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Abstract 

The study of Te, As, Bi, Sb and Se (TABS) has increased over the past years due to their use 

in the development of low-carbon energy technologies. However, there is a scarcity of mass 

fraction values of TABS in geological reference materials. This underlines the difficulty in 

undertaking routine determinations of these elements. The mass fractions of TABS were 

determined in geological reference materials using hydride generation-atomic fluorescence 

spectrometry (HG-AFS), calibrated with standard solutions. Comparisons with literature 

values were used to validate the method. Samples from the GeoPT proficiency test were also 

analysed. For most elements there are no assigned or even provisional values for many of the 

GeoPT and reference materials because of the wide range of results reported. For mass 

fractions above the quantification limit of the method our results are in good agreement with 

the median of GeoPT results. Thus, we propose GeoPT median values as informational 

values for these elements. In contrast, at mass fractions < 0.5 µg g
-1

 median values of Se from 

GeoPT are systematically higher than our results. Our Se results are in agreement with the 

reference materials down to 0.02 µg g
-1

, which suggest that many of the results for Se 

reported in GeoPT testing are too high.  
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The determination of Te, As, Bi, Sb and Se (TABS; Barnes 2016) is critical for both 

environmental and economic reasons. These elements pose risks to the environment 

(especially As and Sb), such as through the contamination of soils, surface drainage and 

groundwater (e.g., Jamieson 2014, Singh et al. 2015). Consequently, most TABS are 

routinely monitored in various materials as elevated mass fractions can be highly toxic (Wu 

2004, Duker et al. 2005, Sundar and Chakravarty 2010). On the other hand, TABS are also 

classified as critical raw materials for the development of low-carbon energy technologies 

(Zweibel 2010, Moss et al. 2013). Thus, the demand for analytical methods capable of 

quantifying these elements down to low levels is continually increasing. 

 

Although most studies have focused on the importance of TABS in environmental and health 

issues over the past decades, there is a growing demand to understand their geochemical 

cycles (Hattori et al. 2002, Wang and Becker 2013, Brenan 2015). For example, TABS may 

be particularly important during the formation of platinum-group elements and gold deposits 

(Pitcairn et al. 2015, Barnes and Ripley 2016). However, there are very few values for TABS 

mass fractions in geological reference materials (especially of Bi, Se and Te), and 

consequently analytical protocols are difficult to validate. Therefore, the geological 

interpretations of the data are weakened by the uncertainty in the analytical results. 

 

Atomic fluorescence spectrometry (AFS), coupled to hydride generation (HG), is an effective 

method for determining elements such as TABS that form covalent hydrides (Corns et al. 

1993). Consequently, HG-AFS has been applied for monitoring trace amounts of TABS in 

materials such as food (Reyes et al. 2008, Zhang et al. 2011, Cava-Montesinos et al. 2013, 

Lai et al. 2016) and water (He et al. 1998, Yan et al. 2002). This technique has also been 

used by geologists to assess the behaviour of TABS during various geological processes 

(Pitcairn 2004, Pitcairn et al. 2015, Patten et al. 2016). The mass fractions of TABS in 

geological materials are variable (Hattori et al. 2002, Ketris and Yudovich 2009, Samalens et 
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al. 2017, Henrique-Pinto et al. 2015), and in some cases (especially for Se and Te), very low 

(Wang and Becker 2014, König et al. 2012, 2014, Lissner et al. 2014). The method appears 

suitable for studying the distribution of TABS in geological materials. However, to date HG-

AFS has not been comprehensively tested using geological reference materials. 

 

In this work we first establish the effectiveness of HG-AFS by determining the mass fractions 

of TABS in a series of geological reference materials and comparing the results with 

literature values. In addition, we report results for TABS in GeoPT proficiency test materials, 

and compare the results with GeoPT assigned and provisional values where available, and 

where not, with ranges of values reported by participating laboratories. We will show that our 

results mostly agree with the median values of results reported by GeoPT participating 

laboratories for Te, As, Bi and Sb and propose that these values could be used as 

informational values. However, the median values for the generally rather small Se datasets 

reported in GeoPT proficiency tests are elevated in comparison with our results. Because the 

values that we determined for Se in the reference materials are in agreement with certified or 

provisional values we suggest that many of the results contributed to the GeoPT tests are 

probably overestimations. 

 

Experimental 

The analytical protocol is a slightly modified version of the method implemented by Pitcairn 

(2004). 

 

Digestion of the rock samples 

Around 0.2 g of rock powder was mixed with 5 ml of aqua regia (1:3 HNO3:HCl; 

PlasmaPURE – SPC Science) in a 50 ml-disposable beaker (Digi TUBES – SCP Science). 

The closed-cap beaker was swirled and then placed in a digestion block for 2 h at room 

temperature, and further heated up to 80 °C for 22 h. The solution was then allowed to cool 

and diluted to 25 ml with distilled water (Figure 1). A different sample digest was prepared 

for each individual measurement. 
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The digestion of rock samples has to take into account the volatile behaviour of TABS (Corns 

et al. 1993, König et al. 2012, Wang and Becker 2014), and thus avoid a loss by 

volatilisation. The use of closed-cap beakers and low temperature are fundamental (Wang 

and Becker 2014). Previous studies indicate that heating the sample up to 80 °C in a closed 

system results in digestion without any analyte loss. In fact, heating the analytes to 

temperatures below 100 °C is a common step adopted in several analytical routines to ensure 

the reduction of TABS prior to analysis without any loss (Pitcairn 2004, He et al. 1998, 

Savard et al. 2006, 2009, König et al. 2012, Wang and Becker 2014). 

 

Preparation of analytical solutions 

The hydride generation method makes use of the ability of TABS to form covalent gaseous 

hydrides (e.g., AsH3, SbH3). However, the formation of hydrides by these elements depends 

on them being in the reduced oxidation state (Corns et al. 1993). Consequently, the 

preparation of solutions for analysis requires a pre-reduction step, which varies for each 

element. Hence, As and Sb were measured in a different aliquot from Te, Se and Bi. 

