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Abstract: Seedling stands are mainly inventoried through field measurements, which are typically
laborious, expensive and time-consuming due to high tree density and small tree size. In addition,
operationally used sparse density airborne laser scanning (ALS) and aerial imagery data are not
sufficiently accurate for inventorying seedling stands. The use of unmanned aerial vehicles (UAVs)
for forestry applications is currently in high attention and in the midst of quick development and
this technology could be used to make seedling stand management more efficient. This study was
designed to investigate the use of UAV-based photogrammetric point clouds and hyperspectral
imagery for characterizing seedling stands in leaf-off and leaf-on conditions. The focus was in
retrieving tree density and the height in young seedling stands in the southern boreal forests of
Finland. After creating the canopy height model from photogrammetric point clouds using national
digital terrain model based on ALS, the watershed segmentation method was applied to delineate the
tree canopy boundary at individual tree level. The segments were then used to extract tree heights
and spectral information. Optimal bands for calculating vegetation indices were analysed and used
for species classification using the random forest method. Tree density and the mean tree height
of the total and spruce trees were then estimated at the plot level. The overall tree density was
underestimated by 17.5% and 20.2% in leaf-off and leaf-on conditions with the relative root mean
square error (relative RMSE) of 33.5% and 26.8%, respectively. Mean tree height was underestimated
by 20.8% and 7.4% (relative RMSE of 23.0% and 11.5%, and RMSE of 0.57 m and 0.29 m) in leaf-off and
leaf-on conditions, respectively. The leaf-on data outperformed the leaf-off data in the estimations.
The results showed that UAV imagery hold potential for reliably characterizing seedling stands and
to be used to supplement or replace the laborious field inventory methods.

Keywords: seedling stand inventorying; photogrammetric point clouds; hyperspectral imagery;
unmanned aerial vehicles; leaf-off; leaf-on
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1. Introduction

Sustainable forest management requires accurate and up-to-date information. The information is
acquired by field measurements or remote sensing-based inventorying. The field measurements are
time-consuming, expensive and laborious, in contrast to remote sensing-based inventorying techniques.
Currently, unmanned aerial vehicles (UAVs, aka: drones) are in high interest for forest inventorying
because of the UAVs’ capability to collect data from which suite of essential forest inventory attributes
can be derived with accuracy close to field inventories [1-8]. UAVs provide an easy, inexpensive, and
repeatable data collection method [9] with very high spatial resolution data that can even support the
detection of small trees which has not been possible using airborne laser scanning (ALS) data [10].

In Finland, seedling stands are defined as the forest stands with mean height of <7 m (conifer) or
9 m (deciduous) [11]. Conditions of the seedling stands can greatly predict and define the condition of
future mature stands [12]. For example, Huuskonen and Hynynen [12] revealed that precommercial
thinning, which was carried out when the dominate height was 3 m and the target tree density was
2000 trees per hectare (TPH), resulted in an increase of 15% in the mean diameter of the first commercial
thinning. Thus, monitoring and management of the seedling stands development are required to
ensure quality timber as well as the future timber supply.

ALS data, used in operational private forest inventories (61%) in Finland, is not capable to
characterise seedling stands due to small tree size and high tree density. Thus, the seedling stands
are inventoried by field measurements, which are the most expensive part of the total cost of the
inventory. Therefore, analysing other cost-efficient means to estimate tree density, height, and species
composition is required. A few studies explored the use of UAV-based photogrammetric point clouds
in the seedling stands. For example, Puliti et al. [13] estimated biophysical properties of seedling
stands using UAV-photogrammetric point cloud data, and compared it with ALS data. Similarly, UAV
demonstrated promising results to detect coniferous seedlings in leaf-off conditions where seedlings
were visually and spectrally distinctive [14]. Moreover, Goodbody et al. [15] combined UAV- and
aerial-photogrammetric point clouds to assess spatial, spectral and structural details for the seedling
stands. The UAV-based photogrammetric data were also utilized to investigate the feasibly and merits
of UAV for evaluating regeneration performance in naturally-growing and planted conifer seedlings
in different growth phases [16]; as well as assessing the effects of the European spruce bark beetle
(Ips typographus L.) disturbance on natural regeneration and standing deadwood [17].

In addition to the few UAV studies, other remote sensing materials were also used for investigating
the seedling stands, for example airborne imagery [18-21] and SPOT-5 satellite imagery [22]. Moreover,
ALS data were applied for analysing small trees in the forest-tundra ecotone [23,24], regeneration
or young forests [25,26] and predicting aboveground biomass (AGB) change in young forests [27].
Additionally, Korpela et al. [28] combined ALS and airborne imagery for characterizing seedling
stand vegetation; and for detecting the requirement for tending seedling stands [29]. Also, Korhonen
etal. [29] used ALS and aerial imagery to detect the tending requirement of seedling stands, by creating
model function based on ALS-derived echo intensity and height percentiles together with aerial images
texture. However, they appointed out that their approach could not completely replace the field visits
with regards to the need for tending seedling stands.

