
Utah State University Utah State University 

DigitalCommons@USU DigitalCommons@USU 

AggieAir Publications AggieAir 

5-21-2018 

Implications of Sensor Inconsistencies and Remote Sensing Error Implications of Sensor Inconsistencies and Remote Sensing Error 

in the Use of Small Unmanned Aerial Systems for Generation of in the Use of Small Unmanned Aerial Systems for Generation of 

Information Products for Agricultural Management Information Products for Agricultural Management 

Mac McKee 
Utah State University, mac.mckee@usu.edu 

Ayman Nassar 
Utah State University, aymnassar@gmail.com 

Alfonso F. Torres-Rua 
Utah State University, alfonso.torres@usu.edu 

Mahyar Aboutalebi 
Utah State University, mahyar.aboutalebi@gmail.com 

William Kustas 
USDA ARS 
Follow this and additional works at: https://digitalcommons.usu.edu/aggieair_pubs 

 Part of the Aviation Commons 

Recommended Citation Recommended Citation 
Mac McKee, Ayman Nassar, Alfonso Torres-Rua, Mahyar Aboutalebi, and William Kustas "Implications of 
sensor inconsistencies and remote sensing error in the use of small unmanned aerial systems for 
generation of information products for agricultural management", Proc. SPIE 10664, Autonomous Air and 
Ground Sensing Systems for Agricultural Optimization and Phenotyping III, 1066402 (21 May 2018); 
http://dx.doi.org/10.1117/12.2305826 

This Conference Paper is brought to you for free and 
open access by the AggieAir at DigitalCommons@USU. It 
has been accepted for inclusion in AggieAir Publications 
by an authorized administrator of DigitalCommons@USU. 
For more information, please contact 
digitalcommons@usu.edu. 

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/aggieair_pubs
https://digitalcommons.usu.edu/aggieair
https://digitalcommons.usu.edu/aggieair_pubs?utm_source=digitalcommons.usu.edu%2Faggieair_pubs%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1297?utm_source=digitalcommons.usu.edu%2Faggieair_pubs%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/


PROCEEDINGS OF SPIE

SPIEDigitalLibrary.org/conference-proceedings-of-spie

Implications of sensor
inconsistencies and remote sensing
error in the use of small unmanned
aerial systems for generation of
information products for agricultural
management

Mac McKee, Ayman Nassar, Alfonso Torres-Rua, Mahyar
Aboutalebi, William Kustas

Mac McKee, Ayman Nassar, Alfonso Torres-Rua, Mahyar Aboutalebi, William
Kustas, "Implications of sensor inconsistencies and remote sensing error in
the use of small unmanned aerial systems for generation of information
products for agricultural management," Proc. SPIE 10664, Autonomous Air
and Ground Sensing Systems for Agricultural Optimization and Phenotyping
III, 1066402 (21 May 2018); doi: 10.1117/12.2305826

Event: SPIE Commercial + Scientific Sensing and Imaging, 2018, Orlando,
Florida, United States

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 13 Aug 2019  Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



 

 

Implications of sensor inconsistencies and remote sensing error in the 
use of small unmanned aerial systems for generation of information 

products for agricultural management 
Mac McKee1a, Ayman Nassara, Alfonso Torres-Ruaa, Mahyar Aboutalebia, William Kustasb 

aUtah Water Research Laboratory, Utah State University, Logan, UT, 84322-8200; bUSDA-ARS 
Hydrology and Remote Sensing Laboratory, Beltsville, MD, 20705-8431 

 
 

