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Abstract— Eye center localization is one of the most crucial and 

basic requirements for some human-computer interaction appli-

cations such as eye gaze estimation and eye tracking. There is a 

large body of works on this topic in recent years, but the accuracy 

still needs to be improved due to challenges in appearance such as 

the high variability of shapes, lighting conditions, viewing angles 

and possible occlusions. To address these problems and limitations, 

we propose a novel approach in this paper for the eye center local-

ization with a fully convolutional network (FCN), which is an end-

to-end and pixels-to-pixels network and can locate the eye center 

accurately. The key idea is to apply the FCN from the object se-

mantic segmentation task to the eye center localization task since 

the problem of eye center localization can be regarded as a special 

semantic segmentation problem. We adapt contemporary FCN 

into a shallow structure with a large kernel convolutional block 

and transfer their performance from semantic segmentation to the 

eye center localization task by fine-tuning. Extensive experiments 

show that the proposed method outperforms the state-of-the-art 

methods in both accuracy and reliability of eye center localization. 

The proposed method has achieved a large performance improve-

ment on the most challenging database and it thus provides a 

promising solution to some challenging applications. 

 
Index Terms—Human-computer interaction, eye tracking, eye 

gaze estimation, eye center localization, deep learning, FCN. 

 

I. INTRODUCTION 

YE center localization refers to localizing the centers of hu-

man’s pupil on given face images. Locating these centers 

means that we could establish correspondence between two 

eyes of the person and the focused targets, which has been 

proven to be useful for computer vision and human computer 

interaction tasks such as eye gaze estimation and eye tracking. 

Eye center localization is the first step towards eye gaze track-

ing and estimation in images and video [1]. During the process 

of eye gaze estimation and tracking, we need to determine the 

precise pixel location of important key points of the eye center 

for a single given RGB image. Moreover, achieving accurate 

eye center localization is useful for higher level tasks [2-7] such 

as human attention control, driver monitoring system and sen-

timent analysis, and also serves as a fundamental tool in fields 

 
This work was supported by National Natural Science Foundation of China 

(61533019, U1811463), the Open Fund of the State Key Laboratory for Man-
agement and Control of Complex Systems, Institute of Automation, Chinese 

Academy of Sciences (Y6S9011F51), and the EPSRC project (EP/N025849/1). 

Y. Xia, and H. Yu are with the School of Creative Technologies, University 
of Portsmouth, Portsmouth, PO1 2DJ, UK (e-mail: Yifan.Xia@myport.ac.uk; 

hui.yu@port.ac.uk). 

such as human computer interaction and animation.  

Eye center localization has been an interesting topic in the 

field of computer vision in recent years. There are many factors 

that can affect performance of the eye center localization such 

as the significant variability situation of eye appearance from 

different illumination, shape, color and viewing angles. A good 

eye center localization system must be accurate and robust to 

these factors. Early works tackle such difficulties using special-

ized devices like infrared cameras or head-mounted devices. 

This kind of devices is very popular in commercial areas since 

they could apply infrared illumination to localize the eye cen-

ters through corneal reflections. In that case, these devices 

could obtain a high accurate eye center location. However, it 

has some limitations in applications such as the high cost de-

vices and the uncomfortable wearing experience. Compared 

with these specialized devices, the approaches which directly 

localizing key point positions of eye center through computer 

vision and image processing techniques are more efficient since 

they only need a low-cost webcam instead of specific hardware 

devices and can be easily implemented. This method is often 

used as an alternative approach of infrared illumination in terms 

of the high accuracy and robustness. 

The success of deep learning methods for various computer 

vision tasks in recent years motivates us to investigate it in the 

task of eye center localization [65-68]. Traditional methods 

have recently been reshaped by emerging deep learning tech-

niques, which are the main driver behind an explosive rise in 

performance across many computer vision tasks [69-74]. Fully 

convolutional network (FCN) has been proved to be successful 

not only in object semantic segmentation tasks, but also in other 

applications such as image classification or object detection. 

However, deep learning has rarely been mentioned and used for 

eye center localization. Therefore, in this paper, we introduce a 

novel end-to-end and pixels-to-pixels method for the eye center 

localization via FCN. 

The designed FCN takes an entire image of face as input and 

the predicted heatmaps as output. And then we transform the 

predicted heatmaps to landmark coordinates to get the eye cen-

ter location. The designed network follows two design princi-

ples: 1) we design a shallow structure rather than a deep one, 
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which makes a good balance between performance and compu-

tational resources due to limited publicly available databases 

with accurate eye center annotations. 2) inspired by [53] and 

[54], we use a large kernel convolutional block instead of stack-

ing small size (1 × 1 or 3 × 3). The key idea is based on the 

assumption that the eye center localization can be considered as 

a special semantic segmentation problem. For the eye center lo-

calization and semantic segmentation task, images are taken as 

the input, but the output of the former task is coordinates of 

landmarks and the latter one is the object's class at each pixel. 

Thus, the key to implementing this assumption is that we need 

to establish correspondence between coordinates of landmarks 

and object's class at every pixel. To this end, we preprocess the 

images in which the coordinates of the eye centers are first 

transformed to a heatmap using Gaussian kernels. Then the 

problem becomes estimating the value of the heatmap at each 

pixel, which is equivalent to the semantic segmentation prob-

lem, where the goal is to estimate the object's class at each pixel. 

Thanks to the strong performance of FCN for semantic segmen-

tation, we design a shallow FCN network, which is similar to 

the one in [8] with a large kernel convolutional block and fine-

tune it to transfer their performance from semantic segmenta-

tion to the eye center localization task. The detailed experi-

mental results show that the proposed approach outperforms 

state-of-the-art methods for eye center localization in terms of 

accuracies and reliability.  

