
Utah State University Utah State University

DigitalCommons@USU DigitalCommons@USU

All Graduate Theses and Dissertations Graduate Studies

8-2019

Deep Learning for Crack-Like Object Detection Deep Learning for Crack-Like Object Detection

Kaige Zhang
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Zhang, Kaige, "Deep Learning for Crack-Like Object Detection" (2019). All Graduate Theses and
Dissertations. 7616.
https://digitalcommons.usu.edu/etd/7616

This Dissertation is brought to you for free and open
access by the Graduate Studies at
DigitalCommons@USU. It has been accepted for
inclusion in All Graduate Theses and Dissertations by an
authorized administrator of DigitalCommons@USU. For
more information, please contact
digitalcommons@usu.edu.

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F7616&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.usu.edu%2Fetd%2F7616&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/7616?utm_source=digitalcommons.usu.edu%2Fetd%2F7616&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

DEEP LEARNING FOR CRACK-LIKE OBJECT DETECTION

by

Kaige Zhang

A dissertation submitted in partial fulfillment
of the requirements for the degree

of

DOCTOR OF PHILOSOPHY

in

Computer Science

Approved:

Heng-Da Cheng, Ph.D. Lie Zhu, Ph.D.
Major Professor Committee Member

Vicki Allan, Ph.D. Curtis Dyreson, Ph.D.
Committee Member Committee Member

Haitao Wang, Ph.D. Richard S. Inouye, Ph.D.
Committee Member Vice Provost for Graduate Studies

UTAH STATE UNIVERSITY
Logan, Utah

2019

ii

Copyright c© Kaige Zhang 2019

All Rights Reserved

iii

ABSTRACT

Deep Learning for Crack-Like Object Detection

by

Kaige Zhang, Doctor of Philosophy

Utah State University, 2019

Major Professor: Heng-Da Cheng, Ph.D.
Department: Computer Science

Computer vision-based crack-like object detection has many valuable applications, such

as pavement surface inspection, underground pipeline inspection, bridge cracking monitor,

railway track assessment, etc. However, in most of the contexts, the cracks appear as thin,

irregular long-narrow objects, and often are buried into complex, textured background with

high diversity which make the crack detection very challenging.

During the past a few years, the deep learning technique has achieved great success and

has been utilized for solving a variety of object detection problems successfully. However,

using deep learning for high accurate crack localization is non-trivial. First, region-based

object detection cannot locate cracks accurately, and it is also very inefficient. Second, the

networks are facing severe data imbalance issue inherent in crack-like object detection which

can fail the training. Third, deep learning-based methods are also domain sensitive, which

can result in poor model generalization ability. Fourth, deep learning is a data driven

method that relies on a large amount of manually labeled ground truths (GTs) for the

training which is labor-intensive and even infeasible, especially for annotating pixel-level

GTs.

Focusing on the aforementioned problems, this research proposes the following solutions

concerning crack localization accuracy and computational efficiency. First, we introduce a

iv

deep classification network for crack-region preselection, which solves the noise problem that

has troubled the researchers for many years. Second, we generalize a deep classification net-

work to an object detection network with fully convolutional network (FCN) which boosts

the computational efficiency via preventing the redundant convolutional operations exist-

ing in region-based object detection methods. Third, in order to improve crack localization

accuracy, we propose a dense-dilation network for knowledge transfer, which succeeds the

end-to-end training. Fourth, to address “All Black” issue caused by the data imbalance

inherent in FCN-based crack detection, we introduce generative adversarial learning to per-

form the end-to-end training, and the method is also robust to the biased GTs. At last,

we propose a self-supervised crack detection approach based on cycle-consistent generative

adversarial networks, of which the training does not need manually annotating GTs, and it

has potential to realize true fully automatic crack detection without human’s intervention.

The proposed methods are validated on crack detection datasets from multiple sources,

including asphalt pavement images, concrete road surface images, bridge crack images,

building surface crack images, etc. The experiments demonstrate the effectiveness and

superiority of the proposed approach.

(114 pages)

v

PUBLIC ABSTRACT

Deep Learning for Crack-Like Object Detection

Kaige Zhang

Cracks are common defects on surfaces of man-made structures such as pavements,

bridges, walls of nuclear power plants, ceilings of tunnels, etc. Timely discovering and

repairing of the cracks are of great significance and importance for keeping healthy in-

frastructures and preventing further damages. Traditionally, the cracking inspection was

conducted manually which was labor-intensive, time-consuming and costly. For example,

statistics from the Central Intelligence Agency show that the world’s road network length

has reached 64,285,009 km, of which the United States has 6,586,610 km. It is a huge

cost to maintain and upgrade such an immense road network. Thus, fully automatic crack

detection has received increasing attention.

With the development of artificial intelligence (AI), the deep learning technique has

achieved great success and has been viewed as the most promising way for crack detection.

Based on deep learning, this research has solved four important issues existing in crack-like

object detection. First, the noise problem caused by the textured background is solved

by using a deep classification network to remove the non-crack region before conducting

crack detection. Second, the computational efficiency is highly improved. Third, the crack

localization accuracy is improved. Fourth, the proposed model is very stable and can be

used to deal with a wide range of crack detection tasks. In addition, this research performs a

preliminary study about the future AI system, which provides a concept that has potential

to realize fully automatic crack detection without human’s intervention.

vi

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my advisor, Dr. Heng-Da Cheng, for

his strong support during my Ph.D. studies. I am very grateful to my committee members,

Dr. Curtis Dyreson, Dr. Vicki Allan, Dr. Lie Zhu, and Dr. Haitao Wang for their great

comments, advice, and contributions to this research.

I would like to thank all the friends at Utah State University and the colleagues at

CVPRIP group.

I would like to thank my wife, Jing Han, for her warm encouragement and moral

support at all the time. My sincere appreciation goes to my parents and parents-in-law,

who helped me with taking care of my child. Thanks to my daughter, Crystal, she is my

endless source of power.

Kaige Zhang

vii

CONTENTS

Page

ABSTRACT . iii

PUBLIC ABSTRACT . v

ACKNOWLEDGMENTS . vi

LIST OF TABLES . ix

LIST OF FIGURES . x

1 INTRODUCTION . 1
1.1 Crack Detection . 2
1.2 Deep Learning for Object Detection . 4
1.3 Deep Learning for Crack Detection . 5

2 PRESELECTION WITH DEEP CLASSIFICATION NETWORK 7
2.1 Background . 7
2.2 Related Works . 8

2.2.1 Deep convolutional neural network 8
2.2.2 Transfer learning . 9
2.2.3 LASSO . 10

2.3 Proposed Method . 12
2.3.1 Preprocessing . 12
2.3.2 Preselection with transfer learning 13
2.3.3 Crack curve extraction . 19

2.4 Experiments . 23
2.4.1 Dataset and metrics . 23
2.4.2 Fine-tuning details . 24
2.4.3 Performance . 24

2.5 Summary . 26

3 TRANSFORM A CLASSIFICATION NET TO DETECTION NET 27
3.1 Background . 27
3.2 Related Works . 27

3.2.1 Fully convolutional network (FCN) 27
3.2.2 Dilated convolution . 28

3.3 Proposed Method . 29
3.3.1 Training a classification network . 30
3.3.2 Crack detection network . 32
3.3.3 Network refining under larger field of view 38

3.4 Experiments . 39
3.4.1 Dataset and metrics . 40

viii

3.4.2 Experimental results . 42
3.4.3 Summary . 43

4 CRACK DETECTION WITH GENERATIVE ADVERSARIAL LEARNING 44
4.1 Background . 44
4.2 Related Works . 44

4.2.1 Generative adversarial networks . 44
4.2.2 Deep domain adaptation . 46

4.3 Proposed Method . 47
4.3.1 “All Black” issue . 48
4.3.2 CPO-supervision . 50
4.3.3 Asymmetric U-Net generator . 52
4.3.4 L1 loss with dilated GTs . 55
4.3.5 Working on full-size images . 56
4.3.6 Implementation details . 56

4.4 Experiments . 59
4.4.1 Dataset and metrics . 59
4.4.2 Overall performance . 60
4.4.3 Computation efficiency . 63
4.4.4 Summary . 64

5 SELF-SUPERVISED STRUCTURE LEARNING FOR CRACK DETECTION . . . 66
5.1 Background . 66
5.2 Related Works . 66

5.2.1 Image-to-image translation GAN . 67
5.2.2 Structure learning . 68
5.2.3 Self-supervised learning . 68

5.3 Proposed Method . 69
5.3.1 Data preparation . 70
5.3.2 Objective . 71
5.3.3 Network architecture . 73
5.3.4 Network training . 77

5.4 Experiments . 80
5.4.1 Datasets and metrics . 80
5.4.2 Performance evaluation . 80
5.4.3 Ablation study . 84
5.4.4 Summary . 86

6 CONCLUSIONS AND FUTURE WORKS . 87

CURRICULUM VITAE . 98

ix

LIST OF TABLES

Table Page

2.1 Performance evaluation of the method based on pre-selection 26

3.1 Performance evaluation of the dilated FCN 42

4.1 Quantitative evaluations of CrackGAN on CFD dataset 60

4.2 Quantitative evaluations of CrackGAN on industrial dataset 60

4.3 Comparisons of computational efficiency . 63

5.1 Quantitative evaluation of self-supervised GAN on CFD 82

5.2 Quantitative evaluation of self-supervised GAN on industrial data 82

x

LIST OF FIGURES

Figure Page

2.1 Illustration of fully connected layer and convolutional layer. 8

2.2 Illustration of the difference between ridge regression and LASSO. (Figure
from [57]) . 10

2.3 Flowchart of the proposed method . 12

2.4 Illuminance rebalance. (a): A low-resolution pavement image captured using
a vehicle running at 100km/h. (b): The illuminance balanced image (right). 13

2.5 Illustration of Image-block generation . 14

2.6 Transfer of generic knowledge based on ImageNet data (C1, C2, C3, C4, and
C5 = five convolution layers; F6, F7, and F8 = three fully connected layers;
C = crack, BG = BG). 15

2.7 Feature maps of a sample image. Left: an image block. Right: feature maps
after the process of first convolutional layer. 16

2.8 Classification results for different image blocks; squares indicate mask blocks:
(a - d) BG; (e - h) crack. 17

2.9 Step-by-step results for proposed method: (a) original images; (b) results
after first step of pre-selection; (c) mask images after second step of pre-
selection; (d) results for block-wise segmentation; (e) results for curve detec-
tion; (f) final results for detected crack curves. 20

2.10 Best lambda selected by cross-validated mean square error (MSE) based on
minimum-plus-one standard error formula (solid line to left = lowest value
achieved by MSE; solid line to right represents minimum-plus-one standard
error, which is also the lambda chosen by LASSO). 21

2.11 Comparison of segmentation methods on image blocks: (a) original crack
image blocks; (b) segmentation results using [17]; (c) segmentation results
using [19]; and (d) segmentation results for proposed method. 22

2.12 Comparison of results using actual industry images: (a) original pavement
images; (b) manually marked GTs; (c) Canny; (d) CrackIT; (e) CrackForest;
(f) proposed method. 25

xi

3.1 Dilated convolution with kernels of 3×3: (a) without dilation; (b) 2-dilated
convolution; (c) 3-dilated convolution. (Figure from [71]). 29

3.2 Overview of the proposed approach: network at the top is the source net
trained with ImageNet; network in the middle is the crack block classification
net trained with transfer learning and network at bottom is the proposed
dilation net for crack detection (C=crack; BG=BG). 31

3.3 Fully connected layer is a special case of the convolutional layer. 33

3.4 Sample images and the outputs produced by Naive detection network. Left
column: the original image. Right column: outputs of the Naive detection
network. 34

3.5 Localization uncertainty of the classification network. 35

3.6 Equivalent dilated convolution when stride changed. 36

3.7 Dilated GT. (a) An image block of 400×400 pixels; (b) dilated GT. 38

3.8 Detection results of the images in Figure 3.5. First row: the outputs of the
refined network. Second row: the final results after removing small noisy
points. 39

3.9 Pixel-level mismatching: (a) a crack image; (b) detection result overlapped
with the 3-width GTs image; and (c) detection result overlapped with the
12-width GT image. The transparent areas represent the n-dilated GT cracks
with different n and the green areas represent the detected crack. 40

3.10 Region-based evaluation for computing r-rate and p-rate: (a) the original
crack image block; (b) an illustration of counting the crack and non-crack
regions. The squares with label “1” are the crack regions, and with label “0”
are BG regions. 42

4.1 The generative networks are trained to minimize the distribution difference
between the real data and that from the generator. (Figure from reference [74]). 45

4.2 Illustration of deep domain adaptation (Figure from reference [76]) 46

4.3 Overview of the proposed method . 47

4.4 The loss and accuracy curves under the regular FCN 49

4.5 “All Black” problem encountered when using FCN based method for pixel-
level crack detection on low-resolution images: (a) the low-resolution image
captured under industry setting; (b) the GT image and (c) the detection
result with “well-trained” FCN (refer Figure 4.4). 49

xii

4.6 Pre-train a DC-GAN with augmented GT images based on CPO-supervision:
the real GT set is augmented with manually marked “crack” curves to ensure
the crack patterns have high diversity. 51

4.7 Asymmetric U-Net architecture under larger receptive with CPO-supervision. 52

4.8 With a larger input image, the CNN realizes multi-spot sampling with the
same receptive field. At the right side, the first three neurons represent three
crack samples while the last two are background (BG) neurons. 53

4.9 Detection results of the final A-U-Net. First column: image samples from
industry. Second column: the outputs of the network. Third column: the
final results after removing the isolated noise areas. 56

4.10 Weakly supervised learning is able to learn crack pattern information. Left
side: the image blocks sent to the classification network. Middle: the feature
maps after the first convolutional layer. Right side: the feature maps with
the similar crack patterns to the original image blocks. 58

4.11 Comparisons on CFD. From top to bottom are: original images, ground
truth images and the detection results of CrackIT, MFCD, CrackForest, [11],
FCN-VGG, U-Net and CrackGAN, respectively. 61

4.12 Comparisons on the data from industry. From top to bottom are: original
image, ground truth images and the detection results of CrackIT, Crack-
Forest, [11], FCN-VGG (“All Black”), U-Net (“All Black”) and CrackGAN,
respectively. 62

4.13 Detection results on concrete wall and concrete pavement images. First row:
original concrete wall images. Second row: corresponding results of Crack-
GAN. Third row: original concrete pavement images. Fourth row: the cor-
responding results of CrackGAN . 64

5.1 Architectures of three different GANs: (a) Original GAN; (b) DC-GAN; (c)
imageto-image translation GAN. 67

5.2 Overview of the proposed approach with cycle-GAN 69

5.3 Preparing a labor-free structure library . 71

5.4 Network architecture of the forward GAN 74

5.5 One-class discriminator . 76

5.6 Knowledge learned from a classification task has strong transferring ability
and can be used for parameter initialization to ease the training on different
tasks. Left: original crack image block. Middle: feature maps extracted
using low level convolutional kernels of pre-trained model. 78

xiii

5.7 Results from the image-to-image translation network. Left column: the test
images from [49] and [19]. Middle column: the corresponding translation
results of the forward GAN. Right column: the reconstructed results by the
reverse GAN using the translated results. 79

5.8 Comparisons on CFD data. From top to bottom are: original image, GTs,
and the detection results of CrackIT, MFCD, CrackForest, CrackGAN and
the proposed method, respectively. 81

5.9 Comparison of detection results on industrial data. From top to bottom are:
original image, GTs, and the detection results of CrackIT, MFCD, Crack-
Forest, CrackGAN and the proposed method, respectively. 83

5.10 Testing results on training set with and without cycle consistent loss. The
top row is the generated images with the proposed setting, and the bottom
row is the generated images without cycle consistent loss. 84

5.11 Experiments with and without one-class discriminator. Images at the top
are with the proposed setting and the images on the bottom are results with
the original cycle-GAN. 85

CHAPTER 1

INTRODUCTION

Cracks are common defects on surfaces of man-made structures such as pavements,

bridges, walls of nuclear power plants, ceilings of tunnels, etc. Timely discovering and repair-

ing of the cracks are of great significance and importance for keeping healthy infrastructures

and preventing further damages. With the increasing demand of computer-aided intelligent

infrastructure monitor/inspection systems, such as pavement surface inspection [1], under-

ground pipeline inspection [2], bridge cracking monitor [3], railway track assessment [4],

etc., fully automatic crack detection has gained more and more attention in the past ten

years. However, the task is non-trivial because in most contexts, the cracks appear as thin,

irregular long-narrow objects, and are often buried into complex and textured background

which make the task very challenging. In addition, in many applications, the image is large,

such as pavement images of 2048×4096-pixel for road surface inspection, which requires the

method to have high computational efficiency. Thus, a labor-light, computational efficient

crack detection approach with high crack localization ability has great significance.

This research focuses on crack detection using deep learning. The dissertation is or-

ganized as follows. In Chapter 1, we review the previous works on crack detection and

recent development on deep learning-based object detection; then we discuss the issue of

using deep learning for crack detection. In Chapter 2, we present the work which utilizes

a deep classification network to assist crack detection [5, 6]. In Chapter 3, we generalizes

the classification network to a detection network with FCN which boosts the computation

efficiency for processing large-size image, and also improves the localization accuracy [7]. In

Chapter 4, we introduce generative adversarial learning to solve a practical problem, “All

Black” issue, caused by the data imbalance inherent in crack-like object detection; in the

meanwhile, the method is robust to biased GTs which frees the engineers from annotating

the labor-intensive pixel-level GTs and greatly reduced the workload [8, 9]. In Chapter 5,

2

we discuss a self-supervised structure learning approach with cycle-consistent generative

adversarial networks [10]; the network can be trained without using paired data which fur-

ther reduces the work load. It is an important research direction for future crack detection

systems.

Since pavement crack detection is one of the most difficult tasks in crack-like object

detection, we discuss the methods based on solving practical problems from industrial pave-

ment crack detection. Nonetheless, the methods are also verified using a variety of public

datasets and can be applied to other crack detection applications.

1.1 Crack Detection

Traditional low-level image processing techniques have been deeply explored for crack

detection in the past thirty years. Intensity-thresholding-based crack segmentation was

quite popular in the early times because it was fast and straightforward. The goal was to

find a proper threshold using grayscale information. Chan et al. [11] applied a thresholding

method [12] to pavement crack detection which calculated the optimal threshold based on

an ideal image model of which only object and background exist. Cheng et al. [13] proposed

a fuzzy logic–based thresholding method which transformed the intensity domain into the

fuzzy domain using the maximum entropy; they also designed a complete pavement distress

detection system [14]. Oliveira and Correia [15] developed a dynamic thresholding method

based on entropy; Kirschke and Velinsky [12] applied a histogram-based thresholding to

crack segmentation. Koutsopoulos et al. [16] tested Otsu thresholding method [17] and

the relaxation method [18]. Alekseychuk [2] developed a dynamic optimization method for

crack-like object segmentation. Zou et al. [19], working on the assumption that crack inten-

sity was usually consistent and lower than the background, designed an intensity difference-

measuring function to find the threshold. These methods were sensitive to noise and would

fail when the background contains complex textures.

More sophisticated feature extractions have also been used for crack segmentation.

