge and may ultimately be the deciding factor on participation. 

Stakeholders felt residents will want specifics on the cost to buy into the program, the 

payback period, whether or not the investment is guaranteed, and to clearly understand 

the economic risks and benefits. Many respondents associated energy efficiency projects 

with solar PV in general. Respondents indicated a lack of knowledge surrounding the 

energy efficiency programs or projects available from the village utility or other sources 

(state or federal funding). Baraga community members were generally seen to have an 

ingrained culture that is resistant to change. Respondents felt that there was not enough 

awareness of solar electricity, which could ultimately reduce willingness to adopt a 

community solar project. Inertia could be a real problem; people need to be willing to go 

out of their way to do something different. Also, building trust in the community is a 

process that takes time. Many stakeholders did not understand the dynamics between 
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WPPI Energy and the Village. This led to notions of distrust on who ultimately will 

benefit from this project. Respondents liked the possibilities for community 

empowerment, pride, and developing local control associated with community solar. 

Many felt that businesses or industries could be attracted to the village if they were 

aware of a community solar program availability. While respondents cited economics as 

the main driving factor for program adoption, they felt others might adopt beyond 

financial motivations.  

Community survey 

In order to collect information on utility customers’ interest in participating in a 

community solar program, UPSTART partnered with the Villages of L’Anse and Baraga 

to conduct community surveys.  The primary goals of the surveys were to develop 

estimates for the number of customers willing to participate in the a program, identify 

desirable program options, identify barriers to program participation, and generate 

baseline estimates for potential customers’ willingness to pay to participate in the 

program.  This information was used to select program options  and to develop financial 

model scenarios for the project to help utilities determine if community solar program 

were economically feasible for their communities.  

In order to deliver the survey to potential respondents, UPSTART mailed survey 

information to each utility’s customer mail file.  For L’Anse, customers received 

information about the survey on their monthly utility bill notice followed up by door-to-

door reminders.  In Baraga, paper surveys were mailed directly to the customers’ billing 

address. Additional rounds of surveys were mailed in partnership with the local 

Keweenaw Bay Indian Community.   Both surveys were successful at achieving 

reasonable demographic representation of each village.  

Both villages generally supported community solar and were in favor of each Village 

starting a community solar program. The Village of L’Anse community members were 

likely to subscribe if multiple financing options were available while Baraga respondents 

varied on which financing option they supported; respondents who favored a high up-

front cost, did not favor on bill-financing and vice versa.  In L’Anse, support for 

community solar varied by income, age, and knowledge of renewable energy systems. In 

Baraga, predictors of community solar support include its potential benefits for the 

community, knowledge of community solar, higher income, younger community 

members, and status as a tribal member. In both cases, community members felt they 

need more information to be comfortable with moving forward with a community solar 

program. Finally, energy efficiency measures were included in both community surveys. 

Village of L’Anse community members reported taking weatherization efficiency steps 

but were interested in doing more such as energy audits and water heater efficiency 

upgrades. While the Village of Baraga community members were generally unfamiliar 

with energy efficiency programs, illustrating an area to provide more information and 

how to access particular available programs. 
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Partnership opportunities 

Through a series of community meetings, UPSTART identified several potential 

community partners who expressed interest in promoting the community solar program to 

their respective membership bases and serve as potential anchor subscribers for the 

program.  Representatives from local schools, churches and tribal organizations 

expressed an interest in connecting their members with the community solar program as 

well as promoting the program as a means to support investment in their own 

organization.  During meetings with local business associations, community business 

leaders suggested that they saw the community solar program as an attractive option to 

support to local community organizations.  

The Keweenaw Bay Indian Community (KBIC), a local tribal entity in the area, 

expressed a strong desire to help its members access solar energy in an effort to pursue 

environmental preservation goals.  KBIC has aggressively pursued investments in solar 

technology on its own territory but was interested in exploring opportunities to support 

solar access for members not living on tribal lands.  By engaging KBIC leaders during 

the project development process, UPSTART established a partnership to distribute 

surveys to tribal residents in Baraga to determine tribal members’ interest in community 

solar.  The information collected helped to demonstrate additional support for a potential 

utility community solar program in Baraga.   

L’Anse/Baraga Program Design and Implementation 

There are two significant findings in regards to financing options from this feasibility 

study: (1) existing community solar programs are more successful when they offer 

multiple financing options to participants and (2) our specific community survey 

respondents are in favor of a program with multiple financing options to meet the needs 

of all community members.  