ABSTRACT 
 
Small, unmanned aerial systems (sUAS) for remote sensing represent a relatively new and growing technology to sup-
port decisions for agricultural operations.  The size and power limitations of these systems present challenges for the 
weight, size, and capability of the sensors that can be carried, as well as the geographical coverage that is possible.  
These factors, together with a lack of standards for sensor technology, its deployment, and data analysis, lead to uncer-
tainties in data quality that can be difficult to detect or characterize.  These, in turn, limit comparability between data 
from different sources and, more importantly, imply limits on the analyses that can be accomplished with the data that 
are acquired with sUAS.  This paper offers a simple statistical examination of the implications toward information prod-
ucts of an array of sensor data uncertainty issues.  The analysis relies upon high-resolution data collected in 2016 over a 
commercial vineyard, located near Lodi, California, for the USDA Agricultural Research Service Grape Remote sensing 
Atmospheric Profile and Evapotranspiration eXperiment (GRAPEX) Program.  A Monte Carlo analysis is offered of 
how uncertainty in sensor spectral response and/or orthorectification accuracy can affect the estimation of information 
products of potential interest to growers, as illustrated in the form of common vegetation indices. 
 
Keywords:  remote sensing, unmanned autonomous vehicle, spectral response, orthorectification accuracy, uncertainty 
 
 

1.  INTRODUCTION 
 
Unmanned autonomous vehicles (UAVs), or unmanned aerial systems (UASs), or, simply, “drones”, have seen extensive 
use for military applications for many years, but it is only in relatively recent times that they have become commercially 
available for the domestic market.  This includes a growing set of products for use in remote sensing (RS) applications in 
agriculture.  Many of these products rely on data based on certain spectral characteristics of the sensors flown by the 
UAS and are potentially limited in their repeatability and accuracy by the radiometric and image processing protocols 
that are used to transform raw imagery into scientific data.  Entry costs for companies that seek to market RS products 
for use in agriculture are relatively low, and there are few standards in place for performance of sensors, planar accuracy 
of orthomosaics, etc.  This means that, in the context of the current market, there is a diversity of cameras and sensors, 
image processing software, field protocols, and so forth, available for sale, resulting in a poorly understood range of 
positional accuracy and radiometric performance of RS products.  Further, there is growing interest in “precision agricul-
ture” and the role that UAS-based RS can play in it.  This will place greater importance on accuracy, repeatability, and 
comparability of the RS data, both at UAS and satellite resolutions, and on the analytic efforts used in support of man-
agement decisions of growers engaged in precision agriculture.  However, the impact on the quality of RS products in 
terms of the range of uncertainty in spectral and image processing performance of the array of technologies for UAS RS 
is not fully explored.  This paper examines this issue through application of Monte Carlo methods using high-quality, 
high-resolution multispectral imagery of a wine grape vineyard acquired near Lodi, California.  These data were collect-
ed and processed by the AggieAirTM remote sensing group [1] at Utah State University in cooperation with the USDA 
Agricultural Research Service Grape Remote sensing Atmospheric Profile and Evapotranspiration eXperiment 
(GRAPeX) Program.  Specifically, the effects of uncertainty in sensor spectral response and horizontal error in the geo-
location of individual pixels are explored in terms of their impact on the estimate of two standard vegetation indices, 
normalized difference vegetation index (NDVI) and vegetation health index (VHI). 

                                                 
1 mac.mckee@usu.edu; phone 1-435-797-3188 
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1.1  Sensor spectral response uncertainty 
 
Digital cameras utilize arrays of detectors that each sense incident electromagnetic energy in a particular range of wave-
lengths and translate this signal into an electrical current.  An array of such detectors is called a focal plane array (FPA), 
and usually contains millions to tens of millions of detectors arranged in a rectangular grid.  When an image is acquired, 
the camera transforms the electrical output from each of the millions of detectors into individual pixel values, each of 
which is an integer.  These integer values, called “digital numbers”, or DNs, are often represented in 8-, 12-, or 14-bit 
format.  These DNs are not a direct measure the energy reflected from the surface, yet most RS applications require that 
a measurement of reflected electromagnetic energy be used to support any number of scientific calculations that provide 
a description of surface phenomena observed in the imagery.  The precise nature of the transformation from DNs to a 
measure of reflected electromagnetic energy is called the spectral response function (SRF) of the sensor.  Even things as 
simple as basic vegetation indices must be based on such measurements of reflected electromagnetic energy.  (Refer to 
[2] for a much more detailed and informative introduction to the topic of spectral response functions.) 
 
