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A B S T R A C T

Identifying and counting individual mineral grains composing sand is an important component of many
studies in environment, engineering, mineral exploration, ore processing and the foundation of geometallurgy.
Typically, silt (32–128 μm) and sand (128–1000 μm) sized grains will be characterized under an optical
microscope or a scanning electron microscope. In both cases, it is a tedious and costly process. Therefore, in
this paper, we introduce an original computational approach in order to automate mineral grains recognition
from numerical images obtained with a simple optical microscope. To the best of our knowledge, it is the
first time that the current computer vision based on machine learning algorithms is tested for the automated
recognition of such mineral grains. In more details, this work uses the simple linear iterative clustering
segmentation to generate superpixels and many of them allow isolating sand grains, which is not possible
with classical segmentation methods. Also, the approach has been tested using convolutional neural networks
(CNNs). However, CNNs did not give as good results as the superpixels method. The superpixels are also
exploited to extract features related to a sand grain. These image characteristics form the raw dataset. Prior to
proceed with the classification, a data cleaning stage is necessary to get a usable dataset for machine learning
algorithms. In addition, we present a comparison of performances of several algorithms. The overall obtained
results are approximately 90% and demonstrate the concept of mineral recognition from a sample of sand
grains provided by a numerical image.

1. Introduction

Identification or counting of minerals grains in sediments or sands is
a critical task in many scientific endeavors. In environmental science,
some minerals can release toxic elements such as arsenic (arsenopy-
rite; AsFeS) or lead (galena; PbS) (Hudson-Edwards, 2003). In some
engineering projects using sand as a building material, some minerals
in the sand can cause major problems in mortars (Lawrence et al.,
2005). In mineral exploration geology, the abundance of minerals such
as gold (Au) or chalcopyrite (CuFeS2) in sediments or milled rock can
indicate the proximity of a gold or copper mineral deposit (Averill,
2001). This technique is used on a vast scale by the diamond explo-
ration industry, searching for grains of distinctive minerals such as
chromium-bearing pyrope or diopside, minerals that are present with
diamonds in kimberlite. It is at the base of controlling ore benefici-
ation efficiency in mining operation, where valuable minerals have
to be concentrated from milled rocks (Wills and Finch, 2015). How-
ever, visual identification of minerals and the accurate estimation
of their proportion is a lengthy, complex and an error prone task
that has to be performed by highly trained personnel. Only the sheer
amount of grains or particles to characterize (typically in the order of
200 000 to be statistically representative) render the operation tedious
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and time consuming. Two approaches are typically used to identify
and characterize minerals grains in sediments or milled rocks: visual
sorting with optical microscopy and automated Scanning Electron Mi-
croscopy (SEM) (Gottlieb et al., 2000; Sutherland and Gottlieb, 1991).
Techniques such as chemical analysis and X-ray diffraction of sands or
milled rocks will not provide a real mineral count. In the case of optical
microscopy a highly qualified mineralogist will identify each individual
mineral grain in a Petri dish at a typical rate of 60 grains per minute.
It is a tedious work that needs lot of attention where any minute
distraction can ruin a day’s work. Also, it provides grain percentage
instead of area percentage (Nie and Peng, 2014). The main drawbacks
of the optical approach are the fatigue of highly qualified personnel
leading to misidentification of minerals due to their lack of distinctive
features and their small size. Alternatively, the SEM produces images of
a mineral grains sample by scanning the surface with a focused beam
of high-energy electrons to generate a variety of signals. Those signals
are produced by electron-sample interaction and provide information
such as the grain surface characteristics by secondary electrons (SE),
its atomic density by backscattered electrons (BSE) and/or the chemical
composition (from characteristic peaks in the X-ray spectrum). Mineral
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grains are then segmented from the BSE or SE image, and an X-ray
spectrum is acquired on each particle. Depending on the sophistication
of the software used for analysis, X-ray spectrum can be deconvoluted
into a chemical analysis and assigned to a mineral species (Grant et al.,
2018). However, this technology has two major drawbacks, which are
the price of the SEM (500 000 US$ to 2 M US$ depending on added
options) and the long processing time for a single sample (1–5 h).
These two cons translate into elevated cost and machine availability.
For example, the fastest machine currently available can analyze a
maximum of 40 000 grains per hour. Since approximately 200 000
grains is required to obtain acceptable statistical representativeness, the
complete analysis requires approximately 5 h and cost 1000 US$ to
process. Mineral exploration applications are particularly demanding
due to the large size of samples to be scanned, and the large number
of samples involved. In fact, the task is at the limit to be handled by
current SEM technique. Minerals such as those indicating the presence
of diamond hosting rock (kimberlite), such as chromium pyrope and
chromium diopside, are visually distinctive, but not very chemically
distinctive. And a single grain in millions of grains can be considered
significant. Finding new mineral deposits is a difficult task because,
among other reasons, most deposits are covered with vegetation or
overburden, sediments from erosion such as glacial till. In glaciated
terrains such as the Canadian Shield, glaciers have eroded mineral
deposits and transported their characteristic minerals over a large
area (Averill, 2001). These eroded sediments can be used as a proxy
in exploration geology. Among those minerals eroded from a deposit,
some will be diagnostic of the mineralization. The higher density min-
erals (above 3.3 g/cm3; named heavy minerals in exploration) include
the most characteristic minerals of deposits (named indicator minerals)
such as gold and sulfides of copper, zinc, arsenic etc. For example, a
large number of gold grains found in heavy mineral concentrates within
a glacial till sample suggests proximity to a gold deposit (Shelp and
Nichol, 1987).