The major contributions of this work are as follows: 

• We design a fully convolutional network (FCN) with a shal-

low structure and a large kernel convolutional block to ac-

curately locate the eye center, which well balances the per-

formance and the computational costs.  

• We regard the problem of eye center localization as a special 

semantic segmentation problem, which is a novel and im-

portant solution regarding the key and future directions for 

this area of research. 

Here is a brief introduction of the structure of this paper. In 

Section II, we describe the related work on eye center localiza-

tion and fully convolutional network. In Section III, we describe 

the methodology about our proposed network. We show results 

of experiment on the public dataset to evaluate the performance 

of our proposed method and other existing methods in Section 

IV. Finally, Sections V and VI are the general discussion and 

conclusion.  

II. RELATED WORK 

This section reviews related works on eye center localization 

and fully convolutional networks.  

Eye center localization Localizing the eye center is a critical 

requirement for eye gaze estimation and eye tracking and has 

attracted a huge interest in recent years. Existing works for eye 

center localization can be roughly divided into three categories: 

1) appearance-based methods, (2) model-based methods, and (3) 

hybrid methods. Early works tackle this problem mainly using 

appearance-based methods, which use priori eye knowledge 

about appearance information such as the color, circle structure 

and other geometric characteristics of the eye to localize the eye 

center [9, 10, 11]. Valenti and Gevers [12] proposed a method 

using the isophote curvature method according to circle shape 

of eye to localize the eye center. Moreover, based on the circle 

property of the eye, the means of gradient method proposed by 

Timm and Barth [13] is a milestone in the development of eye 

center localization tasks. It can localize the eye center by calcu-

lating the dot product of gradient vector and displacement vec-

tor. Based on means of gradient method, there are many im-

proved or similar methods over recent years like [14,15]. Asa-

difard et al. [16] proposed a method based on the cumulative 

density function (CDF), which mainly filters the image to de-

termine which pixel is the eye center. A method proposed by 

Leo et al. [17] used the local variability of the appearance and 

image intensities to determine the eye center. Araujo et al. [19] 

described an Inner Product Detector for eye localization based 

on correlation filters. The appearance-based methods have 

achieved good performance, but under some challenging sce-

narios like poor illumination they are not robust and accurate 

enough. Zhang et al. [47] introduced a modular approach mak-

ing use of isophote and gradient features simultaneously to es-

timate the eye center locations. Villanueva et al. [48] proposed 

a method to detect the eye center using a multiresolution and 

topographic method. George et al. [51] used geometrical char-

acteristics for eye center localization. Choi et al. [52] reviewed 

the local structure patterns (LSPs) and extended them by using 

several hybrid local structure patterns (LSPs) for accurate eye 

detection. 

Model-based and hybrid methods are alternative solutions 

for eye center localization. Model-based methods mainly use 

machine learning algorithms. It first extract key features of im-

ages to train a model regarding appearance or structures of eye 

and then fit the learned model to determine eye centers. Many 

machine learning algorithms have been used for eye center lo-

calization such as Bayesian models [20], hidden Markov mod-

els (HMMs) [21], support vector machines (SVM) [22, 23, 24] 

and AdaBoost [25]. Kim et al. [26] localized eye centers using 

a multi-scale approach, which was based on Gabor vectors. A 

multi-layer perceptron was used by Jesorsky et al. [27] to de-

termine the position of eye center. Kroon et al. [28] employed 

a Fisher Linear Discriminant to filter the face image and se-

lected the highest responses as the eye center. Chen et al. [29] 

used a hierarchical FloatBoost and MLP classifier simultane-

ously to localize the eye center. Cristinacce et al. [30] used Ac-

tive Appearance Model (AAM) to find the eye center positions. 

Behnke [31] proposed a hierarchical network with local recur-

rent connectivity for this task. A cascade regression model was 

trained by Gou et al. [32, 49, 50] using synthetic photorealistic 

data, which was used to determine the eye center. Markus et al. 

[33] localized the eye pupil by using an ensemble of random-

ized regression trees. Chen et al. [34] used clustering-based dis-

criminant analysis (CDA) models to localize the eye center. 

Ren et al. [35] proposed a codebook of invariant local features 
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and a pyramid-like sparse representation classifier to locate the 

eyes. Hamouz et al. [36] used a GMM-based feature detector 

and an enhanced appearance mode to localize the eye center. 

Compared with appearance-based methods, the model-based 

method is more robust. However, this kind of methods relies on 

lots of annotated training data, which is difficult to obtain in 

many cases. Hybrid methods integrate the advantages of ap-

pearance-based and model-based method simultaneously in one 

method like [37,38]. In order to deal with occlusions of the eye-

lids under certain lighting conditions, Valenti et al. [39] pro-

posed a hybrid method using mean shift and machine learning 

algorithm to improve their previous isophote method [12].  

