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hitetty erilaisia tutkimuskysymyksiä varten. Näillä malleilla simuloitiin maaperän kosteuden alueellista ja ajallista vaihtelua
pienellä tutkimusalueella Luoteis-Lapissa. Näistä JSBACH on globaali maanpinnan geofysikaalisia ja -kemiallisia prosesseja
kuvaava malli, jota käytetään mallintamaan maanpinnan ja ilmakehän välisen rajapinnan olosuhteita. SpaFHy on hy-
drologinen valuma-aluemalli, joka on kehitetty kuvaamaan boreaalisten metsien vesitasetta ja haihduntaa. Ecohydrotools
puolestaan on hienon spatiaalisen skaalan vaihteluun keskittyvä hydrologinen malli.

Mallitulokset osoittavat selkeitä yhteneväisyyksiä sekä eroja verrattuna toisiinsa ja kentällä tehtyihin kosteusmittauksiin.
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erityisesti kuivemmilla alueilla. Ajallinen vaihtelu osoitti enemmän yhteneväisyyksiä mallien välillä, mutta mittausten ja
mallien välillä oli myös selkeitä eroja.

Nämä tulokset osoittavat, että monet tekijät vaikuttavat mallin kykyyn mallintaa maaperän kosteuden vaihtelua. Vaa-
ditut ympäristömuuttujat, mallien sisältämät kuvailut prosesseista sekä mallien rakenne ja käyttötarkoitus vaikuttavat
kaikki lopputuloksiin ja johtavat vaihteleviin arvioihin maaperän kosteudesta. Mallitulosten kehittäminen kylmillä alueilla
vaatii parempaa ymmärrystä maaperän kosteuteen vaikuttavista prosesseista sekä yksityiskohtaisempaa tietoa olennaisista
ympäristömuuttujista.
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Tiivistelmä/Referat – Abstract

Soil moisture influences various environmental and climatological processes and is an important part of the hydrological cycle.
The processes influencing its spatial and temporal variation are complex and linked with each other as well as influenced by
soil moisture itself which makes observing them challenging. This is especially true in cold regions where soil moisture has
shown strong fine scale variation and influences numerous ecosystem processes. To test different hypotheses related to soil
moisture and to simulate its variation, several hydrological process-based models have been developed. Understanding how
these models differ from each other and how they describe soil moisture is crucial in order to use them effectively.

For this study, three process-based models representing varying model approaches and answering different research questions
were chosen and used to simulate the spatial and temporal variation of soil moisture in a small study area in northwestern
Finland. JSBACH is a global-scale land surface model that simulates various geophysical and geochemical processes over
land and in the boundary layer between land surface and the atmosphere. SpaFHy is a catchment scale hydrological model
developed to simulate water balance and evapotranspiration in boreal forests. Ecohydrotools is a hydrological model used
to study fine scale spatial variation in soil hydrology.

The model results show clear similarities as well as differences when compared with each other and with field measurements
of soil moisture. The strongest similarities are in distinguishing wetter and drier areas in the study area, although the actual
moisture content estimations vary between the models. All models show difficulties in simulating finer scale spatial variation,
particularly in drier areas. Temporal variation shows more similarities between the models, although there are also clear
discrepancies with measurements and the models.

These simulations show that there are several things influencing a model’s capability to simulate soil moisture variation.
Varying data requirements, included processes as well as model design and purpose all influence the results, leading to
varying estimations of soil moisture. Improving model predictions in cold environments requires better understanding of the
underlying processes as well as more detailed information on the environmental variables influencing soil moisture.
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1 Introduction

Soil moisture is a small but crucial part of the hydrological cycle. It is strongly linked

with processes interacting between land surface and the atmosphere, influencing for exam-

ple temperature and precipitation patterns from local to global scales (Koster et al. 2004;

Seneviratne et al. 2010). It controls surface runoff processes and flood formation but also

mitigates drought conditions (Robock et al. 2000; Berthet et al. 2009; Hagemann and Stacke

2015). It is strongly linked with plant functionality, making it an important part of eco-

logical and agricultural studies (Western et al. 2002; Maclean et al. 2012; Roux et al. 2013;

Winkler et al. 2016). The processes and interactions related to soil moisture and its role in

the environment are complex and intertwined, forming feedback loops and patterns that can

be difficult to observe (Seneviratne et al. 2010; Legates et al. 2011).

In high latitudes, the importance of soil moisture is highlighted in its connection with fine

scale vegetation patterns as well as its contribution to geomorphological processes (Legates

et al. 2011; J. Aalto et al. 2013; Winkler et al. 2016). Soil moisture shows great spatial

and temporal variation in high latitudes but the impact of this variability and the processes

related to it are not yet fully understood (Penna et al. 2009; Roux et al. 2013; Winkler et al.

2016; Kemppinen et al. 2018). Soil moisture studies are further complicated by the lack of

spatially detailed data and due to the difficulty of observing processes operating below the

land surface (Guswa et al. 2002; Z. Zhang et al. 2016).

Hydrological process models are used to simulate complex processes and feedback loops to

study the aspects of hydrological cycle that would otherwise be difficult to observe. Soil

moisture modeling has been used in various applications such as estimating global wetland

areas, improving catchment scale flood forecasts and simulating fine scale species distribution

patterns (Berthet et al. 2009; Maclean et al. 2012; Zhao et al. 2013). There are a vast number

of models capable of simulating soil moisture on coarser and finer spatial scales, developed

to function in varying geographical areas and answering different research questions. Each

model emphasizes the processes and characteristics relevant to its purpose, meaning that the

outcomes may vary greatly.

In this study, three distinctive process-based models were chosen to simulate the spatio-

temporal variation of soil moisture in a small study area located in Northern Finland. The

study aims to answer two research questions:

1. How do process-based models predict soil moisture and describe the processes and

variables related to it?

2. What features do the three chosen models show in simulating the spatial and temporal

variation of soil moisture in a high latitude study area and how do the results fit with

measured soil moisture values?
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2 Theoretical background

2.1 Soil moisture

Soil moisture is an important hydrological variable in many ecosystem processes and is

therefore related to many different research fields from hydraulics to agriculture and from

meteorology to ecology (Seneviratne et al. 2010; Legates et al. 2011). This interdisciplinarity

means that the precise definition and how it is measured varies. The basic definition of soil

moisture defines it as water held in between soil particles in the unsaturated zone above

groundwater. However, stricter definitions on which part of the unsaturated zone is meant

and what units are used, vary depending on the purpose.

The definition of soil moisture can include the whole unsaturated soil layer or specific layers.

Moisture content of the whole soil column is often of interest in studies which focus on

understanding the whole hydrological cycle or estimating ground water dynamics (Maxwell

et al. 2007). While soil moisture at different depths does correlate strongly with other layers

(Tromp-van Meerveld and McDonnell 2006), it is sometimes beneficial to focus on specific

layers. Root zone, defined as the layer from which transpiration may occur, is particularly

important for vegetation as it can limit plant growth as well as evapotranspiration (ET)

which in turn influences many climatological processes (Laio et al. 2001; Kurc and Small

2004). However, in certain regions and studies, surface layer soil moisture can be more

useful as it regulates bare soil evaporation as well as rainfall partition to infiltration and

runoff (Kurc and Small 2004; Dorigo et al. 2011). The depth of these layers is not constant

but varies spatially as well as temporally (Seneviratne et al. 2010).

Regardless of the soil layer, there are different metrics to describe the amount of water held

between soil particles (figure 1). Soil moisture can be described as the absolute amount of

water (in mm or kg) or as a fraction of the total soil volume (volumetric water content, VWC).

However, these are often insufficient as they don’t relate moisture content to soil properties

or vegetation. Ratio of saturation on the other hand measures moisture as a fraction of

the available space between soil particles and is therefore dependent on soil porosity. Soil

moisture index varies between wilting point and field capacity and tells how much water is

available to plants. Below wilting point, suction forces caused by soil particles are stronger

than the force by which roots extract water while above field capacity gravitation causes

an upper limit to the plant available water. Soil moisture potential considers the forces

influencing movement of water in more detail and describe how tightly water is held in soil.

It rises with increasing moisture content as gravitation causes water to move downwards.

The less water there is, the stronger it is tied to the soil by plants and soil particles, causing

less moisture to drain to lower levels and moisture potential to decrease.
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Figure 1: Units and metrics to describe soil moisture. θ refers to volumetric water content (VWC). Permanent
wilting point (θWILT ) is reached when plants can no longer subtract water from soil. At saturation level
(θSAT ) all pores are filled with water. At that point, which can be reached during a precipitation event,
water is pulled down until the moisture content reaches field capacity (θFC). θCRIT refers to the level of
soil moisture which regulates whether soil moisture or energy is the limiting factor in evapotranspiration.
Figure from Seneviratne et al. 2010.

2.1.1 Processes controlling soil moisture

Interaction with atmosphere

Large scale variation of soil moisture is mainly controlled by climate, especially precipitation

and solar radiation controlled ET (figure 2). Precipitation is the main source of incoming

water to soils and thus controls a large portion of soil moisture variation temporally and

spatially. However, the relationship between soil moisture and precipitation is nonlinear

and linked (Seneviratne et al. 2010). The amount of precipitation entering a soil column

depends on the prior soil moisture content as well as the intensity of rain (Dunne 1978). The

faster the rain falls, the less water infiltrates and the more partitions into surface runoff.

A similar processes is caused by saturation of soil. In certain conditions soil moisture and

precipitation may form a positive feedback loop where higher soil moisture content leads to

more precipitation (D. B. Clark et al. 2004; Koster et al. 2009).

Soil moisture is strongly controlled by water leaving soil through evapotranspiration although

this relationship is also intertwined an nonlinear. While the direct influence of ET is to

decrease soil moisture, it can lead to higher precipitation (Koster et al. 2004; Teuling et

al. 2009). Land surface ET consists of bare ground evaporation as well as transpiration

through vegetation. These in turn are strongly coupled with soil moisture. This coupling is

often represented by a division to moisture limited and energy limited regimes. In energy
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Figure 2: Main components of the hydrological cycle influencing soil moisture. Water enters the soil through
precipitation, throughfall from vegetation and infiltration from upstream runoff. It leaves soil through
evapotranspiration either from the bare ground or through plant roots. In the soil, water moves downwards
due to gravitation, upwards due to capillary rise and sometimes laterally in hillslopes.

limited systems, soil moisture is high enough to not limit ET and available energy becomes

more important whereas in moisture limited systems the lack of soil moisture limits ET

(Seneviratne et al. 2010). ET is also influenced by wind and vertical mixing of air. As with

infiltration to soil, moisture can only enter an air column if the air is not saturated and

that level of saturation close to the surface depends strongly on the movement of air. If

air is still, the saturation point is reached faster which leads to a decrease in ET (McVicar

et al. 2012). In windier conditions, unsaturated air is constantly brought in contact with the

surface layer, providing more space for moisture in the air.