These methods usually work in two steps: feature extraction and pattern classification,

with the first step being the key in segmentation. Abdel-Qader [3] discussed different edge

3

detectors for crack identification, such as Sobel, Canny and fast Haar transformation [20],

finding that they were too sensitive to noise. Hu and Zhao [21] developed a crack descrip-

tor based on a reduced local binary pattern (LBP) subset that assumed that cracks could

be extracted using edge, corner and plain area information, overlooking the complexity of

background textures. Zalama et al. [22] utilized visual features extracted by Gabor filters

for crack detection; and they employed adaBoosting with a set of weak classifiers (each

corresponding to a distinct filter/feature-extractor) for feature extraction. Shi et al. [23]

used a integral channel feature for crack token mapping; and named CrackForest, it ap-

plied random structured forest [24,25] for crack-patch identification, where the distribution

differences of the statistical feature histogram and statistical neighborhood histogram were

used to discriminate cracks from false positives. Petrou and Kittler [26] designed a Walsh

function-based texture descriptor for crack segmentation. Wang et al. [27] proposed a so-

called trous edge detection algorithm for crack segmentation. Zhou et al. [28] selected a

bunch of statistical features based on wavelet coefficients for crack segmentation. Nejad and

Zakeri [29] developed an expert system for pavement distress detection based on wavelet

theory. However, these methods were unable to separate crack pixels from the compli-

cated background textures accurately because of being not able to catch sufficient global

structural information.

Because a segmented result usually contains many disjoint crack fragments due to the

intensity inconsistency along a crack, many methods have employed some linking opera-

tions to enhance the continuity. Zou et al. [19] utilized minimal spanning tree to generate

continuous crack curves. Vaheesan et al. [30] used Hough transformation to enhance the con-

nectivity of crack fragments. Zou et al. [19] employed tensor-voting for crack enhancement.

Based on endpoint and orientation information, Song et al. [31] proposed a dual-threshold

linking method to defragment crack segments. By checking the connectivity along eight di-

rections, Cheng et al. [32] grouped the related crack fragments into a full crack. Formulate

the problem as a trajectory-tracking, Huang and Xu [33] connected preselected crack seeds

to build crack curves for crack detection. The segmentation method with post-processing

4

(noise removal and crack continuity enhancement) achieved a certain degree of success; how-

ever, it did not solve the problem well: the complex post-processing usually introduced quite

a bunch of manually-tunable parameters, which was easy to fail when processing images

from different sources.

1.2 Deep Learning for Object Detection

Over the last ten years, deep learning has achieved great success [34, 35], in which an

artificial neural network (ANN) with multiple hidden layers is used. The deep network

architectures can be deep belief network, deep recurrent neural network, deep convolutional

neural network (DCNN), etc. For computer vision, DCNN is the main architecture, and it

showed great advantages dealing with computer vision tasks with the following advantages.

First, the convolutional kernels are learned automatically, so they have high flexibility and

can mine useful information associated with the tasks by designing an objective function

properly. Second, via deep architectures, the network can better catch global information

via combining knowledge from different levels/scales; this is hard to achieve using traditional

handcrafted feature extractors. Third, the deep architecture combined with different acti-

vation functions among the hidden layers provides the ability to model complex non-linear

relation between input and output which can leverage the performance of processing com-

plex pattern classification problems. With the aforementioned merits, DCNN has improved

state-of-the-arts in various visual object detection benchmarks.

Object detection is to determine what objects are in an image (object classification) and

where the object is (object localization). One of the most notable success in deep learning

is the AlexNet [36], which won the ImageNet Large Scale Visual Recognition Challenge

2012 [37]. After that, a lot of related works were done by utilizing a deep classification

network [36]. RCNN was the early work for object detection based on a classification

network, it relied on region-proposal [38, 39] to find possible image regions and introduced

a CNN to each region for feature extraction, and then sent the extracted features to a

classifier such as SVM to determine what object it contains. Spatial Pyramid Pooling

(SPP) network [40] calculated the CNN representation only once on the entire image and

5

used the features to find the representation of each patch; it needed a fixed input size due to

the fully connected layers and introduced a special pooling layer after the last convolution

layer. Fast R-CNN [39] improved SPP net by enabling the gradients propagation through

spatial pooling and made the network possible to be trained end-to-end, and it added a

bounding box regression to the network training. Faster RCNN [41] improved Fast RCNN

by replacing selective search with a small CNN called Region Proposal Network to generate

regions of interest (ROI); it introduced anchor box and utilized different scales and aspects

of ratios to generate candidate regions. R-FCN [42] introduced FCN into Faster RCNN

and used position sensitive convolution for the classification; it still followed the two-stage

detection ides, region-proposal and classification, but all the convolution operations were

shared. Single shot detector (SSD) [43] conducted the two-stage processing in a single shot,

simultaneously predicting the bonding box and class label; it introduced non-maximum

suppression to group highly overlapped bounding box into a single box. Similarly, YOLO

[44] divided an image into S×S grids and each grid predicted an object. An improved

version of YOLO, YOLO9000 [45], utilized 9000 object classes to train the model and

introduced fully convolution and multiscale prediction to improve the computation efficiency

and detection accuracy, respectively. Mask-RCNN [46] improved the detection accuracy by

removing the Softmax layer which eliminates the competition between different classes and

achieved state-of-the-art performance.

1.3 Deep Learning for Crack Detection

Based on a classification CNN, [47] used per-pixel window-sliding for crack detection

which is extremely inefficient and could cost tens of days to process a large size image

(2048×4096-pixel). Rather than the per-pixel window-sliding, [5] utilized a CNN for pre-

selection which divides a full-size image into a few image blocks, and find and remove most

of the background/non-crack area before performing crack segmentation within a crack

patch/region. Similarly, Cha et al. [11] proposed a CNN for block-level crack detection

without post processing which cannot localize the cracks accurately. Zhang et al. [48] pro-

posed a crack detection method, CrackNet, with hand-crafted convolutional kernels which

6

also relies on window-sliding to process full-size images. Processing large-size images with

window-sliding are very inefficient, because a great number of image blocks need to be

processed, even introducing parallel processing [48]. To solve the computation efficiency

problem, Zhang et al. [7] generalized a classification network to a detection network with

fully convolutional design; the authors also detailed the inefficiency reason of the window-

sliding based detection, and improved the computation efficiency by tens of times via elim-

inating the redundant convolution and performing crack detection end-to-end in one stage.

While the computation efficiency has been greatly improved, localization accuracy is not

satisfactory. Zhang et al. [7] tried to improve the crack localization accuracy by perform-

ing an end-to-end training, it failed due to the biased GTs and data imbalance inherent

in crack-like object detection. At the same time, Yang et al. [49] proposed to use a fully

convolutional network for pixel-level crack detection based on the images with high resolu-

tion and quality, and with carefully annotated GTs; however, it failed to detect thin cracks

which are quite common in industrial pavement images. Targeting on building an indus-

trial pavement crack detection system, [8,9] introduced generative adversarial learning and

an asymmetric U-shape network to handle the dada imbalance and biased-GT. A recent

work [10] proposed a self-supervised structure learning method for crack detection based

on cycle-consistent generative adversarial networks that does not need to manually prepare

pixel-level GTs for training and it achieved comparable results with supervised methods. It

could be an important research direction of automatic crack detection system in the future.

7

CHAPTER 2

PRESELECTION WITH DEEP CLASSIFICATION NETWORK

2.1 Background

As been discussed in the introduction, the main problem troubled the industrial ap-

plication of crack detection is the noise issue which has not been solved using traditional

image segmentation. It is difficult to find a reliable threshold for crack segmentation: the

result either produced many crack fragments with a lot of noise, or missed most of the

cracks. In the meanwhile, when trying to perform noise removal, it may remove the true

crack fragments; and when performing crack defragments, it may link the noises together

and create undesirable false positives.

Before deep learning, the researchers had tried to solve the problem by designing vari-

ous hand-crafted feature extractors and applying some machine learning techniques to train

a model for crack/non-crack classification. Shi et al. [23] introduced random structured for-

est [24] for crack detection where the integral channel features of 3 colors, 2 magnitudes

and 8 orientations were used to discriminate crack patches from non-crack patches based

on a crack-token mapping strategy; and it used the distribution differences of a statistical

feature histogram and a statistical neighborhood histogram to identify the false positives.

It achieved very good results when processing the images captured with cellular phone

where the images were with high quality, and the BGs (BGs) were smooth. However, the

performance decreased dramatically when processing the industrial images. In addition,

the method cannot remove the noise connected to the true crack regions and such cases

were quite common in crack detection. In summary, the hand-crafted feature descriptors

calculated statistical features at some local scope, then employed machine learning to dis-

criminate cracks from BGs. However, they were not able to solve the problem well because

hand-crafted features can only collect information from a very limited space and lack of

8

the global information, even the statistics at different locations were combined to build

an integrated feature vector, such as Hog [50]; thus, they cannot represent the structural

information well which was important to discriminate cracks from noisy textures. A more

intuitive explanation is that the fake crack-debris produced by the complicated BG tex-

tures would probably generate the same feature descriptors, such as histograms of oriented

gradients that will confuse the classifier and fail the job.

Different from traditional pattern classification methods, DCNN performs feature ex-

traction and machine classification at one stage with the following advantages. First, the

multiple convolutional layers with different activations can model the high non-linearity;

and the convolutional kernels are learned automatically, so they have high flexibility and

can mine more useful information. Second, via deep architectures, the network can better

catch global structural information by combining knowledge from different levels/scales;

and this is hard to achieve using traditional handcrafted feature extraction methods.

2.2 Related Works

2.2.1 Deep convolutional neural network

(a) Fully Connected Layer (a) Convolution layer

Fig. 2.1: Illustration of fully connected layer and convolutional layer.

In DCNNs, two types of layers contribute the main functions: convolutional layer and

fully connected layer. Take a two-layer network as example. For fully connected layer, Fig.

2.1 (a), each input neuron connects to every neuron in the next layer with some trainable

9

weights; for the convolutional layer, Figure 2.1 (b), the main differences are the local-

connection design and weights sharing. Each neuron in the next layer only connects with

the neurons in a local region. Moreover, for image processing problems, the local weights

are just the same as 2-D filters operating the convolution operations on the input neurons

at a specific stride, and outputting the neuron-values of the next layer. Here, “deep” means

that there are multiple layers, and the convolutional layers usually appear at the lower

layers that serve as feature extractor; the fully connected layers are at the end serving as

the classifier that outputs the labels or membership values. Other auxiliary designs may be

included between layers, such as MaxPooling [36], ReLu [51], Dropout [52,53], etc.

With such setting, DCNN can extract representative features for different tasks such

as image classification, object detection, image segmentation, etc.

2.2.2 Transfer learning

In deep learning, the most challenging thing is to train the network. A deep neural

network usually has tens of millions of parameters, e.g. the AlexNet designed [36] has 60

million and the VGG [54] has 138 million; therefore, it requires a large amount of labeled

data for training. In practice, however, it is rare to have datasets of sufficient size. Fortu-

nately, people find that through transferring the knowledge learned from different resources

and fine-tuning the network based on limited data, it can still get the network converged.

Depending on the situations between the source and target domains and tasks, there can

be different transfer learning strategies according to what knowledge to transfer and how

to transfer. Following the definition by Pan Yang [55], given a source domain Ds and a

learning task Ts, and a target domain Dt and a learning task Tt, transfer learning intends

to improve the learning of the target predictive function ft (�) in Dt by applying the knowl-

edge in Ds and Ts, where Ds 6= Dt, or Ts 6= Tt. Depending on the situation between the

source and target domains and tasks, inductive transfer learning and transductive transfer

learning are defined as follows [55]. Inductive transfer learning: In this setting, the target

and source tasks are different, regardless of the similarity between the source and target

domains. This means that the aim of inductive transfer learning is to improve the learning

10

of ft (�) in Dt applying the knowledge in Ds and Ts, where Ts 6= Tt.

Transductive transfer learning: Transductive transfer learning corresponds to the cases

where the source and target tasks are identical, but the source and target domains are

different. In other words, transductive transfer learning intends to improve the learning

of ft (�) in Dt via applying the knowledge in Ds and Ts, where Ds 6= Dt and Ts = Tt.

Yosinski et al. [56] discussed the transferability of knowledge from different layers in deep

convolutional neural network. In general, low-level convolutional layers learn more generic

features with strong transferability, and higher-level layers learn knowledge more specific

to the task. In this Chapter, we transfer the generic knowledge from a pre-trained network

using ImageNet data [37] and fine-tune the network to classify crack and non-crack blocks

for pre-selection.

2.2.3 LASSO

Fig. 2.2: Illustration of the difference between ridge regression and LASSO. (Figure from
[57])

For machine learning, a good model is very important. Linear regression is the most

popular and widely used model. Suppose there are n observations {xi, yi}ni=1. Each ob-

11

servation includes a response variable yi and a column vector xi of p predictors. The

mathematical expression of the ordinary linear regression model is

yi = β1xi1 + β2xi2 + · · ·+ βpxip + εi (2.1)

The goal is to find the “best” coefficients β that minimize the objective function S as follows:

S (β) =
n∑

i=1

∣∣∣∣∣∣yi −
p∑

j=1

xijβj

∣∣∣∣∣∣
2

(2.2)

Ridge regression improved the ordinal linear regression by making a L2-norm constraint to

the objective, and the objective function became

S (β) =
n∑

i=1

∣∣∣∣∣∣yi −
p∑

j=1

xijβj

∣∣∣∣∣∣
2

+ λ‖β‖2 (2.3)

Least absolute shrinkage and selection operator (LASSO) [57] replaced the constraint with

L1-norm, and the objective function became

S (β) =
n∑

i=1

∣∣∣∣∣∣yi −
p∑

j=1

xijβj

∣∣∣∣∣∣
2

+ λ‖β‖ (2.4)

Comparing with ridge regression, LASSO tends to force the coefficients of the least influen-

tial features to be exactly zero. Take a two-dimensional feature as example, in Figure 2.2,

the blue diamond denotes the LASSO constraint with L1 penalty and the blue circle is the

ridge regression with L2 penalty, respectively. The optimization is equal to expending the

red ellipse until it touches the L1 or L2 constraint area. From Figure 2.2, the coefficient

estimations of LASSO and ridge regression are given by the point at which the ellipse first

touches the diamond/circle region. For LASSO, the first contacted point will be the one

located at some axes where some of the coefficients are zero; while for ridge regression, the

point will be somewhere at the boundary of the circle. Thus, LASSO could be used for

variable/feature selection.

12

2.3 Proposed Method
D

a
ta

se
t

(6
0
0
 2

0
0
0
×

4
0
0
0
im

a
g
e
s
)

400

200

For each

2000×4000 image

Crack or

Non-crack

Y

Set as background

region in orginal

image

N

Set as crack

region in original

image

D
o
n

e

(R
e
su

lt
 I

m
a
g
e
s)

Conduct crack

detection on the

crack regions

Rotate and resize

sampling

T-DCNN

classifier

Transfer

Learning
80000

200×200

image blocks

Overlapping

Sampling

Pre-processing
Each 200×200

image blocks

Fig. 2.3: Flowchart of the proposed method

Deep learning has showed great superiority in solving complicated pattern classification

problems. The proposed method introduces a deep classification network to perform the

preselection which screens out most noisy BG-areas before crack detection. First, a column-

wise preprocessing is conducted to eliminate the illuminance unbalance; second, transfer

learning are used to train a DCNN to divide an image into crack and non-crack regions;

in this way, the possible noises from the BG are removed according to the region label.

Focusing on the crack regions, a block-wise segmentation algorithm is developed to find

the possible crack pixels with less noise. At last, tensor voting is employed to improve the

crack continuity and extract the crack curves as the detection results. A flowchart of the

proposed approach is shown in Figure 2.3.

2.3.1 Preprocessing

Different from the images captured by cellular phones [19, 23], the data used in this

work are pavement images captured by an industrial line-scan camera which scans road

surface at 4.096-width and produces a 2048×4096-pixel image every 2048 scans (i.e., 1-pixel

represents 1 mm2 road area). Due to the uneven lighting, the illuminances along different

locations can be different, and that create non-uniform intensities at different columns, as

shown in Figure 2.4(a). However, the intensities along the same column are quite similar

13

(a) (b)

Fig. 2.4: Illuminance rebalance. (a): A low-resolution pavement image captured using a
vehicle running at 100km/h. (b): The illuminance balanced image (right).

and the mean value can be used to represent the illuminance, i.e., the average intensity of

each column can be mapped to the same value for illuminance balancing. Such column-wise

illuminance-rebalancing can be realized using Eqs. (2.5) and (2.6) as follows [22]:

I
′
ij = Ḡ

Iij

Ak
i

i = 1, 2, . . . ,M ; j = 1, 2, . . . , N (2.5)

where Iij = the gray value of the k-th image at column i and row j; k = image number;

I
′
ij = modified pixel value; M = number of image columns; N = number of rows; and Ḡ =

predefined average gray value for each column (128 is used) after the preprocessing.

Ak
i = αAk−1

i + (1− α) aki i = 1, 2, . . . ,M (2.6)

where α = β (k − 1/k) = variable to control the weight of the current image, which is

also the latest-measured illuminance information; β = empirical constant (0.75 is used);

Ak
i = weighted average intensity value of the i-th column utilized to calculate the balanced

intensity of the k-th image; and aki = average value of the i-th column in the k-th image.

See Figure 2.4 (b) for the result after the preprocessing.

2.3.2 Preselection with transfer learning

Transfer leaning is introduced to train a deep convolutional neural network for the

classification of crack and non-crack blocks, which screens out most noisy BG areas. A

14

deep convolutional neural network, AlexNet, with five convolutional layers and two fully

connected layers is used. The convolutional layers are trained to find proper kernels for

feature extraction automatically; the multilayer deep architecture is used to catch the global

structural pattern by combining knowledge from different levels. The generic knowledge

from ImageNet pre-trained model is transferred for training.

Fig. 2.5: Illustration of Image-block generation

Image-block generation: To train a deep convolutional neural network, a relatively large

dataset is needed. In the experiment, 600 pavement images (2048×4096-pixel each) with

low similarity are selected from 20,000 images. Among them, 400 images are used to obtain

the training set of 30,000 crack blocks and 30,000 BG blocks sized 400×400-pixel each. The

images are further used to generate the 200×200-pixel sub-blocks by cropping the center

square area to perform a two-step pre-selection. The other 200 images are used to obtain

the test set of 20,000 crack blocks and 20,000 BG blocks. As shown in Figure 2.5, the image

blocks are generated as follows:

• For each image of 2048×4096-pixel, cracks are manually marked by 1-pixel curves;

15

• Crack blocks are sampled from the original images along the crack curves, and the

BG blocks are sampled randomly from the areas far from the crack curves;

• To reduce similarity, the distance d between two block samples satisfies d > w/2,

where w = side length of the sample block.

Image resize and image rotation are used to augment the data and increase the diversity

based on the following knowledge: (1) cracks are direction invariant because that a crack

is still a crack when it is changed to another direction; and 2) different cracks may have

different widths, and the BG textures might have different coarse levels; therefore, the

resized images (90%, 95%, 100%, 105% and 110% of the original images) can also be used

to generate crack blocks.

