The Holocene

Abrupt Alnus population decline at the end of the first millennium CE in Europe – the event ecology, possible causes, and implications

Journal:	The Holocene
Manuscript ID	HOL-18-0223.R1
Manuscript Type:	Paper
Date Submitted by the Author:	n/a
Complete List of Authors:	Latałowa, Małgorzata; University of Gdansk, Plant Ecology Święta-Musznicka, Joanna; University of Gdańsk, Plant Ecology Słowiński, Michał ; Institute of Geography and Spatial Organization of the Polish Academy of Sciences, Department of Environmental Resources and Geohazards; Pędziszewska, Anna; University of Gdansk, Plant Ecology Noryśkiewicz, Agnieszka; Uniwersytet Mikolaja Kopernika w Toruniu, Institute of Archaeology, Faculty of History Zimny, Marcelina; Uniwersytet Gdanski, Faculty of Biology, Dept. of Plant Ecology Obremska, Milena; Polska Akademia Nauk, Institute of Geological Sciences Ott, Florian; Max-Planck-Institut fur Menschheitsgeschichte, ; Deutsches Geoforschungszentrum Potsdam, Stivrins, Normunds; University of Latvia, 7Department of Geography, Faculty of Geography and Earth Sciences Pasanen, Leena; Oulun Yliopisto, Research Unit of Mathematical Sciences Ilvonen, Liisa; University of Oulu, Department of Mathematical Sciences Holmström, Lasse; University of Oulu, Department of Mathematical Sciences
Keywords:	Alnus long-term population dynamics, climate change, ecological disturbance, palaeoecology, pathogen outbreak, Phytophthora
Abstract:	The study, based on the examination of 70 published and unpublished pollen profiles from Poland and supplementary data from the surrounding regions, shows that an abrupt, episodic Alnus population decline at the end of the first millennium CE was a much more widespread event than has been previously reported, spanning large areas of the temperate and boreal zones in Europe. The data from Poland suggest that the decline was roughly synchronous and most likely occurred between the 9th and 10th centuries, with strong indications for the 10th century. The pollen data indicate that human impacts were not a major factor in the event. Instead, we hypothesize that one or a series of abrupt climatic shifts that caused floods and droughts at the end of the first millennium CE could have initiated this ecological disturbance, leading to a higher vulnerability of the alder trees to a pathogen

1	
2	
3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
יקו רכ	
∠∪ ว1	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
32	
21	
54 25	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
40 17	
4/	

outbreak. Following curren Europe due to a Phytophth process may have occurred long-term alder (mainly A. change and illustrates its g successful regeneration of environmental conditions in decline reflects a roughly s could be used as an over-r 1000 CE in pollen diagram	t observations of the decline of alder stands in ora outbreak, we suggest that a similar d in the past. This study provides insight into glutinosa) dynamics in a condition of climate preat resilience, enabling the natural, alder stands after critical diebacks if mprove. Our finding that the Alnus pollen synchronous event indicates that the decline egional chronostratigraphic marker for 800– s from a large part of the European Lowland.
SCHOLAR Manuso	CONE [™] cripts
http://mc.manuscriptcentra	l.com/holocene

3 4	1	Abrupt <i>Alnus</i> population decline at the end of the first millennium CE in Europe – the event
4 5	2	ecology, possible causes, and implications
6 7	3	
8 9	4	Małgorzata Latałowa ^{1a*} , Joanna Święta-Musznicka ^{1b} , Michał Słowiński ² , Anna Pędziszewska ^{1c} ,
10	5	Agnieszka M. Noryśkiewicz ³ , Marcelina Zimny ^{1d} , Milena Obremska ⁴ , Florian Ott ^{5,6} , Normunds
11 12 13	6	Stivrins ^{7,8} , Leena Pasanen ^{9a} , Liisa Ilvonen ¹⁰ , Lasse Holmström ^{9b} , Heikki Seppä ¹¹
14 15 16 17 18 19	7 8 9 10 11	¹ Laboratory of Palaeoecology and Archaeobotany, Department of Plant Ecology, Faculty of Biology, University of Gdańsk, ul. Wita Stwosza 59, 80-308 Gdańsk, Poland, Email: a) m.latalowa@ug.edu.pl, b) joanna.swieta-musznicka@biol.ug.edu.pl, c) anna.pedziszewska@biol.ug.edu.pl, d) <u>marcelina.zimny@biol.ug.edu.pl</u> , phone: a) phone: +48 58 5236113, b) +48 585236112, c) +48 585236111, d) +48 585236114, fax: +48 58 523 60 02
20 21 22 23	12 13 14	² Department of Environmental Resources and Geohazards, Institute of Geography and Spatial Organization, Polish Academy of Sciences, Twarda 51/55, 00-818 Warszawa, Poland; Email: <u>michal.slowinski@geopan.torun.pl</u> , phone: + 48 22 6978848, fax: +48 22 6206221
24 25 26 27	15 16 17	³ Institute of Archaeology, Faculty of History, Nicolaus Copernicus University in Toruń, Szosa Bydgoska 44/48, 87-100, Toruń, Poland; Email: <u>agnieszka.noryskiewicz@umk.pl</u> , phone: +48 56 6112321, fax: +48 56 6113974
28 29 30	18 19	⁴ Institute of Geological Sciences, Polish Academy of Sciences, Twarda 51/55, 00-818 Warszawa, Poland; Email: mobremska@twarda.pan.pl, phone: +48 22 6978-805, fax: +48 22 6206223
31 32 33	20 21	⁵ Section 5.2 - Climate Dynamics and Landscape Evolution, GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany; Email: florian.ott@gfz-potsdam.de
34 35 36 37	22 23 24	⁶ Max Planck Institute for the Science of Human History, Department of Archaeology, Kahlaische Strasse 10, 07745 Jena, Germany, Email: <u>ott@shh.mpg.de</u> , phone: +49 (0) 3641 686-720, fax: +49 (0) 3641 686-990
38 39 40	25 26	⁷ Department of Geography, Faculty of Geography and Earth Sciences, University of Latvia, Jelgavas Street 1, Riga LV-1004, Latvia, Email: normunds.stivrins@lu.lv, phone: +371 67033935
41 42 43	27 28	⁸ Department of Geology, School of Science, Tallinn University of Technology, Ehitajate tee 5, Tallinn 19086, Estonia, Email: normunds.stivrins@taltech.ee, phone: +372 620 3010, fax: +372 620 2020
44 45 46 47 48	29 30 31	⁹ Research Unit of Mathematical Sciences, University of Oulu, Pentti Kaiteran katu 1 Linnanmaa, PO. Box 8000, FI-90014 Oulu, Finland; Email: a) <u>Leena.Ruha@oulu.fi</u> , b) <u>Lasse.Holmstrom@oulu.fi</u> , phone: a) +358 29 448 1833, b) +358 29 4481739, fax: +358 8 344 084
49 50 51	32 33	¹⁰ Department of Mathematics and Statistics, University of Helsinki, PL 68 (Pietari Kalmin katu 5), FI-00014 Helsinki, Finland, Email: <u>liisa.ilvonen@helsinki.fi</u> , phone: +358 02941 51506
52 53 54 55 56	34 35 36 37	¹¹ Department of Geosciences and Geography, University of Helsinki, PL 64 (Gustaf Hällströmin katu 2), 00014 HELSINGIN YLIOPISTO, Helsinki, Finland; Email: heikki.seppa@helsinki.fi, phone: 02941 50820
57 58		1
59 60		http://mc.manuscriptcentral.com/holocene

HOLOCENE

Corresponding author: Małgorzata Latałowa, ¹Laboratory of Palaeoecology and Archaeobotany,

- Department of Plant Ecology, Faculty of Biology, University of Gdańsk, ul. Wita Stwosza 59, 80-308
- Gdańsk, Poland, phone: +48 58 5236113. E-mail: m.latalowa@ug.edu.pl

Abstract

The study, based on the examination of 70 published and unpublished pollen profiles from Poland and supplementary data from the surrounding regions, shows that an abrupt, episodic *Alnus* population decline at the end of the first millennium CE was a much more widespread event than has been previously reported, spanning large areas of the temperate and boreal zones in Europe. The data from Poland suggest that the decline was roughly synchronous and most likely occurred between the 9th and 10th centuries, with strong indications for the 10th century. The pollen data indicate that human impacts were not a major factor in the event. Instead, we hypothesize that one or a series of abrupt climatic shifts that caused floods and droughts at the end of the first millennium CE could have initiated this ecological disturbance, leading to a higher vulnerability of the alder trees to a pathogen outbreak. Following current observations of the decline of alder stands in Europe due to a Phytophthora outbreak, we suggest that a similar process may have occurred in the past. This study provides insight into long-term alder (mainly A. glutinosa) dynamics in a condition of climate change and illustrates its great resilience, enabling the natural, successful regeneration of alder stands after critical diebacks if environmental conditions improve. Our finding that the Alnus pollen decline reflects a roughly synchronous event indicates that the decline could be used as an over-regional chronostratigraphic marker for 800–1000 CE in pollen diagrams from a large part of the European Lowland.

Key words: Alnus long-term population dynamics, climate change, ecological disturbance, palaeoecology, pathogen outbreak, Phytophthora

66 Introduction

Disturbances are widely recognized as one of the main factors influencing the direction and rate of forest succession in temperate and boreal biomes, where the forest composition is not only shaped by regional climate, soil, or topography but also frequently punctuated by more abrupt and less predictable factors, such as wildfires, storms, or pathogen outbreaks (Bradshaw and Sykes, 2014). Recently, the unprecedented rate of climate change predicted in for the 21st century is considered a likely cause of a higher frequency of different catastrophic natural events (Mann et al., 2017), leading to the potential damage of forest stands (Kramer et al., 2008; Seidl and Rammer, 2017; Veraverbeke et al., 2017) and a higher risk of insect and pathogen outbreaks among several tree species (La Porta et al., 2008; Sturrock et al., 2011; Santini et al., 2013; Flynn and Mitchell, 2018).

To understand the role of disturbances in forest ecosystems, knowledge about their past occurrence and effects is important (Jeger and Pautasso, 2008; Cole et al., 2014). Among the most convincing evidence of past disturbances are abrupt declines in pollen values of specific tree taxa in pollen diagrams. However, a problem arises when trying to determine the disturbance agent that caused the decline based on sedimentary records. Only in the case of human impacts (Kitagawa et al., 2016; Wacnik et al., 2016), forest fires (Tinner et al., 2000; Yin et al., 2016), and sharp climatic shifts (Ammann et al., 2013; Ghilardi and O'Connell, 2013) is the causal attribution less complicated. Detecting past disturbances caused by beetle outbreaks, plant diseases, and storms is more difficult. Ascertaining the occurrence of past storms is practically impossible (but see, for example, de Jong et al., 2009; Kaniewski et al., 2016), while past beetle outbreaks have been traced in some cases using fossil beetle remains preserved in sediments (Girling and Greig, 1985; Clark and Edwards, 2004; Morris et al., 2015). Recently, progress has been achieved in analysing non-pollen palynomorphs from pollen samples, which in some cases have disclosed outbreaks of fungal pathogens (van Geel and Andersen, 1988; van Geel et al., 2013; Latałowa et al., 2013).

The complexity of this issue is well illustrated by the debates on a European-wide elm decline c. 6300 –5800 cal BP (Iversen, 1941; Troels-Smith, 1960; Peglar, 1993; Parker et al., 2002; Batchelor et al., 2014) and a hemlock decline c. 5500–5100 cal BP in eastern North America (Davis, 1981; Allison et al., 1986; Bennett and Fuller, 2002; Foster et al., 2006). In both cases, the conspicuous and abrupt decline of a single species was the subject of different hypotheses concerning a potential disturbance agent. Sudden climate change, a beetle or pathogen outbreak, and human impacts (in the

30 31 112

35

37

42

case of *Ulmus* decline) were discussed as potential factors interacting separately or in combination 96 (summarized by Waller, 2013). 97

Here, we develop our earlier finding that the episodic decline of Alnus at the close of the first 98 millennium CE was a widespread phenomenon and not an effect of human impacts or the sole effect of 99 10 100 climate change (Stivrins et al., 2017). We present pollen data from a larger region of Europe that show that the Alnus decline not only occurred in the Baltic countries, Finland, and western Russia but was 12 101 14¹⁰² also equally prominent and obvious in many locations in north-central Europe and that the geographic 103 range of the event probably extended further to western Europe. Important pollen data from the event 17 104 are provided by a new pollen diagram from an annually laminated lake sediment core from Lake Czechowskie in Poland. The sediments, which were analysed with high resolution for pollen and 19 105 106 accurately dated based on the varve chronology, are used to identify the beginning, end, and duration of 22 107 the event. In turn, the high-resolution analysis of pollen and non-pollen palynomorphs from peat-bog profiles serves to identify environmental changes around the decline. Finally, we discuss the potential 24 108 26¹⁰⁹ causes of this event. Our study links a well-defined, large-scale ecological disturbance from the past 27 28 110 with a very similar recent large-scale alder forest dieback in Europe, which is a great problem for 29 111 nature protection and the management of riverine ecosystems (Jung et al., 2016).

32 33 113 Study area and present-day Alnus occurrence

³⁴ 114 The present study covers northern and central Poland between 52-55°N and 14-24°E (the northern part of the Central European Plain) (Fig. 1). The area belongs to the temperate climate zone of Europe and 36 115 ₃₈ 116 lies at the transition where the Atlantic and continental air masses clash. The continentality gradient ³⁹ 40 117 increases from west to east. The climate is relatively warm and wet, with annual precipitation of 550-⁴¹ 118 700 mm on average, annual mean air temperatures between 6.5 and 8.5°C, average January temperatures between 0 and -4°C, and average July temperatures between 18 and 17°C (Lorenc, 2005). 43 119

44 45¹²⁰ Most of this area was covered by an ice sheet during the last glacial period. In the northern 46 47 121 regions, the ice sheet and its meltwaters left, among other forms, ranges of terminal moraines dissected 48 122 by a dense network of interconnected lake channels and river valleys. The hills of the moraines are 49 50 123 higher than 300 m a.s.l. at their highest points. Flat or gently undulating ground moraine, which usually 51 52 124 does not exceed 200 m a.s.l., is the main landscape element in central Poland. Patches of outwash ⁵³ 125 plains and kame terraces are distributed throughout the region (Gilewska, 1991). Common features of 54 such deglaciated environments are large lakelands and numerous mires of various origins that fill lake 55 126

channels, river valleys, and kettle holes, providing perfect conditions for palaeoecological studies; 127 therefore, a number of sites have been investigated here by means of pollen analysis. 128

1 2 3

4

5

6

7 8

9

11

59

60

129 Large proportions of wetlands in the study area are habitats for riparian alder-elm forests (Alno-Ulmion) and alder-carr (Alnetea glutinosae), where Alnus glutinosa is the main species. Two alder 130 10 131 species – black alder (A. glutinosa (L.) Gaertn.) and grey alder (A. incana (L.) Moench) – occur in this region (Zajac and Zajac, 2001). 12 132

13 14 133 A. glutinosa has a wide geographical distribution covering most of Europe west of 30°E 15 longitude, while to the east of this line, its range extends as far as western Siberia. With increasing 134 16 17 135 aridity and a decline in summer temperatures, it appears in restricted areas and dispersed locations. It is 18 absent from northern and central Scandinavia and the southern and eastern Iberian Peninsula and is 19 136 20 137 scarce in some areas of southern and eastern Europe (Kajba and Gracan, 2003). Black alder is a 21 22 138 temperate species that is demanding with respect to minimum summer temperatures $(12^{\circ}C)$ but sustains 23 strong winter frosts of -39 to -43°C for northern populations and -30 to -34°C for southern populations 24 139 25 26¹⁴⁰ (Dewald and Steiner, 1986). Its occurrence is closely linked to the availability of water, so water ²⁷ 141 deficits during dry and warm periods in summer have a negative impact on alder tree fitness. Because 28 29 142 of several adaptations to very wet and anaerobic soil, it forms forest communities in marshy sites that 30 are waterlogged throughout the year and in riverside sites where seasonal flooding occurs, but it also 31 143 32 32 33 144 appears in admixture with other species in plateau sites under conditions of high soil moisture. The ³⁴ 145 species is of considerable interest for its place in riparian ecosystems, where it plays a beneficial role in 35 flood control and stabilizing riverbanks as well as water filtration and purification in waterlogged soils. 36 146 37 ₃₈ 147 It also supplies the ecosystem with nitrogen by way of symbiosis with nitrogen-fixing bacteria 39 40 148 (Claessens et al., 2010).

⁴¹ 149 A. incana is considered a boreal and mountain species, and its geographic range is divided into 42 two parts. The northern area includes the eastern Baltic region, all of Scandinavia, and northeastern 43 150 44 45¹⁵¹ Europe up to western Siberia. In the southern area, it occurs in most mountain ranges except for the ⁴⁶ Pyrenees (Jalas and Suominen, 1976). Its present-day occurrence is strongly affected by plantation, 47 48 153 which impedes the delimitation of the natural range. Compared with A. glutinosa, A. incana is less 49 50 154 demanding concerning growing season temperatures and tolerates long harsh winters better. It grows 51 155 mostly on young alluvial soils, does not tolerate long-lasting flooding and is more tolerant to drought 52 ⁵³ 156 than black alder (Boratyński, 1980; Pancer-Kotejowa and Zarzycki, 1980). 54

HOLOCENE

Black alder is one of the most common species, and grey alder is distinctly less frequent in the study region (Zając and Zając, 2001). Thus, it is probable that the potential proportion of *A. incana* pollen in the profiles examined in the present study is insignificant and that the alder pollen present in this material represents mostly *A. glutinosa*.

162 Materials and Methods

The pollen data selected for this study derive from original publications, data stored in the European Pollen Database (EPD, *www.europeanpollendatabase.net*), and in a few cases, from unpublished materials provided by the study authors (ESM Table S1, available online). The suitability of a pollen profile for examination of the presence/absence of the *Alnus* decline was determined according to the stratigraphic resolution of pollen sampling in the section under concern. In addition to the pollen percentage values, we used the pollen influx data (pollen accumulation rate) from three sites to explore the decline of the *Alnus* population in more quantitative terms.

Seventy <u>one</u> pollen profiles (6<u>9</u>8 sites) were included in this paper. The basic information concerning their geographical position, category, dating methods and results, *Alnus* decline characteristics, and references are included in ESM Table S1 (available online). The metadata for each site, such as the basin type (lake or peat-bog), its surface, the presence of an inlet or outlet, the distance to a river valley, and potential habitats for *Alnus*, are consolidated in ESM Table S2 (available on-line). Selected palaeoenvironmental data on local hydrological changes at the event, human impacts, and pollen data from the main tree taxa are provided in ESM Table S3 (available online).

The sites were grouped into two categories. The "primary sites" (A) category includes <u>31</u> profiles with high pollen sampling resolution and age/depth models based on a series of radiocarbon dates in the section of interest or with ¹⁴C dates related directly to the *Alnus* decline event. New age/depth models were developed based on the radiocarbon dates listed in original publications and using the current calibration curve (Reimer et al., 2013) and OxCal software (version 4.2; Bronk Ramsey and Lee, 2013). The most precise dating has been provided for the record from annually laminated sediments in Lake Czechowskie, <u>Lake Żabińskie and Lake Szurpiły</u>, where the chronological information is based on a-multiple dating approach<u>es (Wulf et al., 2016)</u>, <u>The Lake</u> <u>Czechowskie chronology is based on varve counting, tephrochronology, AMS ¹⁴C dating on terrestrial</u> plant remains, in-situ ¹⁰Be and ¹³⁷Cs activity meausements; the chronological uncertainty for the

187 period around 1000 CE does not exceed ± 10 varve years (Czymzik et al., 2018; Ott et al., 2016; Wulf et al., 2016). In Lake Żabińskie 188 different methods of varve counting, AMS ¹⁴C dates, ¹³⁷Cs activity and cryptotephra were used 189 to establish the sediment chronology; in this case the averaged chronological uncertainty in the section 190 under concern was calculated to $^{+12}/_{-24}$ varve years (Żarczyński et al., 2018, 2019). The Lake Szurpiły 10 191 chronology was established by using different methods of varve countig and independent radiometric 12 192 193 193 dating (AMS ^{14}C , ^{210}Pb and ^{137}Cs); the dating uncertainty in the section around the *Alnus* decline is ± 42 194 varve years (Kinder et al., 2013; Kinder, oral inf.). The "secondary sites" (B) are those of weaker quality concerning their independent 17 195 chronologies. In 40% of the sites, the Alnus decline was dated to approximately the 9th-10th centuries 19 196 197

according to the indirect premises (ESM Table S1, available online); the main comparison was with the 22 198 nearest well-dated pollen profiles and a cross-check of the palynological indications of the human occupation phases with knowledge of the chronology of a nearby early medieval settlement 24 199 26 200 development. These kinds of data did not add to the establishment of the exact timing and duration of ²⁷ 201 the decline but did enable the identification of *Alnus* events recorded in particular profiles as roughly 29 202 concurrent with those at other sites.

30 The statistical significance of the decline was analysed using 11 Alnus pollen curves selected on 31 203 32 33² 204 the basis of their relatively high temporal resolution. We used SiZer analysis (Significant Zero ³⁴ 205 crossings of derivatives) (Chaudhuri and Marron 2000) to detect significant declines and rises in the 35 36 206 Alnus population. SiZer analysis has been shown to be a powerful tool in ecology to detect the 37 ₃₈ 207 significant change points in time series data inferred as ecological thresholds (Sonderegger et al., 2009; ر 40 208 Clements and Rohr, 2009; Clements et al., 2010). When applied to time series, SiZer analysis applies a 41 209 nonparametric smoothing to a signal and detects the time intervals where the smooth is significantly 42 43 210 increasing or decreasing. A wide range of smoothing levels are considered to reveal the salient features 44 45¹⁴211 in the signal at all time scales. When compared to many other change point detection methods, the 46 212 strength of the SiZer analysis is in its flexibility. It allows for a trend in the data, the detection of 47 48 213 multiple change points and changes in the temporal sampling distribution, and adapts to temporal 49 50 214 changes in the error variance of the signal. The results of SiZer analysis are visualized using a colour 215 map where the time is on the horizontal axis and the smoothing level is on the vertical axis, and for 52 ⁵³ 216 each pixel, its colour represents the significance of the derivative of the smooth for the corresponding 54 time point and scale. A SiZer map is an efficient tool that helps discover all the significant declines and 55 217

56 57

51

1 2 3

4

5

6

7 8

9

11

13

15

16

18

20

21

23

25

28

Page 9 of 58

HOLOCENE

60

rises in the data at a glance (ESM Figure 1, available online). The SiZer analyses were performed with
the SiZer package (Sonderegger, 2012) in R 3.1.2 (R Development Core Team, 2014).

To illustrate the *Alnus* decline in a broader context of environmental changes reflected by palynological data and to show that the decline is distinct irrespective of the site type, local conditions and pollen representation of human activity, we present two sample sets of pollen diagrams from lakes (Fig. 2) and peat bogs (Fig. 3); the sites strongly differ with respect to their surface size, which indicates different source areas of pollen (cf. Prentice, 1985; Sugita, 1993), and are located along the 600 km-long W-E transect running through different geographic and historical regions of northern and central Poland.

28 **Results**

29 Characteristics, statistical significance and chronology of the *Alnus* pollen decline

The *Alnus* pollen curve decline is one of the striking features in the early medieval sections of many profiles in Poland (Fig. 1; ESM Table S1, available online). In 85% of the 7<u>1</u>0 pollen diagrams considered in the present study, the decline was abrupt, with the magnitude ranging from 40 to 90% reductions from pre-decline levels. Sharp declines were also displayed in the *Alnus* pollen influx values (pollen accumulation rates – PAR) calculated in three profiles: Lake Czechowskie (from c. 12000 to 2000 grains cm⁻² a⁻¹), Lake Suminko (from c. 6000 to 1800 grains cm⁻² a⁻¹) (Fig. 2), and Bagno Kusowo (from c. 1800 to 400 grains cm⁻² a⁻¹) (Fig. 3). The decline was distinct in both the lake sediment and peat-bog profiles (Figs. 2, 3 and 4). The review of the pollen diagrams in terms of the presence/absence of the event *versus* environmental factors such as basin morphometry and some features of the catchment showed no correlation (ESM Table S2, available online). The detailed characteristics of the *Alnus* pollen decline differed among the sites mostly because of the different sediment thicknesses and the different sampling resolutions in the relevant parts of the profiles. It seems that the weak expression or absence of the decline was (in most cases) caused by lower sampling resolution with respect to the sedimentation rate or sediment loss in the section of the pollen profiles of concern. In fact, in many profiles, a clear lithological limit occurred around the decline (ESM Table S3, available online).

The results of the SiZer analyses (Fig. 5, ESM Figure S1, available online) from 11 sites highlight all the significant decline-rise events in the *Alnus* curves during the last 2000 years. They show that a statistically significant decline was followed by a statistically significant rise at the end of the first millennium in eight of the 11 analysed time series. The sampling density in Białowieża 314D

and 131C, and in Bukrzyno was too low, which hampered the detection of the *Alnus* decline so that even the lowest values were observed at the end of the first millennium; the result was not statistically significant. Furthermore, two other statistically significant decline-rise events were detected in the Czechowskie and Racze records around the 4th-5th century and then around the 15th century. The earlier, minor shift, although not statistically significant, was also detectable in some other sites.