 

The aliquots were prepared by adding 10 ml of the digested rock solution to 30 ml of a 

reagent blank (Figure 1) in a 50 ml disposable beaker. For the As and Sb aliquot, the reagent 

blank was a solution of 6 mol l
-1

 HCl, 13 g l
-1

 potassium iodide (KI; VWR Chemicals), and 

3.5 g l
-1

 ascorbic acid (VWR Chemicals; Figure 1). The KI and the ascorbic acid are used to 

reduce the oxidation state of Sb
V
 and As

V
 to Sb

III
 and As

III
, respectively (Nielsen and Hansen 

1997, Potin-Gautier et al. 2005). For the Te, Se and Bi aliquot the reagent blank does not 

need any KI or ascorbic acid, and consists only of a 6 mol l
-1

 HCl solution (Figure 1). The 

pre-reduction of Se and Te was achieved by heating the aliquot to 80 °C for 40 min in a water 

bath, in a closed-cap beaker (Cava-Montesinos et al. 2003, Savard et al. 2006). During this 

step, the Se
VI

 and the Te
VI

 are converted to Se
IV

 and Te
IV

, respectively, which is necessary to 

ensure the formation of hydrides (Corns et al. 1993). 
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Instrumentation 

Analyses were performed at LabMaTer, Université du Québec à Chicoutimi (UQAC), using a 

continuous flow hydride generation-atomic fluorescence spectrometer, the PSA Millenium 

Excalibur 10.055 from PS Analytical. The instrument was equipped with boosted hollow 

cathode discharge (BHCD) lamps for As, Sb, Se, Te and Bi, and the primary currents were 

27.5, 17.5, 20, 15 and 20 mA, respectively. The analytical solution was mixed with a 

reductant solution (Figure 1), at flow rates of 9 ml min
-1

 and 4.5 ml min
-1

, respectively. The 

reductant solution was prepared by mixing 14 g of NaBH4 and 8 g of NaOH with 2 l of 

distilled water. Hence, the gaseous hydrides were formed after the reaction between HCl and 

NaBH4, and further atomised using a hydrogen flame fed by excess H2 gas created during the 

reaction. The BHCD lamp focussed on the flame provided the excitation source for the 

fluorescence of the element determined, which was then measured by an AFS detector. 

Atomic fluorescence signals were recorded and measured on the basis of the peak height of 

the signal. 

 

Calibration 

Six calibration solutions with concentrations of 0.1, 0.25, 0.5, 1, 2.5 and 5 ng ml
-1

 were 

prepared for each element of interest. These solutions were prepared from 1000 μg ml
-1

 

standard solutions of each element (PlasmaCAL, SPC Science). All the calibration solutions 

were mixed with the reagent blank prior to measurement, in the same proportion as sample 

aliquots (i.e., 10 ml of calibration solution and 30 ml of reagent blank). Calibration solutions 

were measured at the beginning and the end of each sequence of analysis to monitor 

fluctuations of the fluorescence signal. The calibration curves obtained were all linear. 

 

Detection limits of the method 

As the detection limit (LoD) for each element we used three times the standard deviation (3s) 

of corresponding measurements on the blank solutions (Long and Winefordner 1983, Potts 

1987). These values were calculated using the results for thirty blank solutions prepared in 

the same manner as the samples (total procedure). The detection limits obtained were 0.01, 

0.019, 0.016, 0.026 and 0.002 μg g
-1

 for Te, As, Bi, Sb and Se, respectively (Table 1). We 

chose to use ten times the standard deviation (10s) of the blank solutions to estimate limits of 

quantification for each element (LoQ; Potts 1987).  
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Results and discussion 

Precision and accuracy based on geological reference materials 

The average HG-AFS measurements, the standard deviations (1s) and the relative standard 

deviations (% RSD) obtained for ten geological reference materials (CH-4, TDB-1, OKUM, 

WPR-1, WMG-1, AN-G, BE-N, BIR-1, W-2 and WGB-1) and one in-house reference 

material (KPT-1) are presented in Table 1. The full dataset is available in the online 

supporting information (Tables S1 and S2). Three reference materials (CH-4, TDB-1 and 

KPT-1) were measured in every round to monitor the reproducibility of the method. Only 

reference materials CH-4 and TDB-1 have been previously analysed using HG-AFS (Pitcairn 

et al. 2015, Patten et al. 2016), and the reported values for Te, Se, As and Sb are in the same 

range of our results (Tables S1 and S2). 

 

The Horwitz function (Horwitz et al. 1980) was used to evaluate the acceptable variability of 

the measurements, which will vary following the mass fraction in the material. For example, 

according to the Horwitz function a relative uncertainty of 32% is acceptable at a mass 

fraction of 0.01 µg g
-1

, whereas the uncertainty should fall to 11.3% at a mass fraction of 10 

µg g
-1

. The HG-AFS measurement results have % RSD values below the acceptable limits as 

derived from the Horwitz function (% RSD (Hwz); Table 1) for most samples. A 

characteristic of the Horwitz function is for greater variations in the % RSD to be obtained 

for lower mass fractions of an element. Moreover, individual measurements of the same 

sample digest for reference materials CH-4, TDB-1 and KPT-1 were carried out (Table 2), 

and were characterised by lower % RSD than those from different sample digests (Table 2). 

This suggests that the general variations in % RSD mostly reflect different mass fractions of 

TABS in the reference materials. 