Considering that in both aforementioned approaches (visual sorting
and electron microscopy), identification of mineral grains is done se-
quentially, grain by grain. However, the present goal is to use images
of a group of grains made with a relatively inexpensive tool, the optical
microscope, where all grains can be characterized simultaneously from
a single image. In this context, only few researchers have proposed
computational methods based on cluster analysis to identify miner-
als (Baklanova and Shvets, 2014) using optical images. Indeed, with
the recent emergence of the machine learning approach, computer
science coupled to an optical microscope might become an interesting
alternative to the SEM. Nevertheless, the current works in the literature
deal only with the mineralogy. It focuses on detailed description of
mineral grains such as the color (optical spectrum) to compute grain
size and abundance.

The work proposed in this paper aims at demonstrating that com-
puter vision coupled with data science and machine learning allow to
perform mineral recognition. Indeed, an RGB image is acquired repre-
senting the sample of sand grains. Then, the same sample is scanned
with an automated SEM programmed in order to generate a mineral
map used as ground truth for the proposed approach. However, those
two images representing the dataset are still unfeasible for mineral
recognition. Thus, we had to implement a sophisticated methodology
lying on segmentation, feature extraction and data cleaning in or-
der to make the dataset acceptable. Finally, the mineral recognition
was tested using three popular non-parametric classification meth-
ods, namely classification and regression trees (CART), the k-Nearest
Neighbor (k-NN) and the random forest. Also, the convolutional neu-
ral network (CNN) approach was used as a baseline to assess the
performance of our approach.

The first contribution presented in this study is the implementa-
tion of a sophisticated methodology for the creation of an acceptable
dataset. Also, it is the first time that such a dataset is created for mineral
recognition based on traditional machine learning algorithms. Due to

the sand grains distribution on the sample and their characteristics, tra-
ditional segmentation techniques, such as edge-based segmentation, do
not perform properly. Thus, we had to implement an original approach
which is the superpixel segmentation. The second contribution is the
extraction of new mathematical features on each sand grains of the
sample. Indeed, it is the first time that mineral recognition based on
machine learning is done. Thus, any mathematical sand grain features
exist in the literature. The third contribution is the use of a machine
learning algorithm in order to clean the dataset. In point of fact,
an important amount of data is mislabeled due to random and large
displacements of sand grains between the RGB image and the ground
truth provided by the SEM. These displacements do not allow applying
alignment algorithms, which are also very time consuming. Thus, it is
very important to clean data in order to make acceptable the dataset for
machine learning algorithms. The fourth and last contribution denotes
the failed of the CNN approach in the segmentation (with the purpose
of mineral recognition). Indeed, using CNNs in the present study is not
suitable due to the difference (alignment, missing mineral sand grains
in the ground truth between the original image and the ground truth
image.

To the best of our knowledge, it is the first time that such a research
is proposed to classify individual mineral grains with the use of such
image processing, and the results presented in this paper prove the
concept that mineral grains can be properly recognized by traditional
machine learning algorithms.

The paper is organized as follows: Section 2 presents a brief state
of the art on the mineral recognition methods. Section 3 describes
the proposed method to classify mineral grains in a mineral species.
Section 4 introduces the evaluation conditions of the machine learning
algorithms, and then presents and discusses results. Finally, Section 5
briefly draws conclusions and provides an overview of potential future
works.

2. Related work

As mentioned in Section 1, only few different techniques exist
that are capable to evaluate the mineral proportions of a mineral
grain sample such as a sediment or a milled rock. Those methods
can be divided into two distinct groups, which are traditional engi-
neering devices (Jarosewich et al., 1979; Chalmers et al., 2012; Kim
et al., 2000) and the use of computational method based on computer
vision (Baklanova and Shvets, 2014).

2.1. Traditional devices

The first group represents the popular way to evaluate mineral
abundance in sediments or milled rock, such as used in mineral ex-
ploration or ore dressing: visual sorting under an optical microscope
(Jarosewich et al., 1979) and automated particle analyses with the use
of a scanning electron microscopy (Chalmers et al., 2012).

Visual sorting under optical microscopes needs to be conducted
manually by highly qualified personnel. The mineralogist uses trans-
mitted and reflected light properties of minerals to identify them, aside
of their shape and morphology. Then, the slight differences in colors,
luster, surface texture and grain shape can be detected by an expert
human eye to identify the mineral species. To evaluate quantitatively
the mineral abundances, grain counting technique is needed, which
remains inefficient since it is time consuming and exhausting (Minnis,
1984). Specialized techniques have been developed to differentiate
between very specific minerals in a controlled environment such as
hematite and magnetite for the iron ore industry (Iglesias et al., 2011).
These techniques are limited to very specific applications to be useful
for broader applications. Moreover, mineral grain samples are difficult
to prepare as thin or polished sections in a properly representative
manner to Sorby (1882), Hutchison et al. (1974) fully use their op-
tical properties for petrographic work. Furthermore, mineral surfaces
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are considered significant, reflecting their attrition through sediment
transport which are significative for indicator minerals, which surface
cannot be observed on polished sections.

