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Simulation of the cerebral cortex requires a combination of exten-
sive domain-specific knowledge and efficient software. However, when
the complexity of the biological system is combined with that of the
software, the likelihood of coding errors increases, which slows model
adjustments. Moreover, few life scientists are familiar with software en-
gineering and would benefit from simplicity in form of a high-level ab-
straction of the biological model.

Our primary aim was to build a scalable cortical simulation framework
for personal computers. We isolated an adjustable part of the domain-
specific knowledge from the software. Next, we designed a framework
that reads the model parameters from comma-separated value files and
creates the necessary code for Brian2 model simulation. This separation
allows rapid exploration of complex cortical circuits while decreasing the
likelihood of coding errors and automatically using efficient hardware
devices.

Next, we tested the system on a simplified version of the neocortical
microcircuit proposed by Markram and colleagues (2015). Our results
indicate that the framework can efficiently perform simulations using
Python, C++, and GPU devices. The most efficient device varied with
computer hardware and the duration and scale of the simulated system.
The speed of Brian2 was retained despite an overlying layer of software.

V.A. programmed the CxSystem and wrote the manuscript. H.H. contributed to pro-
gramming the simulator and wrote the manuscript. S.V. conceived the study, contributed
to programming the simulator, and wrote the manuscript.
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However, the Python and C++ devices inherited the single core limita-
tion of Brian2.

The CxSystem framework supports exploration of complex models on
personal computers and thus has the potential to facilitate research on
cortical networks and systems.

1 Introduction

1.1 Controlling Complexity. Numerical simulations of biological neu-
ral networks have a long and diverse history (Bower, 1992; Brette et al.,
2007; Gerstner, Sprekeler, & Deco, 2012). Recently, the increase of compu-
tational power has enabled simulations of large-scale systems, which has
highlighted the need to control the complexity of the simulation code. Some
simulation engines abstract the neural system with different strategies: by
adding a user-friendly GUI (Aisa, Mingus, & O’Reilly, 2008; Bekolay et al.,
2014; Gleeson, Steuber, & Silver, 2007; Hines & Carnevale, 1997; Tosi &
Yoshimi, 2016), creating a simple interface to a more complicated kernel
(Davison et al., 2009; Eppler, 2009; Hoang, Tanna, Bray, Dascalu, & Harris,
2013), or simplifying the description and implementation of the neural net-
work dynamics (Raikov et al., 2011). With these tools, large systems can be
coded with a few lines of code and very little clutter. However, when we
take the challenge of modeling cortical microcircuits or systems in a biolog-
ically meaningful way, we must go one step further.

The complexity of the cerebral cortex is palpable. First, the network is
complex. For instance, one hemisphere of macaque monkey has on aver-
age 400 ∗ 106 nerve cells (Herculano-Houzel, Collins, Wong, Kaas, & Lent,
2008) in 130 to 140 functional areas (Van Essen, Glasser, Dierker, & Har-
well, 2012) that are interconnected by about a 66% connection density span-
ning five orders of magnitude (Markov et al., 2011, 2014). Second, each
neuron is complex and challenging to model realistically (Almog & Ko-
rngreen, 2016). Dendritic trees are complex in terms of both anatomy and
biophysics (Larkum, Nevian, Sandler, Polsky, & Schiller, 2009; Rall, 1962;
Sidiropoulou, Pissadaki, & Poirazi, 2006), and signal propagation is sig-
nificantly affected by the dendritic morphology and ion channel distribu-
tion (Sjöström, Rancz, Roth, & Häusser, 2008). Third, the cerebral cortex is
not homogeneous across cortical areas, developmental stages (Elston, Oga,
Okamoto, & Fujita, 2010; Elston & Rosa, 1997), or species (Betizeau, De-
hay, & Kennedy, 2014; Herculano-Houzel et al., 2008; Horvát et al., 2016).
Finally, synapses and network homeostasis are heavily influenced by plas-
ticity (Feldman, 2009; Turrigiano, 2008) and sleep (Rasch & Born, 2013).