Due to the annually laminated sediments and the high sampling resolution, the record from Lake Czechowskie (Fig. 2) offered <u>T</u>the most precisebest chronology for the early medieval event is available for the lakes with annually laminated sediments (Table 1). In Lake Czechowskie (Fig. 2)At this site, the *Alnus* values were 14% until the decline began at 970 CE. The decline was extremely abrupt, so that by 1020 CE, the *Alnus* percentages were down to a minimum of 1.7%, where they stayed until a rise began at 1090 CE, reaching over 10% by 1120 CE. which is practically the same level as before the decline. Thus, in the Lake Czechowskie record, the event lasted approximately 150 years. In Lake Żabińskie the *Alnus* curve declined by 870 CE to 1.7% between 920 and 1000 CE, a rise began by 1060 CE and by 1090 CE the *Alnus* curve reached 11% (Żarczyński et al., 2019). Considering relatively large dating uncertainty (± 42 varve years), similar results were obtained in Lake Szurpiły (Kupryjanowicz and Filoc, 2016; Kupryjanowicz, unpubl. data). In this site the decline started at 830 CE, the minimum of 2.4% was reached at 930 CE, and already by 980 CE the *Alnus* pollen curve started to rise reaching 10.5% at by1010 CE.

Similar data have been obtained from other lake and bog profiles in which this event was dated using age/depth models based on radiocarbon dates ("primary sites") or according to the AMS ¹⁴C dates for plant remains selected directly from the *Alnus* decline level (Table 1, ESM Table S1, available online). Keeping in mind the differences in the pollen sampling resolution in particular profiles and the large range of dating uncertainty, the ages (median) calculated in the individual profiles based on the age/depth models were surprisingly consistent, ranging from 800 to 970 CE for the start of the decline, from 900 to 1020 CE for the minimum values, and from 1040 to 1210 CE for the full recovery of the *Alnus* pollen curve. According to these data, the whole period from the decline to the recovery lasted for 150 to 330 years in the individual sites, giving an average of 250 years. The collection of 30 radiocarbon dates from 20 sites performed specifically for the *Alnus* decline (Table 1) offered important support for an even more detailed determination of the age of the event. In most sites, the dates (median) for the *Alnus* pollen curve depression point to the 10th century, which is in agreement with the age calculated from the annually laminated sediments<u>of</u> Lake Czechowskie. Page 11 of 58

HOLOCENE

60

In only a few sites, the dates for the major *Alnus* decline in the first millennium CE estimated according to the published original data were older (ESM Table S1, available online). The earliest decline (c. 5th-6th centuries) was recorded in the Wojnowo site (Wacnik et al., 2012); this decline roughly coincides with the first statistically significant *Alnus* declines in Lake Czechowskie and Lake Racze and with the additional negative shifts preceding the main *Alnus* decline in some other sites (Fig. 5).

87 The Alnus pollen decline vs. indicators of human impact

The relationship of the *Alnus* pollen decline to the palynological indicators of settlement activity varied among the sites (Figs. 2 and 3, ESM Table S3, available online). In the majority of the sites, it was slightly preceded by the decline of some other tree pollen and the initial rise of pollen typical of the human land occupation phase. Such a situation is illustrated by the diagrams from Lake Suminko (Fig. 2) and Słowińskie Błota/85 (Fig. 3), for example, where already in the section preceding the *Alnus* fall, *Carpinus* and *Quercus* started to decline, the frequency of Poaceae, meadow plants and fallow indicators (*P. lanceolata*) and some weed pollen (*Artemisia, Rumex acetosa/acetosella* t.) slightly increased and the scattered pollen of cereals was present. In Lake Mełno (Fig. 2), an abrupt *Alnus* decline was preceded by a strong *Carpinus* decrease and distinctly increasing pollen curves of anthropogenic indicators, including cereals. In some sites, such as Lake Zarańskie (Fig. 2), the decline of *Alnus* pollen occurred in the already advanced human impact phase confirmed by cereal and *P. lanceolata* pollen, both exceeding 1%.

There are also a few profiles in which the clear signature of the *Alnus* decline does not coincide with the indicators of settlement development. In the peat profiles from Białowieża Forest (Fig. 3), only weak negative shifts of the pollen curves of other deciduous trees (mainly *Carpinus* and *Ulmus*) occurred, and a few scattered pollen grains of anthropogenic indicators appeared at this level. In Lake Czechowskie, pollen evidence for human activity was very weak throughout the whole section of the profile (Fig. 2); moreover, at the *Alnus* decline level, cereal pollen entirely disappeared, while pollen of other taxa typical of human-made habitats was scarce. In contrast to other trees, in most sites, *Alnus* pollen curves regained their earlier levels, rising with increasing proportions of indicators of human impacts.

The relation of the *Alnus* decline to the frequency of microscopic charcoal particles found in some of the profiles did not show any consistent results either (Figs. 2 and 3). In Białowieża Forest, the

charcoal particles declined in two profiles and rose in one. In Lake Czechowskie, their proportions

opposite pattern, while in Lake Suminko, the charcoal frequency did not change.

decreased immediately at the Alnus decline and then rose again. In Bagno Kusowo, we observed the

15

16

18

20

21

23

25

28

311

312

313

314

The Alnus pollen decline vs. indicators of hydrological shifts

The palaeoecological data point to hydrological shifts around the Alnus decline in all the peat profiles 12 316 317 and in some lakes (Fig. 3, ESM Table S3, available online); however, the record of the hydrological changes in the peat bogs is much clearer than in the lake sediments. Only in a few shallow lakes (sites 318 17 319 3, 15, 22, 26 and 63 in ESM Table S3, available online), the lithological limits indicated distinct water level lowering. In deeper and larger lakes, the composition of the sediments did not show any clear 19 320 321 change or display increases in mineral matter and changes in algae remains, which may have been the 22 322 result of different factors, including water table lowering but also increased denudation and/or higher productivity caused by anthropogenic eutrophication or a warmer climate. The same explanation may 24 323 26 324 underlie the discrete change in lithology in Lake Suminko (Fig. 2), where delicate, unclear lamination ²⁷ 325 was present below the Alnus decline but disappeared entirely above it.

29 326 Changes in the hydrological conditions in the peat bogs are shown by examples presented in 30 31 327 Fig. 3. In the profiles from Białowieża Forest (CE Poland), the decline in *Botryococcus* and Cyperaceae 32 32 33 328 was followed by small peaks of Ledum and Entophlyctis lobata (BIA/314D) and Calluna (BIA/318C) ³⁴ 329 and then a strong increase in Sphagnum. In Czerlon, a distinct shift from minerotrophic to 35 36 330 ombrotrophic conditions was punctuated by a decline of Cyperaceae and *Botryococcus*, which were 37 ₃₈ 331 substituted by raised bog taxa: Sphagnum spores strongly increased while testate amoeba, such as ³⁹ 40 332 Amphiterma wrightianum, Archerella flavum, Assulina spp., Heleopera sp., and Hyalosphenia papillo 41 333 appeared concurrently with a depression in the Calluna pollen curve and then declined. Similar results 42 43 334 have been obtained in the profile from Słowińskie Błota/85 (NW Poland), where a thin layer of 44 45 335 Eriophorum vaginatum concurrent with a peak of Calluna and a deep depression in Sphagnum 46 47 336 occurred immediately before the alder decline, indicating a dry spell. At the decline, the proportions of 48 337 Sphagnum spores rose abruptly; at this level, A. flavum, Assulina spp., and Arcella discoides appeared 49 at higher frequencies and then declined. All the above data and similar records from many other sites 50 338 51 339 (ESM Table S3, available online) seem to illustrate a dry phase immediately prior to the Alnus decline, 52 ⁵³ 340 a short wet shift at the decline and then drier conditions again. Furthermore, a striking difference 54 between the pollen data from lakes (Fig. 2) and peat bogs (Fig. 3) concerning the trajectory of the *Pinus* 55 341

- 56
- 57
- 58 59

Page 13 of 58

HOLOCENE

60

pollen curves might be an argument for the involvement of a dry period in the low *Alnus* pollen phase.
In all of the peat bog sites, the *Alnus* decline was accompanied by prominent peaks of *Pinus* pollen,
which were absent in the profiles from the lakes. This pattern suggests that the increase in *Pinus*reflects on-site disturbances, most likely the encroachment of pines onto the bogs in the dry period.

At most sites, the *Alnus* pollen decline was concurrent with an increase in pollen proportions of Poaceae and of pioneer trees growing in riverine forests and wetlands (*Salix* spp., *Betula* sp.), and fluctuations in *Ulmus* and *Fraxinus* pollen values (also in *Picea* in eastern Poland); this decline most likely reflects changes in the local vegetation after the reduction of the alder stands.

351 **Discussion**

Geographic range and timing of the event

The report by Stivrins et al. (2017) indicates that the *Alnus* decline was a widespread event in northeastern Europe, while the present data extend the range into north-central Europe (northern and central Poland). Furthermore, the event is well marked in some sites in Germany, Denmark, and southern Sweden (Fig. 1). A further, systematic examination of the pollen diagrams from Europe is needed to determine the area affected by the *Alnus* decline in more detail.

The review of the pollen profiles from Poland (ESM Table S3, available online) suggests that hydrological disturbances around this event with a clear dry period were involved. The temporary water deficit could have resulted in the formation of short-lived hiatuses or in a slowing down of the sediment accumulation rate in the peat bogs, which might be one of the potential reasons for the weak expression of the decline in some diagrams, while dating uncertainty makes it difficult to observe the event in some other records. The main challenge in reconstructing the exact timing and duration of palaeoecological events is the limited accuracy of the chronologies of the sediment sequences, which should be borne in mind, particularly when discussing the dating of short-lived events (cf. Bennett and Fuller, 2002), their synchronicity among sites (Parnell et al., 2008) and their correlation with other data (Blaaw, 2012). However, the chronological data provided in this paper, based not only on age/depth models but also on 30 radiocarbon dates performed on samples taken in 20 sites directly at the decline level or immediately next to it and a varve chronology in three lakes (Lake Czechowskie, Lake Szurpiły and Lake Żabińskie), allow us to suggest that the decline was roughly synchronous, starting approximately in the 9th-10th centuries, with a strong indication of the 10th century. These new data from Poland permit a narrowing of the chronology of the major *Alnus* decline event in relation to the

60

1

600-1000 CE timespan suggested in our earlier paper, which was based mainly on data from northeastern Europe (Stivrins et al., 2017). It is worth noting that in that area, the majority of the dates for the decline are between 900 and 1000 CE (Saarse et al., 2010; Stivrins et al., 2017). Similar results are shown in the pollen diagrams from Germany (Litt et al., 2009; Dörfler et al., 2012), Denmark (Aaby, 1988) and southern Sweden (Lagerås, 1996; de Jong and Lagerås, 2011; Fredh et al., 2013). After a detailed revision of the original pollen diagrams analysed in this study and considering the basis for their chronostratigraphy, it seems that the earlier dates might be, in most cases, an artefact caused by poor dating accuracy resulting from the inadequate number of radiocarbon dates used for the age/depth models or the sediment disturbances following dry shifts in the local hydrology. However, we should also accept that at least some of these earlier *Alnus* declines could have been separate events resulting from human impacts (e.g., Wojnowo site; Wacnik et al., 2012) or natural factors devastating local alder populations. This explanation seems to be reinforced by the results of the SiZer analysis provided in this study, indicating distinct shifts in alder pollen curves at approximately half of the first millennium CE preceding the major decline.

The results of this study, especially the data from the annually laminated sediments of <u>three</u> <u>lakesLake Czechowskie</u>, demonstrated the very fast recovery rate of the early medieval alder population. According to the varve chronology, the alder population minimum was reached after approximately 50<u>-100</u>-years from the start of the decline, it stayed at this low level for approximately <u>50-70-140</u> years, and during the next approximately 30 years, the population reached the predisturbance level. This demonstrates the great resilience of alder forest ecosystems, even if they are exposed to severe natural disturbances. The early age when *A. glutinosa* starts its reproduction (12-20 years according to Tallantire, 1974) is certainly among the important factors here. Another point worth mentioning is that our calculation of the alder recovery rate is close to the average recovery time for forest ecosystems (42 years) given by Jones and Schmitz (2009).

398 Potential causes of the *Alnus* **decline**

The *Alnus* pollen decline shows individual features that are distinctly different from the pollen curve trajectories of other tree taxa, suggesting that the alder population dieback was triggered by a specific factor. Knowing the cause of the *Alnus* decline is critical for understanding the significance and implications of this event in long-term forest dynamics. As with *Tsuga* (Foster et al., 2006) and *Ulmus* (Parker et al., 2002) declines, abrupt climate changes, human influences, or disturbances such as

5

6

7 8

9

11

13

14

16

pathogen outbreaks or fires should all be considered in the discussion of potential factors involved in 404 this event. 405

In earlier papers, Sarmaja-Korjonen (2003) and Saarse et al. (2010) suggested human influence 406 as the likeliest candidate for the *Alnus* declines in southern Finland and Estonia, respectively. In fact, 407 10 408 most of the pollen sites studied by these authors lie in areas where the event was concurrent with settlement development. However, according to a more recent study, the decline also occurred at many 12 409 410 boreal sites where evidence of contemporary human activity is absent, indicating that changes in ¹⁵ 411 agricultural practices cannot explain the sudden decrease of the Alnus population in this region (Stivrins et al., 2017). 17 412

18 Similar results were obtained in the present study. Although in a great portion of the sites, the 19 413 20 21 414 Alnus decline overlapped with the beginning of settlement development (e.g., Noryśkiewicz, 2013; 22 415 Pędziszewska et al., 2015; Pędziszewska and Latałowa, 2016), making it difficult to separate the results 23 of human-induced deforestation and natural disturbances in alder stands, other pollen data from Poland 24 416 25 26⁴¹⁷ and those from other regions indicate that the widespread alder population decline took place regardless 27 28 418 of the state of local settlement development. A strong decline has been recorded in the profiles from 29 419 Białowieża Forest (this paper) and Mechacz Wielki (Gałka et al., 2017), for example, in which 30 anthropogenic indicators are almost absent, in those that reflect weak early medieval occupation (e.g., 31 420 32 32 33 421 Lake Suminko – this paper), and in many sites where settlement was already developed, as in north-³⁴ 422 central Poland (Noryśkiewicz, 2013), northwestern Poland (Latałowa, 1992; Noryśkiewicz, 2014; 35 36 423 Bloom, 2015; Lamentowicz et al., 2015) and northeastern Germany (Dörfler et al., 2012). There are 37 ₃₈ 424 also sites where the *Alnus* decline was concurrent with the evidence of decreasing agricultural activity ³⁹ 425 or even a short-lived disruption in settlement development (e.g., Kupryjanowicz and Filoc, 2016; Lake 41 426 Czechowskie - this paper). Fires as a triggering factor may also be rejected. The available 42 43 427 microcharcoal data do not show any consistent results in this respect. In some sites, high charcoal peaks 44 45 428 occurred with the Alnus decline (Marcisz et al., 2015); in others, the charcoal frequency was low at the 46 47 429 event level (Lake Suminko and Lake Czechowskie – this paper). Similar results have been provided by 48 430 Stivrins et al. (2017). 49

50 431 An additional argument against the human impacts explanation is the fast recovery of the *Alnus* 51 52 432 population even when the pollen values for the anthropogenic indicators were rising, which was clearly ⁵³ 433 expressed in most of the pollen diagrams. Thus, arguing for human influence would require answering 54 why humans not only suddenly began to use/destroy *Alnus* stands but also why they suddenly stopped 55 434

- 56 57
- 58

doing so. Moreover, an explanation invoking human impacts does not provide a sound rationale for the 435 event, especially for its alder-specific character, abruptness, and synchronous occurrence over the large 436 geographic range. 437

Abrupt climate shifts would be another potential factor for the *Alnus* decline. The wet episode 438 10 439 recorded in some peat bogs concurrently with the early phase of the decline and the subsequent dry period reflected in most sites analysed in this study might be of interest here. 12 440

13 14¹⁴¹ The wet shift indicated in some sites presented in this study seems to conform with the ¹⁵ 442 dendrochronological and historical data from Europe, which show that the generally warm and dry 16 period of the 9th century and the first half of the 10th century was punctuated by several short, cold 17 443 18 shifts (Yavuz et al., 2007; Büntgen et al., 2016) and flooding events (Stothers, 1998). Historical sources 19 444 20 445 indicate that Europe experienced several harsh winters every few years in the 9th and the first half of 21 22 446 the 10th century when the Danube, Elbe, and Rhine rivers and even the Adriatic Sea were frozen 23 (Yavuz et al., 2007). Some of the harsh winters directly followed the major volcanic eruptions of Katla 24 447 25 26 448 in 822-823 CE (Büntgen et al., 2017), Eldgjá in 934 CE (Stothers, 1998) and Changbaishan (Tianchi 27 28 449 Paektu) in 946 CE (Sun et al., 2014). Harsh, long winters usually result in floods and the transport of 29 450 ice blocks, which may damage alder trees, making them more vulnerable to infection by pathogenic 30 fungi (Ballesteros et al., 2010). Volcanic eruptions may also be followed by high precipitation events, 31 451 32 33 452 32 which are another cause of flooding (Gao and Gao, 2017) affecting riparian forests. Historical sources ³⁴ 453 reviewed by Stothers (1998) reported excessive flooding in France and Germany in the period 35 following the Eldgiá eruption. In fact, our data from Gdańsk confirm the presence of floods prior to the 36 454 37 ₃₈ 455 Alnus decline (Święta-Musznicka et al., 2011; Święta-Musznicka and Latałowa, 2016), which is in ³⁹ 456 agreement with other studies showing that in Poland, floods were particularly frequent around the 10th 41 457 century (Maclin et al., 2006; Gebica and Wojtal, 2011). Thus, one or a series of floods could have 42 43 458 initiated the Alnus decline.

45 459 Certainly, the subsequent dry period was unfavourable for alder fitness as well. A. glutinosa is 46 460 adapted to a wide range of temperatures, but its occurrence depends on the availability and abundance 48 461 of water. Its leaves have no mechanism for controlling transpiration, and its roots, when exposed to air, 50 462 are extremely vulnerable to cavitation (Hacke and Sauter, 1996; Claessens et al., 2010); thus, water 51 52 463 deficits during dry and warm summers may affect the tree. Drought as the possible agent for the Alnus ⁵³ 464 decline has already been suggested by Noryśkiewicz (2013) and Święta-Musznicka and Latałowa (2016). In fact, the occurrence of a dry period reflected in several sites analysed in this study agrees 55 465

59 60

44

47

49

54

56 57 58

1 2 3

4

5 6

7 8

9

Page 17 of 58

HOLOCENE

4

5

6

7 8

9

11

35

37

42

44

47

49

51

52

54

56 57 58

59

60

with the data from many regions of northern and central Europe. The prevalence of dry conditions in 466 the 9th-10th centuries has been documented in such distant locations as Kontolanrahka Bog in southern 467 Finland (Väliranta et al., 2007), Männikjärve Bog in Estonia (Sillasoo et al., 2007), and Misten Bog in 468 eastern Belgium (De Vleeschouwer et al., 2012; Streel et al., 2014). A drop in the effective humidity in 469 the raised bogs in southwest Sweden (predominantly dry summers) in the 9th (8th)-10th centuries has 10 470 been reported by de Jong et al. (2007, 2009). These data seem to be concordant with the results of the 12 471 13 dendroclimatological study by Helama et al. (2009), indicating distinct and persistent summer droughts 472 14 15 from the early 9th to the early 13th centuries that were caused by a prolonged rainfall deficit in Finland. 473 16 High-resolution hydroclimatic data from lowland Central Europe also indicate a dry spell for at least 17 474 18 part of the 10th century (Büntgen et al., 2011) and strong negative extremes (droughts) in this period 19 475 20 476 (Dobrovolný et al., 2015). Low water levels in the mid-European lakes have been reconstructed by 21 22 477 Magny (2004). Persistent droughts at the end of the first millennium CE and the beginning of the 23 second millennium occurred in various regions of Europe and globally (Cook et al., 2015). 24 478

25 26 479 The coincidence between the Alnus decline and the period in which flash floods and summer 27 28 480 droughts occurred seems to be a good argument for the event. However, it still does not explain the 29 481 alder-specific character and suggests a possible impact of additional factors. Therefore, we hypothesize 30 31 482 that a cumulative effect of climate change and the outbreak of pathogens provides an explanation that is 32 32 33 483 most consistent with the characteristics of the Alnus decline.

³⁴ 484 The role of pathogens as a cause of the Alnus decline was also speculated by Sarmaja-Korjonen (2003), who considered it, however, a less likely reason for the event because of doubts about whether 36 485 ₃₈ 486 a pathogen would destroy Alnus on such a scale that it would appear in pollen diagrams and whether ³⁹ 487 the damage caused by a pathogen would persist for hundreds of years. We now know that pathogen 41 488 outbreaks can occur on continental spatial scales, covering hundreds of thousands of square kilometres 43 489 and impacting trees and forests to an extent that can be clearly reflected in the pollen values of the host 45 490 species (Bradshaw and Sykes, 2014) and the abundant presence of parasite spores (van Geel and Andersen, 1988). In addition, the decline would not be an event where one generation of trees is killed, 48 492 but rather the pathogen would exert influence over tens or hundreds of years (Latałowa et al., 2013; 50 493 Waller, 2013).

494 One possible cause of such a pathogen outbreak could be is *Phytophthora* sp. *Phytophthora* is a ⁵³ 495 genus comprising about 150 known taxa of fungi that are responsible for over 66% of fine root diseases and over 90% of collar rots of woody plants in different parts of the world. Currently, in Europe, about 55 496

20 indigenous and alien *Phytophthora* taxa have been detected, most of them heavily devastating tree nurseries and forests. Since the early 1990s, a root and collar rot epidemic caused by interspecific hybrids of *Phytophthora* has led to high levels of mortality of alder in riparian forests in most parts of Europe (Jung et al., 2016). Although the present-day fungues is most virulent to the alder *Phytophthora alni* subsp. *alni*- is a recent hybrid (Brasier et al., 2004), we may suspect a similar process in the past. especially because several Phytophthora species are probably indigenous in European forests (Santini et al., 2013), and experimental studies have shown that a range of non-host-specific taxa of this genus may be a serious threat to A. glutinosa (Haque and Diez, 2012). Floods and droughts are generally recognized as the main risk factors for *Phytophthora* epidemics (Strnadová et al., 2010; Sturrock et al., 2011; Aguayo et al., 2014). As a relatively soft-xylem species, A. glutinosa has been found to be vulnerable if exposed to flash floods because high discharge and debris transport often result in wounded trees, increasing their exposure to pathogens (Ballesteros et al., 2010). Moreover, summer flooding and persistent stagnant water after the event may damage alder roots because of anoxia, as has been recorded along several European rivers in recent times (Bjelke et al., 2016). Phytophthora zoospores are transported by water, and floods are thus an important vector for their effective and rapid spread. The recently observed alder dieback spread over large areas of Europe roughly over a decade (Jung and Blaschke, 2004).

We thus propose that the *Alnus* decline at the end of the first millennium CE was an effect of factors similar to those involved in the present-day mass damage to alder forests. The decline may have been initiated by large-scale flood events that damaged the alder stands and disseminated *Phytophthora* spores over large areas. The subsequent dry period would reinforce the effect of a pathogen outbreak. According to Desprez-Loustau et al. (2006), field observations confirm the stimulating effect of alternating wet and dry periods on the disease.

As already discussed in our earlier paper (Stivrins et al., 2017), the difficulty of detecting whether the pathogen outbreak was the cause of the Alnus decline is the lack of direct fossil data that would reflect the occurrence of any pathogen in our records. The remains of some fungi are preserved in a fossil state and sustain the chemical treatment used for preparing pollen samples (van Geel and Aptroot, 2006), but in the case of *Phytophthora*, only molecular biology methods would be effective 525 (Stivrins et al., 2017). Considering some indirect arguments, it is interesting to note the mass occurrence of the remains of Coniochaeta lignaria concurrent with the on-site Alnus decline in Gdańsk (Świeta-Musznicka and Latałowa, 2016). Although this endophytic fungus has a wide spectrum of

4

5

6

7

30

32

35

37

42

44

49

51

52

54

530

HOLOCENE

occurrence, it is also known from its concomitance with *Phytophthora* and from its antagonistic effects 528 against this plant pathogen (Kokaew et al., 2011). 529

8 Conclusions 531 9

10 532 An abrupt, episodic *Alnus* population decline at the end of the first millennium CE was a widespread 11 event that has been so far well documented for southern Finland, western Russia, the Baltic countries, 12 533 13 14 534 and northern and central Poland. It has also been identified in some sites in Germany, Denmark, and 15 535 southern Sweden. The data collected in the present paper suggest that the decline was roughly 16 synchronous and most likely took place at around the 9th –10th century, with a strong indication for the 17 536 18 10th century. However, further examination is needed for a more precise determination of both the 19 537 20 538 geographic range of the *Alnus* decline and its dating. This information would help to address whether 21 22 539 the earlier *Alnus* decline records reflect earlier, separate events or if the *Alnus* decline was a time-23 transgressive process. In this case, a reconstruction of the spatio-temporal pattern of the geographical 24 540 25 26⁵⁴¹ range of the Alnus decline would be important.