 

The only two HG-AFS measurements with % RSD greater than the acceptable variability 

were the Bi and Sb determinations for reference material TDB-1 (Table 1). High uncertainties 

reported for Bi and Sb in the certificate of analysis for TDB-1 suggest that high % RSD may 

reflect sample heterogeneity. In order to evaluate the problem, different sample masses were 

used in digestion of materials CH-4, TDB-1 and KPT-1 (i.e., 0.1, 0.2 and 0.4g). The HG-AFS 

results are recorded in Table 2. The % RSD are similar to slightly lower for sample digests of 
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0.4 g. However, for Bi and Sb determinations in TDB-1 the % RSD are significantly lower 

for sample digests of 0.4 g (Table 2). This supports the belief that % RSD values greater than 

the acceptable variability probably reflect minor heterogeneities of some elements. Therefore, 

for most reference materials 0.2 g is suitable, whereas measurements with high % RSD may 

be improved by preparing a sample of a greater sample mass. 

 

The accuracy of the method was evaluated by comparing measured quantities for reference 

materials with literature values. The literature values of TABS for all the reference materials 

were compiled from the GeoReM database (Jochum et al. 2005), and are available in Tables 

S1 and S2. Comparisons are shown in Figure 2, where measures values mostly fall within the 

range of literature values. 

 

All determinations of Sb and Se are above their respective limits of quantification, i.e., 0.088 

μg g
-1

 and 0.008 μg g
-1

 (Table 1), and are within uncertainties with literature values for all the 

reference materials (Figure 2a and 2b). For five reference materials (TDB-1, OKUM, AN-G, 

BIR and BEN), Se measurements by the isotopic dilution method are available (König et al. 

2012, 2014, Wang and Becker 2013, Tables S1 and S2). Our results are within uncertainties 

of the results for TDB-1, BIR and BEN, but are slightly lower compared with OKUM and 

AN-G. However, results obtained by other methods for these materials are within 

uncertainties of our results. Thus, the method is validated for Sb and Se down to 0.09 μg g
-1

 

and 0.008 μg g
-1

, respectively (the limits of quantification). 

 

Arsenic and Bi mass fractions in most of the reference materials are above the limits of 

quantification (0.064 and 0.055 μg g
-1 

respectively). Measured quantities of As are within the 

range of literature values except for the two samples (AN-G and BIR-1), which are below the 

limit of quantification, but above the limit of detection (Figure 2c). For these samples, the 

results are lower than literature values but still within range of literature results when the 

uncertainties of the literature values are considered. Therefore, we consider the method 

validated for As down to the limit of quantification. For Bi there is a more limited range of 

reference materials available and the results are variable. The results are in the same range as 

the literature values down to 0.2 μg g
-1 

(Figure 2d), and we consider the method validated 
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down to this level. There are a number of reference materials with mass fractions close to the 

limit of quantification, for three of these the obtained values are higher than the literature 

values and for two they are lower than literature values. The source of the differences is not 

clear, but a weakness of the literature values is that all were determined by the same method 

(ICP-MS). 

 

For Te, literature values are very sparse and variable making comparison problematic. For the 

six reference materials above the limits of quantification of 0.032 μg g
-1

 the values fall within 

the range of literature values except for OKUM, where the value is slightly higher (Figure 

2e). For the reference materials TDB-1, OKUM, AN-G, BIR and BEN, Te measurements by 

the isotopic dilution method are also available (König et al. 2012, 2014, Wang and Becker 

2013, Tables S1 and S2). Obtained results are below the quantification limits for materials 

AN-G, BIR and BEN, which is in accord with isotopic dilution results lower than 0.004 μg g
-

1 
for these materials. For TDB-1 and OKUM our Te measurements (0.043 μg g

-1
 and 0.053 

μg g
-1

, respectively) are higher than those obtained by isotopic dilution (0.006 μg g
-1

 and 

0.025 μg g
-1

, respectively). However, our results are within uncertainties of literature values 

of TDB-1, including results by HG-AFS by Patten et al. (2016), obtained at a different 

laboratory. For the reference material OKUM, only a Te measurement by isotopic dilution 

data is available, not allowing a comparison with results from various studies, ideally using 

different analytical methods. The discrepancies of Te results for these two reference materials 

suggest that either the HG-AFS measurements (Patten et al. 2016 and this study) are slightly 

overestimated, or isotopic dilution results are slightly underestimated (Wang and Becker 

2013, König et al. 2012, 2014). 

 

In summary, the HG-AFS method is considered sufficiently accurate for measuring mass 

fractions of Te, As, Bi, Sb and Se above their respective limits of quantification (Table 1). 

The % RSD values are below the acceptable limits calculated from the Horwitz function in 

almost all of the reference materials, which demonstrates that the method is sufficiently 

precise to satisfy the analytical requirements.  
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IAG GeoPT proficiency test samples 

The International Association of Geoanalysts (IAG) conducts a proficiency testing 

programme, named GeoPT, designed to enable geoanalytical laboratories to routinely assess 

their analytical performance. In each round of GeoPT, participating laboratories analyse 

powders of the same test material (GeoPT samples), and report quantity values of major and 

trace element constituents to the GeoPT organisers. A detailed account of the proficiency 

testing programme and how proficiency testing values are obtained may be found in the 

GeoPT protocol (IAG 2018). To increase the dataset of measurement results for TABS in 

geological materials, thirty-four test samples from previous GeoPT rounds were analysed by 

HG-AFS (Table 3), and the results compared with values derived from the proficiency tests 

(Table 4). 

 

The Horwitz function was calculated for the HG-AFS measurement results on each sample, 

and 85% of the results had % RSD values lower than those acceptable limits (Table 3), 

validating the precision of the method. For most results with % RSD values higher than the 

tolerance provided by the Horwitz function, the measurements are close to the LoD of the 

method, which may explain the discrepancy. 

 

Whenever possible, assigned and provisional values from GeoPT reports were taken for 

comparison with measured values of each element (Table 4). For the materials for which 

neither assigned nor provisional values were available from GeoPT reports, median values of 

all mass fraction values reported by participants were used as a reference (Table 4). Figure 3 

shows the comparison of our measurement results with GeoPT assigned, provisional and 

median values. Our results are also compared with all individual mass fractions reported by 

the participating laboratories, for each element in Figure 4. 