Studies done with RS data produced by satellite platforms carrying high-quality sensors have shown that data derived 
from different sensors can yield quite different characterizations of surface conditions.  An examination of the effects of 
the spectral response of several advanced, very high-resolution radiometers aboard several different moderate-resolution 
satellites showed that, for identical atmospheric conditions and similar surface reflectance conditions, the spectral reflec-
tance data and calculated NDVI values were sensitive to the SRFs of the various sensors [3].  Variations in the SRF have 
been recognized as one of the most important sources of uncertainty for the use of RS imagery [4].  In this study, differ-
ences were observed in the SRF of 21 earth observation satellite sensors for red, near infrared, and shortwave infrared 
reflectances and resulting NDVI values.  These results indicate that reflectances and NDVI from different satellite sen-
sors cannot be regarded as equivalent.  The authors of [4] also contend that variations in processing strategies and algo-
rithm preferences among sensor systems and data streams “…hinder cross-sensor spectra and NDVI comparability and 
continuity.” 
 
The DNs generated by the individual sensors in a FPA must be converted to estimates of the energy reflected from the 
surface.  The process by which this is accomplished is called radiometric calibration.  This sequence of events involved 
with collection of scientific data, from the selection of cameras, lenses, and optical filters, to the protocols followed in 
image acquisition and radiometric calibration, introduces uncertainties in the RS data that results.  These uncertainties 
arise in different ways, including: 
 
• Different sensors/cameras/lenses/optical filters have different responses in the same wavelengths (for example, see 

Figure 1).  This will produce differences in the values of various vegetation indices, even when using different sen-
sors of high quality and relatively narrow spectral bands [5]. 

 
• Sun, slope, and aspect angles can have a significant effect on pixel DN values [6]. 
 
• If not properly addressed, differences in the content of water vapor, aerosols, particulates, etc., of the air column 

between the sensor and the ground can introduce error into the radiometric calibration results [2], especially for 
microbolometer thermal cameras [7]. 

 
 
1.2  Orthorectification uncertainty 
 
Orthorectification is the process by which RS imagery is stitched together into a mosaic wherein an estimate of the geo-
location of each pixel, both in the horizontal (or “planar”) and vertical, is obtained.  All orthorectification approaches 
will produce some amount of error in this horizontal and vertical estimate.  Much work has been done in satellite image 
orthorectification, which typically benefits from high accuracy in the estimation of satellite position and orientation and 
from the relatively large footprint size of an image.  Sub-pixel planar error, as measured by root-mean-squared error 
(RMSE) was reported in [8].  The influence of digital elevation model (DEM) quality on orthorectification accuracy of 
forest maps using TerraSAR-X images was explored by [9].  An assessment of different sensor models to achieve the 
best geometric accuracy in orthorectified imagery products obtained from IKONOS Geo Ortho Kit and QuickBird basic 
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imagery was explored by [10].  
In this study, positional error on 
the order of one to two meters 
was reported possible, 
depending on the orthorectifica-
tion estimation model selected 
and the number of ground 
control points used.  A fast and 
accurate method is reported by 
[12], capable of automatically 
selecting and matching a large 
amount of ground control 
regions.  In this study, the 
accuracy of the method was 
assessed using Formosat-2 
imagery, and reported RMSE of 
less than 1.5 pixels.  Formosat-
2 has spatial resolution of 
approximately 2 meters. 
 
