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ABSTRACT 

The values of the phase integral q were determined for asteroids using (i) a numerical integration of the 

brightness phase functions over a wide phase-angle range and (ii) the relations between q and the G 

parameter of the HG-function and q and the G1, G2 parameters of the HG1G2-function. The phase-integral 

values for asteroids of different albedo range from 0.34 to 0.54 with an average value of 0.44. These 

values can be used for the determination of the Bond albedo of asteroids. Estimates for the phase-integral 

values using the G1 and G2 parameters are in very good agreement with the available observational data. 

We recommend using the HG1G2-function for the determination of the phase integral. Comparison of the 

phase integrals of asteroids and planetary satellites shows that asteroids have systematically lower values 

of q. 
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1. Introduction  
The phase integral q is one of the fundamental characteristics of light scattering by a planetary surface. It 

is related to the Bond albedo А (A = pq, where р is the geometrical albedo; e.g., Shepard, 2017). The 

Bond albedo is used in the thermal equilibrium equation to model thermal properties of asteroids (e.g., 

Morrison 1977; Tedesco et al., 2002; Delbo et al., 2003; Masiero et al., 2011; Usui et al., 2011). The 

phase integral has been defined as: 

𝑞𝑞 =  2∫ 𝑓𝑓(𝛼𝛼) sin𝛼𝛼 𝑑𝑑𝑑𝑑𝜋𝜋
0 ,      (1) 

where f(α) is the normalized disk-integrated phase function, and α is the solar phase angle. A direct 

calculation of phase integrals is impossible for the asteroid majority due to the limited phase angle range 

of ground-based observations. Russell (1916) has estimated the phase integral for the four asteroids (1) 

Ceres, (2) Pallas, (3) Juno, and (4) Vesta to be equal to 0.55 using an empirical law. Note that they are the 

largest objects of the asteroid belt. It is not completely clear whether any conclusions concerning these 

bodies can be simply generalized for the large number of smaller objects, which can have experienced 

different evolutions. Also according to Russell (1916), the phase integral can be derived from the value of 

disk-integrated phase function at a phase angle of 50°.  

Different researchers have used different estimates of asteroid phase integral for analyzing data 

obtained in the infrared wavelength range. For example, Morrison (1977) deduced the value of the phase 

integral q to be equal to 0.6. In analyzing data obtained from the IRAS, WISE, and AKARI satellites, a 

relationship between q and parameter G of the HG-function (Bowell et al., 1989) was used (Tedesco et al. 

2002; Masiero et al. 2011; Usui et al., 2011). Since for most asteroids the parameter G was considered to 

be equal to 0.15, this resulted in a value of the phase integral of 0.384 (Mainzer et al., 2011).  

A rigorous determination of the phase integral needs measurements of the disk-integrated phase 

function over the range of phase angle from 0º to 180º. Unfortunately, ground-based observations allow 

one to observe main-belt asteroids only from 0º to about 30º phase angles. In this range, the phase 

functions are well-known for different asteroid taxonomical classes (e.g., Belskaya and Shevchenko, 

2000; Harris et al., 1989b; Shevchenko et al., 1997, 2008, 2012, 2015, 2016; Slivan et al., 2008; 

Slyusarev et al., 2012). Some data were obtained in a wider range of phase angles up to 90º for near-Earth 

asteroids (Harris et al., 1987; Kaasalainen et al., 2004; Mottola et al., 1997; Hicks et al., 2014, etc.), but 

such phase functions can be influenced by aspect variations (Muinonen and Wilkman, 2016). 

Space missions have allowed various phase functions to be determined up to 160º for different 

asteroids (Clark et al., 1999; Helfenstein et al., 1994; Masoumzadeh et al., 2015; Newburn et al., 2003; 

Spjuth et al., 2012, etc.), but the data at small phase angles are often not available. Space-based data 

complemented with Earth-based data acquired at small phase angles for some asteroids can be used for 
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the numerical calculation of the phase integral. Such data were used by Helfenstein et al. (1994, 1996) for 

the determination of the phase integral of asteroids (951) Gaspra (q=0.47) and (243) Ida (q=0.34), by 

Clark et al. (1999) for (253) Mathilde (q=0.28), by Spjuth et al. (2012) for (2867) Steins (q=0.59), by Li 

et al. (2004) for (433) Eros (q=0.40), by Masoumzadeh et al. (2015) for (21) Lutetia (q=0.40), and by 

Tatsumi et al. (2018) for (25143) Itokawa (q=0.13). However, a detailed analysis of the phase integral for 

different asteroids, as it was done for planetary satellites (Verbiscer and Veverka, 1988; Brucker et al., 

2009), has not yet been performed. Here we investigate how the phase integral depends on the asteroid 

taxonomical class and compare the phase integrals of asteroids and planetary satellites. 

