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ABSTRACT

Theoretically, the appearance of shadows in aerial imagery is not desirable for researchers because it leads to
errors in object classification and bias in the calculation of indices. In contrast, shadows contain useful geometrical
information about the objects blocking the light. Several studies have focused on estimation of building heights
in urban areas using the length of shadows. This type of information can be used to predict the population of
a region, water demand, etc., in urban areas. With the emergence of unmanned aerial vehicles (UAVs) and the
availability of high- to super-high-resolution imagery, the important questions relating to shadows have received
more attention. Three-dimensional imagery generated using UAV-based photogrammetric techniques can be
very useful, particularly in agricultural applications such as in the development of an empirical equation between
biomass or yield and the geometrical information of canopies or crops. However, evaluating the accuracy of the
canopy or crop height requires labor-intensive efforts. In contrast, the geometrical relationship between the length
of the shadows and the crop or canopy height can be inversely solved using the shadow length measured. In this
study, object heights retrieved from UAV point clouds are validated using the geometrical shadow information
retrieved from three sets of high-resolution imagery captured by Utah State University’s AggieAir UAV system.
These flights were conducted in 2014 and 2015 over a commercial vineyard located in California for the USDA
Agricultural Research Service Grape Remote sensing Atmospheric Profile and Evapotranspiration Experiment
(GRAPEX) Program. The results showed that, although this approach could be computationally expensive, it
is faster than fieldwork and does not require an expensive and accurate instrument such as a real-time kinematic
(RTK) GPS.

Keywords: Shadow, Point clouds, LIDAR, Vegetation Indices, GRAPEX, AggieAir, UAS, UAV

1. INTRODUCTION

Shadows are inevitable features in aerial imagery, and in most cases they are considered as a separate class,
leading to errors in image processing and analysis procedures. For instance, because of the similarities in the
spectral properties of shadows and water, particularly in the visible bands, most shadow detection methods
fail to separate these two classes from one another (Garousi-Nejad et al. 20191). Chen et al. (2007)2 showed
that objects with an inherently low reflectance, such as water bodies, were mistaken for shaded areas when
they were using machine learning algorithms to detect shadows. Results from the work of Aboutalebi et al.
(2018 a,3 b,4 and 20195) on shadow detection and compensation techniques indicated that shadows can have a
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significant impact on calculation of VIs and energy balance components, while shadow compensation methods
were not able to completely recover inter-rows and canopy VIs with rapidly changing slope and elevation. They
found that recovering shadow information using a shadow compensation method can improve the performance
of evapotranspiration (ET) remote sensing models.

Although shadows can lead to a bias in VIs and decrease the accuracy of classification methods, they are
recognized as a valuable source of information to estimate the geometrical information of an object blocking a
light source. However, when using shadows for geometrical information estimates, the primary assumptions are
that the object blocking the light is vertical and the shadows fall on a level ground (Irvin and Mckeown, 19896).

The use of shadows in aerial imagery to exploit the relationship between the geometrical information of an
object and the cast shadows has a long history. Applying shadow information in an urban area, Cheng and
Thiel (19957) tried to estimate 42 building heights from shadows using a panchromatic band of a SPOT-image.
The results showed an accuracy of 3.69 m for the proposed model in terms of root-mean-square error (RMSE).
Lee and Kim (20138) presented a new approach to automatic extraction of building heights in a urban area
using IKONOS, KOMPSAT-2, QuickBIRD and Worldview-1 images and the volumetric shadow analysis (VSA)
presented by Lee and Kim (20059). One advantage of VSA is that this method is not limited to situations in
which the object must be vertical. Liasis and Stavrou (201610) proposed a novel model to delineate building
shadows for estimating building heights using Google Earth satellite images. In addition to estimating building
heights, shadows information have been used to detect damage to buildings after disasters such as earthquakes
(Mitomi et al. 200211). However, estimating building damage for mid-story collapses using shadows from high-
resolution imagery is questionable because the images are mostly acquired at nadir, showing only upper building
surfaces and leaving other types of damages invisible (Iwasaki et al. 201212).

Ozdemir (200813) used shadows in an environmental science application when they evaluated the relationship
between stem volume by tree crown area and tree shadow area. Results showed a strong relationship between
satellite-based shadow area and field-measured stem volume. Moreno et al. (200814 and 201015), introduced a
low-cost and convenient method to estimate soil surface roughness using shadow cast analysis under fixed sunlit
situations.

In addition to the various applications using shadow information to estimate building heights and damages,
cloud heights, soil roughness, and tree crown, other interesting topics benefit from shadows. For instance, Sandnes
(201116) estimated sun elevation using the relative lengths of objects and their shadows in an image collection
to determine the geographical location of the photographer. Johansson et al. (200917) presented a method to
estimate vehicle size and position that combined a shadow detection and a shadow simulation model.