When we started to model the cerebral cortex, we noticed that even a
very good simulation engine resulted in a complexity nightmare, where a
prohibitive model became mixed with a long and complex code. Complex-
ity in software projects increases errors and prolongs development time,
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and managing complexity has become a primary technical imperative of
software development (McConnell, 2004).

Here, we have come up with a simulation framework that simplifies nu-
merical simulations by dividing the model construction into two parts. The
first part addresses code complexity. First, the abstraction level of the bio-
logical model is decided. If the desired model contains elements that are not
included in the framework by default, they need to be coded in the selected
high-level simulation engine. Our approach implicitly mitigates code com-
plexity since such programming tasks are isolated inside the framework.

In the second part, the framework completely hides the code and pro-
vides the user with two simple and restrictive interfaces. The simple user
interfaces support experimentation with complex biological systems and
aim at reduced development time without coding errors. With appropriate
filters, a life scientist can start from an existing complex model with minimal
need to consider the software implementation.

1.2 Spreadsheet as a Development Environment. We implemented the
idea of code/model division into CxSystem, a new framework that dynam-
ically compiles a spreadsheet model into a simulation device and enables
flexible biomimetic simulations of cortical systems. The framework works
on the top of the Python-based Brian2 simulator (Goodman & Brette, 2009).

In Brian2 the user can implement membrane and synapse dynamics
with straightforward model equations. Moreover, Brian2 inspects the units
of the variables in the equation, reducing modeling errors. Brian2 pro-
vides the flexibility necessary for model exploration and is known to have
the most compact code compared to other widely used simulation en-
gines (Tikidji-Hamburyan, Narayana, Bozkus, & El-Ghazawi, 2017), such
as NEST (Gewaltig & Diesmann, 2007) and NEURON (Hines & Carnevale,
1997). The CxSystem reuses components of earlier work (Heikkinen, Shar-
ifian, Vigário, & Vanni, 2015), but the code was completely rewritten to be
dynamically compiled from configuration files, to run on C++ and GeNN
(Yavuz, Turner, & Nowotny, 2016) devices, and to support parallel param-
eter searches. CxSystem is available at GitHub1 accompanied by online
documentation.2

2 Methods

2.1 Framework

2.1.1 Interface of CxSystem. Two comma-separated values (CSV) files
comprise the main user interfaces of the CxSystem. The first, the model and

1
https://github.com/VisualNeuroscience-UH/CxSystem.

2
https://cxsystem.readthedocs.io.
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Figure 1: UML diagram of the CxSystem, illustrating the interaction of the CSV
files, internal components of the CxSystem, Brian2 simulator, Brian2genn front
end, and GeNN simulator.

network configuration file, houses the simulation setup parameters and the
network-level anatomical structure of the model. This structure includes all
connections between cell groups, as well as their connection probabilities
and number of synapses and connection.

The second, the physiological configuration file, houses the spread of lo-
cal connections, as well as all the neuron- and synapse-level biophysical
parameters affecting the membrane voltage. Input to stimulate the system
currently comprises the afferent volley of thalamocortical spikes with tim-
ing specified by the user.

2.1.2 Internal Components of the CxSystem. The CxSystem has three main
components: the CxSystem constructor, the parameter parser, and the phys-
iology reference (see Figure 1). The CxSystem Constructor reads the model
and network configuration and builds up the anatomy. The parameter
parser reads the physiological configuration file, extracting the physiologi-
cal parameters. These are fed to the physiology reference, which collects all
the elements that are required to create desired objects for Brian2.

Next, the physiology reference packs the required physiological param-
eters as a reference dictionary and passes it to the CxSystem constructor, the
only component that interfaces with the Brian2 simulator.