However, UAS-based RS pre-
sents an array of challenges for 
accurate orthorectification that 
differ from those of satellites.  
Most software used for 
orthorectification of imagery 
from sUAS is based on funda-
mental photogrammetric algo-
rithms and pattern recognition.  
These, in part, normally use 
information about the position 
and orientation of the UAS 
when any given image was 
acquired.  However, the rela-
tively inexpensive global posi-
tioning system (GPS) receivers 
and inertial measurement units 
(IMUs) available for use on 
sUAS have limited accuracy in 
determining the aircraft position 
and orientation.  Error in these 
measurements, especially with 

respect to pitch, yaw, and roll from the IMU, can result in substantial error in the estimate of the geolocation of the 
image.  Further, this error grows as sUAS elevation increases. 
 
Challenges associated with orthorectification accuracy of sUAS RS imagery also include the relatively small image foot-
prints, significant image distortion due to the use of low-cost digital cameras, difficulty in locating ground control points, 
and inaccuracies in automatic tie point generation between images. Some work has been done in improving the accuracy 
of the orthorectification of UAS-based hyperspectral push-broom imagery using orthosmosaics from frame cameras [13-
14].  A semi-automated orthorectification procedure is reported [15] wherein a geometric accuracy of 1.5 to 2 m for 
imagery of 8 cm resolution was achieved over a limited acreage.  In a related study, a RMSE of 48 cm was reported for 
imagery having approximately 5-cm resolution [16].  A new orthorectification scheme can reportedly achieve 0.33 pixels 
of accuracy, though the sensors employed in the study limited these results to elevations below 400 m above ground [17]. 
 

 

(a) 

 

(b) 

 

(c) 

(d) 

 
Figure 1:  Examples of Relative Spectral Response of Different Cameras in 
the Blue, Green Red, and Near Infrared Bands:  (a) Landsat 8; (b) Lumenera 
RGB equipped with narrow-pass optical filters and Lumenera monochrome 
equipped with narrow-pass near infrared filter; (c) Adapted from Data 
Shown by Spectral Devices Inc. [10]; (d) Cannon S-95 RGB and Cannon S-
95 equipped with wide-band near infrared filter
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Fundamentally, orthorectification accuracy cannot be assessed without testing the estimated location of points in the 
orthomosaic against points on the ground whose locations are accurately known.  Commercially available orthorectifica-
tion services sometimes claim that the planar accuracy “could be as good as plus/minus 3 pixels”, which, of course, only 
places a lower bound on the error and does not provide an estimate of the actual planar positional error in any given 
orthomosaic. 
 
Error in the estimation of the geolocation of information in an orthomosaic might or might not be important for farm 
operations, depending on the operational task at hand.  Certainly, in the case of precision agricultural activities involving 
location-aware robotic equipment, there are implications for accuracy and, perhaps, even safety.  However, possibly 
more significant is that fact that positional error limits the collection of accurately georectified data through time in the 
outcome of operations for purposes of studying trends throughout the growing season or from year to year. 
 
 
1.3  Objective 
 
The objective of this paper is to explore how uncertainty generated from data from different sensors and imagery having 
different, and usually unknown amounts of uncertainty in geopositional error, will introduce uncertainty in information 
derived from the data in the imagery.  Measures of the impact of uncertainty in sensor spectral performance and pixel 
geopositional error is examined in terms of the impact on two, simple vegetation indices:  normalized difference vegeta-
tion index (NDVI) and vegetation health index (VHI). 
 
 