Alternatively, mineral grain analysis can be performed with spe-
cially equipped automated SEM (Nie and Peng, 2014; Philander and
Rozendaal, 2013; Sylvester, 2012) and variation on SEM technology
such as QEMSCAN (FEI Company; Hillsboro, Oregon, USA), TIMA-X
(TESCAN, Brno, Czech Republic) and MLA (Sylvester, 2012) techniques
routinely used in ore dressing, metallurgical science, forensic science
or dust control, and paleoclimatic research. The SEM platform uses
a focused beam of electrons scanning the surface of the material to
generate an image of the mineral grains spread on a sample holder
in our case. Then, the electrons interact with atoms in the sample.
These interactions provide information (wave, electrons. . . ) that are
acquired by sensors to determine the chemical composition of minerals.
Depending on the model and manufacturer, the SEM can provide
various types of information such as secondary electrons, reflected or
back-scattered electrons, characteristic X-rays and light (cathodolumi-
nescence), absorbed current and transmitted electrons. The result of the
analysis is given by an image of the mineral grain sample and complete
statistics with mineral chemical composition (leading to identification),
grain size and proportion of each mineral. There are other instruments
that can perform a quantitative analysis of mineral such as electron
microprobe (Jarosewich et al., 1979) but it is more time consuming
than the SEM. The SEM analyzes mineral grains sequentially (one at
a time). So, for large number of grains the throughput is seriously
limited considering that each analysis takes a fraction to a few seconds
depending on analytical quality defined by the operator.

2.2. Computational approach

The use of computational approaches based on the computer vision
and machine learning in order to recognize minerals in a particulate
sample are new and only one paper covers this field of research (Bak-
lanova and Shvets, 2014). They Baklanova and Shvets (2014) applied
a cluster analysis for the recognition of mineral in rocks for the mining
industry by using the K-means algorithm. Clustering techniques allow
partitioning a set of data into categories according to their similarities
computed by a distance measurement such as the Euclidean distance.
The defined characteristics of minerals are colors and textures. Those
features are extracted from a reflected light image taken by a stereo-
scopic binocular microscope. The image reflects the structural features
of the mineral grains. A vector of features has been implemented for
each pixel. The vector is composed of the three spectral components
(red, green, blue), and the average, variance, minimum and maximum
brightness of the neighborhood pixels. However, the method does not
perform a real recognition due to the exploitation of an unsupervised
machine learning algorithm. In their work (Baklanova and Shvets,
2014), the researchers do not compare the found clusters with labeled
cluster belonging to a species of mineral. Actually, their work only
differentiates rocks, not their minerals. Hence, the method has only
petrographic applications.

2.3. Techniques for similar images classification

Since few years and with the improvement of computational unit
performances, new image classification algorithms have emerged. The
most popular type of algorithm is the CNN, which belongs to the
deep learning domain. This category of algorithm allows identifying
the content of images without any image processing. This particularity
denotes the major advantage of this type of algorithm. Indeed, a CNN
has layers of convolutional filter linked to an artificial neural network.
Thus, thanks to the convolutional filters, any human intervention is
necessary to extract features related to the content of the image. In
other terms, the feature extraction is performed at the same time that
the training stage of the algorithm. However, the major drawbacks are

that the learning is time consuming on a standard computer (e.g., 48 h
in the present study for 10 epochs), and a CNN model need a large
number of images to be trained properly (although it exists techniques
that help to increase the size of the dataset — Data Augmentation). The
primary function of Data Augmentation techniques is to avoid overfit-
ting (Wang and Perez, 2017). Finally, this algorithm needs an important
number of parameters that have to be set by the user. Fortunately, it
exists architectures of CNN such as the AlexNet, GoogleNet, VGGNet
and some others (Long et al., 2015).

3. Proposed method

For the purpose of the project, mineral concentrates were those
obtained for gold grain counting. For such, 10 kg of natural glacial
sediment samples were collected in the field, and sieved to less than
1 mm. The material is then processed with a fluidized bed to obtain a
‘‘superconcentrate’’ of approximately 100 mg which is demonstrated to
retain nearly all gold grains present in the initial sample. The supercon-
centrate, containing in the order of 2 million grains smaller than 50 μm,
has been sprinkled on a glued carbon tape to provide the image with
a black backdrop for examination. Numerical photographs are taken
by an automated motorized binocular microscope (Zeiss Axio-Zoom) to
create a photomosaic. This photomosaic of high-resolution RGB images
represents the only material used to achieve the classification of grains
in mineral categories. The sample used for developing the current
method is composed of grains from approximately 27 different mineral
species in diverse proportions.