Fully Convolutional Network In the domain of deep learn-

ing, fully convolutional network (FCN) is widely used for se-

mantic segmentation to predict object’s class at each pixel in an 

image according to its semantic meaning. Semantic segmenta-

tion is one of the most active research areas over recent years in 

computer vision. Early works [40, 41] mainly relied on low 

level or hand-crafted features to generate the label map to solve 

this problem. Fully Convolutional Networks (FCN) proposed 

by Long et al. [8] is a special variant of Convolutional Neural 

Networks. This method is an encoder-decoder architecture tak-

ing the existing CNNs model like VGG-16 as powerful tools to 

learn hierarchical features, which transform these models into a 

fully convolutional form by replacing the original fully con-

nected layers with convolutional layers. Then upsampling or 

deconvolution is used to output the class of prediction for each 

pixel. FCN is the first end-to-end and pixel-wise predicting 

model, which provides a novel and milestone solution and 

opens a new research area for semantic segmentation. It is also 

the foundation for other contemporary semantic segmentation 

algorithms. Based on the principle of FCN, many variations 

have been proposed for semantic segmentation over recent 

years [42, 55, 56, 57]. Note that all the aforementioned methods 

are used for semantic segmentation. Recently, however, the 

FCN-like network structure has been also applied successfully 

to other keypoint detection problems such as human pose esti-

mation [58], facial landmark detection [59] and eye gaze esti-

mation [60, 61]. They all have an encoder-decoder architecture 

and used a FCN-like network structure called hourglass net-

work which borrows the idea from FCN. 

The method proposed in this paper is inspired by both the 

semantic segmentation task and FCN, which regard eye center 

localization as a special semantic segmentation task. Therefore, 

we design a shallow FCN network with a large kernel convolu-

tional block to overcome the limitations of previous works for 

eye center localization. It is a feasible and high-efficiency solu-

tion for eye center localization, which leads to high perfor-

mance outperforming many existing state-of-the-art methods. 

III. METHODOLOGY 

In this paper, we mainly focus on designing a network to 

achieve the task of localization of left eye center and right eye 

center. In this section, we give a detailed description of the pro-

posed deep learning approach for eye center localization. Fig. 1 

shows the brief flowchart of the proposed method. We design a 

Fig. 1. Overview of our method for eye center localization using shallow fully convolutional network. First, given an input image, the image 
is cropped to the size of face bounding box provided by face detection algorithm. Then, the face image is fed into shallow FCN with a large 

kernel convolutional block. Then the feature map is mapped to each pixel by deconvolution operation to predict the per-pixel eye region. And 

the network outputs the heatmap. Finally, the heatmap generated by the network is transformed back to the normal landmark coordinates. In this 

way, we can get the final results of eye center position. 
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shallow FCN network inspired by [8, 53, 54] with a large kernel 

convolutional block. The major advantage of our approach is 

that we regard the eye center localization as a special semantic 

segmentation problem. And the transformation of the image to 

a heatmap allows the network of semantic segmentation to fo-

cus on the landmark detection of the eye center.  

A.  Preprocessing 

The key to transforming eye center localization to the sematic 

segmentation problem is the preprocessing stage. The images 

of the training set are first cropped based on the face bounding 

box provided by the database. Knoche et al. [43] researched the 

effect of the image resolution on performance of facial land-

mark prediction and found that there was a decline of perfor-

mance when the image resolution is smaller than 50×50 px. We 

thus, resize all the cropped face images to be an equal size of 

96×96px. And then we transform all the processed images to a 

gray level for a stable performance. This can also improve the 

efficiency in processing and training. 

Finally, according to the landmarks of eye centers, we trans-

form these images to a heatmap as inputs of the network. Note 

that the successful use of the network of sematic segmentation 

on eye center localization heavily depends on the generation of 

heatmap. We transform each landmark to a single heatmap us-

ing Gaussian kernel. For the eye center localization problem, 

there are two landmarks (left and right eye center). This means 

that we need to generate 2 heatmaps for each eye image, which 

can be interpreted as a grayscale image in the range [0,1]. The 

ground-truth landmark coordinates are set to white and the other 

position as black. In other words, a black heatmaps indicates 

that some landmarks are not recorded, so all pixels on this 

heatmap are set to 0. We use two formulas based on the Gauss-

ian kernel to generate heatmaps of eye center landmarks: 

 

𝐻𝑙 =
1

2𝜋σ2 exp (−
(𝑥−𝑥𝑙)2+(𝑦−𝑦𝑙)2

2σ2 )       (1) 

𝐻𝑟 =
1

2𝜋σ2 exp (−
(𝑥−𝑥𝑟)2+(𝑦−𝑦𝑟)2

2σ2 )       (2) 

 

where (𝑥𝑙 , 𝑦𝑙)  and (𝑥𝑟 , 𝑦𝑟) are the ground truth landmarks of 

left and right eye center, 𝐻𝑙  and 𝐻𝑟  are corresponding values of 

the heatmap at position (𝑥, 𝑦) of the image. And σ is the stand-

ard deviation. The value of σ is an important parameter, which 

needs to be appropriately adjusted. The choice of σ is important 

to get sensible results. If the value of σ is too small, the heatmap 

becomes too sparse (mostly zero). If the value of σ is too big, 

the trained model focuses too much on estimating coordinates 

of other positions instead of eye center positions. For generating 

heatmaps, we set σ = 3, which achieves the best results in our 

experiment. The further discussion can be found in Section IV. 

Fig. 2 shows the examples of the generated heatmaps of left and 

right eye center.  

B. Network Architecture 

In this section, we introduce the proposed network architec-

ture. We use the VGG16-FCN [8] architecture as a basis for 

developing our eye center localization network. Classical CNN 

uses the convolutional layers to extract local features in an im-

age. On the top of convolutional layers, the fully connected lay-

ers use the inner product operation to integrate high-level local 

feature maps into a single feature vector to predict the label of 

each image. Therefore, it is not able to predict the label for each 

pixel. Recently, the trend has shifted towards using FCN to 

solve the dense prediction of each pixel. FCN is a special type 

of CNN, which replaces all fully connected layers with the con-

volutional layers and adds additional upsampling or deconvo-

lution layers. 

After upsampling or deconvolution layers, the output feature 

maps of the network can be transformed to probability maps 

with sigmoid outputs 𝑓𝑦𝑖
 by passing through a perceptron layer. 