According to the literature reviews, the advent of UAVs and new satellites providing high- to super-high-
resolution imagery have made the impact of shadows and the information the can be extracted from shadows
more pronounced. As discussed, shadows can be a valuable resource in various applications, particularly in
urban areas. However, their application in precision agriculture is, as yet, an overlooked area. One application
of shadows information in agricultural fields is the validation of digital surface and terrain models (DSM and
DTM), specifically canopy height, retrieved from UAV point clouds. DSM and DTM are valuable sources of
information that can be used for biomass parameters such as LAI, which is a key input for ET remote sensing
models (Aboutalebi et al. 2018c18). For instance, an ET model called the two-source energy balance model
(TSEB) requires canopy height, canopy width, and LAI to estimate energy fluxes. Since estimation of canopy
height and canopy width at the spatial scale without 3D imagery is difficult, usually these two parameters are
modeled with LAI using empirical curve fitting (Nieto et al. 201819). However, with the availability of point
clouds or LIDAR datasets, they can be directly derived from high-resolution imagery at the spatial scale.

In this study, three sets of AggieAir UAV imagery captured in 2014, and 2015 are used to validate object
heights estimated by the AggieAir UAV point clouds. The case study was at a commercial vineyard located in
California in conjunction with the USDA Agricultural Research Service Grape Remote sensing Atmospheric Pro-
file and Evapotranspiration Experiment (GRAPEX) Program. The canopy heights are retrieved by subtracting
NASA Goddard’s LiDAR datasets (DTM) from UAV point clouds (DSM). Next, the canopy heights are vali-
dated using the geometrical shadow information retrieved from the shadow layers of three sets of high-resolution
imagery.
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2. MATERIALS AND METHODS

2.1 Area of Study and UAV Sensor Description

For the current study, three high-resolution images (finer than 20 cm) were captured by a small UAV in August
2014 and in June and July 2015 over a Pinot Noir vineyard located near Lodi, California (38.29 N 121.12 W),
in Sacramento County as part of the GRAPEX project. These UAV flights were synchronized with Landsat
satellite overpass dates and times. The UAV was operated by the AggieAir UAV Research Group at the Utah
Water Research Laboratory at Utah State University.

In the study area, the training system in the vineyard was “U” shaped trellises and canes trained upwards.
The vine trellises were 3.35 m apart, and the height to first and second cordon was about 1.45 and 1.9 m,
respectively (Kustas et al. 201820).

Figure 1 shows examples of images captured by the UAV and the NASA phenocam over the study area.
Camera and optical filter information, fieldwork dates, vineyard phenological stages, and imagery resolution are
summarized in Tables 1 and 2.

Figure 1. Example of an aerial image of the study area captured by the AggieAir UAV (a), point clouds (b) and NASA
phenocam photographs for the same site captured at August (c), Jun (d), July (e).

Table 1. Dates, times, cameras and optical filters used to capture images with the UAV

Date
UAV Flight Time (PDT) UAV elevation Bands

Launch Time Landing Time (agl) meters RGB NIR

20140809 11:30 AM 11:50 AM 450 Cannon S95
Cannon S95

modified

20150602 11:21 AM 12:06 PM 450
Lumenera

Lt65R Color
Lumenera Lt65R

Monochrome

20150711 11:26 AM 12:00 PM 450
Lumenera

Lt65R Color
Lumenera Lt65R

Monochrome
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Table 2. Dates, optical, DSM and thermal resolution, point cloud density and phenological stages of the vineyard when
the images were captured by the UAV

Date
Optical and

DSM resolution
Thermal

resolution
Point cloud density

(point/mˆ2)
Phenological stage

20140809 15 cm 60 cm 37 near harvest
20150602 10 cm 60 cm 118 near veraison
20150711 10 cm 60 cm 108 veraison to harvest

As described in Tables 1 and 2, the imagery covers all three major phenological vineyard stages. Cameras used
in the current study ranged from consumer-grade Canon S95 cameras to industrial type Lumenera monochrome
cameras fitted with narrowband filters equivalent to Landsat 8 specifications. The thermal resolution for all four
flights was 60 cm and the visible and near-infrared (VNIR) spatial resolutions were 10 cm except for the August
flight.

