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Abstract
Supervised Descent Method (SDM) is one of the leading cascaded regression approaches for
face alignment with state-of-the-art performance and a solid theoretical basis. However, SDM
is prone to local optima and likely averages conflicting descent directions. This makes SDM
ineffective in covering a complex facial shape space due to large head poses and rich non-rigid
face deformations. In this paper, a novel two-step framework called multi-subspace SDM
(MS-SDM) is proposed to equip SDM with a stronger capability for dealing with uncon-
strained faces. The optimization space is first partitioned with regard to shape variations using
k-means. The generated subspaces show semantic significance which highly correlates with
head poses. Faces among a certain subspace also show compatible shape-appearance relation-
ships. Then, Naive Bayes is applied to conduct robust subspace prediction by concerning
about the relative proximity of each subspace to the sample. This guarantees that each sample
can be allocated to the most appropriate subspace-specific regressor. The proposed method is
validated on benchmark face datasets with a mobile facial tracking implementation.

Keywords Unconstrained face alignment . SDM . Subspace learning . Cascaded regression

1 Introduction

Face alignment aims to automatically localize fiducial facial points (or landmarks). It is a
fundamental step for many facial analysis tasks, e.g. facial recognition [19, 20], face
frontalization [21, 22], expression recognition [11, 31], and face attributes prediction [7, 25].
These tasks are essential to Human-System Interaction (HSI) applications including driver-car
interaction, human-robot interaction and mobile applications.
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The field of face alignment has witnessed rapid progresses in recent years, especially with
the application and development of cascaded regression methods [2, 6, 27, 38, 39]. This kind
of methods typically learns a sequence of descent directions from image features that move an
initial shape towards the ground truth iteratively. Among various cascaded regression ap-
proaches for face alignment, SDM [27] has risen as one of the most popular approaches due to
its high efficiency and the state-of-the-art performance. The approach is also theoretically
sound to some extent with rigorous explanation from the perspective of optimizing a non-
linear problem with Newton’s method.

However, SDM has two main drawbacks: 1) It highly relies on the initialization and is
prone to local optima. SDM is derived from Newton’s method which leads to a local optima. If
the initialised shape is far away from the target shape, the algorithm is prone to a poor local
optimum (see Fig. 1a for an example). 2) It is likely to learn conflicting descent directions
during optimization. As the feature extraction function in face alignment is not easy to
describe, a simple function h(x) = x−1 is used to illustrate it. Suppose the aim is to seek the
optimal x (x* = 3.5) that makes h(x) = 0.286 from a range of initial x (x0). According to SDM, a
descent map r can be calculated to move x0 towards x* iteratively using the following equation:

xk ¼ xk−1−r h xk−1ð Þ−h x*ð Þð Þ ð1Þ

For x0 ϵ [1:0.2:6] (0.2 is the interval), all of them can be moved closer to x* with r=−7.
Nevertheless, if x0 < 0, e.g. x0 =−1, then it will become farther away from x*with r=−7 (see Fig. 1b).

Actually, only if initial points are close to each other and also target at the same destination,
then the compatible descent directions can be learned via SDM. However, this strong
prerequisite is very difficult to meet in face alignment, since face images vary from head
poses and facial expressions, which are supposed to have different shape-feature relationships.
This also leads to another issue of SDM: the algorithm is derived on a weak assumption that
the non-linear feature extraction function (e.g. SIFT [13] or [17]) is identical for all the face
images. As stated in [28], the feature extraction function is parameterized not only by facial
landmark locations, but also by the images such as faces with different head poses and
different subjects.