𝑓𝑦𝑖
 represents the probability of predicting class 𝑦𝑖  at pixel 𝑖. 

The final results of class prediction �̂�𝑖  can be represented as the 

formula: 

 

�̂�𝑖 = argmax
𝑦𝑖∈𝑌

 𝑓𝑦𝑖
       (3) 

 

where Y is a set of possible categories. Unlike a typical CNN, 

FCN could perform end-to-end and pixel-to-pixel classification 

and output a tensor of pixel-wise class predictions without ad-

ditional post-processing. The spatial size of the tensor is equal 

to the input image, which is implemented by using several up-

sampling or deconvolution layers. Since the output of the deep 

layer lacks location and edge clues, the FCN combines feature 

maps of deep and shallow layers to obtain finer results called 

“FCN-xs” (like FCN-8s). For more details on FCN, see [8].  

Our network architecture is a shallow and simplified version 

of FCN with a large kernel convolutional block, which is also 

an encoder-decoder structure shown in Fig. 1. In this work, we 

use the first two convolutional blocks from VGG16-FCN [8] 

for encoders. Each convolutional block includes two convolu-

tional layers and one Maxpooling layer. The parameters are set 

as the same as those in [8]. And the remaining layers of 

VGG16-FCN are discarded.  The numbers of channels of two 

Fig. 2. The sample heatmaps generated using Gaussian kernel. 
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convolutional blocks at different resolutions are 64 and 128 re-

spectively. 

For traditional network architectures, stacking convolutional 

blocks with small size kernels (1 × 1 or 3 × 3) in the entire net-

work is more efficient than using large kernels. However, in the 

experiment, Zhou et al. [53] proposed the concept of valid re-

ceptive field (VRF) and claimed that the sizes of the actual re-

ceptive were always smaller than the theoretical receptive fields 

for traditional network architectures. Based on this work, Peng 

et al. [54] concluded that the large kernel size which could lead 

to more effective receptive field played an important role in the 

field of semantic segmentation and could improve the perfor-

mance.  

Inspired by [54], we propose to use large kernel convolu-

tional blocks in our network after the outputs from previous en-

coder convolutional blocks. However, the direct use of a large 

kernel size will increase the computational burden due to the 

large number of parameters. In our method, we employ a simu-

lation of a K × K convolutional kernel including a combination 

of one K × 1 convolutional kernel and one 1 × K convolutional 

kernel to replace the direct use of a large kernel size. For the 

large kernel convolutional block, we set K = 15 and use two 

path convolutional operations shown in Fig. 1. Each path con-

tains two convolutional layers with kernel the size of 15 × 1 

and 1 × 15 respectively. Therefore, the output feature maps of 

the convolutional block in the encoder pass through a large ker-

nel convolutional block with a kernel size of 15 and a filter 

number of 256 for a large receptive field. After two path con-

volutional operations, we aggregate the feature maps of two 

paths. Finally, the output of the large kernel convolutional block 

is upsampled with a deconvolution layer, which is used to out-

put the prediction results. The input of the network is the 

cropped face image and the heatmap. The cropped face image 

input to the network is a grey level image with a resolution of 

96 × 96 px . The ground truth label generated by using the 

Gaussian kernel is to generate heatmaps of two eye center land-

marks. The output of the network is the heatmap with the size 

of  96 × 96 px. 

The training procedure for eye center localization is similar 

to the one training FCN for sematic segmentation, which uses 

the images and labels of each pixels as input. We use heatmaps 

as the labels, which are generated by using landmarks of eye 

centers. Landmarks of eye centers are encoded using the Gauss-

ian kernel to generate heatmaps at the provided location of the 

eye center landmarks. Each eye center landmark has its own 

heatmap and allows the network to distinguish between two 

points more easily. The eye center localization network training 

is formulated as a per-pixel regression problem based on the 

ground-truth segmentation masks. Formally, the objective func-

tion can be represented as the following formula: 

 

𝜀(𝜃) = ∑ 𝑒(𝑋𝜃(𝑝), 𝑙(𝑝))𝑝         (4) 

 

where 𝑝  is the index of the pixel, 𝑙(𝑝)  is the ground truth 

heatmap which represents ground truth label of the pixel, and 

𝑋𝜃(𝑝) is the predicted heatmap which indicates estimated label 

predicted by the fully convolutional network with parameters 𝜃. 

The network parameters 𝜃 are updated by using RMSprop op-

timizer. And 𝑒(𝑋𝜃(𝑝), 𝑙(𝑝)) is the loss function.  

During the training stage, all parameters 𝜃 are learned and 

updated via minimizing a loss function, which are computed as 

errors between the predicted heatmap and the ground truth data. 

Usually, the Mean Squared Error (MSE) loss function is used 

for this kind of problems. However, research shows that the use 

of an asymmetric weighted loss can improve the performance 

when the data is unbalanced [18] [63]. Since the number of eye 

centers and non-center pixels are imbalanced, we compute a 

weighted MSE in our experiment. Given an image I with a size 

of ℎ × 𝑤, we can get ground truth heatmap 𝐺 ∈ [0,1]ℎ×𝑤 using 

the gaussian kernel, and the network predicts a heatmap 𝑃 ∈

[0,1]ℎ×𝑤. During the training procedure, the variant of MSE 

loss function of the proposed network is thus given by 

 

𝐿(𝑃,𝐺) =
1

ℎ × 𝑤
∑ ((1 − 𝛼)(𝑝𝑖 − 𝑔𝑖)2 +

ℎ×𝑤

𝑖=1

𝛼((1 − 𝑝𝑖) − (1 − 𝑔𝑖))2)  

(5) 

 

where 𝑔𝑖 ∈ 𝐺 and 𝑝𝑖 ∈ 𝑃 represent the ground truth and predic-

tion of each pixel location, respectively. And 𝛼 refers to the 

weight. We set 𝛼 = 0.15 empirically, which achieves the best 

results in our experiment. 

