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In a series of two papers, we make a comparative analysis of the performance of conventional
perturbation theory to analyze electroweak phase transition in the real triplet extension of the Standard
Model (ΣSM). In Part I (this paper), we derive and present the high-T dimensionally reduced effective
theory that is suitable for numerical simulation on the lattice. In Part II, we will present results of
the numerical simulation and benchmark the performance of conventional perturbation theory. Under the
assumption that Σ is heavy, the resulting effective theory takes the same form as that derived from the
minimal Standard Model. By recasting the existing nonperturbative results, we map out the phase diagram
of the model in the plane of triplet mass MΣ and Higgs portal coupling a2. Contrary to conventional
perturbation theory, we find regions of parameter space in which the phase transition may be first order,
second order, or crossover. We comment on prospects for prospective future colliders to probe the region
where the electroweak phase transition is first order by a precise measurement of the h → γγ partial width.
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I. INTRODUCTION

Explaining the origin of the observed baryon asymmetry
of the Universe, characterized by the baryon-to–entropy
density ratio [1],

YB ≡ ρB=s ¼ ð8.61� 0.09Þ × 10−11;

remains an outstanding problem at the interface of high-
energy and nuclear physics with cosmology. General con-
siderations identified by Sakharov [2] impose three criteria
on early Universe particle physics in order to explain the
asymmetry: nonconservation of baryon number, violation of
C and CP invariance, and the presence of nonequilibrium
conditions.1 While the Standard Model (SM) of particle
physics supplies the baryon nonconserving interactions in
the form of sphaleron processes, it provides neither the
requisite nonequilibrium conditions nor sufficiently effective

CP violation. Thus, physics beyond the Standard Model
(BSM) is essential.
Several mechanisms that satisfy the required criteria have

been advanced. Among the most compelling and theoreti-
cally well motivated is electroweak baryogenesis, wherein
the baryon asymmetry is generated during the era of
electroweak symmetry breaking (EWSB) (for a recent
review, see Ref. [3]). Successful baryogenesis requires that
symmetry breaking occurred due a strongly first-order
electroweak phase transition (EWPT). Numerical lattice
simulations [4–9] indicate that EWSB in the SM occurred
through a crossover transition for a Higgs mass at its
observed value of 125 GeV [10,11], suggesting that the
Universe never departed from thermal equilibrium during
this epoch.
BSM scenarios may alleviate this SM shortcoming

through the addition of an extended scalar sector. The latter
may catalyze a strong first-order electroweak phase tran-
sition (SFOEWPT) through new loop corrections to the
zero-temperature (T) Coleman-Weinberg potential, thermal
loop corrections to the finite-T effective potential, a modi-
fication of the tree-level vacuum structure of the theory, or a
combination involving more than one of these effects. The
result may be not only a SFOEWPT to the present “Higgs
phase” but also a richer pattern of symmetry breaking that
precedes the Higgs phase than one obtains in the SM.
These possibilities have been explored in both UV-

complete theories, such as the minimal supersymmetric
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Standard Model (MSSM), and simplified models that
consider only the extended scalar sector. While simplified
models are not realistic descriptions of nature, their use
allows one to identify general features of phase transition
dynamics that may occur in various UV-complete theories
and to delineate the corresponding phenomenological
consequences. Perhaps the most widely considered such
simplified model involves the addition of a real scalar that
carries no SM gauge charge. The phase transition dynamics
of the singlet-extended Standard Model (xSM) and corre-
sponding implications for high-energy collider experiments
have been studied in Refs. [12–19]. Avariant with a complex
singlet (cxSM) has been analyzed in Refs. [20,21]. The
viability of a SFOEWPTarising from scalars charged under
SUð3ÞC (including, e.g., light stops in theMSSM) is severely
constrained by the nonobservation of these particles at
the LHC as well as by the measured Higgs boson signal
strengths [22,23].
The constraints on colorless electroweak multiplets

are considerably weaker. Here, we consider the colorless
electroweak multiplet containing the fewest degrees of
freedom (d.o.f.), the real triplet Σ that has vanishing
hypercharge. The collider phenomenology and EWPT
dynamics of the “ΣSM” have been considered in
Refs. [24,25]. The finite-T history of the ΣSM includes
the possibility of two-step EWSB, in which—prior to
entering the Higgs phase—the Universe enters a phase
of broken electroweak symmetry involving a nonvanishing
vacuum expectation value (vev) for the neutral component
of Σ but a vanishing neutral Higgs vev. The transition to
the Σ phase can be strongly first order, a possibility that is
presently less constrained phenomenologically than a
single-step SFOEWPT to the Higgs phase. The possibility
of baryogenesis during the first step of the two-step
scenario has been explored in Ref. [26]. For a general
analysis of the two-step EWSB scenario, see Ref. [27].
The foregoing studies in the xSM, cxSM, ΣSM, and even

the two-Higgs-doublet model have employed perturbation
theory2 [29–32]. But general considerations imply that
the perturbative expansion formally breaks down due to
enhanced infrared behavior in the vicinity of a phase
transition [33,34]. Indeed, the existence of a crossover
transition and the presence of a critical point in the SM have
only been observed in computations based on lattice
simulations and not in perturbative studies. Nonetheless,
perturbative computations in both the SM and MSSM
indicate reasonable qualitative if not quantitative agreement
with other features of nonperturbative computations, such
as the dependence of thermodynamic properties on the
underlying model parameters.
With an eye toward a more robust assessment of the

viability of a SFOEWPT (one or two step) in the ΣSM, we

present in this paper a first step toward “benchmarking” the
existing perturbative analyses. We do so in two parts. First,
we derive the dimensionally reduced, three-dimensional
effective field theory (DR3EFT) that are most amenable to
lattice simulations. Depending on the mass of Σ, we derive
matching relations between the effective field theory (EFT)
parameters and those of the full theory. Assuming the triplet
Σ is heavy or superheavy (defined in Sec. III below) where
it is integrated out, we utilize the results of existing lattice
computations for the DR3EFT in which the Higgs boson is
the only dynamical scalar to analyze the nature of the
single-step transition to the Higgs phase. While this case
cannot address the viability of the two-step EWSB scenario
since the Σ has been integrated out, it does provide one
arena in which to compare with the corresponding pertur-
bative calculations. Assessing the dynamics of the two-step
scenario will require new lattice computations involving
dynamical Σ fields, which will be the subject of the second
paper in this series.
In the present case, we find the following:
(i) There exist regions of model parameter space for

which a one-step transition to the Higgs vacuum can
be first order. They are shown in Figs. 2, 3, and 4
below. However, without further information, we are
unable to assess the strength of the phase transition
relevant for baryogenesis.

(ii) For a given value of the physical triplet scalar mass,
there is a minimum value of the portal coupling that
accommodates a first-order transition. Below this
critical value,EWSBoccurs via a crossover transition.

(iii) The presence of a first-order transition in this regime
is associated with a minimum reduction in the rate
for the Higgs boson to decay to two photons.

(iv) These features of the EWPT dynamics are not
accessible using perturbative computations.