Utility Ownership Models and Funding 

UPSTART explored multiple ownership models to improve project and subscription 

costs for Village utility customers. This included: 

 

● Third party ownership with a tax equity partner 

● WPPI ownership 

● Village ownership utilizing low-interest or no interest loans 

● One village owns while the other has access to panel subscriptions (this would 

increase program size resulting in lower program costs) 

● Combined system ownership between the villages.  

The latter four options would not allow the villages to access any tax benefits associated 

with owning the solar PV system, but third party ownership would provide that 
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opportunity.  Due to the relatively small size of the proposed array, the team found that it 

was difficult to find developers willing to take on a 100 kW system but yet be dynamic 

enough to be a tax equity partner.   

As the project was developing, L’Anse was able to obtain (1) a grant from the Michigan 

Department of Agriculture and Rural Development (MDARD) to reduce system costs 

equivalent to the 30% renewable energy tax credit and (2) approval from WPPI Energy 

for 0% financing.  Consequently, UPSTART moved forward assuming the system would 

be owned and operated by the Village utility in L’Anse. 

Developing the Financial Model 

For this project, conducting a feasibility study was highly beneficial towards 

understanding the needs of the customer base for rate design and subscription options.  

The study’s surveys provided feedback from the customer base on how many accounts 

want to participate, how many panels they would subscribe to, and what price points 

would promote participation.   Data from the study suggested that multiple subscription 

options would be better to meet the needs of the customer base and increase participation, 

but a higher number of payment plan options also increases the burden on utility billing 

staff and complexity of the program.     

  

Based on the initial Community Solar Design report (Appendix A) and participation 

estimates from the community during the feasibility study, the team targeted a 100 kW 

array for the program.  The Village of L’Anse issued a request for proposals to determine 

installation costs.  The proposals were evaluated (Appendix H) and a proposal was 

selected to determine installation costs and capacity per subscription (watts/panel).  The 

utilities involved in this project wanted to create a program that included an affordable 

LMI carve out, was profitable for all subscribers, and had a net zero profit/loss for the 

utility.  To create this model, NPV analysis was utilized.  This was also helpful to create a 

financial model that kept a positive cash flow for the utility for the life of the program.  

An example of the NPV calculations can be found in Appendix G and the table below 

illustrates suggested program pricing.  In addition to the hard solar PV equipment 

installation costs, we also included other soft costs and influences into the equation:  

interconnection, site development, customer credit rate, maintenance, insurance, 

marketing and administration.   
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UPSTART’s community research identified a strong interest by utilities’ customers to 

participate in a community solar program; however, responses from the survey indicated 

that many customers were unable or unwilling to pay for the full cost of the program.  

This is a common challenge in LMI communities where many customers lack the 

disposable income to pay for the full cost of installing solar technologies.  By conducting  

community-based research, UPSTART was able to identify the gap between the cost of 

implementing local community solar program and the community’s capacity to pay for 

the program and then make the business case for additional support from state agencies.    

In addition to the MDARD grant and 0% financing, a limited amount of incentive based 

on a rate of  $0.08/kWh were available through the Village’s Efficiency United program.  

These funds were also included in the NPV evaluation.   

Subscription Contracts 

Through a technical assistance grant obtained by UPSTART through the U.S. 

Department of Energy SunShot program, a third party consultant was hired to draft a 

contract the utility would issue to subscribing customers.  Based on feedback from the 

feasibility study, transferability of subscriptions was a key concern to be addressed in the 

contract.  Other items addressed in the contract include:  eligibility, length of contract, 

capacity per subscription, subscription costs, LMI qualifications, and depreciation 

schedules.  

Energy Efficiency 

UPSTART contracted with Lotus Engineering and Sustainability, LLC to develop a 

roadmap for defining integration of income-qualified programs and energy efficiency 

elements to best serve the needs of all community members. The community surveys also 

gauged which energy efficiency measures residents and businesses completed. The 

UPSTART team and the Village of L’Anse Electric Utility identified an opportunity to 

utilize the community solar garden to drive reduced energy costs for low-income 

households and encourage investments in energy efficiency across the community. For 
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these programs to be successful, particular attention must be given to making resources 

on efficiency accessible to the LMI community, whether that is through free information 

and outreach, volunteer teams providing donated weatherization services, or affordable 

financing tools to support larger efficiency investments in the home. Table 2 provides an 

overview of the recommendations by program aspect affected and population affected. 