2.  METHODS AND PROCEDURES 
 
2.1  Study area 
 
As illustrated in Figure 2, the study area consists of a portion of a wine grape vineyard located near Lodi, California.  
The vineyard (owned by McMannis Winery) is managed by Pacific Agri-Lands Management and, in cooperation with 
E&J Gallo Winery, has been used as a study site by the Grape Remote sensing Atmospheric Profile and 
Evapotranspiration eXperiment (GRAPeX) program for several years.  GRAPeX is a collaboration of the Agricultural 
Research Service in USDA, E&J Gallo Winery, Utah State University, and others.  High resolution, multispectral image-
ry has been acquired for the entire vineyard on many occasions for several growing seasons.  Multispectral imagery in 
the red and near infrared bands, illustrated in Figure 1.b, were acquired at 10-cm resolution on May 2, 2016, and are 
used in this study.  Surface temperature data at 60-cm resolution, developed from imagery acquired with a microbolome-
ter camera during the same flight and radiometrically calibrated using procedures reported in [7], are also used.  The 
imagery used in this study is all from the approximately 160-m by 440-m rectangular area shown in Figure 2, which rep-
resents something more than 7,000,000 pixels in the red and near infrared bands, and nearly 200,000 pixels in the ther-
mal band.  The radiometric data recorded in these bands in the orthomosaic developed from the May 2, 2016 flight will 
be used as “true” measurements of surface reflectance in the Monte Carlo analyses that are discussed in a subsequent 
section of this paper. 
 
 
2.2  Calculation of vegetation indices 
 
To characterize the effects of uncertainty in the consistency of spectral measurements made with different sensors and 
calibration procedures, as well as uncertainty in the geoposition of any given pixel in a calibrated orthomosaic, two sim-
ple but commonly used vegetation indices are used in this paper:  normalized difference vegetation index and vegetation 
health index. 
 
 
2.2.1  Normalized difference vegetation index 
 
The normalized difference vegetation index (NDVI) used here is of the most common form involving the spectral reflec-
tance values of the red (ρred) and near infrared (ρnir) bands, as shown in Equation [1]: 
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  NDVI = 
ρnir  - ρred

ρnir  + ρred

  [1] 

 
NDVI is commonly 
used as an indicator of 
vegetation condition, 
with lower NDVI val-
ues associated with 
problems such as lack 
of soil fertility, pest or 
disease infestation, or 
low soil moisture.  It is 
sometimes used as an 
input to energy bal-
ance models of evapo-
transpiration that are 
based on data from RS 
sources. 
 
 
2.2.2  Vegetation 
health index 
 
The vegetation health 
index (VHI) is a proxy 
characterizing vegeta-
tion health or a com-
bined estimate of 
moisture and thermal 
vegetation stress con-
ditions.  It consists of a weighted average of a normalized value of NDVI, called the vegetation condition index (VCI), 
and a normalized temperature index called the temperature condition index (TCI).  These indices are shown in Equations 
[2] and [3], respectively: 
 

  VCI =
NDVI - NDVImin

NDVImax  + NDVImin

  [2] 

 

  TCI = 
Tmax  - T

Tmax  + Tmin

  [3] 

 
VHI, then, is expressed as a weighted average of VCI and TCI, as in Equation [4]: 
 
  VHI = α VCI + (1 - α) TCI  [4] 
 
where α must lie between 0 and 1.  For purposes of this study, α = 0.5. 
 
 
  

Figure 2:  Study Area

Lodi, CA

vineyard

Case Study Region

A portion (160 m-by-440 m) of a 
~150 ha wine grape vineyard near 
Lodi, CA, a part of the GRAPeX 
program involving ARS/USDA, 
E&J Gallo Winery, and Utah State 
University
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2.3  Monte Carlo representations 
 
The Monte Carlo analysis involves the random selection of 1,000,000 pixels from the more than 7,000,000 pixels availa-
ble from the data contained in the rectangular area of the orthomosaic of the Lodi vineyard shown in Figure 2.  Each of 
these pixels was randomly selected by generating uniform, independent deviates across the length and width of the rec-
tangular area.  The spectral information and the geolocation of each such selected pixel are considered to be “true” 
measurements with no error in them.  Random deviations of the “true” spectral information from a selected pixel are 
used to examine the impact of uncertainty in sensor spectral performance.  Similarly, spectral information from a nearby 
pixel that is identified at random with respect to the location of a “true” pixel is used to evaluate the effect of positional 
uncertainty.  Finally, the effect of both positional and spectral uncertainty is evaluated by combining a random positional 
deviation from the “true” pixel with a random spectral error from the pixel at this “false” location.  The following sec-
tions provide a description of how these calculations are done. 
 