 

 Antimony and bismuth: Our Sb and Bi measurement results are in close agreement 

with assigned and provisional values for most of the test materials (Figures 3a and 3b; Tables 

3 and 4). Exceptions are GeoPT samples 13, 29 and 33 for Sb, and GeoPT sample 36 for Bi. 

Although these four results do not agree with the assigned or provisional values, they fall 

well within the range of reported values (Figure 4a and b). For those samples that have 
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neither assigned nor provisional values, and which are above the respective limits of 

quantification, the Sb and Bi HG-AFS results are similar to the median values of the GeoPT 

contributed data (Figures 3a and 3b; Tables 3 and 4). Therefore, for most samples without 

assigned or provisional values, and for which HG-AFS results are above our quantification 

limits, we suggest that the median values for Bi and Sb could be used as informational values. 

Exceptions to this are for Bi in GeoPT samples 12, 16, 19, 23 and 29, and Sb for GeoPT 

sample 25, where our results fall within the range of reported results (Figure 4a and b), but 

differ from the median value. All of these samples contain less than 0.2 μg g
-1 

Bi according to 

the HG-AFS determination. Below 0.3 μg g
-1

 Bi, the range of values reported in some cases 

by GeoPT participants increases from one order of magnitude to over three, and in some 

cases too few data were reported, thus the median GeoPT values may not always be adequate, 

especially at low levels. Therefore, there appears to be considerable room for improvement in 

determination of Bi at low levels by the geoanalytical community. 

 

 Arsenic: Arsenic results are in good agreement with most of the assigned and 

provisional values (Figure 3c; Tables 3 and 4). The exceptions are results on GeoPT test 

samples 06 and 33. Our results are lower than assigned and provisional values for these two 

samples, and at the lower end of reported values (Figure 4c). The reasons for these 

discrepancies are not clear. 

 

For samples with no assigned or provisional values, the medians of the GeoPT rounds are in 

agreement with our results for mass fractions above 1 μg g
-1

 (Fig 3c, and Table 4). However, 

for samples with As mass fractions below 1 μg g
-1

, our results are lower than GeoPT median 

values (Figure 3c), although still within the range of reported values (Figure 4c).  However, 

as discussed above we consider our method valid down to the limit of quantification (0.064 

μg g
-1

), and all of these samples appear to contain more than 0.1 μg g
-1

 As. Therefore, we 

suggest that the GeoPT median values for samples with As mass fractions below 1 μg g
-1 

overestimate the As mass fractions. As in the case of Bi, the ranges of the results reported 

from the GeoPT tests are much wider for samples with less than 1 μg g
-1

 As (2 to 3 orders of 

magnitude), than for samples above 1 μg g
-1

 (generally 1 order of magnitude, Figure 4c). We 

suggest that median values for samples with As mass fractions greater than 1 μg g
-1

 could be 

used as informational values. 
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Selenium: Among the GeoPT samples only KPT-1 (GeoPT-18) and DBC-1 (GeoPT-33) 

have assigned and provisional values for Se, respectively (Table 4). The HG-AFS results for 

these samples are in excellent agreement with these assigned and provisional values (Figure 

3d). In addition, the median values for samples 36A and 40 are close to our determinations 

(Table 3 and 4).  For the other samples, the values determined for Se by HG-AFS are lower 

than the GeoPT median values (Figure 4d; Tables 3 and 4), and below 0.1 μg g
-1

 most of our 

results are less than GeoPT results by one to two orders of magnitude. All of the samples 

contain Se mass fractions above the HG-AFS detection limit, and all but four are above the 

quantification limit (i.e., 0.008 μg g
-1

). As discussed above, the method was demonstrated to 

be sufficiently accurate at these mass fractions as evidenced by measurement of geological 

reference materials (Figure 2b). Therefore, we must conclude that the majority of Se values 

reported in the GeoPT test (especially those below 0.1 μg g
-1

) are significant overestimates 

(see especially Figure 4d). 

 

 Tellurium: The number of laboratories that have reported Te mass fractions for 

GeoPT test materials is low, and thus no assigned or provisional values are available (Table 

4). Moreover, the median values are unlikely to be reliable unless a sufficient number of 

measurements have been reported. For samples above the limit of quantification (0.032 μg g
-

1
) there is broadly a positive correlation (0.86) between the HG-AFS Te results and the 

median values of the GeoPT contributed values (Figure 3e). This observation suggests that 

the median results for the samples with Te mass fractions greater than 0.032 μg g
-1

 

approximate to the correct order of magnitude. However, the range of GeoPT test values 

reported by participants is very large (0.01 to 10 μg g
-1

; Figure 4e). Unlike the observations 

for As and Bi the variability did not change regardless of the median mass fraction. Based on 

the validation of the HG-AFS with reference materials (Figure 2e), we propose that our HG-

AFS Te results, above the limit of quantification (0.032 μg g
-1

), could be used as 

informational values. Once again, this illustrates the lack of well-characterised reference 

materials for Te at sub μg g
-1 

levels, and reinforces the need of further studies.  
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Variability of TABS values in GeoPT proficiency test results 

The datasets of measurement results for TABS in GeoPT samples are, in some cases, 

extremely variable. The variability of results is greater for samples with low mass fractions of 

a given element. Such variability may be due to some participating laboratories reporting 

measurements close to their detection limits. These measurements may have consequently 

been overestimated, resulting in a wide range of measurements and in some cases 

overestimated median values. For less commonly determined elements such as Se and Te, 

precise and accurate measurements normally require a highly specialised analytical procedure 

(Savard et al. 2006, 2009, Wang and Becker 2014, König et al. 2012, 2014, Lissner et al. 

2014). Therefore, the wide range of measurements may reflect analyses performed in routine 

analytical procedures, which may not properly account for properties such as the oxidation 

state, and volatile behaviour of these elements. 