C++ code generation is provided natively by Brian2, whereas compute
unified device architecture (CUDA) code generation needs a GeNN simu-
lator via the Brian2genn frontend (Nowotny et al., 2014). The CxSystem is
built to cope with the minor limitations on Brian2 features that emerge from
the stand-alone C++ and GeNN devices. The most important limitation is
using a single network, the brian2 magic network, since multiple networks
cannot be supported in the Brian2GeNN interface.
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2.1.3 CxSystem Simulation Flow and Run Modes. When CxSystem runs
a simulation, it executes the configurations in this order: network, input,
neurons, and then synaptic parameters. The network parameters are set in
the first step, preparing the environment for building up the neurons and
synapses. Based on the input type, CxSystem prepares the network input
either sequentially (e.g., vector of afferent action potentials) or in parallel
(e.g., video through artificial retina). Next, the syntaxes for neuron groups,
membrane equations, and corresponding monitors are dynamically formed
and run. Similarly, the equations for synapses are formed based on the re-
ceptor type, compartments, and the pre- and postsynaptic neuron layers.
CxSystem places the generated objects in the proper scope for Brian2. After
running the simulation, CxSystem collects and saves the monitored data.

Simulations can be performed in two modes. In the local mode, the dis-
tance between the neurons does not affect the connection probabilities. In
the expanded mode, the user can scale the connection probability with dis-
tance, by default with exponential decay (Markov et al., 2011, 2013).

The CxSystem can run simulations in parallel, in single-dimensional or
multidimensional mode. In a single-dimensional array run, each parameter
change is independent of another. In a multidimensional array run, CxSys-
tem runs all combinations of all parameter dimensions. Both modes run
each parameter set in one thread.

The GeNN device automatically distributes the load of a single run
across the graphics card, thus computing one parameter set in parallel.
However, only one simulation should be run with a single GPU, since mul-
tiple simulations would use the same resources, degrading performance.

When the CxSystem is run on a cluster (tested with SLURM workload
manager in Taito cluster3 at IT center for science in Finland), it automati-
cally divides the workload based on the requested number of nodes, gen-
erates the proper batch job scripts, transfers the required files to the cluster
connection node, submits the simulations remotely, and, when the results
are ready, automatically downloads the results and cleans both local and
remote environments.

2.1.4 Performance Evaluation. For both run-time and stand-alone code
generation (for C++ and CUDA via GeNN), the CxSystem was run on two
computers. The first was a laptop equipped with an Intel Core i7-4702MQ
CPU, 8 GB of DDR3 memory, and NVIDIA GK208M (Geforce 740M GT)
graphic card with 2 GB video memory running the Linux operating system
on HDD. The second was a workstation equipped with Intel Xeon Processor
(E5 2640–2.6 GHz), 128 GB of DDR4 memory, and one NVIDIA GK104GL
(Quadro k4200) graphic card with 4 GB video memory running the Linux
operating system on a solids state drive (SSD). The simulation time step was

3
https://research.csc.fi/taito-supercluster.
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0.1 ms. The same laptop was also used for the conductance-based Hodgkin-
Huxley (COBAHH) benchmark. In the Taito cluster, the CxSystem was run
on HP SL230s G8 nodes with 16 cores and 64 GB memory per node.

For Python and C++ stand-alone devices, we tested the CxSystem on
Linux, Windows, and MacOS systems. The GeNN stand-alone device was
tested on Linux and Windows.

2.2 Simplified Model of Neocortical Microcircuit. The model details
are described in the companion letter in this issue. In short, we copied
the number of cells (∼31,000) and synapses (∼37 million) from a recently
published comprehensive rat somatosensory cortex microcircuit model
(Markram model; Markram et al., 2015). We made three main simplifica-
tions. (1) The morphological cell types were reduced from 55 to 16. (2) In-
stead of high-fidelity multicompartmental modeling, we used only up to
seven compartments in pyramidal cells and point-like stellate cells. (3) We
used exponential integrate-and-fire models (Fourcaud-Trocmé, Hansel,
van Vreeswijk, & Brunel, 2003) instead of Hodgkin-Huxley-type neuron
models.