Fig. 2.6: Transfer of generic knowledge based on ImageNet data (C1, C2, C3, C4, and C5
= five convolution layers; F6, F7, and F8 = three fully connected layers; C = crack, BG =
BG).

Network architecture: A DCNN usually contains tens of millions parameters. Directly

learning such huge number of parameters is very challenging, especially when the dataset

is not large enough. It has been verified that the knowledge learned from one task can

16

be used to ease the network training of other tasks [55, 58]; that is, the learning of a task

can be improved by using the knowledge learned from other tasks, and the improvement is

significant in large-data driven tasks such as deep learning. Typically, the generic features,

such as edge and color blobs, occur at high probability regardless of the exact cost function

and image data [56]. In DCNNs, low-level convolutional layers learn more generic features

with strong transferability and higher level layers learn knowledge more specific to the

task [55]. In this work, the generic knowledge in the first convolutional layer is transferred

from the pre-trained model, AlexNet, based on the following considerations:

• The crack patterns are relatively simple which can be represented by the generic

knowledge. For example in Figure 2.7, many feature maps show crack patterns similar

to those in the original images which support this assumption;

• The crack patterns have little similarity with the natural objects (e.g., dog, cat);

therefore, middle-level and high-level knowledge is less useful for crack detection and

is not transferred; and

• By transferring the generic features from the first layer of the source task, the network

needs not to relearn the basic features that make the network training easier.

Fig. 2.7: Feature maps of a sample image. Left: an image block. Right: feature maps after
the process of first convolutional layer.

In Figure 2.6, the source network is pre-trained using the data [36] with Caffe [59]. The

model takes a square (227×227) image block as input and produces a probability distribution

17

Fig. 2.8: Classification results for different image blocks; squares indicate mask blocks: (a
- d) BG; (e - h) crack.

over the 1,000 object classes. The network is mainly composed of five convolutional layers

(C1, C2, C3, C4 and C5) followed by three fully connected layers (F6, F7 and F8). The

five convolutional layers serve as a feature extractor; after each convolutional layer, a max-

pooling [36] operation with kernel size of 3×3. The three fully connected layers serve as

a classifier to output the class labels by computing Y6 = σ(W6Y5 + B6), Y7 = σ(W7Y6 +

B7), and Y8 = φ(W8Y7 + B8), where Yk denotes the output of the k-th layer, Wk and

Bk are trainable parameters of the k-th layer; and σ(X[i]) = max(0, X[i]) and φ(X) =

eX[i]/
∑

j e
X[i] are ReLU and SoftMax, respectively. The stochastic gradient descent (SGD)

[60] is used to update the parameters during training. In the target task, pavement image

blocks are input into the network, and resized to 227×227-pixel for transfer learning. As

shown in Figure 2.6, the first lock on the left shows that the generic features learned from

the first convolutional layer C1 are transferred directly and kept unchanged during training;

the other four locks indicate that the parameters from C2, C3, C4 and C5 are copied from

the source network but allowed to change during training, which means that the higher

level knowledge is relearned for the target task; finally, the parameters of the last three

fully connected layers, F6, F7 and F8, are randomly initialized and trained by SGD.

18

Two-step pre-selection: Based on the transfer learning, a pavement image is first di-

vided into smaller blocks, which are sent to the DCNN for classification. As shown in

Figure 2.8, if a crack traveling through the center area of a block (the square area in the

middle of the block with side length wc = w/2, where w is the side length of the image

block), the block is classified as a crack block; and if the crack is near the border of the

image block, it is classified as BG. Specifically, a 200×200-pixel image block with a crack

traveling outside the center area with wc =100 is classified as a BG block. In addition, the

size of the image block can influence the classification performance: the smaller it is, the

less global information it catches; this makes the classification more difficult and increases

computation complexity because more blocks need to be processed from a full-size image.

The larger the image block is, the more BG regions are involved, which on the other hand

makes the pre-classification less useful. Moreover, when applying transfer learning, if the

image was too large, crack information could be lost when resizing to 227×227-pixel. Based

on these considerations, a two-step pre-classification is designed. First, a mask block is

defined as the center square area of the image block; this is a smaller image region with side

length wc = w/2 (Figure 2.8), and it is used to locate the crack region in a mask image.

The mask image is defined as a binary image with the same size as the original image which

utilized ones to represent crack regions and zeros to represent the BG regions. Considering

the efficiency and accuracy, a two-step classification is performed as follows: at the first

step, 400×400-pixel image blocks are sampled from the original image in the left-to-right

and top-to-bottom order, and they are input into the DCNN sequentially with the step-size

ds of 100 pixels of which overlapping exists between adjacent samples. If the image block

is classified as crack, the related mask block area in the mask image is set as 1; the BG

blocks are initialized as 0s. Second, sampling of 200×200-pixel blocks with a step-size of 50

pixel is conducted focusing only on the crack regions produced in the first step to obtain

more accurate areas with mask blocks of 100×100-pixel. In this way, the related mask im-

ages are generated, refer to Figure 2.9 (c), and most noisy BG regions can be detected and

discarded before later processing. The cracks are separated and located in 100×100-pixel

19

area to assist crack segmentation and extraction. Figure 2.9 shows the related results.

2.3.3 Crack curve extraction

After pre-classification, cracks can be located in 100×100-pixel square areas. To obtain

more accurate crack locations to facilitate calculation of cracking extent [1, 61, 62], a crack

curve detection is applied to extract the crack curves. First, a block-wise segmentation

method is designed to produce the binary image; then tensor voting is used to extract the

final crack curves.

Image segmentation: Image segmentation clusters pixels into groups and assigns each

group a label. In this Chapter, the pixels in a pavement image are grouped into cracks

and BG. A block-wise segmentation method is developed and applied to each crack block

after the pre-selection to find the possible crack pixels. Segmentation is realized by using a

thresholding method where a linear regression model is used to find the proper threshold for

each block. In detail, 2,000 low similarity image blocks, 100×100-pixel each, are collected;

the related statistics and the best threshold for each block are then calculated and used

to fit a linear model as discussed subsequently. The best threshold is defined as the one

that maximizes the F1 measure [63] of the segmented result against the GTs of each image

block; it can be obtained automatically by comparing the segmented results using different

threshold values with the GTs (the values from M-30 to M+30 are used, M is the mean

value of the block); the threshold value maximizing the F1 measure is selected as the best

threshold for that block. The related statistics are mean (M), standard deviation (SD),

smoothness (SM), third momentum (TM), and uniformity (UF). The linear model is

T = β0 + β1M + β2SD + β3SM + β4TM + β5UF (2.7)

where β0, β1, · · ·, β5 = parameters to be determined by least square formula. It is well

known that the stability and prediction accuracy of a linear model are heavily related

to the selected predictors [64]; here, the least absolute shrinkage and selection operator

(LASSO) [57] are used. The constraint of the least squares is

20

Fig. 2.9: Step-by-step results for proposed method: (a) original images; (b) results after
first step of pre-selection; (c) mask images after second step of pre-selection; (d) results for
block-wise segmentation; (e) results for curve detection; (f) final results for detected crack
curves.

21

Fig. 2.10: Best lambda selected by cross-validated mean square error (MSE) based on
minimum-plus-one standard error formula (solid line to left = lowest value achieved by
MSE; solid line to right represents minimum-plus-one standard error, which is also the
lambda chosen by LASSO).

min

n∑
i=1

[Ti − (β0 + β1M + β2SD + β3SM + β4TM + β5UF)]2 (2.8)

subject to

5∑
j=1

‖βj < s‖ (2.9)

where s is constant; and s ≥ 0.By using the Lagrange multiplier, it is equivalent to mini-

mizing the residual sum of the squares plus a penalty term as

min
n∑

i=1

[Ti − (β0 + β1M + β2SD + β3SM + β4TM + β5UF)]2 + λ (2.10)

where λ ≥ 0. When s is small (or equivalently λ is large), some of the regression coefficients

will approach to 0, which serves to eliminate the predictors that are not significant. As

shown in Figure 2.10, λ is set as 0.729 by the minimum-plus-one standard error formula [65],

22

achieving a good R2 (0.68). Finally, M , SD and UF are selected as the most significant

predictors, and the prediction model is

T = 1.11 ∗M − 1.21 ∗ SD + 0.33 ∗ UF − 5.52 (2.11)

Fig. 2.11: Comparison of segmentation methods on image blocks: (a) original crack image
blocks; (b) segmentation results using [17]; (c) segmentation results using [19]; and (d)
segmentation results for proposed method.

In addition, the performance of other thresholding methods, including Otsu [17] and

Zou et al. [19], is compared; both achieved lower R2 (0.30 for Otsu (1975) and 0.41 for Zou et

23

al. [19]). The related segmentation results are shown in Figure 2.10. Focusing on the crack

block-regions, the best thresholds are calculated using Eq. (2.11), and the thresholding is

conducted to obtain the segmented blocks and to produce the segmented binary images as

in Figure 2.9 (d).

Crack curve extraction: As shown in Figure 2.9 (d), the segmented results may con-

tain many discontinuous crack fragments and noises; therefore, tensor voting based curve

detection [66] is used to connect the crack fragments along some curves and produce crack

curves with less noise. Notice that there are some small gaps in the curves generated by

using the local maximum voting strength [67]. Therefore, a gap filling operation using the

morphology close operation [20] is applied to connect cracks segments if the nearest distance

among them is less than 10 pixels. Figure 2.9 shows the final results after this operation.

2.4 Experiments

The experiments are performed using an HP Z220 workstation with 8G of memory; an

Nvidia Quadro K4000 GPU is used for training and testing. The system is built with the

Caffe software package; and MATLAB R2014a is used.

2.4.1 Dataset and metrics

The dataset is obtained from the images captured by a line-scan camera mounted at a

height of 2.3 m on the top of a vehicle; the camera can scan a 2×4-m road area to generate

a 2,000×4,000-pixel image (i.e., a road area of 1 mm2 corresponds to 1 pixel). The vehicle

can work at 100km/h. Detection performance are compared with that of four methods in

terms of recall, precision and F1-measure. Precision and recall can be computed using true

positive (TP), false negative (FN) and false positive (FP) as follows:

Precision =
TP

TP + FP
(2.12)

Recall =
TP

TP + FN
(2.13)

24

2.4.2 Fine-tuning details

The source network in Figure 2.6 is pre-trained with Caffe using ImageNet data. Trans-

fer learning is realized via the following fine-tuning strategy. The input image block is

resized to 227×227 pixels, and the generic knowledge is transferred by copying the param-

eters, which are unchanged during training, of the first convolution layer from the source

task. The base learning rate baselr is 0.001, the test iteration is 100, and min-batch is

400. The learning policy is that, for every step-size (100 is used) iteration, the learning rate

decreases to

lrstep = baselr ∗ gammafloor(iter/step) (2.14)

where lrstep = learning rate after iter iterations; iter = current iteration time; step = step

size; baselr = base learning rate; and gamma = decreasing factor (set as 0.2). Weight

decay, which is used to update the backpropagated gradient, is set as 0.005 and all weights

of the convolutional layers are copied from the pre-trained source network. The parameters

of the first convolutional layer are unchanged during training, whereas the parameters of

the second through fifth convolutional layers are retrained; the weights of the last three

fully-connected layers are set randomly and trained from scratch. The output labels of the

last layer are 0 and 1, which stands for the C (crack) and BG (BG), respectively. The

maximum iteration/epoch is set to 40,000. Finally, an overall accuracy of 0.953 is obtained

after 40,000 iterations on the test set; however, the network reaches its best performance

after about 8,000 iterations and changes little from 8,000 to 40,000 iterations.

2.4.3 Performance

For evaluation of detection, the proposed method is compared with traditional edge de-

tection methods, Canny, CrackIT and CrackForest. In the experiments, the ground truths

(GTs) of 300 test images are manually marked. As shown in Figure 2.12 (c), Canny segmen-

tation cannot obtain any intuitive cracking information because it is too sensitive to noise;

and it achieves high recall (0.999) but very low precision (0.001). CrackIT cannot detect

cracks because of the low resolution and low contrast of the industrial pavement image,

25

Fig. 2.12: Comparison of results using actual industry images: (a) original pavement images;
(b) manually marked GTs; (c) Canny; (d) CrackIT; (e) CrackForest; (f) proposed method.

26

Table 2.1: Performance evaluation of the method based on pre-selection

Method Recall Precision F1-measure

Canny 0.999 0.001 0.002

CrackIT 0.891 0.252 0.490

CrackForest 0.851 0.515 0.641

Proposed method 0.951 0.847 0.895

Figure 2.12(d); consequently, both recall and precision are very low (0.001). CrackForest

shows good detection property via its crack mapping strategy using random forest; however,

it cannot cope with noise, especially the noise connected to the true crack regions; also, it

achieves low precision (0.515). Table 2.1 summarizes the statistical results.

2.5 Summary

In this Chapter, a deep classification network is introduced to perform a pre-selection

which removes most BG areas before crack segmentation based on a window-sliding strategy.

We have present that the generic knowledge learned from ImageNet contains rich structural

information and it can be used to extract crack patterns for crack/non-crack classifica-

tion. The pre-classification with DCNN outperformed the hand-crafted feature extraction

method, which also indicated that the global information is important to discriminate cracks

from complicated BG textures. However, the computational efficiency remains an issue.

27

CHAPTER 3

TRANSFORM A CLASSIFICATION NET TO DETECTION NET

3.1 Background

In Chapter 2, we introduced a DCNN to perform a pre-selection before crack detection,

and achieved very good result. It is a region-based object detection method where window-

sliding is needed when processing large input images. However, the window-sliding based

processing is very inefficient when dealing with large images because a lot of image blocks

have to be processed in sequence. Such problem is a serious issue which impeded the

applications of deep learning based object detection, but it is rarely mentioned in the

references [38, 39]. For example, the time cost of processing an industrial pavement image,

2048times4096-pixel, is larger than 10 seconds using state-of-the-art method Fast-RCNN

[39], which is far from the real-time processing (0.1 seconds per image). What is more,

in order to achieve good crack localization accuracy, the method employed complex post

processing to extract a crack curve for the detection, which was expensive as well. In this

Chapter, we explore the reason of the inefficiency, and propose a one-state crack detection

method to improve the computation efficiency by more than 10 times; and it also proposes

a training strategy to improve the localization accuracy.

3.2 Related Works

3.2.1 Fully convolutional network (FCN)

A regular DCNN involves two types of layers, convolutional layer and fully connected

layer. Before FCN, the DCNN based methods are restrained by the condition that the

input image has to be a fixed size [38], and once the training is finished, it can only deal

with images with the specific size, or the inputs have to be resized. However, it turns

out that the fully connected layer can be grouped as a special case of the convolutional

28

layer with kernel size equal to the entire input dimension which can be used to address the

issue. Long et al. [69] proposed the fully convolutional network design for per-pixel semantic

segmentation. It implements an end-to-end, pixel-by-pixel supervised learning mechanism

by introducing some up-sampling strategy to remedy the resolution loss. Instead of paying

attention to building an end-to-end network focusing on the up-sampling, we introduce

the fully convolutional design to convert a classification net into a detection network that

can work on the full-size images seamlessly. More important, our work also shows that

the semantic segmentation network is the same as classification network working under

larger field of view, which could be used to explain many of the phenomenon with fully

convolutional layers such as the boundary vagueness in semantic segmentation [69], blurry

of generated images using GAN [70], etc.

3.2.2 Dilated convolution

The dilated convolution was originally designed for end-to-end semantic segmentation

by aggregating contextual information at multi-scales [71–73]. As shown in Figure 3.1, in

image processing problems, it considers 2-D discrete convolution: Let F : Z2 → R be a

2-D discrete function with domain Ωf = [−f , f] which can be viewed as the input image;

and let K : Z2 → R be another 2-D function with Ωf = [−f , f], that can be viewed as

the convolutional kernel, assuming n < m. The discrete convolution operator * can be

expressed as

F ∗K(m,n) =
r∑

i=−r

r∑
j=−r

F (m− i, n− j)K(i, j) (3.1)

For the dilated convolution, the kernel function is changed to

Kd
i,j =

 Ki/s,j/s, if s divides i and j;

0, otherwise.
(3.2)

From Figure 3.1, with dilated convolution, the receptive field is expanded directly which

can involve much more context information; and it is reported that via such way, the network

can achieve better performance for semantic segmentation problems [71]. However, instead

29

(a) (b) (c)

Fig. 3.1: Dilated convolution with kernels of 3×3: (a) without dilation; (b) 2-dilated con-
volution; (c) 3-dilated convolution. (Figure from [71]).

of emphasizing the significance of enlarging the context coverage in an end-to-end training

mode by the original authors, our work presents that the dilated convolution is an equivalent

implementation of the standard convolutions with dense inter-sampling under multi-layer

CNN context, and that can be used to enable the transfer of middle level knowledge and

facilitate the end-to-end training.

3.3 Proposed Method

In the early attempts, it was found that directly training a fully convolutional network

(FCN) [69] for end-to-end per-pixel detection was not satisfactory. There were several

reasons; the most possible ones were: 1) crack, as a thin-long target, can only occupy a very

small area in the full image comparing to the BG. with the fact that patch-wise training

is equivalent to loss sampling in FCN [69], directly applying FCN to pavement cracking

images for pixel-level detection is actually operating on a heavily unbalanced training set.

2) the precise GTs of pavement crack images are inherently difficult to obtain since the

cracks are thin and the crack boundaries are vague, that makes it impossible for per-pixel

GT annotation; therefore, the community usually marks the cracks by 1-pixel curves and

set them as the GTs. While such GT is more than welcome by the engineers because of the

light labor-cost; however, they cannot perfectly match the actual crack at pixel-level that

makes the computation inaccurate.

This work starts from training a classification network to classify image blocks of

30

227×227-pixel as cracks or BG. It is trained using the transfer learning, and the train-

ing set is composed of 40,000 image blocks of the two categories (20,000 instances for each).

While the original classification network can only process image blocks with a fix size, con-

sequently, the first task is to enable the network to work on full size pavement images;

and this is realized by replacing the fully connected layer with fully convolutional layer in

conventional DCNNs. While directly applying this classification network on full-size image

can only produce a low resolution output with poor localization accuracy, the second task

focuses on increasing the output resolution that will facilitate the refining later. The res-

olution decrease mainly comes from the operations working at the stride larger than one,

including convolution and max-pooling; therefore, it reduces the strides, and introduces

the dilated-layer to remedy the affection of stride changes. At last, an end-to-end network

refining is conducted under a larger field of view to reduce the localization uncertainty and

achieve more accurate detection results. Figure 3.2 is an overview of such design.

3.3.1 Training a classification network

Comparing with the task of high accurate crack localization, training the network

as an image-block classifier is much easier. The classification can be viewed as a weakly

supervised detection, and it plays the key for transforming the classification network into the

final detection network. The data used to train the deep classification network are prepared

following the data augmentation in Chapter 2: first, we manually marked 400 original

pavement images of size 2000×4000-pixel; secondly, we sample the image blocks (227×227-

pixel) of crack along the corresponding marked curves, the BG blocks are sampled on the

locations far from the cracking curves. The distance d between two block-samples along the

curves satisfies d > w/2, w is the side length of the sample block. Besides, it also employed

image resizing and image rotating to increase data diversity.