2. Average phase functions of brightness in a wide range of phase angles 

Detailed observations of the magnitude-phase dependencies of asteroids have revealed their similarity 

within the main taxonomic classes (Belskaya and Shevchenko, 2000). We construct and present the 

composite magnitude-phase dependencies for high (E-complex), moderate (S-complex), and low albedo 

(C-complex) asteroids at small phase angles in Fig. 1. These data were combined from observational data 

(Belskaya et al., 2003; Binzel et al., 1993; Buchheim, 2010, 2011; Dovgopol et al., 1992; Harris et al., 

1984, 1989a, 1989b, 1992; Shevchenko et al., 1996, 2002, 2008, 2010, 2016; Slivan et al., 2008) of 

magnitude-phase dependencies of individual asteroids (denoted by different symbols in the figures). Data 

alignment was applied using a shift along the magnitude axis to obtain the best fit between the curves. 

The alignment of phase curves was carried out by a minimum of the dispersion with linear least squares 

fit in the overlap region of 10-30 degrees. 
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Figure 1a. A composite phase function of brightness for high albedo asteroids (p=0.39-0.53) at small 

phase angles.  
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Figure 1b. A composite phase function of brightness for moderate albedo (p=0.15-0.25) asteroids at small 

phase angles. 
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Fig. 1c. A composite phase function of brightness for low albedo (p=0.045-0.10) asteroids at small phase 

angles. 
 

Although the low albedo asteroids show diversity in their brightness phase curves near the 

opposition, we use for them the average phase function at small α (Shevchenko and Belskaya 2010). The 

standard deviation of such a composite phase function is about 5%. 

To obtain the average phase functions of brightness for asteroids of high, moderate and low albedo 

over a wide range of phase angles up to 160º, we use the most precise data from space observations 

(Clark et al., 1999; Masoumzadeh et al., 2015; Newburn et al., 2003; Spjuth et al., 2012). These data were 
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supplemented with data from ground-based observations of some near Earth asteroids (Harris et al., 1987; 

Kaasalainen et al., 2004; Mottola et al., 1997). Such phase functions of brightness over a wide range of 

phase angles for selected asteroids are presented in Fig. 2. As one can see, the brightness behavior of 

asteroids with differing geometric albedo shows differences mainly in the range of the opposition effect 

and in the range of phase angles of 120–140º. 
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Fig. 2. Phase functions for selected asteroids over a wide range of phase angles: (21) Lutetia, S-complex, 
p = 0.19 (Masoumzadeh et al. 2015); (253) Mathilde, C-complex, p = 0.047 (Clark et al. 1999); (1862) 

Apollo, S-complex, p = 0.32 (Nugent et al. 2015); (2867) Steins, E-complex, p = 0.39 (Spjuth et al. 
2012); (5535) Annefrank, S-complex, p = 0.24 (Newburn et al., 2003). 

 

These differences are small (not more than one magnitude) compared to the general brightness 

variations, but we take into account these differences and use the average phase function for high- 

(~45%), moderate- (~20%), and low-albedo (~6%) asteroids to obtain a more reliable estimation of the 

phase integral. 

 

3. Phase integrals for asteroids of different albedo  

Figure 3 shows the functions f(α)sinα for moderate-, high-, and low-albedo asteroids, used to calculate the 

values of the phase integral for these groups. Since the value of the function f(α)sinα is zero at α = 180°, 
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this value was added for all asteroids for numerical calculation of the phase integral. It is also clear from 

the figure that the behavior of the functions f(α)sinα is similar in the range of phase angle from 0° to 10°, 

regardless of the albedo of the surface. It should also be noted that the contribution of the values of the 

function f(α)sinα at phase angles >115° in the estimations of the phase integral does not exceed 1%. In 

addition, the maximum of the function f(α)sinα depends nonlinearly on the geometrical albedo of the 

asteroids. This requires an additional study, unfortunately, data on the phase dependencies of brightness 

for asteroids with albedo >60% are absent. Moreover, the actual existence of asteroids having geometric 

albedo larger than 0.60 is uncertain. There are a few such objects in the asteroid belt, but their size is less 

than 15 km, which makes it difficult to obtain high-quality magnitude-phase relations for them. 
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Fig. 3. Function f(α)sinα for high-, moderate- and low-albedo asteroids. 
 

By numerical integration of f(α)sinα for asteroids with different geometric albedos, the values of 

their phase integrals are presented in Table 1. These values lie in the range from 0.35 to 0.54 with the 

average of 0.44.  

The values of the phase integral can also be obtained by integrating the modelled phase functions. 