The first part of the model was fixed and was coded directly into the
CxSystem. This part comprised synaptic and neural equations for pyrami-
dal cell (PC), spiny stellate (SS), basket cell (BC), Martinotti cell (MC), and
layer I inhibitory cell (L1I) groups. In the case of compartmental PC neu-
rons, the equations were a template that was automatically expanded based
on the layers in which apical dendrites reside. As for the synaptic mod-
els, the user could choose between fixed synapses and synapses with short-
term synaptic plasticity (STP; Markram, Wang, & Tsodyks, 1998; Zucker &
Regehr, 2002).

The second part of the model was read from the CSV files and inter-
faced into the CxSystem. The connections and synapse probabilities were
imported from the Markram model, converted to a CxSystem-compatible
CSV, and imported as a model and network configuration file.4 The physio-
logical and biophysical parameters were introduced to the CxSystem in the
physiological file.5 The values of these parameters for the Markram model
are presented in Table 2 of the companion letter.

2.3 Porting/Building a Model. The first step to port an existing model
to CxSystem is to define the target network and the cell group character-
istics. The CxSystem currently includes multicompartmental PC neurons
and four types of point neurons, which provide templates for potential new
neuron types. Each of the neuron groups will take a single line in the model

4
https://github.com/VisualNeuroscience-UH/CxSystem/tree/master/config_files

/Markram_config_file.csv.
5
https://github.com/VisualNeuroscience-UH/CxSystem/tree/master/config_files

/Physiological_Parameters.csv.
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and network file. The physiological parameters of the neurons should also
be modified in the physiological file. In the next step, the synaptic connec-
tions between the neuron groups are determined. Finally, the simulation
parameters are configured by defining the parameters such as simulation
duration, device, and system mode. Existing configuration files within the
repository provide a useful starting point for porting new models.

We ported the 4000-neuron COBAHH benchmark model (Brette et al.,
2007), which is based on network model of Vogels and Abbott (2005). In na-
tive Brian2, the network can be implemented with only one neuron group,
which is divided into separate excitatory and inhibitory subgroups. We im-
plemented this with two groups: an excitatory neuron group containing
3200 and an inhibitory neuron group containing 800 HH cells. Hodgkin-
Huxley-type equations were added to a physiological reference Python
module with fixed ion channel activation-inactivation parameters. The con-
nection probability between neurons inside a group and between the two
neuron groups was 2%, with each connection comprising one synapse;
these were defined in the model and network file (see Table 1). The phys-
iological details were then applied in the physiological file (see Table 2)
including synaptic parameters, connection weights, synaptic delays, and
neuron group parameters.

A new network can be designed by using a regular spreadsheet program
such as Excel. First, plan the system architecture and select neuron groups,
sizes, and locations. Next, it is useful to draw a connection diagram before
implementing the connections. Finally, check the biophysical parameters
for the selected neuron groups and connection types. A new project might
need functionalities we have not implemented. New features can be pro-
grammed in Python in the physiology reference module, and they can then
be referenced in the configuration file.

3 Results

The performance of the CxSystem was evaluated in three ways. First, using
the COBAHH model (Brette et al., 2007), the performance of CxSystem was
compared with native Brian2. Second, we compared the performance of
the three devices supported by the CxSystem: Python, C++, and GeNN.
Finally, we tested weak scaling performance with several independent
runs in a cluster. The latter two ran the simplified model of neocortical
microcircuit.

3.1 Simulator Performance. We compared the total run time of three
implementations of COBAHH example: in CxSystem and Brian2 with one
and two neuron groups to get an approximation of the CxSystem overhead.
The configuration file (see Table 1) along with the corresponding physio-
logical configuration file (see Table 2) builds up and runs the COBAHH
example in the C++ stand-alone device for 1000 ms.
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Table 2: Tabular View of the Physiological Configuration File for the COBAHH
Example.