Transfer learning is an effective method for training deep networks [56,58] and is utilized

here. In essence, the DCNN involves a lot of filters which conduct convolution operations on

various input images for feature extraction; however, each of the convolution kernels/filters

actually operates on the entire image (or the entire feature maps) with the same format

31

Input

Input

C1 C2 C3 C4 C5

C1 C2 C3 C4 C5

Source Net

F3F2F1
1000

labels

2 labels

 0: C

 1: BG

Random

Initialization

Cracking Classification Net

Input

C1 C2 DC3 DC4 DC5 FC1

Cracking Detection Net

FC2 FC3

FC1 FC2

Random

Initialization

MP1 MP2

MP1 MP2

MP1 MP2

Random

Initialization

MP3

Fig. 3.2: Overview of the proposed approach: network at the top is the source net trained
with ImageNet; network in the middle is the crack block classification net trained with
transfer learning and network at bottom is the proposed dilation net for crack detection
(C=crack; BG=BG).

32

during the training which makes the convolutional layer have more chance to extract the

common features or knowledge. Specifically, for the lower convolutional layers, they usually

learn generic knowledge that has strong transferability. Therefore, as in Chapter 2, a pre-

trained model is used as the source network; and the generic knowledge from low level

convolutional layers are transferred by initializing the parameters using the pre-trained

model. The network involves five convolutional layers C1, C2, . . . , C5 and three fully

connected layers F1, F2 and F3; between C1 and C2, C2 and C3, and C5 and F1, there are

three max-pooling layers, respectively. In the experiments, it re-implemented the network

by: (1) transferring the generic knowledge by copying the weights of the first convolutional

layer; (2) removing the max-pooling layer between C5 and F1; 3) Removing F3 and halving

the output channels of C3, C4, C5, C6, F1 and F2 for parameter reduction. The weights of

C2 are copied from the source net and retrained, weights of C3-C5, F1 and F2 are randomly

initialized and trained. The inputs are image blocks with the labels of crack and BG. In

the last layer, Softmax layer [36] is employed to calculate the loss, and send the gradient

information back to the former layers for parameter updating via BP algorithm [60]. In

this way, it can create a well-trained classification network.

3.3.2 Crack detection network

An ideal method using a classification network to perform detection is the patch-wise

per-pixel labeling which has almost been abandoned due to its huge time complexity caused

by the sliding window process that conducts the forward computation at every pixel location

patch-by-patch. Researchers have tried to find a tradeoff by using region proposal and stride

window-sliding [38, 39, 44, 68]; however, it is still very inefficient since the region based

forward process has to be performed many times, especially for processing large images. In

this Chapter, we propose a solution by introducing equivalent convolutional layers to replace

the fully connected layers and designed an equivalent dense dilation layer to transform a

classification network into an end-to-end detection network.

Working on full-size image with FCN: Fully connected layer requires a fixed input di-

mension and that has caused much inconvenience in dealing with object detection using

33

Fig. 3.3: Fully connected layer is a special case of the convolutional layer.

large input images. Fortunately, it is found that a fully connected layer can be replaced

by an equivalent convolutional layer. As in Figure 3.3, assume that there was a layer with

m×m× 1-dimension feature map as input, and the neuron number of the next layer is M .

For the fully connected layer, the m ×m feature map will be treated as an m2 × 1 vector

with each element as an input neuron, and they are connected to every neuron in the next

layer independently, refer to Figure 3.3. Then, for the equivalent convolutional layer, it can

configure M convolutional kernels, each with m×m×1-dimension, and conducts the convo-

lutional calculation on the entire input respectively; and the output would be M -dimension

feature map but each of the map is 1×1-dimension. It is a different implementation, but

the function is the same, including input dimension, trainable parameters and output di-

mension. Here, the dimension property of a layer is defined as a vector with 3 elements

representing input, trainable parameter and output dimension; Dfconn and Dfconv denotes

the dimension of a fully connected layer and the dimension of a fully convolutional layer, re-

spectively. Eqs. (3.3) and (3.4) indicate the dimension equality of the two implementations

34

as illustrated in Figure 3.3.

Dfconn = (m2 × 1,m2 ×M,M) (3.3)

Dfconv = (m×m,M ×m2,M) (3.4)

In the classification network, the input of the first fully connected layer F1 is the

feature map of 6×6×128 dimension from C5 (m = 6), and the output is 2048 neurons

(M = 2048); i.e., we can apply 2048 convolution kernels of 6×6×128-dimension on the

feature maps and that will produce 2048×1-dimension output which is a perfect match

with the original F1 layer. For F2 layer, since the input has a 1×2048 dimension “feature-

maps”, it can configure a 1×1×2048-dimension kernel and set the output as 3-dimension

vector that stands for the three categories. Please find the related network settings and the

dimension changes in Table 3.1. Since the convolutional operation does not require a fixed

input size, the modified network can work on the full image directly without retraining the

parameters.

Fig. 3.4: Sample images and the outputs produced by Naive detection network. Left column:
the original image. Right column: outputs of the Naive detection network.

35

Before implementing a detection network for large size images, we perform an analysis

of the resolution changes under large input. Assume that a classification net is trained based

on images with size m×m-pixel, now we directly apply the convolutional network on images

with sizes M×M -pixel, where M > m. At the first glance, it tends to give us an illusion that

the network realized a 227-time down-sampling process since it is fed a 227×227-pixel image

and produces a classification label. If so, the classification net working on full-size image

tended to produce an output with resolution = (2000 × 4000)/227 = 8.8 × 17.6. However,

it is not true. As in Table 3.1, it got a 63×125 output. Indeed, under larger field of view,

such FCN based design actually realized multiple-spot detection at different locations. The

number of the spots is decided by the convolution and pooling with stride larger than one.

Besides, such process on the full image does not involve redundant convolution operations

other than patch wise pixel-labeling working in the sliding-window mode. While it only

gives low quality output with very low resolution, it is called “Naive Detection Net”, i.e.,

it needs to be improved. Refer Figure 3.4 for the result produced by the Naive Detection

Network.

（c）crack （d）crack（a）background （b）background

Fig. 3.5: Localization uncertainty of the classification network.

Localization uncertainty analysis: In addition to the resolution loss inherited from

the classification net, the low localization accuracy in Figure 3.4 is also caused by the

localization uncertainty of the classification net as in Figure 3.5. For classifying the image

blocks, it is found that the network did a very good job when dealing with the blocks when a

crack passing through the block center or the blocks without cracks. However, they become

ambiguous for the blocks with cracks near the border, refer Figure 3.5 for the cracks located

36

outside the center-square areas. It is called localization uncertainty of the classification

net; and if the localization uncertainty can be reduced, the detection performance will be

improved.

a b a b a b a b

c d c d c d c d

a b a b a b a b

c d c d c d c d

a b a b a b a b

c d c d c d c d

a b a b a b a b

c d c d c d c d

A A A A

A A A A

A A A A

A A A A

B B B B

B B B B

B B B B

B B B B

C C C C

C C C C

C C C C

C C C C

D D D D

D D D D

D D D D

D D D D

A B A B A B A B

C D C D C D C D

A B A B A B A B

C D C D C D C D

A B A B A B A B

C D C D C D C D

A B A B A B A B

C D C D C D C D

Stride 2

Stride 1

or

or

Kernel

3×3

K K K

K K K

K K K

0 0 0 0 0 0 0

0 K 0 K 0 K 0

0 0 0 0 0 0 0

0 K 0 K 0 K 0

0 0 0 0 0 0 0

0 K 0 K 0 K 0

0 0 0 0 0 0 0

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

E E E E

E E E E

E E E E

E E E E

F F F F

F F F F

F F F F

F F F F

E F E F E F E F

G H G H G H G H

E F E F E F E F

G H G H G H G H

E F E F E F E F

G H G H G H G H

E F E F E F E F

G H G H G H G H

G G G G

G G G G

G G G G

G G G G

H H H H

H H H H

H H H H

H H H H

or

or

Kernel

3×3

Stride 1

Stride 1

Stride 1

K K K

K K K

K K K

Fig. 3.6: Equivalent dilated convolution when stride changed.

Equivalent Dense-Dilation layers: In the early days of deep learning, researchers tried

substantial efforts to make the network converge, such as max pooling [36], dropout [53],

increasing convolution/pooling stride [36], etc. Among them, the large strides configured

within convolution and pooling layers significantly reduce the memory cost by cutting down

the output dimensions. However, it also discards a significant amount of information which

is important to high resolution object detection. In this part, it presents the dilated con-

volution can be implanted into the classification net to reduce the resolution loss, and it

will not damage the forward propagation pipeline of the original classification network, and

the parameters/knowledge can be reused in the detection network. As in Figure 3.6, there

is an input image for a network having two convolutional layers; the first layer conducts

convolution on the input image with a kernel of 3×3 at stride 2. “A”, “B”, “C” and “D”

37

denotes that the outputs obtained by the convolutions operated at the corresponding lo-

cations “a”, “b”, “c” and “d”, respectively. Intuitively, with stride 2, the convolution will

be conducted on locations centered with “a” or “b” or “c” or “d”, depending on the start-

ing point (padding the related values for the elements near borders); the output is showed

in Figure 3.6 top-middle. While the direct way to eliminate coverage loss is reducing the

stride to one; however, it involves additional outputs which disturbs the output order, as

shown in Figure 3.6. Obviously, we cannot continue the forward propagation with original

kernels for a desired output in the subsequent layers. However, as shown in Figure 3.6,

the messed outputs still have the information except for interpreting the additional values

equal to the convolution results operated on the other starting points. In the next layer, if

it interpolated 0s between each pair of elements of the original kernel and conducted the

convolution operation at stride 1, it will output the same values as the original convolution

operation, only with the additional interpolated items. It turns out that the information is

just the ones at the missed locations under the large-stride operations that will improve the

resolution. Besides, the same idea can also be generalized to any pooling layers by picking

up the elements at those sparsely located spots and conducting the related pooling oper-

ations. In addition, once a stride reduction applied to a specific layer, all the subsequent

layers should take the dilated operation at the related stride size; and the dilation stride

sizes have to accumulate along with each reduction from the previous layers. For example,

assume there were three convolution layers in a network with the convolutional stride sizes

as 2, 2 and 1, respectively; if the stride from first layer is reduced to 1, the dilation strides

of second and third layers will be set as 2; if both first and second layer strides are reduced

to 1, the dilation sizes of second and third layers have to be 2 and 4. As an exception, if

the convolution kernel is 1×1 with stride 1, such as FC2 in the classification network, the

dilation is not necessary.

Based on the above discussion, it reduced the stride of MP2 to 1, and set the dilation

levels of C3-C5 to 2; and reduced the stride of C5 to 1, set the stride of FC1 to 4 (note that

we did not make change for C1, C2 and MP1 because they have relative small receptive fields

38

Fig. 3.7: Dilated GT. (a) An image block of 400×400 pixels; (b) dilated GT.

which will make little difference). Finally, it will produce the output of 250×500-dimension.

The dilated network will not improve the performance of network radically since it is only

an equivalent conversion of the classification net. However, the increased output resolution

is important for making the proposed network converge under larger field of view.

3.3.3 Network refining under larger field of view

As discussed, the low quality outputs result from the low resolution and the localization

uncertainty. In this part, we conduct an end-to-end refining process under larger field of view

to reduce the localization uncertainty and improve the detection results. It is a fine-tuning

strategy that will not retrain the parameters of C1-C5 which have learned rich knowledge

in the classification mode.

Firstly, the larger field of view is set by utilizing images of 400×400-pixel as the training

data which is determined experimentally. As mentioned at the beginning of the method part,

training an end-to-end detection net with 1-pixel-width crack curve as GT is problematic

due to the high risk of mismatch. Other than using the 1-pixel-width GT as the label, we

use the k-dilated ground truth images as the label images (“disk” structuring element was

used for the dilation) and it is as the “ground truth with-tolerance”, see Figure 3.7. That

is, as long as the detected crack pixel falls in the dilated range of the 1-pixel GT, then it

will be treated as true positive. The dilation size also indicates the uncertainty level.

39

Based on such settings, it re-implemented the last layer FC2 by setting the convolu-

tional kernels with 3×3 of 1024 channels and added another layer FC3 with kernels of size

1×1 and 3 output channels representing 3 categories. Then it performs the fine-tuning

under larger field of view with images of 400×400-pixel and the related label images (note

that the label images will be resized to 50×50 because there is an 8-time resolution loss

from the first two layers that will lead to a 50×50 output dimension). During training,

the parameters of C1-C5 will not change. Besides, only crack and sealed crack images are

involved because the BG samples are taken into consideration automatically under the FCN

mode [69]). Figure 3.8 are the detection results of the sample images in Figure 3.5. It can

be seen that the refining procedure reduces the localization uncertainty level and the false

positives are in much smaller sizes which could be further removed using simple denoising

processes [20].

Fig. 3.8: Detection results of the images in Figure 3.5. First row: the outputs of the refined
network. Second row: the final results after removing small noisy points.

3.4 Experiments

40

（a） （b） （c）

Fig. 3.9: Pixel-level mismatching: (a) a crack image; (b) detection result overlapped with
the 3-width GTs image; and (c) detection result overlapped with the 12-width GT image.
The transparent areas represent the n-dilated GT cracks with different n and the green
areas represent the detected crack.

3.4.1 Dataset and metrics

The data are obtained with industry equipment, the camera is set on the top of a

vehicle running at 100km/h which can scan 4.096-meter width road and produce an image

of 2048×4096-pixel for every 2048 line-scans in 0.2048 seconds (i.e., 1 pixel represents 1×1

mm2 road area). The cracks are usually thin, and it is difficult to precisely mark the ground

truth at pixel level since the crack width is tiny and the boundary is vague; thus, the GTs

are marked using 1-pixel/n-pixel curves representing the cracks (labor-light GTs). Such

GTs may not match the true crack locations at pixel-level, processing of such images is

more challenging. 400 low-resolution images from industry are used for the experiments.

The training-test ratio is 2:1.

Different from most object detection tasks [80], the IOU (intersection over union) met-

ric computed using the related regions is not suitable for evaluating the crack detection

algorithms. As shown in Figure 3.9, crack, as a thin-long target can only occupy a very

small area and the image consists mainly of BG pixels [81,82]; with the fact that the precise

pixel-level GTs are hard to obtain for low-resolution pavement crack images, it is infeasible

to obtain the accurate intersection area. For the second and third images in Figure 3.9, it

is obvious that the detection results are very good; however, the IoU values for (b) and (c)

are very low, 0.13 and 0.2, respectively. According to [82], it uses Hausdorff Distance for

41

the overall evaluation of the crack localization accuracy: For two sets of points A and B,

the Hausdorff distance can be calculated with:

H(A,B) = max[h(A,B), h(A,B)] (3.5)

where

h(A,B) = maxa∈Aminb∈B‖a− b‖ (3.6)

The penalty if defined as:

hp (A,B) = 1/(|A|)
∑
a∈A

satuminb∈B‖a− b‖ (3.7)

Here, u is the upper limit used to directly get rid of the false positives that are far away

from the GTs. Instead of setting u as 1/5 of the image width [82], it is set as 50-pixel to

emphasize the localization accuracy by eliminating the influence of possible noises from the

large BG areas. Assume A is the detected crack set and B is the ground truth set, the

overall score is:

scoreBH(A,B) = 100− BH(A,B)

u
× 100 (3.8)

where

BH(A,B) = max[hp(A,B), hp(B,A)] (3.9)

With Eq. (3.8), it can obtain the Hausdorff Distance score (HD-score) which can reflect the

overall crack localization accuracy. The metric is insensitive to foreground-BG imbalance

existing in most long-narrow object detection tasks.

It also introduces the region based precision rate (p-rate) and recall rate (r -rate) for the

evaluation which can measure the false-detection severity and the missed-detection severity,

respectively. As present in Figure 3.10, a crack image of 400×400-pixel is divided into small

image patches (50×50-pixel); if there was a crack detected in a patch, marked as red “1s”,

it is a positive. In the same way, for GT images, if there is a marked crack curve in a patch,

it is a crack patch. Then the TPregion, FPregion and FNregion can be obtained by counting

42

Table 3.1: Performance evaluation of the dilated FCN

Method p-rate r -rate HD-score

Method in Chap. 2 0.951 0.847 95

Method in [11] 0.520 0.969 65

Proposed 0.921 0.970 96

the corresponding square regions, and further be used to calculate the p-rate and r -rate:

pregion =
TPregion

TPregion + FPregion
(3.10)

rregion =
TPregion

TPregion + FNregion
(3.11)

Then the region based F1 score (F1region) can be computed as:

F1region =
2 ∗ pregion ∗ rregion
pregion + rregion

(3.12)

Fig. 3.10: Region-based evaluation for computing r-rate and p-rate: (a) the original crack
image block; (b) an illustration of counting the crack and non-crack regions. The squares
with label “1” are the crack regions, and with label “0” are BG regions.

3.4.2 Experimental results

The proposed method indeed is still a classification network. The only difference is

it introduced a second stage, end-to-end fine-tuning, to improve the localization accuracy.

43

Therefore, we compare the method with the window-sliding based method in terms of

HD-score and computation efficiency to validate the effectiveness of the proposed method.

Method in [11] is a region based method and window-sliding is the strategy to perform crack

detection on full-size images; it cannot accurately locate the cracks since it only based on

the image block label for cracking detection, that results in the low HD-score of 65 and

the low p-rate, 0.520. The time complexity is high, which takes 10.2 seconds to process an

image with 2000×4000 pixels. Similarly, the method in Chapter 2 is also based on window-

sliding, and is with complex post processing to improve the accuracy; it takes 12.3 seconds

to process a full-size image. Instead, the newly proposed method conducts the forward

computation only once for the detection without introducing redundant convolutions; and

it is efficient and only takes 1.2 seconds and the localization accuracy is also very good.

Refer Table 3.1 for the results.

3.4.3 Summary

In this Chapter, we propose a solution for pavement crack detection with large input

image. It overcomes the computational efficiency issue of window-sliding based detection.

Specifically, we the equivalent convolution layers were introduced to realize multi-spot dense

detection without redundant convolution operations; and to overcome the convergence prob-

lem encountered in the end-to-end training, the equivalent dense-dilation layers were de-

signed and implanted into the pre-trained classification network to enable the transfer of

middle-level knowledge for transfer learning. The experiments demonstrated the effective-

ness of the proposed approach on industrial pavement images. Moreover, the proposed

approach also performed a study on the problem: what is the difference between a DCNN-

based classification net and detection/segmentation net. It indicated that the detection and

segmentation network is a classification network working on larger field of view with the

receptive field as the input size (without using the up-sampling/decoding layers). In the

end, it should be mentioned that the effectiveness of the end-to-end fine-tuning depends on

the dilation scale of the GTs and the training image size; and it is easy to suffer from the

imbalance problem if the parameters are not properly selected.