Processes in the land surface layer

In meso- and microscales, the impact of land surface properties such as vegetation and

topography become important factors in soil moisture dynamics (figure 2). The relationship

between soil moisture and vegetation cover is complex, including feedback loops and non-

linear relationships (D’Odorico et al. 2007; Roux et al. 2013; J. Aalto et al. 2013). In

densely vegetated regions, ET consists mainly of transpiration, contributing greatly to soil

moisture depletion and local climatic processes (Western et al. 2002). Canopy layer intercepts

part of precipitation causing vegetated patches to receive less water than patches with no

vegetation cover. However, moisture in a vegetated area tends to evaporate at a slower
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rate due to vegetation shading the ground from direct radiation. Vegetation close to the

surface can also shield the soil from wind and therefore decrease bare ground evaporation

(Wilson 1959). Part of the intercepted water can enter the ground as throughfall if it hasn’t

evaporated from the canopy layer (Launiainen et al. 2019). Therefore, the overall influence of

vegetation on soil moisture tends to be positive, although the correlation between vegetation

and higher soil moisture seems to become weaker in wetter areas, highlighting the nonlinear

characteristic of this relationship (Dorigo et al. 2011).

Topographic variation plays an important role in distributing soil moisture on catchment

scale. Rainfall partition into surface runoff and infiltration is largely controlled by slope

steepness - the steeper the slope, the more surface runoff there is (K. J. Beven and M. J.

Kirkby 1979; Dunne et al. 1991; Western et al. 2002). Through surface runoff, topographic

variation then distributes soil moisture to lower and flatter areas and to local depressions.

Slope aspect on the other hand controls incident solar radiation that reaches the ground

and can therefore increase or decrease evaporation. This effect can be visible on very fine

spatial scales if topographical variation is large. Vegetation cover is also linked to infiltration-

runoff processes. Vegetation decreases surface runoff velocity, thus allowing more time for

infiltration to happen (Dunne et al. 1991). Under the surface, plant roots and other organic

material influence soil properties such as hydraulic conductivity and soil porosity and increase

infiltration rates (Leung et al. 2015).

Soil properties and below-ground processes

Processes operating below the surface influence how much water fits to the soil and how it

moves there (Dunne et al. 1991; Western et al. 2002). Inside the soil, water moves in different

directions due to different forces. Percolation to lower layers is caused by gravitation and

happens only in layers where soil moisture is above field capacity (Seneviratne et al. 2010;

Hagemann and Stacke 2015). In deeper layers, soil moisture drains to groundwater. Suction

caused by water holding on to soil particles is an opposing force to gravitation and keeps

water in upper layers. It can cause water to rise from lower layers under certain conditions to

replenish depleted root zone and provide water to plants during dry seasons (Western et al.

2002). Soil can also move laterally in hillslopes which in turn can contribute to soil moisture

depletion in locally higher areas as well as to an increase in downslope areas (Dunne et al.

1991). All of these processes depend on the existing moisture content and are mostly slower

when there is less moisture as the influence of suction is stronger.

Movement of water is also controlled by soil properties (Clapp and Hornberger 1978; Western

et al. 2002; Legates et al. 2011). Soil porosity influences how much water can fit in the soil.

Soil hydraulic conductivity describes the speed at which moisture can move in the soil and

depends on the existing moisture. Field capacity and wilting point also depend on the soil

properties (Seneviratne et al. 2010). These properties depend mainly on soil texture which
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describes the percentages of different particle types in a soil type (Cosby et al. 1984). Soils

with larger particle sizes tend to have larger porosity as well as higher hydraulic conductivity

whereas very clay soils tend to fit much less water and the movement of water inside the soil

is slower. In clay soils under dry conditions, cracking of the soil can also cause variations in

surface runoff and move water to deeper soil layers (Maclean et al. 2012).

2.1.2 Soil moisture in cold environments

Processes and feedback loops related to soil moisture dynamics are often strongly dependent

on the region and certain processes are only applicable in specific regions. Cold regions

contain several such processes. These, in addition to the importance of soil moisture on

ecosystem processes make soil moisture studies vital in order to better understand high

latitude regions and their environment (J. Aalto et al. 2013; Roux et al. 2013).

Stark seasonal differences in climatological variables are important factors influencing soil

moisture dynamics in high latitudes. Radiation varies from non-existent in winter to weak

but constant during the short summer. Precipitation arrives as snow throughout most of the

year. These cause water to stay fairly immobile over and below ground for a large part of

the year. Wind on the other hand distributes snow according to local topography, causing it

to accumulate in depressions and be depleted from hilltops (Mott and Lehning 2010). This

influences soil moisture during spring and summer when snow melts. The effect of wind

on evaporation may also be more pronounced in arctic-alpine regions where vegetation has

a lesser effect on wind speed and the finescale variation of topography causes parts of the

landscape to be more sheltered from the wind than others (Wilson 1959).

Snow cover influences the spatial distribution of soil moisture. During winter it acts as a

reservoir, keeping water from draining to streams or infiltrating to the ground. It also acts as

an insulating layer, affecting the rate of frost formation in the ground (Nyberg et al. 2001).

During spring and early summer, snowmelt causes a peak in runoff and brings higher soil

moisture content to especially local depressions and lowlands. Nivations act as a reservoir

and keep downslope areas wetter than they would otherwise be. Frost processes acting

below ground surface also influence soil moisture. Snowmelt often occurs over frozen ground

which increases runoff although it doesn’t prevent infiltration completely (Stähli et al. 1999).

During winter, frost retains soil moisture which can delay lateral flow below ground and can

cause suction from lower layers (Nyberg et al. 2001).

Patchy peatland areas are typical for cold regions due to slower decomposition rates (Whalen

and Reeburgh 1988). The high concentration of organic material causes them to have distinc-

tive soil properties compared to mineral soils which in turn influence soil moisture patterns

(Legates et al. 2011; J. Aalto et al. 2013; Hagemann and Stacke 2015). Soil porosity for ex-

ample is considerably higher than in mineral soils, causing peatlands to have more space for
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soil water. Peatland areas in high latitudes tend to be patchy and occur on local depressions

and downslope from snow nivations which also increases their moisture content (Woo et al.

2006).

Finally, another distinct feature of soil moisture in high latitudes is its high fine-scale spatial

variation (J. Aalto et al. 2013; Roux et al. 2013; Kemppinen et al. 2018). The variability is

influenced by many of the variables mentioned previously but it is also a key variable in itself

controlling many ecosystem processes such as vegetation, microclimate and geomorfological

processes.

2.2 Hydrological models

Models are always a simplified representation of reality (Abbott and Refsgaard 1996; Ja-

jarmizadeh et al. 2012). They are used in scientific research as well as in society, leading to

two fundamentally opposing ways to view them (Savenije 2009). On one hand, models can

be considered a representation (albeit a simplified one) of reality and they can be used as a

tool to solve a more complex problem. In this case, a model is viewed as state-of-the-art. On

the other hand, models can be considered as hypotheses which represent our understanding

of a system. They are seen as imperfect and the focus is on trying to find out where their

imperfections arise from and how they can be improved. The latter view provides an op-

portunity to improve the understanding of a system as well as to observe complex features

which can be very useful in doing hydrological research.

There are many ways to construct a model (Abbott and Refsgaard 1996). They can be

physical representations such as miniature models or analogical models which simplify a

complex system to one more easily observable. Perhaps the most commonly used in scientific

research are mathematical models that represent the system through equations that can

either be based on statistical properties of the variables, empirical studies such as field

measurements or on the theoretical understanding of the system’s underlying processes.

In hydrology, modelling has been used increasingly from early 20th century onwards (Ja-

jarmizadeh et al. 2012; Fatichi et al. 2016). The first models were developed to simulate

rainfall-runoff curve, i.e. how much precipitation in a rainfall event partitions to runoff

instead of infiltration (Abbott et al. 1986; Todini 1988). These were mainly used for practi-

cal problems and a typical approach was to find links and relationships between variables.

However, they were simple in design and relied on long meteorological datasets for model

calibration. When knowledge of hydrological processes and computing technology developed,

the focus shifted towards more theory-based models that considered the holistic nature of

catchment-scale hydrological modeling (Todini 1988; Silberstein 2006).

From then on, the number of hydrological models has increased rapidly and they have been
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used in a wide range of applications (K. J. Beven 1996; Buytaert et al. 2008; Jajarmizadeh

et al. 2012; Fatichi et al. 2016). In the meanwhile, hydrology has developed towards an

indisposable part of many other disciplines such as climatology, ecology and hydroengineering

while sementing its position as its own field of research (Savenije 2009; Fatichi et al. 2016).

However, in spite of the advances in modeling and computation, the complex nature of

hydrology means that there is still work to do in model development. Hydrological processes,

particularly ones in the unsaturated soil, are difficult to observe or simulate and depend on

variables that are heterogenic on even very small scales which makes simplifying or averaging

them tricky (K. J. Beven 1996; Savenije 2009). The relevant processes are also highly scale-

dependent and for example large-scale hydrological models, vital for global scale climate

simulations, require simplification of processes that still contain the relevant characteristics

of the hydrological cycle (Bierkens et al. 2015). Additionally, hydrology is a very regional

science, with many processes and their influence varying under different conditions (K. J.

Beven 2000; Fatichi et al. 2016).

2.2.1 Process-based models in hydrology

Over the last decades, process models (also mechanistic or physically-based models) have

been developed to answer the increasingly complex questions in hydrology (Sivapalan et al.

2003; Fatichi et al. 2016). They are also called bottom-up or reductionist models which refers

to the idea that they first try to understand the underlying processes influencing a hydrolog-

ical system and then deduce larger-scale responses of that system (figure 3). These models

represent hydrological processes inside a system in a distributed way through physically-

based partial-differential equations considering the laws of conservation of mass, energy and

momentum (Abbott and Refsgaard 1996; Fatichi et al. 2016). They are typically spatially

distributed and use spatial input data to describe the environmental conditions (Abbott

et al. 1986). In an ideal physically-based model and with sufficient input data, every process

influencing the hydrological cycle should be simulated in a physically meaningful way. How-

ever, often it’s not possible or practical to have fully distributed physically-based equations

describing all hydrological processes and most models include simplifications, lumping of

parameters or conceptualisation of equations (Savenije 2009).