 
2.3.1  Monte Carlo model of pixel positional uncertainty 
 
The Monte Carlo representation of pixel positional uncertainty is produced by following these steps: 
 

1. Select a random “true” pixel from the rectangular mosaic of the case study region illustrated in Figure 2.  Call 
this pixel location P.  The “true” reflectance and temperature values from this pixel are defined as the vector 
Rtrue = <ρred, ρnir, ρtemp>true. 

 
2. Generate independent displacements Δx and Δy from the location of the “true” pixel, and call this location PD.  

These displacements are normally distributed with mean of zero and variance such that Δx and Δy < 3 meters. 
 

3. Call the pixel reflectance/temperature values found at this new point RD = <ρred, ρnir, ρtemp>D. 
 

4. Calculate NDVI and VHI values from the reflectance values at these two points, and call them NDVItrue, VHItrue, 
NDVID, and VHID. 

 
These steps are illustrated in Figure 3.  
Note that the assumption of a normal 
distribution of error in each planar 
direction with a vanishingly small 
probability at a distance of 3 meters 
from a selected location is simply a 
convenience for purposes of this 
paper.  No study has been conducted 
of what such a distribution should be, 
and any alternative distribution could 
be substituted if data to support such 
a condition could be developed. 
 
 
2.3.2  Monte Carlo model of spectral uncertainty 
 
Uncertainty in sensor spectral performance is modeled in this paper as a random deviate that is independently and uni-
formly distributed between -10% and +10% of the “true” value for the red and near infrared bands, and between -5° C 
and +5° C for the thermal.  As in the case of the introduction of random planar positional uncertainty, these assumptions 
about the distribution of spectral uncertainty are arbitrary, though, perhaps, reasonable from the point of view of practi-
cal experience of the authors.  Different distributions could easily be considered.  The following steps are used for calcu-
lating the effects of spectral uncertainty: 
 

 
Figure 3:  Monte Carlo Representation of the Impact of Spatial Uncertainty 

Case Study Region
x

y

PD

P
Rtrue

RD

{
{

NDVItrue
VHI true
NDVID
VHI D

x
y
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1. Recall the “true” pixel randomly selected within the study area at location P, and its reflectance and temperature 
values, Rtrue = <ρred, ρnir, ρtemp>true. 

 
2. Using the uniform distributions discussed above, generate independent uniform deviates from these “true”  

reflectance/temperature values, and call them RS = <ρred, ρnir, ρtemp>S. 
 

3. Similarly, use these same deviations to transform the spectral reflectance/temperature values found at the dis-
placed point PD, and call them RDS = <ρred, ρnir, ρtemp>DS. 

 
4. From these newly created 

reflectance and tempera-
ture values, calculate 
NDVIS, NDVIDS, VHIS, 
and VHIDS. 

 
These steps are illustrated in Figure 
4.  Note that the calculations of 
NDVIDS and VHIDS represent the 
combined effects of uncertainty in 
planar location and spectral perfor-
mance. 
 
 
 

3.  MONTE CARLO SIMULATION RESULTS 
 
3.1  Impact of uncertainty in pixel location 
 
Figures 5.a through 5.d illustrate the uncertainty in NDVI values that results from uncertainty in the accuracy of geoloca-
tion of a randomly selected pixel.  These figures plot NDVID versus NDVItrue.  Figure 5.a represents the results of the 
least uncertainty in pixel geolocation, and Figure 5.d represents the outcome of much greater uncertainty in geolocation 
as modeled in the Monte Carlo process.  Clearly, uncertainty in NDVI value increases rapidly with increasing error in 
the estimate of pixel geoposition.  At a planar positional uncertainty of less than 0.3 m, the range of NDVID values can 
be as much as approximately 50 percent of the “true” value.  This is potentially significant since this planar locational 
uncertainty for the 10-cm pixels used as the “true” locations is less than three pixels. 
 
