

JPSS-2 VIIRS Prelaunch Geometric Performance and Characterization

Ping Zhang, SSAI/GSFC Guoqing (Gary) Lin, SSAI/GSFC Robert Wolfe, GSFC/Code 619

> CALCON Logan, UT June 17 2019

- The NASA/NOAA Visible Infrared Imaging Radiometer Suite (VIIRS) is one key instrument onboard JPSS missions (SNPP and J1-4).
- Provide long-term measurements of geophysical variables, as well as operational weather forecasting and disaster relief and other applications.
- Spectral coverage from 0.4 to 12.5 microns
- Nadir resolution at ~375 m and ~750 m
- Afternoon orbit with 16 days repeat cycle

VIIRS Image

VIIRS Image

DNB image of Spain showing lights in urban centers and clouds over the Atlantic Ocean. Image courtesy of NASA's Direct Readout Laboratory.

JPSS2 VIIRS Scanning Mechanism and Optical Path

Wiskbroom imaging system with a rotating telescope assembly (RTA)

A half angle mirror (HAM) de-rotates the incoming rays from the RTA into a fixed aft-optics assembly (AOA)

Visible and near infrared (VisNIR) focal plane assembly (FPA) Short- and mid-wave infrared (SWMWIR) FPA Long-wave infrared (LWIR) FPA Day-night band (DNB) FPA

- JPSS-2 VIIRS prelaunch geometric performance assessment focuses on the sensor's spatial response and band-to-band coregistration
- Spectral Band registration
- Band-to-band co-registration
- Scan Line Spread Function
- Factors affect the JPSS-2 VIIRS DNB LSF anomaly
 - DN Range
 - Aggregation mode and Gains
 - Detectors
- DNB simulations with LSF anomaly use NPP data

JPSS2 Spectral Band Registration

- On average, about 10% of M-band sample (20 arc sec) difference is found between HAM 1 and HAM 0 Pre J2 motor axis rework.
- Post Motor Axis rework, track direction SBR difference between two HAM side reduced to 0.01 M-band sample at both 0 and 23 degree scan angle.

J2 VIIRS focal length variation

- JPSS-2 VIIRS prelaunch geometric performance assessment focuses on the sensor's spatial response and band-to-band coregistration
- Spectral Band registration
- Band-to-band co-registration
- Scan Line Spread Function
- Factors affect the JPSS-2 VIIRS DNB LSF anomaly
 - DN Range
 - Aggregation mode and Gains
 - Detectors
- DNB simulations with LSF anomaly use NPP data

- J2 VIIRS track/scan direction SBR compared to band I1/I2 average.
- Track variations within each FPA is less than 0.02 M sample
- Using timing adjustments, scan SBR errors in VISNIR and LWIR reduced to within in +/-0.03 M sample

- JPSS-2 VIIRS prelaunch geometric performance assessment focuses on the sensor's spatial response and band-to-band coregistration
- Spectral Band registration
- Band-to-band co-registration
- Scan Line Spread Function
- Factors affect the JPSS-2 VIIRS DNB LSF anomaly
 - DN Range
 - Aggregation mode and Gains
 - Detectors
- DNB simulations with LSF anomaly use NPP data

JPSS2 Scan Dynamic LSF

- The construction of LSF in scan direction is affected by time (RTA rotation angular speed)
- The variation of the spacing (phase) and opening (throughput) of the slits will have effects on the scan LSF construction

JPSS 2 VIIRS Scan Line Spread Function (LSF)

JPSS 2 VIIRS M band LSF

JPSS 2 VIIRS M band DFOV

JPSS 2 VIIRS MTF Results

- JPSS-2 VIIRS prelaunch geometric performance assessment focuses on the sensor's spatial response and band-to-band coregistration
- Spectral Band registration
- Band-to-band co-registration
- Scan Line Spread Function
- Factors affect the JPSS-2 VIIRS DNB LSF anomaly
 - DN Range
 - Aggregation mode and Gains
 - Detectors
- DNB simulations with LSF anomaly use NPP data

1.0

1.0

1.5

JPSS2 DNB LSF Anomaly vs DN Ranges

JPSS2 DNB LSF Anomaly vs Detectors

Logarithm fit between Max dn and side lobe (a) 1 sample interval Intercept indicate the maximum % Side lobe when max dn=1

 $SideLobe = Slope \times ln(maxdn) + Intercept$

Outline

- JPSS-2 VIIRS prelaunch geometric performance assessment focuses on the sensor's spatial response and band-to-band coregistration
- Spectral Band registration
- Band-to-band co-registration
- Scan Line Spread Function
- Factors affect the JPSS-2 VIIRS DNB LSF anomaly
 - DN Range
 - Aggregation mode and Gains
 - Detectors
- DNB simulations with LSF anomaly use NPP data

Simulated DNB night radiance with side lobe effect from previous pixel

NPP DNB night radiance

$$R'[i,j] = R[i,j] - \left(Slope \times \ln\left(\frac{R[i,j]}{rad2dn}\right) + Intercept\right) \times R[i,j] + \left(Slope \times \ln\left(\frac{R[i,j-1]}{rad2dn}\right) + Intercept\right) \times R[i,j-1]$$

Zhang et al, June 2019

CALCON 26

Simulated DNB night radiance with side lobe

Examples (2018002.2212)

R: Simulated DNB night radiance TV G: Simulated DNB night radiance Ambient B: NPP DNB night radiance

Red color indicates the effects of side lobe

J2VIIRS DNB simulation with cumulative effect

2013241.0754

$$R'[i,j] = R[i,j] - \left(Slope \times \ln\left(\frac{R[i,j]}{rad2dn}\right) + Intercept\right) \times R[i,j] + \left(Slope \times \ln\left(\frac{R'[i,j-1]}{rad2dn}\right) + Intercept\right) \times R[i,j-1]$$

Zhang et al, June 2019

Conclusion

- In general, JPSS-2 VIIRS' prelaunch geometric performance is good.
- Axis rework reduced JPSS-2 VIIRS half-angle mirror (HAM) side difference from 10% (about 20 arcsec) mis-registration of an M-band sample to 1%
- Using timing adjustments, the initial band-to-band co-registration errors between VisNIR and LWIR bands in the scan direction had been corrected to within +/-0.03 M sample.
- M-band and I-band DFOV/MTF meet specification
- Electronics anomaly caused Day Night Band (DNB) scan-direction Line Spread Function (LSF) anomaly.
 - Incorrect voltage setting causes the charge in the current sample to remain behind in the transfer gate and be deferred into the next sample in the scan direction
 - Impact is mild