27 28 542 Our current hypothesis on the causes of the Alnus decline involves distinct climatic shifts as a 29 543 factor initiating the widespread collapse of the alder forests. Our data intrinsically preclude the 31 544 precision of dating the *Alnus* decline that would enable us to correlate it with any concrete climatic J∠ 33 545 event dated by a dendrochronological method or shown by historical sources (see Blaauw, 2012). We ³⁴ 546 may only hypothesize that one or a series of sharp climatic extremes that occurred in the 9th-10th centuries would initiate this ecological disturbance. Our core idea here is that the climatic events were 36 547 ₃₈ 548 followed by the spread of a pathogen and its subsequent outbreak. According to current observations on ³⁹ 40 549 the decline of alder stands in many European regions due to *Phytophthora* outbreaks, we hypothesize 41 550 that a similar process could have occurred in the past. For a more definitive identification of the 43 551 potential disease agents, specific studies involving molecular biology methods are needed.

45 552 Two important aspects of the present study require emphasis. First, our finding that the *Alnus* 46 47 553 pollen decline reflects a roughly synchronous event indicates that it can be used as an over-regional 48 554 chronostratigraphic marker for c. 800-1000 CE in pollen diagrams from a large portion of the European 50 555 Lowland. Second, our study provides insight into the role of abrupt, short-term climatic shifts as a 556 primary stress factor leading to the higher vulnerability of alder (mainly A. glutinosa) populations in ⁵³ 557 Europe against a potential pathogen outbreak. This critically important species in river valley ecosystems has been seriously threatened in many European regions in recent years, so knowledge 55 558

- 57
- 58 59

about a similar, catastrophic decline occurring one thousand years ago is of special importance for the management of riverine forests following both nature conservation and economic issues. Considering the synchronicity of the *Alnus* decline over a large geographic region and that the location of the most important habitats for alder are in connection with rivers, which is similar to the present-day observation, the critical role of floods is strongly suggested as both a stress factor for alder trees and an agent for rapidly disseminating pathogen propagules. Our study also illustrates in a long-term perspective the great resilience of alder that enables natural, successful regeneration of its stands if environmental conditions improve.

Acknowledgments. The authors thank Achim Brauer and Mirosław Błaszkiewicz for permission to use the unpublished data from Lake Czechowskie, which contribute to the Virtual Institute of Integrated Climate and Landscape Evolution Analyses (ICLEA), grant number VH-VI-415, and Karolina Bloom for access to the pollen data from Lake Racze/Miedwie, and Agnieszka Wacnik and Mirosława Kupryjanowicz for the detailed data on the *Alnus* decline in Lakes Żabińskie and Szurpiły. The unpublished data provided by AMN are a part of the project financed by the Polish Ministry of Science and Higher Education (11H 12 0526 81). ML, JŚM, AP, and MZ acknowledge support from the University of Gdańsk through statutory funding (530-L145-D581-18) and NS and HS the support of the Academy of Finland (EBOR project).

Authors' contribution. M.L., H.S., J.Ś-M., N.S, and M.S. conceived and discussed the ideas; M.L.,
J.ŚM., A.P., and A.M.N. collected and critically analyzed the data; M.Z., A.M.N., M.O., and F.O.
shared their unpublished data; L.P., L.I., and L.H. did the statistical analysis; M.L. wrote the
manuscript and all co-authors contributed in completing and correcting the manuscript and approved its
final version.

584 **References**

57 58

59

60

Aaby B (1988) The Cultural Landscape as Reflected in Percentage and Influx Pollen Diagrams from
 Two Danish Ombrotrophic Mires. In: Birks HH, Birks HJB, Kaland D and Moe D (eds) *The Cultural landscape, Past, Present and Future*. Cambridge, UK: Cambridge University Press, pp.
 209–228.

2	
3 589 4	Aguayo J, Elegbede F, Husson C et al. (2014) Modeling climate impact on an emerging disease, the
5 590	Phytophthora alni-induced alder decline. Global Change Biology 20: 3209-3221.
6 7 591	Allison TD, Moeller RE and Davis MB (1986) Pollen in Laminated Sediments Provides Evidence For a
8 9 592	Mid-Holocene Forest Pathogen Outbreak. Ecology 67: 1101–1105.
10 593	Ammann B, van Leeuwen JFN, van der Knaap WO et al. (2013) Vegetation responses to rapid
11 12 594	warming and to minor climatic fluctuations during the Late-Glacial Interstadial (GI-1) at
13 14 ⁵⁹⁵	Gerzensee (Switzerland). Palaeogeography, Palaeoclimatology, Palaeoecology 391: 40-59.
¹⁵ 596	Ballesteros JA, Stoffel M, Bollschweiler M et al. (2010) Flash-flood impacts cause changes in wood
17 597	anatomy of Alnus glutinosa, Fraxinus angustifolia and Quercus pyrenaica. Tree Physiology 30:
18 19 598	773–781.
20 21 599	Batchelor CR, Branch NP, Allison EA et al. (2014) The timing and causes of the Neolithic elm decline:
22 600	New evidence from the Lower Thames Valley (London, UK). Environmental Archaeology 19:
23 24 601	263–290.
25 26 602	Bennett KD and Fuller JL (2002) Determining the age of the mid-Holocene Tsuga canadensis
²⁷ 603	(hemlock) decline, eastern North America. The Holocene 12(4): 421-429.
29 604	Bjelke U, Boberg J, Oliva J et al. (2016) Dieback of riparian alder caused by the Phytophthora alni
30 31 605	complex: projected consequences for stream ecosystems. Freshwater Biology 61: 565-579.
32 33 606	Blaauw M (2012) Out of tune: the dangers of aligning proxy archives. Quaternary Science Reviews 36:
³⁴ 607	38–49.
36 608	Bloom K (2015) Wpływ czynników naturalnych i gospodarki pradziejowej na sukcesję roślinności w
37 38 609	rejonie Jeziora Raczego na Ziemi Pyrzyckiej w holocenie. Studium paleoekologiczne. PhD
³⁹ 40 610	Thesis, University of Gdańsk, Poland.
⁴¹ 611	Boratyński A (1980) Systematyka i geograficzne rozmieszczenie olsz. In: Białobok S (ed) Olsze Alnus
42 43 612	Mill. Nasze drzewa leśne. Warszawa-Poznań: PWN, pp.35-71.
44 45 613	Bradshaw RHW and Sykes MT (2014) Ecosystem Dynamics. From the past to the future. UK: Wiley-
46 47 614	Blackwell.
48 615	Brasier CM, Kirk SA, Delcan J et al. (2004) Phytophthora alni sp. nov. and its variants: designation of
49 50 616	emerging heteroploid hybrid pathogens spreading on Alnus trees. Mycological Research 108:
51 52 617	1172–1184.
⁵³ 618	Bronk Ramsey C and Lee S (2013) Recent and Planned Developments of the Program OxCal.
54 55 619	<i>Radiocarbon</i> 55: 720–730.
56 57	
58 59	20
60	http://mc.manuscriptcentral.com/holocene

- 1 2 3 Büntgen U, Eggertsson Ó, Wacker L et al. (2017) Multi-proxy dating of Iceland's major pre-settlement 620 4 Katla eruption to 822-823 CE. Geology 45: 783-786. 5 621 6 Büntgen U, Myglan VS, Ljungqvist FC et al. (2016) Cooling and societal change during the Late 622 7 8 Antique Little Ice Age from 536 to around 660 AD. Nature Geoscience 9: 231-236. 623 9 10 624 Büntgen U, Tegel W, Nicolussi K et al. (2011) 2500 years of European climate variability and human 11 susceptibility. Science 331: 578-582. 12 625 13 14⁶²⁶ Chaudhuri P and Marron JS (2000) Scale space view of curve estimation. Annals of Statistics 28(2): 15 627 408-428. 16 Claessens H, Oosterbaan A, Savill P and Rondeux J (2010) A review of the characteristics of black 17 628 18 alder (Alnus glutinosa (L.) Gaertn.) and their implications for silvicultural practices. Forestry 83: 19 629 20 21 630 163-175. ²² 631 Clark SHE and Edwards KJ (2004) Elm bark beetle in Holocene peat deposits and the northwest 23 European elm decline. Journal of Quaternary Science 19: 525–528. 24 632 25 26²³ Clements WH and Rohr JR (2009) Community responses to contaminants: using basic ecological 27 28 634 principles to predict ecotoxicological effects. Environmental toxicology and chemistry 28: 1789-29 635 1800.
- Clements WH, Vieira NKM and Sonderegger DL (2010) Use of ecological thresholds to assess recovery in lotic ecosystems. *Journal of the North American Benthological Society* 29: 1017– 1023.
- Cole LE, Bhagwat SA and Willis KJ (2014) Recovery and resilience of tropical forests after
 disturbance. *Nature Communications* 5: 3906.
- ⁵⁹ 641 Cook ER, Seager R, Kushnir Y et al. (2015) Old World megadroughts and pluvials during the Common
 ⁴¹ 642 Era. Science Advances 1: e1500561.
- 43 643Czymzik M, Muscheler R, Adolphi F et al. (2018) Synchronizing ¹⁰Be in two varved lake sediment44
45 644records to IntCal13 ¹⁴C during three grand solar minima. Climate of the Past 14: 687–696.
- ⁴⁶ 645 Davis MB (1981) Outbreaks of forest pathogens in Quaternary history. In: Bharadwaj D, Vishnu-Mittre
 ⁴⁸ 646 X and Maheshwari H (eds) *Proceedings of the Fourth International Palynological Conference*.
 ⁴⁹ Lucknow, India: Birbal Sahni Institute of Paleobotany, pp.216–227.
- de Jong R, Hammarlund D and Nesje A (2009) Late Holocene effective precipitation variations in the
 maritime regions of south-west Scandinavia. *Quaternary Science Reviews* 28: 54–64.

59

1 2	
³ 650	de Jong R and Lagerås P (2011) Exploring the patterns and causes of land use changes in south-west
4 5 651	Sweden. Vegetation History and Archaeobotany 20: 15–27.
6 7 652	de Jong R, Schoning K and Bjorck S (2007) Increased aeolian activity during humidity shifts as
8 653	recorded in a raised bog in south-west Sweden during the past 1700 years. Climate of the Past 3:
10 654	411–422.
11 12 655	De Vleeschouwer F, Pazdur A, Luthers C et al. (2012) A millennial record of environmental change in
13 14 656	peat deposits from the Misten bog (East Belgium). Quaternary International 268: 44-57.
¹⁵ 657	Desprez-Loustau ML, Marçais B, Nageleisen LM et al. (2006) Interactive effects of drought and
17 658	pathogens in forest trees. Annals of Forest Science 63: 597-612.
18 19 659	Dewald LE and Steiner KC (1986) Phenology, height increment, and cold tolerance of Alnus glutinosa
²⁰ 21 660	populations in a common environment. Silvae Genetica 35: 205–211.
²² 661	Dobrovolný P, Rybníček M, Kolář T et al. (2015) A tree-ring perspective on temporal changes in the
23 24 662	frequency and intensity of hydroclimatic extremes in the territory of the Czech Republic since
25 26 663	761 AD. Climate of the Past 11: 1453–1466.
²⁷ 664	Dörfler W, Feeser I, van den Bogaard C, Dreibrodt S et al. (2012) A high-quality annually laminated
29 665	sequence from Lake Belau, Northern Germany: Revised chronology and its implications for
30 31 666	palynological and tephrochronological studies. The Holocene 22: 1413–1426.
³² 33 667	EPD. The European Pollen Database (www.europeanpollendatabase.net).Flynn LE and Mitchell FJG
³⁴ 668	(2018) Comparison of a recent elm decline with the mid-Holocene Elm Decline. Vegetation
36 669	History and Archaeobotany. doi.org/10.1007/s0033 4-018-0698-3) Foster DR, Oswald WW,
37 38 670	Faison EK et al. (2006) A Climatic Driver for Abrupt Mid-Holocene Vegetation Dynamics and
³⁹ 40 671	the Hemlock Decline in New England. <i>Ecology</i> 87: 2959–2966.
41 672	Fredh D, Broström A, Rundgren M et al. (2013) The impact of land-use change on floristic diversity at
43 673	regional scale in southern Sweden 600 BC-AD 2008. Biogeosciences 10: 3159-3173.
44 45 674	Gałka M, Tobolski K, Lamentowicz Ł et al. (2017) Unveiling exceptional Baltic bog ecohydrology,
⁴⁶ 675 47	autogenic succession and climate change during the last 2000 years in CE Europe using replicate
48 676	cores, multi-proxy data and functional traits of testate amoebae. Quaternary Science Reviews
49 50 677	156: 90–106.
51 52 678	Gao Y and Gao C (2017) European hydroclimate response to volcanic eruptions over the past nine
⁵³ 679	centuries. International Journal of Climatology 37: 4146-4157.
55	
50 57	
58 59	22

Gębica P and Wojtal G (2011) Neoholocene river accumulation and flood phase in small valleys mar

4 5 681	the Carpathian margin. Annales Universitatis Mariae Curie-Skłodowska, Lublin-Polonia, sect. B,
6 7 682	66: 63–75.
8 9 683	Ghilardi B and O'Connell M (2013) Early Holocene vegetation and climate dynamics with particular
10 684	reference to the 8.2 ka event: pollen and macrofossil evidence from a small lake in western
11 12 685	Ireland. Vegetation History and Archaeobotany 22: 99–114.
13 14 686	Gilewska S (1991) Rzeźba. In: Starkel L (ed) Geografia Polski. Środowisko przyrodnicze. Wydaw.
¹⁵ 687	Nauk. PWN, Warszawa, pp.248–296.
17 688	Girling MA and Greig J (1985) A first fossil record for Scolytus scolytus (F.) (elm bark beetle): its
18 19 689	occurrence in elm decline deposits from London and the implications for neolithic elm disease.
²⁰ 21 690	Journal of Archaeological Science 12: 347–351.
²² 691	Hacke U and Sauter JJ (1996) Drought-Induced Xylem Dysfunction in Petioles, Branches, and Roots of
23 24 692	Populus balsamifera L. and Alnus glutinosa (L.) Gaertn. Plant Physiology 111: 413–417.
25 26 693	Haque MM and Diez JJ (2012) Susceptibility of common alder (Alnus glutinosa) seeds and seedlings to
²⁷ 694	Phytophthora alni and other Phytophthora species. Forest Systems 21: 313-322.
29 695	Helama S, Merilainen J and Tuomenvirta H (2009) Multicentennial megadrought in northern Europe
30 31 696	coincided with a global El Nino-Southern Oscillation drought pattern during the Medieval
32 33 697	Climate Anomaly. <i>Geology</i> 37: 175–178.
³⁴ 698	Iversen J (1941) Land occupation in Denmark's stone age: a pollen-analytical study of the influence of
35 36 699	farmer culture on the vegetational development. Danmarks Geologiske Undersølgelse II, 66: 5-
37 38 700	23.
³⁹ 40 701	Jahns S (2000) Late-glacial and Holocene woodland dynamics and land-use history of the Lower Oder
41 702	valley, north-eastern Germany, based on two, AMS ¹⁴ C-dated, pollen profiles. Vegetation History
42 43 703	and Archaeobotany 9: 111–123.
44 45 704	Jalas J and Suominen J (1976) Atlas Florae Europaeae. Distribution of vascular plants in Europe. 3.
46 47 705	Salicaceae to Balanophoraceae. Helsinki: The Committee for Mapping the Flora of Europe and
48 706	Societas Biologica Fennica Vanamo.
49 50 707	Jeger MJ and Pautasso M (2008) Plant disease and global change-the importance of long-term data
51 52 708	sets. New Phytologist 177: 8–11.
⁵³ 709	Jones HP and Schmitz OJ (2009) Rapid Recovery of Damaged Ecosystems. PLoS ONE 4(5): e5653.
54 55 710	https://doi.org/10.1371/journal.pone.0005653
56 57	
58 59	23
60	http://mc.manuscriptcentral.com/holocene

Page 25 of 58

1

2	
³ 711	Jung T and Blaschke M (2004) Phytophthora root and collar rot of alders in Bavaria: distribution,
4 5 712	modes of spread and possible management strategies. Plant Pathology 53: 197-208.
6 7 713	Jung T, Orlikowski L, Henricot B et al. (2016) Widespread Phytophthora infestations in European
⁸ 714	nurseries put forest, semi-natural and horticultural ecosystems at high risk of Phytophthora
9 10 715 11	diseases. Forest Pathology 46: 134–163.
¹² 13 716	Kajba D and Gracan J (2003) EUFORGEN Technical Guidelines for genetic conservation and use for
¹⁴ 717	Black Alder (Alnus glutinosa). Rome, Italy: International Plant Genetic Resources Institute.
15 16 718	Available at: www.euforgen.org/publications/technical-guidelines (accessed 20 November 2018).
17 18 719	Kaniewski D, Marriner N, Morhange C et al. (2016) Solar pacing of storm surges, coastal flooding and
¹⁹ 720	agricultural losses in the Central Mediterranean. Scientific Reports 6: 25197.
20 21 721	Kinder M. Tylmann W. Enters D et al. (2013) Construction and validation of calendar-year time scale
22	for annually laminated sodiments an ayample from Lake Szurniky (NE Poland). <i>CEE</i> 135: 248
23 722	101 annuary familiated sedments – an example from Lake Szurphy (NE Foland). 0FF 155: 246–
25 /23	<u>257.</u>
20 724 27	Kitagawa J, Morita Y, Makohonienko M et al. (2016) Understanding the human impact on Akita-sugi
28 725 29	cedar (Cryptomeria japonica) forest in the late Holocene through pollen analysis of annually
₃₀ 726	laminated sediments from Ichi-no-Megata, Akita, Japan. Vegetation History and Archaeobotany
³¹ 32 727	25: 525–540.
³³ 728	Kokaew J, Manoch L, Worapong J et al. (2011) Coniochaeta ligniaria an endophytic fungus from
34 35 729	Baeckea frutescens and its antagonistic effects against plant pathogenic fungi. Thai Journal of
36 37 730	Agricultural Science 44: 123–131.
³⁸ 731	Kramer K, Vreugdenhil SJ and van der Werf DC (2008) Effects of flooding on the recruitment, damage
40 732	and mortality of riparian tree species: A field and simulation study on the Rhine floodplain.
41 42 733	Forest Ecology and Management 255: 3893–3903.
43 44 734	Kupryjanowicz M and Fiłoc M (2016) Palynological studies in the Yatwing territory. In: Bitner-
⁴⁴ ⁴⁵ 735	Wróblewska A. Brzeziński W and Kasprzycka M (eds) Yatwing Archaeology - Past Research.
46 47 736	New Perspectives. Warszawa, Poland: Państwowe Muzeum Archeologiczne, pp.133–157.
48 ⊿o 737	La Porta N. Capretti P. Thomsen IM et al. (2008) Forest pathogens with higher damage potential due to
⁵⁰ 738	climate change in Europe <i>Canadian Journal of Plant Pathology</i> 30: 177–195
51 50 52 739	Lagerås P (1996) Vegetation and land-use in the Småland Uplands southern Sweden during the last
53 54 740	6000 years PhD Thesis Lund University Sweden
54 740	oooo years. The Thesis, Land Oniversity, Sweden.
56 57	
58	24
59	http://mcmanuscriptcentral.com/bolocene
00	http://meinanasenptcentral.com/holocene

1 2

60

³ 741	Lamentowicz M, Gałka M, Lamentowicz Ł et al. (2015) Reconstructing climate change and
4 5 742	ombrotrophic bog development during the last 4000 years in northern Poland using biotic
6 7 743	proxies, stable isotopes and trait-based approach. Palaeogeography, Palaeoclimatology,
8 9 744	Palaeoecology 418: 261–277.
10 745	Latałowa M (1992) Man and vegetation in the pollen diagrams from Wolin Island (NW Poland). Acta
12 746	Palaeobotanica 32: 123–249.
13 14 747	Latałowa M, Pędziszewska A, Maciejewska E and Święta-Musznicka J (2013) Tilia forest dynamics,
¹⁵ 748 16	Kretzschmaria deusta attack, and mire hydrology as palaeoecological proxies for mid-Holocene
17 749	climate reconstruction in the Kashubian Lake District (N Poland). The Holocene 23: 667-677.
18 19 750	Latałowa M, Zimny M, Pędziszewska A and Kupryjanowicz M (2016) Postglacjalna historia Puszczy
20 21 751	Białowieskiej – roślinność, klimat i działalność człowieka. Parki Narodowe i Rezerwaty
22 752 23	<i>Przyrody</i> 35: 3–49.
24 753	Litt T, Scholzel C, Kuhl N and Brauer A (2009) Vegetation and climate history in the Westeifel
25 26 754	Volcanic Field (Germany) during the past 11 000 years based on annually laminated lacustrine
²⁷ 755 28	maar sediments. Boreas 38: 679–690.
29 756 30	Lorenc H (ed) (2005) Atlas klimatu Polski. Warszawa, Poland: Instytut Meteorologii i Gospodarki
31 757	Wodnej. Available at: www.imgw.pl/wl/internet/zz/klimat/0502polska.html (accessed 20
32 33 758	November 2018).
³⁴ 759 35	Macklin MG, Benito G, Gregory KJ et al. (2006) Past hydrological events reflected in the Holocene
36 760 37	fluvial record of Europe. Catena 66: 145–154.
₃₈ 761	Magny M (2004) Holocene climate variability as reflected by mid-European lake-level fluctuations and
³⁹ 762	its probable impact on prehistoric human settlements. Quaternary International 113: 65–79.
⁴¹ 763 42	Mann ME, Rahmstorf S, Kornhuber K et al. (2017) Influence of Anthropogenic Climate Change on
43 764	Planetary Wave Resonance and Extreme Weather Events. Scientific Reports 7: 45242.
44 45 765	Marcisz K, Tinner W, Colombaroli D et al. (2015) Long-term hydrological dynamics and fire history
⁴⁶ 766 47	over the last 2000 years in CE Europe reconstructed from a high-resolution peat archive.
48 767 49	Quaternary Science Reviews 112: 138–152.
50 768	Morris JL, Courtney Mustaphi CJ, Carter VA et al. (2015) Do bark beetle remains in lake sediments
51 52 769	correspond to severe outbreaks? A review of published and ongoing research. Quaternary
⁵³ 770 54	International 387: 72–86.
55 56	
57	
58 59	25