The use of hyperspectral data and comparing data from leaf-off and leaf-on conditions remained
unexplored in the previous seedling-focused studies. Thus, this study was designed to extend current
knowledge of using UAV-red, green, blue (RGB)-imagery, UAV-hyperspectral data as well as analysing
the performance of leaf-off and leaf-on data with predefined plot-level tree densities (TPH). This
research concentrates on retrieving the total and spruce-specific tree density and height in seedling
stands in the southern boreal forests of Finland. We focused on the spruces because it is the species
of interest to be grown and spruce seedling stands commonly require more care (e.g., tending and
removal of naturally regenerated broadleaf trees) compared to seedling stands of Scots pine. In Finland,
seedling stands are divided into young (height < 1.3 m, YoS) and advanced seedling stands (height
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> 1.3 m, AdS). Therefore, this study also aims to assess the differences between predictions for YoS
and AdS.

2. Materials and Methods

2.1. Study Area and Establishment of the Sample Plots

This study was carried out in a southern boreal forest zone in Evo, Finland (61.20° N, 25.08° E,
133-150 m above sea level) (Figure 1). There are mostly managed forests where Scots pine and Norway
spruce are the dominant tree species.
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Figure 1. Map of study area and established sample plots in young seedling stand (northern image
block) and in advanced seedling stand (southern image blocks). Background: UAV-red, green, blue
(RGB)-image mosaics (middle map) and UAV-hyperspectral image mosaics (right maps) visualized
coloured-infrared (885.9 nm, 605.4 nm, 513.5 nm) in leaf-on conditions.

In our study, we selected one YoS and one AdS stand from the study area based on the existing
forest resource information. A prerequisite for both seedling stands was the number of TPH, which
had to be more than 2400. Such a density was required to establish sample plots and thin them to
varying densities. We established five sample plots with an 8-m radius to YoS and 10 sample plots with
a 10-m radius to AdS. The sample plots in YoS were thinned approximately to the following target tree
densities: 1200, 1400, 1600, 1800, and 2000 TPH. Respectively, the sample plots in AdS were thinned to
the following densities: 600, 800, 1000, 1200, 1400, 1600, 1800, 2000, 2200, and 2400 TPH.

The sample plots were established in April through May 2016. Sample plot locations were
recorded using the Trimble GeoXT Global Navigation Satellite System (GNSS) device. The GNSS
positions were differentially corrected using the data from the local reference station. The expected
accuracy in an open area is below 1 meter. After the thinning treatments, tree attributes were measured
during June (Table 1), and the sample plot-level forest inventory attributes were compiled. In YoS all
remaining trees were spruce, but AdS sample plots had an admixture of birch that varied from 0% to
51%. The site type of our sample plots is the mesic heath forest.
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Table 1. Tree height variation in sample plots. YoS: young seedling stands, AdS: advanced seedling stands, Hyin, Hmax, Hmean, and Hgq: minimum, maximum, mean

and standard deviation of field-measured heights (TPH: Trees per hectare, Height unit: meter).

Total Trees Spruce Birch
Stand Development Plot Stem Number H Stem Stem
Class Nar(;e (TPH) (Tl:)an Number Hmin  Hmax  Hmean  Hyta Number Hmin = Hmax  Hmean  Hyta
GT1 1989 1.19 1989 0.73 1.87 1.19 0.33 0
YoS GT2 1790 1.16 1790 0.77 1.78 1.16 0.24 0
(n=5) GT3 1194 1.12 1194 0.77 1.61 1.12 0.19 0
GT4 1393 1.05 1393 0.82 1.48 1.05 0.20 0
GT5 1592 1.14 1592 0.86 1.56 1.14 0.19 0
Gl1 986 2.78 891 1.62  3.92 2.66 0.55 95 3.66 433 3.90 04
G2 605 3.23 446 1.87  3.83 3.00 0.57 159 3.36 427 3.88 04
G3 1592 3.20 1369 1.71 4.00 3.12 0.58 223 3.28 433 3.67 0.3
G4 1814 3.66 1273 157 440 3.44 0.63 541 336  5.01 4.17 0.5
AdS G5 1401 2.70 1401 1.62 3.87 2.70 0.54 0
(n=10) G6 2069 3.08 2037 1.71 4.54 3.07 0.66 32 344 344 3.44
G7 2228 3.72 1464 2.09 421 3.27 0.52 764 3.36 558 4.58 0.6
G8 2388 3.74 1178 1.62 4.28 3.35 0.62 1210 274 517 4.12 0.6
G9 1210 245 1210 1.71 3.56 2.45 0.50 0
G10 796 2.95 796 2.03 396 2.95 0.58 0
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During the field data collection in June, many fern and grasses had emerged. In AdS, the tree
species was determined, and the diameter at breast height (DBH) was measured with steel callipers
from every tree with a height of > 1.3 m. The tree height was measured using an electronic hypsometer
(Vertex IV, Haglof, Langsele, Sweden) from every third tree for each tree species. In addition, the height
of the tallest tree was measured from every sample plot. YoS was measured similarly, but instead of
DBH, the diameter at ground height was measured because the mean height of the YoS sample plots
was less than 1.3 m (Table 1). The height for all of the trees within each sample plot was predicted using
the sample tree height measurements and by fitting the Néslund’s height curve [30] to the measured
data. The relative RMSE of the tree height prediction was 12.8% (relative Bias: —0.13%) and 11.8%
(relative Bias: 0.60%) for YoS and AdS, respectively. In the sample plots with mixed species classes,
mean tree height of all trees was calculated with a weighted average of the number of each tree species
and their mean height. Plot-level TPH was calculated by dividing the number of field-observed trees
in each plot with its area (radius of 8 and 10 m in YoS and AdS, respectively) and converting the area to
hectare. Species-specific tree height and TPH statistics are presented in Table 1.