By leveraging relationships with other local organizations supporting the LMI 

community or focused on reducing energy burden, such as KBIC, BHKCAA, and WPPI 

Energy, UPSTART can successfully develop a regional model for an energy efficiency 

program. 

Table. 2 Recommendations by program and population affected.  

 

 

Recommendations and Considerations for Public Power Utilities 

Recommendation 1: Build flexibility into the entire process 

It is important to recognize that the community solar program development process is not 

linear. It requires constant reflection and iteration. This begins at the team development 

stage, all the way through program design and implementation. Throughout the process, 

different needs can arise that current team members cannot fill. Community feedback 

may require necessary changes to the feasibility study and/or program structure. Some 

communities may  be underrepresented in community forums and surveys. In this 
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instance, public power utilities should consider changing strategies- a few examples 

include holding multiple, smaller meetings to accommodate community members 

schedules, attending community organization gatherings, changing survey length, or 

conduct neighborhood follow up survey canvassing- to elicit greater participation and 

community feedback. Over time, changing community needs can result in changes to the 

community solar program. Building flexibility into the community solar development 

process can bring the program more success.  

Recommendation 2: Emphasize community involvement 

A characteristic of community solar is to promote local ownership of energy systems for 

and by the community within which they operate. Therefore, it makes sense to involve 

community members at every stage possible. Community members can provide accurate 

feedback on what sort of program would work in their community. They can be used to 

recruit program participants through peer-to-peer marketing in a worker co-op or 

volunteer model. The public power utility can build into an RFP that a portion of the 

labor for the community solar installation must come from training community members. 

This can provide valuable skills for underemployed community members to seek 

employment in general construction jobs or specifically the solar industry. Finally, the 

community solar array can be a source of an educational program with the community 

school system- to teach students about energy use and solar energy.  

Recommendation 3: Provide a program that is affordable 

Many community solar programs are still only accessible in affluent communities. This 

can be directly linked to the affordability of the program. It is important for local 

governments and public utilities to design a program that capitalizes on all available 

options to decrease program costs. Additionally, program administrators should include a 

way to qualify low income participants beyond a FICO score (i.e. history with electric 

bills).  Options to consider include: 

● Partner with a developer and/or tax equity investor or seek out state, federal, and 

private grant opportunities to lower program costs. 

● Provide multiple financing options- especially those that can be accessed by 

income qualified households or non-profit facilities 

● Partner with community organizations or businesses to build a donation option in 

the model 

● Consider utilizing an anchor customer: Selling a large portion of panels from the 

system to an individual customer can reduce the cost liability to the utility and can 

spur/promote subscriptions from other customers. 

Recommendation 4: Program design components 

Every community is different with respect to the program design considerations. It is 

important to listen to community feedback and incorporate these considerations into the 
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community solar program design. The following describe some components that often 

surface during community solar program design for a small rural public power utility, but 

utilities may encounter other considerations not included in this list.  

 

● Transferability: A common concern in many existing programs, customers want 

to know what will happen to their subscription if they move away, can no longer 

afford the subscription, or simply do not want a subscription. Public power 

utilities should account for the many different scenarios in the design of the 

program. 

● Ease of participation and transparency: Complicated community solar program 

design and sign up can create confusion and frustration for customers. Make the 

participation process as easy as possible for customers. Community members can 

also make a more informed decision with more information about the potential 

project. It is important for municipalities provide as much information as possible 

to help community members either accept or reject a project.  

● Length of program & number of subscriptions: These design components can 

directly influence the affordability of the system. The length of program can be 

varied to consider and suit different participation interests. The number of 

subscriptions available will determine the amount of benefits experienced by 

each customer, but the utility can choose to limit number of subscriptions to 

allow great distribution of community solar benefits.  

● Financial model:  Rate design and program pricing is a tricky balancing act 

between: 

1) creating opportunity for LMI customer participation without shifting too 

much cost to non-LMI subscribers 

2) offering enough pricing/financing options to the customers while keeping 

the program manageable for the utility 

3)  installing a system big enough to capitalize on economy of scale 

installation costs and customer demand without incurring liability to the 

utility with an unsubscribed program 

4) designing a program that is a reasonable investment for both the customers 

and the utility for the life of the program. 