Variable Key Value
Calcium_Concentration 2

Connection weights
_weights w_All_other_E-E_connections 6 * nS

w_All_other_E-I_connections 6 * nS
w_All_other_I-E_connections 11 * 6 * nS
w_All_I-I_connections 11 * 6 * nS

cw cw_HH_E_HH_E _weights[’w_All_other_E-
E_connections’]

cw_HH_E_HH_I _weights[’w_All_other_E-
I_connections’]

cw_HH_I_HH_E _weights[’w_All_other_I-
E_connections’]

cw_HH_I_HH_I _weights[’w_All_I-
I_connections’]

Synaptic delays
delay delay_HH_E_HH_E 3.0 * ms

delay_HH_E_HH_I 3.0 * ms
delay_HH_I_HH_E 3.0 * ms
delay_HH_I_HH_I 3.0 * ms

Neuron group parameters
HH_E C 200 * pF

gL 10 * nS
g_na 20. * usiemens
g_kd 6. * usiemens
ENa 50 * mV
EK −90 * mV
taum_soma C/gL
EL −60 * mV
Vr −60 * mV
Vcut 20 * mV
VT −63 * mV
V_res −80 * mV
Ee 0 * mV
Ei −80 * mV
tau_e 5 * ms
tau_i 10 * ms

HH_I C 200 * pF
gL 10 * nS
g_na 20. * usiemens
g_kd 6. * usiemens
ENa 50 * mV
EK −90 * mV
taum_soma C/gL
EL −60 * mV
Vr −60 * mV
Vcut 20 * mV
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Table 2: Continued.

Variable Key Value
Calcium_Concentration 2

VT −63 * mV
V_res −80 * mV
Ee 0 * mV
Ei −80 * mV
tau_e 5 * ms
tau_i 10 * ms

Figure 2: Proof-of-concept performance evaluation of the CxSystem running
COBAHH example (Brette et al., 2007) in comparison with Brian2 implemented
with one and two neuron groups.

The runtime of the single-core simulation of COBAHH example in
CxSystem, as shown in Figure 2, is very close to Brian2 and the marginal
overhead of the CxSystem over Brian2, i.e., the cost for simplicity, is negli-
gible compared to total runtime.

3.2 Device-Level Performance Evaluation. We benchmarked the
CxSystem using Python, C++, and GeNN devices in a laptop and work-
station in two scenarios. First, the duration of run time was increased while
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the CxSystem was running in the local mode (see Figures 3A to 3D). Sec-
ond, the size of the system was increased, so the CxSystem was running
in expanded mode (see Figures 3E to 3H). We examined the integrity of
C++ and GeNN code generation in comparison with the native Python.
With an identical configuration file, neural positions, initial membrane
voltages, and connections, the three implementations produced identical
output.

For each of these scenarios, we measured two main metrics: Brian2 sim-
ulation run time and total computation time (including run time, Python
code compilation, code generation performed by Brian2, and device-
specific compilation for C++ and GeNN devices).

The first scenario simulated the simplified Markram model (related to
as the EIF model in the companion letter) for durations ranging from 1 to
32 s. As expected, the run time was linearly associated with the simulation
duration. In the laptop, the C++ device was always faster than the Python,
and time saved with the C++ device increased with both run time and total
computation time (see Figures 3A and 3B). The GeNN device followed a
rather different trend. First (compare Figures 3Aand 3B with Figures 3C and
3D), its performance was inextricably linked with the graphic card memory.
The low-end GPU in the laptop with a low device memory demanded a
higher number of memory transfers between host and device, which caused
weak performance. In the workstation, the GeNN device performed best
with long runs.

In the second scenario, the duration of simulations was set to 1 s, and
the CxSystem was scaled from 0.5 to 4 (laptop) or 8 (workstation) times the
Markram model size. Unsurprisingly, scaling the CxSystem up raised out-
of-memory error much faster than increasing the duration of simulation
(see the missing gray bars in Figures 3E to 3H). The out-of-memory error
appeared first for the GeNN device and later for the Python or C++.

The Python and C++ outpaced the GeNN device, because GeNN suf-
fered from too many device-host memory transfers. In contrast, reach-
ing the out-of-memory state while using the Python and C++ device
entirely depended on the host memory. With 128 GB of host memory on our
workstation, we managed to scale our model up to 11 times the Markram
model.