Figures 6.a through 6.d show the uncertainty in VHI values that result from positional uncertainty.  These results are 
similar to those seen in the corresponding NDVI plots.  Again, fairly significant uncertainty in VHI values develops at a 
planar positional uncertainty of less than 30-cm, or, in the case of the “true” imagery used in the Monte Carlo analysis, 
less than three pixels. 
 
 
3.2  Impact of uncertainty in spectral performance 
 
Figures 7.a through 7.d show the range in estimated NDVI value as a function of uncertainty in spectral performance of 
the sensor.  These are expressed in terms of different ranges of uncertainty in the near infrared band.  Clearly, uncer-
tainty in NDVI values is extremely sensitive to spectral uncertainty.  Further, the simple nonlinearity in the formula for 
calculating NDVI leads to a nonlinear response in this uncertainty. 
 
Figures 8.a through 8.d illustrate how uncertainty in VHI might occur as a function of uncertainty in sensor spectral per-
formance.  Though VHI is a nonlinear function of spectral and temperature measurements, these responses appear to be 
somewhat more linear than those of NDVI.  However, the range of uncertainty is significant, even at very low deviations 
from the “true” spectral values. 
 

 
Figure 4:  Monte Carlo Representation of the Impact of Spectral Uncertainty 
and Combined Spatial and Spectral Uncertainty 
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3.3  Impact of combined positional and spectral uncertainties 
 
When uncertainties in both planar location and spectral response are combined, the resulting uncertainty in vegetation 
indices becomes dramatic.  Figures 9.a through 9.c illustrate this response for NDVI, and Figures 10.a through 10.c show 
the same for VHI.  These are differentiated with respect to planar positional uncertainty.  In all cases, an apparent linear 
trend exists between estimated NDVI/VHI and their corresponding “true” values, but the scatter is very large. 

 
 

4.  CONCLUSIONS 
 
This paper presents the results of a Monte Carlo analysis to examine the uncertainty that might result in two conven-
tional vegetation indices, NDVI and VHI, from uncertainty in the estimated planar location of a pixel in an orthomosaic 
and from uncertainty in the combined spectral response of sensor and radiometric calibration procedures. 
 
With respect to the uncertainty in vegetative indices caused by positional uncertainty in the RS imagery, the differences 
between “true” and remotely sensed values of NDVI and VHI become significant at a positional error of about two or 
three pixels, with uncertainties of approximately 40 to 50 percent of the “true” index value.  In terms of the effects of 
spectral uncertainty, similar, or even grater ranges in uncertainty in both NDVI and VHI were found.  The effects of 
combined positional and spectral uncertainty, uncertainty in both NDVI and VHI dominate the index signal, and it is 
questionable whether there is any useful information contained in the RS product from the point of view of inter-sensor 
comparison of imagery and comparison of imagery, even from the same sensor, through time. 
 
These behaviors point strongly toward a need for caution when comparing remote sensing results across sensor types and 
calibration procedures, and through time.  This will become much more treacherous for RS products that are more com-
plex and nonlinear, e.g., estimation of evapotranspiration, as opposed to the simple vegetation indices used in this paper. 

 
(a) (b) (c) 

 
 
Figure 5:  Uncertainty in NDVI as Produced from Uncertainty in Planar 
Location of Orthomosaic Pixel; (a) Spatial uncertainty less than 10-cm (less 
than one pixel, or, since the pixels used as “true” are 10-cm in size, this 
represents no uncertainty in planar location); (b) Spatial uncertainty less 
than 20-cm (less than two pixels); (c) Spatial uncertainty less than 30-cm 
(less than three pixels); (d) Spatial uncertainty between 1.5- and 2-m 
(between 15 and 20 pixels) 

(d) 
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Researchers and agricultural operators are quite likely to encounter further, more complicated challenges when address-
ing issues such as differences in spatial resolution, surface heterogeneities that become more apparent at high resolution, 
shadows, etc. 