http://mc.manuscriptcentral.com/holocene

 5772 Studium palinologiczne. Toruń, Poland: Wydawnictwo Naukowe Uniwersytetu Mikołaja Kopernika. 778 Noryśkiewicz AM (2014) Vegetation and settlement history as reflected by pollen analysis. In: Chudziak W and Kaźmierczak R (eds) <i>The Island in Zólie on Lake Zarańskie. Early Medieval Gateway into West Pomerania</i>. Toruń, Poland: Institute of Archaeology, Nicolaus Copernicus University, pp. 367–560. 778 Ott F, Wulf S, Serb J et al. (2016) Constraining the time span between the Early Holocene Hasseldalen and Askija-S Tephras through varve counting in the Lake Czechowskie sediment record, Poland. <i>Journal of Quaternary Science</i> 31(2): 103–113. 781 Pancer-Kotejowa F and Zarzycki K (1980) Zarys ekologii. In: Białobok S (ed) <i>Olsze Alnus Mill. Nasze drzewa leśne</i>. Warszawa-Poznań, Poland: PWN, pp. 229–257. 783 Parker AG, Goudie AS, Anderson DE et al. (2002) A review of the mid-Holocene elm decline in the British Isles. <i>Progress in Physical Geography</i> 26: 1–45. 784 Partell AC, Haslett J, Allen JRM et al. (2008) A flexible approach to assesing synchroneity of past events using Bayesian reconstructions of sedimentation history. <i>Quaternary Science Reviews</i> 27: 1872–1885. 788 Peglar SM (1993) The mid-Holocene <i>Ulmus</i> decline at Diss Mere, Norfolk, UK: a year-by-year pollen stratigraphy from annual laminations. <i>The Holocene</i> 3: 1–13. 794 Pędziszewska A (2008) <i>Późnoholoceńska historia wybranych fitocenoz leśnych z udziałem grabu (Carpinus betulus L.) i buka (Fagus sylvatica L.) na Polezierzu Kaszubskim.</i> PhD Thesis, University of Gdańsk, Poland. 795 Pędziszewska A, Tylmann W, Witak M et al. (2015) Holocene environmental changes reflected by pollen, diatoms, and geochemistry of annually laminated sediments of Lake Suminko in the Kashubian Lake District (N Poland). <i>Review of Palaeobotany and Palynology</i> 216: 55–75. 796 Pretice IC (1985) Pollen representation, source area, and basin size: toward	3 771	Noryśkiewicz AM (2013) Historia roślinności i osadnictwa ziemi chełmińskiej w późnym holocenie.
 773 Kopernika. 774 Noryškiewicz AM (2014) Vegetation and settlement history as reflected by pollen analysis. In: Chudziak W and Kaźmierczak R (eds) <i>The Island in Żóte on Lake Zarańskie. Early Medieval</i> <i>Gateway into West Pomerania.</i> Toruń, Poland: Institute of Archaeology, Nicolaus Copernicus University, pp. 367–360. Ott F, Wulf S, Serb J et al. (2016) Constraining the time span between the Early Holocene Hässeldalen and Askija-S Tephras through varve counting in the Lake Czechowskie sediment record. Poland. <i>Journal of Quaternary Science</i> 31(2): 103-113. Paneer-Kotejowa E and Zarzycki K (1980) Zarys ekologii. In: Białobok S (ed) <i>Olsze Alnus Mill. Nasze</i> <i>drzewa leśne.</i> Warszawa-Pornań, Poland: PWN, pp. 229–257. Parker AG, Goudie AS, Anderson DF et al. (2002) A review of the mid-Holocene elm decline in the British Isles. <i>Progress in Physical Geography</i> 26: 1–45. Parnell AC, Haslett J, Allen JRM et al. (2008) A flexible approach to assesing synchroneity of past events using Bayesian reconstructions of sedimentation history. <i>Quaternary Science Reviews</i> 27: 1872–1885. Peglar SM (1993) The mid-Holocene <i>Ulmus</i> decline at Diss Mere, Norfolk, UK: a year-by-year pollen stratigraphy from annual laminations. <i>The Holocene</i> 3: 1–13. Pędziszewska A (2008) <i>Późnoholoceńska historia wybranych fitocenoz leśnych z udziałem grabu</i> <i>(Carpinus betulus L.) i buka (Fagus sylvatica L.) na Pojezierzu Kaszubskim.</i> PhD Thesis, University of Gdańsk, Poland. Pędziszewska A, and Latałowa M (2016) Stand-scale reconstruction of late Holocene forest succession on the Gdańsk. Upland (N. Poland) based on integrated palynological and macrofossil data from paired sites. <i>Vegetation History and Archaeobotany</i> 25: 239–254. Pędziszewska A, Tylmann W, Witak M et al. (2015) Holocene environmental changes reflected by pollen, diatoms, and geochemistry of annually laminated sediments of Lake Suminko in the Kashubian Lake District (N Poland). <i>Review of Palaeo</i>	5 772	Studium palinologiczne. Toruń, Poland: Wydawnictwo Naukowe Uniwersytetu Mikołaja
 774 Noryškiewicz AM (2014) Vegetation and settlement history as reflected by pollen analysis. In: Chudziak W and Kaźmierczak R (eds) <i>The Island in Żólte on Lake Zarańskie. Early Medieval Gateway into West Pomerania.</i> Toruń, Poland: Institute of Archaeology, Nicolaus Copernicus University, pp. 367–560. 775 Oft F, Wulf S, Serb J et al. (2016) Constraining the time span between the Early Holocene Hasseldalen and Askija-S Tephras through varve counting in the Lake Czechowskie sediment record, Poland. <i>Journal of Quaternary Science</i> 31(2): 103–113. 781 Pancer-Kotejowa E and Zarzycki K (1980) Zarys ekologii. In: Białobok S (ed) <i>Olsze Alnus Mill. Nasze drzewa leśne.</i> Warszawa-Poznań, Poland: PWN, pp. 229–257. 787 Parker AG, Goudie AS, Anderson DE et al. (2002) A review of the mid-Holocene elm decline in the British Isles. <i>Progress in Physical Geography</i> 26: 1–45. 787 Parnell AC, Haslett J, Allen JRM et al. (2008) A flexible approach to assesing synchroneity of past events using Bayesian reconstructions of sedimentation history. <i>Quaternary Science Reviews</i> 27: 1872–1885. 789 Peglar SM (1993) The mid-Holocene <i>Ulmus</i> decline at Diss Mere, Norfolk, UK: a year-by-year pollen stratigraphy from annual laminations. <i>The Holocene</i> 3: 1–13. 791 Pedziszewska A (2008) <i>Późnoholoceńska historia wybranych flucenca leśnych z udziałem grabu (Carpinus betulus L.) i buka (Fagus sylvatica L.) na Pojezierzu Kaszubskim.</i> PhD Thesis, University of Gdańsk, Poland. 792 Pedziszewska A, Tylmann W, Witak M et al. (2015) Holocene environmental changes reflected by pollen, diatoms, and geochemistry of annually laminated sediments of Lake Suminko in the Kashubian Lake District (N Poland). <i>Review of Palaeobotany and Palynology</i> 216: 55–75. 793 Prentice IC (1985) Pollen representation, source area, and basin size: toward a unified theory of pollen analysis. <i>Quaternary Research</i> 23: 76–86. 745 Atg 	6 7 773	Kopernika.
 Chudziak W and Kaźmierczak R (eds) <i>The Island in Żólte on Lake Zarańskie. Early Medieval Gateway into West Pomerania.</i> Toruń, Poland: Institute of Archaeology, Nicolaus Copernicus University, pp. 367–560. Ott F, Wulf S, Serb J et al. (2016) Constraining the time span between the Early Holocene Hasseldalen and Askija-S Tephras through varve counting in the Lake Czechowskie sediment record, Poland. <i>Journal of Quaternary Science</i> 31(2): 103–113. Pancer-Kotejowa E and Zarzycki K (1980) Zarys ekologii. In: Białobok S (ed) <i>Olsze Alnus Mill. Nasze drzewa leśne.</i> Warszawa-Poznań, Poland: PWN, pp. 229–257. Parker AG, Goudie AS, Anderson DE et al. (2002) A review of the mid-Holocene elm decline in the British Isles. <i>Progress in Physical Geography</i> 26: 1–45. Parnell AC, Haslett J, Allen JRM et al. (2008) A flexible approach to assesing synchroneity of past events using Bayesian reconstructions of sedimentation history. <i>Quaternary Science Reviews</i> 27: 1872–1885. Peglar SM (1993) The mid-Holocene Ulmus decline at Diss Mere, Norfolk, UK: a year-by-year pollen stratigraphy from annual laminations. <i>The Holocene</i> 3: 1–13. Pędziszewska A (2008) <i>Późnoholoceńska historia wybranych flucenoz leśnych z udzialem grabu (Carpinus betulus L.) i buka (Fagus sylvatica L.) na Pojezierzu Kaszubskim.</i> PhD Thesis, University of Gdańsk, Poland. Pędziszewska A, and Latałowa M (2016) Stand-scale reconstruction of late Holocene forest succession on the Gdańsk Upland (N. Poland) based on integrated palynological and macrofossil data from paired sites. <i>Vegetation Ilistory and Archaeobotany</i> 25: 239–254. Pędziszewska A, And Latałowa M (2016) Stand-scale reconstruction of late Holocene forest succession on the Gdańsk, Poland. Pedziszewska A, And Latałowa M (2016) Stand-scale reconstruction of Lake Suminko in the Kashubian Lake District (N Poland) <i>Baeed on integrated</i> palynological and macrofossil data from paired s	8 9 774	Noryśkiewicz AM (2014) Vegetation and settlement history as reflected by pollen analysis. In:
 <i>Gateway into West Pomerania</i>. Toruń, Poland: Institute of Archaeology, Nicolaus Copernicus University, pp. 367–560. Ott F, Wulf S, Serb J et al. (2016) Constraining the time span between the Early Holocene Hässeldalen and Askija-S Tephras through varve counting in the Lake Czechowskie sediment record, Poland <i>Journal of Quaternary Science</i> 31(2): 103–113. Pancer-Kotejowa E and Zarzycki K (1980) Zarys ekologii. In: Białobok S (ed) Olsze Alnus Mill. Nasze drzewa leśne. Warszawa-Poznań, Poland: PWN, pp. 229–257. Parker AG, Goudie AS, Anderson DE et al. (2002) A review of the mid-Holocene elm decline in the British Isles. Progress in Physical Geography 26: 1–45. Parnell AC, Haslett J, Allen JRM et al. (2008) A flexible approach to assesing synchroneity of past events using Bayesian reconstructions of sedimentation history. <i>Quaternary Science Reviews</i> 27: 1872–1885. Peglar SM (1993) The mid-Holocene Ulmus decline at Diss Mere, Norfolk, UK: a year-by-year pollen stratigraphy from annual laminations. <i>The Holocene</i> 3: 1–13. Pędziszewska A (2008) <i>Późnoholoceńska historia wybranych flucenoz leśnych z udziałem grabu (Carpinus betulus L.) i buka (Fagus sylvatica L.) na Pojezierzu Kaszubskim</i>. PhD Thesis, University of Gdańsk, Poland. Pędziszewska A and Latałowa M (2016) Stand-scale reconstruction of late Holocene forest succession on the Gdańsk Upland (N. Poland) based on integrated palynological and macrofossil data from paired sites. <i>Vegetation History and Archaeobotary</i> 25: 239–254. Pędziszewska A, Tylmann W, Witak M et al. (2015) Holocene environmental changes reflected by pollen, diatoms, and geochemistry of annually laminated sediments of Lake Suminko in the Kashubian Lake District (N Poland). <i>Review of Palaeobotany and Palynology</i> 216: 55–75. Prentice IC (1985) Pollen representation, source area, and basin size: toward a unified theory of pollen analysis. <i>Quaternary Research</i> 23: 7	10 775	Chudziak W and Kaźmierczak R (eds) The Island in Żółte on Lake Zarańskie. Early Medieval
 University, pp.367–560. Ott F, Wulf S, Serb J et al. (2016) Constraining the time span between the Early Holocene Hässeldalen and Askija-S Tephras through varve counting in the Lake Czechowskie sediment record, Poland. <i>Journal of Quaternary Science</i> 31(2): 103–113. Pancer-Kotejowa E and Zarzycki K (1980) Zarys ekologii. In: Białobok S (ed) Olsze Alnus Mill. Nasze drzewa leśne. Warszawa-Poznań, Poland: PWN, pp. 229–257. Parker AG, Goudie AS, Anderson DE et al. (2002) A review of the mid-Holocene elm decline in the British Isles. Progress in Physical Geography 26: 1–45. Parnell AC, Haslett J, Allen JRM et al. (2008) A flexible approach to assessing synchroneity of past events using Bayesian reconstructions of sedimentation history. <i>Quaternary Science Reviews</i> 27: 1872–1885. Peglar SM (1993) The mid-Holocene Ulmus decline at Diss Mere, Norfolk, UK: a year-by-year pollen stratigraphy from annual laminations. <i>The Holocene</i> 3: 1–13. Pędziszewska A (2008) Późnoholoceńska historia wybranych fitocenoz leśnych z udziałem grabu (<i>Carpinus betulus L.) i buka (Fagus sylvatica L.) na Pojezierzu Kaszubskim</i>. PhD Thesis, University of Gdańsk, Poland. Pędziszewska A and Latałowa M (2016) Stand-scale reconstruction of late Holocene forest succession on the Gdańsk Upland (N. Poland) based on integrated palynological and macrofossil data from paired sites. <i>Vegetation History and Archaeobotany</i> 25: 239–254. Pędziszewska A, Tylmann W, Witak M et al. (2015) Holocene environmental changes reflected by pollen, diatoms, and geochemistry of annually laminated sediments of Lake Suminko in the Kashubian Lake District (N Poland). <i>Review of Palaeobotany and Palynology</i> 216: 55–75. Prentice IC (1985) Pollen representation, source area, and basin size: toward a unified theory of pollen analysis. <i>Quaternary Research</i> 23: 76–86. Mttp://mc.manuscriptcentral.com/holocene 	12 776	Gateway into West Pomerania. Toruń, Poland: Institute of Archaeology, Nicolaus Copernicus
 Oft F, Wulf S, Serb J et al. (2016) Constraining the time span between the Early Holocene Hässeldalen and Askija-S Tephras through varve counting in the Lake Czechowskie sediment record, Poland. <i>Journal of Quaternary Science</i> 31(2): 103-113. Pancer-Kotejowa E and Zarzycki K (1980) Zarys ekologii. In: Białobok S (ed) Olsze Alnus Mill. Nasze drzewa leśne. Warszawa-Poznań, Poland: PWN, pp. 229-257. Parker AG, Goudie AS, Anderson DE et al. (2002) A review of the mid-Holocene elm decline in the British Isles. Progress in Physical Geography 26: 1-45. Parnell AC, Haslett J, Allen JRM et al. (2008) A flexible approach to assesing synchroneity of past events using Bayesian reconstructions of sedimentation history. <i>Quaternary Science Reviews</i> 27: 1872–1885. Peglar SM (1993) The mid-Holocene Ulmus decline at Diss Mere, Norfolk, UK: a year-by-year pollen stratigraphy from annual laminations. <i>The Holocene</i> 3: 1–13. Pędziszewska A (2008) Późnoholoceńska historia wybranych fitocenoz leśnych z udziałem grabu (<i>Carpinus betulus L.) i buka (Fagus sylvatica L.) na Pojezierzu Kaszubskim</i>. PhD Thesis, University of Gdańsk, Poland. Pędziszewska A and Latałowa M (2016) Stand-scale reconstruction of late Holocene forest succession on the Gdańsk Upland (N. Poland) based on integrated palynological and macrofossil data from paired sites. <i>Vegetation History and Archaeobotany</i> 25: 239–254. Pędziszewska A, Tylmann W, Witak M et al. (2015) Holocene environmental changes reflected by pollen, diatoms, and geochemistry of annually laminated sediments of Lake Suminko in the Kashubian Lake District (N Poland). <i>Review of Palaeobotany and Palynology</i> 216: 55–75. Prentice IC (1985) Pollen representation, source arca, and basin size: toward a unified theory of pollen analysis. <i>Quaternary Research</i> 23: 76–86. Mttp://mc.manuscriptcentral.com/holocene 	¹³ 14 777	University, pp367–560.
 and Askija-S Tephras through varve counting in the Lake Czechowskie sediment record, Poland, <i>Journal of Quaternary Science</i> 31(2): 103-113. Pancer-Kotejowa E and Zarzycki K (1980) Zarys ekologii. In: Białobok S (ed) <i>Olsze Alnus Mill. Nasze</i> <i>drzewa leśne</i>. Warszawa-Poznań, Poland: PWN, pp. 229–257. Parker AG, Goudie AS, Anderson DF et al. (2002) A review of the mid-Holocene elm decline in the British Isles. <i>Progress in Physical Geography</i> 26: 1–45. Parmell AC, Haslett J, Allen JRM et al. (2008) A flexible approach to assesing synchroneity of past events using Bayesian reconstructions of sedimentation history. <i>Quaternary Science Reviews</i> 27: 1872–1885. Peglar SM (1993) The mid-Holocene <i>Ulmus</i> decline at Diss Mere, Norfolk, UK: a year-by-year pollen stratigraphy from annual laminations. <i>The Holocene</i> 3: 1–13. Pedziszewska A (2008) <i>Późnoholoceńska historia wybranych fitocenoz leśnych z udziałem grabu</i> (<i>Carpinus betulus L.) i buka (Fagus sylvatica L.) na Pojezierzu Kaszubskim</i>. PhD Thesis, University of Gdańsk, Poland. Pedziszewska A and Latałowa M (2016) Stand-scale reconstruction of late Holocene forest succession on the Gdańsk Upland (N. Poland) based on integrated palynological and macrofossil data from paired sites. <i>Vegetation History and Archaeobotany</i> 25: 239–254. Pedziszewska A, Tylmann W, Witak M et al. (2015) Holocene environmental changes reflected by pollen, diatoms, and geochemistry of annually laminated sediments of Lake Suminko in the Kashubian Lake District (N Poland). <i>Review of Palaeobotany and Palynology</i> 216: 55–75. Prentice IC (1985) Pollen representation, source area, and basin size: toward a unified theory of pollen analysis. <i>Quaternary Research</i> 23: 76–86. http://mc.manuscriptcentral.com/holocene 	15 778 16	Ott F, Wulf S, Serb J et al. (2016) Constraining the time span between the Early Holocene Hässeldalen
 Journal of Quaternary Science 31(2): 103-113. Pancer-Kotejowa E and Zarzycki K (1980) Zarys ekologii. In: Białobok S (ed) Olsze Alnus Mill. Nasze drzewa leśne. Warszawa-Poznań, Poland: PWN, pp. 229–257. Parker AG, Goudie AS, Anderson DE et al. (2002) A review of the mid-Holocene elm decline in the British Isles. Progress in Physical Geography 26: 1–45. Parmell AC, Haslett J, Allen JRM et al. (2008) A flexible approach to assesing synchroneity of past events using Bayesian reconstructions of sedimentation history. Quaternary Science Reviews 27: 1872–1885. Peglar SM (1993) The mid-Holocene Ulmus decline at Diss Mere, Norfolk, UK: a year-by-year pollen stratigraphy from annual laminations. The Holocene 3: 1–13. Pedziszewska A (2008) Późnoholoceńska historia wybranych fitocenoz leśnych z udziałem grabu (Carpinus betulus L.) i buka (Fagus sylvatica L.) na Pojezierzu Kaszubskim. PhD Thesis, University of Gdańsk, Poland. Pędziszewska A and Latałowa M (2016) Stand-scale reconstruction of late Holocene forest succession on the Gdańsk Upland (N. Poland) based on integrated palynological and macrofossil data from paired sites. Vegetation Ilistory and Archaeobotany 25: 239–254. Pędziszewska A, Tylmann W, Witak M et al. (2015) Holocene environmental changes reflected by pollen, diatoms, and geochemistry of annually laminated sediments of Lake Suminko in the Kashubian Lake District (N Poland). Review of Palaeobotany and Palynology 216: 55–75. Prentice IC (1985) Pollen representation, source area, and basin size: toward a unified theory of pollen analysis. Quaternary Research 23: 76–86. http://mc.manuscriptcentral.com/holocene 	17 779	and Askija-S Tephras through varve counting in the Lake Czechowskie sediment record, Poland.
 Pancer-Kotejowa E and Zarzycki K (1980) Zarys ekologii, In: Białobok S (ed) Olsze Alnus Mill. Nasze drzewa leśne. Warszawa-Poznań, Poland: PWN, pp. 229–257. Parker AG, Goudie AS, Anderson DE et al. (2002) A review of the mid-Holocene elm decline in the British Isles. Progress in Physical Geography 26: 1–45. Parnell AC, Haslett J, Allen JRM et al. (2008) A flexible approach to assesing synchroneity of past events using Bayesian reconstructions of sedimentation history. Quaternary Science Reviews 27: 1872–1885. Peglar SM (1993) The mid-Holocene Ulmus decline at Diss Mere, Norfolk, UK: a year-by-year pollen stratigraphy from annual laminations. The Holocene 3: 1–13. Pedziszewska A (2008) Późnoholoceńska historia wybranych fitocenoz leśnych z udziałem grabu (Carpinus betulus L.) i buka (Fagus sylvatica L.) na Pojezierzu Kaszubskim. PhD Thesis, University of Gdańsk, Poland. Pedziszewska A and Latałowa M (2016) Stand-scale reconstruction of late Holocene forest succession on the Gdańsk Upland (N. Poland) based on integrated palynological and macrofossil data from paired sites. Vegetation History and Archaeobotany 25: 239–254. Pędziszewska A, Tylmann W, Witak M et al. (2015) Holocene environmental changes reflected by pollen, diatoms, and geochemistry of annually laminated sediments of Lake Suminko in the Kashubian Lake District (N Poland). Review of Palaeobotany and Palynology 216: 55–75. Prentice IC (1985) Pollen representation, source area, and basin size: toward a unified theory of pollen analysis. Quaternary Research 23: 76–86. 	18 19 780	Journal of Quaternary Science 31(2): 103-113.
22 782 drzewa leśne. Warszawa-Poznań, Poland: PWN, pp. 229–257. 783 Parker AG, Goudie AS, Anderson DE et al. (2002) A review of the mid-Holocene elm decline in the British Isles. Progress in Physical Geography 26: 1–45. 784 Barter AG, Haslett J, Allen JRM et al. (2008) A flexible approach to assesing synchroneity of past events using Bayesian reconstructions of sedimentation history. Quaternary Science Reviews 27: 1872–1885. 787 Peglar SM (1993) The mid-Holocene Ulmus decline at Diss Mere, Norfolk, UK: a year-by-year pollen stratigraphy from annual laminations. The Holocene 3: 1–13. 788 Pedziszewska A (2008) Późnoholoceńska historia wybranych fitocenoz leśnych z udziałem grabu (Carpinus betulus L.) i buka (Fagus sylvatica L.) na Pojezierzu Kaszubskim. PhD Thesis, University of Gdańsk, Poland. 798 Pedziszewska A and Latałowa M (2016) Stand-scale reconstruction of late Holocene forest succession on the Gdańsk Upland (N. Poland) based on integrated palynological and macrofossil data from paired sites. Vegetation History and Archaeobotany 25: 239–254. 799 Pedziszewska A, Tylmann W, Witak M et al. (2015) Holocene environmental changes reflected by pollen, diatoms, and geochemistry of annually laminated sediments of Lake Suminko in the Kashubian Lake District (N Poland). Review of Palaeobotany and Palynology 216: 55–75. 799 Prentice IC (1985) Pollen representation, source area, and basin size: toward a unified theory of pollen analysis. Quaternary Research 23: 76–86. 780 Pdef 781 Ptttp://mcmanuscripitcentral.com/holocene <td>²⁰ 21 781</td> <td>Pancer-Kotejowa E and Zarzycki K (1980) Zarys ekologii. In: Białobok S (ed) Olsze Alnus Mill. Nasze</td>	²⁰ 21 781	Pancer-Kotejowa E and Zarzycki K (1980) Zarys ekologii. In: Białobok S (ed) Olsze Alnus Mill. Nasze
 Parker AG, Goudie AS, Anderson DE et al. (2002) A review of the mid-Holocene elm decline in the British Isles. <i>Progress in Physical Geography</i> 26: 1–45. Parnell AC, Haslett J, Allen JRM et al. (2008) A flexible approach to assesing synchroneity of past events using Bayesian reconstructions of sedimentation history. <i>Quaternary Science Reviews</i> 27: 1872–1885. Peglar SM (1993) The mid-Holocene <i>Ulmus</i> decline at Diss Mere, Norfolk, UK: a year-by-year pollen stratigraphy from annual laminations. <i>The Holocene</i> 3: 1–13. Pędziszewska A (2008) <i>Późnoholoceńska historia wybranych fitocenoz leśnych z udziałem grabu</i> (<i>Carpinus betulus L.) i buka (Fagus sylvatica L.) na Pojezierzu Kaszubskim</i>. PhD Thesis, University of Gdańsk, Poland. Pędziszewska A and Latałowa M (2016) Stand-scale reconstruction of late Holocene forest succession on the Gdańsk Upland (N. Poland) based on integrated palynological and macrofossil data from paired sites. <i>Vegetation History and Archaeobotany</i> 25: 239–254. Pędziszewska A, Tylmann W, Witak M et al. (2015) Holocene environmental changes reflected by pollen, diatoms, and geochemistry of annually laminated sediments of Lake Suminko in the Kashubian Lake District (N Poland). <i>Review of Palaeobotany and Palynology</i> 216: 55–75. Prentice IC (1985) Pollen representation, source area, and basin size: toward a unified theory of pollen analysis. <i>Quaternary Research</i> 23: 76–86. 	22 782	drzewa leśne. Warszawa-Poznań, Poland: PWN, pp. 229–257.
 British Isles. <i>Progress in Physical Geography</i> 26: 1–45. Parnell AC, Haslett J, Allen JRM et al. (2008) A flexible approach to assesing synchroneity of past events using Bayesian reconstructions of sedimentation history. <i>Quaternary Science Reviews</i> 27: 1872–1885. Peglar SM (1993) The mid-Holocene <i>Ulmus</i> decline at Diss Mere, Norfolk, UK: a year-by-year pollen stratigraphy from annual laminations. <i>The Holocene</i> 3: 1–13. Pędziszewska A (2008) <i>Późnoholoceńska historia wybranych fitocenoz leśnych z udziałem grabu</i> (<i>Carpinus betulus L.) i buka (Fagus sylvatica L.) na Pojezierzu Kaszubskim</i>. PhD Thesis, University of Gdańsk, Poland. Pędziszewska A and Latałowa M (2016) Stand-scale reconstruction of late Holocene forest succession on the Gdańsk Upland (N. Poland) based on integrated palynological and macrofossil data from paired sites. <i>Vegetation History and Archaeobotany</i> 25: 239–254. Pędziszewska A, Tylmann W, Witak M et al. (2015) Holocene environmental changes reflected by pollen, diatoms, and geochemistry of annually laminated sediments of Lake Suminko in the Kashubian Lake District (N Poland). <i>Review of Palaeobotany and Palynology</i> 216: 55–75. Prentice IC (1985) Pollen representation, source area, and basin size: toward a unified theory of pollen analysis. <i>Quaternary Research</i> 23: 76–86. 	23 24 783	Parker AG, Goudie AS, Anderson DE et al. (2002) A review of the mid-Holocene elm decline in the
 Parnell AC, Haslett J, Allen JRM et al. (2008) A flexible approach to assesing synchroneity of past events using Bayesian reconstructions of sedimentation history. <i>Quaternary Science Reviews</i> 27: 1872–1885. Peglar SM (1993) The mid-Holocene Ulmus decline at Diss Mere, Norfolk, UK: a year-by-year pollen stratigraphy from annual laminations. <i>The Holocene</i> 3: 1–13. Pędziszewska A (2008) <i>Późnoholoceńska historia wybranych fitocenoz leśnych z udziałem grabu (Carpinus betulus L.) i buka (Fagus sylvatica L.) na Pojezierzu Kaszubskim</i>. PhD Thesis, University of Gdańsk, Poland. Pędziszewska A and Latałowa M (2016) Stand-scale reconstruction of late Holocene forest succession on the Gdańsk Upland (N. Poland) based on integrated palynological and macrofossil data from paired sites. <i>Vegetation History and Archaeobotany</i> 25: 239–254. Pędziszewska A, Tylmann W, Witak M et al. (2015) Holocene environmental changes reflected by pollen, diatoms, and geochemistry of annually laminated sediments of Lake Suminko in the Kashubian Lake District (N Poland). <i>Review of Palaeobotany and Palynology</i> 216: 55–75. Prentice IC (1985) Pollen representation, source area, and basin size: toward a unified theory of pollen analysis. <i>Quaternary Research</i> 23: 76–86. http://mc.manuscriptcentral.com/holocene 	25 26 784	British Isles. Progress in Physical Geography 26: 1–45.
 ²⁹ 786 events using Bayesian reconstructions of sedimentation history. <i>Quaternary Science Reviews</i> 27: 1872–1885. ³⁰ 787 Peglar SM (1993) The mid-Holocene Ulmus decline at Diss Mere, Norfolk, UK: a year-by-year pollen stratigraphy from annual laminations. <i>The Holocene</i> 3: 1–13. ³⁷ Pędziszewska A (2008) Późnoholoceńska historia wybranych fitocenoz leśnych z udziałem grabu (Carpinus betulus L.) i buka (Fagus sylvatica L.) na Pojezierzu Kaszubskim. PhD Thesis, University of Gdańsk, Poland. ³⁷ Pędziszewska A and Latałowa M (2016) Stand-scale reconstruction of late Holocene forest succession on the Gdańsk Upland (N. Poland) based on integrated palynological and macrofossil data from paired sites. <i>Vegetation History and Archaeobotany</i> 25: 239–254. ⁴⁶ 796 Pędziszewska A, Tylmann W, Witak M et al. (2015) Holocene environmental changes reflected by pollen, diatoms, and geochemistry of annually laminated sediments of Lake Suminko in the Kashubian Lake District (N Poland). <i>Review of Palaeobotany and Palynology</i> 216: 55–75. ⁵⁷ Prentice IC (1985) Pollen representation, source area, and basin size: toward a unified theory of pollen analysis. <i>Quaternary Research</i> 23: 76–86. ⁵⁶ 26 ⁵⁷ 16 	²⁷ 785	Parnell AC, Haslett J, Allen JRM et al. (2008) A flexible approach to assessing synchroneity of past
 ³⁰ 1872 1872-1885. ³² 788 Peglar SM (1993) The mid-Holocene Ulmus decline at Diss Mere, Norfolk, UK: a year-by-year pollen stratigraphy from annual laminations. <i>The Holocene</i> 3: 1–13. ³⁶ 790 Pędziszewska A (2008) <i>Późnoholoceńska historia wybranych fitocenoz leśnych z udzialem grabu (Carpinus betulus L.) i buka (Fagus sylvatica L.) na Pojezierzu Kaszubskim.</i> PhD Thesis, University of Gdańsk, Poland. ³⁷ Pędziszewska A and Latałowa M (2016) Stand-scale reconstruction of late Holocene forest succession on the Gdańsk Upland (N. Poland) based on integrated palynological and macrofossil data from paired sites. <i>Vegetation History and Archaeobotany</i> 25: 239–254. ⁴⁷ 796 Pędziszewska A, Tylmann W, Witak M et al. (2015) Holocene environmental changes reflected by pollen, diatoms, and geochemistry of annually laminated sediments of Lake Suminko in the Kashubian Lake District (N Poland). <i>Review of Palaeobotany and Palynology</i> 216: 55–75. ⁵¹ 799 Prentice IC (1985) Pollen representation, source area, and basin size: toward a unified theory of pollen analysis. <i>Quaternary Research</i> 23: 76–86. ⁵⁶ 26 ⁵⁷ ⁵⁸ 26 ⁵⁶ ⁵⁷ ⁵⁰ ⁵⁰ ⁵⁰ ⁵⁰ ⁵⁰ ⁵⁰ ⁵⁰ ⁵⁰	29 786	events using Bayesian reconstructions of sedimentation history. Quaternary Science Reviews 27:
 Peglar SM (1993) The mid-Holocene Ulmus decline at Diss Mere, Norfolk, UK: a year-by-year pollen stratigraphy from annual laminations. The Holocene 3: 1–13. Pędziszewska A (2008) Późnoholoceńska historia wybranych fitocenoz leśnych z udziałem grabu (Carpinus betulus L.) i buka (Fagus sylvatica L.) na Pojezierzu Kaszubskim. PhD Thesis, University of Gdańsk, Poland. Pędziszewska A and Latałowa M (2016) Stand-scale reconstruction of late Holocene forest succession on the Gdańsk Upland (N. Poland) based on integrated palynological and macrofossil data from paired sites. Vegetation History and Archaeobotany 25: 239–254. Pędziszewska A, Tylmann W, Witak M et al. (2015) Holocene environmental changes reflected by pollen, diatoms, and geochemistry of annually laminated sediments of Lake Suminko in the Kashubian Lake District (N Poland). Review of Palaeobotany and Palynology 216: 55–75. Prentice IC (1985) Pollen representation, source area, and basin size: toward a unified theory of pollen analysis. Quaternary Research 23: 76–86. Attp://mc.manuscriptcentral.com/holocene 	30 31 787	1872–1885.
 stratigraphy from annual laminations. <i>The Holocene</i> 3: 1–13. Pędziszewska A (2008) <i>Późnoholoceńska historia wybranych fitocenoz leśnych z udziałem grabu (Carpinus betulus L.) i buka (Fagus sylvatica L.) na Pojezierzu Kaszubskim.</i> PhD Thesis, University of Gdańsk, Poland. Pędziszewska A and Latałowa M (2016) Stand-scale reconstruction of late Holocene forest succession on the Gdańsk Upland (N. Poland) based on integrated palynological and macrofossil data from paired sites. <i>Vegetation History and Archaeobotany</i> 25: 239–254. Pędziszewska A, Tylmann W, Witak M et al. (2015) Holocene environmental changes reflected by pollen, diatoms, and geochemistry of annually laminated sediments of Lake Suminko in the Kashubian Lake District (N Poland). <i>Review of Palaeobotany and Palynology</i> 216: 55–75. Prentice IC (1985) Pollen representation, source area, and basin size: toward a unified theory of pollen analysis. <i>Quaternary Research</i> 23: 76–86. http://mc.manuscriptcentral.com/holocene 	³² 33 788	Peglar SM (1993) The mid-Holocene Ulmus decline at Diss Mere, Norfolk, UK: a year-by-year pollen
 Pędziszewska A (2008) Późnoholoceńska historia wybranych fitocenoz leśnych z udziałem grabu (Carpinus betulus L.) i buka (Fagus sylvatica L.) na Pojezierzu Kaszubskim. PhD Thesis, University of Gdańsk, Poland. Pędziszewska A and Latałowa M (2016) Stand-scale reconstruction of late Holocene forest succession on the Gdańsk Upland (N. Poland) based on integrated palynological and macrofossil data from paired sites. Vegetation History and Archaeobotany 25: 239–254. Pędziszewska A, Tylmann W, Witak M et al. (2015) Holocene environmental changes reflected by pollen, diatoms, and geochemistry of annually laminated sediments of Lake Suminko in the Kashubian Lake District (N Poland). Review of Palaeobotany and Palynology 216: 55–75. Prentice IC (1985) Pollen representation, source area, and basin size: toward a unified theory of pollen analysis. Quaternary Research 23: 76–86. http://mc.manuscriptcentral.com/holocene 	³⁴ 789	stratigraphy from annual laminations. <i>The Holocene</i> 3: 1–13.
 ³⁷ 791 (Carpinus betulus L.) i buka (Fagus sylvatica L.) na Pojezierzu Kaszubskim. PhD Thesis, University of Gdańsk, Poland. ⁴¹ 793 Pędziszewska A and Latałowa M (2016) Stand-scale reconstruction of late Holocene forest succession on the Gdańsk Upland (N. Poland) based on integrated palynological and macrofossil data from paired sites. Vegetation History and Archaeobotany 25: 239–254. ⁴⁶ 796 Pędziszewska A, Tylmann W, Witak M et al. (2015) Holocene environmental changes reflected by pollen, diatoms, and geochemistry of annually laminated sediments of Lake Suminko in the Kashubian Lake District (N Poland). Review of Palaeobotany and Palynology 216: 55–75. ⁵¹ 799 Prentice IC (1985) Pollen representation, source area, and basin size: toward a unified theory of pollen analysis. Quaternary Research 23: 76–86. ⁵² 26 http://mc.manuscriptcentral.com/holocene 	36 790	Pędziszewska A (2008) Późnoholoceńska historia wybranych fitocenoz leśnych z udziałem grabu
 ³⁹ 792 University of Gdańsk, Poland. Pędziszewska A and Latałowa M (2016) Stand-scale reconstruction of late Holocene forest succession on the Gdańsk Upland (N. Poland) based on integrated palynological and macrofossil data from paired sites. <i>Vegetation History and Archaeobotany</i> 25: 239–254. Pędziszewska A, Tylmann W, Witak M et al. (2015) Holocene environmental changes reflected by pollen, diatoms, and geochemistry of annually laminated sediments of Lake Suminko in the Kashubian Lake District (N Poland). <i>Review of Palaeobotany and Palynology</i> 216: 55–75. Prentice IC (1985) Pollen representation, source area, and basin size: toward a unified theory of pollen analysis. <i>Quaternary Research</i> 23: 76–86. http://mc.manuscriptcentral.com/holocene 	37 38 791	(Carpinus betulus L.) i buka (Fagus sylvatica L.) na Pojezierzu Kaszubskim. PhD Thesis,
 Pędziszewska A and Latałowa M (2016) Stand-scale reconstruction of late Holocene forest succession on the Gdańsk Upland (N. Poland) based on integrated palynological and macrofossil data from paired sites. <i>Vegetation History and Archaeobotany</i> 25: 239–254. Pędziszewska A, Tylmann W, Witak M et al. (2015) Holocene environmental changes reflected by pollen, diatoms, and geochemistry of annually laminated sediments of Lake Suminko in the Kashubian Lake District (N Poland). <i>Review of Palaeobotany and Palynology</i> 216: 55–75. Prentice IC (1985) Pollen representation, source area, and basin size: toward a unified theory of pollen analysis. <i>Quaternary Research</i> 23: 76–86. http://mc.manuscriptcentral.com/holocene 	³⁹ 40 792	University of Gdańsk, Poland.
 on the Gdańsk Upland (N. Poland) based on integrated palynological and macrofossil data from paired sites. <i>Vegetation History and Archaeobotany</i> 25: 239–254. Pędziszewska A, Tylmann W, Witak M et al. (2015) Holocene environmental changes reflected by pollen, diatoms, and geochemistry of annually laminated sediments of Lake Suminko in the Kashubian Lake District (N Poland). <i>Review of Palaeobotany and Palynology</i> 216: 55–75. Prentice IC (1985) Pollen representation, source area, and basin size: toward a unified theory of pollen analysis. <i>Quaternary Research</i> 23: 76–86. http://mc.manuscriptcentral.com/holocene 	41 793	Pędziszewska A and Latałowa M (2016) Stand-scale reconstruction of late Holocene forest succession
 paired sites. Vegetation History and Archaeobotany 25: 239–254. Pędziszewska A, Tylmann W, Witak M et al. (2015) Holocene environmental changes reflected by pollen, diatoms, and geochemistry of annually laminated sediments of Lake Suminko in the Kashubian Lake District (N Poland). Review of Palaeobotany and Palynology 216: 55–75. Prentice IC (1985) Pollen representation, source area, and basin size: toward a unified theory of pollen analysis. Quaternary Research 23: 76–86. http://mc.manuscriptcentral.com/holocene 	42 43 794	on the Gdańsk Upland (N. Poland) based on integrated palynological and macrofossil data from
 Pędziszewska A, Tylmann W, Witak M et al. (2015) Holocene environmental changes reflected by pollen, diatoms, and geochemistry of annually laminated sediments of Lake Suminko in the Kashubian Lake District (N Poland). <i>Review of Palaeobotany and Palynology</i> 216: 55–75. Prentice IC (1985) Pollen representation, source area, and basin size: toward a unified theory of pollen analysis. <i>Quaternary Research</i> 23: 76–86. http://mc.manuscriptcentral.com/holocene 	44 45 795	paired sites. Vegetation History and Archaeobotany 25: 239-254.
 pollen, diatoms, and geochemistry of annually laminated sediments of Lake Suminko in the Kashubian Lake District (N Poland). <i>Review of Palaeobotany and Palynology</i> 216: 55–75. Prentice IC (1985) Pollen representation, source area, and basin size: toward a unified theory of pollen analysis. <i>Quaternary Research</i> 23: 76–86. <i>26</i> http://mc.manuscriptcentral.com/holocene 	46 47 796	Pędziszewska A, Tylmann W, Witak M et al. (2015) Holocene environmental changes reflected by
 Kashubian Lake District (N Poland). <i>Review of Palaeobotany and Palynology</i> 216: 55–75. Prentice IC (1985) Pollen representation, source area, and basin size: toward a unified theory of pollen analysis. <i>Quaternary Research</i> 23: 76–86. <i>Quaternary Research</i> 23: 76–86. <i>Lake District</i> (1985) Pollen representation, source area, and basin size: toward a unified theory of pollen analysis. <i>Quaternary Research</i> 23: 76–86. <i>Lake District</i> (1985) Pollen representation, source area, and basin size: toward a unified theory of pollen analysis. <i>Quaternary Research</i> 23: 76–86. <i>Lake District</i> (1985) Pollen representation, source area, and basin size: toward a unified theory of pollen analysis. <i>Quaternary Research</i> 23: 76–86. <i>Lake District</i> (1985) Pollen representation, source area, and basin size: toward a unified theory of pollen analysis. <i>Quaternary Research</i> 23: 76–86. <i>Lake District</i> (1985) Pollen representation, source area, and basin size: toward a unified theory of pollen analysis. <i>Quaternary Research</i> 23: 76–86. <i>Lake District</i> (1985) Pollen representation, source area, and basin size: toward a unified theory of pollen analysis. <i>Quaternary Research</i> 23: 76–86. <i>Lake District</i> (1985) Pollen representation, source area, and basin size: toward a unified theory of pollen analysis. <i>Quaternary Research</i> 23: 76–86. <i>Lake District</i> (1985) Pollen representation, source area, and basin size: toward a unified theory of pollen analysis. <i>Quaternary Research</i> 23: 76–86. <i>Lake District</i> (1985) Pollen representation, source area, and basin size: toward a unified theory of pollen analysis. <i>Quaternary Research</i> 23: 76–86. <i>Lake District</i> (1985) Pollen representation, source area, and basin size: toward a unified theory of pollen analysis. <i>Quaternary Research</i> 24: 46. <i>Lake District</i> (1985) Pollen analysis. <i>Quaternary Research</i> 24: 46. <i>Lake District</i> (1985) Pollen (1985) Pollen analysis. <i></i>	48 797	pollen, diatoms, and geochemistry of annually laminated sediments of Lake Suminko in the
 ⁵¹ 799 Prentice IC (1985) Pollen representation, source area, and basin size: toward a unified theory of pollen ⁵³ 800 analysis. <i>Quaternary Research</i> 23: 76–86. ⁵⁴ ⁵⁵ ⁵⁶ ⁵⁷ ⁵⁸ ⁵⁸ ⁵⁹ ⁶⁰ http://mc.manuscriptcentral.com/holocene 	49 50 798	Kashubian Lake District (N Poland). Review of Palaeobotany and Palynology 216: 55–75.
 analysis. Quaternary Research 23: 76–86. analysis. Quaternary Research 23: 76–86. bittp://mc.manuscriptcentral.com/holocene 	51 52 799	Prentice IC (1985) Pollen representation, source area, and basin size: toward a unified theory of pollen
55 56 57 58 26 59 60 http://mc.manuscriptcentral.com/holocene	53 800	analysis. Quaternary Research 23: 76–86.
56 57 58 26 59 60 http://mc.manuscriptcentral.com/holocene	55	
58265960http://mc.manuscriptcentral.com/holocene	56 57	
60 http://mc.manuscriptcentral.com/holocene	58 59	26
	60	http://mc.manuscriptcentral.com/holocene