Once RGB image is acquired, the sample is scanned with an au-
tomated SEM programmed for mineral analysis. A mosaic of high
resolution BSE image is acquired, from which grains are segmented,
analyzed for chemical composition, and classified as mineral species.
A map of grains of minerals is then obtained, which is referenced to
the aforementioned RGB mosaic. The mineral map is then be used as
‘‘ground truth’’ for computer vision. SEM acquisition of the mineral
map required more than 12 h.

The work presented in this paper describes a first attempt to develop
a method to recognize grains of minerals from a particulate material,
such as a sediment, with the use of a computational approach relying on
three completely different although complementary domains: computer
vision, data science and machine learning. Thus, in order to carry out
the mineral classification for each grain composing the sand, an image
segmentation is applied to isolate mineral grains. Then, characteristics
can be extracted from each isolated grain. Those characteristics repre-
sent discriminant information about the color, luster, relief and surface
texture of the grains. The vector composed of features and labeled with
a mineral species is called an instance. The mineral species represents a
class (category in machine learning and ‘‘class’’ is not used to mean the
mineralogical class) and some instances denote the dataset. Thereafter,
a cleaning stage of the data is necessary due to the mislabeling of
instances when compared to the mineral map obtained from SEM (‘‘the
ground truth’’). To do so, outlier instances were excluded from each
class. Once the dataset is acceptably clean to be exploited by the
machine learning algorithms, the dataset was divided into two groups
of examples. The first one represents 70% of the instances and it is used
to train the algorithms. The second group was composed of 30% of the
dataset and enables testing the performances of the algorithms.

In summary, the proposed method relies on four steps (Fig. 1).
The first one is the data labeling. The second represents the feature
extraction. The third denotes the post-processing of data including a
cleaning data phase in order to train and evaluate the machine learning
algorithms in the fourth step.
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Fig. 1. Steps of the proposed method for the recognition of mineral grains from an RGB image of mineral grain sample.

3.1. Data labeling

The general purpose of this work is to exploit an RGB image
representing a sample of mineral grains of different species (plagio-
clase, ilmenite, monazite, magnetite. etc.), which was taken with a
motorized although conventional microscope. Images were taken with
a 6 megapixels camera with a field of view of 2.5 x 2 mm. In order
to cover the entire surface of the sample surface, a total of 238 field
of view were required, allowing for 10% overlaps between adjacent
field. Images were then stitched into a large mosaic using ImageJ
application (Rasband, 1997). Therefore, a mosaic image of 34 674 x
33 720 pixels (∼2 GBytes) is generated and used for computer vision.
Fig. 2 shows photographs of sample: the photomosaic of the entire
sample (Fig. 2a) and a detailed view showing individual mineral grains
(Fig. 2b). Due to the large size of the original image, this picture was
divided into 600 x 600 pixels sub-images, which represents a total
number of 3192 images. Fig. 2b illustrates one of those.

To perform a mineral recognition, data from each mineral grain
of images have to be labeled and extracted. The labeling process is
carried out following a two-step process. The first one is the diffi-
cult task of segmenting sub-images. Indeed, considering the shapes of
mineral grains, the color variations and the mutually touching grains,
traditional methods of segmentation (e.g., edge-based segmentation)
are ineffective into separating individual mineral grains. Additionally,
the VGG-16 (Simonyan and Zisserman, 2014) was implemented for the
segmentation of images. VGG-16 is a particular architecture (number of
convolutional layer, size of the filter ...) of CNN. Despite a reasonable
accuracy (∼87%), it did not produce meaningful results due to the
abundant amount of background pixels, the low number of images for
the training step and the absence of texture information. It shall be
mentioned that the major problem of using CNN for the segmentation
in the current research is the difference (alignment, missing mineral
sand grains in the ground truth) between the original images and the
ground truth image.

In this context, superpixel segmentation is an excellent alternative
way to separate mineral grain data (Li and Chen, 2015). Superpixel
segmentation provides coherent regions of pixels in order to compute

local features. The initial idea of this method described in Li and Chen
(2015) is to over-segment an image decreasing at the same time the
complexity of image processing tasks. The algorithm used is simple
linear iterative clustering (SLIC) that produces a fast and a high quality
segmentation (Achanta et al., 2012). This method performs a local
clustering of pixels based on their color similarity and proximity in the
sub-image. It uses five-dimensional space given by [labxy], where l, a
and b values are the pixel color vector provided by the CIELAB color
space and the x, y are the coordinates of the pixel. Also, to cluster
pixels in the [labxy] space, we need a distance measure considering
the desired number of approximately equally sized superpixel K. Also,
the segmentation gives the coordinates in the [xy] plane of each su-
perpixel. Additionally, we increased the contrast of the image in order
to discriminate more easily the borders of sand grains. Fig. 4 shows a
result of the SLIC segmentation on one sub-image.