 

C. From Heatmaps to Coordinates 

In order to evaluate the training model performance, we need 

to transform heatmaps generated by the network to the normal 

landmark coordinates as shown in Fig. 3. To this end, a straight-

forward method is to use the landmark coordinates of the pixel 

Fig. 3. Example output produced by our network. On the left we see 
the final eye center positions provided by weighted average method across 

each heatmap. On the right we show sample heatmaps (From left to right: 

right eye center and left eye center). 
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with the largest estimated density in the heatmap as the esti-

mated landmark coordinates. We find that this method usually 

works well, but sometimes it is not accurate enough and thus 

results in outliers. To solve this issue, we use the weighted av-

erage of these coordinates corresponding to the pixels instead. 

To improve the accuracy and reduce the impact of outliers, the 

result of weighted average is further refined by considering only 

those pixels with the top N largest estimated density. Therefore, 

the problem becomes how to determine the value of N, which 

is used to calculate the weighted average of the coordinates. In 

our experiment, we set N=36 which achieves the best perfor-

mance for eye center localization.  

IV. EXPERIMENTAL RESULTS 

In this section, we first introduce the database including the 

training and test set, experimental settings and the evaluation 

metric. We have also compared with other existing state-of-the-

art methods on the public database including BioID [46] and 

GI4E [48]. 

A. Database 

In the experiment, we use the database from [44] as the train-

ing set. This dataset consists of 13,466 face images from real-

world conditions, among which 5,590 images are selected from 

LFW database [45] while the remaining 7,876 images are 

downloaded from the web.  These facial images have a clear 

difference in shape, expression and occlusions. Each face in this 

database is manually labeled with 5 landmarks including left 

and right eye center. We only use landmarks of left and right 

eye center in our experiment.  

Moreover, for a fair comparison with other existing state-of-

art methods, we choose two public databases as the test set and 

evaluate the proposed method on this database. The test set Bi-

oID [46] is composed of 1,521 grey level images taken from 23 

different subjects under various illumination, poses and loca-

tions. This database is regarded as the most challenging and re-

alistic databases and then widely used for eye center localiza-

tion.  Images of this database have a low-resolution size of 286 

× 384px. The left and right eye center of each image are labeled 

in this database.  

Another test set GI4E [48] contains 1236 high quality RGB 

images from 103 subjects with 12 different gaze directions. 

These images have a resolution of 800 × 600px, which are sim-

ilar to images acquired by a normal camera. The eye centers are 

also labeled in this database. Both of the training and test sets 

are challenging and realistic in terms of appearance, pose, ex-

pression and occlusion. 

B. Evaluation criteria 

In the testing stage, performance is measured with the maxi-

mum normalized error [27], which is the standard evaluation 

metric for eye center localization. It indicates the accuracy and 

reliability of each algorithm by calculating the maximum error 

from the worst estimations of both eyes. The detection error is 

measured as 

 

𝑒𝑟𝑟 =
𝑚𝑎 𝑥(√(𝑥𝑙

′−𝑥𝑙)
2

+(𝑦𝑙
′−𝑦𝑙)

2
,√(𝑥𝑟

′ −𝑥𝑟)
2

+(𝑦𝑟
′−𝑦𝑟)

2
)

√(𝑥𝑙−𝑥𝑟)2+(𝑦𝑙−𝑦𝑟)2
          (6) 

 

where (𝑥𝑙
′, 𝑦𝑙

′) and (𝑥𝑙 , 𝑦𝑙)  are the estimated position and the 

ground truth of left eye center, and (𝑥𝑟
′ , 𝑦𝑟

′) and (𝑥𝑟 , 𝑦𝑟) refer to 

that of the right eye center. During evaluation, if the maximum 

normalized error is larger than 0.25, it is regarded as failure. 

There are some special thresholds which are meaningful and 

usually used to evaluate algorithms for eye center localiza-

tion: 𝑒𝑟𝑟 = 0.05 ≈ the diameter of pupil; 𝑒𝑟𝑟 = 0.10 ≈the di-

ameter of iris;  𝑒𝑟𝑟 = 0.25 ≈ the distance between the eye cen-

ter and the eye corners. Therefore, in order to estimate the eye 

center point located in the eye region, the error should be less 

than or equal to 0.25.  

C. Experimental Settings 

All images used in our experiment including the training and 

test set are cropped using a bounding box to obtain a clear face 

area. And then the cropped face images are further processed to 

gray level images with a size of 96×96px. And the ground truth 

heatmap of two eye center landmarks is generated by using the 

Fig. 5. Experimental results on different values of standard deviation σ on 

BioID database. The eye center detection rate is evaluated by maximum normal-
ized error. And Y coordinate denotes the rate with the normalized error less than 

0.05. 

Fig. 4. The generated heatmap using different values of 

standard deviation σ. 
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Gaussian kernel with a size of 96×96px. 

During the training process, we use 10,000 images from da-

tabase [44] for training and 3466 images for validation. But for 

deep learning methods, the amount of data has a significant im-

pact on the performance. But to the best of our knowledge, only 

a few databases provide annotations of eye centers, which are 

not enough to support the FCN network. Therefore, we use a 

data augmentation method to augment the available training im-

ages to improve the model performance on validation data. Af-

ter splitting, the training set is augmented via affine transfor-

mation including rotation (+/- 30 degrees) and scaling (.75-1.25) 

and horizontal flipping to increase size of the training set.  