a      b
Iterations

h(x) = 1/x

xk

Fig. 1 a Failure cases of SDM due to poor initializations. Top row: initial shape, bottom row: results after four
iterations. Red points: predicted landmarks, green points: ground-truth landmarks. b Initialization points that have
conflicting descent directions
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It can be inferred that one possible cause of above issues is that the face alignment task
occupies multiple optimization subspaces, but these subspaces cannot be explained within a
single optimization process. Although SDM has been extensively studied and further devel-
oped in the past few years, there are few works on this essential but relatively unexplored
problem [8, 28, 29, 32, 35]. Xiong and De la Torre have made the same inference with this
paper and proposed a global SDM (GSDM) [29] by domain partition in feature and shape PCA
spaces for face tracking. However, that method is inappropriate for face alignment on still
images as the decision of picking the suitable domain depends on ground-truth face shapes.
The utilization of PCA also remains a big concern since it might result in un-estimated
information loss. Recently, Zhang et al. [35] improves the GSDM by projecting both the
feature and shape into a mutual sign-correlation subspace. Their method, however, has the
same constraint as GSDM. Some other works resort to the multi-view approach – estimating
head poses followed by face alignment on a particular view [12, 32]. The performance
improves but the heuristic partition with respect to only head poses is still suboptimal because
it neglects other shape deformations or appearance variations. Meanwhile, how to divide the
pose range is a purely empirical step which often requires a lot of attempts.

To solve aforementioned problems, this paper proposes an efficient and novel alternative
optimization subspace learning method – multi-subspace SDM (MS-SDM), which pushes
SDM to the unconstrained face alignment application. The main contributions of our work are:
1) Discover optimization subspaces with a semantic meaning via applying an elegant unsu-
pervised clustering algorithm – k-means on both shape and feature space. 2) Predict the
subspace accurately by concerning about the relative proximity between the subspace and
the sample. The proposed MS-SDM has been validated on challenging datasets which cover a
wide range of head poses, facial expressions and facial appearances. Experimental results
show the superiority of MS-SDM over SDM and GSDM.

2 Related work

A large number of works have been developed for face alignment which can be divided into
two main categories: generative approaches and discriminative approaches.

Generative approaches, such as Active Appearance Models [4] and Constrained Local
Models [5], first construct compact the shape and appearance spaces with Principal Compo-
nent Analysis (PCA), then build a model instance to fit with the face image under a single
optimization process. Although various improvements have been made, the drawbacks of this
kind of approaches remain obviously: the expressive power of the built parameter space is
limited and the final results heavily depend on the initialization.

Discriminative approaches don’t build a parameter space beforehand, but alternatively they
learn a direct mapping from image features to landmark locations [2, 27, 29, 38, 39]. Cascaded
regression [2, 27, 38, 39] is a representative discriminative approach which has dominated the
face alignment field in recent years due to its high efficiency and the state-of-the-art
performance.

2.1 Face alignment with cascaded regression

Starting with a rough initial shape, cascaded regression predicts the shape increment from
image features with a series of mapping functions, and update the shape iteratively. Cao et al.
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[2] apply boosted ferns to learn both features and non-linear mappings which output promising
results. In contrast, Xiong et al. [27] propose to use simple linear regression and hand-crafted
features to accomplish cascaded regression which is named as Supervised Descent Method
(SDM). Such simple configurations surprisingly generated state-of-the-art results. Recently,
deep learning have also been applied on face alignment. The strong learning ability of deep
models and the end-to-end learning mode enable deep learning based methods produce
remarkable performance even for the most challenging datasets [15, 18, 30, 33, 34, 36].
However, deep learning methods always require a huge amount of training data and a very
high computational capability, which make it difficult to be deployed on devices with limited
resources. Ignoring on-going debates between deep learning and traditional methods, this
paper makes a trade-off between efficiency and accuracy of the algorithm, based on the
methods using SDM. Readers are referred to surveys [3, 23] for a comprehensive comparison
of main-stream face alignment methods.

2.2 Face alignment with SDM based approaches

SDM produces the state-of-the-art performance with very elegant configurations, which has
been regarded as an important benchmark method and triggers numerous new approaches in
face alignment. As discussed above, only if the initializations are close to each other and the
feature extraction function has a unique minimum, a sequence of generic descent directions
can be learned via SDM. However, these prerequisite does not hold for faces under uncon-
strained conditions.