2.2. Remote Sensing Data

Remote sensing data acquisition were carried out using a hexacopter drone of the Finnish
Geospatial Research Institute (FGI). A hyperspectral camera based on Fabry—Pérot interferometer
(FPI) [31] and a Samsung NX300 RGB camera were used to collect remote sensing imagery. The FPI
technology provides spectral data cubes with a rectangular image format, but each band in the data
cube has a slightly different position and orientation. The sensor provides images with dimension of
1024 in 648 pixels where every pixel is 11 um X 11 pm. In this study, a filter with a wavelength range of
500-900 nm and settings with 36 separate bands was used; the spectral resolution range was 10-40 nm
at the full width at half maximum (FWHM) (Table 2). A Samsung RGB camera had a 16-mm fixed lens
and an image size of 5472 X 3648 pixels. The drone was equipped with a NV08C-CSM-GNSS receiver
that was used to calculate the flight trajectory. The Raspberry Pi2 on-board computer was used for
collecting timing data for all devices and for logging the GNSS receiver. More details of the imaging
sensor and UAV system are provided in [32,33].

Table 2. Spectral settings of the hyperspectral spectral camera. L0: Central wavelength, FWHM: Full
width at half maximum.

Spectral Settings of the Hyperspectral Spectral Camera
50724 509.08 51348 52044 537.16 545.62 5542 562.85 57227 58443 591.92 599.24

(1521) 60539 616.18 628.6 643.2 656.34 66897 67575 687.44 694.17 70228 70941 7154
72691 734.62 74881 76123 790.85 804.14 816.73 831.08 84445 85746 871.31 885.86

FWHM 779 1057 1586 19.82 20.11 1923 2053 20.69 2275 16.64 1535 19.82
(am) 26,55 2672 3081 2861 279 2898 2785 30.01 3059 2829 2545 26.13

2994 31.34 28 296 2765 2513 2797 286 2841 30.68 3275 29.52

The UAV imagery was acquired during leaf-off (9 and 11 May) and leaf-on (29 June) 2016 in three
separate flights in both seasons. The weather conditions were bright and cloudless during leaf-off
campaigns and varied from sunny to cloudy during leaf-on campaigns (Table 3). The flight height
was 100 m from the ground level, which provided a ground sampling distance (GSD) of 10 cm for
the FPI and 2.5 cm for the RGB images. The flight speed was 3 m/s. The forward and side overlaps
were 83% and 80%, respectively, for the FPI camera blocks and 96% and 85%, respectively, for the
RGB camera blocks. Altogether, 20 ground control points (GCPs) were installed in the areas for
georeferencing purposes (6 GCPs in YoS and 7 GCPs in both AdS east and west). They were targeted
with circular targets with a 30-cm diameter, and their coordinates were measured using a Trimble
R10 (L1 + L2) RTK-GPS receiver with accuracies of 2 cm in horizontal coordinates and 3 cm in height.
For the reflectance transformation purposes, reflectance panels with a size of 1 m X 1 m and nominal



Forests 2019, 10, 415 60of 17

reflectance of 0.03, 0.10, and 0.50 [34] were positioned near the UAV take-off place. An ASD Field
Spec Pro (Analytical Spectral Devices, Malvern Panalytical Ltd., Malvern, United Kingdom) with
cosine collector optics was installed near the take-off place to make irradiance measurements during
the flights.

Table 3. Details of the UAV data capture in young seedling (YoS) and advanced seedling (AdS): date,
time, sun zenith (SunZen) and azimuth (SunAz) angles, illumination conditions, and information
about radiometric model used for FPI image processing (BRDF = bidirectional reflectance distribution
function correction, RELA = relative image-wise corrections).

Spot YoS AdS West AdS East
Season Leaf-Off Leaf-On  Leaf-Off Leaf-On Leaf-Off Leaf-On
Date 11 May 29 June 9 May 29 June 9 May 29 June
Time (UTC + 3) 11:41 15:11 12:10 13:57 11:31 13:12
SunZen 46° 42° 45° 38° 47° 38°
SunAz 148° 218° 158° 193° 145° 176°
INIumination Conditions Bright Bright Bright Variable Bright Overcast
Radiometric Model BRDF BRDF BRDF RELA BRDF RELA

2.3. Creating Dense Point Clouds and Image Mosaics

Georeferencing of the RGB images was carried out using the Pix4D MapperPro (Pix4D S.A,,
Prilly, Switzerland) version 2.2.25 software and supported by GCP and GNSS trajectory data collected
on-board the UAV. After orientation processing, dense three-dimensional (3D) point clouds were
created by automatic image matching using average point densities of 1600 points/m?. Orientations
of the FPI images were determined in a separate process. First, the orientations of three reference
bands (band 3: LO = 513.5 nm; band 11: LO = 591.9; band 14: L0 = 616.2 nm) were calculated using the
Pix4D software, as was the case with the RGB images. The rest of the bands were co-registered to the
reference bands using a rigorous 3D approach [35]. The process provided the band registration with
a better than 1-pixel accuracy over the area.