2	
³ 801 4	R Development Core Team (2014) R: A language and environment for statistical computing. R
5 802	Foundation for Statistical Computing, Vienna, Austria. Available at: www.R-project.org
7 803	(accessed 20 November 2018).
8 9 804	Reimer PJ, Bard E, Bayliss A et al. (2013) Intcal13 and Marine13 Radiocarbon Age Calibration Curves
10 805	0-50,000 Years Cal BP. Radiocarbon 55(4): 1869-1887.
12 806	Saarse L, Niinemets E, Poska A and Veski S (2010) Is there a relationship between crop farming and
13 14 ⁸⁰⁷	the Alnus decline in the eastern Baltic region? Vegetation History and Archaeobotany 19: 17-28.
15 808 16	Santini A, Ghelardini L, De Pace C et al. (2013) Biogeographical patterns and determinants of invasion
17 809	by forest pathogens in Europe. New Phytologist 197: 238-250.
18 19 810	Sarmaja-Korjonen K (2003) Contemporaneous Alnus decline and the beginning of Iron Age cultivation
²⁰ 21 811	in pollen stratigraphies from southern Finland. Vegetation History and Archaeobotany 12: 49–59.
22 812	Seidl R and Rammer W (2017) Climate change amplifies the interactions between wind and bark beetle
23 24 813	disturbances in forest landscapes. Landscape Ecology 32: 1485–1498.
25 26 814	Sillasoo Ü, Mauquoy D, Blundell A et al. (2007) Peat multi-proxy data from Männikjärve bog as
²⁷ 815	indicators of late Holocene climate changes in Estonia. Boreas 36: 20-37.
29 816	Sonderegger D (2012) SiZer: SiZer: Significant Zero Crossings. R package version 0.1-4.
30 31 817	http://CRAN.R-project.org/package=SiZer
32 33 818	Sonderegger DL, Wang H, Clements WH and Noon BR (2009) Using SiZer to detect thresholds in
³⁴ 819	ecological data. Frontiers in Ecology and the Environment 7: 190–195.
36 820	Stivrins N, Buchan MS, Disbrey HR et al. (2017) Widespread, episodic decline of alder (Alnus) during
37 38 821	the medieval period in the boreal forest of Europe. Journal of Quaternary Science 32: 903–907.
³⁹ 822	Stothers RB (1998) Far Reach of the Tenth Century Eldgjá Eruption, Iceland. Climatic Change 39:
41 823	715–726.
42 43 824	Streel M, Beghin J, Gerrienne P et al. (2014) Late Subatlantic history of the ombrotrophic Misten Bog
44 45 825	(Eastern Belgium) based on high resolution pollen, testate amoebae and macrofossil analysis.
46 47 826	Geologica Belgica 17: 148–160.
48 827	Strnadová V, Černý K, Holub V and Gregorová B (2010) The effects of flooding and Phytophtora alni
49 50 828	infection on black alder. Journal of Forest Science 56: 41-46.
51 52 829	Sturrock RN, Frankel SJ, Brown AV et al. (2011) Climate change and forest diseases. Plant Pathology
⁵³ 830	60: 133–149.
55	
56 57	
58 59	27
60	http://mc.manuscriptcentral.com/holocene

2		
3 4	831	Sugita S (1993) A model of pollen source area for an entire lake surface. <i>Quaternary Research</i> 39:
5	832	239–244.
7	833	Sun C, Plunkett G, Liu J et al. (2014) Ash from Changbaishan Millennium eruption recorded in
8 9	834	Greenland ice: Implications for determining the eruption's timing and impact. Geophysical
10	835	Research Letters 41: 694–701.
12	836	Święta-Musznicka J and Latałowa M (2016) From wetland to commercial centre: the natural history of
13 14	837	Wyspa Spichrzów ("Granary Island") in medieval Gdańsk, northern Poland. Vegetation History
15	838	and Archaeobotany 25: 583–599.
16	839	Święta-Musznicka J, Latałowa M, Szmeja J and Badura M (2011) Salvinia natans in medieval wetland
18 19	840	deposits in Gdańsk, northern Poland: evidence for the early medieval climate warming. Journal
20	841	of Paleolimnology 45: 369–383.
22	842	Tallantire PA (1974) The palaeohisrory of the gray alder (Alnus incana (L.) Moench.) and black alder
23 24	843	(A. glutinosa (L.) Gaertn.) in Fennoscandia. New Phytologist 73: 529-546.
25 26	844	Tinner W, Conedera M, Gobet E et al. (2000) A palaeoecological attempt to classify fire sensitivity of
27 28	845	trees in the southern Alps. The Holocene 10: 565–574.
29	846	Troels-Smith J (1960) Ivy, Mistletoe and Elm, Climate Indicators - Fodder Plants. A Contribution to
30 31	847	the Interpretation of the Pollen Zone Border VII-VIII. Danmarks geologiske Undersølgelse IV
32 33	848	4(4): 1–32.
34 35	849	Väliranta M, Korhola A, Seppä H et al. (2007) High-resolution reconstruction of wetness dynamics in a
36	850	southern boreal raised bog, Finland, during the late Holocene: a quantitative approach. The
37 38	851	Holocene 17: 1093–1107.
39 40	852	van Geel B and Andersen ST (1988) Fossil ascopores of the parasitic fungus Ustulina deusta in Eemian
41	853	deposits in Denmark. Review of Palaeobotany and Palynology 56: 89–93.
42 43	854	van Geel B and Aptroot A (2006) Fossil ascomycetes in Quaternary deposits. Nova Hedwigia 82: 313-
44 45	855	329.
46 47	856	van Geel B, Engels S, Martin-Puertas C and Brauer A (2013) Ascospores of the parasitic fungus
48	857	Kretzschmaria deusta as rainstorm indicators during a late Holocene beech-forest phase around
49 50	858	lake Meerfelder Maar, Germany. Journal of Paleolimnology 50: 33-40.
51 52	859	Veraverbeke S, Rogers BM, Goulden ML et al. (2017) Lightning as a major driver of recent large fire
53	860	years in North American boreal forests. Nature Climate Change 7: 529-534.
54 55		
56 57		
58		28
59 60		http://mc.manuscriptcentral.com/holocene

- 3 Wacnik A, Goslar T and Czernik J (2012) Vegetation changes caused by agricultural societies in the 861 4 Great Mazurian Lake District. Acta Palaeobotanica 52: 59-104. 5 862
- 6 Wacnik A, Tylmann W, Bonk A et al. (2016) Determining the responses of vegetation to natural 863 7 8 processes and human impacts in north-eastern Poland during the last millennium: combined 864 9 10 865 pollen, geochemical and historical data. Vegetation History and Archaeobotany 25: 479-498. 11
- Waller M (2013) Drought, disease, defoliation and death: forest pathogens as agents of past vegetation 12 866 13 14 867 change. Journal of Quaternary Science 28: 336-342.
- 15 Wulf S, Dräger N, Ott F et al. (2016) Holocene tephrostratigraphy of varved sediment records from 868 16 17 869 Lakes Tiefer See (NE Germany) and Czechowskie (N Poland). *Quaternary Science Reviews* 132: 18 1 - 14.19 870
- 20 871 Yavuz V, Akcar N and Schlüchter C (2007) The frozen Bosphorus and its paleoclimatic implications 21 ²² 872 based on a summary of the historical data. In: Yanko-Hombach V, Gilbert AS, Panin N, 23 Dolukhanov PM (eds) The Black Sea flood question: changes in coastline climate and human 24 873 25 26⁸⁷⁴ settlement. Dordrecht, Netherlands: Springer, pp.633-649.
- 27 28 875 Yin Y, Liu H and Hao Q (2016) The role of fire in the late Holocene forest decline in semi-arid North 29 876 China. The Holocene 26: 93–101. 30
- Zajac A and Zajac M (2001) Distribution Atlas of Vascular Plants in Poland. Kraków, Poland: 31 877 32 33 878 Pracownia Chorologii Komputerowej Instytutu Botaniki Uniwersytetu Jagiellońskiego.
- ³⁴ 879 Zimny M (2014) Późnoholoceńska historia roślinności Puszczy Białowieskiej. PhD Thesis, University 36 880 of Gdańsk, Poland.
- ₃₈ 881 Żarczyński M, Tylmann W and Goslar T (2018) Multiple varve chronologies for the last 2000 years ر 40 882 from the sediments of Lake Żabińskie (northeastern Poland) – Comparison of strategies for varve 41 883 counting and uncertainty estimations. *Quaternary Geochronology* 47: 107–119.
- Żarczyński M, Wacnik A and Tylmann W (2019) Tracing lake mixing and oxygenation regime using 43 884 45 885 the Fe/Mn ratio in varved sediments: 2000 year-long record of human-induced changes from ⁴⁶ 886 Lake Żabińskie (NE Poland). Science of the Total Environment 657: 585-596.