 

Another possible explanation for the wide variation observed in measurements of TABS in 

GeoPT proficiency tests is the presence of analytical interferences. An example would be the 

polyatomic interference from 
40

Ar
35

Cl on 
75

As, during ICP-MS analysis (Sheppard et al. 

1990, Branch et al. 1991, Komorowicz and Baralkiewicz 2011). Thus, the problem most 

likely arises because aqua regia digestion is a common procedure in most solution work, and 

ICP-MS is predominantly used for determining As. Therefore, as an example, it would be 

plausible that some of the variations in As measurements result from 
40

Ar
35

Cl interferences 

on 
75

As in aqua regia digestion when followed by ICP-MS analysis. The analytical routine 

used by each laboratory for measuring various elements is not reported for the majority of 

GeoPT proficiency tests, thus it is not possible to verify whether interferences affect the 

results. However, the large range of variation in reported measurements suggests that 

specialised analytical protocols are critical for precise and accurate quantification of TABS 

mass fractions in geological materials. 
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A final consideration is the “nugget” effect. All of these elements are chalcophile and could 

be present in the samples only as minute sulfide grains, thus at low mass fractions nugget 

effects maybe in part the source of the variation (Bédard et al. 2016). Tellurium, Bi and Se 

are strongly to highly chalcophile elements with partition coefficients into sulfides greater 

than 400 (Barnes and Ripley 2016), and their mass fractions are very low, thus they are 

particularly vulnerable to the nugget effect. 

 

Conclusions 

The characterisation of TABS in geological reference materials is a subject that needs more 

attention, as illustrated by the paucity of information and wide variation of literature values. 

This work demonstrates that aqua regia digestion followed by HG-AFS is an appropriate 

method for determination of TABS in geological materials to sub μg g
-1

 level. The study 

provides results for TABS in ten international geological reference materials (CH-4, TDB-1, 

OKUM, WPR-1, WMG-1, AN-G, BE-N, BIR-1, W-2 and WGB-1) and thirty-four test 

materials from the GeoPT programme. The comparison between HG-AFS results and 

geological reference materials results validates the method for measuring Te, As, Bi, Sb and 

Se above their respective limits of quantification. Our results agree with GeoPT results for 

Sb, and we suggest that for those samples with no assigned or provisional values the GeoPT 

median values could be used as informational values. Above 0.3 μg g
-1 

Bi, and 1 μg g
-1

 As, 

our results agree with the GeoPT results, and for those samples with no assigned or 

provisional values the GeoPT median values could potentially be used as informational 

values. Below 1 μg g
-1

 As the median GeoPT values are systematically higher than ours. For 

Se the median GeoPT values are systematically higher than our values. Considering that for 

these two elements the HG-AFS method was successful in determining the mass fractions in 

a range of geological reference materials, we consider that the median results from the 

GeoPT test overestimate As mass fractions below 1 μg g
-1

 and Se in most samples. This 

overestimation is probably related with the fact that fewer and less reliable results are 

reported for materials with low mass fractions, and the medians may not be an appropriate 

estimate. The GeoPT dataset for Te is limited, but above the limit of quantification the 

median GeoPT test results correlate with the HG-AFS results. We suggest that the HG-AFS 

results could be used as informational values for As in GeoPT test samples with less than 1 
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μg g
-1

. The HG-AFS results could also be used as informational values for Se and Te in 

GeoPT materials with mass fractions above the quantification limits. 
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Table S1. Complete dataset for Te, As, Bi, Sb and Se results obtained in this study by HG-

AFS. 

Table S2. Published Te, As, Bi, Sb and Se values for international geological reference 

materials, compiled from the GeoReM database (Jochum et al. 2005), and respective 

references. 

 

This material is available from: 

http://onlinelibrary.wiley.com/doi/10.1111/ggr.00000/abstract 

(This link will take you to the article abstract). 

 

Figure captions 

Figure 1. Schematic flow diagram showing the main preparation steps for reagents and 

aliquots. See text for further explanation. HG-AFS – Hydride generation-atomic fluorescence 

spectrometry. 

 

Figure 2. Comparison of new HG-AFS determinations and literature values (from 

Supplementary Materials) for (a) Sb, (b) Se, (c) As, (d) Bi and (e) Te. Uncertainties are 

shown by error bars at the 1σ level. For materials with a compositional range, instead of a 

result, the range is plotted using an error bar. Dashed lines indicate the limits of detection 

(LoD) and quantification (LoQ) for HG-AFS. 

 

Figure 3. Comparison of new HG-AFS determinations with assigned and provisional values 

from GeoPT reports and median values (this work, from Table 4) of GeoPT proficiency test 

materials for (a) Sb, (b) Bi, (c) As, (d) Se and (e) Te. Values with mass fractions below the 

detection limits (Table 3) are not plotted. Dashed lines indicate the limits of detection (LoD) 

and quantification (LoQ) for HG-AFS. 

 

Figure 4. Comparison of new determinations and all previously reported results by other 

laboratories for GeoPT proficiency test materials for (a) Sb, (b) Bi, (c) As, (d) Se and (e) Te. 

Dashed lines indicate the limits of detection (LoD) and quantification (LoQ) for HG-AFS. 
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Table 1.