44

CHAPTER 4

CRACK DETECTION WITH GENERATIVE ADVERSARIAL LEARNING

4.1 Background

In Chapter 3, we have proposed an end-to-end crack detection network and developed

the equivalent dense dilation layer for transfer learning which improved the crack localization

accuracy. However, the training was unstable, and the image size and dilation scale of the

GTs in the training were determined by trial and error. In the experiments, it was found that

the network is easily to converge to the status that treated all the pixels as background (BG)

which can still achieve a very good loss; we named it “All Black” phenomenon. Recently,

Yang et al. [49] applied a FCN based network to crack detection and achieved very good

results on the data collected from website. However, the method was suffering from the

“All Black” issue when dealing with the images obtained from industrial settings due to the

unavailability of precise GTs and data imbalance inherent in crack-like object detection. In

this Chapter, we propose a solution for this problem by introducing an asymmetric U-shape

network and crack-patch-only (CPO) supervised generative adversarial learning.

4.2 Related Works

4.2.1 Generative adversarial networks

Generative adversarial networks (GAN) [74] is an important progress of deep learning

in recent years; and it proposes a novel learning strategy that can be used to train different

models by conducting a max-min two-player game. The original GAN utilized two regular

neural networks (multi-layer perception) to play a contest in terms of data distribution:

a generator was trained to map from a latent space to a distribution of interest, while a

discriminator was trained to distinguish between the data created by the generator and the

data from the real distribution. Assume the generator is to learn a distribution pg over

45

data x, and a prior distribution on input noise pz(z). Then the mapping from noise to the

data space is G(z; θg), where G is the function representing the generator. Then, another

neural network D(x; θd) gets a data with the same dimension as x and outputs a single

scalar representing the probability of the real data rather than from a fake case. D and G

are trained with the following value function V (G,D):

minDmaxGV (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (4.1)

From Figure 3.1, with dilated convolution, the receptive field is expanded directly which

can involve more context information; and it is reported that via such way, the network

can achieve better performance for semantic segmentation problems [71]. However, our

work presents that the dilated convolution is an equivalent implementation of the standard

convolutions with dense inter-sampling under multi-layer CNN context which instead can be

used to enable the transfer of middle-level knowledge and facilitate the end-to-end training.

Fig. 4.1: The generative networks are trained to minimize the distribution difference between
the real data and that from the generator. (Figure from reference [74]).

It has been proved that by conducting the minmax game, the global goal of the op-

timization is pg = pdata. An illustration of this theory can be found in Figure 4.1 where

the inputs are one dimensional data following some distribution as indicated by the black

46

dash curve, the green solid curve denotes the distribution of the generated data. It can

be observed that the distribution of the generated data finally approached to the real data

distribution. While GAN is known to be difficult to train, Radford et al. [75] proposed DC-

GAN that replaces the fully connected layers with convolutional/de-convolutional layers in

the generator, and it is trained to optimize the convolutional kernels to generate real-like

images, which also makes the training easier and more stable.

Fig. 4.2: Illustration of deep domain adaptation (Figure from reference [76])

4.2.2 Deep domain adaptation

Domain adaptation is a research field related to transfer learning. The algorithm is

designed to transfer two or multiple domains to a common domain. With the development

of deep learning, deep domain adaptation was proposed where deep neural networks are

trained for domain adaptation [76]. The most common context is that only one of the

domains has label while the data from other domains have no labels but only domain

information. The goal is to transform the data from the no-label domains to the labeled

domain so that the domain difference will not influence the performance. As illustrated

47

in Figure 4.2, a neural network is served as the feature extractor which encodes an input

image to a feature vector; a classifier at the top is used to predict class label and another

classifier at the bottom is used to output a value representing how likely is the data from

that of the labeled domain. The networks are trained with back-propagation; however, the

main difference is that the domain classifier will back-propagate the reversed gradient to

update the parameters of the feature extractor so that the data from different domains

cannot be distinguished at the feature space. In that way, the data will be mapped to the

space with the same domain. In this Chapter, we use a pre-trained classifier to replace the

discriminator in GAN for domain adaptation.

G
d

ec

Original Image X

B
o

ttlen
eck

real/fakeAsymmetric

U-Net Design

Detection Network
Working on

Full-Size Images

Pixel Level Loss With

Dilated Labor-Light GT

D

Input-Size

Insensitive CPO-Supervised

Adversarial Learning

G
en

c

L1 Distance

Working on

Full-Size Images

Trained With

Small Image Blocks

Fig. 4.3: Overview of the proposed method

4.3 Proposed Method

Figure 4.3 is an overview of the proposed method; it has three main novelties: (1)

crack-patch-only (CPO) supervised adversarial learning; (2) weakly supervised pixel-level

48

loss obtained with dilated GTs; and (3) asymmetric U-Net design. In Figure 4.3, D is a

pre-trained discriminator; it is obtained directly from the discriminator of a pre-trained

DC-GAN, where the network is trained with crack-like GT patches only. Such pre-trained

discriminator will force the network to always generate crack-GT, which is the most im-

portant factor to overcome the “All Black” issue. There, the pixel-level loss is employed

to ensure that the generated crack patterns are the same as that of the input patch via

optimizing the L1 distance based on the dilated GTs. Since the network is trained with

crack-patch only, the asymmetric U-shape architecture is introduced to enable the transla-

tion abilities of both crack and non-crack images as detailed later; and it is implemented

by adding two additional layers to the encoding part of the generator. After the training,

the generator will serve as the detector to be used for crack detection; and it is designed

as a fully convolutional network which can process full-size images after the patch-based

training, as indicated in Figure 4.3. Finally the overall objective function is:

Lfinal = Ladv + Lpixel (4.2)

where Ladv is the loss generated by the COP adversarial learning and Lpixel is the pixel-level

loss obtained using the dilated GT images. The Ladv forces the network to generate crack

images; the Lpixel directs the network to generate cracks at the expected locations; and the

CPO supervision relies on the asymmetric U-Net.

4.3.1 “All Black” issue

As discussed before, directly training a FCN [69], including U-Net [77], for end-to-end

per-pixel crack detection using industrial pavement images cannot achieve the expected

results. It has been analyzed that the reason is that the cracks from industrial images are

very thin and the precise-GTs are not available. When conducting the end-to-end training

with FCN, the network will simply classify all the pixels as background and still achieve

a quite “good” accuracy (background pixels dominate the whole images). We name this

phenomenon “All Black” problem. Refer Figure 4.4 and Figure 4.5 for such phenomenon.

49

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

iteration

Pixel wise accuracy

L1 loss

FCN for Crack Detection

Fig. 4.4: The loss and accuracy curves under the regular FCN

(a) (b) (c)

Fig. 4.5: “All Black” problem encountered when using FCN based method for pixel-level
crack detection on low-resolution images: (a) the low-resolution image captured under in-
dustry setting; (b) the GT image and (c) the detection result with “well-trained” FCN
(refer Figure 4.4).

50

Figure 4.4 shows that during the training, the loss decreased rapidly and reached to a very

low value; however, as shown in Figure 4.5, the detection result of a crack image is all black

(background). Moreover, it is worth to mention that similar phenomenon is also reported

in [49] where the FCN based-method fails to detect thin cracks; here, it only takes the

U-Net as an example.

4.3.2 CPO-supervision

Regular FCNs only produce all-black image as the detection result. In order to solve

such problem, we add another constraint, generative adversarial loss, to train the detection

network that forces the network to always generate crack-like detection result. It employed

DC-GAN [75] to realize such goal. It is well-known that DC-GAN can generate real-like

images from even random noise by conducting the training with a max-min two-player game.

As has been verified [74], it is better for G to maximize log(D(G(z))) instead of minimizing

log(1−D(G(z))). Therefore, the actual optimization strategy is to optimize the following

two objectives [78] alternatively:

max
D

V
D

(D,G) = Ex∼pd(x)[logD(x)] + Ez∼pd(z)[log(1−D(G(z)))] (4.3)

max
G

V
G

(D,G) = Ez∼pd(z)[log(D(G(z)))] (4.4)

While our target is to force the network to produce crack-like images and overcome the

“All Black” issue, it only uses the crack-GT patches as the real samples for the training.

Since the output of the detection network (i.e., generator) serves as the “fake” image, the

adversarial loss is:

Ladv = −Ex∈I [logD(G(x))] (4.5)

where x is the input crack patch, I is the dataset with crack patches, G is configured with

the asymmetric U-Net as discussed later, and D is the discriminator. The crack-GT patches

are augmented by manually marking a bunch of “crack-curve” images and the discriminator

is obtained from a pre-training a DC-G, refer to Figure 4.6. Instead of generating full-size

51

…

G

128-D Random Noise

…

GT Block Sampling

Real Fake

real/fake

D

Fig. 4.6: Pre-train a DC-GAN with augmented GT images based on CPO-supervision: the
real GT set is augmented with manually marked “crack” curves to ensure the crack patterns
have high diversity.

52

images, the network is trained to generate GT-like image patches; and such network is easy

to train and it can work on larger size images seamlessly.
In

p
u

t
im

ag
e

real/fake

D

Larger Receptive Field

(256×256)

(BG Translation Included)

Crack Patch Only

(64×64)

Same as Input Size

of DC-GAN

(64×64)

Asymmetric Design to Include Both

Crack and BG Patch for End-to-End

Training With Larger Input Size

copy and concatenate

copy and concatenate

copy and concatenate

copy and concatenate

2
5

6

2
5

6

1
2

8

1
2

8

6
4

6
4

5
1

2

5
1

2 5
1

2

5
1

2

5
1

2

2
5

6

1
2

8

1
2

8

2
5

6

6
4

real

Discriminator of

Well-trained

Rich Patch GAN

1

Asymmetric U-Net

5
1

2

6
4

Conv De-conv

Fig. 4.7: Asymmetric U-Net architecture under larger receptive with CPO-supervision.

4.3.3 Asymmetric U-Net generator

The crack detection is formulated as a conditional image generation problem. In the

last subsection, it introduced the CPO-supervised adversarial learning to force the network

to always generate GT-like crack patches and overcame the “All Black” problem. It should

be noticed that the discriminator only recognizes crack-GT patches as “real” without con-

sidering the background patches. Normally, the discriminator should also treat “all black”

patches as real for the background (BG) translation; however, treating “all black” patches

as real will encourage the network to generate all black images as the detection results

which cannot solve the “All Black” issue. In order to include the translation of background

53

samples, we propose the asymmetric U-Net architecture that inputs a larger size crack im-

age (256×256) to the asymmetric U-shape network (A-U-Net) while outputs a smaller size

image (64×64) for the end-to-end training. The larger input image has to be a crack image

so that the correct output will always be a crack-like patch recognized by the discriminator

as real; but it includes the translation of both crack and BG samples, refer to Figures 4.7

and 4.8.

Output:

1×5 neurons

Output:

1×1 neuron

Input: m×m Input: m× 3m

CNN
C N N

crack

neuron

crack

neuron

crack

neuron

BG

neuron

BG

neuron
crack

neuron

Fig. 4.8: With a larger input image, the CNN realizes multi-spot sampling with the same
receptive field. At the right side, the first three neurons represent three crack samples while
the last two are background (BG) neurons.

Receptive field under larger field of view : To better understand how the asymmetric

design is able to include the BG translation ability by using crack samples only, we first

54

perform a receptive field analysis under larger field of view. In Figure 4.8 left, assume that

there is a DCNN network, such as a classification network, with an m×m image patch as

input, the output is a single neuron representing the class label of the input patch. When the

same DCNN is fed a larger size input image (i.e., M ×M,M > m), it will output multiple

neurons (the number of neurons depends on the down-sampling rate of the DCNN); each

neuron represents a class label of the corresponding image patch with size m×m “sampled”

from the larger input image. As shown in Figure 4.8, when the network’s input is an image

of m× 3m, the output consists of five neurons which represent class labels of the five image

patches including both crack and non-crack samples with size m × m (from left to right,

the first three are neurons representing crack patches and last two are neurons representing

background labels). Indeed, under the multi-layer fully convolutional mode, each neuron

actually has a receptive field with specific size; since the convolutional layer is input-size

insensitive, operating the network under larger receptive field actually realized a multi-spot

image sampling with the image size equal to the receptive field of the neuron. Thus, when

performing an image translation using a deep convolutional neural network with a larger

input image, the process is equal to translating multiple smaller image samples at the same

time (the size is equal to the actual receptive field of the image translation network).

Based on the analysis, we design an asymmetric U-Net which inputs a crack image

with the size larger than the input-size of the discriminator, then it is passed through the

network to produce a down-sampled image patch to match the input-size of the discriminator

so that it can be used by the discriminator to produce the adversarial loss for generative

adversarial learning. While the discriminator only treated crack-GT patch as real, it will

force the network to generate crack patch as the detection result to prevent the “All Black”

issue. Since the network is trained to translate a larger crack image to a down-sampled

crack image, it includes the translation of both crack and non-crack image patches. In this

way, the network can be trained to translate both crack and background images for crack

detection. Refer to Figure 4.7 and Figure 4.8.

55

4.3.4 L1 loss with dilated GTs

It introduced the CPO-supervised adversarial loss and the A-U-Net to force the network

to generate crack GT patches; however, it was image-level weak supervision that does

not specify where the crack should appear in the generated image. What we want is to

provide more information so that the network knows where the generated cracks should

be. As mentioned before, training a pixel-level end-to-end detection network using 1-pixel

crack curves (labor-light GTs) has high risk of encountering the mismatching problem.

Instead, it specifies a relatively larger crack area to make sure it covers the actual crack

locations, and if the detected crack fell into the specified area, it gives a positive reward. The

experiments demonstrated that by combining the two kinds of supervision information, CPO

adversarial leaning and the loosely specified crack areas, the network can generate cracks

at the expected locations. Specifically, it dilated the GT thrice using a disk structure with

radius 3. Following [5], it marked the GT image with 1-pixel-width crack and sampled

crack patches and crack-GT patches from the original crack images and the marked GT

images, respectively. Then the 1-pixel-width crack curves in the sampled crack-GT patches

are dilated and they are used to provide the weakly supervised pixel-level loss:

Lpixel = −Ex∈I,y[‖y −G(x)‖1] (4.6)

where x is the input crack image; y is the dilated-GT image; I is the dataset of larger

size crack patches (256×256 comparing with the output size of 64×64) used for end-to-end

training; G is the A-U-Net and D is the discriminator. Overall, the final objective function

is:

Lfinal = Ladv + λLpixel (4.7)

The pixel loss is normalized during training and λ can be determined via grid search.

Figure 4.9 shows the detection results of some sample images. Moreover, once the training

is finished, the discriminator is no longer needed and the A-U-Net itself will serve as the

detection network which translates the original image to the result image.

56

Fig. 4.9: Detection results of the final A-U-Net. First column: image samples from industry.
Second column: the outputs of the network. Third column: the final results after removing
the isolated noise areas.

4.3.5 Working on full-size images

Notice that the network is trained with small image blocks; however, under industry

settings, the image size is much larger, such as pavement images with 2048×4096 pixels.

A common solution to process large image is to sample smaller image blocks from the full-

size image and process patch-by-patch, named window-sliding strategy [11]; however, it is

inefficient [7]. Since the asymmetric U-Net is designed as a fully convolutional network

and the crack patterns are scale insensitive, it can work on arbitrarily larger size images

which realizes the same function as window-sliding sampling [7]. In addition, such fully

convolutional processing mechanism does not involve redundant convolutions as discussed

in [7]. Refer experiments part for the detection results of directly applying the A-U-Net on

full-size pavement images.

4.3.6 Implementation details

Network architecture: Figure 4.7 illustrates the architecture of the A-U-Net. It sets

the convolutional kernel of the first layer as 7×7 kernels with stride 2 followed by a rectified

57

linear unit (ReLU) [51]; then it applied a 3×3 convolutional layer with stride 2 followed by

a ReLU layer. These two layers serve as the asymmetric part of the A-U-Net which realizes

a 4-time down-sampling and reduce the larger input image to the output feature maps with

the same size as the output of the A-U-Net. Then the remaining layers of the encoding and

decoding parts are set up according to the regular U-Net architecture [77]. For the remain-

ing layers of the encoding part, it consists of four repeated two-convolutional layers with

3×3 kernels and stride 2; and each convolutional layer is followed by a ReLU layer. After

each of the first three convolutional layers, it doubles the number of convolutional channels.

For the decoding part, it consists of four 3×3 de-convolutional layers that up-samples the

feature maps; the input of each deconvolution layer is the output of the last layer with the

corresponding feature map from the encoding part, then followed by a regular convolutional

layer. After the last de-convolutional layer, another regular convolutional layer followed by

a Tanh activation layer [35] is used to translate the 64-channel feature maps to the 1-channel

image and it is compared with the dilated GT image for L1 loss computing according to

Eq. (4.5). In summary, the network architecture is as follows. The encoding part:

C 64 7 2 - ReLU - C 64 3 2 - ReLU - C 128 3 1 - ReLU - C 128 3 2 - ReLU - C 256 3 1

- ReLU - C 256 3 2 - ReLU - C 512 3 1 - ReLU - C 512 3 2 - ReLU - C 512 3 1 - ReLU -

C 512 3 2 - ReLU

The decoding part:

DC 512 3 2 - ReLU - C 512 3 1 - ReLU - DC 256 3 2 - ReLU - C 256 3 1 - ReLU -

DC 128 3 2 - ReLU - C 128 3 1 - ReLU - DC 64 3 1 - ReLU - C 64 3 1 - ReLU - C 1 3 1

- Tanh

Here, the naming rule follows the format: “layer type channel number kernel size stride”;“C”

denotes convolution; “DC” is de-convolution; and Tanh is the Tanh activation layer. For

instance, “C 64 7 2” means that the first layer is a convolutional layer and the number of

channels is 64, the kernel size is 7 and the stride is 2.

Network training : The training is a two-stage strategy which employs transfer learning

at two places: it pre-trains a DC-GAN and reused the generator; and it also pre-trains the

58

encoder part of the generator with a classification network. The DC-GAN is trained with

the augmented GT patches of 64×64-pixel, aiming at training a discriminator with strong

crack-pattern recognition ability to provide the adversarial loss at the second stage. A total

of 60000 crack patches with various patterns are used, the cracks are dilated twice using

a “disk” structure with radius 3. The other settings follow [75]: the Adam optimizer [79]

is used, the learning rate is set as 0.0002, the parameters for momentum updating are 0.9,

batch size is 128 and the input “noise” vector is with 128 dimensions. A total of 100 epochs

(each epoch is total images/batch size = 60000/128 iterations) are run to obtain the final

model. Then the well-trained discriminator was concatenated to the end of A-U-Net to

provide the adversarial loss at the second stage, refer Figure 4.7 and Eq. (4.5).

Fig. 4.10: Weakly supervised learning is able to learn crack pattern information. Left side:
the image blocks sent to the classification network. Middle: the feature maps after the first
convolutional layer. Right side: the feature maps with the similar crack patterns to the
original image blocks.

59

Inspired by [5], it also pre-trains the encoding part of the generator under the classi-

fication setting. Zhang et al. [5] showed that by performing an image-block classification

task, the network can still extract the relevant crack patterns; and the learned knowledge

could be transferred to ease the training of an end-to-end detection network. Figure 4.10

is the low-level feature maps of a classification network trained with crack and non-crack

patches; the classification network is configured by adding a fully connected layer at the

end of the encoding part (bottleneck) of the A-U-Net and set the output dimension as two

representing the crack/non-crack with label 0/1. The training samples are crack and non-

crack patches of 256×256. It shows that the network extracted the same crack pattern as

the original image which means that the network is able to learn useful information with the

weakly supervised information, crack/non-crack image labels only. Then the well-trained

parameters are used to initialize the corresponding encoding part of the generator at the

end-to-end training stage; and the other settings are the same with the DC-GAN except

replacing the generator with the asymmetric U-Net and setting the objective function with

Eq. (4.7).