Process models have been widely used to provide insight to the processes and interactions

operating inside hydrological systems. They can be used to observe feedback loops and

relationships that would be difficult to observe through field studies or more simple models

(Abbott et al. 1986). They are particularly useful with advancing climate change to simulate

previously uncommon conditions (K. Beven et al. 1980). However, process-based models

have received considerable critique over several issues. Due to their distributed nature, they

require spatially distributed input data which can be difficult to obtain (Abbott et al. 1986;
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Figure 3: An example of an early physically-based model, SHE (Système Hydrologique Européen) (Abbott
et al. 1986). The model includes different submodels that describe parts of the hydrological cycle inside a
grid cell as well as a distributed aspect of the model that distributes water in the catchement scale. Figure
from Abbott et al. 1986.

Oreskes et al. 1994; Sivapalan 2003; K. J. Beven 2006; M. P. Clark et al. 2011; Fatichi et al.

2016). This can cause great uncertainty in the model results which needs to be taken into

account when analysing model results. Recent advances in GIS and remote sensing databases

has however improved this (Daniel et al. 2011; Launiainen et al. 2019).

Process-based models are often be computationally heavy and mathematically complex which

can limit their usability (Fatichi et al. 2016). In an overly complex model, it may be dif-

ficult to observe the relevant processes and sources of uncertainty. There are also ongoing

discussions of how well certain processes can be scaled or transferred to regions outside the

model’s original area as hydrological processes and their importance can depend on spatial

scale and region (K. J. Beven 2000). In spite of these issues, process-models are widely used

in hydrological research to test hypotheses and to study complex systems with little prior

measurements or simulating past or future systems (Fatichi et al. 2016).

2.2.2 Soil moisture in hydrological models

Soil moisture modelling requires description of below ground conditions and processes, many

of which are not completely understood (Guswa et al. 2002; Starks et al. 2003). This often

leads to simplifications of some or all of the aspects governing soil moisture variation. The

approaches and processes described here do not represent an exhaustive list of the available

options but rather give an overview of some of the often used processes and options in

approaching them.
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Figure 4: Soil moisture models view soil columns as either buckets or as consisting of several layers. In
a bucket model, all changes in moisture content happen to the entire soil column and moisture content is
uniform throughout the column. In a layered version, moisture content may vary depending on the layer
and different processes affect directly only some of the layers. P = precipitation, ET = evapotranspiration
and D = drainage.

A typical division of soil moisture models is based on how the soil column is described

(figure 4). Simple models view the soil column as a single bucket into which water enters

through certain processes and leaves through others (Guswa et al. 2002; Hagemann and

Stacke 2015). In more complex models, the soil is divided into 2 or more layers and processes

influence moisture content of the relevant layers. Moisture and soil properties can vary from

layer to layer and moisture can be moved between layers. This allows for a more realistic

representation of the soil column but requires also more complex parametrisation and model

description.

Input data regarding soil hydraulic properties also varies from model to model. Generally

at least some information on the hydraulic conductivity and soil water retention is required

(Starks et al. 2003). However, these are difficult and time consuming to measure directly

and so models often take other parameters such as soil porosity or texture class as input

parameters and use transfer functions to estimate the necessary hydraulic properties.

Vertical movement of water inside the soil column can be solved using the one-dimensional

Richards’ equation that describes movement of water in unsaturated soil (Starks et al. 2003;

Zeng and Decker 2009; Hagemann and Stacke 2015). However, as the equation is a non-

linear partial differential equation, finding an exact solution in closed-form is difficult (Barry

et al. 1993; Zeng and Decker 2009). Numerical solutions have been developed and are used

widely in different land and hydrological models although they require some estimations of

boundary conditions which may cause uncertainty in the results (Zeng and Decker 2009).

In simpler models, movement inside the simulated soil column can either be ignored or

represented through more empirical equations (Guswa et al. 2002).

In simpler models, infiltration to the soil is typically set to happen until saturation level, i.e.

porosity is reached and no more water can fit into the soil (Guswa et al. 2002; Starks et al.
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2003). However, in many models infiltration from precipitation or overland flow depends on

the infiltration rate which also defines the formation of surface runoff (Guswa et al. 2002;

Starks et al. 2003). There are two main causes for surface runoff. Hortonian runoff forms

when precipitation rate is faster than infiltration rate (K. Beven 2004; Loague et al. 2010). In

this case soil might not be saturated in lower layers but water doesn’t infiltrate fast enough

and some of it turns to surface runoff. In Dunne runoff on the other hand, precipitation

rate is slower than infiltration rate which allows the whole soil column to become saturated.

These two aspects are not mutually exclusive and in reality they tend to be intertwined

(Loague et al. 2010).

An important part of any soil moisture model is the representation of evapotranspiration.

Simulating the different parts of ET is often difficult and data regarding the exact properties

of plants is seldom available (Launiainen et al. 2019). Therefore, many different approaches

have been developed. Zhao et al. (2013) classify these methods into two groups: first group of

methods calculates the different sources of ET (bare ground evaporation, canopy evaporation

and transpiration) separately and then sums them to form an estimation of the total ET.

The second group calculates potential ET and then scales it down using a function depending

on plant available soil moisture.

There are also some commonly used methods that aim to simplify some aspects of hydrolog-

ical cycle. One common method is TOPMODEL which is used in catchment scale modeling

to distribute water inside the catchment so that areas with steeper slopes and which are

situated higher up in the catchment receive less water than areas in flatter and lower parts

(K. J. Beven and M. J. Kirkby 1979; Ambroise et al. 1996; M. Kirkby 1997). Its original idea

was to simplify catchment scale models and make them more physically-based (Ambroise

et al. 1996). It ties together instant runoff at points throughout the catchment and runoff out

of the catchment downstream which then allows for an estimation of the total water budget

inside the catchment. It then uses the Topographic Wetness Index (TWI) to distribute the

water budget based on topographic variation. TWI is calculated as the ratio of the upslope

contributing area (a) and the local slope (β) (eq. 1).

TWI = ln(
a

tanβ
) (1)

It can be used in TOPMODEL in its original form or as modified to include information

about soil properties. While TOPMODEL is a very simplified representation of catchment-

scale hydrology, it has been used rather successfully in comparison to more complex models

(Buytaert et al. 2008).
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3 Study area

Figure 5: Map of the study area with soil moisture campaign sites and the location of the Kilpisjärvi
kyläkeskus meteorological station.

The study area is located near the border between Finland, Norway and Sweden, in north-

western Finland (69°03’N 20°51’E) (figure 5). It covers and area of approximately 3 km²
between two fells, mount Saana and mount Jehkas and contains several environmental gra-

dients.

Climatologically the region belongs to the subarctic climate and is strongly influenced by

the nearby Scandes mountainrange as well as proximity to the Arctic Ocean and the warm

North Atlantic current (J. Aalto and Luoto 2014; Kemppinen et al. 2018) (figure 6).

The landscape is dominated by a mosaic of varying vegetation, soil type and topography

(Riihimäki et al. 2019). Vegetation consists mainly of dwarf-shrub dominated mountain

heath with small meadow patches as well as mountain birch tundra below the treeline in

the southwestern corner of the area (Kemppinen et al. 2018; Riihimäki et al. 2019). Soil

layer consists mainly of a thin layer of mineral soil covered by an organic layer of varying

depth with patches of boulders and rock outcrops scattered around (figure 9). Much of the
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environmental variation is driven by finescale variation of topography with relative elevation

difference reaching almost 250 meters.

Figure 6: 30 year average (1980 - 2010) of monthly average temperatures and precipitation in the Kilpisjärvi
meteorological station.

4 Data

4.1 Field measurements

Soil moisture was measured as VWC (%) on the field using hand-held time-domain reflectom-

etry sensors (FieldScout TDR 300; Spectrum Technologies Inc., Plainfield, IL, USA) (figure

7) which were calibrated as adviced (Kemppinen et al. 2018). The measurements were done

in six campaigns, each lasting 2-3 days, in the summer 2017. Soil moisture was measured

from 220 sites (figure 5 of which 204 were situated inside this study’s area of interest and

were used in further analyses. One site consists of five 1 m² plots situated at the centre of the

site and five meters from the centre to cardinal directions. 3 measurements were taken from

each plot from the depth of 7.5 cm, trying to account for topographic microscale variation

inside the plot. The results where then averaged over each plot and in this study further

over each site. Plots that had too shallow soil depth or that were under water or snow were

not included in further analyses.

Soil classes, their spatial distribution and soil depth were taken from the study done by

Kemppinen et al. (2018). Soil classification was done through field surveys and high res-

olution aerial images provided by the National Land Survey of Finland and included five

surficial deposit classes: peat, fluvial, glacial till, boulders and rock outcrops (figure 9). Spa-

tial resolution of the soil map is 0.5 meters. Soil depths were measured on the field using a

thin metal rod.
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Figure 7: The figure shows an example site of the soil moisture measurements. On the left is a cross-section
of one plot inside one site, demonstrating how single soil moisture measurements were collected. These
measurements were repeated inside all 1 m2 plots.

4.2 Meteorological data

Main source of meteorological data was the Finnish Meteorological Institute’s Kilpisjärvi

kyläkeskus meteorological station (figure 5). The variables used were air temperature (°C),

precipitation (mm/h), relative humidity (%), wind speed (m/s) and direction (°) and air

pressure (hPa). Temporal resolution for all measurements was 1 hour. Due to long gaps in

the measurements, data from the surrounding meteorological stations in Norway and Sweden

was also used (figure 8). Global radiation data for Kilpisjärvi area, i.e. total shortwave radi-

ation including both direct and diffuse radiation, was extracted from Finnish Meteorological

Insitute (2018) that contains an estimation of global radiation for the whole Finland. The

spatial resolution of the dataset is 10 km, the temporal resolution is 1 day and the dataset

covers years 1961-2018.

4.3 GIS datasets

The digital elevation model (DEM) from the National Land Survey of Finland was used for

elevation and other topography related variables (figure 9) (National Land Survey of Finland

2017). It was created in 2017 and its spatial resolution is 2 meters. National Land Survey

of Finland also provides fine-scale (0.5 m resolution) aerial images that were used to esti-

mate vegetation cover. Several datasets describing forest attributes were downloaded from
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Figure 8: Meteorological data used to fill the gaps in the Kilpisjärvi measurements. Several stations were
used because different stations measure different variables.

the multi-source National Forest Inventory (mNFI, Mäkisara et al. 2016). These datasets

included raster maps of stand age, stand basal area, biomass of leaves and needles, canopy

height and canopy cover (%) of trees and their resolution was 16 meters. The datasets were

collected in 2015.
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Figure 9: Environmental data used for the input data in models.
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5 Models

The three models represent varying modelling approaches and are used for different purposes

(table 1). The descriptions given here are not complete representations of the models or their

internal structure as these are provided in more detail in literature.