Figure legends 52 889

1 2

32

35

37

42

44

53 54 890

57 58

59

60

56 891

Fig. 1 (Aa) Location of the study area and the *Alnus* decline sites outside Poland; (Bb) the area of Poland covered by the present paper; and (Ce) the area covered by earlier papers on the Alnus decline

Page 31 of 58

HOLOCENE

(Sarmaja-Korjonen, 2003; Saarse et al., 2010; Stivrins et al., 2017). On map 'b', green dots were used
fora- pollen sites where the *Alnus* decline was well expressed, <u>b- and yellow dots were used ifpollen</u>
sites where the event was lacking or weakly expressed; site numbers follow the list of sites (Table S1):
Bråtamossen (Lagerås, 1996), Fiolen Lake (Fredh et al., 2013), Store Mosse Bog (de Jong and Lagerås,
2011), Holmegaard Bog (Aaby, 1988), Belau Lake (Dörfler et al., 2012), Felchowsee and Grosser
Krebssee (Jahns, 2000), Holzmaar Lake and Meerfelder Maar Lake (Litt et al., 2009)

Fig. 2 Simplified pollen diagrams from selected lakes illustrating the *Alnus* decline against changes in
other tree taxa, indicators of settlement activity and selected indicators of lake environment: Lake
Czechowskie (Obremska and Ott, unpubl.), Lake Suminko (Pędziszewska et al., 2015), Lake Mełno
(Noryśkiewicz, 2013), and Lake Zarańskie (Noryśkiewicz, 2014); dating of Lake Mełno and Lake
Zarańskie sediments acc. to indirect premises (see Methods); site numbers as in Fig. 1 and ESM Table
S1 (available online)

Fig. 3 Simplified pollen diagrams from the selected peat bogs illustrating the *Alnus* decline against
changes in the other tree taxa, indicators of settlement activity and selected indicators of local
hydrology: BIA/314D and BIA/318C (Zimny, 2014), Czerlon (Latałowa et al., 2016), Bagno Kusowo
(Lamentowicz et al., 2015), and Słowińskie Błota/85 (Latałowa, unpubl.); site numbers as in Fig. 1 and
ESM Table S1 (available online)

Fig. 4 *Alnus* pollen percentage values for the period AD 300-1400 in selected sites in Poland:
BIA/340G, BIA/131C, BIA/314D and BIA/318C (Zimny, 2014), Czerlon (Latałowa et al., 2016), Lake
Czechowskie (Obremska and Ott, unpubl.), Bukrzyno (Pędziszewska, 2008), (Lake Suminko
(Pędziszewska et al., 2015), Bagno Kusowo (Lamentowicz et al., 2015), and Słowińskie Błota/85
(Latałowa, unpubl.); Lake Racze/Miedwie (Bloom, 2015); site numbers as in Fig. 1 and ESM Table S1
(available online)

Fig. 5 Analysis of the statistical significance of the decline-rise events in the *Alnus* populations in 11
selected sites in Poland (see the caption of Fig. 4 for site information) using the SiZer analysis (see
ESM Figure S1, available online). <u>a-</u>A-statistically significant declines, <u>b-</u> is shown with red and a
statistically significant rises is shown with a blue line; the strongest decline at the end of the first

2		
3 9 4	22	millennium is shown with a dashed line. Because the data for three records was too sparse (BIA/131C,
5 92 6	23	BIA/314D and Bukrzyno/BI), no statistically significant decline-rise events were detected
8 9	24	
9 10 ⁹	25	Supporting information
11 9 12	26	ESM Table S1 <i>Alnus</i> decline – pollen sites; Site category: A – primary sites, B – secondary sites;
13 9	27	Decline: a- present, b- no recovery, c- weak or not recorded; Age of the event: start of the decline,
14 15 9	28	minimum value, recovery to the earlier level; EPD - European Pollen Database
$\frac{16}{17}9$	29	
18 g 19	30	ESM Table S2 Environmental metadata for the sites; site type concerns a period of the Alnus decline
20 9	31	event; o- outflow, i- inflow; site numbers as in ESM Table S1 (available online) and Fig. 1
22 9	32	
²³ 9 24	33	ESM Table S3 Palaeoecological characteristics around the <i>Alnus</i> decline; HI – human impact: h –
25 9 26	34	high, m – moderate, l – low, a – absent; NPPs – non-pollen palynomorphs; site numbers as in ESM
27 9	35	Table S1(available online) and Fig. 1; for references, see Table S1
28 29 9	36	
30 9 31	37	ESM Figure S1 The results of the SiZer analyses of <i>Alnus</i> pollen curves in selected sites in Poland (for
32 9	38	site information, see the caption of Fig. 4 in the main text). In the maps, the horizontal axis represents
33 34 9	39	the time, the vertical axis represents the scale and the colour of each pixel represents the significance of
³⁵ 9 ⁴	40	the derivative of the smooth of the curve at the corresponding time and scale. Red, blue and purple
37 g.	41	indicate that the derivative is significantly negative, positive or neither, respectively. Grey means that
39 9 [,]	42	the data are too sparse for inference. The most suitable scales for the detection of the significant
40 41 9	43	decline-rise events in the data are shown with vertical lines. The scale that reveals the decline-rise
42 9 43	44	event at the end of the first millennium is shown with a yellow line, and the scales for the other events
44 9. 45	45	are shown with green lines
46 9 ⁴	46	
47 9. 48	47	
49		
50 51		
52		
53 54		
55		
56		
57 58		31
59		51

http://mc.manuscriptcentral.com/holocene

HOLOCENE

Table 1 Radiocarbon dates and results of their calibration for the *Alnus* decline in Polish sites, with site numbers as in Fig. 1 and Table S1; for references see Table S1

Site No.	Site name	Lab. No.	Age ¹⁴ C BP	Median AD	Calibration (26) AD	Position of the date in relation to the event
1	Lake Racze/Wolin	Poz-74501	1135±30	919	777–986	Decline
		Poz-74500	805±30	1235	1170-1273	Full recovery
3	Wolin II/00	Poz-29758	1015±30	1014	971–1149	Decline
		Poz-29760	900±30	1123	1039–1210	Recovery
4	Lake Racze Miedwie	Poz-49125	955±30	1096	1022-1155	Minimum/early
		Poz-49124	935±30	1105	1030–1175	Full recovery
7	Bagno Kusowo	Poz-55359	1055±35	988	895-1028	Decline/minimum
9	Słowińskie Błota	Gd-1879	1000 ± 40	1032	975-1155	Start of the recovery
10	Kluki	Gd-565	865±60	1166	1038-1261	Recovery
11	Darżlubie Forest	Gd-1032	1125±55	911	774–1014	Decline
12	Gołębiewo (G/I)	Poz-3624	1030±30	1005	901-1116	Decline
		Poz-49034	895±35	1130	1039-1215	Full recovery
13	Gdańsk-Pszenna	Poz-45048	1155±30	881	775–969	Decline
		Poz-31661	840±35	1202	1152-1267	Full recovery
14	Gdańsk-Żytnia	Poz-31658	1215±30	812	694-889	Before the decline
		Poz-31657	1110±30	937	879–1013	Minimum
16a	Stążki/2008	Poz-15781	1100±30	946	887-1013	Minimum
		Poz-15782	1090±30	954	892-1014	Minimum
		Poz-15780	1025 ± 30	1005	945-1110	Recovery
17	Bukrzyno (B/I)	Poz-19361	1030±30	1005	901-1116	Minimum
18	Lake Suminko	GdA-2517	930±30	1099	1025-1165	Recovery
19	Lake Czechowskie			970	10	Decline
		Varves		1020	±10 valve	Minimum
				1090	years	Early recovery
				1120		Full recovery
31a	Linje	Poz-56402	1145±35	896	776–978	Decline/minimum
		Poz-54918	995±35	1035	995–1145	Full recovery
42	Lake Żabińskie			870		Decline
		Varves		920	+12/-24	Minimum
		, ui ves		1060	varve years	Early recovery
				1090		Full recovery
43	Mechacz Wielki	Poz-46146	1095±30	950	890-1013	Early recovery
44	Lake Szurpiły			830		Decline
		Varves		930	+47 years	Minimum
		v ai ves		980	±+2 years	Early recovery
				1010		Full recovery
48	BIA/318C	Poz-39678	1080±30	966	894-1018	Decline/minimum
49	BIA/314D	Poz-52241	1115±30	933	779–1013	Decline/minimum
		Poz-58946	850±25	1195	1154-1258	Recovery
52	BIA/131C	Poz-39672	1220±40	803	684-892	Below the decline
		Poz-35662	685±30	1296	1267–1389	Full recovery
54	Czerlon	Poz-78644	1080 ± 30	966	894–1018	Decline/minimum

Fig. 1 (A) Location of the study area and the Alnus decline sites outside Poland; (B) the area of Poland covered by the present paper; and (C) the area covered by earlier papers on the Alnus decline (Sarmaja-Korjonen, 2003; Saarse et al., 2010; Stivrins et al., 2017). a- pollen sites where the Alnus decline was well expressed, b- pollen sites where the event was lacking or weakly expressed; site numbers follow the list of sites (Table S1): Bråtamossen (Lagerås, 1996), Fiolen Lake (Fredh et al., 2013), Store Mosse Bog (de Jong and Lagerås, 2011), Holmegaard Bog (Aaby, 1988), Belau Lake (Dörfler et al., 2012), Felchowsee and Grosser Krebssee (Jahns, 2000), Holzmaar Lake and Meerfelder Maar Lake (Litt et al., 2009)

http://mc.manuscriptcentral.com/holocene

Fig. 2 Simplified pollen diagrams from selected lakes illustrating the Alnus decline against changes in other tree taxa, indicators of settlement activity and selected indicators of lake environment: Lake Czechowskie (Obremska and Ott, unpubl.), Lake Suminko (Pędziszewska et al., 2015), Lake Mełno (Noryśkiewicz, 2013), and Lake Zarańskie (Noryśkiewicz, 2014); dating of Lake Mełno and Lake Zarańskie sediments acc. to indirect premises (see Methods); site numbers as in Fig. 1 and ESM Table S1 (available online)

Fig. 3 Simplified pollen diagrams from the selected peat bogs illustrating the Alnus decline against changes in the other tree taxa, indicators of settlement activity and selected indicators of local hydrology: BIA/314D and BIA/318C (Zimny, 2014), Czerlon (Latałowa et al., 2016), Bagno Kusowo (Lamentowicz et al., 2015), and Słowińskie Błota/85 (Latałowa, unpubl.); site numbers as in Fig. 1 and ESM Table S1 (available online)

Fig. 4 Alnus pollen percentage values for the period AD 300-1400 in selected sites in Poland: BIA/340G, BIA/131C, BIA/314D and BIA/318C (Zimny, 2014), Czerlon (Latałowa et al., 2016), Lake Czechowskie (Obremska and Ott, unpubl.), Bukrzyno (Pędziszewska, 2008), (Lake Suminko (Pędziszewska et al., 2015), Bagno Kusowo (Lamentowicz et al., 2015), and Słowińskie Błota/85 (Latałowa, unpubl.); Lake Racze/Miedwie (Bloom, 2015); site numbers as in Fig. 1 and ESM Table S1 (available online)

http://mc.manuscriptcentral.com/holocene

Fig. 5 Analysis of the statistical significance of the decline-rise events in the Alnus populations in 11 selected sites in Poland (see the caption of Fig. 4 for site information) using the SiZer analysis (see ESM Figure S1, available online). a- statistically significant declines, b- statistically significant rises; the strongest decline at the end of the first millennium is shown with a dashed line. Because the data for three records was too sparse (BIA/131C, BIA/314D and Bukrzyno/BI), no statistically significant decline-rise events were detected

HOLOCENE

ESM Table S1 *Alnus* decline – pollen sites; Site category: A – primary sites, B – secondary sites; Decline: a – present, b – no recovery, c – weak or not recorded; Age of the event (median): start of the decline, minimum value, recovery to the earlier level; EPD – European Pollen Database.

Site	Site Name	Geogr.	Site	Γ	Decline	9	Decline	Dating	Age of the	Comment	ent Source of data	
No.		coordinates	cat.	a	b	c	from-to (%)	method	event (AD)			
1	Lake Racze/ Wolin Island	53°55'N 14°40'E	А	X			18.5-8.4 (54.6%)	¹⁴ C dates	800 900 1100		Latałowa M (1992)	
2	Kołczewo	53°55'N 14°40'E	A	X	Х		26.7 - 9.7 (63.7%)	¹⁴ C dates	9 th c.	Lack of the top of the profile	Latałowa M (1992)	
3	Wolin II/00	53 °50'N 14 °37'E	А	x	r		10.7 - 2.1 (80%)	¹⁴ C dates	10 th c.		Pędziszewska A (unpubl.)	
4	Lake Racze/Miedwie	53º18'N 14º51'E	A	X			20.2-10.8 (46.5%)	¹⁴ C dates	800 975 1070		Bloom K (2015)	
5	Lake Zarańskie	53°34'N 15°49'E	В	Х			20.4-10.6 (48%)	Pollen stratigraphy	ca. 9-10 th c.		Noryśkiewicz AM (2014)	
6	Lake Gągnowo	53°37'N 15°48'E	А	х			21-9.3 (56%)	¹⁴ C dates	10 th c.		Noryśkiewicz AM (unpubl.)	
7	Bagno Kusowo	53°48'N 16°35'E	A	X			ca. 13-<5 (61.5%)	¹⁴ C dates	900 950 1100		Lamentowicz M et al. (2015)	
8	Lake Kwiecko	54º01'N 16º42'E	В	х			ca. 30-5 (83.3%)	Pollen stratigraphy	9-10 th c.		Madeja J (2012)	
9	Słowińskie Błota/85	54°25'N 16°30'E	A	X			24.2-4.9 (79.8%)	¹⁴ C dates	860 960 1170		Latałowa M (unpubl.)	
10	Kluki	54º42'N 17º17'E	А	х			20.6-3.7 (82%)	¹⁴ C dates	9-10 th c.		Tobolski K (1987); EPD	
11	Darżlubie Forest	54°42'N 18°10'E	А	х	Х		10.8-4.2 (61.1%)	¹⁴ C dates	10 th c.	Lack of the top of the profile	Latałowa M (1982)	
12	Gołębiewo/GI	54°27'N 18°30'E	А	Х			11.2-3.2 (71.43%)	¹⁴ C dates	1040		Pędziszewska A and Latałow M (2016)	

Site	Site Name	Geogr.	Site	Decline	Decline	Dating	Age of the	Comment	Source of data
No.		coordinates	cat.		from-to (%)	method	event (AD)		
13	Gdańsk-Pszenna Granary Island	54°20'N 18° 39'E	А	х	44.1-2.2 (95%)	¹⁴ C dates	880 940 1200	A hiatus around the decline	Święta-Musznicka J and Latałowa M (2016)
14	Gdańsk-Żytnia Granary Island	54°20'N 18° 39'E	А	X	49.5-3.7 (92.5%)	¹⁴ C dates	9-10 th c.		Święta-Musznicka J and Latałowa M (2016)
15	Lake Godziszewskie	54°5'N 18°33'E	В	X	30.1-3.8 (87.4%)	Pollen stratigraphy	ca. 9-10 th c.		Miotk G (1986); EPD
16	Stążki/2013	54°25'N 18°05'E	В	X	ca. 15-2 (87%)	Age/depth model	ca. 10 th c.		Gałka M et al. (2013)
16a	Stążki/2008	54°25'N 18°05'E	A	Х	ca. 10-3 (ca. 70%)	¹⁴ C dates	10 th c.		Lamentowicz M et al. (2008a)
17	Bukrzyno/BI	54º14'N 18º01'E	A	x	10.3-2.4 (76,7%)	¹⁴ C dates	890 1000 1040		Pędziszewska A (2008)
18	Lake Suminko	54º11'N 17º47'E	A	x	11.1-4 (64%)	¹⁴ C dates	860 940 1060		Pędziszewska A et al. (2015)
19	Lake Czechowskie	53°52'N 18°14'E	A	x	14.5-1.8 (88%)	¹⁴ C dates varves	969 1024 1135		this paper
20	Lake Wielkie Gacno	53°47'N 17°30'E	В	Х	-	Age/depth model		The event unclear	Hjelmroos-Ericksson M (1981)
21	Lake Ostrowite	53°47'N 17°35'E	В	Х	-	Age/depth model	-	The event unclear	Milecka K (2005)
22	Lake Suszek	53°43'N 17°46'E	В	X	ca. 22-12 (45.5%)	Pollen stratigraphy	ca. 9-10 th c.		Miotk-Szpiganowicz G (1992)
23	Tuchola	53°34'N 17°54'E	В	X	ca.8-2 (75%)	Pollen stratigraphy	9-10 th c.	"One sample event"	Lamentowicz M et al. (2008b)
24	Lake Kęsowo	53°33'N 17°43'E	В	X	ca. 20-11 (45%)	Pollen stratigraphy	9-10 th c.		Miotk-Szpiganowicz G (1992)
25	Lake Jelonek	53°45'N 18°23'E	В	X	ca. 10-3 (70%)	Pollen stratigraphy	ca. 9 th c.		Filbrandt-Czaja A (2009)

Page 41	of 58
---------	-------

Site No.	Site Name	Geogr. coordinates	Site cat.	Decline	Decline from-to (%)	Dating method	Age of the event (AD)	Comment	Source of data
26	Zawada	53°37'N 18°35'E	В	Х	17.8-11,4 (36%)	Pollen stratigraphy	ca. 9-10 th c.	A hiatus around the decline	Noryśkiewicz B (2004)
27	Lake Mukrz I	53°31'N 18°07'E	В	X	19.6-10.2 (48%)	Pollen stratigraphy	ca. 9-10 th c.		Noryśkiewicz AM (2006)
28	Gruczno	53°22'N 18°19'E	В	x	19-3.7 (80.5%)	Pollen stratigraphy	ca. 9 th c.		Noryśkiewicz AM (2016)
29	Lake Czyste	53°17'N 18°29'E	A	x	12.9-4,8 (62.8%)	¹⁴ C dates	770 820 850		Noryśkiewicz AM (2013)
30	Lake Mełno	53°26'N 19°00'E	В	X	20.5-5,2 (74.1%)	Pollen stratigraphy	9-10 th c.		Noryśkiewicz AM (2013)
31	Linje	53°11'N 18°18'E	В	X X	17.9-4 (77.7%)	Pollen stratigraphy	10 th c.		Noryśkiewicz AM (2013)
31a	Linje	53°11'N 18°18'E	А	x	ca. 16-8 (50%)	¹⁴ C dates	9-10 th c.		Marcisz K et al. (2015)
32	Lake Kamionkowskie	53°08'N 18°46'E	В	x	14.7-5,5 (62.6%)	Pollen stratigraphy	ca. 10 th c.		Noryśkiewicz AM (2013)
33	Gronowo	53°06'N 18°48'E	Α	Х	15.5-3,6 (76.8%)	¹⁴ C dates	880 990 1210		Noryśkiewicz AM (2013)
34	Lake Strażym	53°20'N 19°27'E	В	X	19.2-4,5 (76.6%)	Pollen stratigraphy	ca. 9-10 th c.		Noryśkiewicz B (1987); EPD
35	Lake Zwiniarz	53 °26'N 19° 50'E	В	X	19.3-5,6 (71%)	Pollen stratigraphy	ca. 9-10 th c.	"One sample event"	Noryśkiewicz A (unpubl.)
36	Gązwa	53°52'N 21°13'E	A	X	ca. 15-3 (80%)	¹⁴ C dates	ca. 8 th c.	"One sample event"	Gałka M et al. (2015)
37	Lake Salęt	53°56'N 21°19'E	В	x	-	¹⁴ C dates	-	-	Szal M et al. (2014)
38	Lake Mikołajki	53°46'N 21°35'E	В	х	-	Pollen stratigraphy	-	Slight decline difficult to date	Ralska-Jasiewiczowa M (1966) EPD

Site	Site Name	Geogr.	Site	Dec	line	Decline from to	Dating	Age of the	Comment	Source of data
INO.		coordinates	Cal.			(%)	method	(AD)		
39	Lake Wojnowo	53°57'N 21°49'E	В	X		-	Age/depth model	ca. 5 th c.	Problem with dating?	Wacnik A et al. (2014)
40	Lake Miłkowskie	53°51'N 21°50'E	В		Х	-	Age/depth model	-	The event unclear	Wacnik A et al. (2014)
41	Lake Łazduny	53°51'N 21°57'E	В	х		ca. 15-3 (80%)	¹⁴ C dates	ca. 890	Short, distinct decline	Wacnik A et al. (2012)
42	Lake Żabińskie	54°07'N 21°58'E	A	X Z	ζ.	ca. 11-2 (82%)	¹⁴ C dates varves	870 920 1090		Żarczyński M et al. (2019)
43	Mechacz Wielki (MW/I)	54°18'N 22°18'E	А	X		ca. 12-3 (75%)	¹⁴ C dates	10 th c.		Gałka M et al. (2017)
44	Lake Szurpiły	54°13'N 22°53'E	A	X		ca. 12-5 (58%)	Age/depth model, varves	830 930 1010		Kinder M et al. (2013); Kupryjanowicz M and Fiłoc M (2016)
45	Lake Wigry	54°01'N 23°04'E	В		x	- /	Age/depth model	-	decline difficult to date	Kupryjanowicz M (2007)
46	Kładkowe Bagno	53°18'N 23°22'E	В		X	-	Pollen stratigraphy	en,	Several small episodes difficult to date	Kupryjanowicz M (2004)
47	Maliniak	53°11'N 23°19'E	В	X		6.2-3.7 (40.3%)	Age/depth model		The decline weakly expressed	Kupryjanowicz M and Szal M (2015)
48	BIA/318C, Białowieża Forest	52°44'40.8''N 23°53'40.4''E	А	X		13.1-2.1 (84%)	¹⁴ C dates	10 th c.		Zimny M (2014)
49	BIA/314D, Białowieża Forest	52°44'45.7''N 23°50'09.5''E	А	X		16-4.9 (69.4%)	¹⁴ C dates	10 th c.		Zimny M (2014)
50	BIA/340G, Białowieża Forest	52°44'11.2''N 23°50'13.0''E	А	X		8.9-0.7 (92.1%)	¹⁴ C dates	10 th c.		Zimny M (2014); Latałowa M et al. (2015)
51	BIA/317C, Białowieża Forest	52°44'33.2''N 23°52'37.1''E	А	X		11.8-4.3 (63.6%)	¹⁴ C dates	10 th c.		Zimny M (2014)

Site No.	Site Name	Geogr. coordinates	Site cat.	Declin	e Do fro	ecline om-to (%)	Dating method	Age of the event (AD)	Comment	Source of data
52	BIA/131C, Białowieża Forest	52°47'59.5''N 23°50'51.3''E	А	x	18. (4	.2-10.1 4.5%)	¹⁴ C dates	10 th c.		Zimny M (2014); Latałowa M et al. (2015, 2016)
53	BIA/161 A, Białowieża Forest	52°47'55.0''N 23°50'48.7''E	A	X		-	¹⁴ C dates	10 th c.	The decline unclear; sediment disturbances	Pędziszewska A (unpubl.)
54	Czerlon	52°41'17.8''N 23°44'09.2''E	A	Х	12 (8	2.8-1.4 9.1%)	¹⁴ C dates	10 th c.		Latałowa M et al. (2016)
55	Lake Błędowo	52°32'N 20°40'E	В	x	14	.1-7.5 6.8%)	Pollen stratigraphy	ca. 9-10 th c.		Bińka K et al. (1991); EPD
56	Lake Gościąż	52°35'N 19°21'E	В	x	18.	8-11.8 7.2%)	¹⁴ C dates	ca. 9-10 th c.	Weak data in the section of the <i>Alnus</i> decline	Ralska-Jasiewiczowa M et al. (1998); EPD
57	Lake Białe	52°29'N 19°31'E	В	x			Age/depth model	ca. 10 th c.	Weak data in the section of the <i>Alnus</i> decline	Wacnik A et al. (2011)
58	Lake Steklin	52°57'N 19°01'E	В		Х	-	Pollen stratigraphy	Q 1.	The event unclear	Noryśkiewicz B (1982); EPD
59	Lake Gopło	52°38'N 18°21'E	В	Х	12 (6	2.5-4.7 2.4%)	Pollen stratigraphy	ca. 9-10 th c.		Jankowska B (1980)
60	Lake Kamionek	52°35'N 17°23'E	В	X	ca. (5	22-10 0.5%)	Pollen stratigraphy	ca. 9-10 th		Filbrandt-Czaja A (1998)
61	Lake Skrzetuszewskie	52°33'N 17°21'E	В		X	-	¹⁴ C dates	-	The event unclear	Tobolski K (1991); EPD
62	Lake Lednica I/86	52°33'N 17°23'E	В	Х	17. (5	.02-7.6 8.3%)	Pollen stratigraphy	ca. 9-10 th c.		Makohonienko M (1991); EPD
63	Lake Głęboczek	52° 39'N 17°38'E	В	X	ca ((. 19 - 7 63%)	Pollen stratigraphy	ca. 9-10 th c.		Makohonienko M (2000)
64	Lake Świętokrzyskie	52°32'N 17°35'E	В	X	21 (7	.5-6.1 1.6%)	Pollen stratigraphy	ca. 9-10 th c.		Makohonienko M (2000); EPD

Page 43 of 58

Site No.	Site Name	Geogr. coordinates	Site cat.	Dec	line	Decline from-to (%)	Dating method	Age of the event (AD)	Comment	Source of data
65	Lake Baba	52°25'N 17°22'E	В		Х	-	Pollen stratigraphy	-	The event unclear	Milecka K (1998)
66	Giecz 4/90	52°19'N 17°21'E	В	X	x	ca. 28-12 (57.1%)	Pollen stratigraphy	ca. 9-10 th c.		Milecka K (1998)
67	Lake Wonieść	51°59'N 16°42'E	А	X		ca. 16-5 (68.8%)	Age/depth model	ca. 9 th c.		Dörfler W (2011)
68	Lake Paklicko Wielkie	52°19'N 15°30'E	В	Х		13.8-4.3 (69%)	¹⁴ C dates	10 th c.		Noryśkiewicz AM (unpubl.)
69	Lake Długie	52 °28'N 15 °26'E	В	x		18.8-4.1 (78%)	Pollen stratigraphy	10 th c.		Noryśkiewicz AM (unpubl.)