4.4 Experiments

4.4.1 Dataset and metrics

The proposed method is compared with six crack detection methods on two crack

datasets: the public dataset CFD [23] captured with a cellphone and another dataset col-

lected by the authors using a industrial line-scan camera. CFD is a public dataset with

pixel-level GTs. It consists 118 pavement crack images of 320×480-pixel captured using an

iPhone5 with focus of 4mm, aperture of f/2.4 and exposure time of 1/134s. The images

were obtained by people standing on the road and holding an iPhone near the road. The

image quality is high and the backgrounds are smooth and clean, and the pixel-level GTs

are carefully marked. As mentioned in Chapter 3, the cracks from industrial images are

usually thin, and it is difficult to mark the GTs at pixel-level since the crack width is tiny

and the boundary is vague. Thus, the GTs are marked using 1-pixel curves representing the

60

Table 4.1: Quantitative evaluations of CrackGAN on CFD dataset

Methods p-rate r -rate F1-score HD-score

CrackIT 88.02% 45.11% 59.65% 21

MFCD 80.90% 87.47% 84.01% 85

CrackForest 85.31% 90.22% 87.69% 88

[11] 68.97% 98.21% 81.03% 70

FCN [49] 86.01% 92.30% 89.04% 88

U-Net 88.01% 90.02% 89.01% 90

CrackGAN 89.21% 96.01% 91.28% 95

Table 4.2: Quantitative evaluations of CrackGAN on industrial dataset

Methods p-rate r -rate F1-score HD-score

CrackIT 89.10% 2.52% 4.90% 9

CrackForest 31.10% 98.01% 47.22% 63

[11] 69.20% 98.30% 81.22% 64

FCN-VGG [49] 0.00% 0.00% N/A N/A

U-Net 0.00% 0.00% N/A N/A

CrackGAN 89.21% 96.01% 91.28% 95

cracks (labor-light GTs). While GTs may not match the true crack locations at pixel-level,

processing of such images is more challenging. In the same way, the region based p-rate,

r-rate, and HD-score are used as the metrics for the evaluation.

4.4.2 Overall performance

The proposed method is compared with CrackIT-v1 [83], MFCD [84], CrackForest [23],

method in [11], FCN-VGG [49] and U-Net [77]. CrackIT and MFCD are state-of-the-art

methods using traditional image processing techniques; and CrackForest is state-of-the-art

machine learning method before deep learning appears. References [11], FCN-VGG [49],

and U-Net [77] are deep learning methods. [11] is a block-level detection method based on

the window-sliding strategy; FCN-VGG [49] is trained with the carefully marked pixel-level

GTs (labor-intensive) for pixel-level detection; and U-Net is also the pixel-level detection

method based on fully convolutional strategy. Figure 4.11 and Table 4.1 are the detection

results on CFD; and Figure 4.12 and Table 4.2 are the results on the industrial images.

It can be observed from Figure 4.11 and Figure 4.12 that CrackIT missed most crack

61

Fig. 4.11: Comparisons on CFD. From top to bottom are: original images, ground truth
images and the detection results of CrackIT, MFCD, CrackForest, [11], FCN-VGG, U-Net
and CrackGAN, respectively.

62

Fig. 4.12: Comparisons on the data from industry. From top to bottom are: original image,
ground truth images and the detection results of CrackIT, CrackForest, [11], FCN-VGG
(“All Black”), U-Net (“All Black”) and CrackGAN, respectively.

63

Table 4.3: Comparisons of computational efficiency

Method Time Method Time

CrackIT 6.1 s FCN 2.8 s

CrackForest 4.0 s U-Net 2.2 s

[11] 10.2 s CrackGAN 1.6 s

pixels and cannot even detect any cracks in the second and third images where the cracks

are thin; and it also fails to detect the cracks from the industrial images in Figure 4.12.

Therefore, it achieves very low recall rate, 0.4511, and a low HD-score, 21. For MFCD,

it has good detection ability and can detect most of the cracks on CFD; however, it did

not solve the noise problem well and achieved relatively low precision rates and HD-score.

CrackForest can most of the cracking locations and achieves good recall reates 0.9022 and

0.9801 on CFD and industry data, respectively; however, it is not good at noise removal

on the industry images due to the complicated pavement textures. For the region based

deep learning approach [11], it cannot accurately locate the cracks since it only produces

the image block labels and obtained the low p-rates on both datasets, 0.6897 and 0.6920,

respectively. The FCN-VGG and the U-Net [77] performed very well on the CFD dataset

because the cracks are clear. However, as shown in Figure 4.12 seventh and eighth rows,

they encountered the “All Black” issue when dealing with the industrial images due to

the data imbalance and unavailability of precise pixel-level GTs. The proposed CrackGAN

overcame the “All Black” problem and achieved very good performance on both CFD and

the industrial datasets. Table 4.1 and Table 4.2 show the quantitative results.

4.4.3 Computation efficiency

In addition to the crack localization accuracy, it also compared the computation ef-

ficiency. The average processing times of the methods dealing with a large size image of

2048×4096-pixel is shown in Table 4.3. CrackIT-v1 [83] takes 6.1 seconds based on a patch-

wise processing; and CrackForest [23] takes a relative less time (4.0 seconds) via using the

parallel computing to implement the random forest for image patch classification. The

above three methods are conducted with Matlab 2016b on HP 620 workstation with 32G

64

memory and twelve i7 cores. For the remaining deep learning methods, they are conducted

on the same computer but running on the Nvidia 1080Ti GPU with Pytorch. Method in [11]

takes 10.2 seconds since it uses the window-sliding method. FCN-VGG [23], U-Net [77] and

CrackGAN take much less time due to the fully convolutional network architecture; more-

over, the CrackGAN takes less time (i.e., 1.6 seconds) than U-Net because it cuts off the

last couple of de-convolutional layers for the asymmetric U-Net design.

Fig. 4.13: Detection results on concrete wall and concrete pavement images. First row:
original concrete wall images. Second row: corresponding results of CrackGAN. Third row:
original concrete pavement images. Fourth row: the corresponding results of CrackGAN

In addition to the pavement crack detection using public dataset CFD and the industrial

images, the proposed method is also able to handle other crack detection problems. Figure

4.13 provide the detection results on dataset [23] which contains concrete pavement images

and concrete wall images.

4.4.4 Summary

In this Chapter, we have proposed a novel deep generative adversarial network, named

65

CrackGAN, for crack detection using labor-light GTs. The proposed method solved a prac-

tical issue, “All Black” problem, existing in deep learning based pixel-level crack detection

methods. It proposes an asymmetric U-Net architecture and a CPO-supervised generative

adversarial learning strategy to generate expected crack patterns and implicitly enables both

crack and background image translation abilities to overcome the data imbalance problem.

The experimental results demonstrate the effectiveness of the proposed method, especially

for dealing with pavement crack detection from the industrial settings.

66

CHAPTER 5

SELF-SUPERVISED STRUCTURE LEARNING FOR CRACK DETECTION

5.1 Background

Through Chapter 1 to Chapter 4, we have proposed a suit of algorithms for high

accurate crack localization and the problem has been well-solved with supervised deep

learning. However, it should be noticed that these methods rely on a reasonable amount

of paired training data obtained by making non-trivial GTs manually; that is expensive,

especially for pixel-level annotations; and they also face a common problem, overfitting,

which appears as poor model generalizability, and that makes the actual workload much

heavier because it needs to re-mark the pixel-level GTs and re-train the model for new

data. Thus, it is worth to rethink the automatic crack detection by taking into account the

labor-cost for preparing GTs. As a pre-exploration of the future AI-based crack detection

system, in this Chapter, we discuss a self-supervised structure learning network which can

be trained without using paired data, even without using GTs. It is achieved by training

an additional reverse network to translate the output back to the input, simultaneously.

First, a labor-free structure library is prepared and set as the target domain for structure

learning. Then a dual-network is built with two generative adversarial networks (GANs):

one is trained to translate a crack image patch (X) to a structural patch (Y), and the other

is trained to translate Y back to X, simultaneously. The experiments demonstrate that

with such settings, the network can be trained to translate a crack image to the GT-like

image with similar structure patterns, and it can be used for crack detection. The proposed

approach is validated on four crack datasets and achieves comparable performance with

that of state-of-the-art supervised approaches.

5.2 Related Works

67

Random Noise

Real
Fake

Discriminator

ANN

Generator

ANN

real/fake

Random Noise

Real

(image)

Fake

(image)

real/fake

CNN

CNN

Real

(domain B)

real/fake

CNN

CNN

CNN

Fake

(domain B)

Input image

(domain A)

Fig. 5.1: Architectures of three different GANs: (a) Original GAN; (b) DC-GAN; (c)
imageto-image translation GAN.

5.2.1 Image-to-image translation GAN

The original GAN configures the generator with fully connected layers which can gen-

erate images from random noises. While the original GAN is difficult to train, Radford

et al. [75] proposed DC-GAN which replaced the fully connected layers with convolu-

tional/deconvolutional layers to set up the generator; and it was trained to optimize the

convolutional kernels to generate real-like images where the training became much easier.

In order to make GAN more controllable, Mirza and Osindero [85] proposed conditional

GAN which used additional information in the inputs so that the network could be trained

to generate specific outputs according to the input condition. Based on conditional GAN

and DC-GAN, Isola et al. [70] set up the condition with an input image that made the

network become an image-to-image translation network trained with paired images that

broadened the application contexts of supervised GAN. Recently, Zhu et al. [86] proposed

the cycle-consistent adversarial networks that could be trained without using paired data

for image style transfer. Based on these works, we formulate crack detection as an image-

68

to-image translation problem, and introduce the cycle-consist adversarial learning to train

the networks without using manually labeled GTs. Refer Figure 5.1 for different GAN

architectures.

5.2.2 Structure learning

Structure learning tries to learn a mapping function between inputs and structure pat-

terns which can represent the inputs; it has been used to address computer vision problems.

For example, Kontschieder et al. [25] utilized structure learning to assist semantic image

labelling; Dollar et al. [24] employed structure learning for edge/contour detection. Since

cracks exhibit strong structural patterns, such as straight lines, cross shapes, T-junctions,

Y-junctions, etc., structure learning is also used for crack detection [24]. For instance, Shi

et al. [23] introduced structure learning for crack detection where a random decision for-

est is trained to map the crack patch to a structure patch. These works train a cluster to

group the structure patches into a limited number of representative patterns; then, with the

paired image-GT data, a random forest was trained to find the mapping relationship from

input images to structure patches. Different from these works, we use the cycle-consistent

generative adversarial learning to find the source-target mapping relationship between two

domains automatically; and the target domain (structure library) is obtained without man-

ually marking GTs.

5.2.3 Self-supervised learning

Instead of spending a lot of time on preparing GTs, unsupervised/self-supervised learn-

ing receives increasing attention in recent years. While there is no clear line between un-

supervised learning and self-supervised learning, two main settings are used in existing

self-supervised learning: one is to learn features using an unsupervised pre-text task, and

then applies the learned knowledge to other tasks [87]; and another is to introduce external

data and relates the images to the introduced data for supervising the training. Doersch

et al. [88] used the similarity measurements among randomly cropped image patches from

a full-size image to supervise the learning for context prediction; Noroozi et al. [89] trained

69

a CNN to solve Jigsaw puzzle problem to provide self-supervision, and the real task was to

learn visual representations. Sohn et al. [90] introduced unsupervised domain adaptation

for face recognition from unlabeled video frames where still labeled images were used to

pre-train the network. The method performs the learning by using a dual-network that

translates the output back to the input for self-supervision; and as an assistant factor, it

introduces a labor-free structure library for structure learning which makes the forward

network generate consistent structure patterns as the original cracks for detection.

Domain Y

(Structure Library)

X

F R

Cycle Consistency

Genc Gdec
Genc Gdec

…

Structured

Learning

DY DX

Domain X

(Crack Patch) …

Unpaired

…

…

Training Objective

Crack Detection

Y

R F

Cycle Consistency

Genc Gdec
Genc Gdec

DX DY

Trained simultaneously

Image translation

Fig. 5.2: Overview of the proposed approach with cycle-GAN

5.3 Proposed Method

In this section, it details the proposed method. The target is to learn an image-to-

image translation/generation network that can translate crack image to GT-like image with

70

similar structure pattern, i.e., using structured curves to represent cracks. Two separate

datasets/domains are needed to train the network: a crack-image set X and a structure

library Y with images {xi} and {yi}. As in Figure 5.2, the network consists of two image-

to-image translation GANs: a forward GAN F translates images from X to Y (F : X∼Y), and

a reverse GAN R translates image from Y to X (R: Y∼X). Two discriminators Dx and Dy

are introduced: Dx aims to distinguish between images {xi} and the generated/translated

images {R(yi)} with forward adversarial loss Ladvf , and Dy aims to distinguish between {yi}

and {F (yi)} with reverse adversarial loss Ladvr; and Dy is designed as a pre-trained one-

class discriminator working under larger field of view to succeed the training. Meanwhile,

two cycle-consistent losses with L1-distance formulas are used in the forward GAN denoted

as L1fc and in the reverse GAN denoted as L1rc. Overall, the objective function is:

L = (Ladvf + Ladvr) + λ(L1fc + L1rc) (5.1)

where λ controls the relative weight between the adversarial loss and the cycle-consistent

loss which can be determined by grid search. In addition, the networks are designed as fully

convolutional networks trained with small image patches; however, it can process images

with arbitrary sizes.

5.3.1 Data preparation

The training data consist of two parts: the crack patches and a structure library. The

structure library contains a large number of binary image patches of various structure pat-

terns; the crack patches are prepared by cropping crack blocks of 64×64 randomly from

the full-size crack images according to [5]. Different from other learning-based detection

approaches [23, 49], no GTs were involved. Instead, a labor-free structure library is em-

ployed to assist training. First, a bunch of GT-like images are collected from the public

datasets. In this work, object boundary annotations of VOC object detection dataset [80],

object contour annotations of Berkeley segmentation dataset [91], and GTs of public crack

detection datasets [19,49] are used. As shown in Figure 5.3, the annotations are the curves

71

… …

Manually Scrawl

and Automatically

Generation

…

Fig. 5.3: Preparing a labor-free structure library

representing boundaries of objects or cracks; the structure library consists of image patches

of 64×64 sampled from the annotations. The sampling process is: it first skeletons the

annotations as 1-pixel curves, and then samples image patches of size 64×64 along the

curves. To increase the diversity of the structure patterns, the distance d between each pair

of sampled patches satisfies d > s/2, and s is the side length of the squared structure patch.

Then the data are further augmented using image rotation and distortion [5]. As in [5], the

structure patches are dilated using a disk structure with radius equal to 3.

5.3.2 Objective

As present in Figure 5.2, it introduces a dual-network and performs training by checking

the consistency of both forward and backward cycles. The objective function contains two

parts: the adversarial loss and the cycle consistency loss. The adversarial loss helps the

detection network to generate GT-like structure images, and the cycle consistency loss

makes sure that the generated structure patterns are consistent with the input cracks.

72

Adversarial loss: It is well-known that by conducting a max-min two-player game, the

generative adversarial network can be trained to generate real-like images even from noise.

In practice, it is realized by optimizing the following two objectives alternatively [78]:

max
D

V
D

(D,G) = Ex∼pd(x)[logD(x)] + Ez∼pd(z)[log(1−D(G(z)))] (5.2)

max
G

V
G

(D,G) = Ez∼pd(z)[log(D(G(z)))] (5.3)

where D is the discriminator; G is the generator; z is the noise vector inputting into the

generator; and x is the real image in the training set. G generates images G(z) similar to

images from X, and D aims to distinguish between generated samples G(z) and real samples

x. D tries to maximize Eq. (5.2) while G is tries to maximize Eq. (5.3); therefore, the

operation of G is equivalent to performing minimization of Eq. (5.2), which would result

in a competition between G and D, i.e., the adversarial learning. The original GAN [74]

configured the networks with fully connected layers was hard-to-train. In our case, the

generator is an encoding/decoding U-Shaped network which inputs an image and generates

another image (as the fake image); thus, z is a crack patch from the training data which

serves as the input condition (refer to conditional GAN) that makes the generator produce

a specific image related to the input, and x is image from the structure library as the real

sample. In the same way, the reverse network translates a structured image, including

the generated structured image by the forward network, to a crack patch for adversarial

learning. The adversarial loss can help generator to create structure images via requiring

the outputs to have identical distribution as the training data. However, the structure

library may have different distribution with the expected GTs in terms of the structure

patterns. Thus, different from the original cycle-GAN, the adversarial loss of the forward

GAN is provided by a pre-trained DC-GAN whose discriminator is reused, serving as a

domain adaptor. Refer network training section for details.

Cycle-consistent loss: While the adversarial loss can help generator to create structure

73

images, it cannot guarantee the consistency of structured patterns between the output and

the input, i.e., the adversarial loss alone is inadequate for translating a crack patch to the

desired structure patch, vice versa. However, researchers found that by introducing extra

cycle-consistency constraints, the network can be trained to realize the abovementioned

goal [86]. As in Figure 5.2, for each sample x from dataset X, after a cycle processing, the

network should be able to bring x back to the original patch, i.e., x→ G(x)→ F (G(x)) ∼ x.

In the same way, for each structure image y from the structure library Y, after a cycle

processing, the network should also be able to bring y back to the original image, i.e.,

y → R(y) → F (R(y)) ∼ y. Such constraints can be formulated to the following cycle-

consistency loss:

Lcyc(F,R) = Ex∼pd(x)[‖R(F (x))− x‖1] + Ey∼pd(y)[‖F (R(y))− y‖1] (5.4)

5.3.3 Network architecture

As in Figure 5.2, the entire network includes two image-to-image translation GANs: a

forward GAN F that inputs a crack image and generates a structured image; and a reverse

GAN R that inputs a structured image and generates a crack image; F and R use the same

network architecture where each GAN includes two parts: the generator and discriminator.

The generator is a U-shape [77] image-to-image translation network and the discriminator

is a classification network with a larger receptive field that is realized by adding another

stride convolution layer to the original discriminator, named one-class discriminator.

U-Net generator : The U-Net includes three components: encoding layers, decoding

layers and skipping layers. The encoding layers extract useful information with stride

convolutions and produce some representative feature maps/vectors; the decoding layers

reconstruct an image with the same size of the input image from the encoded feature maps;

and the skipping layers are the feature maps from the encoder that are reused as the inputs

of the decoding layers to provide more detailed information for image generation, refer to

Figure 5.4. The encoder consists of four repeated convolution layers with 3×3 kernels; after

each of the first three convolutional layers, the number of feature map channels is doubled.