In the remainder of the paper, we organize our presen-
tation of this analysis as follows. In Sec. II, we formulate
and summarize the phenomenology of the ΣSM. In Sec. III,
we summarize theoretical aspects of dimensional reduction
and obtain various DR3EFTs for the case in which Σ is a
light d.o.f. In Sec. IV, the DR3EFT for the case in which Σ
is heavy or superheavy is derived, and numeral results are
presented. We discuss the implications of our findings in
Sec. V. A listing of matching relations among the various
DR3EFTs is provided in the Appendixes.

II. MODEL AND PHENOMENOLOGY

The ΣSM is formulated by extending the SM with a
scalar isotriplet field Σa carrying zero hypercharge. In terms
of the SM Higgs isodoublet H and the new isotriplet

H ¼
 

ϕþ

1ffiffi
2

p ðhþ iϕ0Þ

!
and Σa ¼

0
B@

σ1

σ2

σ3

1
CA; ð1Þ2However, see Ref. [28] for a recent nonperturbative study of

the two-Higgs doublet following a methodology similar to that in
this paper.
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the scalar sector Lagrangian, with the metric signature
ðþ;−;−;−Þ, reads [24,25]

L ¼ ðDμHÞ†ðDμHÞ þ 1

2
ðDμΣÞaðDμΣÞa − VðH;ΣÞ; ð2Þ

where the covariant derivatives in terms of the hypercharge
and isospin gauge fields Bμ andWa

μ and coupling constants
g0 and g are given by

DμH ¼
�
∂μ þ

i
2
g0Bμ þ ig

τa

2
Wa

μ

�
H

ðDμΣÞa ¼ ð∂μδ
ac − gϵabcWb

μÞΣc; ð3Þ
and the scalar potential is

VðH;ΣÞ ¼ −μ2H†H þ λðH†HÞ2 − 1

2
μ2ΣðΣaΣaÞ

þ 1

2
a2H†HΣaΣa þ 1

4
b4ðΣaΣaÞ2: ð4Þ

For simplicity, we have imposed a Z2 symmetry under
Σa → −Σa on the theory that forbids the gauge-invariant
cubic portal operator H†Σa τa

2
H. Additionally, we retain

only the top-quark Yukawa coupling yt to the SM Higgs
doublet, while neglecting all others.
In the potential, we take μ2 positive so that the neutral

Higgs field h obtains a nonzero vev at sufficiently low
temperature (T), while for high temperature, thermal
corrections change the sign of the quadratic operator,
leading to symmetry restoration. The sign of the triplet
quadratic coefficient, μ2Σ, may be either positive or negative.
For μ2Σ > 0, the T ¼ 0 vacuum exhibits several extrema,
including minima along the h and σ3 directions (for a
discussion, see Ref. [25]). Here, we focus on the case in
which the absolute T ¼ 0 minimum lies along the h
direction, with a vanishing σ3 vev. In this vacuum, all
three components of Σa are degenerate at leading order,
with masses given by

M2
Σ ¼ −μ2Σ þ

1

2
a2v2; ð5Þ

where v ¼ 246 GeV is the zero-temperature tree-level
Higgs vev. The physical quanta of charged and neutral
scalar fields are Σ� ¼ ðσ1 ∓ iσ2Þ=

ffiffiffi
2

p
and Σ0 ¼ σ3. In

what follows, we will express our results in terms of the
physical mass MΣ and the portal coupling a2.
The Z2 symmetry Σ → −Σ and the absence of a neutral

triplet vev implies that Σ0 is stable. For the range of MΣ of
interest here (approximately 100–600 GeV), it will con-
tribute a subdominant component of the total dark matter
relic density [35]. The corresponding dark matter direct
detection constraints on the model parameters can be found
in Ref. [36].
Additional constraints may arise from searches for new

electroweak multiplets at the LHC. Because of the Z2

symmetry, electroweak production of Σ� and Σ0 are
expected to occur in pairs. Furthermore, electroweak
self-energy corrections of Σ lead to a small mass splitting
between the charged and neutral components by roughly
MΣ� −MΣ0 ≈ 160 MeV. Consequently, processes involv-
ing the production of Σ� will lead to disappearing charge
tracks due to its relatively slow decay to Σ0 by the emission
of a soft pion [24]. Although limits on the existence the
charged triplet fermions (e.g., charginos) as a function of
the triplet mass and lifetime have been obtained by the
ATLAS [37] and CMS [38] collaborations, no significant
limits have been placed on the scalar triplet Σ due to its
much shorter lifetime. Therefore, the LHC results do not
yet significantly constrain the model parameter space.

III. DIMENSIONAL REDUCTION

In this section, we begin our study of the EWPT in the
ΣSM by performing a dimensional reduction to an effective
three-dimensional theory. We start by providing an over-
view of dimensional reduction and follow up with its
construction as applied to the ΣSM. Then, we describe the
matching procedure and our power-counting scheme for
relating parameters of the various theories. Finally, we state
our renormalization scheme to numerically determine the
values of input parameters.

A. Overview

Dimensional reduction is the procedure within the
Matsubara imaginary time formalism for constructing an
effective three-dimensional theory from the full four-
dimensional quantum field theory. The reduction is based
on a separation of scales that occurs at high temperature,
which we describe below.
Following the nomenclature in Ref. [4], the mass scale

associated with the lowest nonvanishing Matsubara fre-
quency πT is the “superheavy” scale so that all Matsubara
modes apart from the zero mode of bosonic d.o.f. are
superheavy. The most prominent dynamical effect of the
superheavy modes is to generate thermal masses of order
gT for the zero Matsubara modes of scalar fields and time
component of the gauge fields. This dynamically generated
scale is called the “heavy” scale, which is separated from
the superheavy scale in the weak coupling limit. The
remaining d.o.f.—spatial components of gauge fields—
are “light” d.o.f.
However, scalar fields of which the bare mass term is

negative, such as the −μ2H†H term of the Higgs isodoub-
let, will have smaller effective thermal masses due to a
cancellation between the bare and the thermally generated
ones. At temperatures around the phase transition at which
their thermal expectation values are expected to change, the
cancellation will be significant to the extent that these
scalar fields have effective masses that are far below the
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heavy scale. Therefore, the zero Matsubara modes of these
scalar fields are also classified as light d.o.f.
This hierarchy of scales in the high-T limit is illustrated

in Fig. 1 and motivates us to pass through a series of three-
dimensional effective field theories, ultimately obtaining a
DR3EFT involving just the light d.o.f., which is most
readily simulated on the lattice for a nonperturbative study
of the EWPT. In the next section, we explain how the
effective theories are constructed for the ΣSM.