The second step is to match each superpixel with the class labels of
the original ground truth. The original ground truth is also an image of
34 674 x 33 720 pixels provided by the scanning electron microscopy
(SEM), in which a mineral species (identification) has been assigned
to each and every mineral grain based on its chemical signature. Also,
we need to align the two images providing by optical microscopy and
SEM respectively. To perform this, we located coordinates (pixels) of
triangle vertices in the source image (optical microscopy image) and
the coordinates of the corresponding triangle vertices in the destination
image (SEM image). Then, an affine transform (2×3 matrix) is calcu-
lated from these pairs of pixels and applied to the destination image.
Once the alignment has been performed, the original ground truth
image is divided into 600 x 600 pixels sub-images in order to use the
previous [xy] coordinates obtained from the segmentation. Provisional
colors are then attributed to each pixel based on mineral species to
obtain the ground truth image. Fig. 3b shows the ground truth sub-
image corresponding to Fig. 3a. Each superpixel is then tagged with
the class label according to the two predominant provisional colors.

As it can be seen by comparing Fig. 3a and b, these two sub-
images do not perfectly superimpose. Random minute displacements
of the particles were induced by the degassing of the glue holding
grains by the vacuum pumping in the SEM. Consequently, the ground
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Fig. 2. (a) The original photomosaic of sample surface (approximately 35 mm diameter); (b) RGB sub-image of 600 x 600 pixels as used for image segmentation.

Fig. 3. (a) Result of the SLIC segmentation on one sub-image; (b) The ground truth sub-image provided by the SEM where minerals are identified in provisional colors. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. (a) HSV color space representation of one sub-image; (b) Lab color space representation of one sub-image.
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Fig. 5. Improvement of colors differentiation for one sub-image. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

truth provided by the SEM does not perfectly match the optical image.
Furthermore, some mineral grains are not properly identified, and some
grains are composed of more than one mineral. Post-processing of data
has been required after the feature extraction. Nevertheless, the quality
of the classification is undoubtedly affected by the poor quality of
the ground truth. Procedures to avoid these issues are currently being
tested.

3.2. Feature extraction

Feature extraction from superpixels is necessary for proper labeling.
Features are a quantification of the parameters that allow describing a
phenomenon with a single value. In other words, features are values
that represent a discriminant information allowing to differentiate
objects (e.g., mineral grains).

In the course of visual sorting, minerals are recognized by their
color, luminance, luster and surface texture properties (Baklanova and
Shvets, 2014). Thus, different color spaces are necessary to properly
quantify these properties. The first one is the RGB color space of
an original sub-image as illustrated in Fig. 2. Then, each sub-image
undergoes a series of representation transformation. RGB is converted
into HSV (Hue, Saturation, Value) color space (Agoston, 2005). HSV
is an alternative representation of the RGB color space allowing to
separate the image intensity from color information. Fig. 4 illustrates
the HSV color space for a sub-image. The image is also converted into
Lab color space (Connolly and Fleiss, 1997) which considers perceptual
uniformity for small color distances. Fig. 4 represents the Lab color
space for a sub-image. These transformations improve the original
image by allowing discriminating subtleties in mineral grain colors.
Fig. 5 shows the color improvement. Different steps are necessary to
obtain this last sub-image. First, simple thresholding is applied to pro-
vide a mask discerning mineral grains from the background (in black).
Secondly, the brightness of the sub-image is increased (+50). Thirdly, a
new image is produced by applying the mask on the image with a better
brightness. Fourthly, saturation is enhanced (+50). Fifthly, contrast
is improved by equalizing RBG histograms. Finally, a morphological
transformation is performed in order to close small holes inside the
foreground of the heavy mineral sample (Gonzalez et al., 2004). The

objective of this last step is to uniformize the color of mineral grains
with a dilation followed by an erosion operation.

Each superpixel of each sub-image representation is used to extract
a set of features. Features are the mean, the standard deviation, the
skewness and the kurtosis coefficient for each channel of each sub-
image representation. For a superpixel 𝑗 on the channel 𝑖, we have:

𝑚𝑒𝑎𝑛𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑖𝑗 =
∑𝑁

𝑘=1 𝑥𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑖𝑘
𝑁

, (1)

𝑠𝑡𝑑𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑖𝑗 =

√

∑𝑁
𝑘=1(𝑥𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑖𝑘 − 𝑚𝑒𝑎𝑛𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑖𝑗 )

2

𝑁 − 1
, (2)

𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑖𝑗 =
1
𝑁

∑𝑁
𝑘=1(𝑥𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑖𝑘 − 𝑚𝑒𝑎𝑛𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑖𝑗 )

3

𝑠𝑡𝑑3 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑖𝑗
, (3)

and

𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑖𝑗 =
1
𝑁

∑𝑁
𝑘=1(𝑥𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑖𝑘 − 𝑚𝑒𝑎𝑛𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑖𝑗 )

4

𝑠𝑡𝑑4 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑖𝑗
, (4)

where 𝑥𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑖𝑘 is the value of the pixel 𝑘 in the color channel 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑖,
and 𝑁 denotes the total number of pixels for one superpixel. However,
those features are not sufficient for a recognition.

As cited previously, the luminance is one property allowing humans
to identify mineral species. The luminance average, called degree of
luminance, is computed for each superpixel with Eq. (5) and considered
as another feature.