Imagery acquisition was followed by a two-step image processing phase, including (1) radiometric calibration
and (2) image mosaicking and orthorectification. In this study, a method developed by Neale and Crowther,
199421 and Crowther, 199222) is used for the radiometric calibration. This method was designed based on the
reference panel readings. In the image mosaicking and orthorectification step, all image frames were merged into
one mosaic and image rectified using Agisoft Photoscan software23 and control point coordinate s were measured
by an Real-Time Kinematic (RTK) GPS instrument. The output of this step is an orthorectified reflectance
mosaic (Elarab et al. 201524). In addition to the orthorectified reflectance mosaic image, point clouds are
provided by AgiSoft as a separate file in the .las format.

2.2 Methodology

The methodology of this study is shown in Fig 2. The steps of the methodology are (1) create sample points, (2)
detect shadows using an index-based method as an observed dataset, measure shadow lengths, calculate actual
heights, (3) extract point clouds and LIDAR ground values for sample points and calculate estimated heights,
and (4) compare actual heights (based on shadow lengths) with estimated heights (DSM-DTM).
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Figure 2. A flowchart illustrating the process of the study

As shown in Fig 2, 50 sample points are selected and marked as the first step. In step 2, shaded pixels for
those 50 sample grids are detected using an index-based shadow detection method. Aboutalebi et al. 2018b4

evaluated four different shadow detection methods for this study area and found that the index-based method
is able to detect shaded pixel better than the supervised, unsupervised, and physical-based methods. Thus, the
shadow layer created by the index-based method is considered as the observed dataset. In step 3, the shadow
lengths for each of the 50 sample points are measured. With shadow length and sun elevation, the actual height
can be calculated simply using Eq. (1).

H =
Lshadow√

1

tan2 λ′
+ 1

tan2 λ − 2 cos (a−a′)
tan2 λ′×tan2 λ

, (1)

in which, H, Lshadows, λ, λ′, a, and a′ are object height, shadow lengths, satellite (UAV) elevation, sun elevation,
sun azimuth, and satellite (UAV) elevation, respectively. These parameters are graphically depicted in Fig 3.

Since AggieAir imagery is captured at nadir, tan2 λ is infinity and Eq 1 is simplified to Eq. (2):

H =
Lshadow√

1

tan2 λ′

, (2)
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Figure 3. A graphical visualization for Eq. (1)

and Lshadow is equal to Eq. (3):

Lshadow =
H

tanλ′
, (3)

In Eq. (2) and (3), sun elevation for each image can be calculated using geographical information (latitude and
longitude) and flight time.

For extracting the object heights from point clouds, DSM and DTM values are extracted from point clouds and
NASA LIDAR datasets using a Python script. DSM is produced based on point clouds, and DTM and LiDAR
datasets are collected by the NASA G-LiHT project25 in 2013. Therefore, object heights can be estimated
by subtracting DTM from DSM. Ultimately, the actual heights from shadow lengths and the estimated object
heights from DSM and DTM are used to validate the accuracy of the point clouds. The error in the point cloud
heights is equal to Eq. 4, which is visualized in Fig 4:

Hactual −Hestimated = (Lshdaows × tanλ′) − (DSM −DTM). (4)

Figure 4. A graphical visualization for Eq. 4
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As mentioned in the introduction, this methodology is designed for vertical objects and shadows falling on
a level ground (Irvin and Mckewon, 19896). The methodology has no limitations for poles, cars, and buildings,
but it must be revised for trees and canopies due to their geometrical structure. For these two objects, we
used a physical-based shadow mapping approach devised in ArcGIS that works with DSM and DTM. Then the
lengths of the actual shadows and modeled shadows are converted to two heights for comparison: actual heights
and virtual estimated heights. Therefore, the estimated heights for canopy and trees are their virtual estimated
heights achieved from physical-based approach because they are not vertical objects (Fig 5).

Figure 5. A graphical visualization for virtual estimated heights

3. RESULTS AND DISCUSSION

In this section, some sample points are shown, along with their actual heights (derived from shadow length)
and estimated heights (from point clouds and ground LIDAR dataset). Next, the histograms analysis of errors
(differences between actual and estimated heights) are illustrated. Ultimately, scatter plots are used to show the
agreement between actual an estimated heights.