3.3 Parallel Scalability. Currently, single Brian2 simulations can be
parallelized with GPU via a GeNN simulator. When exploring parameter
spaces, the CxSystem supports independent simulations in different cores
with array_run (workstation or laptop) and cluster_run (clusters) modes.
In the future, CxSystem aims to follow Brian2 updates and implement pos-
sible new parallelization capabilities.

The two main approaches to measure the scalability of an application
are weak and strong scaling tests, which present a measure of scalabil-
ity for CPU-bound and memory-bound applications, respectively. In the



Controlling Complexity of Cerebral Cortex Simulations 1059

Figure 3: Top: Benchmark of the CxSystem devices with varying simulation
times. Laptop (A) run time and (B) total time. Workstation (C) run time and (D)
total time. Bottom: Benchmark with varying system scale. Laptop (E) run time
and (F) total time. Workstation (G) run time and (H) total time. The missing bars
in this figure indicate an out-of-memory state of the simulation. All data points
indicate an average of three runs.
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Figure 4: Result of the weak scaling test for the CxSystem running in a cluster
at the national IT center for Science. The amount of work is fixed to six indepen-
dent simulations of the simplified Markram model per node while increasing
the number of nodes from 1 to 32, that is from 6 to 192 simulations in total. The
waiting time due to the SLURM load manager was omitted.

former, the problem size stays fixed, while the number of processing units
is increased, and in the latter, the computation assigned to each processing
unit stays constant and additional elements are used to solve a larger total
problem.

Currently, strong scaling is not applicable to the CxSystem since it does
not parallelize an individual simulation on a controllable set of processing
elements. Note that parallelization using GPU is performed automatically
with GeNN, and therefore the number of CUDA cores used for processing
cannot and should not be customized manually.

The weak scaling test of the CxSystem is instead trivial since by default,
one simulation is assigned to one processing element, and it is expected
that the total run time will stay constant while increasing the number of
simulations in parallel. We tested this on the CxSystem cluster_run mode
by running a set of six instances of a simplified model of neocortical mi-
crocircuit per node. As expected and shown in Figure 4, the run time stays
almost constant while the workload is increased from the six simulations in
one node to 192 simulations in 32 nodes.

4 Discussion

We have constructed a cerebral cortex simulation framework that operates
on personal computers and tested the simulation software with a COBAHH
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example (Brette et al., 2007) and a simplification of a recently published
comprehensive cortical microcircuit model (Markram et al., 2015). The
CxSystem breaks the complexity of biomimetic simulations into separate
coding and modeling parts, thus supporting testing and buildup of com-
plex cortical models at a single cell resolution. Current implementation
omits many well-known anatomical and physiological features with the
aim of minimizing computation time and was used here for cross-device
benchmarking purposes. The accompanying work in the companion letter
(Hokkanen, Andalibi, & Vanni, 2019, this issue) validates the simplification
of the Markram model and examines the computational and conceptual
benefits simplification approach.

The CxSystem embraces the main goal of Brian2, minimizing develop-
ment time, by providing the user with a simplified interface. The interfaces
are easily modifiable with common spreadsheet programs and have a bio-
logically meaningful syntax appropriate for life scientists unaccustomed to
computer programming.

Benchmarking of the CxSystem showed that its performance is on par
with Brian2. This suggests that more thorough comparisons of Brian2 to
other simulation engines (such as in Tikidji-Hamburyan et al., 2017) are ap-
plicable with a negligible margin.

The device-based performance evaluation of the CxSystem revealed
characteristics that are useful for selecting the proper device. Importantly,
using the GPU via a GeNN device did not always result in the fastest run.
For instance, the performance of the GeNN device on our laptop was al-
ways slower than the C++ device, while it outpaced the C++ device in
the workstation for long runs. The reason was twofold. First, the Intel Core
i7 processor in the laptop performed better than Intel Xeon in the work-
station. Second, the higher amount of GPU memory and larger number of
CUDA cores in the workstation pushed the run time down compared to the
laptop. The GeNN device is not useful for parallel array runs because each
parameter set reserves the same GPU resources slowing the simulation. Fi-
nally, the weak scaling test showed that using cluster run in the CxSystem
is completely suitable for parameter search since the total run time stays
constant.