In [38], Zhu et al. starts each iteration by exploring a shape space rather than locking itself
on a single initialization. This relaxes the optimization process from being affected by poor
initializations to some extent and can lead to more robust face alignment. Nevertheless, the
expressive power of a single regression in each iteration still remains a big concern. A few
studies [12, 32] adopt intuitive multi-view approach to cover a wider optimization space and
achieve a good performance. However, defining the optimization space according to head
poses only is still sub-optimal since it neglects other shape deformations or appearance
variations. In addition, the operation on dividing the head pose range is purely empirical and
always needs a lot of attempts. Xiong et al. [29] theoretically analyzes this limitation of SDM
and proposes Global SDM (GSDM) which partitions the optimization space into several
domains based on reduced shape and feature. Although their method works well for face
tracking and pose estimation, it is inappropriate for face alignment on still images as it requires
the ground truth shape during prediction. Meanwhile, the reduced feature and shape space
might lose some important information. To address the limitation of GSDM, Zhu et al. [39]
proposes to learn a composition from predicted domain-specific shapes. This method performs
well for faces with large poses and extreme expressions. Some other works resort to three-
dimensional (3D) face modelling [8, 9, 26, 40] which requires additional 3D annotations of the
training data. This paper presents an efficient alternative for optimization subspace learning
that doesn’t require any additional assumptions.

3 Methodology

In this section, the SDM method is recalled first and its limitations are theoretically analysed.
Then, the proposed MS-SDM is introduced.
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3.1 Supervised descent method

SDM converts the face alignment task which is originally a non-linear least squares problem
into a simple least squares problem. It avoids computing Jacobian and Hessian with some
supervised settings which significantly reduces the algorithm’s complexity but at the same
time generates state-of-the-art performance. Specifically, given a face image I and initial facial
landmarks’ coordinates x0, face alignment can be framed as minimizing the following function
over Δx:

f x0 þΔxð Þ ¼ h x0 þΔx; Ið Þ−h x*; Ið Þk k22 ð2Þ
where h(x, I) represents the SIFT features (or HOG features) around the landmark locations x
of image I. x* represents the ground-truth landmark locations. Following Newton’s method,
with a second-order Taylor expansion, (2) can be transformed as:

f x0 þΔxð Þ≈ f x0ð Þ þ J f x0ð ÞTΔxþ 1

2
ΔxTH f x0ð ÞΔx ð3Þ

where Jf (x0) and Hf (x0) are the Jacobian and Hessian matrices of f evaluated at x0.
Differentiating (3) with respect to Δx and setting it to zero, the following equations can be
obtained:

Δx ¼ −H f x0ð Þ−1J f x0ð Þ
¼ −2H f x0ð Þ−1 JTh x0ð Þ h x0; Ið Þ−h x*; Ið Þð Þ

¼ −2H f x0ð Þ−1 JTh x0ð Þh x0; Ið Þ þ 2H f x0ð Þ−1 JTh x0ð Þh x*; Ið Þ
ð4Þ

According to (4), the computation of the descent direction Δx requires h(x, I) to be twice
differentiable or numerical approximations of the Jacobian and Hessian could be calculated.
However, these requirements are difficult to meet in practice: 1) SIFT or HOG features are
non-differentiable image operators; 2) numerically estimating the Jacobian or the Hessian in
Eq. 4 is computationally expensive since the dimension of the Hessian matrix can be large and
calculating the inverse of Hessian matrix is with O(p3) time complexity and O(p2) space
complexity, where p is the dimension of the parameters to estimate [28]. Alternatively, SDM
uses an identical pair of R and b to represent all face images’ −2Hf

−1 JT h and − 2Hf
−1 JT

hh(x*, I) which are named as the descent direction. R and b define a linear mapping between
Δx and h(x0, I), which can be learned from the training set by minimizing:

∑N
i¼1 Δxi*−Rh xi0; I i

� �
−b

�� ��2
2

ð5Þ

where, N is the number of images in the training set andΔxi* ¼ xi*−xi0. Since the ground-truth
shape is difficult to be found in a single update step, a sequence of such descent directions
denoted as {Rk} and {bk} are learned during training. Then for a new face image, in each
iteration k, the shape update can be calculated as:

Δxk ¼ Rkh xk−1; Ið Þ þ bk ð6Þ

The function h(x, I) is parameterized not only by x but also by face images [28], which highly
depends on head poses, facial expressions, facial appearances and illuminations. Consequently,
R and b may vary from different face images. Therefore, although SDM can generate
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promising face alignment results in ordinary scenarios, they suffer from unconditional scenar-
ios where faces have large head poses and extreme expressions.

In [29], the authors observe the same problem. They propose to partition the original
optimization space into several domains based on reduced shape deviation Δx and feature
deviation Δh. They prove that each domain contains a generic descent direction which can
make the initial shape closer to the ground-truth shape for every sample belongs to it when
both of the following conditions hold: 1) h(x, I) is strictly monotonic around x* and 2) h(x, I) is
locally Lipschitz continuous anchored at x* with K (K ≥ 0) as the Lipschitz constant. However,
the solution proposed in [29] only satisfies the first condition above and is based on an
assumption that Δx and Δh embedded in a lower dimensional manifold. Meanwhile, to
predict the specific domain that a sample belongs to, the ground-truth shape x* should be
given. This is apparently infeasible during the testing stage as the ground-truth shape is
actually what needs to be predicted.

3.2 Multi-subspace SDM

To address problems mentioned above, an alternative two-step framework – MS-SDM (see
Fig. 2) is proposed. It first learns subspaces with semantic meanings from the original
optimization space via k-means. Then, for each subspace, a particular linear regressor from
face features to the shape update is learned. During testing, the sample will be assigned into the
correct subspace with a pre-trained Naive Bayes classifier. It will then be allocated to a
subspace specific regressor which gradually update the shape as:

Δxk ¼ Rk;sh xk−1; Ið Þ þ bk;s ð7Þ

where s represents the subspace label.

Subspace-specific 
Cascaded Linear 

Regressor

Optimization Subspaces 
based on K-Means

SIFT Feature 
Extraction around 
the Mean Shape

Naive Bayes 
Classifier

Cascaded Feature-shape Linear Regressor

Fig. 2 The work pipeline of MS-SDM
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3.2.1 Semantic subspace learning via K-means

To learn better optimization subspaces, samples which have the similar regression target Δx
are assumed to fall inside the same optimization space and have compatible descent directions.
Then, the classic clustering algorithm - k-means is applied on all training samples’ Δx to
automatically find out the key facial shape variations and divide the original training set into
several subsets. In order to preserve all the useful information hidden in the shape space, the
initialΔx of each sample is utilised during the clustering process. As shown in Fig. 3a, subsets
generated in this way show quite high correlation with head poses. It can also be observed that
each subset relates to a particular kind of head pose, such as left-profile face, right-profile face,
left-rolling face and right-rolling face.

Since the face shape update Δx are predicted from the feature deviation Δh, the descent
direction pair of R and b also describes the hidden relationship between Δx andΔh. Inspired
by this intuition, k-means is further applied onΔh to find the feature-based optimization space
partition. Surprisingly, the generated subspaces are highly consistent with the subspaces
obtained from the head pose’s point of view. The relevant results are shown in Fig. 3b. It
indicates that samples in each subspace have close shape-feature relationships which are
supposed to share a unified descent direction.

3.2.2 Robust subspace prediction with naive Bayes

As the aforementioned subspace learning relies on the ground-truth shape which will be
unavailable during testing, the main difficulty of the final shape prediction arises as the
prediction of the subspace that a sample belongs to. A straightforward solution to this problem
is a multi-class classifier (e.g. Random Forest, SVM or Naive Bayes), which learns the class
label from face appearance features.