B. Dimensional reduction to the effective theory
at the heavy scale

We begin our construction of the DR3EFTs by first
considering the case μ2Σ > 0 so that the zero Matsubara
mode of the real triplet Σ is classified as a light d.o.f. This
accommodates the possibility for the real triplet to actively
participate in the EWPTwith a varying thermal expectation
value. The case in which μ2Σ < 0, so that it is classified as
heavy or superheavy, will be treated in Sec. IV below.
We start by integrating out the nonzero Matsubara modes

(superheavy DOF) to obtain a dimensionally reduced
effective theory at the heavy scale involving just the zero
Matsubara modes. The most general super-renormalizable
Euclidean Lagrangian L3 consistent with the symmetries of
the original theory is

L3 ¼
1

4
BijBij þ

1

4
Wa

ijW
a
ij þ L3;gf þ ðD⃗H†Þ · ðD⃗HÞ

þ 1

2
ðD⃗ΣÞa · ðD⃗ΣÞa þ V3ðH;ΣÞ þ L3;time: ð6Þ

The first few terms resemble the Lagrangian of the under-
lying four-dimensional theory. The hypercharge and iso-
spin field strength tensors are

Bij ¼ ∇iBj −∇jBi

Wa
ij ¼ ∇iWa

j −∇jWa
i − g3ϵabcWb

i W
c
j; ð7Þ

the gauge-fixing and SU(2) ghost Lagrangian in the Fermi
gauge is

L3;gf ¼
1

2ξ
ð∇⃗ · B⃗Þ2 þ 1

2ξ
ð∇⃗ · W⃗aÞ2 þ ð∇⃗ηaÞ · ðD⃗ηÞa; ð8Þ

the covariant gradients are

D⃗H ¼ ð∇⃗þ i
2
g03B⃗þ ig3

τa

2
W⃗aÞH

ðD⃗ΣÞa ¼ ð∇⃗δac − g3ϵabcW⃗
bÞΣc; ð9Þ

and the scalar potential is

V3ðH;ΣÞ ¼ þμ23H
†H þ λ3ðH†HÞ2 þ 1

2
μ2Σ;3ðΣaΣaÞ

þ 1

2
a2;3H†HΣaΣa þ 1

4
b4;3ðΣaΣaÞ2: ð10Þ

Additionally, due to the absence of full Lorentz invariance
of the theory at finite temperature, additional terms arise in
the effective theory involving the time component of gauge
fields,

L3;time ¼
1

2
½ð∇⃗Wa

0Þ2 þm2
DðWa

0Þ2�

þ 1

2
½ð∇⃗B0Þ2 þm02

DB
2
0� þ

1

2
½ð∇⃗GA

0 Þ2 þm002
DðGA

0 Þ2�
þ h3H†HðWa

0Þ2 þ h03H
†HB2

0 þ h003B0H†ðWa
0τ

aÞH
þω3H†HðGA

0 Þ2 þ δ3ðΣaÞ2ðWb
0Þ2 þ δ03ðΣaWa

0Þ2
þ…: ð11Þ

We have omitted terms involving self-interactions of time
components of gauge fields that do not contribute to the
light scale DR3EFT at the level of precision at which we
work mentioned below. Formulas connecting the coupling
constants and the normalization of the fields in L3 to the
couplings and zero Matsubara modes of the full four-
dimensional theory in L are obtained by matching, which
we explain in more detail in Sec. III D and are listed in
Appendix A 2.

C. Reduction to the theory at the light scale

As explained above, the effect of integrating out the
nonzero Matsubara modes at the superheavy scale is to
induce thermal masses of scalar fields and the time
component of gauge fields of order gT, which in the weak
coupling limit are separated from the superheavy scale but
in the high-temperature limit are separated from the light
scale. Continuing with our assumption that Σ is light, the
only d.o.f. at the heavy scale that need to be integrated out
to obtain an effective theory at the light scale are the time
component of gauge fields B0, Wa

0 , and GA
0 .

FIG. 1. Separation of scales in equilibrium thermal field theory
in the high-T limit and the effective theories associated with each
scale. Each effective theory is derived from the one above it by
matching Green’s functions.
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The most general super-renormalizable effective
Lagrangian involving the light d.o.f. is

L̄3 ¼
1

4
BijBij þ

1

4
Wa

ijW
a
ij þ L̄3;gf þ ðD⃗H†Þ · ðD⃗HÞ

þ 1

2
ðD⃗ΣÞa · ðD⃗ΣÞa þ V̄3ðH;ΣÞ; ð12Þ

with the same abbreviations listed in (7)–(10), but with new
couplings that we distinguish with a bar: ḡ3, ḡ03, λ̄3, ā2;3, etc.
The form of the effective Lagrangian at the light scale is
identical to that at the heavy scale in (6), but withoutL3;time.
The relations connecting the coupling constants at the
heavy scale and the light scale are derived by matching
and are listed in Appendix A 3. This effective theory will be
analyzed nonperturbatively on the lattice in Part II of
this study.

D. Matching of the parameters

In this subsection, we explain how the field normaliza-
tions and coupling constants between sets of EFTs are
derived. Additionally, we specify our power-counting
scheme and the level of precision at which we derive these
matching relations. For details of the matching procedure,
see also Refs. [4,39].
We adopt a power-counting scheme similar to that of

Ref. [4], wherein the quartic couplings scale as the square
of the SU(2) gauge coupling constant

λ; a2; b4 ∼ g2; ð13Þ
while the top-quark Yukawa coupling and the remaining
gauge coupling constants scale linearly,

yt; g0; gs ∼ g: ð14Þ
Additionally, as explained in Sec. III A above, under the
assumption that both the Higgs doublet H and the real
triplet Σ are light, the corresponding negative mass param-
eters scale as the square of the gauge coupling constant,

μ2; μ2Σ ∼ g2T2; ð15Þ
near the electroweak phase transition.
We perform the dimensional reduction perturbatively

and use dimensional regularization to regulate divergent
sum integrals. We ultimately aim to obtain the DR3EFT at
the light scale in (12) to order Oðg4Þ. This requires the
evaluation of self-energy functions through two loops to
match mass parameters μ2 and μ2Σ and the remaining
Green’s functions through one loop to match the coupling
constants. To illustrate how the matching relations for
fields and couplings between the EFTs are derived, we
summarize the procedure, using the portal couplings a2;3
and ā2;3 as a representative example.
The formula for a2;3 listed in (A23) is determined by

requiring that the four-point Green’s function hH†HΣaΣai

in both the four-dimensional theory and the heavy-scale
three-dimensional (3D) theory match at the matching scale
Λ. This is possible provided the fields in the 3D theory
are canonically normalized. Canonical normalization is
achieved by comparing the two-point Green’s function
in the two theories. For a generic bosonic field ϕ, this
relationship reads

ϕ2
3d ¼

1

T
½1þ Π̂0

ϕð0; 0Þ�ϕ2; ð16Þ

where Π̂ϕðω2; p⃗2Þ is the fully renormalized self-energy
function of the Matsubara frequency ω and spatial momen-
tum p⃗ and the prime denotes a derivative with respect to p⃗2.
The explicit factor of 1=T accounts for absorbing a similar
factor in front of the 3D effective Lagrangian. To ultimately
obtain an Oðg4Þ accuracy in the matching relations, Π̂0