In our experiment, the network is trained using TensorFlow 

on a desktop PC with the specification of an Intel Core i7 at 

4.20GHz processor, 16 GB of RAM memory and 8 GB 

NVIDIA GeForce GTX 1080 GPU. And we use RMSprop with 

a leaning rate of 5e-4 for optimization and set the batch size to 

32.  A weighted Mean Squared Error (MSE) loss is computed 

comparing with the predicted heatmap to the ground truth 

heatmap generating from a 2D gaussian kernel (with standard 

deviation σ = 3) on the eye centers. To improve the perfor-

mance of transforming heatmaps to coordinates, we use a 

weighted average of the top N=36 largest estimated density in-

stead of the largest one.  

D. Quantitative Results 

We first explore the impact of standard deviation σ on gen-

erating the heatmaps for our method. As mentioned in Section 

III, we use the Gaussian kernel to generate heatmaps of eye cen-

ter landmarks according to Eq. (1) and Eq. (2) and set σ = 3 in 

our experiment. The impact on the generated heatmap using dif-

ferent parameters σ shown in Fig. 4. From the Fig. 4, we can 

find that the size of heatmaps of the eye center consistently in-

creases with standard deviation σ. It demonstrates the changes 

of performance of eye center localization with different 

values of σ. We have tested different values of standard devia-

tion σ ranging from 1 to 6 and obtained the performance on the 

BioID database shown in Fig. 5.  From the results we can see 

Fig. 7. Qualitative results of our approach on the BioID and GI4E database. The images are sorted according to the maximum normalized error. The red 
points represent the estimated eye center positions by our proposed approach. And the green points represent the ground truth. (a) For the BioID database, the 

first two rows are the best which err≤0.05 and 0.05≤err≤0.10, and the bottom row is the worst which 0.10≤err≤0.25. Note that all the results within the 

eye region which meet minimum standards of the eye center localization (err≤0.25). (b) For the GI4E database, the first two rows are the best which err≤0.05, 

and the bottom row is the worst which 0.05≤err≤0.10. Note that all the results of this database meet err≤0.10. 

 

TABLE 1. THE PERFORMANCE OF OUR PROPOSED APPROACH ON BIOID 

AND GI4E DATABASE 

 𝒆𝒓𝒓 ≤ 𝟎. 𝟎𝟓 𝒆𝒓𝒓 ≤ 𝟎. 𝟏𝟎 𝒆𝒓𝒓 ≤ 𝟎. 𝟐𝟓 

BioID-Max 94.4% 99.9% 100% 

BioID-Min 98.9% 100% 100% 

BioID-Avg 96.9% 100% 100% 

GI4E-Max 99.1% 100% 100% 

GI4E-Min 100% 100% 100% 

GI4E-Avg 99.8% 100% 100% 

 Fig. 6. Normalized error curves of the proposed approach on 

the BioID and GI4E database. 
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that for eye center localization, when σ ≤ 3, a larger value of 

standard deviation σ will result in better performance yet for 

σ ≥ 4 the performance drops. The possible reason for this is 

that a very high value of standard deviation σ could lead to too 

many values of non-eye center positions in the generated 

heatmap which reduce the effectiveness of heatmaps. 

Based on the previous choice of standard deviation σ, we 

have obtained the overall performance of the proposed ap-

proach on BioID [46] and GI4E [48] database using three met-

rics shown in Table. 1 including the maximum normalized error, 

the minimum normalized error and the average normalized er-

ror. And we also show their corresponding normalized error 

curves in Fig. 6. For quantitative results, we mainly focus on 

metric of the maximum normalized error in this work.  

For the BioID database, the maximum normalized error in 

Table. 1 shows that our approach can reach an accuracy of 

94.4%(err≤0.05) which means that the estimated eye centers 

are located within the pupil with a high probability. Moreover, 

Table. 1 also shows the accuracy of 99.9%(err≤0.10) indicat-

ing that eye centers estimated by our approach well lie within 

the iris. Finally, our approach yields an accuracy of 100%(err

≤0.25) for localizing eye center, which means that the method 

could meet the minimum standards of the eye center localiza-

tion and all the estimated eye center points locate exactly within 

the eye region. Table. 1 shows that our method has good per-

formance with the accuracy of 99.1%(err≤0.05), 100%(err≤

0.10), 100%(err≤0.25) on the GI4E database.  

To further demonstrate the overall performance of our 

method, we also use the minimum normalized error and the av-

erage normalized error to evaluate the performance to give an 

upper bound and an average error. The minimum normalized 

error and the average normalized error replace the maximum 

function in Eq. (6) with the minimum and average function re-

spectively. In Table. 1, we can find that accuracy of almost all 

errors are 100%, indicating a reliable accuracy for eye center 

localization.  