In the test phase, a mean-face is placed onto the given face bounding box and SIFT features
are extracted around each landmark (see Fig. 2). The concatenation of all extracted features are
regarded as the appearance feature for subsequent classification. Random Forest was first

a Subspaces learned from Δx b Subspaces learned from Δh

Fig. 3 Comparison between learned subspaces fromΔx andΔh. Each row represents a subset which contains three
example images and the mean shape of all the samples in the subset. The cluster’s amount of k-means is set as 5.
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tested in our experiment due to its high performance in similar tasks. However, with this
approach, a few samples were assigned inaccurately with a completely incompatible subspace,
such as a left-profile face was assigned with a right-profile view regressor, which severely
ruins the overall prediction accuracy.

The core reason behind this phenomenon is that Random Forest regards different subspaces
equally. In particular, during training, it assigns the same loss punishment for any other sub-
optimal subspace prediction. However, some sub-optimal subspace provides relatively similar
initial-shape-indexed features and can predict similar shapes as the optimal one, which should
be punished lighter. Therefore, a classification algorithm fits with this task should be able to
identify the relative proximity between the sample and the subspace.

Naive Bayes appears to be a good option to this problem. A Naive Bayes classifier is the
function that assigns a class label y =Ck for some k as follows:

y ¼ arg maxk∈ 1;…;Kf gp Ckð Þ∏p xi Ckjð Þ ð8Þ

where x = {x1,…, xn} represents the feature vector of a sample; p(Ck) is a priori probability of
class Ck, and p(xi|Ck) is the a posteriori probability of class Ck given the value of xi. As Naive
Bayes classifier assumes each feature xi which is conditionally independent of every other
feature xj (j ≠ i), p(x|Ck) is equal to the product of all p(xi|Ck). The parameter p(x|Ck) can be
regarded as the distance between the current sample to the class centre. If the sample is far
away from the class centre, then p(x|Ck) is small, otherwise, p(x|Ck) turns large. Since p(x|Ck)
directly contributes to the optimization process, the relative proximity between the sample and
the class is then naturally embedded in the Naive Bayes Classifier. This can avoid assigning a
sample with an incompatible subspace.

4 Experiments

Dataset Evaluations are performed on a widely applied benchmark dataset – 300 W [16] and
NTHU Drowsy Driver Detection (NTHU-DDD) video dataset [24]. The dataset 300 W is a
mixture of several well-known benchmark datasets, including AFW [37], LFPW [1], HELEN
[10] and XM2VTS [14], which is challenging due to its images covering a very wide range of
head pose, facial expression, appearance, occlusion and illumination. It unifies all the anno-
tations with the 68-point mark-up and offers another challenging 135-image dataset named
IBUG.

During the experiment, all the training samples from LFPW, HELEN and the whole AFW
form the training set which has 3148 images in total. The testing set comprises of a common
testing set and a challenging testing set, which has 689 images in total. The common testing set
is composed of testing samples from LFPW and HELEN which have near-frontal head poses.
IBUG is regarded as a challenging set as it is generally consisted of samples with large head
poses and extreme facial expressions. Since the face detector’s influence on the final face
alignment results is not considered in this paper, the prescribed face bounding boxes provided
by 300 W are used.

Evaluation metric The prediction error is measured as the average point-to-point Euclidean
error normalised by the inter- pupil distance (the Euclidean distance between eyes’ centres).
For simplicity, the ‘%’ is omitted.
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Implementation During training, similar data augmentation as in [27] is applied to enlarge
the training data and improve the model’s generalization capability: the face bounding box of
each training sample is randomly translated and scaled ten times. As samples in each subspace
relate closely to a specific head pose, the mean shape of each subspace is calculated. Before
prediction, each sample will be allocated a subspace-specific mean shape which is closer to the
ground truth shape than the general mean shape. For subspace learning, the amount of clusters
is altered from 3 to 8 and calculated the related error. The setting of 5 subspaces is shown to
generate best results.