For example, the value of the phase integral of the well-known Lommel-Seeliger phase function is equal 

to 1.64 (e.g., Shepard, 2017), which is much greater than that calculated from the measured phase 

functions. For real asteroid surfaces, shadowing among the regolith particles/structures causes a steep 

decrease of the phase curve and thus reduces the value of the phase integral. At present, several phase 
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function models are used in planetary photometry with a number of free parameters for describing the 

properties of planetary surfaces (e.g., Hapke, 2012, Bowell et al., 1989, Muinonen et al., 2010, Shkuratov 

et al., 2012, 2018). The often-used function by Hapke (2012) has a large number of parameters and 

requires both disk-integrated and disk-resolved data to retrieve these parameter values (Clark et al., 1999; 

Li et al., 2004; Simonelli et al., 1998; Thomas et al., 1996, etc.), but the results can still be ambiguous 

(Shkuratov et al., 2012). A new function proposed by Shkuratov et al. (2018) has a small number of 

parameters and works well for different classes of objects for both disk-integrated and disk-resolved data, 

but currently these parameters have not been estimated for asteroids of different albedos, and the 

connection between the phase integral and these parameters has not been studied. Here we use the HG 

and HG1G2 functions (Bowell et al., 1989, Muinonen et al., 2010), which were recommended by the IAU 

as magnitude systems in asteroid integral photometry. There are relationships of the phase integral with 

parameter G (Bowell et al., 1989): 

q = 0.290 + 0.684G,       (2) 

 and G1 and G2 (Muinonen et al., 2010): 

q = 0.009082 + 0.4061G1 + 0.8092G2,      (3)  

for these functions. Typical dispersion of the G parameter among asteroids is 0.10, and 0.05 for G1 and 

G2. Using the average parameters of G, G1 and G2 for the main taxonomical classes (Shevchenko and 

Lupishko, 1998; Shevchenko et al., 2003; Shevchenko et al., 2016) and the relations between q and these 

parameters, the average values of the phase integral for asteroids with different albedo surfaces were 

obtained. These data are listed in Table 1 where the values of the phase integral calculated with formulas 

(1)–(3) are presented.  

The average values of the phase integral calculated from the observations and from the HG and 

HG1G2 functions coincide well, although the value of the phase integral for high-albedo asteroids using 

the HG model has a significantly greater value. However, it should be noted that the HG-function has a 

reduced brightness in the area of the opposition region relative to real behavior, in contrast to the HG1G2-

function, which more accurately approximates the phase dependency of brightness. Thus, the HG1G2- 

function produces results that are more accurate when brightness values are only available in the range of 

phase angles from 0º to 30º. 

The values of phase integral for moderate-albedo asteroids are close to the values obtained by 

Helfenstein et al. (1994) for the asteroid (951) Gaspra (q = 0.47), by Li et al. (2004) for (433) Eros (0.40), 

by Masoumzadeh et al., (2015) for (21) Lutetia (0.40), and by Hicks et al. (2014) for (4) Vesta (0.44), 

though this asteroid has an albedo of about 40%. The values of the phase integral for low-albedo asteroids 

obtained in this work differ significantly from the values obtained by Clark et al. (1999) for the low-
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albedo asteroid (253) Mathilde (q = 0.28). In our opinion, this is due to the inadequate combination of 

phase dependencies derived from Earth-based observations (Mottola et al., 1995) and spacecraft data for 

this asteroid. We obtained also value of the phase integral for (1) Ceres using data for phase function of 

brightness from Ciarniello et al. (2017) and Tedesco et al. (1983). The value is equal to 0.35 ± 0.02 and is 

typical for low albedo asteroids. 

Table 1. The values of the phase integral for asteroids of differing geometric albedo. The phase 
integral q for the observations was computed with numerical integration. The error bars are the 1-sigma 
dispersion in the calculated values. 

 Geometric 
albedo 

Phase integral q 

Observations HG function HG1G2 function  

Low albedo 0.061 ± 0.017 0.35 ± 0.02 0.34 ± 0.03 0.36 ± 0.02 

Moderate albedo 0.20± 0.05 0.42 ± 0.02 0.45 ± 0.02 0.42 ± 0.02 

High albedo 0.45± 0.07 0.54 ± 0.02 0.63 ± 0.04 0.56 ± 0.03 

Average 0.24 ± 0.20 0.44 ± 0.10 0.47 ± 0.15 0.45 ± 0.10 
 

4. Comparison with planetary satellites  

Using the values of the parameters G1 and G2 (Shevchenko et al., 2016; Penttilä et al., 2016) for about one 

hundred different-type asteroids, the values of the phase integral were determined and compared with 

those obtained by Brucker et al., (2009) for planetary satellites. In addition, the phase dependencies of 

brightness for the Moon, Phobos and Deimos (Avanesov et al., 1991; Bowell et al., 1989; Rougier, 1933; 

Velikodsky et al., 2011) were used for the determination of their phase integrals, which are 0.48 ± 0.02, 