E. Qualitative Results 

The qualitative results of the proposed approach on BioID 

and GI4E database are shown in Fig. 7. The red points are used 

to represent the estimated eye center positions by the proposed 

approach. And the green points represent the ground truth posi-

tions of eye center provided by the database. The first two rows 

show a selection of images of different subjects with various 

TABLE 2. COMPARISON OF OUR METHOD WITH OTHER METHODS ON BIOID DATABASE (BOLD VALUE INDICATES BEST 

ACCURACY) 

 
Method 𝒆𝒓𝒓 ≤ 𝟎. 𝟎𝟓 𝒆𝒓𝒓 ≤ 𝟎. 𝟏𝟎 𝒆𝒓𝒓 ≤ 𝟎. 𝟏𝟓 𝒆𝒓𝒓 ≤ 𝟎. 𝟐𝟎 𝒆𝒓𝒓 ≤ 𝟎. 𝟐𝟓 

Asteriadis et al. [9] 44.0%  81.7%  92.6%  96.0% 97.4%  

Zhou et al. [10] - - - - 94.8%  

Bai et al. [11] 37.0%  64.0%  - - 96.0%  

Timm and Barth [13] 82.5%  93.4%  95.2% 96.4% 98.0%  

Cai et al. [14] 84.1% 95.6%  - - 99.8%  

Xia et al. [62] 87.1% 98.7%  - - 99.9%  
Valenti et al. [12] 84.1% 90.9%  93.8%  97.0% 98.5%  

Soelistio et al. [15] 80.8% 95.2%  97.8% 98.9% 99.4%  

Leo et al. [17] 80.7%  87.3%  88.8% 90.9% - 

Leo et al. [64] 78.0%  86.0%  - - 90.0% 
Asadifard et al. [16] 47.0%  86.0% 89.0%  93.0% 96.0%  

Araujo et al. [19] 88.3%  92.7%  94.5%  96.3%  98.9%  

Niu et al. [25] 75.0%  93.0% 95.8%  96.4%  97.0%  

Chen et al. [29] - 89.7%  - - 95.7%  

Jesorsky et al. [27] 38.0%  78.8%  84.7%  87.2%  91.8%  

Gou et al. [32] 89.2%  98.0%  - - 99.8%  

Behnke [31] 37.0%  86.0%  95.0% 97.5% 98.0%  

Markus et al. [33] 89.9%  97.1%  - - 99.7%  

Kim et al. [26] - 96.4%  - - 98.8%  

Everingham et al. [20] 45.87%  81.35%  - - 91.21%  

Ren et al. [35] 77.08%  92.25%  - - 98.99%  

Campadelli et al. [23] 80.7%  93.2%  - - 99.3%  

Chen et al. [24] 88.79%  95.2% - - 98.98%  

Chen et al. [34] 87.3%  94.9% - - 99.2%  

Hamouz et al. [22] 58.6%  75.0%  80.8%  87.6%  91.0%  

Kroon et al. [28] 65.0%  87.0%  - - 98.8%  

Cristinacce et al. [30] 57.0%  96.0%  96.5%  97.0%  97.1%  

Hamouz et al. [36] 50.0%  66.0%  - - 70.0%  

Turkan et al. [37] 18.6%  73.7%  94.2%  98.7%  99.6%  
Campadelli et al. [38] 62.0%  85.2%  87.6%  91.6%  96.1%  
Valenti et al. [39] 86.1%  91.7%  - - 97.9%  

Zhang et al. [47] 85.7% 93.7%  - - 99.2%  
Gou et al. [49] 91.2% 99.4%  99.6% - 99.8%  
Gou et al. [50] 92.3% 99.1% 99.7% - - 
George et al. [51] 85.1%  94.3%  96.7% 98.1% - 
Choi et al. [52] 91.1%  98.4%  - - 99.7% 
Our Method 94.4%  99.9%  100%  100%  100%  

 



 9 

poses, facial expressions, occlusions and lighting conditions. 

Row three shows the worst results estimated by the proposed 

approach due to occlusion from glasses, strong reflection and 

shadows making pupils invisible. Nevertheless, our method 

could obtain accurate eye center points locating exactly within 

the eye region and meet the minimum standards of the eye cen-

ter localization (err≤0.25). 

For BioID database, the results of the first two rows demon-

strate that the proposed method is very accurate and robust un-

der different challenging situations such as closed eyes, occlu-

sion from glasses or hair, affection from shadows and far away 

from the camera. All estimated eye centers using the proposed 

method fall within the corresponding eye region, which meets 

the minimum standards (err≤0.25) of the eye center localiza-

tion. It is worth noting that even the four worst examples 

demonstrated are not failure cases. For GI4E database, it has 

similar performance on qualitative results to BioID database, 

reaching an accuracy of 100% when err≤0.10 which is more 

accurate than BioID database. 

F. Comparison with Existing Approaches 

We have extensively compared the proposed approach with 

the state-of-art methods on BioID and GI4E database using the 

maximum normalized error as the metric. The comparison re-

sults are shown in Table. 2 and Table. 3. 

BioID is one of the most widely used databases with low 

quality images for eye center localization. Many previous re-

search results are available and easy to compare with using the 

same experiment protocol. In order to further investigate the 

overall performance of the proposed method, we first show re-

sults of 36 state-of-art methods for eye center localization in-

cluding appearance-based, model-based and hybrid method 

which include almost all-important eye center localization 

methods published in recent years. Furthermore, we also in-

crease the number of thresholds err of the evolution metric of 

previous research. We employ five types of err thresholds 

{0.05,0.10,0.15,0.20,0.25} instead of {0.05,0.10,0.25}. 

The comparison results between our approach and state-of-

art methods on BioID database are shown in Table. 2. From the 

Table. 2, we can make the following observations. Firstly, it is 

obvious that the proposed approach achieves the best perfor-

mance for all kinds of thresholds 𝑒𝑟𝑟 on BioID database com-

pared with existing methods. Secondly, it is worth noting that 

the proposed approach obtains an accuracy of 94.4% at err≤

0.05. This is a milestone achievement, since the most majority 

of existing methods maintains an accuracy of around 80% or 

lower. Finally, it shows that with the increasing maximum nor-

malized error metric, the performance of the proposed method 

gets better. Compared with other methods, the accuracy of our 

method is the first one close to 100% as the maximum normal-

ized error increase. Except for at err≤0.05, the accuracy is al-

most 100% when it comes to err≤0.10, err≤0.15, err≤0.20 

and err≤0.25.  