The objective of the radiometric processing of the FPI imagery was to provide high-quality
reflectance mosaics including the 36 spectral bands. The radiometric modelling approach developed
at the FGI and implemented in the FGI’'s radBA software (version 2016-08-20, Masala, Finland),
an in-house toolbox for radiometric block adjustment [32,36], included sensor correction, atmospheric
correction, correction for the illumination changes and other non-uniformities, and normalisation
of the anisotropy effects due to the varying illumination and viewing directions [32]. The empirical
line method [37] was used to calculate the transformation from digital numbers to reflectance factors
with the aid of the reflectance reference panels. A radiometric block-adjustment method was used to
determine the model-based radiometric correction to compensate for the radiometric disturbances.
In this investigation, the relative image-wise correction parameters were calculated for all six datasets.
Furthermore, disturbances caused by the object-reflectance anisotropy (i.e., bidirectional reflectance
distribution function (BRDF)) were determined for the datasets that were collected during sunny weather
(Table 3). Markelin et al. [38] previously evaluated different options of the radiometric processing.

The RGB image orthomosaics were calculated with a GSD of 2.5 cm using the Pix4D software. The
hyperspectral orthomosaics were created using the FGI's radBA software ([32,36] with a GSD of 10 cm).

2.4. Delineation of Tree Crowns and Extracting 3D Metrics

The height of the photogrammetric point clouds was normalised to the height above-ground level
using the national digital terrain model (DTM) with the resolution of 2 m. The DTM was created by
the National Land Survey of Finland using ALS data. The expected elevation accuracy of the DTM
varies from 10 to 30 cm in boreal forest conditions [39]. The DTM has been updated in August 2015.
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For detecting tree crowns, leaf-off and leaf-on canopy height models (CHMs) were created from
the normalised point clouds, by assigning the height value of the highest point to pixels of the CHMs.
The resolution of 10 cm was selected for the CHMSs to also match with the resolution of the FPI
hyperspectral images. To avoid any empty pixels (gaps) in the CHMs, values for the null pixels were
interpolated using the K-nearest neighbour inverse distance weighting (KNNidw) with the three
nearest neighbours in the lidR package [40] in R 3.3.3 [41]. To delineate tree crowns from the CHMs of
each plot, we applied watershed segmentation in SAGA GIS version 2.3.2 [42].

The maximum and mean height (Hmax, Hmean) of segments were extracted from CHMs. Then,
segments with Hpmax below a height threshold (0.5 m and 1.0 m for YoS and AdS, respectively) were
excluded as ground vegetation or understory. Neesset and Bjerknes [26], and Jkseter et al. [27],
excluded ALS points below the 0.5-m threshold, assuming them to be laser returns from the ground
vegetation. Therefore, we selected the threshold 0.5 for YoS and 1m AdS. Moreover, according to field
data (Table 1), the smallest tree had H,j, of 0.73 m in YoS and 1.57 m in AdS. Therefore, the selected
thresholds were lower to include all tree segments. Within segments, we kept cells with height of
> 50% of segments Hmax to minimise the possible effect of understory. The 50% was selected by expert
knowledge and visual inspection, although we admit that there might be other approaches.

2.5. Selection of Training Segments

The exclusion of segments with Hyax below height thresholds was also applied for segments
located outside sample plots boundary. Then, training segments were selected by visual interpretation
of the well-distinguishable and typical leaf-off and leaf-on segments, located within a 2 m buffer
around the sample plots boundary. The visual interpretation was carried out using leaf-off and leaf-on
RGB orthomosaics to detect tree classes (spruce and birch) and non-tree classes (stumps/deadwood,
bush/grass and rock). The number of training segments were 144 in leaf-off and 279 in leaf-on (Table 4).
The non-tree classes were merged for the classification step.

Table 4. Number of training data in each classification class in each epoch. Non-tree classes include
stump/deadwood, bush/grass/fern, and rock.

Birch Spruce Non-Trees  Total

Leaf-off 30 67 47 144
Leaf-on 50 101 128 279

The number of training data is higher in leaf-on (Table 4) because grass, bushes, and ferns (which
are in the non-tree class) had more segments in leaf-on data. They emerge in summer, grow fast, and
reach the height thresholds.

2.6. Vegetation Indices and Finding Optimal Bands

We calculated the arithmetic mean of spectral values for each band from the hyperspectral data
for each segment in the leaf-off and leaf-on data separately. These were then used to calculate three
vegetation indices (VIs) (Equation (1)) using a combination of near-infra red (NIR) together with green
(i), red (ii), and red-edge bands (iii). As there were several bands within these ranges of spectrum
in our hyperspectral data (Table 5), we calculated all possible combinations of the three VIs using
Equation (1).