References

- Bińka K, Cieśla A, Łącka B et al. (1991) The development of Błędowo Lake (central Poland) a palaeoecological study. *Studia Geologica Polonica* 100: 7–85.
- Bloom K (2015) Wpływ czynników naturalnych i gospodarki pradziejowej na sukcesję roślinności w rejonie Jeziora Raczego na Ziemi Pyrzyckiej w holocenie. Studium paleoekologiczne. PhD Thesis, University of Gdańsk, Poland.
- Dörfler W (2011) Paleoecological reconstruction of the Bronze Age landscape around Lake Wonieść, Great Poland. In: Hildebrandt-Radke I, Czebraszuk J, Dölfler W and Müller J (eds) *Anthropogenic pressure in the Neolithic and Bronze Age in the central-European Lowlands*. Poznań: Bogucki Wydawnictwo Naukowe & Bonn, Germany: Dr. Rudolf Habelt GmbH, Studien zur Archäologie in Ostmitteleuropa 8, pp.67–77.
- Filbrandt-Czaja A (1998) Historia roślinności północnej części Lednickiego Parku Krajobrazowego ze szczególnym uwzględnieniem czynnika antropogenicznego. *Biblioteka Studiów Lednickich* 3: 9–41.
- Filbrandt-Czaja A (2009) Studia nad historią szaty roślinnej i krajobrazu Borów Tucholskich. Toruń: Wydawnictwo Naukowe Uniwersytetu Mikołaja Kopernika.
- Gałka M, Miotk-Szpiganowicz G, Goslar T et al. (2013) Palaeohydrology, fires and vegetation succession in the southern Baltic during the last 7500 years reconstructed from a raised bog based on multi-proxy data. *Palaeogeography, Palaeoclimatology, Palaeoecology* 370: 209–221.
- Gałka M, Miotk-Szpiganowicz G, Marczewska M et al. (2015) Palaeoenvironmental changes in Central Europe (NE Poland) during the last 6200 years reconstructed from a high-resolution multi-proxy peat archive. *The Holocene* 25: 421–434.

Gałka M, Tobolski K, Lamentowicz Ł et al. (2017) Unveiling exceptional Baltic bog ecohydrology, autogenic succession and climate ch the last 2000 years in CE Europe using replicate cores, multi-proxy data and functional traits of testate amoebae. <i>Quaternary Scier</i> 156: 90–106.	ange during nce Reviews
Hielmroos-Ericsson M (1981) Holocene development of Lake Wielkie Gacno area, northwestern Poland PhD Thesis 10 Lund University	v Sweden
Jankowska B (1980) Szata roślinna okolic Gopła w późnym glacjale i holocenie oraz wpływ osadnictwa na jej rozwój w św paleobotanicznych <i>Przeglad Archeologiczny</i> 27: 5–41	vietle badań
Kinder M, Tylmann W, Enters D et al. (2013) Construction and validation of calendar-year time scale for annually laminated sediments – from Lake Szurpiły (NE Poland) <i>GFF</i> 135: 248–257	an example
Kupryjanowicz M (2004) The vegetation changes recorded in sediments of Kładkowe Bagno peat bog in Puszcza Knyszyńska Forest, n Poland. Acta Palaeobotanica 44: 175–193.	orth-eastern
Kupryianowicz M (2007) Postglacial development of vegetation in the vicinity of the Wigry lake. <i>Geochronometria</i> 27: 53–66.	
Kupryjanowicz M and Fiłoc M (2016) Badania palinologiczne Jaćwieży. In: Bitner-Wróblewska A, Brzeziński W and Kasprzych Archeologia Jaćwieży. Dawne badania i nowe perspektywy. Warszawa: Państwowe Muzeum Archeologiczne, Stowarzyszenie Sta	ka M (eds) rożytników,
Kupryjanowicz M and Szal M (2015) Palinologiczne ślady osadnictwa prehistorycznego w centralnej części Puszczy Knyszy Wawrusiewicz A, Januszek K and Manasterski D (eds) <i>Obiekty obrzędowe Pucharów Dzwonowatych z Supraśla. Złożenie darów</i> torowy ozwintegracja kulturowa? Piełwstely: Muzeum Podlaskie w Piełwstely, pp. 225–241	yńskiej. In: – <i>przejęcie</i>
Lamentowicz M, Gałka M, Lamentowicz Ł et al. (2015) Reconstructing climate change and ombrotrophic bog development during th years in northern Poland using biotic proxies, stable isotopes and trait-based approach. <i>Palaeogeography, Palaeoclimatology, Pa</i> 418: 261–277	ne last 4000 laeoecology
Lamentowicz M, Obremska M and Mitchell E (2008a) Autogenic succession, land-use change, and climatic influences on the Holocene d of a kettle-hole mire in Northern Poland. <i>Review of Palaeobotany and Palynology</i> 151: 21–40.	levelopment
Lamentowicz M, Cedro A, Gałka M et al. (2008b) Last millennium palaeoenvironmental changes from a Baltic bog (Poland) inferred isotopes, pollen, plant macrofossils and testate amoebae. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i> 265: 93-106.	from stable
Latałowa M (1982) Postglacial vegetational changes in the eastern Baltic coastal zone of Poland. Acta Palaeobotanica 22: 179–249.	
Latałowa M (1992) Man and vegetation in the pollen diagrams from Wolin Island (NW Poland). Acta Palaeobotanica 32: 123–249.	
Latałowa M, Zimny M, Jędrzejewska B et al. (2015) Białowieża Primeval Forest: A 2000-year Interplay of Environmental and Cultura Europe's Best Preserved Temperate Woodland. In: Kirby KJ and Watkins C (eds) Europe's Changing Woods and Forests: From V Managed Landscenes, Wallingford: CAB International pp 242–264	al Forces in <i>Vildwood to</i>
Latałowa M, Zimny M, Pędziszewska A et al. (2016) Postglacjalna historia Puszczy Białowieskiej – roślinność, klimat i działalność człow Narodowa i Pozorwaty Przywady 25: 3–40	vieka. <i>Parki</i>
Nurouowe i Kezerwaiy Frzyroay 55. 5–49.	
http://mcmapuscriptcontrol.com/bolocopa	
http://mc.manuscriptcentral.com/noiocene	

2	
2	
3	
4	
5	
6	
7	
, 0	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
<u>40</u>	
U // 1	
41	
42	
/13	

44 45 46

- Madeja J (2012) Local Holocene vegetation changes and settlement history based on pollen analysis of Lake Kwiecko sediments, West-Pomeranian Lake District, NW Poland. *Acta Palaeobotanica* 52: 105–125.
- Makohonienko M (1991) Materiały do postglacjalnej historii roślinności okolic Lednicy. Część II. Badania palinologiczne osadów Jeziora Lednickiego rdzeń I/86 i Wal/87. In: Tobolski K (ed) *Wstęp do paleoekologii Lednickiego Parku Krajobrazowego*. Poznań: Wydawnictwo Naukowe Uniwersytetu Adama Mickiewicza, Biblioteka Studiów Lednickich 1, pp.63–70.
- Makohonienko M (2000) Przyrodnicza historia Gniezna. Bydgoszcz-Poznań: Wydawnictwo Homini.
- Marcisz K, Tinner W, Colombaroli D et al. (2015) Long-term hydrological dynamics and fire history over the last 2000 years in CE Europe reconstructed from a high-resolution peat archive. *Quaternary Science Reviews* 112: 138–152.
- Milecka K (1998) Historia działalności człowieka w okolicach Giecza i Wagowa w świetle analizy pyłkowej. *Biblioteka Studiów Lednickich* 3: 43–95.
- Milecka K (2005) Historia jezior lobeliowych zachodniej części Borów Tucholskich na tle postglacjalnego rozwoju szaty leśnej. Poznań: Wydawnictwo Naukowe Uniwersytetu Adama Mickiewicza.
- Miotk G (1986) Badania palinologiczne osadów z północnego obrzeża Jeziora Godziszewskiego koło Tczewa (Województwo Gdańskie). Badania Fizjograficzne nad Polską Zachodnią. Seria A, Geografia Fizyczna 36: 123–136.
- Miotk-Szpiganowicz G (1992) The history of the vegetation of Bory Tucholskie and the role of man in the light of palynological investigations. *Acta Palaeobotanica* 32: 39–122.
- Noryśkiewicz AM (2006) Historia cisa w okolicy Wierzchlasu w świetle analizy pyłkowej. Toruń: Instytut Archeologii Uniwersytet Mikołaja Kopernika & Towarzystwo Przyjaciół Dolnej Wisły.
- Noryśkiewicz AM (2013) Historia roślinności i osadnictwa ziemi chełmińskiej w późnym holocenie. Studium palinologiczne. Toruń: Wydawnictwo Naukowe Uniwersytetu Mikołaja Kopernika.
- Noryśkiewicz AM (2014) Vegetation and settlement history as reflected by pollen analysis. In: Chudziak W and Kaźmierczak R (eds) *The Island in Żółte on Lake Zarańskie. Early Medieval Gateway into West Pomerania*. Toruń: Institut of Archaeology, Nicolaus Copernicus University, pp.367–560.
- Noryśkiewicz AM (2016) Osadnictwo w północno-zachodniej części strefy chełmińsko-dobrzyńskiej w świetle analizy palinologicznej. In: Chudziak W and Noryśkiewicz AM (eds) *Wczesnośredniowieczny zespół osadniczy w Kałdusie. Studia archeologiczno-paleobotaniczne*. Toruń: Wydawnictwo Naukowe Uniwersytetu Mikołaja Kopernika, pp.173–193.
- Noryśkiewicz B (1982) Lake Steklin a reference site for the Dobrzyń-Chełmno Lake District, northern Poland: Report on palaeoecological studies for the IGCP Project Number 158B. *Acta Palaeobotanica* 22: 65–83.
- Noryśkiewicz B (1987) History of vegetation during the Late-Glacial and Holocene in the Brodnica Lake District in the light of pollen analysis of Lake Strażym deposits. *Acta Palaeobotanica* 27: 283–304.
- Noryśkiewicz B (2004) Vegetation and settlement history in the area of Lake Zawada in the north-eastern part of the Świecie District (northern Poland). *Acta Palaeobotanica* 44: 195–215.

2	
3	Pedziszewska A (2008) Późnoholoceńska historia wybranych fitocenoz leśnych z udziałem grabu (Carpinus betulus L.) i buka (Fagus sylvatica L.) na
4	Poiezierzu Kaszubskim PhD Thesis University of Gdańsk Poland
5	Pedziszewska A and Latałowa M (2016) Stand-scale reconstruction of late Holocene forest succession on the Gdańsk Unland (N. Poland) based on
6	integrated palynological and macrofossil data from paired sites. Vagatation History and Archaeobotany 25: 239-254
7	Dedziszowska A Tylmann W. Witek M at al. (2015) Holesona anyiranmental abangas reflacted by nollan distang, and goodhamistry of annually
8	requires a set of the formula in the Kenterbier Labe District (M Deland). Device of Delands and Below lace 21(155, 75
9	laminated sediments of Lake Suminko in the Kashuolan Lake District (N Poland). Review of Palaeobotany and Palynology 216: 55–75.
10	Ralska-Jasiewiczowa M (1966) Bottom sediments of the Mikołajki Lake (Masurian Lake District) in the light of palaeobotanical investigations. Acta
17	Palaeobotanica 7: 3–118.
12	Ralska-Jasiewiczowa M, Goslar T, Madeyska T et al. (1998) Lake Gościąż central Poland. A monographic study part 1. Kraków: W. Szafer Institute
14	of Botany, Polish Academy of Sciences.
15	Szal M, Kupryjanowicz M and Wyczółkowski M (2014) Late holocene changes in vegetation of the Mrągowo Lakeland (NE Poland) as registered in
16	the pollen record from Lake Salet. Studia Quaternaria 31: 51–60.
17	Święta-Musznicka J and Latałowa M (2016) From wetland to commercial centre: the natural history of Wyspa Spichrzów ("Granary Island") in
18	medieval Gdańsk, northern Poland, Vegetation History and Archaeobotany 25: 583–599.
19	Tobolski K (1987) Holocene vegetational development based on the Kluki reference site in the Gardno-Leba Plain Acta Palaeobotanica 27: 179–
20	
21	Tobolski K (1991) Dotychczasowy stan badań paleobotanicznych i biostratygraficznych Lednickiego Parku Krajobrazowego. In: Tobolski K (ed)
22	Wsten do naleoekologii Ledvickiego Parkų Krajobrazowego. Poznań: Wydawnietwo Naukowe Uniwersytetu Adama Mickiewicza. Biblioteka
23	Studiów I adnickich 1 np 11 34
24 25	Waanik A. Balaka Jagiawiazawa M and Madayaka E (2011) Lata Glagial and Halagana history of vagatation in Costynin area, control Baland, Acta
25	<i>Relies betwier</i> 51, 240, 279
20	Palaeobotanica 51: 249-278.
28	Wacnik A, Goslar I and Czernik J (2012) Vegetation changes caused by agricultural societies in the Great Mazurian Lake District. Acta
29	Palaeobotanica 52: 59–104.
30	Wacnik A, Kupryjanowicz M, Mueller-Bieniek A et al. (2014) The environmental and cultural contexts of the late Iron Age and medieval settlement
31	in the Mazurian Lake District, NE Poland: combined palaeobotanical and archaeological data. Vegetation History and Archaeobotany 23: 439–
32	459.
33	Zimny M (2014) Późnoholoceńska historia roślinności Puszczy Białowieskiej. PhD Thesis, University of Gdańsk, Poland.
34	Żarczyński M, Wacnik A, Tylmann W (2019) Tracing lake mixing and oxygenation regime using the Fe/Mn ratio in varved sediments: 2000 year-
35	long record of human-induced changes from Lake Żabińskie (NE Poland). Science of Total Environment 657: 585-596.
30 27	
32	
39	
40	
41	
42	
43	http://mc.manuscriptcentral.com/bolocene
44	http://me.mandsenptcentral.com/holocene
45	

51 (ava	ailable online) and Fi	g. 1.				
Site	Site Name	Site type	Surface	Outflow	Distance to a river	Comment on the local environment and potential habitats for Alnus
no.		TZ + 1 1 1	(ha)	inflow	valley (km)	
I	Lake Racze/ Wolin Island	Kettle-hole lake	4.95	-	0.4	Small stream close to the site; patches of <i>Alnus</i> forests present nearby to the site
2	Kołczewo	Raised bog	4	-	0.5	Small stream close to the site; local habitats for <i>Alnus</i> limited
3	Wolin II/00	Mire/Fen	undefined	-	See comment	Location in large wetland in a river valley; abundant habitats for <i>Alnus</i>
4	Lake Racze/ Miedwie	Kettle-hole lake	10	0	2.5	Small temporal outflow to Lake Miedwie; large share of hydromorphic soils and the <i>Alnus</i> forest habitats in the surroundings
5	Lake Zarańskie	Channel lake	158.6	0	3	The lake situated in a watershed: <i>Alnus</i> forest habitats are fairly common
6	Lake Gągnowo	Channel lake	86	i, 0	See comment	Patches of <i>Alnus</i> forest present in the vicinity of the lake and along the lake channel
7	Bagno Kusowo	Raised bog	318.8	-	0.2	Numerous lakes, water courses and large wetlands provide suitable habitats for <i>Alnus</i>
8	Lake Kwiecko	Channel lake	127	i, 0	See comment	A river flows through the lake; large patches of wetlands in the surroundings of the lake
9	Słowińskie Błota/85	Raised bog	120	-	1.5 -2	Peat-bog developed in a watershed; two rivers in the vicinity; large patches of hydromorphic soils
10	Kluki	Raised bog	700	-	1.5	Large peatland at the Baltic coast; abundant habitats for different types of <i>Alnus</i> forests
11	Darżlubie Forest	Mire	4	-	2-3.5	Habitats for alder present at the site
12	Gołebiewo	Raised bog	0.6	-	0.8	Several small streams flow through the area; alder forest ca. 2.5 km from the site
13	Gdańsk-Pszenna Granary Island	Fen	undefined	i, 0	0.14	Former alluvia in the mouth of the Vistula River covered by alder forest (on the site)
14	Gdańsk-Żytnia Granary Island	Fen	undefined	i, 0	0.14	Former alluvia in the mouth of the Vistula River covered by alder forest (on the site)
15	Lake Godziszewskie	Channel lake	169.4	0, i	See comment	Numerous small water courses, wetlands and lakes; alder habitats common
16	Stążki/ 2013	Raised bog	28	<i>-</i>	0.2	The site located in the vicinity of a river valley
16a	Stążki/ 2008	Raised bog	28	-	0.2	The site located in the vicinity of a river valley
17	Bukrzyno/BI	Peat-bog	1	-	4.5	Peat-bog adjacent to a lake; the site located in the area between the large postglacial channels; abundant habitats for <i>Alnus</i>
18	Lake Suminko	Channel lake	15	i, 0	See comment	Small river flows through the lake; large channel lakes with strips of alder stand in the vicinity of the lake
10	Lake Czechowskie	Channel lake	76.6	0	1.5	Large patches of wetlands in the surroundings of the lake

ESM Table S2 Environmental metadata for the sites; site type concerns a period of the *Alnus* decline event; o- outflow, i- inflow; site numbers as in ESM Table S1 (available online) and Fig. 1.

Page 49 of 58

Site no.	Site Name	Site type	Surface (ha)	Outflow inflow	Distance to a river valley (km)	Comment on the local environment and potential habitats for Alnus
20	Lake Wielkie Gacno	Channel lake	13.1	-	7; 4	The lake lies in a long channel lake complex, where patches of hydrogenic soil are limited; also outside the channel habitats for <i>Alnus</i> are not common
21	Lake Ostrowite	Channel lake	259	i, o (?)	5	The lake lies in a large channel lake complex
22	Lake Suszek	Channel lake	10	i, 0	See comment	Dense river net in the surrounding area; hydrogenic soils are common
23	Tuchola	Peat-bog	2	-	0.4	A kettle-hole mire located within an outwash plain; patches of wetlands fairly common
24	Lake Kęsowo	Channel lake	23.7	??	2	Numerous lakes and patches of wetlands suitable for <i>Alnus</i>
25	Lake Jelonek	Cave-in lake	21	<u> </u>	0.3	Numerous lakes and patches of wetlands; 0.3 km from a meandering river; abundant habitats for <i>Alnus</i>
26	Zawada	Peat-bog	20	0	8	Peat-bog situated close to a large channel lake (35 ha); hydromorphic soils common
27	Lake Mukrz/I	Channel lake	43.3	i, 0	See comment	Small river flows through the lake; large patches of wetlands in the surroundin of the lake; common habitats for <i>Alnus</i>
28	Gruczno	Peat-bog	2.87	-	2.5	Large alluvial plain of the Vistula River; Alnus forest on the site
29	Lake Czyste	Channel lake	28.5	i, 0	See comment	Small river flows through the lake; the area dissected by small lake channels a patches of wetlands; common habitats for <i>Alnus</i>
30	Lake Mełno	Channel lake	162.5	i	2; 2.8	Numerous lakes and patches of wetlands
31	Linje/2013	Raised bog	5.97	-	8	Large patches of alluvia being habitats for alder forests
31a	Linje/2016	Raised bog	5.97	-	8	Large patches of alluvia being habitats for alder forests
32	Lake Kamionkowskie	Channel lake	63.5	-	1.7	Dense hydrological net, numerous lakes connected by watercourses and patch of wetlands; alder carr in the vicinity of the lake
33	Gronowo	Peat-bog	2.3	-	2.7; 7.5	Peat-bog in a channel; alder carr developed on the site
34	Lake Strażym	Channel lake	73.4	i, 0	See comment	Dense hydrological net, numerous lakes connected by watercourses and patche of wetlands suitable for alder forests
35	Lake Zwiniarz	Channel lake	53.7	0	See comment	Dense hydrological net including small rivers; common alder forest habitats in the lake catchment
36	Gązwa	Raised bog	204	-	6.5	Raised bog with several mineral islands, situated ca. 2.5 km from a large lake
37	Lake Salęt	Channel lake	327.7	i, 0	See comment	The lake lies in the basin of a river; dense hydrological net; common alder for habitats in the lake catchment
38	Lake Mikołajki	Channel lake	424	i	6	The lake lies in a large channel lake complex; alder carr at the edge of the lake and in the surrounding area

Page	50	of	58
------	----	----	----

Site	Site Name	Site type	Surface (ha)	Outflow	Distance to a river valley (km)	Comment on the local environment and potential habitats for Alnus
39	Lake Wojnowo	Channel lake	176.3	0, i	See comment	Several small rivers and watercourses, and a large lake in the vicinity; abundance of hydrogenic soils
40	Lake Miłkowskie	Channel lake	23.7	0, i	1.5	Alder forest habitats are common in the lake catchment
41	Lake Łazduny	Channel lake	10.6	0	4.5	Alder forest habitats are common in the lake catchment
42	Lake Żabińskie	Kettle-hole lake	41	0, İ	0.4	The lake is connected with large Lake Goldopiwo; it is located in the Węgorapa River catchment; local habitats for <i>Alnus</i> restricted to the eastern part of the lake catchment
43	Mechacz Wielki	Raised bog	146.7	-	-	The alder carr developed at the edge of the site
44	Lake Szurpiły	Cave-in lake	80.9	i, o	4.5	Dense hydrological net in the area; hydromorphic soils close to the lake and in the river valleys
45	Lake Wigry	Channel lake	2115	i, 0	See comment	The lake lies in the basin of the Czarna Hańcza River; the river flows through the lake; abundant habitats for alder forests in the vicinity of the lake
46	Kładkowe Bagno	Raised bog	40	-	2	Patches of alder forest present close to the site
47	Maliniak	Raised bog	0.5	-	2; 3	Dense river net in the area; abundant habitats for alder forests
48	BIA/318C, Białowieża Forest	Peat-bog	0.84	-	1; 2	Rich hydrological net of rivers and small streams; hydrogenic soils are common patches of riparian and alder carr habitats are frequent
49	BIA/314D, Białowieża Forest	Peat-bog	1.4	-	0.3	As above
50	BIA/340G, Białowieża Forest	Peat-bog	0.26	-	0.65	As above
51	BIA/317C, Białowieża Forest	Peat-bog	2.04	-	1	As above
52	BIA/131C, Białowieża Forest	Peat-bog	5.5	-	1; 0.4	As above
53	BIA/161A, Białowieża Forest	Peat-bog	2.3	-	1.4; 0.4	As above
54	Czerlon	Peat-bog	34	-	1.3	As above
55	Lake Błędowo	Lake	8	0	0.25	The lake lies close to a large river valley; hydromorphic soils in a flood plain
56	Lake Gościąż	Lake	45.5	i, o	See comment	The lake lies in the large Vistula River valley and is included to a smaller river system; wetlands in the river valleys and in the surrounding region are commor and provide abundant habitats for <i>Alnus</i> forests
57	Lake Białe	Channel lake	150.2		0.3	Dense net of lake channels, rivers and patches of wetlands
	Lake Stellin	Channel lake	100	i. 0	1	Dense hydrological net in the area

Page 51	of 58
---------	-------

Site no.	Site Name	Site type	Surface (ha)	Outflow inflow	Distance to a river valley (km)	Comment on the local environment and potential habitats for Alnus
59	Lake Gopło	Channel lake	2154.5	i, 0	See comment	The lake is connected with a large river; hydromorphic soils common in the surroundings of the lake
60	Lake Kamionek	Channel lake	3	i, 0	2	Dense net of lake channels and patches of wetlands provide habitats for <i>Alnus</i> forest
61	Lake Skrzetuszewskie	Lake	ca. 2.5	i, 0	See comment	The lake lies immediately to the large Lake Lednica; small river flows through the lake; local habitats for <i>Alnus</i> restricted to the surroundings of lakes
62	Lake Lednica I/86	Channel lake	348	i, 0	See comment	Small rivers flow through the lake; large patches of hydrogenic soils suitable fo <i>Alnus</i> along the lake
63	Lake Głęboczek	Channel lake	12.5	0	0.24	Dense net of lake channels and small rivers provides habitats for Alnus
64	Lake Świętokrzyskie	Channel lake	14	i, 0	See comment	Dense net of lake channels and small rivers provides habitats for Alnus
65	Lake Baba	Channel lake	2.7	i, 0	2.3	Alnus forest habitats restricted to lake channels
66	Giecz 4/90	Peat-bog	3	_	0.5	The core taken from an archaeological trench located at the former bridge/causeway crossing wetland; a river in the vicinity of the site
67	Lake Wonieść	Channel lake	121	i, 0	2.5 4.3	The lake connected with other 5 other lakes, situated between two rivers; habitats for <i>Alnus</i> are common
68	Lake Paklicko Wielkie	Channel lake	196	i, 0	See comment	The lake is included to a river system; dense hydrological net and patches of wetlands; potential habitats for <i>Alnus</i> forest are common
69	Lake Długie	Channel lake	95.5	i, 0	2	Dense hydrological net and patches of wetlands along a meandering river; potential habitats for <i>Alnus</i> forest are common

ESM Table S3 Palaeoecological characteristics around the Alnus decline; HI - human impact: h - high, m - moderate, l - low, a - absent; NPPs - nonpollen palynomorphs; site numbers as in ESM Table S1(available online) and Fig. 1; for references, see Table S1.