Table 1: Basic characteristics of the models

JSBACH SpaFHy Ecohydrotools
Developed by: Max Planck Insti-

tute, Germany
Finnish National
Resources Institute

microclimate re-
search group,
University of
Exeter

Developed for: large-scale land
surface modelling

modelling hy-
drology in boreal
forests

fine-scale hydrolog-
ical modelling

internal structure: several separate
modules for differ-
ent land surface
processes

3 submodules
for canopy, soil
and cathcment
distribution

separate microcale
models for micro-
climate variables
and soil hydrology

spatial distribu-
tion:

point scale model,
no interaction be-
tween grid cells

point and catch-
ment scale versions

point scale and
catchment scale
versions

5.1 JSBACH

JSBACH is a land surface model developed by Max Planck Institute (MPI). It was originally

part of ECHAM, the atmospheric model of MPI-ESM (MPI’s Earth System Model) but was

later changed into its own model by collecting together processes involved in the interactions

between lower layer of atmosphere and land surface processes (Roeckner et al. 2003; Groner

et al. 2018; Heidkamp et al. 2018). JSBACH can be run as its own model as an offline version

without having to connect it to a General Circulation Model (GCM) or as part of one. It

has been used in various studies simulating different biogeophysical and -chemical processes

and many studies have also investigated the performance of the different processes included

in JSBACH (Heidkamp et al. 2018).

Structurally JSBACH consists of several submodules, each focusing on a separate aspect

of land surface processes (Thum et al. 2011; Gao et al. 2016; Hagemann and Stacke 2015;

Groner et al. 2018; Heidkamp et al. 2018). These modules describe terrestrial energy balance,

heat transfer and water budget, vegetation dynamics and phenology, carbon cycle over land,

land cover change (natural and anthropogenic) and surface albedo. Because JSBACH is

intended for large-scale modeling, there are formulations that take into consideration land
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surface variability inside grid cells. Vegetation types, described as plant functional types

(PFTs), are added to each grid cell as tiles, i.e. each tile represents a different PFT and its

fraction of the total vegetated grid cell area. Topographical variation inside the grid cell is

described through standard deviation of topography.

Soil moisture is depicted in JSBACH as 5 layers increasing in depth and going down to

approximately 10 meters (figure 10). The actual depth of the layers is restricted by a

separate soil depth parameter. Root zone depth defines the depth from which transpiration

can occur and is also defined separately. However, moisture can exist in all layers also below

the root zones and can be moved upwards if there is too little moisture in the upper layers

(Hagemann and Stacke 2015).

Figure 10: Conceptual representation of JSBACH’s soil hydrology scheme. There are five layers with in-
creasing depth. Bare ground evaporation is only dependent on the top layer while transpiration can happen
from the whole root zone. Lateral drainage removes water from all layers. Figure modified from Hagemann
and Stacke (2015).

∂θ

∂t
=

∂

∂z
(D · ∂θ

∂z
) +

∂K

∂z
+ S (2)

Vertical movement of moisture is described through Richards’ equation (eq. 2). First term

on the right side describes vertical diffusion which distributes soil moisture among different

layers depending on soil properties. The second term refers to percolation. These two terms

are described as separate processes in the scheme (Hagemann and Stacke 2015). S includes

infiltration to the soil, bare ground evaporation from the top layer and transpiration from

the root zone.
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5.2 SpaFHy

Spatial Forest Hydrology Model (SpaFHy) is a spatially distributed hydrological model de-

veloped in the Finnish Natural Resources Institute to simulate evapotranspiration and water

balance in boreal forests (Launiainen et al. 2019). Its focus is on the spatial variation of

vegetation and soil properties and how they influence hydrological processes above and below

ground. It has so far been tested at stand scale (model results representing single point)

and at catchment level in various test sites in Finland and it can be a useful tool in for

example simulating future changes induced by climate change in forest hydrology and forest

management.

SpaFHy consists of three submodules that can be run together, separately or be joined with

other models (figure 11). The canopy module includes forest canopy, ground surface and

snow pack and it calculates the water balance above ground. It calculates ET as the sum of

evaporation from the ground and from vegetation and transpiration. The snow description

includes accumulation and melting of the snowpack.

Figure 11: Conceptual representation of SpaFHy’s submodules. Canopy and bucket modules are used to
calculate water balance at point scael after which TOPMODEL is used to distribute water in the saturated
zone according to the local TWI and the average TWI of the catchment area. On the right is a represen-
tation of the catchment area. Water balance in each grid cell is calculated on its own and in the bottom
TOPMODEL links the cells to a distributed catchment area. Modified from Launiainen et al. (2019).

The bucket model describes soil as two layers - organic surface layer and root layer. Soil

moisture in the upper organic layer (θorg) is controlled by throughfall from the canopy and

snowmelt from above (Iorg), evaporation from the ground (Ef ) and upward flow from root

layer coming from upstream areas (Qr,ex) (eq. 3).
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∆θorg
∆t

=
Iorg − Ef +Qr, ex

zorg
(3)

Root layer moisture content on the other hand changes due to infiltration from the organic

layer (If ), transpiration (Tr), drainage to the bottom layer (Dr) and returnflow from the

bottom layer (Qr) (eq. 4).

∆θ

∆t
=
If − Tr −Dr +Qr

zs
(4)

Last of the submodels is TOPMODEL which simulates the saturated layer below root layer

and connects grid cells to the catchment scale water balance. In case of saturation excess

in the bottom layer, water is rooted first to the root layer and from there to the organic

layer. Saturation deficit (S) in the whole basin (i.e. the amount of water required to bring

the layer to saturation) depends on drainage to the bottom layer (Dr), catchment baseflow

in the lowest layer (Qb) and returnflow to the root layer (Qr) (eq. 5). It is tied to each grid

cell’s saturation deficit through the topographic wetness index (eq. 6).

∆S

∆t
= −Dr +Qb +Qr (5)

Scell = Savg +m(TWIavg − TWIcell) (6)

5.3 Ecohydrotools & microclima

The third model is a combination of two models specialised in fine scale microclimatic and

hydrological modeling (Maclean et al. 2018; Maclean 2019). They are currently under de-

velopment by the microclimate research group led by Dr Ilya Maclean in the University

of Exeter. The purpose is to provide detailed microclimatic information that can be used

in fine scale environmental research such as species distribution modeling. The hydrologi-

cal model, Ecohydrotools (EHT), uses a simple two-layer soil hydrological model developed

originally by Mahrt and Pan (1984) (figure 12). The thin upper layer receives precipitation

and stores water for bare ground evaporation. Hydraulic diffusivity and conductivity control

water movement between the upper and lower layers and evapotranspiration can happen

from both layers given that there is vegetation to cause transpiration. If the top layer is

saturated, precipitation is changed to surface runoff. There are two versions of the model:

temporal point model and a spatio-temporal version. In the spatial version, basins are calcu-

lated from a DEM that can be given by the user or downloaded by the model. Soil moisture

is distributed inside each basin according to TWI. In addition to the two soil layers, the
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model also calculates the depth of still surface water, i.e. the area of inundation. This is

also distributed across the basins based on TWI.

Figure 12: Conceptual representation of the soil column in Ecohydrotools. Water comes in to the upper layer
through precipitation, is distributed inside the soil according to soil parameters and leaves through evapo-
transpiration. Excess precipitation is changed into runoff and there is an option to allow for groundwater
seepage.

EHT uses precipitation and evapotranspiration as meteorological input data. In this version,

evapotranspiration across the study area is calculated with microclima calibrated by another

microclimate model, NicheMapR (Kearney and Maino 2018; Maclean et al. 2018). The

combination of the two models, still under development, downloads global meteorological

and radiation data at 2 °resolution from NCEP-DOE Atmospheric Model Intercomparison

Project (Kanamitsu et al. 2002). It then estimates microclimatic variation of temperature

and evapotranspiration based on topographic and meteorological variation.

6 Preparation of input data and simulations

6.1 Input data

Most of the input data is given in raster format. For JSBACH, the resolution was set to 50

meters to keep simulation times reasonable. To allow for finer scale variation between grid

cells in JSBACH, all variables were calculated in the finer resolution datasets and then an

average in 50 m resolution was calculated. For SpaFHy, the highest possible resolution is

currently 16 meters due to the resolution of the mNFI database. However, to keep the exact

study area similar in all models, the resolution of the mNFI datasets as well as other raster
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layers required by SpaFHy were changed to 20 meters. For EHT the resolution was also set

to 20 meters for simplicity.

6.1.1 Meteorological data

Figure 13: Meteorological data and their units in each model. The width of the boxes indicate which models
use the variables inside the box, for example both JSBACH and Ecohydrotools require data about longwave
radiation but SpaFHy doesn’t. In case there is only a slight difference in a variable (such as difference in
units), the units are mentioned separately but the variable is seen as common to several models, for example
air humidity is expressed as relative humidity in JSBACH and EHT and as partial vapor pressure in SpaFHy.
In general, JSBACH and EHT require input data in hourly format (except for precipitation for EHT) while
SpaFHy uses daily input data.

While the meteorological data from Kilpisjärvi station was generally comprehensive, there

were some longer gaps in the measurements lasting from a few days to two to three weeks.

To fill these gaps, multiple imputation method was used to calculate an estimate of the

weather conditions in Kilpisjärvi based on meteorological data from nearby stations in Nor-

way, Sweden and Finland (figure 8) (Yozgatligil et al. 2013). Multiple imputation method was

developed by Rubin (1987) and calculates several possible estimates for missing data values

using Monte Carlo techniques, i.e. random sampling of the data to account for uncertainty

in the estimates. The R package ”mice” was used to run the imputations with the default

settings of 5 imputated datasets (i.e. 5 estimations for the missing values), maximum 50 it-

erations and with the predictive mean matching method (Buuren and Groothuis-Oudshoorn

2010). The average of the 5 estimations was used in the model simulations.

Due to lack of radiation measurements sufficiently near the study area, longwave radiation

was estimated from weather data using the clear-sky method developed by Dilley and O’brien

(1998) (eq. 7) where w is water vapor pressure and T0 is air temperature. This method
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was chosen based on comparisons done by Niemelä et al. (2001) due to its simplicity and

performance.