ϕ in
(16) needs to be known only to one-loop order. Additionally,
only contributions from the n ≠ 0 Matsubara modes should
be included.
The portal coupling a2;3 can be then be determined by

comparing the corresponding tree-level vertex in the
DR3EFT against the one in four dimensions calculated
to Oðg4Þ. The 3D vertex reads

−a2;3TðH†HΣaΣaÞ3d; ð17Þ
where the factor of T follows from the rescaling of the 3D
fields. The corresponding vertex in the four-dimensional
theory is

ð−a2 − Γ̂ð0ÞÞðH†HΣaΣaÞ4d ð18Þ

where Γ̂ð0Þ is the connected (fully renormalized) one-loop
H†HΣaΣa vertex function at zero external momentum and
excludes the zero Matsubara modes. By matching (17) and
(18) and accounting for the difference in the field nor-
malization in (16), we obtain the desired matching formula
for the portal coupling:

a2;3 ¼ T½a2 − a2ðΠ̂0
Hð0Þ þ Π̂0

Σð0ÞÞ þ Γ̂ð0Þ�: ð19Þ
All other matching relations between the superheavy and
heavy scales listed in Appendix A 2 are derived in a similar
way, using the table of integrals found in Ref. [4]. To
minimize logarithms, and to eliminate lnð4πÞ − γE asso-
ciated with dimensional regularization, we choose the
matching scale to be Λ ¼ 4πT=eγE .
To obtain the portal coupling ā2;3 at the light scale, in

which the time component of gauge fields B0, Wa
0 , and GA

0

are integrated out, an analogous procedure is followed.
Field and mass parameters are again related by comparing
self-energy functions. However, there is no change in
normalization of the scalar fields in the two theories as
there are no contributions giving momentum dependence.
This leads to the simpler matching relation

ELECTROWEAK PHASE TRANSITION IN THE REAL TRIPLET … PHYS. REV. D 100, 035002 (2019)

035002-5



ā2;3 ¼ a2;3 þ Γ̂3ð0Þ; ð20Þ
where Γ̂3ð0Þ is the contribution from the B0, Wa

0, and GA
0

fields to the H†HΣaΣa connected Green’s function in the
“high” scale DR3EFT.
Because of the super-renormalizability of the light

scale DR3EFT, only the self-energy functions of the
Higgs doublet H and the triplet Σ are UV divergent.
Consequently, the matching scale Λ0 formally appears in
the matching relations for μ̄23 and μ̄2Σ;3. Moreover, the
anomalous dimensions of the mass parameters terminate
at two-loop order, and the associated renormalization group
equations can be solved exactly and take the form

μ23ðΛÞ ¼ f3 ln
Λ0

Λ3d
; ð21Þ

where f3 is a function of the 3D couplings (corresponding
to the mass counterterm), Λ3d is the renormalization group
scale of the 3D theory, and Λ0 is a mass scale that is
determined by the matching procedure. By a direct calcu-
lation of two-loop logarithms in four dimensions, one may
identify the constant Λ0 and replace the two-loop loga-
rithms by the more accurate expression in Eq. (21).

E. Renormalization and the numerical
determination of parameters

For a numerical study of the phase diagram in this model,
it remains to fix the input parameters of the underlying
model at the superheavy scale. The theory depends on five
parameters of the SM, μ2, λ, g0, g, and yt, in addition to
three parameters from the extended sector, μ2Σ, a2, and b4.
We determine their values in the MS scheme by relating
them to measured observables.
We choose to fix μ2, λ, g0, and g by relating them to the

fine structure constant α̂ðM2
ZÞ and the pole masses MW ,

MZ, and MH, at the scale Λ ¼ MZ. Although the Fermi
constant GF is conventionally used in place of MW for a
more precise determination, at the level of precision at
which we are working, we choose to work with MW for
clarity. In terms of the Higgs self-energy function ΣH and
the transverse polarization functions of the gauge bosons
ΠW and ΠZ, the one-loop relations are

μ2H ¼ M2
H

2

�
1 −

ΣHðM2
HÞ

M2
H

�
ð22Þ

λ ¼ πα̂M2
HM

2
Z

2M2
WðM2

Z −M2
WÞ
�
1 −

ΣHðM2
HÞ

M2
H

−
ΠZðM2

ZÞ
M2

Z

þ ΠWðM2
WÞ

M2
W

þ ΠZðM2
ZÞ − ΠWðM2

WÞ
M2

Z −M2
W

�
ð23Þ

g02 ¼ 4πα̂M2
Z

M2
W

�
1 −

ΠZðM2
ZÞ

M2
Z

þ ΠWðM2
WÞ

M2
W

�
ð24Þ

g2 ¼ 4πα̂M2
Z

M2
Z −M2

W

�
1 −

ΠZðM2
ZÞ

M2
Z

þ ΠZðM2
ZÞ − ΠWðM2

WÞ
M2

Z −M2
W

�
: ð25Þ

The relationship for the top-quark Yukawa coupling addi-
tionally depends on its self-energy function, parametrized
in terms of invariant functions as

−iΣðpÞ ¼ −iðpAðp2Þ þMtBðp2ÞÞ:

At one-loop order, the relationship is

y2t ¼ 2πα̂
M2

ZM
2
t

M2
WðM2

Z −M2
WÞ
�
1 −

ΠZðM2
ZÞ

M2
Z

þ ΠWðM2
WÞ

M2
W

þ ΠZðM2
ZÞ − ΠWðM2

WÞ
M2

Z −M2
W

− 2ðAðM2
t Þ þ BðM2

t ÞÞ
�
;

ð26Þ
which we use to fix the Yukawa coupling at the scale
Λ ¼ Mt.
Finally, among the three parameters of the extended

sector, we only choose to express the mass parameter of the
real triplet μ2Σ in terms of the physical pole mass of the
electrically neutral triplet Σ0 at the scale Λ ¼ MΣ. In terms
of the neutral triplet self-energy function ΣΣ, the one-loop
relationship is given by

μ2Σ ¼ −M2
Σ þ ΣΣðM2

ΣÞ þ
a2M2

W

2πα̂

�
1 −

M2
W

M2
Z

�

×

�
1 −

ΠWðM2
WÞ

M2
W

−
ΠWðM2

WÞ=M2
W − ΠZðM2

ZÞ=M2
Z

1 −M2
Z=M

2
W

�
:

ð27Þ

Since no meaningful measurements have been made to fix
the remaining parameters a2 and b4, in what follows, we
will present our results directly in terms of their MS values
at the scale Λ ¼ MZ.
Having determined the values of renormalized parame-

ters at their chosen scales, we solve the one-loop renorm-
alization group equations

Λ
dg2

dΛ
¼ −

g4

8π2

�
22

3
−
Nd þ 2Nt

6
−
4

3
Nf

�
; ð28Þ

Λ
dg02

dΛ
¼ g04

8π2

�
Nd

6
þ 20

9
Nf

�
; ð29Þ

Λ
dy2t
dΛ

¼ y2t
8π2

�
9

2
y2t −

9

4
g2 −

17

12
g02 − 8g2s

�
; ð30Þ
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Λ
dμ2

dΛ
¼ 1

16π2

�
−3μ2

�
3

2
g2 þ 1

2
g02 − 2y2t − 4λ

�
þ 3μ2Σa2

�
;