74

In
p

u
t

im
ag

e

real/fake

D

Larger Input Size

(64×64)

Crack Patch Only

(64×64)

Larger

Receptive Field

(64×64)

Include Both Background and

Foreground Translation With

Larger Input Patch

copy and concatenate

1
2

8 2
5

6

6
4 1

2
8

6
4

2
5

6 2
5

6

2
5

6

1
2

8

1
2

8

real

1

Deeper

Discriminator

64

128

256

256

2(real/fake)

Deeper

Discriminator
conv deconv

2
5

6

2
5

6

Fig. 5.4: Network architecture of the forward GAN

For the decoder, it consists of four 3×3 deconvolution layers that “up-sample” the feature

maps; the input of each deconvolution layer is the output of the last layer and the skipping

layers from the encoding part. Each convolution or deconvolution layer is followed by a

ReLU layer [51]. After the last deconvolution layer, another regular convolution layer with

3×3 kernels is configured to translate the 128-channel feature maps to the output image,

and it is compared with the dilated GT for L1 loss computation according to Eq. (5.4). In

summary, the architecture of the generator is as follows.

The encoding part:

C 64 3 2 - ReLU - C 64 3 1 - ReLU - C 128 3 2 - ReLU - C 128 3 1 - ReLU - C 256 3 2 -

ReLU - C 256 3 1 - ReLU - C 256 3 2 - ReLU - C 256 4 1 - ReLU

The decoding part:

DC 256 3 2 - ReLU - DC 256 3 2 - ReLU - DC 128 3 2 - ReLU - DC 128 3 2 - ReLU -

C 1 3 1

The naming rule follows the format “layer type kernel number kernel size stride”; “C” de-

notes convolution and “DC” is deconvolution. For instance, “C 64 3 2” means that the first

75

layer is a convolution layer, the number of kernel is 64, the kernel size is 3 and the stride is

2.

Discriminator with Larger FOV : Before introducing the architecture of one-class dis-

criminator, we explore the regular discriminator concerning receptive field of view which

refers to the discriminator used in the original image-to-image translation GANs [70] where

the output of discriminator contains multiple labels. In convolutional GAN, a generator

is usually configured with a series of deconvolution layers to generate images from random

noise, and the discriminator is set up with a classifier to discriminate the generated im-

age and real image. With such setting, the discriminator can only process image patches

with the same size as the generator’s outputs. Isola et al. [70] configured the generator

and discriminator with fully convolutional networks where the input can be arbitrary size.

However, when it inputs a larger size image, the output of the discriminator will have mul-

tiple labels, which indeed does not change the input size of each sample, i.e., the receptive

field of each output neuron/label is the same. For example in Figure 5.5, originally the

discriminator, CNN-1, is designed to discriminate a patch of m ×m as real or fake; with

such setting, when the generator is fed in a real crack image patch with larger size, e.g.

2m × 2m, the discriminator will output a 2×2 matrix where each label corresponds to an

image sample of m×m from the larger input image. As illustrated in CNN-2, the m×m

image samples include two different types of images: the image patch containing a crack

pattern or the “all black” patch; and they are both considered as real images since they are

all sampled from the real larger structure images. It has been discussed that the crack like

object detection confronts serious data imbalance problem because the background usually

dominates the image area; treating both crack patch and “all black” patch as real can

weaken the foreground-background distinguishing ability and fail the task.

Here, we use a discriminator which takes a larger size image as input but treat it as

a single image for discrimination, i.e. each larger input corresponds to a single label. The

benefit of such design is that the discriminator will only treat the structured patch (crack

patch) as real and force the generator to pay more attention on the crack areas in a larger

76

CNN-1

Output:

1× 1 neuron

Input: m× m

Input: 2m× 2m

(larger input image)

CNN-1

crack

neuron

BG C

C BG

Output:

2× 2 neurons

One-class discriminator

with larger field of view

CNN-2

C

Fig. 5.5: One-class discriminator

77

input image to avoid background area dominating the training samples, thus to overcome

the data imbalance. It is realized by explicitly adding a stride convolution layer to the

discriminator; then the discriminator will only outputs a single label/neuron for each input

image, it is named one-class discriminator. In detail, the discriminator consists of five 3×3

convolution layers and a fully connected layer followed by a Softmax layer with 2-channel

output representing the class label of a 64×64 image. In summary, the discriminator is:

C 64 3 2 - ReLU - C 128 3 2 - ReLU - C 256 3 2 - ReLU - C 256 3 2 - ReLU - FC 4 2 -SM

The “FC” is fully connected layer and “SM” is Softmax layer; and they together serve as a

classifier to determine if the input image is real, and to provide the adversarial loss. For the

reverse network, it uses the same architecture where the input is a structure patch and the

output is a real-like crack image with relevant background textures. The crack images from

the training data are considered as real and the images generated by the U-shape generator

are considered as fake.

5.3.4 Network training

Parameter initialization: It has present that the generic knowledge learned from large

scale data such as ImageNet [37] can be used to extract crack pattern and is also beneficial

to network training. As has discussed in Chapter 4, the output after conducting convolution

using a pertained image classification network on ImageNet shows strong crack pattern the

same as the original crack (see Figure 5.6). Here, we adopt the same routine and initialize

parameters of the forward generator using a pre-trained model [5]. In addition, different

from the original cycle-GAN, it also pre-trains a DC-GAN with the structure library as

discussed in Chapter 4 (refer Figure 4.6); then the discriminator of the well-trained DC-

GAN is transferred and concatenated at the end of the generator in the forward GAN to

provide the generative adversarial loss and update the parameters via backpropagation;

therefore, the pre-trained discriminator indeed severs as a domain adaptor that forces the

generated image to become a structured patch. For the discriminator in the reverse GAN,

it is trained from scratch.

78

Fig. 5.6: Knowledge learned from a classification task has strong transferring ability and
can be used for parameter initialization to ease the training on different tasks. Left: original
crack image block. Middle: feature maps extracted using low level convolutional kernels of
pre-trained model.

Training detail : After initialization, the parameters of the generators and the discrim-

inator in the reverse GAN are updated alternatively following Algorithm 1. The Adam [79]

optimizer is used, the learning rate is set as 0.0002. Since the two cycles are trained simul-

taneously, and the cycle-consistency restriction is applied to both the forward and reverse

GANs, the training samples include both real crack patches and generated crack patches,

and the structure patches from the library and the generated structure patches. Thus, an

additional buffer is needed to store the generated images during the training; 50 previously

generated images are stored; and the batch size is 6 due to memory limitation. A total of

100 epochs were run and the model parameters are saved every 5 epochs. In this way, the

networks can be trained to generate similar structure patterns according to the input cracks:

the forward GAN is trained to translate the original crack patches to the structure patches;

and the reverse GAN is trained to translate the structured patches to crack images. Refer

Figure 5.7 for the results of such translation on the test set. In experiments, the validation

results are saved every twenty-iteration to monitor the training; finally, all the saved models

are tested to select the best one as the detection network. After the training, the reverse

GAN and the discriminator of the forward GAN are no longer used, and the generator of

the forward GAN alone serves as the detection network that translates a pavement image

79

Fig. 5.7: Results from the image-to-image translation network. Left column: the test images
from [49] and [19]. Middle column: the corresponding translation results of the forward
GAN. Right column: the reconstructed results by the reverse GAN using the translated
results.

80

into the GT-like image for crack detection.

5.4 Experiments

The experiments are conducted with an HP workstation with Intel i7 CPU and 32G

memory. An Nvidia 1080Ti GPU was configured and PyTorch was used to perform the

training and testing.

5.4.1 Datasets and metrics

The comparisons are present on the two representative datasets: the public dataset

CFD [23] captured with a cellphone and the data from industry. As mentioned in Chapter

4, the industrial data have no precisely marked pixel-level GTs; thus, the GTs are roughly

marked using 1-pixel curves which are used only for crack/non-crack block sampling.

In addition, another two datasets are also employed, CrackTree dataset [19] and FCN

dataset [49]. CrackTree is a pavement crack detection dataset with 206 pavement images of

600×800-pixel. The accurate GTs are also available. FCN dataset is also a public dataset

composed of 800 images. The images are collected from multiple sources including historical

crack images from internet, newly captured crack images of concrete walls from buildings

and the pavement crack images. While the multi-source images are taken at different

distances with different cameras, the resolution levels ranges from 72 dpi to 300 dpi. The

GTs are manually marked at pixel-level.

For the evaluation metrics, the region based p-rate, r-rate, and HD-score are used as

the metrics for the evaluation. Refer Chapter 3 for the detailed definitions.

5.4.2 Performance evaluation

Since the proposed approach is a self-supervised/unsupervised method, it is compared

with the rule based approaches, which could be viewed as unsupervised methods, and

the machine learning based methods. The rule based approaches are CrackIT [83] and

MFCD [84]; and the machine learning methods are CrackForest [23], and the CrackGAN

in Chapter 4.

81

Fig. 5.8: Comparisons on CFD data. From top to bottom are: original image, GTs, and the
detection results of CrackIT, MFCD, CrackForest, CrackGAN and the proposed method,
respectively.

82

Table 5.1: Quantitative evaluation of self-supervised GAN on CFD

Methods p-rate r-rate F1-score HD-score

CrackIT 88.02% 45.11% 59.65% 21

MFCD 80.90% 87.47% 84.01% 85

CrackForest 85.31% 90.22% 87.69% 88

CrackGAN 88.03% 96.11% 91.88% 96

Proposed 88.01% 93.02% 89.01% 92

Table 5.2: Quantitative evaluation of self-supervised GAN on industrial data

Methods p-rate r-rate F1-score HD-score

CrackIT 89.10% 2.52% 4.90% 9

MFCD 50.90% 87.47% 64.35% 67

CrackForest 31.10% 98.01% 47.22% 63

CrackGAN 89.21% 96.01% 91.28% 95

Proposed 78.01% 86.02% 81.81% 78

Results on CFD : The sample images with the detection results and the quantitative

measurements in terms of precision, recall, F-measure and Hausdorff score are present in

Figure 5.8 and Table 5.1, respectively. The CFD dataset provides pixel-level GTs; thus,

all the provided detection results including the supervised machine learning methods are

from the experiments using CFD data; and the training and test samples split rate is 2:1.

From Figure 5.8, it can be observed that CrackIT can detect the clear cracks with distinct

crack width such as the cracks in the first image, but it misses most thin cracks in the

second and third images. MFCD shows strong crack detection ability and can detect most

cracks. However, it may introduce noises when dealing with images having non-smooth

background as in the third image. For CrackForest, it achieves very good results using

its own data but the performance decreases on different data. For CrackGAN, it has very

good detection results and achieved the best performance. From Table 5.1 and Figure 5.8,

the proposed method outperforms the “unsupervised” methods CrackIT and MFCD and

achieves comparable results as the best supervised methods; however, the advantage is that

it is a self-supervised method trained with a labor-free structure library only, without using

expensive GTs.

Results on industry dataset : The detection results on the data from industry are present

83

Fig. 5.9: Comparison of detection results on industrial data. From top to bottom are:
original image, GTs, and the detection results of CrackIT, MFCD, CrackForest, CrackGAN
and the proposed method, respectively.

84

in Table 5.2 and Figure 5.9. Different from the CFD data, there is no precise pixel-level GTs

for this dataset. The biased/inaccurate 1-pixel GTs are not suitable for end-to-end training,

and it will easily run into the “all black” local minimal due to the pixel-level mismatching

and data imbalance; therefore, the results of the end-to-end training methods are the ones

trained using the mixed datasets of CFD, CrackTree and FCN of which the pixel-level GTs

are given. As shown in Figure 5.9, CrackIT shows the similar results as using CFD data,

but most cracks are missed from the industrial data. MFCD detects most cracks but also

introduces a lot of noise due to the complicated pavement texture from the background.

For CrackGAN it achieved best results because of the supervised end-to-end training. The

proposed method trained with the assistance of the structure library achieved comparable

results with the CrackGAN without labor-cost GTs.

5.4.3 Ablation study

Fig. 5.10: Testing results on training set with and without cycle consistent loss. The top
row is the generated images with the proposed setting, and the bottom row is the generated
images without cycle consistent loss.

Ablation of cycle-consistency loss: GAN has been proved to perform the learning via

reducing the distribution difference between real data and generated data. As reported

in [86], the distribution consistency could be any permutation of the images which cannot

85

Fig. 5.11: Experiments with and without one-class discriminator. Images at the top are with
the proposed setting and the images on the bottom are results with the original cycle-GAN.

86

guarantee the consistency of input-output patterns. In Figure 5.10, the images on the bot-

tom row are the generated image patches by the network trained without cycle-consistency

loss while the top row are image patches with both the adversarial loss and the cycle-

consistency loss. It can be seen that without the cycle-consistency loss, the network can

generate the structured image patches; however, the generated structure patterns are quite

random that do not match the input crack patterns well, which cannot be used for crack

detection. Notice that the testing is conducted on the training dataset directly.

Ablation of one-class discriminator : One of the main differences from the original

GAN is the modified discriminator which works with a larger input image (larger than the

receptive field of the generator). While it has been discussed that with the original design,

the discriminator would treat both the structured patch and the “all black” patches as

real where the structured patches represent the crack patches and the “all black” patches

represent the background patches, respectively. From Figure 5.11, it can be observed that

without one-class discriminator, the network cannot generate expected results, only produce

some nonsensical textures. A possible explanation is that when the discriminator treated

both structured patch and “all black” patch as real, its function was greatly weakened. In

contrast, the network trained with one-class discriminator can handle the problem properly.

5.4.4 Summary

In this Chapter, we discussed a self-supervised structure learning approach for crack

detection without relying on GTs, which has potential to realize real fully automatic crack

detection that does not need to manually mark GTs for the training. It formulated crack

detection as an unsupervised structure learning problem by introducing a labor-free struc-

ture library to assist the training of cycle-GAN. It proposed to use discriminator with larger

field of view, which only treats the crack patches as real, to overcome the data imbalance

problem inherent in crack-like object detection. The method is validated using multiple

crack detection datasets. Moreover, the proposed method combines domain adaptation and

generative adversarial networks to handle object detection, which is a general means that

can be applied to other computer vision problems.

87

CHAPTER 6

CONCLUSIONS AND FUTURE WORKS

In this dissertation, we have explored and designed deep learning algorithms for crack-

like object detection. Specifically, we have solved four important issues using deep learning

for industrial crack detection, which have filled the gap between academic research and

industrial application. The contributions of our work are as follows.

In Chapter 2, we employed a deep classification network for crack-region pre-selection

which improved the performance by removing most of the noisy regions before crack detec-

tion.

In Chapter 3, we first generalized a classification network to a detection network which

realized a one-stage crack detection network for large size input images. The method boosts

the computation efficiency by more than ten times faster than the window-sliding based

strategy, and makes deep learning feasible for real-time industrial crack detection.

In Chapter 4, we introduced generative adversarial learning to solve an important

problem inherent in crack-like object detection, data imbalance. The network is robust to

biased GTs, which greatly reduced the workload of preparing GTs for the training. It is of

great significance for saving labor-cost and reducing budget in industry applications.

In Chapter 5, we proposed a self-supervised method for crack detection. The method

introduced cycle-consistent generative adversarial networks that does not need to manually

preparing GTs for the training, which minimizes the human intervention; and it is an

important research direction of the future system for crack detection.

The dissertation focuses on deep learning for crack-like object detection problem based

on the pavement crack detection; nonetheless, the proposed method can be used for multi-

class object detection via setting the Softmax layer as multi-channel outputs, such as locat-

ing road marks [69,92], discriminating crack and sealed cracks [5], etc.

88

We have proposed to use generative adversarial learning for crack detection. However,

it should be mentioned that, the networks detect the cracks as n-width crack curves which

will miss the crack width information. In practical applications, many of the protocols

prefer to use crack width to estimate cracking severity which might be an issue for the

proposed methods, and it needs to be further discussed.

89

REFERENCES

[1] N. F. Hawks, and T. P. Teng. Distress identification manual for the long-term pavement

performance project. National academy of sciences, 2014.

[2] R. Amhaz, S. Chambon, J. Idier, and V. Baltazart, “Automatic crack detection on

two-dimensional pavement images: an algorithm based on minimal path selection,”

IEEE Trans. Intell. Transp. Syst., vol. 17, no. 10, pp. 2718-2729, 2016.

[3] I. Abdel, O. Abudayyeh, and M. E. Kelly, “Analysis of edge-detection techniques for

crack identification in bridges,” J. Comput. Civil Eng., vol. 17, no. 4, pp. 255-263, 2003.

[4] P. Lad, and M. Pawar, “Evaluation of railway track crack detection system,” in Proc.,

IEEE ROMA, 2016, pp. 1-6.

[5] K. Zhang, H. D. Cheng, and B. Zhang, “Unified approach to pavement crack and sealed

crack detection using pre-classification based on transfer learning,” J. Comput. Civil

Eng., vol. 32, no. 2 (04018001), 2018.

[6] K. Zhang, and H. D. Cheng, “A novel pavement crack detection approach using pre-

selection based on transfer learning,” in Proc. of the 9th International Conference on

Image and Graphics, pp. 237-283: Springer, 2017.

[7] K. Zhang, H. D. Cheng, and S. Gai, “Efficient Dense-Dilation Network for Pavement

Crack Detection with Large Input Image Size,” in Proc. IEEE ITSC, 2018, pp. 884-889.

[8] Central Intelligence Agency, “The world factbook.”

https://www.cia.gov/library/publications/resources/the-world-factbook/, accessed

Jan. 2017.

[9] L. Zhang, F. Yang, Y. D. Zhang, and Y. J. Zhu, “Road crack detection using deep

convolutional neural network,” in Proc., IEEE ICIP, 2016, pp. 3708-3712.

90

[10] M. Gavilan, D. Balcones, D. F. Llorca et al., “Adaptive road crack detection system

by pavement classification,” Sensors, vol. 11, no. 10, pp. 9628–9657, 2011.

[11] Y. J. Cha, W. Choi, and O. Büyük?ztürk., “Deep Learning-Based Crack Damage Detec-

tion Using Convolutional Neural Networks,” Computer-Aided Civil and Infrastructure

Engineering, vol. 32, no. 5, pp. 361–378, 2017.

[12] K. R. Kirschke, and S. A. Velinsky, “Histogram-based approach for automated pave-

ment crack sensing.” Journal of Transportation Engineering, vol. 118, no. 5, pp. 700-

710, 1992.

[13] H. D. Cheng, J. Chen, C. Glazier, and Y. G. Hu, “Novel approach to pavement crack

detection based on fuzzy set theory,” J. Comput. Civil Eng., vol. 13, no. 4, pp. 270-280,

1999.

[14] H. D. Cheng, and M. Miyojim, “Novel system for automatic pavement distress detec-

tion.” J. Comput. Civil Eng., vol. 12, no. 3, 145-152, 1998.

[15] H. Oliveira, and P. L. Correia, “Automatic road crack segmentation using entropy and

dynamic thresholding,” in Proc. of 17th European Signal Processing Conf., 2009, pp.

622-626.

[16] H. N. Koutsopoulos, I. E. Sanhouri, and A. B. Downey, “Analysis of segmentation

algorithms for pavement distress images,” Journal of Transportation Engineering, vol.

119, no. 6, pp. 868-888, 1993.

[17] N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Trans. on

Syst. Man Cybern., vol. 9, no. 1, 62-66, 1979.