3.1 Some Sample Points Along with their Actual and Estimated Heights

As discussed in the study area section, for each flight, fifty sample points are considered to check and to validate
the heights estimated from the point clouds. Knowing the sun elevation and shadow length allowed us to calculate
the actual heights of sample points (Eq. 2). In this study, ArcGIS software’s “Measure Distance” tool is used to
measure the shadow lengths 3 times for each sample point. Sun elevation (λ′) is estimated using date, flight time,
and geographical location information (latitude and longitude) for each flight (Ref.26). For instance, the average
solar elevation for the first flight (Date: 09 August 2014, Time: 11:45 am, Latitude: 38.284484 , Longitude:
-121.121192) is 60.7◦. Therefore, the coefficient (tanλ′) for converting shadow length to actual height is 1.782
(ActualHeight = 1.782×ShadowLength). Fig 6 shows some of these sample points along with actual and estimated
heights for different objects in the field (buildings, canopies, cars, poles, etc.)
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Figure 6. Sample points of different objects along with their shadow lengths (SL), actual heights (AH) and estimated
heights (EH)

Fig 6 shows actual and estimated heights of 8 samples points from various objects such as building, canopy,
tree, car, and pole. The sun elevations were 60.7◦, 66.9◦, and 65.6◦for the August 2014, June 2015, and July
2015 flights, respectively. The shadow length is the average of three measurements using the “Measure Distance”
tools in ArcGIS software. In Fig 6, the differences between actual height and estimated height are not larger than
20 cm except for poles. The height absolute errors in poles is up to 4 m. It seems that point cloud estimation
is not reliable for objects in which the surface area is small (e.g., poles). Based on our visual inspection, the
height values for utility poles are close to the ground bare soil, which means that utility poles are not detected in
the point cloud data sets (very low density point cloud). In contrast, for objects with high point cloud density,
the point cloud performance is acceptable. Another observation is related to the underestimation of estimated
heights derived from point clouds compared to actual heights. Although we cannot make a solid decision based
on 8 points, the actual heights of most of the sample points showed higher values compared to estimated heights.
This hypothesis will be evaluated by showing the histograms and scatter plots based on all 150 sample points
for these three flights.

3.2 Histogram Analysis of Error

The histogram analysis of absolute error between actual heights and estimated heights for different objects is
shown in Fig 7.
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Figure 7. Histogram of absolute error for each object class in the imagery, |AH − EH|

Fig 7 shows that the height frequency absolute error for a building or structure is about 15 cm. Considering
building/structure heights of ∼3.5 m, this amount of error represents less than 5% of those heights. However,
the average absolute error for this class is ∼40 cm, which is ∼12% of their average heights. Concerning the
canopy class, the mean absolute error is about 35 cm, which is more 20% of the average canopy heights (1.6 m),
although the most frequent absolute error occurred at 10 cm. For trees and poles, the histogram of absolute error
is close to the uniform distribution ranging from 10–80 cm and 10 cm–13 m for trees and poles, respectively. The
uniform distribution could be related to the low numbers of samples in these classes. However, the histogram
analysis shows 20 cm error on average for trees, while their average heights is 7 m (less than 5%). For poles,
the high amount of errors more than 3 m are related to poles with no point cloud information on their surface.
Removing those sample points, the average absolute error for poles is less than 1 m compared to average pole
heights, which is 12 m (less than 7% error). Therefore, it can be concluded that, with increasing object heights,
the error in point cloud decreases (from 20% to 5%). It should be noted that the car class is removed from
analysis due to the movement of cars during flights (Fig 8).
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Figure 8. Example of moving cars during a flight time

3.3 Scatter Plots of Estimated Heights and Actual Heights

Fig 9 is illustrated to evaluate the agreement between actual heights calculated from shadow lengths and esti-
mated heights using DSM and DTM. Fig 9 verifies the hypothesis of point cloud underestimation compared to
actual height. In most cases, the actual heights are higher than the estimated ones. Removing the poles that
are not detected in point clouds results in a strong agreement and relationship between actual and estimated
heights. However, in the canopy class, many points have actual heights of twice the estimated ones. The density
of these points decreases with decreasing canopy heights. This observation reinforces the idea that the error in
point clouds increases with decreasing object heights. However, more higher resolution imagery from the current
case study is needed to evaluate this observation.

Figure 9. Sample points of different objects along with their shadow length (SL), actual heights (AH) and estimated
heights (EH)
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4. CONCLUSION

In this study, an approach to validate the UAV point clouds product was presented. A commercial vineyard
located in California was considered as the study of area, and three sets of high-resolution imagery captured
by AggieAir UAV and one ground LIDAR dataset were used to compare the actual object heights calculated
from shadow lengths and estimated heights from DSM and DTM. 150 samples points along with their shadow
lengths, DSM and DTM values were selected for this comparison. In summary, results indicated that (1) point
clouds underestimated object heights, (2) with decreasing object heights, the absolute error increases, (3) the
average of absolute error for trees, buildings and poles was less than 7% of their heights, while it was 20% of
canopy heights. Although validation of point clouds using shadow length can be time-consuming, it is still faster
than fieldwork, does not require expensive and precise instruments, and can be used for regions that don’t have
in-situ height measurements.
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