ð31Þ

Λ
dμ2Σ
dΛ

¼ 1

16π2
2ð2a2μ2 − 6g2μ2Σ þ 5b4μ2ΣÞ; ð32Þ

Λ
dλ
dΛ

¼ 1

16π2
1

2

�
48λ21 þ 3a22 þ

3

4
ð3g4 þ g04 þ 2g2g02Þ

− 12y4t − 6λð3g2 þ g02 − 4y2t Þ
�
; ð33Þ

Λ
da2
dΛ

¼ 1

16π2
2

�
a2

�
−
33

4
g2 −

3

4
g02 þ 3y2t

þ 2a2 þ 5b4 þ 6λ

�
þ 3g4

�
; ð34Þ

Λ
db4
dΛ

¼ 1

16π2
2ð−12b4g2 þ a22 þ 11b24 þ 6g4Þ ð35Þ

to obtain their values at the matching scale Λ ¼ 4πT=eγE .
By allowing the parameters in the tree-level Lagrangian to
vary with the renormalization scale, we observe that our
results exhibit reduced sensitivity to the matching scale Λ.
Having derived the DR3EFT at the light scale (12)

and established a renormalization scheme to fix the input
parameters, the next step is to perform a numerical study of
this theory on the lattice. We postpone the lattice formu-
lation of this theory, together with a comparison of
numerical results with perturbation theory, to Part II of
this series. Instead, in the next section, we turn to the case in
which the real triplet Σ is either heavy or superheavy, for
which we can use existing lattice results to study the EWPT.

IV. HEAVY AND SUPERHEAVY TRIPLETS

In the case μ2Σ < 0, the real triplet d.o.f. Σ are either at the
heavy or superheavy scales. This requires that they are
integrated out in the first or second step of dimensional
reduction and is therefore absent from the DR3EFT at the
light scale. Although this assumption precludes the pos-
sibility of Σ changing its thermal expectation value during
the EWPT, the resulting DR3EFT is of the same form as
that obtained from the minimal SM,

V̄3ðHÞ ¼ μ̄23H
†H þ λ̄3ðH†HÞ2; ð36Þ

but here the influence of the heavy or superheavy Σ is
encoded in the matching relations listed in Appendixes A 4
and B, respectively. Since the thermodynamics of the
EWPT of this theory has previously been studied on the
lattice [4], we may readily apply the results in this case to
study the EWPT in the ΣSM.

Properties of the EWPT on the lattice are characterized
by two temperature-dependent dimensionless parameters:

x ¼ λ̄3
ḡ23

; y ¼ μ̄23
ḡ43

: ð37Þ

The results of the simulations are as follows. The critical
temperature occurs near where the y parameter changes
sign; when x is sufficiently small but positive 0 < x≲ 0.11,
the EWPT is first order [8]. At x ≈ 0.11, the system exhibits
a second-order EWPT, and for larger values of x, the
transition is a crossover. We note that the upper bound on x
has been obtained using 3D lattice results for the SU(2)
plus Higgs theory and allowing for an approximately 10%
correction from neglected Uð1ÞY contributions. In Sec. IV
B, we will present our results based on the numerical
analysis for the case in which Σ is a heavy d.o.f. We make a
comparison with the superheavy case in Appendix B.

A. Validity of dimensional reduction

Following Ref. [4], we can check the validity of the
dimensional reduction by estimating the impact of the
higher-dimensional operators that have been dropped from
the light scale DR3EFT on the vevs of the scalars in the
effective theory.
The lowest-dimension operators omitted from the heavy

and light scales are the (marginal) dimension-3 operators
c3ðH†HÞ33d and c̄3ðH†HÞ33d, respectively. Upon integrating
out the superheavy scale, the coefficient of the operator at
the heavy scale is

c3 ¼
ζð3Þ

16384π4
ð3g6 þ g06 þ 3g2g02ðg2 þ g02Þ þ 640λ3

− 224y6t þ 8a32Þ:

The top-quark contribution dominates over other SM
contributions. The dominant correction c̄3 in the ΣSM
comes not from the superheavy scale but from the second
step of DR when the heavy triplet is integrated out. The
total dimension-3 coefficient can be written as

c̄3 ¼ c3 þ cheavy3 ; ð38Þ

and the ΣSM contribution to Λheavy
6 is

cheavy3 ðΣÞ ¼ 1

512π

�
a2;3
μΣ;3

�
3

: ð39Þ

Note that the time component of gauge fields has a
subdominant effect when integrating out the heavy scale [4].
The top-quark contribution

c3ðtopÞ ¼ −
7ζð3Þ
512π4

y6t ð40Þ
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shifts the position of the Higgs vev by about 1% in the pure
SM [4]. We can estimate the effect of the dimension-3
ðH†HÞ3 operator by comparing the magnitude of the
dominant ΣSM contribution to that of the top quark. If the
ratio

Δ6≡
���� c

heavy
3 ðΣÞ
c3ðtopÞ

���� ð41Þ

becomes large, the validity of the DR3EFT is compromised.

B. Results for one-step transition with superheavy
and heavy triplets

With the foregoing DR3EFT setup for the heavy Σ and
matching conditions in hand, we map out the phase
diagram for the theory in the (MΣ, a2) plane by scanning
over the parameters of the potential, determining the values
of x and y in (37) and identifying the region for a first-order
EWPT as obtained in the study of Ref. [8]. We have
performed this scan over the (MΣ, a2)-parameter space
assuming a uniform distribution of the parameters. The
triplet mass was varied from 100 to 600 GeVat intervals of
5 GeV and portal coupling a2 from 0 to 4 at intervals of
0.05. We then omit all the points in which the triplet mass
parameter squared is positive according to tree-level relation.
For each point, we scan the temperature from 80 to

200 GeV at intervals of 20 GeV and find the critical
temperature Tc by interpolation from the condition that
y ¼ 0. To obtain the phase diagram, we determine the value
of xðTcÞ at each point in the parameter space. For purposes
of visualization, we perform a linear interpolation to obtain
contours of constant x. We present our results with fixed
b4 ¼ 0.75 and verified that the values of x and y at the
critical temperature are not strongly sensitive to it.
The results are displayed in Figs. 2, 3, and 4. In each

case, we indicate regions where the EWSB transition from
the high-T symmetric phase is a one-step crossover or first
order transition, corresponding to the light blue and light
green regions, respectively. The dark green regions corre-
spond to choices of the parameters for which the validity of
the DR3EFT breaks down. The gray regions, above and to
the left of the line μ2Σ ¼ 0, indicate regions of parameter
space for which the Σ is light and where its inclusion in
lattice simulations is required. Consequently, we make no
statement about the phase diagram for this region. We
anticipate, however, that the two-step transition analyzed
perturbatively in Ref. [25] will emerge in this region from
the future lattice study of the gray region.
A key feature of each plot is the existence of a choice of

parameters giving a first-order or a crossover transition as
well as the phase boundary between the two situations. We
emphasize that one cannot identify the existence of the
cross over region and the boundary with the first-order
region from a purely perturbative analysis. The results
given here thus underscore the importance of going beyond

perturbation theory in order to obtain a physically complete
and quantitatively realistic picture of the phase structure of
the theory.
Going beyond this primary point, each of Figs. 2, 3, and 4

contain a set of dashed curves that highlight various
theoretical and phenomenological considerations. The
dashed curves in Fig. 2 give contours of constantΔ6, defined