GI4E is another evaluation database for eye center localiza-

tion, which contains images with high quality taken by normal 

cameras. The results on GI4E are listed in Table. 3. We have 

compared the proposed method with 7 state-of-art methods. As 

shown in Table. 3, the performance on GI4E database is better 

than that on BioID in general. The proposed approach still 

achieves the best performance on GI4E database with the accu-

racy of 94.4%(err≤ 0.05), 99.9%(err≤ 0.10), 100%(err≤

0.15), 100%(err≤0.20) and 100%(err≤0.25) respectively. 

What’s more, the accuracy of our method is the only one that 

can achieve 100% accuracy at err≤0.10.  

Another important consideration in evaluating the algorithm 

for eye center localization is its computational complexity. The 

computational complexity is measured by average processing 

time for each input image. We have conducted a comparison in 

the processing time of locating the eye centers on BioID data-

base. We train a network model of the proposed method first 

through a desktop PC. And then deploy it on a standard laptop 

with an Intel Core i5 at 2.50GHz processor and 16GB of RAM 

memory for eye center localization. The comparison of our 

method and other methods in average processing time is shown 

in Table 4. In our experiment, the proposed method is more ef-

ficient and faster than all other state-of-the-art methods, taking 

5ms per image on average. This shows that our proposed 

TABLE 3. COMPARISON OF OUR METHOD WITH OTHER METHODS ON GI4E DATABASE (BOLD VALUE INDICATES BEST 

ACCURACY) 

 
Method 𝒆𝒓𝒓 ≤ 𝟎. 𝟎𝟓 𝒆𝒓𝒓 ≤ 𝟎. 𝟏𝟎 𝒆𝒓𝒓 ≤ 𝟎. 𝟏𝟓 𝒆𝒓𝒓 ≤ 𝟎. 𝟐𝟎 𝒆𝒓𝒓 ≤ 𝟎. 𝟐𝟓 

Timm and Barth [13] 92.4%  96%  96.9% - 97.5%  

Villanueva et al. [48] 93.9%  97.3%  98% - 98.5%  

Zhang et al. [47] 97.9%  99.6%  - - 99.9%  

Gou et al. [32] 98.2%  99.8%  - - 99.8%  

Gou et al. [49] 94.2%  99.1%  99.6% - 99.8%  

George et al. [51] 89.3%  92.3%  93.6% 94.2% - 

Gou et al. [50] 98.3%  99.8%  99.8% - - 

Our Method 99.1%  100%  100%  100% 100% 

 

TABLE 4. COMPARISON OF OUR METHOD WITH OTHER METHODS IN AVERAGE PROCESSING TIME. 

 
Method Araujo et al. [19] Leo et al. [17,64] Gou et al. [32,49] Gou et al. [50] Our Method 

Time(ms) 83 333 67 63 5 
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method is suitable for real time applications and embedded sys-

tems. 

V. DISCUSSION 

In this paper, the proposed FCN approach shows a significant 

improvement for eye center localization, which is more robust 

and accurate on the BioID and GI4E database. It can maintain 

enough accuracy especially for images with visible pupils, open 

eyes, no strong reflection and no occlusion. 

We notice that several issues still need to be discussed. First, 

there is still a space to improve performance. The proposed 

FCN is a shallow and simplified version in terms of the archi-

tecture. Due to limited training databases which provide anno-

tations of eye centers and limited computational resources, it is 

only possible to design a shallow network rather than a deep 

one. Therefore, adding more training data or synthetic data and 

using deeper networks such as hourglass networks could poten-

tially improve the performance for eye center localization. But 

at the same time the training time and complexity will also in-

crease. We thus need to find a balance between performance 

and efficiency. Second, despite the MSE loss could have a min-

imum value, it cannot guarantee that the improvement of MSE 

loss could lead to the improvement of results for localizing eye 

centers. This is because the MSE loss function is used directly 

for optimizing the metric for the whole heatmaps instead of the 

eye centers. And we need to further transform the predicted 

heatmap to coordinates. Third, the generation and transfor-

mation of heatmaps is crucial to the proposed approach. We use 

the Gaussian kernel to generate heatmaps during the process of 

preprocessing and employ the weighted average method to 

transform generated heatmaps to coordinates in the testing stage. 

Though both Gaussian kernel and weighted average method 

work well in this case, more effective methods or strategies 

could lead to a better performance. The proposed method can-

not handle perfectly for cases such as closed eyes, occlusion 

from glasses or hair and affection from shadows. As shown in 

Fig. 7, the position of eye centers can still be improved. 

VI. CONCLUSION 

In this paper, we propose an accurate and robust network ar-

chitecture for eye center localization via a shallow FCN with a 

large kernel convolutional block. The key idea is regarding the 

eye center localization as a special semantic segmentation prob-

lem, which leads to the transformation of heatmaps of eye cen-

ter positions. In the preprocessing stage, we first use the Gauss-

ian kernel to generate heatmaps of eye center landmarks, which 

are then used to train the network. In the testing stage, we trans-

form the heatmaps generated by the network to coordinates to 

evaluate the performance. Our experimental results on testing 

database show that the proposed approach outperforms the 

state-of-the-art methods. We understand that more training da-

taset will potentially improve the performance.  

In the future, we will explore the use of synthetic data as an 

alternative solution to this problem [50, 75]. And a deeper and 

complex network architecture and a more efficient strategy for 

the transformation of heatmaps will be explored to improve the 

performance though at the cost of more computation. 
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