FLW,clr = 59.38 + 113.7T0273.166 + 96.96w/25 (7)

A correction method for cloudy conditions developed by Niemelä et al. (2001) (eq. 8) was

used to account for the influence of cloud cover on longwave radiation. FLW,s is upward

longwave radiation from the surface (calculated using the Stefan-Boltzman law describing

radiation from black body as σTs) and c total cloudiness (%).

FLW,all = 1 + FLW,sFLW,clr − 10.87c3.49FLW,clr (8)

Global radiation was extracted from Finnish Meteorological Insitute (2018). For JSBACH

it was corrected with an estimation of potential global radiation after running into problems

with the original values. The correction was done so that an estimation for potential global

radiation was calculated from the whole 50 year dataset and then a fraction of the actual

radiation compared to the potential radiation was calculated. This correction value was then

used by multiplying it with hourly potential radiation data to get an estimation of the actual

global radiation (Böttcher et al. 2016).

For SpaFHy, relative humidity was changed to partial water vapor pressure which is relative

to saturated vapor pressure (eq. 9).

esa = 0.6112exp(
17.67 · Tmean

Tmean + 273.16 − 29.66
) (9)

There is currently no option to give meteorological data as input to the microclimate model

that calculates spatial evapotranspiration for EHT. Therefore, all meteorological input data

for the microclimate model except precipitation is generated by the model by download-

ing global weather data in 2° resolution using an R package developed by Kemp et al.

(2012).

6.1.2 Vegetation

Vegetation cover for JSBACH and EHT was calculated from the infrared aerial images pro-

duced by NLS (National Land Survey of Finland 2017). NDVI (normalized difference vege-

tation index) values were calculated from the near-infrared and red bands and then, through

visual interpretation, all areas with NDVI values less than 0.2 were classified as having no

vegetation and areas with 0.2 or higher were classified as vegetated areas. Vegetation cover

in percentages was then calculated by averaging the reclassified NDVI map to the required

spatial resolution.
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Figure 14: Parameters related to vegetation required by each model. PFT means plant functional types.
Each variable is given as a raster layer.

Leaf area index (LAI) was calculated for SpaFHy by following the procedure of Launiainen

et al. (2019) where the leaf biomass rasters were converted to conifer and deciduous one-sided

LAI based on an estimation by Härkönen et al. (2015). LAI for microclima (and EHT) was

calculated by summing the conifer and deciduous LAI values from SpaFHy’s input data.

Rest of the layers for SpaFHy were readily available from the multi-source National Forest

Inventory database.

For JSBACH, values for forest fraction, fraction of natural vegetation, roughness length due

to vegetation and surface albedo were set to match vegetation classes from Hagemann (2002)

according to table 2. The cover types representing PFTs were estimated from a parameter

file, lctlib, in JSBACH source code listing all plant functional types and their phenology

attributes. There are three classes in the PFTs that could be suitable for the area: C3 grass,

tundra and peatlands. In the first run, mineral soil vegetated areas were set to half C3 grass

and half tundra. Bare ground areas were set to tundra and peatland areas to peatlands.

However, the results showed relatively high estimations for LAI in sparsely vegetated areas

and so another setup depicting all vegetation over mineral soil as tundra was used in later

simulations. The percentage of each class inside the grid cells was then calculated and

attributed to the respective tiles.

Table 2: Classification for vegetation attributes in JSBACH.

Vegetation class classification rule
polar and alpine desert NDVI < 0.2
upland tundra NDVI ≥ 0.2
fen, bog, mire surficial deposit = peatland
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Figure 15: Variables related to topography in each model.

6.1.3 Topographical parameters

All models require spatial elevation data in which the digital elevation model (DEM) from

NLS was used (figure 9). JSBACH’s standard deviation of topography and surface roughness

are meant for larger scale modeling and not very useful in depicting small scale topographical

variation. Their influence was tested in two runs - in one, the values were set according to

previous simulations (Holmberg et al. 2019) and in one they were set to zero. The effect on

soil moisture variation was very small and therefore, the values across the study area were

set to match previous simulations.

SpaFHy’s variables related to TWI (flow accumulation, i.e. upslope contributing area, basins

and slope angle) are calculated from the DEM with ArcGIS’s spatial analyst tools. TWI

is calculated from the flow accumulation and slope (converted to radians) (eq. 1) and the

whole study area is depicted as one basin which matches basin delineation in the larger DEM

covering also the surrounding areas of Saana and Jehkas. EHT requires less topographical

parameters because it is capable of calculating the required parameters itself. It delineates

basins from the DEM and then calculates TWI.

6.1.4 Soil properties

In JSBACH all soil parameters are directly defined by the user, instead of requiring a clas-

sification of the area into different soil classes with predetermined properties like SpaFHy

or EHT. The parameters in JSBACH regarding soil hydrological properties (Clapp & Horn-

berger parameter, saturated moisture potential, soil porosity, field capacity, wilting point,

saturated hydraulic conductivity and pore size distribution index) were taken from Hage-

mann and Stacke (2015) according to table 3. Soil depth was originally set to the average

calculated from the measurements done by Kemppinen et al. (2018) in mineral soils (ap-

proximately 30 cm), to one meter in peatland areas for vegetation to survive and to 10 cm

in rock outcrops and boulder areas. However, with these parameters vegetation wasn’t able

to survive and after testing several depths, soil (and root) depth was set to 1 meter in peat-
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Figure 16: Soil properties required by each model. In SpaFHy and EHT, soil properties are embedded in
the model as parameters which is why they don’t have to be given as explicitly as in JSBACH. However,
they can also be changed by altering the values in the model code.

lands and to 50 cm everywhere else. Soil properties in areas consisting of boulders and rock

outcrops were then set to coarse soil parameters. Heat capacity and heat conductivity were

taken from previous simulations (Holmberg et al. 2019). Initial soil moisture was set to half

of soil porosity.

Table 3: Classification of the surficial deposit types (figure 9) to soil classes matching classes used by
Hagemann and Stacke (2015) and Launiainen et al. (2019).

surficial deposit class soil class
peatland peat
fluvial coarse
glacial till loamy sand or medium
boulders coarse or rock outcrops
rock outcrops coarse or rock outcrops

In SpaFHy, soil properties were given in the source code and the model required the area

to be classified into different soil classes: fine, medium, coarse, peat and humus. These

were given according to table 3 and an additional class, rock outcrops, was created with soil

properties from the coarse soil class but with soil depth of 1 cm. The code was additionally

modified to include soil depth in the spatially varying soil properties. Soil depth in the

coarse and medium classes was set to 30 cm and to 1 meter in peatlands. Soil properties

that matched those in JSBACH (soil porosity, field capacity, wilting point and saturated
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hydraulic conductivity) were then changed to match the values in JSBACH to keep the

input data as similar as possible.

EHT allows for two different ways of defining soil properties. They can be given as soil classes

that match the classification in the R package in which case it retrieves the matching van

Genuchten soil parameters defining soil hydraulic properties (Genuchten 1980). Alternatively

these properties can be defined either as raster layers or as a single list by the user, allowing

for more soil types to be included. However, as the model is still being developed, only a

single soil class for the whole area was possible and so it was defined as loamy sand which is

included in the readily defined soil parameters. Initial moisture was set to the default value

of 0.35.

6.1.5 Land cover and masks

Figure 17: Land cover and other land surface related variables required by the models.

The land cover and surface variables include mainly a set of different masks meant to crop out

water bodies. Since the streams and ponds in the study area vary throughout the summer

due to snow melt, they were not included in the masks. The soil service curve number

required by EHT was estimated using the land cover class consisting mainly of dwarf scrubs

in NRCS (2017) and the hydrologic soil group, which describe soil runoff potential, was

defined as group B based on Ross et al. (2018).

6.2 Simulations

JSBACH was run as an offline version with user generated forcing data (meteorological data)

with modules bethy, phenology, albedo and yasso turned on to keep the simulation simple.

SpaFHy was run with all three submodules as a catchment scale version and EHT was run as

a spatial hydrological model. SpaFHy and JSBACH were run from the beginning of 2010 to

check that there were no trends ongoing trends caused by input data in variables such as soil

temperature, soil moisture and vegetation properties. EHT lacks a proper representation of

cold environment processes so running it through several years is unlikely to have a realistic

influence on the estimations. Starting the simulation in EHT too close to the time of interest
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on the other hand produced a decreasing trend in soil moisture, so the simulation was started

in July 2016.

7 Results

The results are shown in 50 meter resolution. The results of SpaFHy and EHT were resized

to 50 meters by calculating the average VWC inside each cell. JSBACH soil moisture values

which are given by the model in mm where changed to VWC by dividing the water content

with soil depth. The results show the depth weighted average soil moisture of the top two

layers. In SpaFHy and EHT this means the surface layer and the root layer and in JSBACH

it means the top two layers which reach to a depth of 32 cm.

7.1 Spatial variation in the whole study area

Figure 18: Modelled and measured soil moisture content (VWC) during the late July (21.-23.7.) and late
August (21.-23.8.) field measurement campaigns in 2017. Soil moisture values in the models were calculated
as averages of the campaign days. Measurements are shown as averages of each site’s 5 plots, excluding plots
with impartial measurements.

Simulated soil moisture values show similarities as well as discrepancies throughout the study
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area in their spatial distribution of soil moisture content (figure 18). All models predict higher

soil moisture values in the centre of the study area where topography is flatter and there

is more organic soil (figure 9). These areas are also visible in the measured soil moisture

values. However, there is less agreement between the models and measurements regarding

the actual moisture content in these areas. In JSBACH, SpaFHY and the measurements,

moisture contents are quite high, varying between 0.4 and almost 0.9 (table 4). EHT on the

other hand underestimates moisture content considerably, with the highest VWC reaching

only 0.25.

In drier areas there is more discrepancy between the models and the measurements. There

are larger dry areas with moisture content varying between 0.05 and 0.4 that show up in all

models and measurements but there is also also great variation in some areas as well as in

the actual moisture contents. In JSBACH and SpaFHy, drier areas are quite similar with

VWC of 0.16-0.17 and very little, if any, spatial variation. EHT estimates soil moisture in

drier areas to be much smaller, between 0.05 and 0.1 but also finds more spatial variation

in these areas. This is more in line with the measurements which show considerably more

spatial variation than JSBACH and SpaFHy.

Table 4: Mean, standard deviation, range and the coefficient of determination (r2) of soil moisture values
(VWC, %) averaged first over the days of the measurement campaigns and then over the study area. The
r2 value was calculated between each model and the measurements.