FIG. 2. ΣSM phase diagram for a heavy triplet as a function of
the triplet mass MΣ and the portal coupling a2. Light blue and
light green regions correspond to a one-step crossover and first-
order EWSB transition to the Higgs vacuum, respectively,
starting from the electroweak symmetric phase at high T. In
the dark green region, assumptions of dimensional reduction
(DR) no longer hold. The gray region corresponds to μ2Σ > 0,
where the real triplet is expected to participate in EWPTand must
be classified as a light d.o.f. Therefore, this area of parameter
space needs inclusion of its dynamics in the Monte Carlo
simulations, so no statement about the phase structure is made
here. The dotted lines indicate contours of constant Δ6

defined in (41).

FIG. 3. Same as in Fig. 2, but showing the relative change δ in
the partial width Γðh → γγÞ, defined in (42). Dashed lines
indicate contours of constant δ for regions of the parameter
space relevant to this analysis.
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in Eq. (41). Recall that Δ6 characterizes the relative magni-
tudes of Σ and top-quark contributions to the coefficient of
the higher-dimensional ðH†HÞ3 operator in the potential.
A rough indication of the importance of this operator on
the quantities relevant to the phase transition was obtained in
Ref. [4], in which it was shown that the presence of c3ðtopÞ
leads to a 1% shift in the value of the Higgs vev. We would
thus expect the relative impact of cheavy3 ðΣÞ to scale linearly
with the ratioΔ6. For sufficiently large a2 and lightMΣ, one
would thus expect corrections of greater than approximately
10% in the value of the Higgs vev associated with the triplet-
induced higher-dimension operators. The value of the Higgs
vev itself is, of course, not directly relevant to the boundaries
of the phase diagram, the critical temperature, etc., but it
does provide one way to assess the quantitative impact of
theoretical uncertainties. We defer a more complete deter-
mination of the corrections from higher-dimensional oper-
ators on the phase transition properties to future work and
take the contours of constant Δ6 as rough indications of
the accuracy of our present DR3EFT treatment.
In Fig. 3, we illustrate the implications of this study for

measurements of Higgs boson couplings. Of particular
interest is the rate for the decay to two photons, Γðh → γγÞ.
As discussed in detail in Refs. [24,25], loops involving
the charged components of the triplet will contribute to
the diphoton decay rate, shifting its value from the SM
prediction as a function of (MΣ, a2). Defining the relative
shift

δ ¼ ΓΣSMðh → γγÞ − ΓSMðh → γγÞ
ΓSMðh → γγÞ ; ð42Þ

we plot in Fig. 3 contours of constant δ in the vicinity of
the first-order transition region and the boundary with
the crossover region. Note that in call cases, δ < 0. We
emphasize that each point along the boundary between the

first-order and crossover regions corresponds to a minimum
value of jδj. This feature would allow one to exploit a
measurement of Γðh → γγÞ (or the corresponding branch-
ing ratio) to probe the nature of the transition. For fixedMΣ,
for example, a sufficiently large and negative deviation of
the diphoton rate would indicate the existence of a first-
order transition, whereas a smaller magnitude or positive
value for δ would imply a crossover transition.
A separate experimental study would be required identi-

fyingMΣ. Under the assumptions of the study here, wherein
Σ0 obtains no vev, such a study could include the search for
disappearing charge tracks, as discussed in Ref. [24]. One
expects the high-luminosity phase of the Large Hadron
Collider to enable a determination of the diphoton rate
with approximately 5% − 10% precision [40], potentially
allowing one to probe the lower MΣ region of the green
regions of Figs. 2–4. A conclusive test of the nature of the
transition in the region of parameter space considered here
may require a future eþe− and/or pp collider that is able to
achieve a better than 5% determination of Γðh → γγÞ and a
separate determination of MΣ. One may also anticipate
other loop-induced Higgs property deviations,3 such as the
rate for associated production eþe− → Z� → Zh.
Figure 4 contains contours of constant Tc in the vicinity

of the first-order transition region. Knowledge of the
critical temperature is interesting in its own right as well
as for assessing the validity of the DR3EFT. We observe
that for the parameter choices in the first-order region the
physical triplet mass MΣ is greater than Tc, validating our
treatment of the triplet as a heavy d.o.f. Only for suffi-
ciently large MΣ would the superheavy triplet DR3EFT be
justified, giving a posteriori justification for concentrating
on the heavy rather than the superheavy case.
Looking to the future, knowledge of Tc will be

important for assessing the strength of the phase transition
in the light green region. We emphasize that our present
study provides no information about the quantities that
characterize the strength of the transition, such as the
broken phase sphaleron rate relevant to electroweak
baryogenesis or the latent heat and effective action
relevant to the dynamics of gravitational radiation gen-
erated during a first-order transition [41]. In principle, one
could estimate the broken phase sphaleron rate using a
combination of analytic and numerical methods (see
Ref. [42] and references therein), a task that requires
knowledge of the bubble nucleation temperature that is
often reasonably approximated by Tc but that goes beyond
the scope of the present study. A more robust determi-
nation of the sphaleron rate would require a nonperturba-
tive study. Similar comments apply to the thermodynamic
quantities relevant to gravitational wave generation. We
defer an in-depth analysis of these issues to future work.

FIG. 4. Same is in Fig. 2, but showing values of the critical
temperature. Dashed lines show contours of constant Tc in the
vicinity of the first-order one-step transition.

3We thank Lian-Tao Wang for raising this possibility.
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V. DISCUSSION

In this paper, we have initiated a nonperturbative study of
the electroweak phase transition in the ΣSM. We have
performed a finite-temperature dimensional reduction in
this model and derived a set of effective three-dimensional
theories that can be studied by lattice simulations. We have
immediately applied these effective theories in the case in
which the triplet is assumed to be sufficiently heavy that
it may be integrated out, leading to effective 3D theory of
same form as in the SM, and existing lattice results of
Ref. [8] can be applied. We have found that there exist
regions for which a one-step transition to the EWSB
vacuum can be of first order. In addition, for a given value
of triplet mass, there is a minimum value of the portal
coupling that can accommodate a first-order transition.
Below this critical value, the EWPT is a smooth crossover,
as in the minimal SM. We emphasize that, in order to reach
this conclusion, a nonperturbative treatment is crucial,
since perturbative analyses cannot identify the existence
of the crossover region. Furthermore, we have shown that
the presence of a first-order transition is associated with
a lower bound on the h → γγ partial width. This bound
would potentially allow one to probe regions of the
parameter space, allowing a first-order EWPT with the
high-luminosity phase of the Large Hadron Collider or with
a future eþe and/or pp collider.
We emphasize that our study of EWPT as it stands is

limited to providing the critical temperature and character
of the EWPT (first order, second order, or crossover).
Without external information, nonequilibrium thermody-
namic properties, such as latent heat or bubble nucleation
rate, relevant for the gravitational wave generation, or the
broken phase sphaleron rate relevant to electroweak baryo-
genesis, cannot be inferred.
The existence of a crossover transition and the presence

of a critical boundary between regions of crossover and
first-order transition can be revealed only in nonperturba-
tive analysis. Despite this, frequently used perturbative
studies may potentially provide a reasonable qualitative,
if not quantitative, agreement with lattice on other features
of the EWPT. To test the reliability of the perturbative
approach, in Part II, we will perform a systematic com-
parative analysis of the performance of perturbation theory
to extract thermodynamic quantities, which would allow
us to set a definite benchmark for the accuracy of the
perturbation theory.
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APPENDIX A: MATCHING RELATIONS—Σ
HEAVY OR LIGHT