(Ra1 =Rp2)
(Ra1 +Ry2)’

where R is the reflectance value and A1 and A2 are the wavelengths of the two bands employed in

Index =

)

the index.
To select the optimal and most important bands for the VIs in identifying trees from non-trees as
well as spruce from birch, we ran the random forest method (implemented from yalmpute package [43]
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in R 3.3.3) 100 times for both leaf-off and leaf-on data. The final selection for the VIs was done based on
the scaled importance; in other words, the VIs that were considered the most important variable at
least 20 times of the 100 random forest runs were selected for the final modelling.

Table 5. Wavelength range and corresponding number of bands from hyperspectral images.

Wavelength Range (nm)  Number of Bands

Green 507-562 8
Red 620-700 7
Red Edge 700-780 7
NIR 780-886 8

2.7. Segments Classification

In addition to the optimal VIs, Hmnax and Hmean Were also used as predictors in training and
prediction phases of the random forest classification method [44] to predict the species class of
segments. The random forest classification method was applied to find the nearest neighbours (i.e.,
crown segments) in a feature space using the predictors selected (i.e., VIs, Hmax, and Hmean).

We used the random forest method from the yalmpute R package with the buildClasses mode with
500 trees, k = 1, and we set the classification classes (birch, spruce, non-tree classes) as the y variable.

After classifying the segments, we discarded non-tree classes and proceeded to extract the
plot-level total and spruce-specific TPH, as well as the mean height of all trees and of spruce trees’
mean height. Note that tree heights were derived from CHMs and not predicted with the random
forest method.

2.8. Accuracy Evaluation for Tree Density and Height

We compared plot-level spruce-specific TPH and the total TPH attributes with field-measured
reference. To evaluate the reliability of remotely sensed tree height, we compared our estimation of the
plot-level mean tree height with its corresponding field data, either spruce-specific tree heights or total
tree heights, using the equations. Absolute and relative bias (BIAS) and RMSE were calculated for
each attribute (Equations (2)—(5)).

Yy -9
BIAS = M 3]
n
BIAS% — 100 x D22, 3)
y
Zp: i~ Ai
RMSE = M, @)
n
RMSE% = 100 x %SE )

where 7 is the number of plots, y; the value from the field data for plot i, §; the remotely sensed
(predicted) value for plot i, and y is the mean of the variable in the field data.

In addition, we also used Pearson correlation coefficient (r). The output value can be interpreted
as the proportion of the variance in an attribute (remotely-sensed data) to the variance in another (field
data) as x and y, respectively. The formula is the following:

e il (x _i)'<Yi _?)
VIR (- R 20 (- 9)

, (6)
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The accuracy evaluation for TPH and tree height was analysed and reported for all sample plots
(n = 15) for both leaf-off and leaf-on conditions. Additionally, the accuracy was assessed among YoS
(n =5) and AdS (n = 10) separately.

3. Results

3.1. Analysing Spectral Features and Optimal Bands for Vegetation Indices

The spectral reflectance of training data using leaf-off and leaf-on hyperspectral data (Figure 2)
showed that the tree classes are distinguishable from the non-tree class, especially in the red-edge and
NIR spectrum in both epochs. The reflectance spectra from AdS leaf-on datasets had some anomalies
(Figure 2b). The datasets were captured under cloudy or partially cloudy conditions using a short
exposure time of 10 ms, which resulted in poor image quality, especially in the red spectral range
(600-670 nm). This was not considered a critical problem in the analysis because only one of the indices
was in this range, and our selection procedure did not select the lowest quality bands for the indices.

Spectral signature with leaf-off data Spectral signature with leaf-on data

g T
© birch S birch
o spruce o spruce
= stump-deadwood === stump-deadwood
“ V|| —
S [| === grass-bush S grass-bush
- rock - rock

Reflectance
0.2
Reflectance
0.2

St 5t
ol <L
oL s ; . o L K . .
500 600 700 800 900 500 600 700 800 900
Wavelength (nm) Wavelength (nm)
(a) (b)

Figure 2. Mean spectra of training data in five classes, in leaf-off (a) and leaf-on (b).
The optimal bands found and used for creating VIs are given in Table 6 for each epoch.

Table 6. Wavelengths used for calculating vegetation indices.

Vegetation Index Leaf-Off Wavelengths (nm) Leaf-On Wavelengths (nm)

694.16 and 857.46
Red and NIR 675.75 and 804.15 675.75 and 871.31
520.44 and 857.46
Green and NIR 513.48 and 87131 537.16 and 790.85
709.41 and 790.85 ;(;Z'ié 2113 23?'2?
Red Edge and NIR 702.28 and 844.45 715.40 and 885.86

761.23 and 831.08

748.81 and 844.45

3.2. Tree Density Estimation

Both total tree density and spruce tree density were more accurately predicted with leaf-on data
(Table 7). The total tree density was estimated approximately 10%-points more accurately (relative
RMSE of 33.5% and 26.8% in leaf-off and leaf-on) than spruce tree density (44.6% and 38.1%) in
both epochs.
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The estimation of the total TPH was also compared among YoS and AdS separately (Figure 3).
Total tree density of YoS were estimated more accurately with leaf-on data (relative RMSE of 32.7%)
than with leaf-off data (relative RMSE of 47.3%). The total TPH was underestimated by 15.4% in
leaf-on conditions whereas the underestimate for leaf-off conditions was 6.3%; although there was no
substantial difference in relative and absolute RMSE between the epochs (Figure 3).