JSBACH SpaFHy Ecohydrotools measurements

July August July August July August July August

mean 26.5 26.5 30.2 30.0 11.6 10.3 25.7 27.6

st. dev. 16.1 14.4 19.4 19.0 4.8 4.0 15.0 13.4

max 69.2 65.3 88.0 88.0 24.9 22.6 78.7 77.4

min 16.0 16.7 16.1 17.6 5.4 5.4 7.5 7.8

r2 21.5 23.2 23.6 24.0 14.9 17.8 - -

There is variation also in the distribution of soil moisture values (figure 19). JSBACH and

SpaFHY have a similar distribution pattern with each other and the measurements with

a large majority of the study area being relatively dry and higher moisture values being

rarer. However, both models underestimate very low moisture contents (below 0.1) as well

as areas with moisture content of 0.2-0.3. They also overestimate the portion of very wet

areas compared to measurements. EHT behaves differently, estimating all areas to have

moisture content below 0.25, although comparing to figure 18, the distribution shows similar

characteristics to the other models and measurements if the range is ignored.

The patterns of spatial variation in the models and measurements change in some aspects

during the summer. In JSBACH and SpaFHy the driest areas get wetter (an increase of 0.01-

0.02) which is also visible in the measurements (table 4). EHT shows a different pattern

of an increase in the number of dry cells (figure 19c). In SpaFHy there are also more
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(a) JSBACH (b) SpaFHy

(c) Ecohydrotools (d) measurements

Figure 19: Histograms depicting the distribution of soil moisture (VWC) in late July (green) and late August
(red).

drier cells although the minimum moisture value increases by almost 2 percentage points.

The maximum values on the other hand decrease in all models and measurements by 1-3

percentage points, except in SpaFHy in which very wet areas show almost no variation. This

results in a decrease in the range of variation which is visible in all models and measurements,

although the pattern is smaller in SpaFHy (table 4). The strongest discrepancy between the

measurements and models is the scale of the increase in the measured VWC in relatively

dry areas (figure 19d). While JSBACH and SpaFHy show some wettening of the dry areas,

the magnitude is clearly smaller than in the measurements where the mean moisture content

increases by 0.02.

The general agreement between each model and the measurements varies (figure 20 and table

4). EHT shows a relatively even disagreement throughout the study area with simulated

values approximately 20 - 30 percentage points smaller than the measured values. The

difference is larger in areas with higher measured moisture content. JSBACH and SpaFHy
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show very similar spatial patterns in their difference to measurements. Neither of them

shows a spatially uniform trend of simulating higher or lower moisture contents but rather

moist areas in organic soils seem to be overestimated while for example soil moisture in the

southernmost area is underestimated. The r2 value which indicates agreement between the

measured and simulated values is slightly higher in JSBACH and SpaFHy compared to EHT

(table 4). However, the difference decreases in August due to EHT’s increase in r2.

Figure 20: Difference between measured and simulated soil moisture content (VWC) in each of the models
during the late August campaign. Red values indicate that measured soil moisture content is higher than the
simulated moisture whereas blue areas show higher simulated soil moisture content than in the measurements.

7.2 Spatial variation in different land cover types

The following results have been done by classifying the area to three land cover classes: 1)

peatland areas with the majority of the grid cell consisting of peatland soil, 2) areas with less

than 25 % of vegetation cover on mineral soil and 3) areas with more than 25 % vegetation

cover on mineral soil (figure 21). This classification was used because it also represents a

large part of the topographical variation and variation in the other soil classes (figure 9).

TWI shows small differences between the classes, with sparsely vegetated areas being the

driest and peatland areas wettest (table 5).

7.2.1 Peatland areas

In peatland areas, the mean VWC is higher than in the whole study area in all models and

measurements (table 6). The same applies to the minimum values except in EHT which finds
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Figure 21: The distribution of land cover classes used to examine the results.

Table 5: Size of the land cover classes and the mean topographic wetness index (TWI) and its range in each
class.

sparsely vegetated vegetated peatland
area (%) 29 54.5 16.5
number of measurements 53 111 40
mean TWI 5.3 5.6 5.7
range of TWI 3.0 - 12.1 3.5 - 8.6 3.6 - 8.8

very dry areas also in these areas. There is more discrepancy in the distribution of moisture

(figure 22). In the models, the standard deviation is smaller than in the whole study area and

the range is smaller as well whereas in the measurements the standard deviation is higher

due to the relatively even distribution of moisture to drier and wetter areas. The distribution

patterns are also different in the models: in JSBACH the distribution is inclined towards

wet areas but in SpaFHy the distribution is more even. EHT also finds more wet areas than

dry areas in this class, although the values are considerably smaller than in the other models

or measurements. However, EHT has a considerably higher r2 value of over 20 % compared

to the very low values of 0-2 % in JSBACH and SpaFHy. This suggests that while EHT

underestimates VWC, it is better at finding the spatial variation of the measurements than

the other two models. However, it is important to notice that the number of measurements

in the peatland class is quite low (41 sites) which is likely to affect the r2 values considerably

here and in the sparsely vegetated class as well.

There is also variance in the results between the July and August campaigns. The mean

VWC decreases in the models but increases slightly (0.5 percentage points) in the measure-
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ments (table 6). The minimum values show a contrasting trend whereas standard deviation

decreases in models and measurements except in SpaFHy. There is a slight improvement in

the agreement between JSBACH, SpaFHy and the measurements in August.

Table 6: Statistical properties of peatland areas in models and measurements. The values were averaged
first over the days of the measurement campaigns and then over peatland areas.

JSBACH SpaFHy Ecohydrotools measurements

July August July August July August July August

mean 55.9 52.4 66.0 65.4 14.0 12.3 40.3 40.8

st. dev. 12.0 9.7 15.6 15.8 4.7 3.9 19.4 18.5

max 69.2 65.2 88.0 88.0 22.3 19.3 78.7 77.4

min 24.4 25.5 32.3 33.3 5.4 5.4 13.4 12.2

r2 0.1 2.7 0.2 1.7 23.0 21.1 - -

Figure 22: The distribution of soil moisture (VWC) in peatland areas during the campaigns in July (green)
and August (red).

7.2.2 Vegetated areas

In vegetated areas over mineral soils, the results show more similarities between models

and measurements than in the peatland areas. The mean VWC and standard deviation

are slightly lower than in the whole study area and the values in JSBACH and SpaFHy

are close to the measured values (table 7). The maximum values in JSBACH, SpaFHy and

the measurements are close to each other and lower than in the peatland areas and the

whole study area by approximately 10 percentage points. In EHT, however, the highest

soil moisture values are located in the mineral soil vegetated areas rather than in peatland

areas. The variance in r2 values also shows different characteristics than in peatland areas.

JSBACH and SpaFHy show slightly better agreement while EHT shows almost no agreement

with the model.

The distribution patterns are quite similar between all models and measurements: all are
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clearly inclined towards dry conditions (figure 23). However, they are less similar in August

due to a clear shift in the measurements towards wetter conditions. This is visible in the

mean and minimum soil moisture values of the measurements (table 6). In the models, this

trend is only slightly visible in JSBACH while SpaFHy and Ecohydrotools show an increase

in dry conditions.

Table 7: Mean, standard deviation, range and the coefficient of determination (r2) of soil moisture values
(VWC, %)averaged first over the days of the measurement campaigns in vegetated areas. The r2 value was
calculated between each model and the measurements.

JSBACH SpaFHy Ecohydrotools measurements

July August July August July August July August

mean 22.4 23.0 25.2 24.7 11.4 10.1 21.8 23.9

st. dev. 10.1 9.6 11.5 10.9 4.7 3.9 11.2 8.4

max 61.6 55.8 69.4 69.3 24.9 22.6 65.0 63.1

min 16.0 16.7 16.1 17.6 5.4 5.4 7.5 10.6

r2 5.2 6.5 8.7 7.8 2.3 5.2 - -

Figure 23: The distribution of soil moisture (VWC) in vegetated areas during the campaigns in July (green)
and August (red).

7.2.3 Sparsely vegetated areas

In sparsely vegetated areas, the results between the models and measurements show large

variation. The mean VWC is lower in the models than in the measurements whereas the

maximum and minimum values are higher in JSBACH and SpaFHy than in the measure-

ments (table 8). The standard deviation is very low in all models, varying between 4 and 5

% but is close to the average of the whole study area in measurements. This is also visible

in the distribution of soil moisture (figure 24). All models show a very similar distribution

pattern with almost only dry condistion whereas the distribution in the measurements is

much more dispersed although dry conditions are more common. As with peatland areas,

the r2 value is close to zero in JSBACH and SpaFHy and much higher, over 20 % in EHT,
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indicating again that there is spatial variation that the first two models are not able to

detect.

The trend towards wet conditions in August is also visible in measurements, although in

this land cover class the trend is visible also in the already wet areas, with maximum VWC

increasing from 0.52 to 0.57 (figure 24 and table 8). This is not clearly visible in the models,

although SpaFHy’s distribution shifts slightly towards wet conditions and there is a small

increase of less than 1 percentage point in the mean VWC in JSBACH and SpaFHy.

Table 8: Statistical properties of soil moisture in sparsely vegetated areas.

JSBACH SpaFHy Ecohydrotools measurements

July August July August July August July August

mean 17.7 18.4 19.5 20.0 10.7 9.7 22.7 25.2

st. dev. 4.5 4.3 5.5 5.1 4.6 4.0 10.9 11.1

max 58.6 52.7 65.3 64.8 24.8 22.5 52.0 57.7

min 16.0 16.7 16.7 17.8 5.4 5.4 8.7 7.8

r2 0.0 0.0 0.2 0.0 22.4 28.6 - -

Figure 24: The distribution of soil moisture (VWC) in sparsely vegetated areas during the campaigns in
July (green) and August (red).

7.3 Temporal variation

7.3.1 Peatland areas

There is large variation between the models in their simulation of the temporal variation

of soil moisture in peatland areas (figure 25a). In SpaFHy, most areas have very high soil

moisture content with no visible temporal variation but there seem to be no cells with

moderately high soil moisture values leading to the very low limit of the 1st quartile. In

JSBACH, the variation is more symmetrical around the median value and the values are
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(a) Time series of soil moisture variation in peatland areas. Darker lines indicate median values of each
model and shading with the same colour indicates the area between the 1st and 3rd quartiles. Notice that
in SpaFHy median and 3rd quartile are the same. Precipitation is shown as a barplot and mean values of
measurements as dots.

(b) Boxplots of the soil moisture measurements in peatland areas done during the July and August field
campaigns.

Figure 25: Temporal variation of soil moisture in peatland areas according to the models and measurements.

generally lower whereas in EHT the first quartile is constantly very low but the variation is

also more symmetrical compared to SpaFHy.