𝐷𝑒𝑔𝑟𝑒𝑒𝑂𝑓𝐿𝑢𝑚𝑖𝑛𝑎𝑛𝑐𝑒 =
∑𝑁

𝑘=1(0.22 × 𝑥𝑟𝑒𝑑𝑘+0.71 × 𝑥𝑔𝑟𝑒𝑒𝑛𝑘+0.07 × 𝑥𝑏𝑙𝑢𝑒𝑘 )
𝑁

,

(5)

Also, according to the fact that different variations of colors can
have the same average value, the RGB histograms could serve to
differentiate colors more efficiently than the mean (Huang et al., 2010).
A histogram provides a graphical representation of the distribution of
colors in an image. In other words, it produces a discretization of the
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colors in the image into a number of bins (fixed list of color ranges),
and determines the number of image pixels in each bin. In this work,
the RGB histograms for each superpixel are computed. Fig. 6 illustrates
the R, G and B histograms for the corresponding superpixel.

From those histograms, the feature extracted are the coordinates of
the first and second maximum peak in each histogram. The coordinates
represent the number of pixels divided by the total number of pixels
and the corresponding bin.

Coordinates of the first and second maximum peak, or peak intensity
(ratio between the number of pixels to total number of pixels) and
color intensity (quantile), are extracted as features for each superpixels.
Finally, a textural coefficient is computed for each superpixel, which
represents the number of white pixels divided by the total number of
pixels in a superpixel. This last feature is obtained by applying a canny
edge detector to each sub-image.

3.3. Data post-processing

Due to random displacements between the SEM ground truth and
the optical image, the instances (attributes and labels) dataset had to
be cleaned. To perform this, a first description about the dataset is
necessary. The dataset has a total of 786 655 instances. Among all
these instances, there are 287 classes. The majority of those cannot
be used due to the small number of occurrences. Furthermore, the
imbalance of instances among categories affects the training phase
of machine learning algorithms and their performances during the
classification test (Yen and Lee, 2006). For example, we have a to-
tal of 2 instances for the ‘‘Actinolite, Plagioclase’’ class and 16 566
occurrences for the ‘‘Plagioclase, None’’ category. In addition, the
classification algorithm used to process SEM data yields a category
named ‘‘Unknown’’, in which particle with an ambiguous composition
was not allocated with a mineral name. The classification fails when
the chemical composition of a mineral exceed the specified tolerance
in distance in the Euclidian hyperspace due to impurities, mixed signal
or spectral deconvolution issues. Consequently, all instances labeled as
‘‘Unknown’’ were excluded from learning to avoid contaminating the
other classes. Thus, we decided to exclude all instances with the word
‘‘Unknown’’ in their label because the sand grains normally belong to
a known mineral and to avoid contaminating the other classes. Also,
particle identified as ‘‘Quartz’’ are overwhelmingly dominant (47 570
instances), but plagued with various color issues. Quartz is typically
colorless and transparent. However, it may be stained by iron oxide
coating, tinted by internal structural damages, or be loaded with submi-
croscopic inclusions that alter its apparent color. Being transparent and
bi-refracting, light traversing the grains tends to disperse as in a prism
into ‘‘rainbows’’. Furthermore, due to transparency, quartz particle may
reflect the color light form neighboring grains. Consequently, instances
labeled as ‘‘Quartz’’ were eliminated from the dataset. Finally, to prove
the computer vision and machine learning concept, classes that are not
pure were excluded. For example, instances labeled as ‘‘Plagioclase,
None’’ were considered as pure and were preserved, while instances
labeled as ‘‘Plagioclase, Magnetite’’ were not considered as pure and
disregarded. Once post-processed, 546 444 instances were retained,
labeled into 9 classes. Among these instances, the ‘‘Background’’ class
account for 468 431 instances.

Due to the random displacement of the particles between the optical
image and the SEM ground truth, misclassification of some instances
during the labeling process is unavoidable. Outlier data by using the
isolation forest algorithm (Liu et al., 2008). Outlier data or anomalies
with different features from normal instances were excluded. To iden-
tify them, the algorithm builds an ensemble of trees allowing to isolate
every single instance. Isolated data close to the root of the tree structure
are considered as anomalies, while normal instances are isolated in a
leaf of the tree.

The deployment of this algorithm needs as argument the fraction
of outlier data. A human analysis permitted to determine that 60% of

Table 1
Dataset exploited for mineral recognition.

Classes Number of instances

Plagioclase 5000
Augite 820
Background 5000
Hypersthene 2471
Ilmenite 1148
Magnetite 5000
Microcline 1099
Titanite 976
Hornblende 5000

the data samples are mislabeled. Therefore, for each class, 60% of the
instances are excluded.

Finally, in order to correct the imbalance of instances between
classes, the dataset that can be exploited for a first minerals recognition
is presented in Table 1.