Total tree density in leaf-off Total tree density in leaf-on
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Figure 3. Total tree density (unit: TPH) in leaf-off (a) and leaf-on (b) conditions, separating plots in
advanced seedling stand (AdS) and plots in young seedling stand (YoS).

Moreover, spruce tree density among YoS (n = 5) and AdS (n = 10) was also calculated for both
epochs (Figure 4). The relative RMSE of spruce tree density in AdS was 19.2% in leaf-on data whereas
it was 58.5% and 58.2% in YoS for both epochs. Spruce tree density was less underestimated in AdS in
leaf-on (28.3% and 12.7% in leaf-off and leaf-on); nevertheless, it was approximately 4%-points more
accurate in leaf-off in YoS (53.8% and 57.5% in leaf-off and leaf-on conditions).
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Figure 4. Spruce tree density (TPH) in leaf-off (a) and leaf-on (b) conditions, separating plots in advanced
seedling stand (AdS) and plots in young seedling stand (YoS) in leaf-off and leaf-on conditions.
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Table 7. Evaluation of the total and spruce tree densities among all sample plots (1 = 15) (TPH = Trees

per hectare).

Total Number of Trees

Number of Spruce Trees

Leaf-Off Leaf-On Leaf-Off Leaf-On
RMSE (TPH) 514 411 686 585
Relative RMSE (%) 33.5 26.8 44.6 38.1
Bias (TPH) 269 311 570 432
Bias % 17.5 20.2 37.1 28.1
R? 0.57 0.73 0.46 0.35

3.3. Height Attribute Extraction

Among all sample plots, the mean height of all trees was underestimated by 20.8% and 7.4%

(relative RMSE of 23.0% and 11.5%) in leaf-off and leaf-on conditions, respectively (Table 8). The mean
height of spruces was underestimated by 20.2% and 6.9% (relative RMSE of 21.7% and 11.4%) with
leaf-off and leaf-on data, respectively. As the results show, leaf-on data were more favourable for both
all trees and the spruce mean height estimation. The absolute RMSEs and biases were 0.29 m and
0.18 m, respectively, for the leaf-on data, and 0.57 m and 0.52 m, respectively, for the leaf-off dataset.

Table 8. Evaluation of the total and spruce mean tree heights among all sample plots (1 = 15).

Mean Height of all of the Trees Mean Height of Spruce Trees

Leaf-Off Leaf-On Leaf-Off Leaf-On
RMSE (m) 0.57 0.29 0.52 0.27
Relative RMSE (%) 23.0 115 21.7 114
Bias (m) 0.52 0.18 0.48 0.16
Bias% 20.8 74 20.2 6.9
R? 0.95 0.96 0.97 0.95

Figure 5 shows the estimation of the total tree height among YoS and AdS separately in both
epochs. Leaf-on data resulted in more accurate estimations in both YoS and AdS. The mean height
of all trees in AdS was underestimated by 20.1% in leaf-off, whereas it was improved to 8.3% in the
leaf-on data. The underestimation in YoS was improved from 24.6% in leaf-off conditions to 2.6% in
leaf-on conditions.

Mean height of all trees in leaf-off Mean height of all trees in leaf-on
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g
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Figure 5. Mean tree height (unit: meter) of all trees in leaf-off (a) and leaf-on (b) conditions, separating
plots in advanced seedling stand (AdS) and plots in young seedling stand (YoS).
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The mean height of spruces was underestimated by 19.4% and 8.7% (relative RMSE of 19.8%
and 10.8%) in the AdS in leaf-off and leaf-on conditions, respectively (Figure 6). Although it was
underestimated by 24.6% (relative RMSE of 26.4%) for the YoS in leaf-off conditions; it was overestimated
by 2.4% in leaf-on conditions (relative RMSE of 9.6%). The overestimation (Figure 6b) could be due to
higher underestimation of spruce tree density in leaf-on (Figure 4b), which could show the omission of
small spruce trees and result in the 2.4% overestimation. Relative RMSE for AdS (10.8%) was larger
than YoS (9.6%) in leaf-on, in contrast to leaf-off conditions.

Spruce-trees height in leaf-off Spruce-trees height in leaf-on
wn b O AdS W Yos . O AdS W YoS
RMSE (m)  0.59 (19.8%) 0.30 (26.4%) RMSE (m)  0.32 (10.8%) 0.1 (9.6%)
Bias (m) 0.58 (19.4%)  0.28 (24.6%) Bias (m) 0.26 (8.7%)  -0.03 (-2.4%)
-+ | R 0.90 0.27 | R2 0.73 0.64
g
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Figure 6. Spruce-specific mean tree height (unit: meter) in leaf-off (a) and leaf-on (b) conditions,
separating plots in advanced seedling stand (AdS) and plots in young seedling stand (YoS) in leaf-off
and leaf-on conditions.