Tellurium, As, Bi, Sb and Se results for geological reference materials by HG-AFS

Sample ID n
 
* Rock type Te As Bi Sb Se

LoD
Blank

3s  (μg g
-1

) 0.010 0.019 0.016 0.026 0.002

LoQ Blank 10s  (μg g
-1

) 0.032 0.064 0.055 0.088 0.0081

Mean (μg g
-1

) 0.414 8.534 0.676 0.844 1.942

1s 0.073 0.355 0.094 0.062 0.044

% RSD 17.712 4.163 13.900 7.334 2.272

% RSD (Hwz) 18.266 11.585 16.968 16.409 14.476

Mean (μg g
-1

) 0.043 2.127 0.064 1.034 0.344

1s 0.006 0.207 0.024 0.176 0.029

% RSD 12.961 9.717 37.609 16.984 8.494

% RSD (Hwz) 25.656 14.279 24.186 15.916 18.785

Mean (μg g
-1

) 0.498 2.151 0.907 11.077 2.959

1s 0.060 0.280 0.085 0.247 0.113

% RSD 11.959 13.041 9.361 2.232 3.832

% RSD (Hwz) 17.768 14.255 16.234 11.139 13.587

Mean (μg g
-1

) 0.053 0.241 0.072 0.111 0.101

1s 0.006 0.039 0.011 0.014 0.011

% RSD 10.340 16.128 15.799 12.234 10.950

% RSD (Hwz) 24.862 19.819 23.785 22.271 22.588

Mean (μg g
-1

) 0.474 1.070 0.194 0.876 3.859

1s 0.027 0.130 0.015 0.108 0.083

% RSD 5.606 12.111 7.568 12.326 2.143

% RSD (Hwz) 17.900 15.834 20.471 16.319 13.055

Mean (μg g
-1

) 1.419 7.087 0.489 1.920 13.635

1s 0.081 0.207 0.050 0.081 0.536

% RSD 5.716 2.915 10.277 4.216 3.930

% RSD (Hwz) 15.176 11.913 17.817 14.501 10.796

Mean (μg g
-1

) < 0.01 0.024 0.070 0.117 0.028

1s n.a. 0.003 0.014 0.007 0.005

% RSD n.a. 12.633 20.204 6.278 17.726

% RSD (Hwz) n.a. 28.069 23.893 22.096 27.430

Mean (μg g
-1

) < 0.01 1.808 < 0.016 0.294 0.070

1s n.a. 0.045 n.a. 0.006 0.006

% RSD n.a. 2.473 n.a. 1.894 8.975

% RSD (Hwz) n.a. 14.633 n.a. 19.238 23.895

Mean (μg g
-1

) < 0.01 0.054 0.017 0.543 0.016

1s n.a. 0.005 0.002 0.024 0.002

% RSD n.a. 8.968 14.280 4.428 14.863

% RSD (Hwz) n.a. 24.801 29.449 17.539 29.689

Mean (μg g
-1

) 0.011 0.767 0.073 0.786 0.087

1s 0.001 0.048 0.016 0.037 0.004

% RSD 4.660 6.259 21.623 4.659 4.981

% RSD (Hwz) 31.379 16.650 23.731 16.588 23.121

Mean (μg g-1) 0.013 1.595 0.052 1.810 0.092

1s 0.002 0.047 0.009 0.040 0.008

% RSD 18.085 2.946 17.925 2.184 8.549

% RSD (Hwz) 30.674 14.911 24.934 14.630 22.903

7

Basalt

WPR-1 3

3

3

Peridotite

Gabbro

Anorthosite

CH-4

TDB-1 

7

OKUM 3

Anorthosite

Diabase

Quartz diorite

Komatiite

KPT-1

7

3

LoD = limit of dection; LoQ = limit of quantification; % RSD (Hwz)= Target % RSD calculated using the 

Horwitz function;  n.a. = non applicable; * Number of individual determinations.

Basalt

3

3

W-2 

WGB-1 

Diabase

3

Gabbro

WMG-1 

AN-G 

BEN 

BIR-1
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Table 2.

Tellurium, As, Bi, Sb and Se results for geological reference materials by HG-AFS using different samples masses 

Sample mass 

(g)
N

Mean     

(μg g
-1

)
1s % RSD 

% RSD 

(Hwz)

Mean        

(μg g
-1

)
1s % RSD 

% RSD 

(Hwz)

Mean      

(μg g
-1

)
1s % RSD 

% RSD 

(Hwz)