3.4. Machine learning algorithms

3.4.1. Classification and regression trees
The Classification and Regression Trees (CART) is a supervised ma-

chine learning algorithm proposed by Breiman et al. in 1984 (Kelleher
et al., 2015). It represents a binary decision tree constructed from the
training dataset in a recursive way. Its advantages are the high per-
formance and the ease of implementation due to the tree architecture.
This algorithm has no parameter settings and can deal with numerical
values and categorical attributes of the dataset. The final decision tree
is generated in two steps, which are the construction of the maximum
tree and the choice of the right size tree (reduction of the maximum
tree). In other words, the classification tree is constructed by using a
divide and conquer approach.

3.4.2. k-nearest neighbors
The k-Nearest Neighbors (k-NN) (Kelleher et al., 2015) is the sim-

plest classification algorithms. k-NN is defined as a non-parametric lazy
learning algorithm. In other terms, any model is computed. However,
the algorithm needs all training dataset for the classification process
of a new instance. This results into costly processing time when the
number of occurrences is very large. This method relies on determining
the k nearest neighbors among all the training dataset of the new
observation x by computing distances between x and each training
data. Then, the new instance gets the label (class) y of the predominant
category among the k nearest neighbors. The user selects the number
k of nearest neighbors and the type of distance (Euclidean distance,
Chebyshev distance, etc.).

3.4.3. Random forest
A Random Forest (RF) is a supervised machine learning algorithm

proposed by Breiman in 2001 (Breiman, 2001). It presents the advan-
tages to be simple, flexible and efficient. Indeed, a RF is a combination
of decision trees, where each tree is constructed by using a random
vector of values (sampled independently with the same distribution).
Thus, the algorithm can be modeled by a ‘‘forest’’ of random trees. The
final classification is given by a majority vote between each decision
of each tree. For such an algorithm, the user has to set parameters,
which are the number of trees in the forest, the number of features to
consider for the best split, and the measurement function to determine
the quality of the split.
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Fig. 6. (a) Superpixel given by the mineral grain in color; (b) Histogram of the green channel; (c) Histogram of the blue channel; (d) Histogram of the red channel.

4. Results and discussion

In this section, we present some results for the recognition of
mineral grains from an image provided by a stereo-zoom binocu-
lar microscope. As described in Section 3, the dataset exploited for
the classification had undergone a labeling, feature extraction and
post-processing processes. Finally, the dataset is presented in Table 1.

In order to recognize minerals of sand grains by using the algorithms
described in Section 3, a classical split of the dataset is applied. It
allows generating a training and testing datasets. The ratio is 70–30. In
other words, it means that 70% of instances serve to train the machine
learning algorithms, and 30% of the dataset tests them.

Comparison of performances between these algorithms can be done
by using well-known indicators such as the precision (P), recall (R),
f1-score (F1-s) and the kappa statistics (Witten et al., 2016). The per-
formances are expressed in a table containing the global performances
of the classifier and the micro-performances per classes.

Tables 2–4 show that the random forest algorithm gives the best
results for the mineral species classification. Indeed, the global accuracy
is respectively +12% and +6% better than CART and k-NN algorithms.

As expected, classification performances of low abundances mineral
species, based on a small number of instances, are significantly lower
than the more abundant ones. The main reason is that the algorithms
cannot be well trained for those classes compared to other mineral
species with a high number of occurrences. Thus, the categories with a

Table 2
Classification results with CART.
CART

Global Accuracy 0.66
Global Kappa 0.60

P R F1-s Support

Plagioclase 0.82 0.78 0.80 1500
Augite 0.24 0.27 0.25 246
Background 1 1 1 1500
Hypersthene 0.64 0.59 0.62 742
Ilmenite 0.28 0.30 0.29 345
Magnetite 0.58 0.59 0.58 1500
Microcline 0.17 0.19 0.18 330
Titanite 0.49 0.54 0.51 293
Hornblende 0.61 0.61 0.61 1500

low number of instances are excluded from the dataset. Results using
the five most abundant classes are provided in Tables 5 to 7.

An improvement of the mineral recognition by excluding less abun-
dant species is indicated in Tables 5–7. Global accuracy for the best
algorithm is improved at 89%. This represents promising outcomes and
random forest algorithm is indicated for subsequent works. In addition,
Tables 5–7 show really good performances of mineral recognition for
the plagioclase.
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Table 3
Classification results with k-NN.
k-NN

Global Accuracy 0.72
Global Kappa 0.67

P R F1-s Support

Plagioclase 0.80 0.92 0.86 1500
Augite 0 0 0 246
Background 1 1 1 1500
Hypersthene 0.64 0.74 0.69 742
Ilmenite 0.18 0.01 0.01 345
Magnetite 0.58 0.77 0.66 1500
Microcline 0.17 0.01 0.01 330
Titanite 0.80 0.37 0.50 293
Hornblende 0.62 0.70 0.66 1500

Table 4
Classification results with RF.
RF

Global Accuracy 0.82
Global Kappa 0.73

P R F1-s Support

Plagioclase 0.83 0.94 0.88 1500
Augite 1 0.02 0.04 246
Background 1 1 1 1500
Hypersthene 0.71 0.78 0.74 742
Ilmenite 0.66 0.18 0.28 345
Magnetite 0.65 0.82 0.73 1500
Microcline 0.43 0.03 0.05 330
Titanite 0.77 0.53 0.63 293
Hornblende 0.71 0.81 0.75 1500