4. Discussion

4.1. Tree Density Estimation

Our findings for total trees density in leaf-on (relative RMSE: 26.8%) was an improvement to [13]
that achieved plot-level relative RMSE of 36.3%, that used area-based approach to fit random forest
models with plot data and UAV for estimating forest attributes. We shall note that Puliti et al. [13]
presented RMSE of different tree densities ranging between 1 to >10,000 at every 1000 intervals.
Comparing the range of our field tree density (600-2400 TPH) with the corresponding reported interval
in their results, our total tree leaf-on RMSE was more accurate (411 TPH) than their achievement
(~1900 TPH). Our underestimation of tree density (leaf-off 17.5% and 20.2% leaf-on) was greater
than [14] (13.6%). The greater underestimation can be because of different tree detection method they
used three-step object-based methods, unlike our watershed-segmentation.

Comparing our findings with seedling-focused ALS studies, our relative RMSE was more accurate
(26.8%) than [13] (53.4%). They used ALS data with point density of 5 points m~2 with the same
methodology that they used for UAV data, area-based approach and random forest model fitting. Our
higher point density and the different used method could consequence the outperformance. Earlier,
Orka et al. [25] applied ALS for predicting the attributes of 19 regeneration stands achieved a relative
RMSE of 47% for predicting the total TPH at the stand level. Comparing our plot-level results with that
of the stand level predictions in [25], our findings are more accurate because a decrease in the RMSE
values was observed when scaling the plot-level estimation to stand level [13]. Moreover, an earlier
study [26] utilised small-footprint ALS to estimate the tree height and the TPH in young forest stands
(tree heights < 6 m). They resulted in a relative RMSE of 42% for predicting the stem number using
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a regression model, created with a combination of field reference data. Our tree density results (relative
RMSE: 26.8%) were more reliable than above-mentioned studies in the seedling stands. However, we
admit that every study can have various parameters that affect the results, such as sample size, tree
species, density and height conditions, different resolution and quality of remote sensing imagery.
The most comparable studies are [13,14], because the other above-mentioned literature used models to
predict TPH, instead of direct detection of the trees from the remote sensing data.

4.2. Tree Height Estimation

Our findings for total trees leaf-on height (relative RMSE: 26.8% TPH) was in line with [13],
achieved plot-level relative RMSE of 30.9 % using area-based approach and fitting random forest models
with plot data and UAV to predict forest attributes. Our tree height estimation was more accurate
than [17] that used UAV-based photogrammetric point clouds to assess the effects of the European
spruce bark beetle (Ips typographus L.) disturbance on natural regeneration and standing deadwood.
They reached a mean RMSE of 1.31 m (59%) and 1.57 m (64%) for manually and automatically
delineated regeneration trees, respectively. They reported more accurate tree height estimation
with point clouds from UAV than from aerial photography (mean relative RMSE of 115% and 59%,
respectively), when manually delineating trees in both data. Moreover, Vepakomma et al. [16] resulted
in an underestimation of 0.39 m in seedling tree height retrieval using UAV-based photogrammetric
point clouds. Furthermore, Goodbody et al. [15] assessed the conditions of regeneration stands using
digital aerial photography and UAVs, and underestimated tree height by 0.55 m (RMSE = 0.92 m)
using UAV-based photogrammetric point clouds. They claimed that their result had the potential to be
used in silvicultural prescriptions and growth projection models.

ALS has been another important data source for estimating tree height. Puliti et al. [13] achieved
32.0% of relative RMSE when assessing seedling tree height using 5 points m~2 density ALS data. Also,
Orka et al. [25] utilised ALS data in 19 regenerations stands in Norway for predicting tree attributes.
They revealed relative RMSE of 28% for predicting the mean tree height at the stand level. Neaesset and
Bjerknes [26] predicted the plot-level height with 0.23 m (3.5%) of bias using a two-stage procedure.
Note that only 29 sample plots (of the total 174 sample plots of their whole study area) were young
stands (heights < 11.5m). Also, the tree height in the study [26] was higher than this study, although
their tree density was higher (mean density 4197 TPH). Their smaller bias could be due to the two-stage
procedure or because they had a mixture of mature stands in their study.