0.1 (n  = 4) 4 0.369 0.094 25.4 18.6 0.047 0.006 13.6 25.3 0.533 0.070 13.2 17.6

0.2 (n  = 7) 7 0.414 0.073 17.7 18.3 0.043 0.006 13.0 25.7 0.498 0.060 12.0 17.8

0.4 (n  = 4) 4 0.43 0.04 8.1 18.2 0.030 0.004 14.6 27.1 0.49 0.04 8.2 17.8

0.2 (n  = 3) 1 0.469 0.035 7.4 17.9 0.047 0.004 8.5 25.4 0.533 0.048 9.1 17.6

0.1 (n  = 4) 4 8.773 0.245 2.8 11.5 2.210 0.270 12.2 14.2 1.878 0.131 7.0 14.5

0.2 (n  = 7) 7 8.534 0.355 4.2 11.6 2.127 0.207 9.7 14.3 2.151 0.280 13.0 14.3

0.4 (n  = 4) 4 8.400 0.219 2.6 11.6 2.041 0.213 10.4 14.4 2.246 0.111 4.9 14.2

0.2 (n  = 3) 1 8.455 0.320 3.8 11.6 2.210 0.196 8.9 14.2 1.878 0.100 5.3 14.5

0.1 (n  = 4) 4 0.610 0.092 15.1 17.2 0.062 0.030 48.9 24.3 0.847 0.068 8.1 16.4

0.2 (n  = 7) 7 0.676 0.094 13.9 17.0 0.064 0.024 37.6 24.2 0.907 0.085 9.4 16.2

0.4 (n  = 4) 4 0.800 0.074 9.2 16.5 0.084 0.005 6.0 23.2 0.943 0.075 7.9 16.1

0.2 (n  = 3) 1 0.748 0.063 8.4 16.7 0.046 0.002 5.1 25.4 0.847 0.048 5.6 16.4

0.1 (n  = 4) 4 0.876 0.068 7.8 16.3 0.857 0.136 15.8 16.4 11.113 0.240 2.2 11.1

0.2 (n  = 7) 7 0.844 0.062 7.3 16.4 1.034 0.176 17.0 15.9 11.077 0.247 2.2 11.1

0.4 (n  = 4) 4 0.877 0.082 9.4 16.3 0.931 0.064 6.9 16.2 11.031 0.153 1.4 11.1

0.2 (n  = 3) 1 0.790 0.019 2.4 16.6 0.857 0.018 2.1 16.4 11.113 0.173 1.6 11.1

0.1 (n  = 4) 4 1.944 0.057 3.0 14.5 0.343 0.026 7.5 18.8 3.029 0.134 4.4 13.5

0.2 (n  = 7) 7 1.942 0.044 2.3 14.5 0.344 0.029 8.5 18.8 2.959 0.113 3.8 13.6

0.4 (n  = 4) 4 1.928 0.039 2.0 14.5 0.394 0.071 13.1 18.4 2.934 0.054 1.8 13.6

0.2 (n  = 3) 1 1.936 0.044 2.3 14.5 0.343 0.020 5.8 18.8 3.029 0.102 3.4 13.5

Abbreviations: % RSD (Hwz) = Target % RSD calculated using the Horwitz function;  n  = number of individual determinations; N  = number of sample digests.

Te

As

Bi

Sb

CH-4 TDB-1 KPT-1

Anorthosite Diabase Quartz diorite

Se
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Sample ID n
 
* Rock type Te As Bi Sb Se

LoD blank 3s  (μg g
-1

) 0.010 0.019 0.016 0.026 0.002

LoQ blank 10s  (μg g
-1

) 0.032 0.064 0.055 0.088 0.0081

Mean (μg g
-1

) 0.020 0.917 0.227 0.221 0.028

1s 0.007 0.052 0.085 0.018 0.011

% RSD 31.9 5.6 37.7 8.1 39.6

% RSD (Hwz) 28.7            16.2           20.0         20.1         27.4         

Mean (μg g
-1

) 0.019 1.317 0.090 0.289 0.019

1s 0.010 0.071 0.017 0.038 0.004

% RSD 53.7 5.4 18.7 13.2 20.3

% RSD (Hwz) 29.1            15.3           23.0         19.3         29.1         

Mean (μg g
-1

) 0.080 3.648 0.309 0.960 0.543

1s 0.009 0.184 0.033 0.022 0.019

% RSD 11.3 5.1 10.6 2.3 3.6

% RSD (Hwz) 23.4            13.2           19.1         16.1         17.5         

Mean (μg g
-1

) 0.028 2.413 0.073 0.470 0.021

1s 0.017 0.046 0.023 0.031 0.001

% RSD 58.8 1.9 31.1 6.6 6.3

% RSD (Hwz) 27.4            14.0           23.7         17.9         28.7         

Mean (μg g
-1

) 0.027 115.628 0.141 12.304 0.029

1s 0.008 3.514 0.046 0.340 0.003

% RSD 30.9 3.0 32.8 2.8 11.4

% RSD (Hwz) 27.6            7.8             21.5         11.0         27.2         

Mean (μg g
-1

) 0.016 6.470 0.159 0.350 0.029

1s 0.008 0.230 0.020 0.056 0.001

% RSD 51.9 3.6 12.7 16.0 3.7

% RSD (Hwz) 29.7            12.1           21.1         18.7         27.3         

Mean (μg g
-1

) 0.078 7.161 0.112 0.457 0.533

1s 0.006 0.301 0.041 0.066 0.049

% RSD 7.3 4.2 36.6 14.5 9.1

% RSD (Hwz) 23.5            11.9           22.2         18.0         17.6         

Mean (μg g
-1

) 0.023 2.358 0.063 0.164 0.025

1s 0.013 0.112 0.002 0.019 0.004

% RSD 58.9 4.7 3.0 11.5 15.5

% RSD (Hwz) 28.3            14.1           24.3         21.0         27.9         

Mean (μg g
-1

) < 0.01 0.963 0.058 0.165 0.007

1s n.a. 0.076 0.016 0.022 0.002

% RSD n.a. 7.9 27.7 13.2 28.4

% RSD (Hwz) n.a. 16.1           24.5         21.0         34.0         

Mean (μg g
-1

) 0.500 2.199 0.854 10.720 2.988

1s 0.021 0.158 0.078 0.353 0.085

% RSD 4.1 7.2 9.1 3.3 2.9

% RSD (Hwz) 17.8            14.2           16.4         11.2         13.6         

Mean (μg g
-1

) 0.082 1.764 0.162 0.151 0.500

1s 0.009 0.070 0.013 0.008 0.055

% RSD 11.4 4.0 7.9 5.1 11.0

% RSD (Hwz) 23.3            14.7           21.0         21.3         17.8         

Mean (μg g
-1

) 0.037 0.324 < 0.016 0.188 0.105

1s 0.005 0.047 n.a. 0.028 0.009

% RSD 13.1 14.4 n.a. 14.8 8.3

% RSD (Hwz) 26.3            19.0           n.a. 20.6         22.4         

Table 3. Tellurium, As, Bi, Sb and Se results for GeoPT  proficiency test samples by HG-AFS

GeoPT -19 

(MGR-N)
4 Gabbro

Ultramafic rock4
GeoPT -20 

(OPY-1)

GeoPT -17 

(OU-8)
4

Calcareous 

sandstone

4

GeoPT -12 

(GAS)

GeoPT -13 

(UoK Loess)
4

Quartz diorite4
GeoPT -18 

(KPT-1)

GeoPT -15 

(MSAN)
4

Ocean Floor 

sediment

Nevada basalt4
GeoPT -16 

(BNV-1)

GeoPT -10 

(CH-1)

Köln loess

4 Leiton dolerite

Serpentine4

GeoPT -06 

(OU-3)
4

Nanhoron 

microgranite

Marine sediment

GeoPT -08 

(OU-4)

GeoPT -11 

(OU-5)

Penmaenmawr 

microdiorite
4
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Mean (μg g
-1