Table 5
Classification results with CART on classes composed of a high number of instances.
CART

Global Accuracy 0.83
Global Kappa 0.78

P R F1-s Support

Plagioclase 0.91 0.92 0.92 1500
Background 1 1 1 1500
Hypersthene 0.80 0.80 0.80 742
Magnetite 0.69 0.70 0.69 1500
Hornblende 0.73 0.71 0.72 1500

Table 6
Classification results with k-NN on classes composed of a high number of instances.
k-NN

Global Accuracy 0.85
Global Kappa 0.82

P R F1-s Support

Plagioclase 0.94 0.92 0.93 1500
Background 1 1 1 1500
Hypersthene 0.82 0.87 0.84 742
Magnetite 0.72 0.78 0.75 1500
Hornblende 0.79 0.70 0.74 1500

The confusion matrix for the results of the Random Forest Algorithm
on reduced number of class is provided in Table 8. The ‘‘Plagioclase,
None’’ and ‘‘Background’’ categories are well discriminated, while the
magnetite and hornblende classes can be confused one to the another.

5. Conclusion

The described computational approach to perform the mineral clas-
sification of mineral grains starting from an optical microscope image
is considered new and innovative, with multiple scientific and in-
dustrial applications. The proposed solution relies on the image and

Table 7
Classification results with RF on classes composed of a high number of instances.
RF

Global Accuracy 0.89
Global Kappa 0.86

P R F1-s Support

Plagioclase 0.96 0.94 0.95 1500
Background 1 1 1 1500
Hypersthene 0.83 0.87 0.85 742
Magnetite 0.78 0.83 0.80 1500
Hornblende 0.85 0.80 0.82 1500

Table 8
Confusion matrix of the classification with RF on classes composed of a high number
of instances.

Plagioclase

Background

H
ypersthene

M
agnetite

H
ornblende

Plagioclase 1407 0 24 46 23
Background 0 1500 0 0 0
Hypersthene 25 0 645 55 17
Magnetite 21 0 63 1243 173
Hornblende 17 0 42 246 1195

data processing and machine learning algorithms that classifies vectors
of mineral features with efficiency. Also, this research exploits the
superpixel segmentation as an efficient alternative to traditional seg-
mentation methods in order to isolate each mineral grain. To the best
of our knowledge, it is the first time that such approach is used with
success. It proves the concept that computer supported computer vision
can be used to classify mineral species in particulate material, such as
sand. Specific applications can be foreseen where the abundance of a
specific mineral of commercial value can be estimated in a fast and
dependable way within mineral processing plants, or where rare but
specific mineral of interest can be spotted in sands in order to detect
mineralized occurrences for the mineral exploration industry.

Results of this study demonstrate that the proposed approach is
efficient at recognizing mineral species given that a sufficiently high
number of instances is used for learning. In this particular experi-
ment, the grains are from a single location. For larger application, a
more diverse set of learning minerals should be used. Performances
of classification algorithm can be in excess of 80%. Using Random
Forest algorithm for learning leads to the best mineral reconnaissance
rates with a global accuracy approximately equal to 90%. The gain
in productivity can be quite high. First of all, in term of monetary
investment as optical microscopes are less expensive than SEM and
are much cheaper to maintain. Then, the time required to acquire
the optical images are much faster than SEM or the time spent by a
experienced person that identify each mineral grain.

The current work presents a solution to mineral species automated
reconnaissance among particulate material such as a natural sand.
Results are considered very promising. Nevertheless, improvement in
the technique is still needed to render it more robust. Indeed, the
sand used in this study come from the same region, which implies
that the method presented in this article will not recognize correctly
mineral sand coming from other regions in the world. Indeed, sand
grains from other regions have mineralogical differences that could
impact the quality of the classification. Thus, we need to integrate
mineral sand grains of other regions into our model or to create a
model for each region.. Among others, a solution might be to acquire
images of the sample under different light sources, such as planar or
circular polarized light or different wavelength such as near infrared or
ultraviolet lights. More features would be extracted in order to better
differentiate similar minerals species. The labeling process has to be
improved to reduce the rate of mislabeling. Improvements might be
achievable in regard of superpixels segmentation, or the quality of the
extracted features.
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6. Computer code availability

• Name of code : Mineral Grain Recognition
• Developpers : Julien Maitre
• Contact details : Université du Québec à Chicoutimi, 555 boule-

vard de l’Université, Chicoutimi G7H2B1, Canada;
e-mail: julien.maitre1@uqac.ca

• Year first available : 2019
• Hardware required : Mineral Grain Recognition was run on a

computer with 4 cores (2.4 GHz each) and 16 GB.
• Software required : Mineral Grain Recognition was interpreted

with Pycharm IDE and needs scikit-learn, scikit-image, opencv
and numpy packages

• Program language : the code is written in Python 3.6
• Program size : 184 kb
• Details on how to access the source code : the source files of

the Mineral Grain Recognition can be downloaded from github
: https://github.com/julienmaitre/Mineral-Recognition
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