In this Appendix, we list the matching relations of the
normalization of fields and coupling constants between
the three-dimensional effective theory at the heavy scale
L3 in (6) and the full four-dimensional theory at the
superheavy scale L. The relations are valid for case in
which the real triplet d.o.f. Σa are classified as either
heavy or light. Matching relations for the case in which Σa

is superheavy are provided in the next section.
In the following expressions, we introduce Nd ¼ 1,

Nt ¼ 1, and Nf ¼ 3 to identify contributions from the
SM Higgs doublet, the real triplet Σ, and fermions.
Additionally, we make the following abbreviations arising
from the evaluation of one- and two-loop integrals in
dimensional regularization:

Lb ¼ ln
�
Λ2

T2

�
− 2½lnð4πÞ − γ�; ðA1Þ

Lf ¼ Lb þ 4 ln 2; ðA2Þ

c ¼ 1

2

�
ln

�
8π

9

�
þ ζ0ð2Þ

ζð2Þ − 2γE

�
: ðA3Þ

1. Normalization of fields

Here, we collect normalizations between the four- and
three-dimensional fields in the Landau gauge ξ ¼ 0. Field
normalizations of B0, B⃗, and H are not affected by scalar
triplet Σ and are therefore same as in the SM:

W2
3d;0 ¼

W2
4d;0

T

�
1þ g2

ð4πÞ2
�
Nd þ 2Nt − 26

6
Lb

þ 1

3
ð8þ Nd þ 2NtÞ þ

4Nf

3
ðLf − 1Þ

��
; ðA4Þ

W⃗2
3d ¼

W⃗2
4d

T

�
1þ g2

ð4πÞ2
�
Nd þ 2Nt − 26

6
Lb

−
2

3
þ 4Nf

3
Lf

��
; ðA5Þ

B2
3d;0 ¼

B2
4d;0

T

�
1þ g02

ð4πÞ2
�
Nd

�
Lb

6
þ 1

3

�

þ 20Nf

9
ðLf − 1Þ

��
; ðA6Þ
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B⃗2
3d ¼

B⃗2
4d

T

�
1þ g02

ð4πÞ2
�
Nd

Lb

6
þ 20Nf

9
Lf

��
: ðA7Þ

ðH†HÞ3d ¼
ðH†HÞ4d

T

�
1 −

1

ð4πÞ2
�
3

4
ð3g2 þ g02ÞLb

− 3y2t Lf

��
; ðA8Þ

ðΣaΣaÞ3d ¼
ðΣaΣaÞ4d

T

�
1 −

1

ð4πÞ2 ð6g
2LbÞ

�
: ðA9Þ

2. Matching relations between superheavy
and heavy scales

Below, we list the matching relations between the
superheavy and heavy scales. The formulas below are
quoted only to the level of accuracy needed to consistently
achieve matching relations at the light scale in the next
subsection to Oðg4Þ.
The Debye masses for the SU(2), U(1), and SU(3) gauge

fields, respectively, are

m2
D ¼ g2T2

�
4þ Nd þ 2Nt

6
þ Nf

3

�
ðA10Þ

m02
D ¼ g02T2

�
Nd

6
þ 5Nf

9

�
ðA11Þ

m002
D ¼ g2sT2

�
1þ Nf

6

�
: ðA12Þ

Matching relations for the SU(2) and U(1) gauge coupling
constants are

g23 ¼ g2ðΛÞT
�
1þ g2

ð4πÞ2
�
44 − Nd − 2Nt

6
Lb

þ 2

3
−
4Nf

3
Lf

��
; ðA13Þ

g023 ¼ g02ðΛÞT
�
1þ g02

ð4πÞ2
�
−
Nd

6
Lb −

20Nf

9
Lf

��
: ðA14Þ

The couplings between temporal and fundamental/
adjoint scalar fields are

h3 ¼
g2ðΛÞT

4
ðA15Þ

h03 ¼
g02ðΛÞT

4
ðA16Þ

h003 ¼
gðΛÞg0ðΛÞT

2
ðA17Þ

ω3 ¼ −
2T
16π2

g2sy2t ; ðA18Þ

δ3 ¼
1

2
g2ðΛÞT ðA19Þ

δ03 ¼ −
1

2
g2ðΛÞT: ðA20Þ

The matching relations for quartic couplings of the scalar
potential are

λ3 ¼ T

�
λðΛÞ þ 1

ð4πÞ2
�
1

8
ð3g4 þ g04 þ 2g2g02Þ

þ 3Lfðy4t − 2λy2t Þ − Lb

�
3

16
ð3g4 þ g04 þ 2g2g02Þ

−
3

2
ð3g2 þ g02 − 8λÞλþ 3

4
a22

��	
; ðA21Þ

a2;3 ¼ T
�
a2ðΛÞ þ

1

ð4πÞ2
�
2g4 − 3a2y2t Lf

− Lb

�
2a22 þ 5a2b4 þ 3g4 þ 6a2λ

−
3

4
a2ðg02 þ 11g2Þ

��	
; ðA22Þ

b4;3 ¼ T

�
b4ðΛÞ þ

1

ð4πÞ2
�
4g4 − Lbða22 þ 11b24

− 12g2b4 þ 6g4Þ
�	

: ðA23Þ

The matching relations for the mass parameters of the
scalar potential are

μ23 ¼ ðμ23ÞSM þ T2

8
a2ðΛÞ þ

1

16π2

�
þ 3

2
a2μ2ΣLb þ T2

�
5

24
g4 þ 1

2
a2g2 −

3

8
a2y2t Lf þ Lb

�
−

7

16
g4 −

5

8
a22 −

5

8
a2b4 þ

33

32
a2g2

þ 3

32
a2g02 −

3

4
a2λ

�
þ 1

T2

�
cþ ln

�
3T
Λ3d

���
−
3

2
a22;3 þ 6a2;3g23 −

3

4
g43

��	
; ðA24Þ

where (see Refs. [4,43])
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ðμ23ÞSM ¼ −μ2ðΛÞ þ T2