During the training process of the subspace classifier, it has shown that features indexed on
multiple initial shapes can output higher prediction accuracy in comparison with features
indexed on a single initial mean shape. This is probably due to that multiple initial shapes,
which cover more points on the face region, can generate a larger feature pool and offer more
information to the classifier. Therefore, shape-indexed features using all the subspace-specific
mean shapes are extracted to train the subspace classifier.

4.1 Comparison with SDM

The released model of SDM was trained on private datasets and the training data has shown to
be an important factor to the final performance of the model. What’s more, there is no off-the-
shelf GSDMmodel released. To enable fair comparison on the same benchmark dataset, we re-
implement SDM and GSDM by ourselves. Our implementation achieves detection accuracy
close to similar implementations that have been reported in some state-of-art works [34].

As shown in Table 1, the proposed MS-SDM outperforms SDM on all testing sets,
especially on the challenging set. The challenging set contains many samples with large head
pose and extreme facial expressions which have conflicting descent directions with near-
frontal faces. As SDM can only learn an average descent direction which is prone to the
descent direction shared by major samples (near-frontal faces), the learned descent direction
cannot handle minor challenging samples. While MS-SDM classifies each sample into a
subspace where samples share similar descent directions which guarantees even the challeng-
ing sample can get an effective descent direction. Figure 4 presents some example results
which intuitively show MS-SDM’s superiority over SDM.

4.2 Comparison with GSDM

GSDM offers an optimization space partition strategy for SDM which has demonstrated its
effectiveness in real-time face tracking. To compare MS-SDM with GSDM, it is assumed that
all the ground-truth shapes are known to make GSDM work even on still images. For both
approaches, the subspaces are learned from the training set. Each subspace will be trained with
a specific linear regressor. For fair comparison, the optimization space is partitioned into eight
subspaces which are the same as that reported in [29]. As shown in Table 1, MS-SDM shows

Table 1 Comparison with SDM and GSDM

Common Set Challenging Set Full Set
SDM 5.59 15.38 7.51
GSDM 5.39 12.57 6.80
MS-SDM 5.30 12.29 6.47

Multimedia Tools and Applications



higher detection accuracy than GSDM on both testing sets. What’s more, it learned subspaces
without knowing ground-truth shapes which GSDM requires.

4.3 Tracking results on driver dataset

Figure 5 shows tracking results of our method on NTHU-DDD video dataset [24]. Detected
facial landmarks can favour driver drowsiness detection which can further be used for facial
analysis of drivers to reduce car accidents.

4.4 Facial Mobile tracking implementation

Based on MS-SDM, an Android facial tracking application was developed to track the user’s
face with 66 landmarks in real-time. The application can robustly track the face within a large
range of head poses and facial expressions (see Fig. 6), while having low hardware require-
ments to run smoothly on an Android smart phone. It can also benefit many other useful
mobile applications such as automated face makeup, personalised emoji generation and
objective facial functionality assessment.

Fig. 4 Example results from the testing set

Fig. 5 Tracking results on NTHU Drowsy Driver Detection (NTHU-DDD) video dataset [24]
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5 Conclusion

With a quite elegant formulation, SDM shows the state-of-the-art performance for face align-
ment under relatively controlled scenarios. As SDM is a local algorithm and prone to learn
conflicting descent directions during training, it suffers from face images captured under
unconstrained scenarios, where faces have large poses and extreme facial expressions. This
paper proposes a novel two-step framework – MS-SDM which pushed SDM closer to
unconstrained face alignment. Via applying k-means on the shape variations, semantic sub-
spaces which have intuitive correlation with head poses are found. Then, using Naive Bayes
classifier, each sample can be allocated the most suitable subspace-specific regressor. The
proposed approach is validated on challenging datasets and a mobile facial tracking application.
In future, we will apply deep learning techniques to extract more informative facial features or
partition the feature-shape relationship into subspaces with clearer semantic meaning.
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