In our evaluations, the absolute RMSE and bias for mean tree height of all trees were 0.29 m and
0.18 m, respectively, for the leaf-on data, and 0.57 m and 0.52 m, respectively, for the leaf-off dataset. The
values of the leaf-on data were close to the limits of the methods when considering the georeferencing
accuracy of approximately 0.05 m, reconstruction accuracy of the tree surfaces of decimetres, and the
uncertainty of the ALS based DTM, of approximately 0.10-0.30 m. The poorer accuracy of the leaf-off
data is likely to be due to the challenges of 3D object reconstruction of leafless branches with of data set
with a GSD of 2.5 cm using image matching; furthermore, the overall accuracy of the photogrammetric
processing could be poorer with the more challenging leaf-off dataset. These results were better than
in earlier studies for seedling stands although the earlier studies can have different parameters that can
influence on the result such as sample size, tree species, density and height conditions, in addition to
the quality of remotely-sensed data. The mean tree height in [17] varied between 1.19 and 4.10 m within
eight sample plots, scanned by UAV at 40-m flying altitude. The GSD after optimisation process in the
study had yielded average residuals < 10 cm in all plots (they used only RGB, not hyperspectral). Yet
the flight height in this study was 100 m, which resulted in a GSD of hyperspectral data up to 10 cm and
RGB-orthomosaics of 2.5 cm. The regeneration density in the study [17] varied more (approximately
300-8000 TPH) than in this study (approximately 1200-2000 TPH in YoS and 600-2400 TPH in AdS).
Yet in this study, the deviation of plot-level tree height was higher (0.77-4.54 m) than in [17] that varied
between 1.19-4.10 m.
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In this study, the tree height could be even more accurately estimated if our field reference data
were measured at the individual tree level or if at least the training data had tree-wise field-measured
height. It is common that the tree height is also predicted at the same time as species classification
carries out using the random forest method because it can handle predicting several attributes. This
could improve the height estimation further and correct the small overestimation of tree height in YoS
in the leaf-on data. Additionally, underestimation in tree density can cause overestimation in height
retrieval, especially the omission of smaller trees. It was perhaps why the underestimation of spruce
density in leaf-on caused a minor height overestimation (2.4%).

4.3. Comparing Leaf-Off and Leaf-On Data

This research was specifically designed to evaluate the performance of data collected in leaf-off
and leaf-on conditions for seedling stands. It was observed that inventorying in leaf-on conditions is
more favourable for both tree density and mean tree height overall, and we recommend the use of
leaf-on data when object reconstruction is based on photogrammetry. Mean tree height was predicted
more reliably (relative RMSE: 11.5%) than tree density (relative RMSE: 26.8%) among all sample plots
with leaf-on data.

To the best of our knowledge, there were no prior literature to compare leaf-off and leaf-on data
for characterizing seedling stands (using any type of remote sensing data, either from UAYV, aerial
imagery, active sensing or spaceborne). Therefore, we should compare our findings with studies
that focused on non-seedling stands. In mature forests, leaf-off and leaf-on aerial images had been
used to assess mapping of forest attributes [45]. They recommended against of using leaf-off aerial
images, where coniferous trees (pine and spruce) were major species with birch trees as minor tree,
because they observed poor accuracy and underestimation of height distribution using leaf-off data in
deciduous forest. The lower height value estimation in leaf-off data was also reported by [46], that
used leaf-off and leaf-on aerial images to estimate the proportion of deciduous stem volume in mixed
coniferous-deciduous forest using area-based approach. Our findings are in parallel with their results.
It is worth noting that further advantage of the leaf-on data includes the prospects of utilizing the
spectral information in characterizing the vegetation.

In terms of ALS data for mature forests, small difference (relative RMSE and bias < 2%) was
reported for estimating all forest attributes except volume (< 7%) between leaf-off and leaf-on data,
affirming that leaf-off ALS data could be used for area-based methods [47]. Similarly, Lorey’s mean
height were estimated more accurately in leaf-off (RMSE: 0.07 m), than leaf-on (RMSE: 0.09 m) using
area-based approach with ALS in a mixed managed boreal forest [43]. Also, other ALS studies
recommended the use of leaf-off [49,50]. The reported slight advantage of leaf-off data in the ALS
studies could be due to the used single-spectral ALS sensor that can be insufficient for discriminating
different species in leaf-on conditions; in contrast to multi- and hyper-spectral data that outperformed
in leaf-on in our research as well as other studies [45,46]. We note that further studies are required to
examine this with more sample plots.

Our study showed that UAV imagery can be reliable used for characterizing seedling stands and
may be a supplement or replacement for inventorying seedling stands in the future. Admittedly, further
studies with more sample plots containing more deviation in tree height and density are required.

5. Conclusions

We used UAV-based photogrammetric point clouds and hyperspectral data to characterize tree
attributes in seedling stands with our predesigned tree density and the species proportions of each
field plot. Our data were acquired with leaf-on and leaf-off conditions.

Tree density feature in AdS were more accurately predicted compared to YoS, although tree
density was higher in AdS. Thus, it can be concluded that the YoS (average height of less than 1.3
m) remained challenging to UAV-based photogrammetric point clouds and hyperspectral data and
required further studies with more sample plots.
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Overall, mean tree height of all and spruce trees were estimated more accurately in leaf-on
conditions for both YoS and AdS. Comparing both height estimations between YoS and AdS in leaf-on
conditions, the heights were estimated more accurately for YoS than AdS.

Comparing epochs, it can be concluded that collecting remotely sensed data in leaf-on conditions
could be more favorable because our findings showed lower absolute and relative RMSE with leaf-on
data for both the total and spruce tree density. The superiority of the leaf-on condition, considering
absolute and relative RMSE, was the same for mean tree height of all and spruces trees, for both
YoS and AdS, although some absolute and relative bias were different. Generally, leaf-on data is
recommended especially when using photogrammetric reconstruction method, and furthermore, when
using hyperspectral data, the leaf-on data might provide further information about the condition of
the vegetation.
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