16
ð3g2ðΛÞ þ g02ðΛÞ þ 4y2t ðΛÞ þ 8λðΛÞÞ þ 1

16π2

�
−μ2

��
3

4
ð3g2 þ g02Þ − 6λ

�
Lb − 3y2t Lf

�

þ T2

�
167

96
g4 þ 1

288
g04 −

3

16
g2g02 þ 1

4
λð3g2 þ g02Þ þ Lb

�
17

16
g4 −

5

48
g04 −

3

16
g2g02 þ 3

4
λð3g2 þ g02Þ − 6λ2

�

þ 1

T2

�
cþ ln

�
3T
Λ3d

���
39g43
16

−
5g043
16

−
9

8
g23g

02
3 þ 12g23h3 − 6h23 − 2h023 − 3h0023 þ 3λ3ð3g23 þ g023 Þ − 12λ23

�

− y2t

�
3

16
g2 þ 11

48
g02 þ 2g2s

�
þ
�
1

12
g4 þ 5

108
g04
�
Nf þ Lf

�
y2t

�
9

16
g2 þ 17

48
g02 þ 2g2s − 3λ

�
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and

μ2Σ;3 ¼−μ2ΣþT2
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3. Matching relations between heavy and light scales

Below, we list matching relations for 3D theory parameters at the light scale, in which the heavy time components of the
gauge fields B0,Wa

0 , and G
A
0 are integrated out, assuming that both the Higgs doublet and triplet mass parameters are light.

The relations are all valid to Oðg4Þ, provided we appropriately drop higher-order terms arising from coupling constant
products and also from μ3 and μΣ;3 inside the logarithms. We confirm that to the order calculated these relations are
explicitly independent of the gauge parameter ξ,

ḡ23 ¼ g23

�
1 −

g23
24πmD

�
; ðA27Þ

ḡ023 ¼ g023 ; ðA28Þ

λ̄3 ¼ λ3 −
1

8π

�
3h23
mD

þ h023
m0

D
þ h0023
mD þm0

D
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ā2;3 ¼ a2;3 −
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2πmD
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b̄4;3 ¼ b4;3 −
1

2πmD
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0
3 þ δ023 Þ; ðA31Þ

μ̄23 ¼ μ23 −
1

4π
ð3h3mD þ h03m
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D þ 8ω3m00

DÞ þ
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μ̄2Σ;3 ¼ μ2Σ;3 þ
mD
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4. Matching relations between heavy and light scales where the heavy triplet is integrated out

Below, we list matching relations for the light scale DR3EFT parameters, in which the zero Matsubara mode of the real
triplet Σ is integrated out simultaneously with the time components of the gauge fields B0, Wa

0 , and GA
0 :

ḡ23 ¼ g23

�
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1
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; ðA34Þ
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APPENDIX B: MATCHING RELATIONS IN THE CASE OF SUPERHEAVY TRIPLET

In the case in which the mass parameter of the real triplet is large and negative, jμ2Σj≳ ðπTÞ2, the real triplet d.o.f. are
classified as superheavy, and all their Matsubara modes (including the zero mode) are integrated out to derive the heavy-
scale DR3EFT. Matching relations for parameters of the resulting 3D theory require the evaluation sum integrals involving
the real triplet. Because the two-loop sum integrals are technically difficult, we have carried out the matching to onlyOðg2Þ
for the mass parameters μ23 and μ

2
Σ;3. The relations below are written in terms of derivatives of the bosonic thermal function

JBðz2Þ ¼
Z

∞

0

dx x2 lnð1 − e−
ffiffiffiffiffiffiffiffiffi
x2þz2

p
Þ ðB1Þ

evaluated at z2 ¼ jμ2Σj=T2.
The normalizations of the SU(2) gauge fields are

W2
3d;0 ¼

W2
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1þ g2

ð4πÞ2
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16π2
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−1
π2

J00B þ 4μ2Σ
2π2T2

J000B þ ln

����Λ2

μ2Σ

����
���

;

ðB2Þ
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W⃗2
3d ¼

W⃗2
4d

T
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ð4πÞ2
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3
þ 4Nf
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���

: ðB3Þ

Normalizations of all other fields do not depend on the real triplet and are therefore identical to those listed in
Eqs. (A6)–(A8).
The parameters of the heavy-scale DR3EFT that are modified by superheavy triplet are listed below. And other relations

remain the same as in the earlier section:
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Matching relations for the parameters of the light-scale DR3EFT for the superheavy triplet remain the same as in
Appendix A 4 above.
In Fig. 5, we show a comparison between heavy and superheavy approximations. The first-order transition region is again

given by 3D parameter 0 < x < 0.11. Black dashed and dotted curves show Tc ¼ 140 GeV for heavy and superheavy

FIG. 5. Comparison of heavy and superheavy Σ approximations. The gray dotted-dashed line shows the loop-corrected μ2Σ ¼ 0 curve,
and the black dashed and dotted curves show Tc ¼ 140 GeV for the heavy and superheavy cases, respectively.
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cases, respectively. We observe that locations of first-order regions agree qualitatively, while Tc curves show a larger
discrepancy. We assume that this difference in critical temperatures is related to our approximation in the superheavy case,
in which we only used one-loop level determination for the mass parameter that gives y, from which Tc is solved.

APPENDIX C: COUNTERTERMS OF THE 3D EFFECTIVE THEORIES

In this section, we collect the counterterms associated with the logarithmic UV divergences of the 3D effective theory.
The UV-divergent parts can be extracted by a direct diagrammatic calculation of the scalar self-energies at zero external
momentum at two loops. At the DR3EFT at the heavy scale, the mass parameter counterterm for the doublet is

δμ23 ¼ ðδμ23ÞSM −
1

16π2
1

4ϵ

�
−
3

4
g43 þ 6a2;3g23 −

3

2
a22;3

�
; ðC1Þ

where the pure Standard Model contribution is

ðδμ23ÞSM ¼ −
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16
g03

4 −
9

8
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0
3
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2 − 3h003
2 þ 3g023λ3

�
ðC2Þ

and the mass parameter counterterm for the real triplet is

δμ2Σ;3 ¼ −
1

16π2
1

4ϵ
ð−3g43 þ 8g23ð3δ3 þ δ03Þ − 8ð3δ23 þ 2δ3δ

0
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2Þ þ a2;3ð3g23 þ g023Þ þ 20b4;3g23 − 2a22;3 − 10b24;3Þ: ðC3Þ

In the DR3EFT at the light scale, the mass parameter counterterm for the doublet is

δμ̄23 ¼ δμ̄2;SM3 −
1

16π2
1

4ϵ
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−
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4
ḡ43 þ 6ā2;3ḡ23 −
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where the Standard Model contribution is
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and the mass parameter counterterm for the real triplet is

δμ̄2Σ;3 ¼ −
1

16π2
1

4ϵ
ð−ḡ43 þ ā2;3ð3ḡ23 þ ḡ023Þ þ 20b̄4;3ḡ23 − 2ā22;3 − 10b̄24;3Þ: ðC6Þ
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