1	Lake Racze/ Wolin Island	Fagus	Pinus, Betula, Salix Quercus	h	Sediment change: increase of mineral matter;	The decline was concurrent with an intensive
2			Satur, guereus		Pediastrum rises	human impact phase; increase of denudation processes and trophy of the lake
	Kołczewo	Fagus, Carpinus	Pinus, Salix	1	<i>Calluna</i> expansion and abundant <i>Sphagnum</i> spores	Start of the decline at the beginning of a human impact phase; drier condition during the event
3	Wolin II/00	Ulmus, Corylus, Quercus	Salix, Sambucus nigra	h	Lake sediments replaced by a peat layer; aquatic taxa decline; large peak of HdV-200; rise of <i>Phragmites</i> -t. pollen and macrofossils of <i>Ranunculus sceleratus</i> , <i>Juncus</i> spp. and <i>Eleocharis</i> spp.	The decline happened during strong human impact phase accompanied by fire indicators; distinct decline in the water table
4	Lake Racze/ Miedwie	-	Pinus, Betula, Salix, Populus, Quercus	h	Lithological limit: an increase of organic matter and fraction of sand in mineral matter total; important trophic changes reflected by NPPs	<i>Alnus</i> declined after the <i>Carpinus</i> and <i>Fagus</i> declines, during an intensive human impact phase; increase of denudation processes and trophy of the lake
5	Lake Zarańskie	Fraxinus	Salix, Betula, Pinus Quercus	h	Pediastrum rises	<i>Alnus</i> declined after the <i>Carpinus</i> and <i>Fagus</i> declines, during an intensive human impact phase; trophy of the lake increased
6	Lake Gągnowo		Quercus, Betula	h	Pediastrum strongly rises	Alnus declined after the Carpinus and Fagus declines, during an intensive human impact phase; trophy of the lake increased
7	Bagno Kusowo	-	Pinus, Quercus	m	Ca. AD 850 short wet shift, recorded on the basis of macrofossils and testate amoeba; gap in <i>Eriophorum vaginatum</i> , peak of <i>Arcella</i> <i>discoides</i>	Alnus declined after the Carpinus and Fagus declines, during a human impact phase; hydrological instability at the event
8	Lake Kwiecko	-	Pinus, Betula	1	Increase of corroded pollen and charcoal in the sediments	<i>Alnus</i> declined slightly before the <i>Carpinus</i> and <i>Fagus</i> declines, and slightly before the beginning of a moderate human impact phase
9	Słowińskie Błota/85	-	Pinus, Fagus	1	Lithological limit (<i>E.vaginatum</i> layer); rise of <i>Sphagnum</i> , peak and then decline of <i>Assulina</i> , <i>Archerella</i> and <i>Arcella</i>	<i>Alnus</i> declined after the <i>Carpinus</i> decline at a minute human impact phase; hydrological disturbances: dry-wet-dry shifts

Page 53 of 58

1

46

Site No.	Site Name	Concurrent decline in tree taxa	Concurrent rise in tree taxa	HI	Changes in sediments and occurrence of local ecosystem taxa (aquatic and mire organisms)	Comment on environmental changes concurrent with the <i>Alnus</i> decline
10	Kluki	Carpinus	Betula, Fagus	1	Peak of <i>Cladium mariscus</i> and appearances of <i>Utricularia</i> , <i>Ceratophyllum</i> and <i>Pediastrum</i> immediately below the <i>Alnus</i> decline; distinct decline of Cyperaceae, rise of <i>Calluna</i> and Ericaceae, and gradual rise of <i>Sphagnum</i> at the event level	Low intensity human impact phase; wet-dry hydrological shifts at the beginning of the <i>Alnus</i> decline
11	Darżlubie Forest	Quercus, Carpinus	Betula, Pinus, Salix, Fagus	1	No distinct changes in the sediment; macrocharcoal present	The <i>Alnus</i> decline was concurrent with the beginning of a human impact phase
12	Gołębiewo/GI	Quercus	Populus, Quercus, Fagus		Filicales rise (small), ombrotrophic taxa still present (<i>Sphagnum</i> , <i>E. vaginatum</i>); <i>Assulina</i> and <i>Archerella flavum</i> decrease and then reappear	<i>Alnus</i> declined before the <i>Carpinus</i> decline, at the beginning of a human impact phase; wet event ca. AD 950-1080 interrupted a dry phase (ca. AD 670-1320)
13	Gdańsk- Pszenna Granary Island	Fraxinus, Quercus, Carpinus	Pinus	1	Distinct sediment change; local alder groves and oxbows with aquatics replaced by open-fen vegetation with Cyperaceae and Filicales; high frequency of fungi developing on decaying wood	Human activity evidence negligible; distinct drop in the ground water table
14	Gdańsk-Żytnia Granary Island	Carpinus, Fagus	Pinus	1	Distinct sediment change; local alder groves and oxbows with aquatics replaced by open-fen vegetation with Cyperaceae, Filicales; high frequency of fungi developing on decaying wood	Human activity evidence negligible; distinct drop in the ground water table
15	Lake Godziszewskie	Betula, Carpinus	Pinus	1	Distinct lithological limit between algae gyttia and coarse detritus gyttia; rise of corroded pollen in the sediments; Filicales monolete spores decline, pollen of Cyperaceae strongly rises	The <i>Alnus</i> decline concurrent with the beginning of a new human impact phase; hydrological disturbances immediately before the <i>Alnus</i> fall
16	Stążki/2013	-	Betula, Fagus	1	<i>Sphagnum</i> sect. Acutifolia and <i>A. flavum</i> dominate; small peak of <i>Sph. Cuspidatum</i> at around AD 1000	<i>Alnus</i> declined after the <i>Carpinus</i> decline; weak human impact evidence; short dry shift at around the 9 th c., wet event at around AD 1000, and then dry shift around AD 1140
16a	Stążki/2008	_	Pinus, Betula	1	Decline of <i>A. flavum</i> , increase of <i>Assulina muscorum</i> and <i>A. seminulum</i>	<i>Alnus</i> declined after the <i>Carpinus</i> decline; weak human impact; wet before the event, decrease of the water table at the alder decline and then wet and dry shifts before AD 1000; strong wet shift c. AD 1100

No.	Site Name	Concurrent decline in tree taxa	Concurrent rise in tree taxa	HI	Changes in sediments and occurrence of local ecosystem taxa (aquatic and mire organisms)	Comment on environmental changes concurrent with the <i>Alnus</i> decline
17	Bukrzyno	Carpinus, Tilia	Betula, Salix, Fagus	m	Peak of <i>Sphagnum</i> and <i>E. vaginatum</i> is present; <i>Daphnia</i> decreases; <i>Assulina</i> spp. and <i>A. flavum</i> rise at the recovery of <i>Alnus</i>	<i>Alnus</i> declined during moderate human impact phase accompanied by fire indicators; wet before the event, drier condition during the event
18	Lake Suminko	Carpinus	Ulmus, Fagus, Betula, Salix	1	Minute changes in lithology (lamination, color); small increase of Filicales spores and rise of <i>Anabaena</i> and <i>Tetraedron minimum</i>	<i>Alnus</i> declined after the <i>Carpinus</i> decline at a minute human impact phase; changing trophy of the lake
19	Lake Czechowskie	No distinct changes in tree taxa	Betula, Salix	1	No macroscopic changes in lithology; rapid decrease of <i>Tetraedron</i> , small rise of Cyperaceae and Filicales	<i>Alnus</i> declined in the condition of a very weak (negligible) human activity
20	Lake Wielkie Gacno	-	- (),	-	The event weakly expressed; unclear
21	Lake Ostrowite	-	-		P	The event weakly expressed; unclear
22	Lake Suszek	Carpinus, Fraxinus	Pinus, Betula, Populus, Salix	1	Lithological limit: algal gyttja changes onto coarse detritus gyttja; <i>Pediastrum</i> declines, Filicales, <i>Phragmites</i> -t. and Cyperaceae rise	<i>Alnus</i> decline was concurrent with the beginning of a human impact phase; lowering of the lake water table
23	Tuchola	-	Betula	1	Significant decline of Cyperaceae, peak of <i>Sphagnum</i>	<i>Alnus</i> declined after the <i>Carpinus</i> decline; low intensity human impact phase; dry period
24	Lake Kęsowo	Carpinus	Salix, Populus, Pinus	1	Unclear	The <i>Alnus</i> decline was concurrent with the beginning of a human impact phase
25	Lake Jelonek	<i>Carpinus</i> fluctuates	Pinus, Betula	1	Decrease of <i>Pediastrum</i> and pelagial diatoms, rise of epiphytic and benthic diatoms	<i>Alnus</i> declined after the <i>Carpinus</i> decline; low human impact phase; lowering of the lake water table
26	Zawada	No data	Pinus	1	Hiatus below the event – low water level	Lowering of the lake water table
27	Lake Mukrz I	Small decline of Carpinus	Betula	1	Change not recorded	<i>Alnus</i> declined before the main decline of <i>Carpinus</i> at a minute, initial human impact phase
28	Gruczno	-	Betula, Pinus	m	Decline of Ericaceae and Cyperaceae, rise of <i>Sphagnum</i> and <i>Amphitrema</i>	Alnus declined after the Carpinus and Quercus decline, during a human impact phase; drop of the ground water level on the bog
29	Lake Czyste	-	Pinus, Betula, Corylus	1	Change in the lithology: the proportions of mineral matter increase; small increase	Alnus declined after the Carpinus decline at the beginning of a human impact phase;

Page !	55 of	f 58
--------	-------	------

Site	Site Name	Concurrent decline	Concurrent rise	HI	Changes in sediments and occurrence of local	Comment on environmental changes concurrent
<u>NO.</u>	T 1 X 1	In tree taxa	In tree taxa		ecosystem taxa (aquatic and mire organisms)	The second secon
30	Lake Memo	Fraxinus, Ulmus	Betula, Salix, Quercus	m	of <i>Pediastrum</i> , small peak of Cyperaceae	of <i>Carpinus</i> and development of a settlement phase; higher lake trophy
31	Linje/2013	Quercus, Carpinus	Pinus, Betula	m	Decrease of Assulina, Amphitrema and Callidina angusticollis; increase of Calluna, Ericaceae, Ledum, Sphagnum and Entophlictis lobata;	The <i>Alnus</i> decline was concurrent with the beginning of a human impact phase; decrease of the water table
31a	Linje/2016	Ulmus, Fraxinus, Carpinus	Betula, Salix	m	A. flavum declines, Amphitrema wrightianum increases together with Centropyxis aculeata and Difflugia globulosa; Sphagnum declines (spores and macrofos dominated by Sph. magellanicum), while proportions of Carex radicelle strongly increase; Scheuchzeria palustris up to 20% of macrofossils at the limit between the phases	The <i>Alnus</i> decline was concurrent with the beginning of a human impact phase accompanied with fire indicators; change in the bog wetness just at the alder decline from moderately wet to wet; a short hiatus in-between?
32	Lake Kamionkowskie	Pinus, Fraxinus	Betula, Salix	1	Pediastrum rises	<i>Alnus</i> declined after the <i>Carpinus</i> decline at the beginning of a low human impact phase; higher lake trophy
33	Gronowo	Ulmus	Pinus, Salix, Betula	m	Increase of Calluna and Sphagnum; Assulina, C. angusticollis Amphitrema and Entophlictis lobata fluctuate	<i>Alnus</i> declined after the <i>Carpinus</i> decline and after the start of a human impact phase; wet and dry shifts
34	Lake Strażym	-	Pinus, Betula	1	Pediastrum peaks and then declines	<i>Alnus</i> declined after the <i>Carpinus</i> decline at a minute human impact phase; lowering of the lake water table (?)
35	Lake Zwiniarz	Carpinus	Betula	1	Not recorded	The <i>Alnus</i> decline was concurrent with the beginning of a human impact phase
36	Gązwa	Picea	Betula	1	Ca. AD 600 – AD 950 <i>Sph. fuscum/rubellum</i> replaced by <i>Sph. cuspidatum</i> ; <i>A. wrightianum</i> rises, <i>A.flavum</i> declines; peak of <i>E. vaginatum</i>	<i>Alnus</i> decline took place at a minute human impact phase; low resolution data for the event (a hiatus?); high water level before the event, then rapid drop at the <i>Alnus</i> decline and again higher water level at the alder recovery
37	Lake Salęt	Betula, Salix	Picea	a/l	No data	The <i>Alnus</i> decline contemporary with the decline of settlement indicators
38	Lake Mikołajki	-	-	-		The event weakly expressed; unclear
				htt	p://mc.manuscriptcentral.com/holocene	

Site	Site Name	Concurrent decline	Concurrent rise	HI	Changes in sediments and occurrence of local	Comment on environmental changes concurrent
No.		in tree taxa	in tree taxa		ecosystem taxa (aquatic and mire organisms)	with the Alnus decline
39	Lake Wojnowo	Populus, Salix	Betula, Corylus, Fraxinus	m	Increase of Cyperaceae	The <i>Alnus</i> decline dated to the 5 th century, concurrent with a distinct human impact phase
40	Lake Miłkowskie	-	-	-	-	The event unclear due to the low resolution poller data?
41	Lake Łazduny	Carpinus, Quercus	Betula, Pinus	1	Decline of <i>Tetraedron</i> and <i>Botryococcus</i> ; peaks of Cyperaceae, Filicales and <i>Phragmites</i> -t.	Low resolution data; decline of the lake water table
42	Lake Żabińskie	Carpinus	Pinus, Quercus	1	No data	The event concurrent with a low human impact phase
43	Mechacz Wielki (MW/I)	<i>Picea</i> rises and then falls	Betula, Pinus		Short peak of <i>Sph. cuspidatum</i> within a <i>Sph. rubellum/fuscum</i> phase	Indicators of human activity absent; ca. AD 800 decrease of water level and up to AD 1050 stable hydrological conditions; short wet event at the <i>Alnus</i> decline (MWII); wet phase at the alder regeneration ca. AD 1050 (Oort Minimum)
44	Lake Szurpiły	Carpinus, Fraxinus	Betula, Populus, Salix	1	No data	Scattered pollen of anthropogenic indicators
45	Lake Wigry	-	-	-	R.	The decline difficult to date
46	Kładkowe Bagno	-	-	-	No data	Several <i>Alnus</i> pollen curve fluctuations
47	Maliniak	Fluctuation of most of the tree taxa	Pinus, Betula	1	No data	The decline weakly expressed; low human impact phase
48	BIA/318C, Białowieża Forest	Fluctuation of most of the tree taxa	Pinus	а	Decrease of <i>Calluna</i> and Cyperaceae; gap in <i>Botryococcus</i> and <i>Carex elata</i> (macros); peaks of <i>Sphagnum</i> and <i>Tilletia sphagni</i>	Indicators of settlement absent and strong decline of fire proxies; water table lowering on the peat- bog
49	BIA/314D, Białowieża Forest	Fluctuation of most of the tree taxa	Pinus, Picea, Salix, Tilia	a	Decrease of <i>E. vaginatum, Andromeda polifolia, Ledum,</i> Cyperaceae, <i>Entophlictis lobata</i> and <i>Botryococcus</i> ; significant increase of <i>Sphagnum</i> and <i>T. sphagni</i> ; abundant microcharcoal	Indicators of settlement almost absent, but those of fires present; water table lowering on the bog
50	BIA/340G, Białowieża Forest	Fluctuation of most of the tree taxa	Pinus	1	Decrease of <i>Sphagnum</i> , <i>T. sphagni</i> and <i>E. vaginatum</i> ; increase of <i>Calluna</i> , Cyperaceae and Filicales	Beginning of a weak settlement; hydrological disturbances on the bog
				htt	p://mc.manuscriptcentral.com/holocene	

Page	57	of	58
------	----	----	----

ula, a ula, a a a lix, a rcus, us lix, 1 Salix lix, 1 us	 Disappearance of green algae (Botryococcus, Spirogyra, Zygnema, Mougeotia); peak of Sphagnum and T. sphagni Increase of Calluna, peak of Sphagnum, important rise of E. lobata Decline of the mire indicators (Cyperaceae), expansion of the raised-bog taxa: important rise of Sphagnum, small peaks of A. wrightianum, A. flavum, Assulina, Heleopera, Hyalosphenia papillo; rise of E. lobata at the end of the phase Increase of diversity and considerable fluctuation of the planktonic diatoms Small increase of Cyperaceae and then expansion of the plagial Cladocera; decline of the pollen influx 	Indicators of settlement absent; decrease of the water level on the bog Indicators of settlement almost absent; hydrological disturbances on the bog The <i>Alnus</i> difficult to identify; hydrological disturbances on the bog; human activity negligible Indicators of settlement almost absent, indicators of fires decline; wet conditions before the alder decline, then dry and wet shifts; ombrotrophication of the bog on The event concurrent with an early human impact phase; before and during the <i>Alnus</i> decline higher water level The low resolution sampling in the section under concern restricts the interpretation; the <i>Alnus</i> decline seems to be concurrent with the beginning of an anthropogenic phase; lower water table before the event; after AD 1000 distinct rise of the water table
a a lix, a rcus, a rcus, is , 1 Salix lix, 1 , is	Increase of <i>Calluna</i> , peak of <i>Sphagnum</i> , important rise of <i>E. lobata</i> Decline of the mire indicators (Cyperaceae), expansion of the raised-bog taxa: important rise of <i>Sphagnum</i> , small peaks of <i>A. wrightianum</i> , <i>A. flavum</i> , <i>Assulina</i> , <i>Heleopera</i> , <i>Hyalosphenia</i> <i>papillo</i> ; rise of <i>E. lobata</i> at the end of the phase Increase of diversity and considerable fluctuation of the planktonic diatoms Small increase of Cyperaceae and then expansion of the pelagial Cladocera; decline of the pollen influx	Indicators of settlement almost absent; hydrological disturbances on the bog The <i>Alnus</i> difficult to identify; hydrological disturbances on the bog; human activity negligibl Indicators of settlement almost absent, indicators of fires decline; wet conditions before the alder decline, then dry and wet shifts; ombrotrophication of the bog on The event concurrent with an early human impac phase; before and during the <i>Alnus</i> decline higher water level The low resolution sampling in the section under concern restricts the interpretation; the <i>Alnus</i> decline seems to be concurrent with the beginning of an anthropogenic phase; lower water table before the event; after AD 1000 distinct rise of th water table
a ilix, a rcus, us , 1 Salix ilix, 1 , us	Decline of the mire indicators (Cyperaceae), expansion of the raised-bog taxa: important rise of Sphagnum, small peaks of A. wrightianum, A. flavum, Assulina, Heleopera, Hyalosphenia papillo; rise of E. lobata at the end of the phase Increase of diversity and considerable fluctuation of the planktonic diatoms Small increase of Cyperaceae and then expansion of the pelagial Cladocera; decline of the pollen influx	The <i>Alnus</i> difficult to identify; hydrological disturbances on the bog; human activity negligibl Indicators of settlement almost absent, indicators of fires decline; wet conditions before the alder decline, then dry and wet shifts; ombrotrophication of the bog The event concurrent with an early human impac phase; before and during the <i>Alnus</i> decline higher water level The low resolution sampling in the section under concern restricts the interpretation; the <i>Alnus</i> decline seems to be concurrent with the beginning of an anthropogenic phase; lower water table before the event; after AD 1000 distinct rise of th water table
ilix, a rcus, is , 1 Salix ilix, 1 , is	Decline of the mire indicators (Cyperaceae), expansion of the raised-bog taxa: important rise of Sphagnum, small peaks of A. wrightianum, A. flavum, Assulina, Heleopera, Hyalosphenia papillo; rise of E. lobata at the end of the phase Increase of diversity and considerable fluctuation of the planktonic diatoms Small increase of Cyperaceae and then expansion of the pelagial Cladocera; decline of the pollen influx	Indicators of settlement almost absent, indicators of fires decline; wet conditions before the alder decline, then dry and wet shifts; ombrotrophication of the bog on The event concurrent with an early human impac phase; before and during the <i>Alnus</i> decline higher water level The low resolution sampling in the section under concern restricts the interpretation; the <i>Alnus</i> decline seems to be concurrent with the beginnin of an anthropogenic phase; lower water table before the event; after AD 1000 distinct rise of th water table
, 1 Salix .lix, 1 , us	Increase of diversity and considerable fluctuation of the planktonic diatoms Small increase of Cyperaceae and then expansion of the pelagial Cladocera; decline of the pollen influx	on The event concurrent with an early human impact phase; before and during the <i>Alnus</i> decline higher water level The low resolution sampling in the section under concern restricts the interpretation; the <i>Alnus</i> decline seems to be concurrent with the beginning of an anthropogenic phase; lower water table before the event; after AD 1000 distinct rise of th water table
ilix, 1 , ıs	Small increase of Cyperaceae and then expansion of the pelagial Cladocera; decline of the pollen influx	The low resolution sampling in the section under concern restricts the interpretation; the <i>Alnus</i> decline seems to be concurrent with the beginning of an anthropogenic phase; lower water table before the event; after AD 1000 distinct rise of th water table
	D	
tula l	Poor data	The <i>Alnus</i> decline was concurrent with the beginning of a human impact phase
	-	The event unclear
nus, m Is	Not recorded	<i>Alnus</i> declined after the <i>Carpinus</i> decline, during a moderate human impact phase
nus, 1 Is	Decrease of <i>Pediastrum</i> , small rise of Cyperaceae	<i>Al.</i> declined after the <i>Carpinus</i> decline at the beginning of a human impact phase; lowering of the water table
	us inus, 1 us ht	<i>is</i> <i>inus,</i> l Decrease of <i>Pediastrum</i> , small rise of <i>us</i> Cyperaceae http://mc.manuscriptcentral.com/holocene

1

Site No	Site Name	Concurrent decline	Concurrent rise	HI	Changes in sediments and occurrence of local ecosystem taxa (aquatic and mire organisms)	Comment on environmental changes concurrent with the <i>Alnus</i> decline
61	Lake Skrzetuszewskie	-	-	-	-	The event weakly expressed, unclear
62	Lake Lednica	Ulmus	Salix	m	Significant rise of <i>Pediastrum</i> and small of Cyperaceae	<i>Alnus</i> declined after the <i>Carpinus</i> decline, concurrently with a moderate human impact phas
63	Lake Głęboczek	Carpinus	Salix, Betula, Pinus	1	Poor data	The <i>Alnus</i> decline was concurrent with the very beginning of a weak human impact phase
64	Lake Świętokrzyskie	Carpinus	Betula, Populus, Salix	m	Lithological limit: decrease of detritus gyttja, increase of calcium carbonate; increase of <i>Thelypteris palustris</i> , Filicales and Nympheaceae; peak of <i>Typha latifolia</i>	The <i>Alnus</i> decline was concurrent with the beginning of a human impact phase; lowering of the lake water table
65	Lake Baba	-			-	The event weakly expressed, unclear
66	Giecz 4/90	Fraxinus	Betula, Salix, Populus	1	Strong lithology change: layer of sand; decrease of <i>Pediastrum</i> and a rise of Cyperaceae	<i>Alnus</i> declined after the <i>Carpinus</i> decline at an early human impact phase; hydrological disturbances at the event
67	Lake Wonieść	Quercus, Ulmus	Betula, Pinus	1	No data	<i>Alnus</i> declined after the <i>Carpinus</i> decline, during an advanced, moderate human impact phase; slight decline of anthropogenic indicators at the <i>Alnus</i> minimum
68	Lake Paklicko Wielkie	Quercus	Pinus, Betula	m	Local hydrology change not recoded	<i>Alnus</i> declined after the <i>Carpinus</i> and <i>Fagus</i> declines; the decline of a human impact phase
69	Lake Długie	Quercus	Betula, Pinus	m	Local hydrology change not recoded	Alnus declined after the Carpinus and Fagus declines during a moderate human impact phase; slight decline of anthropogenic indicators at the Alnus minimum
69	Lake Długie	Quercus	Betula, Pinus	m	Local hydrology change not recoded	<i>Alnus</i> declined after the <i>Carpinus</i> and <i>Fa</i> , declines during a moderate human impac slight decline of anthropogenic indicators at the <i>Alnus</i> minimum
				htt	p://mc.manuscriptcentral.com/holocene	

Page 59 of 58

ESM Figure S1 The results of the SiZer analyses of *Alnus* pollen curves in selected sites in Poland (for site information, see the caption of Fig. 4 in the main text). In the maps, the horizontal axis represents the time, the vertical axis represents the scale and the colour of each pixel represents the significance of the derivative of the smooth of the curve at the corresponding time and scale. Red, blue and purple indicate that the derivative is significantly negative, positive or neither, respectively. Grey means that the data are too sparse for inference. The most suitable scales for the detection of the significant decline-rise events in the data are shown with vertical lines. The scale that reveals the decline-rise event at the end of the first millennium is shown with a yellow line, and the scales for the other events are shown with green lines