The measurements show quite large variation in the distribution of soil moisture but less

temporal variation (figure 25b). For example, the precipitation event in late July is not

visible at all in the measurements whereas in the models it does show quite clearly. In fact,

the late July campaign which is shortly after the precipitation event shows on average drier

conditions than the other campaigns. Generally precipitation events are visible in the models

as small peaks, although the response is not as sharp as in mineral soils (figures 26 and 28).

There also seems to be a slight increasing trend in JSBACH and EHT which is not visible

in the measurements or in SpaFHy.
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7.3.2 Vegetated areas

Figure 26: Time series of soil moisture variation in areas with more vegetation. Darker lines indicate median
values of each model and shading with the same colour indicates area between the 1st and 3rd quartiles.
The dots show the median value of soil moisture.

In vegetated areas on mineral soil, the models show quite distinctive patterns compared to

peatland areas (figure 26). JSBACH shows large variation in above median values and almost

no difference between the median and 1st quartile while SpaFHy shows almost no variation

at all and EHT shows considerably larger variation than in peatland areas. The temporal

variation in JSBACH and SPaFHy is now much closer to one other and the precipitation

peaks are clearly visible in both of them although the reactions in SpaFHy are slightly

stronger which is particularly visible in the precipitation event in mid-July. The variation in

the median value is larger during July in JSBACH and seems to settle to a more constant

state in August, with only small reactions to the rainfall events. In SpaFHy the variation is

small throughout the summer and in EHT it increases towards August.

There is considerably less variation in the measurements close to the mean values compared

to peatland areas, although there are also very wet outliers (figure 27). In this land cover

class, there is a clear reaction in the measurements to the rainfall event in mid-July but the

measurements continue getting wetter also in August. This trend is only slightly visible in

JSBACH where the third quartile gets higher towards the end of August. The precipitation

event does explain the drying trend visible in EHT’s results in the spatial comparisons (figure

18 and tables 4 and 6). The reaction to the precipitation event is strong and continues to

affect the results for longer than in the other two models, causing the values during July

campaign in EHT to be higher than in August.
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Figure 27: Boxplots of the soil moisture measurements in vegetated areas done during the July and August
measurement campaigns.

7.3.3 Sparsely vegetated areas

Soil moisture in sparsely vegetated areas shows quite similar trends as in vegetated areas

but there are also some discrepancies (figure 28). JSBACH and EHT show less variation

in the distribution of soil moisture whereas SpaFHy shows a rather unique trend of wetter

areas reacting more strongly to precipitation events. Otherwise there is very little variation

in SpaFHy’s results. The pattern of having a fairly constant state with small reactions to

precipitation events is very similar to the pattern in vegetated areas and is more pronounced

in EHT’s results where the median values are very close to the values of the 1st quartile.

SpaFHy’s temporal variation is more abrupt and the moisture content returns to the condi-

tions prior precipitation events more quickly than in JSBACH and EHT. In JSBACH and

EHT, the influence of a precpitation event lasts longer which is most clearly visible after the

strong precipitation event in mid-July.

Soil moisture measurements show more variation than in vegetated areas and the wetter areas

are wetter as well (figure 29). There is also the same increasing trend as in vegetated areas

but in this class it is not visible at all in any of the models. However, it is less pronounced

than in vegetated areas and is only visible in the drier areas. In the wetter areas, a slightly

drying trend continues until early August.
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Figure 28: Time series of soil moisture variation in sparsely vegetated areas. Darker lines indicate median
values of each model and shading with the same colour indicates area between the 1st and 3rd quartiles.
The dots show the median value of soil moisture.

Figure 29: Boxplots of the soil moisture measurements in sparsely vegetated areas.
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8 Discussion

8.1 Results in peatland areas

Most of the larger areas with high soil moisture content in the study area are relatively

well represented in the models (figure 18). These are areas where several environmental

variables controlling soil moisture correlate rather strongly (figure 9). They have generally

more peatland cover, more vegetation and are situated in flatter areas downstream from the

surrounding higher areas. The correlation between soil moisture and these environmental

variables has been shown in the area previously by eg. Kemppinen (2016) and Kemppinen et

al. (2018). Higher organic content, resulting in peatlands, is also typical in cold environments

in local depressions and flatter areas (Woo et al. 2006). This means that even though there

is no information in the input data of EHT concerning the location peatlands, it is still able

to locate wetter areas based on TWI values, although the moisture content is considerably

lower than in reality or in the other models.

However, while the large scale recognition of wetter areas succeeds in the models, there are

large discrepancies inside the areas between models (figures 22 and 25). While SpaFHy and

JSBACH show spatially very similar results, their time series are rather different. This is

likely due to the different representation of the spatial variation in soil properties in the

two models. In JSBACH, soil properties are explicitly defined for each grid cell separately,

allowing for more variation in the properties while in SpaFHy they’re linked to different soil

classes, creating much sharper borders between classes. This leads to most peatland areas

in SpaFHy being showing much wetter conditions than in JSBACH where most cells in 50

m resolution contain characteristics of both peatlands and mineral soils. Neither model is

also able to fully catch the spatial variation in the measurements (figure 25b and table 22).

On the other hand, while EHT clearly underestimates soil moisture in these areas, its results

correlate more with the measurements, indicating that topographical variation, which is an

important cause for spatial variation in EHT, influences smaller scale soil moisture variation

also in these areas (Woo et al. 2006). These results are in line with previous studies showing

the difficulty in modeling wetlands and their spatio-temporal variability (Bohn et al. 2015;

Z. Zhang et al. 2016).

8.2 Results in vegetated areas

Vegetated areas over mineral soils are more in line with the measurements when compared

to the other two land cover classes (figure 23 and table 7). JSBACH and SpaFHy show

quite similar results despite the fact that their representation of vegetation in the input

data varies greatly. This might mean that neither model is particularly good at representing
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the processes related to the relationship between vegetation and soil moisture or that the

input data is insufficient in both models. The higher r2 values could be related to better

representation of vegetated areas or it could be related to the fact that it is the largest

area, having also the largest number of measurements. In EHT, the r2 value is considerably

lower than in peatland areas and in sparsely vegetated areas, in spite of it being the largest

land cover class, which might indicate that there are processes or characteristics related to

vegetation which it is not able to capture.

The increase in soil moisture towards end of summer, visible in the measurements in table

4 as well as figures 27 and 29, is not as clearly visible in any of the model results. The

increase in measurements is likely due to July having the most precipitation during a typical

year (figure 6). While there is some slight increase in the lowest soil moisture values in

JSBACH and SpaFHy, it’s not nearly as clear as in the measurements. This might be a

result of the lack of spatial variation in these models which drowns out the magnitude of the

increase or it could be due to other features not as clearly visible. Further information is

nevertheless required to understand the precise cause for this discrepancy between models

and results.

8.3 Results in sparsely vegetated areas

The sparsely vegetated areas show many patterns that are similar to vegetated areas but

also clear differences. JSBACH and SpaFHy show similar, almost identical results, showing

hardly any spatial variation and little temporal variation (figures 18 and 28). This lack

of variation is not in line with the measurements which show considerably drier plots that

JSBACH and SpaFHy miss completely (table 4) but also show a much larger range in spatial

variation (figure 24). This suggests that there is spatial variation that the models are not

able to catch. Kemppinen et al. (2018) and Roux et al. (2013) have shown that there is

considerable fine scale variation in soil moisture in high latitudes. The lack of variation

could result from too coarse input data, particularly concerning soil properties and its fine

scale variation. The problem might also lie in the models’ capability to simulate soil moisture

processes acting on very fine spatial scales driven by fine scale topographical variation in cold

environments. Interestingly, EHT shows more spatial variation in the drier areas as well as

better agreement with the measurements in the sparsely vegetated areas (table 8).

8.4 Discussion of uncertainties related to modelling

In any model, there are many different sources of uncertainty that stem from different aspects

of modelling and should be identified in order to properly evaluate results and improve the

models or hypotheses, depending on the goal (Refsgaard et al. 2006; Montanari 2007). The
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sources of uncertainty can be divided into three groups - model related, data related and

user related (figure 30). The first two are discussed in this section while the third is included

in section 9.3.

Figure 30: Sources of uncertainty in (process-) modeling. The end-user, model developers and input data
all bring uncertainties to the results as well as their interactions with the other sources of uncertainty. The
figure shows some examples of the uncertainties related to each aspect in this study but is in no way a
comprehensive description.

8.4.1 Uncertainty related to the data

Hydrological process models tend to require spatially and temporally detailed input data

that can be difficult to obtain (K. J. Beven 2001; Wood et al. 2011). The spatial and

temporal resolution of the available data is often insufficient in capturing fine scale details

in the environmental variables. In this study, the resolution of for example global radiation

and the meteorological data used for EHT were rather coarse (10 km and 2°s respectively),

resulting most likely in some uncertainty in the model results. Changing the resolution of

the data is sometimes necessary to keep different layers in similar resolutions such as with

changing the resolution of the input layers in SpaFHy and EHT and further changing the

resolution when observing the results. However, decreasing the resolution also means losing

a large part of spatial variation. While this makes comparing the models simpler, it also

means a loss of more detailed information in these models. Therefore, it can be assumed

that the comparisons with measurements could be improved by looking at the finer resolution

results.
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Certain variables are more difficult to obtain and often all data requirements given by a

model cannot be met in sufficient spatial or temporal resolution. This forces the user to

make assumptions about suitable parameter values and for example interpolate available

data to a different spatial or temporal resolution. In this study, the largest data-related

uncertainties are most likely the assumptions made regarding soil properties. Due to the

lack of measured soil properties, soil classification had to be made by estimating a suitable

soil type in the classification done by Hagemann and Stacke (2015). The uncertainty was

decreased by testing different options for glacial till soil and comparing model results with

measurements but most likely field measured soil properties from different parts of the study

area would increase the accuracy of the simulations.

Another variable group that required assumptions was vegetation whose representation var-

ied greatly between the models (figure 14). JSBACH’s vegetation properties were set to the

global PFT groups which is a coarse estimation of the vegetation properties in the area.

SpaFHy’s representation of vegetation only includes forest properties and the input data

that was used from the National Forest Inventory lacks accurate representation of tundra

vegetation. However, the effect of these assumptions is not very clearly visible in the results,

considering that simulations in vegetated areas seem to correlate better with measurements

than in other land cover areas. The results are still not particularly good which could in any

case indicate that improvement of vegetation properties might improve simulation results.