● Operation and maintenance: Some utilities may not have the capacity, skills, or 

knowledge to operate and maintain a community solar array. The utility  can 

consider contracting with the solar developer for these services or provide  

employee training (i.e. through developer).   Training could also be provided to 

under and unemployed community members to create job opportunities within 

the community.    
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Recommendation 5: Integrate energy efficiency measures 

Implementation of energy efficiency should always be the first step before considering 

installation of renewable energy generation.   A good avenue to introduce energy 

efficiency into the community is through a survey on energy efficiency awareness and 

community outreach.  The utility can supplement survey findings with a broader 

community toolkit to both educate community members on available opportunities as 

well as learn which energy efficiency measures households need to address to reduce 

energy costs. Taking this a step further, utilities should consider how to integrate energy 

efficiency programs into their community solar program design. 

 

Recommendation 6:  Engage in community partnerships to build capacity 

Often times, a utility’s internal capacity (limited  time, financial resources and expertise) 

represents a significant barrier to developing community solar programs.  Many utilities 

do not have staff equipped and/or available to conduct community-engaged research to 

determine the social, technical and economic feasibility of a community solar program 

and it can be cost prohibitive to hire third-party consultants to do the work.  Establishing 

partnerships with local universities, planning agencies, nonprofit organizations, state 

agencies and other groups can help access resources to assist with evaluating and 

planning community solar programs.  In some cases these groups may be willing to 

partner or lead the evaluation at little to no charge to the utility.  Similar to UPSTART’s 

work, the process can help develop a coalition capable of accessing financial resources 

for additional research and program implementation.   
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C Supplementary Statistical Appendix 

 

Types of Variables:  

The type of variable matters because different statistical analyses assume that variables 

have specific levels of measurement. Choosing the a statistical analysis with an 

inappropriate variable can result in inaccurate results.  

Categorical: (Sometimes referred to as nominal variables) These variables have two or 

more categories without a natural or logical order. A categorical variable allows the 

research to assign categories rather than clearly ordering them.  

Ordinal: Similar to categories, these variables have a clear and logical order. While 

ordinal variables can be ordered from low to high (for example) the distance between 

each variable is different. 

Interval: These variables are assigned a numerical value and can be measured along a 

continuum. The distance or space between values in interval variables is equal.  

Ratio-level: A subset of interval variables where zero is meaningful.  

Dichotomous: These variables include only two values, generally, a 0 or a 1, where the 

zero again is meaningful. 

Statistical Analysis Methods:  

Descriptive Statistics: This method is used to summarize data. They include a measure of 

frequencies, central tendencies, and variability. Descriptive statistics are used to describe 

characteristics of research participants. This type of statistical procedure does not allow 

researchers to make any conclusions beyond data that is analyzed. While descriptive 

statistics are important to the story, they can be deceiving if interpreted incorrectly.  

Inferential: This methodology utilizes the existing data set to measure relations and 

effects between variables. Inferential statistics can be used to test theories regarding 

explanations or predictions. From this analysis, the research can make generalizations 

about populations. Inferential statistics uses correlational statistics such as regressions. 

Regression analyses:  

Regression is a form of explanatory statistics that examines or explores for a relationship 

between two or more variables. Regression analyses allow the researcher to examine the 

influence of one or multiple independent variables on a dependent variable. Regression 

analyses can be used to determining what factors matter in impacting a topic of interest. 

The nuts and bolts of conducting a regression involve creating a regression line from a 

dataset and generating a regression equation that tells the researcher about the 

relationship between the independent and dependent variables (either positive or 

negative). 
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Linear:  Multiple regression models are available to analyze continuous variables with 

infinite values. Linear regression, also known as ordinary least squares (OLS), attempts 

to explore the relationship between an explanatory variable and a dependent variable by 

fitting a linear equation to the data. The linear regression does not imply causation 

between variables, only that there is an association between variables. Stepwise 

regressions are special forms of a linear regression that allow the researcher to introduce 

and identify significant variables. In this model, the researcher builds the regression by 

adding or removing one variable at a time until it is no longer necessary to add or remove 

any more.  

Non-linear: This approach also seeks to understand the relationship between independent 

and a continuous dependent variable. This approach is useful if the linear regression did 

not obtain a good fit. This model fits data to curves rather than lines. 