It should be noted that the Monte Carlo procedure followed in this study has limitations:  the probability distributions 
used to represent uncertainties in planar positional accuracy and estimated radiometric values seem reasonable but are 
not based on a detailed study of the actual distributions.  Further, the selected study area presents very significant chal-
lenges to such procedures when applied at the high spatial resolution (10-cm) used in this study of a wine grape vineyard. 
At this resolution, the imagery shows very large heterogeneity in the vine canopy, itself, and the heterogeneity imposed 
by the structure of rows of dense vine biomass and widely spaced inter-rows with senescent cover crop and bare soil 
(during the main growing season) is also a challenge to RS.  The range of uncertainties in the vegetative indices used 
here would almost certainly not be as severe in many other agricultural settings.  None-the-less, the magnitude of the 
uncertainties produced seems significant, especially when discussing opportunities for precision agriculture and the use 
of robotics equipment to conduct precision farming operations.  The agricultural community should be cautiously aware 
of these issues as sUAS RS technology becomes more available for applications in farm operations. 
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Figure 6:  Uncertainty in VHI as Produced from Uncertainty in Planar 
Location of Orthomosaic Pixel; (a) Spatial uncertainty less than 10-cm (less 
than one pixel, or, since the pixels used as “true” are 10-cm in size, this 
represents no uncertainty in planar location); (b) Spatial uncertainty less 
than 20-cm (less than two pixels); (c) Spatial uncertainty less than 30-cm 
(less than three pixels); (d) Spatial uncertainty between 1.5- and 2-m 
(between 15 and 20 pixels) 
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Figure 7:  Uncertainty in NDVI as Produced from Uncertainty in Sensor 
Spectral Performance as a Function of NIR-Band Uncertainty; (a) Sensor 
uncertainty in the range of -5 to -10% of “true” NIR value; (b) Sensor 
uncertainty in the range of 0 to -5% of “true” NIR value; (c) Sensor 
uncertainty in the range of 0 to 5% of “true” NIR value; (d) Sensor 
uncertainty in the range of 5 to 10% of “true” NIR value 

(d) 
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Figure 8:  Uncertainty in VHI as Produced from Uncertainty in Sensor 
Spectral Performance as a Function of NIR-Band Uncertainty; (a) Sensor 
uncertainty in the range of -5 to -10% of “true” NIR value; (b) Sensor 
uncertainty in the range of 0 to -5% of “true” NIR value; (c) Sensor 
uncertainty in the range of 0 to 5% of “true” NIR value; (d) Sensor 
uncertainty in the range of 5 to 10% of “true” NIR value 

(d) 
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(a) 

 
(b) (c) 

Figure 9:  Uncertainty in NDVI Resulting from the Combined Uncertainty in Planar Geolocation and Sensor 
Spectral Performance, Shown as a Function of Uncertainty in Planar Geolocation; (a) Planar location uncertainty 
in the range of 0 to 0.5-m of “true” geolocation (or 0 to 5 pixels); (b) Planar location uncertainty in the range of 
0.5- to 1-m of “true” geolocation (or 5 to 10 pixels); (c) Planar location uncertainty in the range of 1- to 1.5-m of 
“true” geolocation (or 15 to 20 pixels) 

 
(a) 

 
(b) (c) 

Figure 10:  Uncertainty in VHI Resulting from the Combined Uncertainty in Planar Geolocation and Sensor 
Spectral Performance, Shown as a Function of Uncertainty in Planar Geolocation; (a) Planar location uncertainty 
in the range of 0 to 0.5-m of “true” geolocation (or 0 to 5 pixels); (b) Planar location uncertainty in the range of 
0.5- to 1-m of “true” geolocation (or 5 to 10 pixels); (c) Planar location uncertainty in the range of 1- to 1.5-m of 
“true” geolocation (or 15 to 20 pixels) 
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