EHT showed the least correlation with measurements in vegetated areas (figure 14), indicat-

ing that its description of vegetation properties and processes should be improved.

While TWI is a commonly used variable in determining soil water distribution on cathcment

scale, it has been shown to be dependent on the method of estimating the upslope con-

tributing area (Sörensen et al. 2006). Furthermore, the suitable calculation method seems

to depend on the catchment, highlighting the geographical nature of hydrology (K. J. Beven

2000). It is difficult to say how much the used calculation method affects results in this

study without further comparison of different methods but considering the importance of

TWI on especially EHT’s results, this should be considered in more detail.

Setting the meteorological variables to be constant over the area is also a large simplification

of reality, especially in a topographically varying landscape where for example temperature

conditions may change quickly (J. Aalto et al. 2013). Global radiation was set to constant

in JSBACH and SpaFHy which overlooks the fact that the study area contains two slopes

facing opposite directions which influences received radiation and therefore evapotranspira-

tion. Another variable whose spatial variation may play an important role, especially in

topographically varying regions is wind ((Wilson 1959; Mott and Lehning 2010; Liu et al.

2012)). It redistributes snow throughout the landscape and influences evapotranspiration

patterns which are likely dismissed when setting wind speed and direction to constant.

43



Comparing field measurements with gridded simulations is another cause of uncertainty.

Point scale measurements describe very local conditions in soil moisture, even though this

effect is diminished by having several sample plots in each site. Soil moisture measurements

are also taken much closer to the surface compared to the model results which probably

means that there is more temporal variation in the measurements than in the models and

might explain the lower soil moisture values in measurements. Inspecting the measurements

in finer temporal resolution could show better how the simulation results and measurements

differ in this aspect.

Uncertainty related to input data is typically considered in model simulations by doing

an sensitivity analysis in which the input variables and parameters are changed and their

influence on the results is measured. This was out of the scope of this study but would un-

doubtedly be useful in estimating the importance and fitness of different assumptions.

8.4.2 Uncertainty related to the models

Models bring their own uncertainties to simulations. In process-based models, what pro-

cesses are included and on what scales, influences strongly the simulation results. The land

surface model JSBACH has been developed to simulate global geophysical and geochemical

processes. Large scale processes can include simplifications that are justified when catch-

ment scale variation is not included but break down with higher resolutions (Bierkens et al.

2015). A simple example is the point scale generalisation which assumes that there is no

interaction between grid cells and for example water doesn’t flow from higher areas to lower

areas. In simulations that cover continent scale areas, the interactions between grid cells can

be ignored but this assumption used in a more fine scale model means that JSBACH misses

finer scale spatial variation caused by topography (figure 18).

Description of the soil column varies between the models and might be one cause for discrep-

ancies between models and results. While JSBACH’s representation is more detailed and

physically-based, it exhibited problems with realistic, shallow soil depths, causing insufficient

plant available water and reducing plant functionality to almost zero. This meant that soil

depth had to be increased which is likely to influence the results. The high minimum values

could partly be explained by the fact that there is more space in the soil for water, meaning

that it is more difficult for moisture to get as low as in the measurements.

In cold regions, certain processes should be included in order to have a realistic representation

of hydrology. An obvious one is snow accumulation during winter and melting during the

spring and summer. JSBACH and SpaFHy both include a representation of snow processes

but neither of them describe the effect of wind on redistribution of snow which means that

for example nivations are not properly represented in these models. This might be one reason

for the small spatial variation in mineral soil areas. EHT on the other hand doesn’t include
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a snow model which might also be one reason for the low soil moisture values and the smaller

variation in July (figures 25a, 26 and 28).

While process-based models should at least in theory focus on the theoretical processes and

therefore require less calibration of parameters compared to simpler conceptual models, it

is difficult, if not impossible, to create a model that wouldn’t require some calibration to

fit the model to different areas (K. J. Beven 2000; Boyle et al. 2001; Bahremand 2016).

In this study this is evident in SpaFHy which has especially been developed to be used in

boreal forests and is therefore slightly out of place in the tundra environment. A calibration

of the parameters controlling evapotranspiration especially would most likely be beneficial.

Currently SpaFHy underestimates vegetation outside peatland areas which might cause the

lack of variation in these areas (figures 26 and 28). EHT could also benefit from calibration

of ET which might be one reason for the very low soil moisture values.

Another problem related to model structure is in EHT which uses microclima package to

estimate evapotranspiration. While this allows the model to be used practically anywhere in

the world without the need to look for local meteorological data, it does also cause problems.

Microclima downloads the meteorological data from NOAA in 2°resolution which compared

to the scope of the study area is very coarse. In addition to the coarse resolution, the

proximity of the Arctic Ocean means that the meteorological data might represent conditions

over sea rather than over land. This also complicates comparing EHT with the other models

as the forcing data apart from precipitation is different. It might cause the considerably

lower soil moisture values if the estimated evapotranspiration is too large.

8.5 Comparing the models

Table 9: Overview of the model features relevant for this study. Blue color indicates strengths, red weaknesses
(particularly concerning this study) and green features that are difficult to classify to strictly strengths or
weaknesses.

JSBACH SpaFHy Ecohydrotools
- coarse global scale model + catchment scale model + fine resolution catch-

ment scale model
+ detailed representation
of various land surface pro-
cesses

+/- detailed representa-
tion of (forest) vegetation
processes

+ simulates spatially vary-
ing estimates of microcli-
matic conditions

+/- detailed input data
and parameters

+ takes advantage of exist-
ing GIS data

+/- many data require-
ments automated

+ detailed description of
soil column

- developed for boreal re-
gions

- no spatial variation of soil
propreties

- no spatial distribution + spatially distributed + spatially distributed
+ used and tested in vari-
ous studies previously

- focus on specific parts of
the hydrological cycle

- under development
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The three models chosen for this study represent very different approaches in soil moisture

modeling and in hydrological modeling in general (table 9). JSBACH represents perhaps

the more traditional type of a process-based model in that its internal structure is complex

and it requires detailed input data. On the other hand, it’s not spatially distributed as most

hydrological process-models are. SpaFHy on the other hand is spatially distributed and

represents the large collection of hydrological models that have been developed for a specific

purpose and region. While it also requires several input variables, the data requirements

have been taken into consideration in model development and take advantage of some of the

national datasets freely available in Finland. Finally, Ecohydrotools takes a slightly different

approach by aiming for simultaneously fine-scale and global modeling, with an emphasis on

microclimatic modeling. It also uses free online databases to avoid too burdensome data

requirements, although with more automatization than SpaFHy.

By aiming to answer different questions, the models also consider soil moisture and its

variation differently. For example, JSBACH is interested in soil moisture in the entire soil

column while SpaFHy and EHT are mainly interested in the root zone soil moisture, and

represent water below that in much simpler ways than JSBACH. This distinction between the

purposes of the models is important when choosing which model to use for different studies

and other purposes. All of them represent the relevant processes and all make simplifications

in processes that are less relevant to the purpose of the model. This also means that one

way of decreasing modelling uncertainty is to use an ensemble of models instead of one single

model. This reduces several of sources of uncertainty described here as well as producing

some estimate of the possible variation in the results.

In addition to choosing a model that represents the necessary processes, there are also

other things to consider. Depending on the goal of the application, it’s useful to consider

what is the level of complexity that is required of the model (Guswa et al. 2002). For

estimations of catchment scale runoff generation, a simple well-calibrated conceptual model

may prove more useful than a complex physically-based model. Adding more complexity

also increases the prior knowledge required of the user to interpret the results which might

not always be beneficial. With a very complex model, such as JSBACH, understanding the

key processes affecting the results is difficult which also makes detecting errors or places for

improvement challenging. The detailed data requirements also mean that the user often has

to make several simplified assumptions on how to describe the input data which is tedious

and challenging.

However, theoretically or conceptually simpler models have their limitations and are not

suitable for many tasks such as hypotheses testing which is a fundamental task of many

hydrological models. They are also most of the time unsuitable for areas where they haven’t

been calibrated whereas an uncalibrated process-model with coarsely estimated input data

such as JSBACH is still able to catch certain relevant patterns and features.
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8.6 Further research

Properly used process-based models provide interesting opportunities to investigate further

the role of soil moisture in cold regions. One clear study area is the opportunity to simu-

late future conditions by forcing the models with simulated climate data based on different

climate trajectories. Soil moisture has been shown to be an important driver of fine scale

vegetation patterns in cold regions and models might be able to enlighten how this relation-

ship might change in future and how it may influence future biogeographical patterns as well

as terrestrial carbon balance (Roux et al. 2013).

Another possibility which is strongly linked to understanding soil moisture’s role in species

distribution is fine scale temporal and spatial modeling. While the models tested here

produced daily output of soil moisture, they can also be set to simulate hourly variation

and their spatial resolution can also be increased, depending on the available input data

and computational limitations. This could provide more information about the fine scale

interactions of soil moisture and other environmental variables.

Finally, as has been discussed previously, soil moisture especially is highly local in that the

important processes and patterns vary depending on the geographical location. Since none

of these models is specifically created for cold environments, it would be helpful to study

further which variables in the models influence the fine-scale variation of soil moisture and

whether these results are in line with previous research that has investigated soil moisture

drivers, such as Kemppinen (2016) and J. Aalto et al. (2013). This could provide useful

information on how to better model soil moisture in cold regions and what processes may

be currently underestimated.

9 Conclusions

There are many different approaches to simulating soil moisture and its temporal and spatial

variation. Each of the models used here, JSBACH, SpaFHy and Ecohydrotools, showed

clear similarities as well as clear differences in their results when compared with each other

and with measured soil moisture data. The spatial variation of JSBACH and SpaFHy was

mostly driven by the variation in soil properties whereas EHT was clearly controlled by the

topographic wetness index, even in drier areas where soil properties were similar to the ones

used by JSBACH and SpaFHy. Temporal variation depended considerably on the land cover

type with peatlands showing most variation between models. In mineral soils, JSBACH

and SpaFHy showed relatively similar results while EHT had quite different results. All in

all, the model results could be considerably improved with calibration and more spatially

detailed and regionally specific input data.
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Hydrological process models have potential to illuminate various processes controlling soil

moisture variation and how it will change in the future, as well as the importance of soil

moisture to other environmental variables such as vegetation patterns. This is particularly

relevant in cold regions, where these processes are still not fully understood. However, in

order to choose an appropriate model and use it properly, it is important to consider how the

model fits the goal of the research question, is there sufficient data available for the model

and what are the uncertainties related to the specific model and how will they influence the

results. If these questions are adequately considered, process models can be useful tools in

environmental research.
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