Logistic: Regression models also exist to analyze categorical dependent variables. A 

logistic regression seeks to describe the relationship between independent variables and 

categorical dependent variable. A binary logistic regression seeks to understand the 

probability that an event will occur. This model requires a binary dependent variable, 

which has only two options. An ordinal logistic regression models ordinal dependent 

variables. A nominal logistic regression models the relationship between the predictor 

variables and a nominal dependent variable.  

Statistical analysis used in this dissertation: 

Chapter 4 of this dissertation conducts three statistical analyses. Two binary logistic 

regressions were conducted. The first used the dependent variable asking respondents 

whether or not they are in favor of the village developing a community solar program. 

The second analysis uses a dependent variable that measures respondent’s willingness to 

purchase shares in a community solar program (0=No and 1= Yes). Both logistic 

regressions used a theory-informed stepwise regression. The following variables were 

included: village location, gender, knowledge, environment, economic status, community 

identity, and trust. The results of both analyses are below. An Akaike Information 

Criterion and Bayesian Information Criterion was conducted after each regression to 

determine the best quality model.  

 

Logistic regression stepwise with Q4  

 Odds Ratio (AIC/BIC of Model) 

Constant 27.17 32.7

2 

30.56

1 

14919 65033 274369 90228 

Village 0.475 

(142/149

) 

0.53

49 

0.574

0 

0.4184 0.394

2 

0.3559 0.363

3 
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Gender  0.99

82* 

(136/

148) 

0.998

5* 

0.9989 0.998

8 

0.9988 0.999

2 

Knowledge   0.769

7 

(137/1

52) 

3.34e+

17 

1.95e

+21 

1.69e+25 2.75+

21 

Economic 

status 

   1.341 

(113/1

32) 

1.33 1.288 1.257 

Environmen

t 

    0.999

1 

(114/1

37) 

0.9991 0.999 

Community 

Identity 

     0.7639 

(116/142) 

1.293 

Trust       0.998

2 

(117/1

47) 

 

In this model, the last two variable additions showed significant variables- both 

community identity and environment variables and then just the environmental variable 

in the last one. This last model has the lowest AIC/BIC relative to the others. I was 

inclined to think about using this in the paper, because it does have significance with 

community identity but no other variables that we discussed that come through in the 

literature.  

Logistic regression stepwise with Qshares 

 Odds Ratio (AIC/BIC of Model) 
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Constant 1.347 1.35

0 

1.34 1.551 1.705 1.743 1.313 

Village 0.9558 

(463/471

) 

0.95

61 

0.9572 1.060 1.027

1 

0.9532 0.9423 

Gender  0.99

99 

(465/

476) 

1.000 0.9993 0.999 0.9993 0.9989 

Knowledge   0.9800 

(467/48

2) 

1.248 1.235 1.369 2.03 

Economic 

status 

   0.8699 

(426/44

4) 

0.864

7 

0.8363 0.8490 

Environmen

t 

    0.999

2 

(424/4

46) 

0.9992

* 

0.9992* 

Community 

Identity 

     0.7021

* 

(421/4

47) 

0.2794 

Trust       1.003 

(419/44

9) 

 

This final stepwise regression analysis shows knowledge and environment as significant 

factors throughout. The strongest model appears to be the 5th iteration (if we’re looking 

just at AIC/BIC which are the lowest here). Trust is significant when using a p-value of 

less than 0.10.  
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Linear regression with viability index as DV 

 Coefficient (AIC/BIC of Model) 

Constant 0.115 0.014 0.0294 -0.202 -0.360 -0.364 -0.0161 

Village -0.230 

(242/

250) 

-0.24 -0.315 0.0143 0.197 0.0209 0.0226 

Gender  0.00002 

(244/25

5) 

-0.0001 -

0.00004 

-

0.0000

3 

-

0.00003 

-1.60e-

06 

Knowledge   0.1352* 

(221/23

7) 

0.2793* 0.281* 0.2796* 0.2544

* 

Economic 

status 

   0.042 

(65/84) 

0.0426 0.0431 0.0420 

Environment     0.0001 

(61/83) 

0.0001* 0.0001

* 

Community 

Identity 

     0.005 

(62/89) 

0.0685 

Trust       -

.00022

** 

(61/91) 
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