[18] A. Rosenfield, and R. C. Smith, “Thresholding using relaxation,” IEEE Transactions

on Pattern Analysis and Machine Intelligence, vol. 3, no. 5, pp. 598-606, 1979.

[19] Q. Zou, Y. Cao, Q. Li, Q. Mao, and S. Wang, “CrackTree: Automatic crack detection

from pavement images,” Pattern Recognition Letters, vol. 33, no. 3, pp. 227-238, 2012.

91

[20] R. C. Gonzalez, R. E. Woods, and S. L. Steven. Digital image processing using Matlab,

Addison-Wesley, 2009.

[21] Y. Hu, and Zhao, C. X., “A local binary pattern based methods for pavement crack

detection,” J. Pattern Recognit. Res., vol. 5, no. 1, pp. 140-147, 2010.

[22] E. Zalama, J. Bermejo, R. Medina, and J. Llamas, “Road crack detection using visual

features extracted by Gabor filters,” Computer-aided Civil and Infrastructure Engi-

neering, vol. 29, no. 5, pp. 342-358, 2014.

[23] Y. Shi, L. M. Cui, Z. Qi et al., “Automatic road crack detection using random struc-

tured forest,” IEEE Trans. on Intelligent Transportation Systems, vol. 17, no. 12, pp.

3434-3445, 2016.

[24] P. Dollár, and C. L. Zitnick, “Structured forests for fast edge detection,” in Proc.,

IEEE ICCV, 2013, pp. 1841–1848.

[25] P. Kontschieder, S. R. Bulo, and M. Pelillo, “Structured class-labels in random forest

for semantic image labelling,” in Proc., IEEE ICCV, 2011, pp. 2190-2197.

[26] M. Petrou, and J. Kittler, “Automatic surface crack detection on textured materials.”

J. Mater. Process. Technol., vol. 56 (1-4), pp. 158-167, 1996.

[27] K. Wang, Q. Li, and W. Gong, “Wavelet-based pavement distress image edge detection

with a trous algorithm,” Transp. Res. Rec., vol. 6 (2024), pp. 24-32, 2000.

[28] J. Zhou, P. S. Huang, and F. P. Chiang, “Wavelet-based pavement distress detection

evaluation,” Optic Engineering, vol. 45, no. 2, pp. 1-10, 2006.

[29] F. M. Nejad, and H. Zakeri, “A comparison of multiresolution methods for detection

and isolation of pavement distress,” Journal of Expert Systems with Applications, vol.

38, no. 3, pp. 2857-2872, 2011.

92

[30] K. Vaheesan, C. Chandrakumar, and M. Rahman, “Tiled fuzzy Hough transform for

crack detection,” in Proc., 12th International Conference on Quality Control by Arti-

ficial Vision, pp. 1-6: SPIE(953411), 2015.

[31] H. Song, W. Wang, F. Wang et al., “Pavement crack detection by ridge detection

on fractional calculus and dual-thresholds,” International Journal of Multimedia and

Ubiquitous Engineering, vol. 10, no. 4, pp. 19-30, 2015.

[32] H. D. Cheng, J. Wang, Y. Hu et al., “Novel approach to pavement cracking detection

based on neural network,” Transp. Res. Rec., vol. 1764, pp. 119–127, 2001.

[33] Y. Huang, and B. Xu, “Automatic inspection of pavement cracking distress,” Journal

of Electronic Imaging, vol. 15, no. 1, pp. 17-27, 2006.

[34] G. E. Hinton, D. Li, Y. Dong et al., “Deep neural networks for acoustic modeling in

speech recognition: The shared views of four groups,” IEEE Signal Process. Mag., vol.

29, no. 6, pp. 82-97, 2012.

[35] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, pp. 436-444,

2015.

[36] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep

convolutional neural network,” in Proc., NIPS, 2012, pp. 1-9.

[37] J. Deng, W. Dong, R. Socher et al., “ImageNet: A large-scale hierarchical image

database,” in Proc., IEEE CVPR, 2009, pp. 248-255.

[38] R. Girshick, J. Donahue, T. Darrell et al., “Rich feature hierarchies for accurate object

detection and semantic segmentation,” in Proc. IEEE CVPR, 2014.

[39] R. Girshick, “Fast R-CNN,” in Proc., IEEE ICCV, 2015, pp. 1440-1448.

[40] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in deep convolutional

networks for visual recognition,” in Proc. ECCV, pp. 346-361: Springer, 2014.

93

[41] S. Ren, K. He, R. Girshick et al., “Faster R-CNN: Towards real-time object detection

with region proposal networks,” arXiv preprint arXiv:1506.01497, 2015.

[42] J. Dai, Y. Li, K. He et al., “R-FCN: Object detection via region-based fully convolu-

tional networks,” arXiv preprint arXiv:1605.06409, 2016.

[43] W. Liu, D. Anguelov, D. Erhan C. Szegedy et al., “SSD: single shot multi-box detector,”

in Proc., ECCV, pp. 21-37: Springer, 2016.

[44] J. Redmon, S. Divvala, R. Girshick et al., “You only look once: unified, real-time

object detection,” arXiv preprint arXiv:1506.02640, 2015.

[45] J. Redmon, and A. Farhadi, “YOLO9000: Better, faster, stronger,” in Proc., IEEE

CVPR, 2017, pp. 6517-6525.

[46] K. He, G. Gkioxari, P. Dollar et al., “Mask R-CNN,” arXiv preprint arXiv:1703.06870,

2017.

[47] K. Zhang, H. D. Cheng, “Asymmetrical U-Net: A Bias-Tolerant Crack Detection Net-

work Using Generative Adversarial Learning,” submitted to CVPR 2019.

[48] A. Zhang, C. P. Kelvin, B. Wang et al., “Automated pixel-level pavement crack de-

tection on 3D asphalt surfaces using a deep-learning network,” Comput.-Aided Civ.

Infrastruct. Eng., vol. 32, no. 10, pp. 805-819, 2017.

[49] X. Yang, H. Li, Y. Yu et al., “Automatic pixel-level crack detection and measurement

using fully convolutional network,” Comput.-Aided Civ. Infrastructure. Eng., vol. 33,

no. 12, pp. 1090-1109, 2018.

[50] N. Dalal, and B. Triggs, “Histograms of oriented gradients for human detection,” in

Proc., IEEE CVPR, 2005.

[51] V. Nair, and G. E. Hinton, “Rectified linear units improve restricted Boltzmann ma-

chines,” in Proc., ICML, 2010.

94

[52] N. Srivastava, G. E. Hinton, A. Krizhevsky et al. “Dropout: A simple way to prevent

neural networks from overfitting,” J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958,

2014.

[53] L. Wan, M. Zeiler, S. Zhang et al., “Regularization of neural networks using DropCon-

nect,” in Proc. ICML, 2013.

[54] K. Simonyan, and A. Zisserman, “Very deep convolutional networks for large-scale

image recognition,” CoRR, abs/1409.1556, 2014.

[55] S. J. Pan, and Q. Yang, “A survey on transfer learning,” IEEE Trans. on Knowl. Data

Eng., vol. 22, no. 10, pp. 1345-1359, 2010.

[56] J. Yosinski, J. Clune, Y. Bengio et al., “How transferable are features in deep neural

networks?” in Proc. NIPS, 2014.

[57] R. Tibshirani, “Regression shrinkage and selection via lasso,” Journal of Royal Statistic

Society, vol. 58, no. 1, pp. 267-288, 1996.

[58] M. Oquab, L. Bottou, I. Laptev et al., “Learning and transferring mid-level image

representations,” in Proc., IEEE CVPR, 2014, pp. 1717-1724.

[59] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev et al., “Caffe: Convolutional architecture

for fast feature embedding,” arXiv preprint arXiv: 1408. 5093, 2014.

[60] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by

back-propagating errors,” Nature, vol. 323, no. 6088, pp. 533–536, 1986.

[61] W. Wang, “Protocol based pavement cracking measurement with 1 mm 3D pavement

surface model.” Ph.D. thesis, Oklahoma State Univ., Stillwater, 2015.

[62] N. F. Hawks, and T. P. Teng, Distress identification manual for the long-term pavement

performance project. National academy of sciences, 2014.

95

[63] D. Power, “Evaluation: from precision, recall and F-measure to ROC, Informedness,

markedness and correlation,” Journal of Machine Learning Technologies, vol. 2, no. 1,

pp. 37-63, 2011.

[64] S. J. Sheather, A modern approach to regression with R. Springer, New York, 2009.

[65] J. Friedman, Hastie, T., and Tibshirani, R., “Regularization paths for generalized

linear models via coordinate descent,” J. Stat. Software, vol. 33, no. 1, pp. 1-22, 2010.

[66] G. Medioni, and Tang, C., “Tensor Voting: Theory and Applications,” in Proc., 12th

Congress Francophone AFRIF-AFIA de Reconnaissance des Formes et Intelligence Ar-

tificial, 2000.

[67] T. Linton, “Tensor Voting,” https://www.mathworkcia.gov/library/publications/resources,

accessed 2017.

[68] P. Sermanet, D. Eigen, X. Zhang et al., “Overfeat: integrated recognition, localization

and detection using convolutional networks,” arXive prepring arXiv:1312.6229, 2014.

[69] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic

segmentation,” in IEEE CVPR, 2015.

[70] P. Isola, J. Y. Zhu, T. Zhou et al, “Image-to-image translation with conditional adver-

sarial networks,” in Proc. IEEE CVPR, 2017.

[71] F. Yu, and V. Koltun, “Multi-scale context aggregation by dilated convolutions,” in

Proc. ICLR, 2016.

[72] L. C. Chen, G. Papandreou, I. Kokkinos et al., “Semantic image segmentation with

deep convolutional nets and fully connected CRFs,” in Proc. Int. Conf. Learn. Repre-

sent., 2015.

[73] L. Chen, G. Papandreou, I. Kokkinos et al., “DeepLab: semantic image segmentation

with deep convolutional nets, atrous convolution, and fully connected CRFs,” arXiv

preprint arXiv:1606.00915, 2017.

96

[74] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza et al., “Generative adversarial nets,” in

Proc. NIPS, 2014.

[75] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning with deep

convolutional generative adversarial networks,” in Proc. ICLR, 2016.

[76] Y. Ganin, and V. Lempitsky, “Unsupervised domain adaptation by backpropagation,”

arXiv preprint arXiv:1409.7495, 2014.

[77] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional networks for biomed-

ical image segmentation,” in Proc. Med. Image Comput. Comput.-Assist, Intervention,

2015, pp. 234–241.

[78] L. Tran, X. Yin, and X. Liu, “Disentangled representation learning GAN for pose-

invariant face recognition,” in Proc. IEEE CVPR, 2017.

[79] D. P. Kingma, and J. Ba, “Adam: A method for stochastic optimization,” arXiv

preprint arXiv:1412.6980, 2014.

[80] M. Everingham, L. V. Gool, C. K. I. William et al., “The PAS-

CAL Visual Object Classes Challenge 2011 Results,” Online Available:

http://www.pascalnetwork.org/challenges/VOC/voc2011/workshop/index.html, ac-

cessed 2017.

[81] Y. C. Tsai, V. Kaul, and R. M. Mersereau, “Critical assessment of pavement distress

segmentation methods,” Journal of Transportation Engineering, vol. 136, no. 1, pp.

11-19, 2010.

[82] Y. C. Tsai, and A. Chatterjee, “Comprehensive, quantitative crack detection algorithm

performance evaluation system,” J. Comput. Civ. Eng., vol. 31, no. 5 (04017047), 2017.

[83] H. Oliveira, and P. L. Correia, “CrackIT-An image processing toolbox for crack detec-

tion and characterization,” in Proc., IEEE ICIP, 2014.

97

[84] H. Li, D. Song, Y. Liu, and B. Li, “Automatic Pavement Crack Detec-

tion by Multi-Scale Image Fusion,” IEEE Trans. Intell. Transp. Syst., DOI:

10.1109/TITS.2018.2856928, 2018.

[85] M. Mirza, and S. Osindero, “Conditional generative adversarial nets,” arXiv preprint

arXiv:1411.1784, 2014.

[86] J. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image translation using

cycle-consistent adversarial networks,” in Proc. IEEE ICCV, 2017.

[87] C. Doersch, and A. Zisserman, “Multi-task self-supervised visual learning,” arXiv

preprint arXiv:1708.07860, 2017.

[88] C. Doersch, A. Gupta, and A. A. Efros, “Unsupervised visual representation learning

by context prediction,” in Proc. IEEE ICCV, 2015.

[89] M. Noroozi, and P. Favaro, “Unsupervised Learning of Visual Representations by Solv-

ing Jigsaw Puzzles,” in Proc. ECCV, 2016.

[90] K. Sohn, S. Liu, G. Zhong et al., “Unsupervised domain adaptation for face recognition

in unlabeled videos,” in Proc. IEEE CVPR, 2017, pp. 3210–3218.

[91] D. Martin, C. Fowlkes, D. Tal et al., “A database of human segmented natural images

and its application to evaluating segmentation algorithms and measuring ecological

statistics,” in Proc. IEEE ICCV, 2001.

[92] H. Maeda, Y. Sekimoto, T. Seto et al., “Road damage detection and classification using

deep neural networks with smartphone images,” Computer-Aided Civil and Infrastruc-

ture Engineering, vol. 33, no. 12, pp. 1127-1141, 2018.

98

CURRICULUM VITAE

Kaige Zhang

EDUCATION

Ph.D., Computer Science Jan. 2015 - present

Utah State University, USA

Dissertation: “Deep Learning for Crack-Like Object Detection”

M.S., Signal & Information Processing Sep. 2011 - Mar. 2014

Harbin Engineering University, China

B.S., Electronical Engineering Sep. 2007 - July 2011

Harbin Institute of Technology, China

RESEARCH EXPERIENCE

USU, CVPRIP Lab Jan. 2015 - present

Deep Learning for Crack-Like Object Detection

• developed a pavement cracks detection algorithm with modified fully convolutional

neural network;

• proposed a solution to solve the efficiency problem in deep learning-based object

detection;

• implemented the crack detection algorithm.

Hikvision Research USA May 2018-Aug. 2018

• Pose-robust face recognition based on deep learning

HEU, Signal Processing Lab Sep. 2007 - July 2011

99

• designed an aircraft trajectory tracking algorithm based on generalized Kalman filter

and build the ADS-B message processing system;

• cooperated with a partner and implemented the ADS-B message decoding, object

tracking, and report generalization functions with FPGA + DSP6000.

HIT, Radar Signal Processing Lab Sep. 2011 - Mar. 2014

• studied different radar signal processing methods, e.g. matched filtering, 2-D Fourier

transformation, DFT, IDFT, pulse compression, interpolating with sinc function, etc.

• implemented Spatial Frequency Interpolation algorithm for image reconstruction with

spotlight SAR data using Matlab.

TEACHING EXPERIENCE

• taught recitation class for CS1400 (Introduction to Computer Science with Python) at

Fall 2018; served as teaching assistant for CS2420 (Data Structure and Algorithms),

CS1410 (C++2), and CS3810 (Computer System Organization and Architecture).

PROFESSIONAL SERVICES

• Session Chair of IEEE International Conference of Intelligent Transportation System

2018 (Pavement Perception Session).

• Reviewer for International Journal of Pavement Research and Technology (Elsevier),

Automation in Construction (Elsevier), IEEE Access, IEEE ITSC2018; Co-reviewer

for ECCV2018 (Primary reviewers: Qinxun Bai)

100

PUBLICATIONS

• Kaige Zhang, H. D. Cheng and Boyu Zhang, Unified approach to pavement crack

& sealed crack detection using pre-classification based on transfer learning, Journal

of Computing in Civil Engineering, ASCE, vol. 32, no. 2, 2018..

• Kaige Zhang, H. D. Cheng and Shan Gai, Efficient Dense-Dilation Network for

Pavement Cracks Detection with Large Input Image Size, IEEE ITSC 2018.

• Kaige Zhang and H. D. Cheng, Self-Supervised Structure Learing for Crack Detec-

tion Based On Cycle-GAN, Journal of Computing in Civil Engineering, 2019. (Ac-

cepted)

• Kaige Zhang and H. D. Cheng, A novel pavement crack detection approach using

pre-selection based on transfer learning, ICIG 2017, LNCS, Springer.

• Kaige Zhang and H. D. Cheng, CrackGAN: A Labor-Light Crack Detection Ap-

proach Using Industrial Pavement Images Based on Generative Adversarial Learning,

submitted to IEEE Transactions on Intelligent Transportation Systems. (Major revi-

sion)

• Shan Gai, Kaige Zhang, Vector Extension of Quaternion Wavelet Transform and

Its Application to Color Image Denoising, IET Signal Processing (DIO: 10.1049/iet-

spr.2018.5127).

• Xiao Ma, Kaige Zhang and Xuan Yang, Pose-invariant facial expression recognition

based on 3D morphable model and generative adversarial learning, ICIG 2019, LNCS,

Springer.

• Yulong Qiao, Kaige Zhang and Chaozhu Zhang, Research on Trajectory Tracking

Using ADS-B Messages, ICIC Express Letters, vol. 8, no. 1, pp. 319-326, 2014.

• Kaige Zhang, Yulong Qiao and Chaozhu Zhang, Trajectory tracking using adaptive

multi-model filtering method in ADS-B system, IEEE Proc. of Robot, Vision and

Signal Processing, 2013, Japan.

101

• Chunyan Song, Yu-Long Qiao, Kaige Zhang, Infrared and Visible Image Fusion

Based on Oversampled Graph Filter Banks, submitted to IEEE Access.

	Deep Learning for Crack-Like Object Detection
	Recommended Citation

	ABSTRACT
	PUBLIC ABSTRACT
	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	Crack Detection
	Deep Learning for Object Detection
	Deep Learning for Crack Detection

	PRESELECTION WITH DEEP CLASSIFICATION NETWORK
	Background
	Related Works
	Deep convolutional neural network
	Transfer learning
	LASSO

	Proposed Method
	Preprocessing
	Preselection with transfer learning
	Crack curve extraction

	Experiments
	Dataset and metrics
	Fine-tuning details
	Performance

	Summary

	TRANSFORM A CLASSIFICATION NET TO DETECTION NET
	Background
	Related Works
	Fully convolutional network (FCN)
	Dilated convolution

	Proposed Method
	Training a classification network
	Crack detection network
	Network refining under larger field of view

	Experiments
	Dataset and metrics
	Experimental results
	Summary

	CRACK DETECTION WITH GENERATIVE ADVERSARIAL LEARNING
	Background
	Related Works
	Generative adversarial networks
	Deep domain adaptation

	Proposed Method
	``All Black'' issue
	CPO-supervision
	Asymmetric U-Net generator
	L1 loss with dilated GTs
	Working on full-size images
	Implementation details

	Experiments
	Dataset and metrics
	Overall performance
	Computation efficiency
	Summary

	SELF-SUPERVISED STRUCTURE LEARNING FOR CRACK DETECTION
	Background
	Related Works
	Image-to-image translation GAN
	Structure learning
	Self-supervised learning

	Proposed Method
	Data preparation
	Objective
	Network architecture
	Network training

	Experiments
	Datasets and metrics
	Performance evaluation
	Ablation study
	Summary

	CONCLUSIONS AND FUTURE WORKS
	CURRICULUM VITAE