0.38 ± 0.03, 0.40 ± 0.03, respectively. Our value of the phase integral for Phobos (0.38 ± 0.03) differs 

from the value of 0.30 ± 0.04 obtained by Simonelli et al. (1998), although the value for Deimos (0.40 ± 

0.03) is in agreement with the value of 0.39 ± 0.02 obtained by Thomas et al. (1996). In the case of the 

Moon, our value is very different from the value 0.60 obtained by Lane and Irvin (1973). We assume that 

it is related to the use of new, better quality data on the phase function of the Moon obtained by 

Velikodsky et al. (2011). Figure 4 shows the dependency of the phase integrals for asteroids and planetary 

satellites as a function of their geometric albedos. It should be noted that the albedo range is wider for the 

satellites and there are currently no data on the phase integrals for asteroids with albedos greater than 

60%. 
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In Fig. 4, the solid line shows a linear fit for the satellites without Phoebe and Europa, and a dot-

dashed line shows a linear fit when Phoebe and Europa are included. We added data for the Moon, 

Phobos, Deimos, and asteroids on the satellite diagram without a recalculation of the linear fits for the 

satellites given by Brucker et al. (2009). The dashed line shows a linear fit only for the asteroids (q = 

0.359 (±0.005) + 0.47 (±0.03) p). In general, the values of phase integrals of satellites are systematically 

larger than for asteroids. This indicates that the linear part of phase functions of the asteroids has a greater 

slope than for the satellites. This result remains to be interpreted from a theoretical point of view. An 

exception is the Saturnian satellite Phoebe that has the lowest value of the phase integral among the 

objects under study. The Martian satellites Deimos and Phobos, and Uranian satellite Miranda have 

phase-integral values similar to those of asteroids. When extrapolating the asteroid phase integrals to 

albedos greater than 60 %, we retrieve values similar to those of the Saturnian satellites of Rhea, Tethys, 

and Enceladus, i.e., not greater than 0.8. If this extrapolation holds true, then we can expect that for such 

asteroids, the phase function differs from the behavior of E-type asteroids and their thermal properties 

may not correspond to the developed thermal models for high-albedo asteroids. 

  
Fig. 4. Dependency of the phase integral on the geometric albedo for asteroids and planetary satellites, the 
dashed line is the best linear fit to the asteroid data. Adapted from Brucker et al. (2009). The solid line is 
the adopted best linear fit to the satellite data without including Phoebe and Europa and the dot-dashed 

line is the best linear fit to the data including Phoebe and Europa. 
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5. Conclusion  

Based on the results of ground-based observations and data obtained from space missions, the composite 

average phase dependencies of brightness for moderate, high and low albedo asteroids in a wide range of 

phase angles from 0º to 160º were obtained. Because the phase functions of brightness for asteroids inside 

a taxonomic class behave similarly, it is possible to estimate the value of the phase integral for that 

asteroid class using a representative phase function.  

The values of the phase integral q were determined for asteroids of different albedo using both (i) a 

numerical integration of the average brightness phase functions over a wide phase-angle range and (ii) the 

relations between q and the G parameter of the HG-function and between q and the G1, G2 parameters of 

the HG1G2-function. The values of the phase integral lie in the range from 0.34 to 0.63 with an average of 

0.45. These data can be used to model the thermal properties of asteroid surfaces and to process data 

obtained in the infrared wavelength range.  

The behavior of the function f(α)sinα is similar in the range of phase angle from 0º to 10º, 

regardless of the surface albedo. Moreover the contribution of the function f(α)sinα at phase angles 

greater than 115º using an estimation of the phase function does not exceed one per cent, and has a 

limited impact on the value of the phase integral calculated. In addition, the maximum of the function 

f(α)sinα depends nonlinearly on the asteroid albedo. Such behavior warrants additional study, but, 

unfortunately, data on phase dependencies of brightness for asteroids with albedos greater than 60% are 

absent. An estimation of the phase integral values using G1 and G2 parameters gives a very good 

agreement with data obtained from space missions. We recommend using the HG1G2-function for the 

determination of the phase integral. In the case of unknown phase function for an asteroid, it makes sense 

to use the average value of the phase integral for an asteroid of corresponding albedo and/or the linear 

dependency on albedo. The differences in the values of the phase integral for asteroids of different classes 

are important to take into account in thermal modeling. A comparison of the phase integrals shows that 

asteroids have systematically lower values than planetary satellites having the same albedo. Moreover, 

when asteroid phase integrals are extrapolated into regions of greater albedo, their values are less than 

0.8. As mentioned above the actual existence of asteroids having geometric albedo larger than 0.60 is 

uncertain. It can be expected that, for asteroids, the phase integral cannot exceed the value of 0.8.  
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