The basic aim of this work has been to reduce the time to implement
and run diverse models of the cerebral cortex using an interface that hides
the code complexity of the model. Compared to neural mass models (Deco,
Jirsa, Robinson, Breakspear, & Friston, 2008), which are used to compute
population responses of large-scale networks, we simulate each neuron and
synapse separately. This enables synapse-level studies of learning and plas-
ticity, as well as studies on data processing in a population of partially inde-
pendent nerve cells. We have tested a recent comprehensive cerebral cortex
model, originally run on a supercomputer, on our workstations, laptops,
and a remote computing cluster. Due to its simplified model structure, we
could scale up the Markram model cell and synapse numbers with a factor
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of 11 with desktop workstations comprising 128 GB memory. This allows
extension of the model to multiple interacting areas in a hierarchical fash-
ion and with distinct timing. With fewer neurons per unit area of cortex or
with more host computer memory, this could be expanded further.

In comparison to PyNN, a multiplatform simulator (Davison et al., 2009),
which aims at an easy shift and comparison between simulation platforms,
CxSystem aims at model flexibility while using only the Brian2 simula-
tion platform. Most parameters, including the network design itself, can
be modified from the configuration files. This enables fast experimentation
and reduces the need for coding skills for end users.

NeuroML is an XML-type language for translation of simulation engine-
specific models from one engine to another (Gleeson et al., 2010). Brian does
not directly support importing-exporting models to NeuroML. Brian has
been our modeling language of choice because it is easy to use and enables
scaling up to a systems level while allowing compartmental neural struc-
tures. However, in case NeuroML becomes the language of choice for model
exchange in the future, we will indeed consider constructing a bridge from
our model structure to NeuroML.

Conceptually, the CSV interface can be viewed as a declarative computer
language. The user does not need to define the rules or the algorithm of
simulation to get the results. In contrast, the CxSystem itself is coded with
strongly procedural language, including a Brian2 interface and Python. This
dual approach is trying to hide the coding and part of the low-level com-
plexity of the model from the biological synthesis of the system. Instead, we
aim at operating at a biological domain-specific level of abstraction while
enabling easy parameter searches. The aim is to study the model and make
the study as simple as possible. In addition, CxSystem optimizes the com-
putational efficiency by turning the spreadsheet model to C++ or GeNN
devices of Brian2.

Since the CxSystem is written on top of Brian2, it inherits most of its
limitations too. Unlike NEST and NEURON, a model in Brian2 needs to
be analyzed and compiled at every run. When Brian2 performance remains
lower than NEST and NEURON, it can be significantly improved by setting
the solver to the slightly less accurate exponential-Euler method (Tikidji-
Hamburyan et al., 2017). Moreover, the performance of a simulator is inex-
tricably linked with the model that it is simulating, as well as with some
simulator-specific parameters, such as refractory period and numerical in-
tegration method. Because Brian2 currently lacks support for message pass-
ing interface, simulation of large networks consisting of high-fidelity mul-
ticompartmental models is probably unfeasible.

Several features are the object of future development. First, we plan to
support a wider range of neuron models and improve the usability of the
CxSystem in collaboration with life scientists. Second, interactive CSV con-
figuration files could, for instance, guide users to choose the proper unit or
parameter and thus reduce the rate of unexpected errors. In the near future,
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we plan to enable video input through artificial retina. Moreover, we plan
to build a support for a system of cortical areas in spatially parallel patches
of neural ensembles, mimicking distinct cortical areas.
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Horvát, S., Gămănuț, R., Ercsey-Ravasz, M., Magrou, L., Gămănuț, B., Van Essen,
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