) 0.043 2.080 1.102 0.244 0.009

1s 0.020 0.115 0.041 0.033 0.005

% RSD 46.0 5.5 3.7 13.6 54.5

% RSD (Hwz) 25.7            14.3           15.8         19.8         32.6         

Mean (μg g
-1

) 0.208 1.624 0.092 0.224 0.028

1s 0.036 0.089 0.010 0.022 0.008

% RSD 17.3 5.5 10.3 9.9 30.3

% RSD (Hwz) 20.3            14.9           22.9         20.0         27.4         

Mean (μg g
-1

) 0.211 2.670 0.064 6.443 0.006

1s 0.017 0.073 0.028 0.437 0.000

% RSD 8.1 2.7 43.8 6.8 6.7

% RSD (Hwz) 20.2            13.8           24.2         12.1         34.5         

Mean (μg g
-1

) 0.186 1.769 0.143 0.242 0.010

1s 0.036 0.015 0.016 0.027 0.002

% RSD 19.1 0.9 11.0 11.2 20.3

% RSD (Hwz) 20.6            14.7           21.4         19.8         32.0         

Mean (μg g
-1

) 0.226 0.203 0.054 0.233 0.173

1s 0.040 0.014 0.027 0.021 0.031

% RSD 17.9 6.8 50.2 9.2 18.1

% RSD (Hwz) 20.0            20.3           24.8         19.9         20.8         

Mean (μg g
-1

) 0.198 2.004 0.074 0.230 0.003

1s 0.025 0.084 0.018 0.012 0.001

% RSD 12.8 4.2 24.2 5.0 17.1

% RSD (Hwz) 20.4            14.4           23.7         20.0         38.0         

Mean (μg g
-1

) < 0.01 1.836 0.052 0.358 0.035

1s n.a. 0.064 0.016 0.019 0.002

% RSD n.a. 3.5 31.1 5.4 5.0

% RSD (Hwz) n.a. 14.6           24.9         18.7         26.6         

Mean (μg g
-1

) < 0.01 4.244 0.169 0.819 0.011

1s n.a. 0.138 0.021 0.046 0.001

% RSD n.a. 3.2 12.5 5.7 9.9

% RSD (Hwz) n.a. 12.9           20.9         16.5         31.4         

Mean (μg g
-1

) 0.399 35.139 1.775 5.923 0.300

1s 0.031 0.538 0.066 0.384 0.020

% RSD 7.9 1.5 3.7 6.5 6.6

% RSD (Hwz) 18.4            9.4             14.7         12.2         19.2         

Mean (μg g
-1

) 0.016 0.575 0.052 0.071 0.021

1s 0.009 0.065 0.018 0.014 0.001

% RSD 60.2 11.3 35.2 19.6 4.4

% RSD (Hwz) 29.9            17.4           24.9         23.8         28.6         

Mean (μg g
-1

) 0.259 3.285 1.683 1.587 2.442

1s 0.037 0.093 0.150 0.054 0.091

% RSD 14.3 2.8 8.9 3.4 3.7

% RSD (Hwz) 19.6            13.4           14.8         14.9         14.0         

Mean (μg g
-1

) < 0.01 1.044 0.057 0.204 0.049

1s n.a. 0.088 0.010 0.015 0.003

% RSD n.a. 8.5 17.1 7.4 6.7

% RSD (Hwz) n.a. 15.9           24.6         20.3         25.2         

Mean (μg g
-1

) < 0.01 2.295 0.092 1.556 0.010

1s n.a. 0.100 0.025 0.062 0.001

% RSD n.a. 4.4 27.4 4.0 5.7

% RSD (Hwz) n.a. 14.1           22.9         15.0         31.9         

Mean (μg g
-1

) 0.032 2.470 0.116 1.934 0.213

1s 0.007 0.214 0.015 0.038 0.015

% RSD 23.3 8.6 12.9 2.0 6.9

% RSD (Hwz) 26.8            14.0           22.1         14.5         20.2         

Mean (μg g
-1

) 1.096 72.972 1.051 111.793 3.321

1s 0.084 2.455 0.108 2.520 0.268

% RSD 7.7 3.4 10.3 2.3 8.1

% RSD (Hwz) 15.8            8.4             15.9         7.9           13.4         

Mean (μg g
-1

) < 0.01 0.423 0.063 0.253 0.005

1s n.a. 0.025 0.021 0.042 0.003

% RSD n.a. 5.9 33.1 16.7 53.8

% RSD (Hwz) n.a. 18.2           24.2         19.7         35.3         

Mean (μg g
-1

) < 0.01 0.152 0.032 0.059 0.082

1s n.a. 0.008 0.008 0.014 0.003

% RSD n.a. 5.3 24.8 24.5 3.2

% RSD (Hwz) n.a. 21.2           26.8         24.5         23.3         

Mean (μg g
-1

) 0.014 0.282 0.077 1.175 0.031

1s 0.004 0.029 0.018 0.050 0.005

% RSD 26.4 10.4 23.1 4.3 14.9

% RSD (Hwz) 30.5            19.4           23.5         15.6         26.9         

Mean (μg g
-1

) 0.138 3.666 0.800 0.231 0.182

1s 0.011 0.117 0.028 0.012 0.004

% RSD 7.6 3.2 3.5 5.2 2.1

% RSD (Hwz) 21.6            13.2           16.5         19.9         20.7         

Mean (μg g
-1

) 0.020 22.144 1.062 3.176 0.035

1s 0.004 0.971 0.081 0.196 0.003

% RSD 18.6 4.4 7.6 6.2 9.9

% RSD (Hwz) 28.8            10.0           15.9         13.4         26.5         

Mean (μg g
-1

) 0.071 10.275 0.334 0.907 0.565

1s 0.010 0.722 0.008 0.056 0.022

% RSD 14.3 7.0 2.3 6.2 3.9

% RSD (Hwz) 23.8            11.3           18.9         16.2         17.4         

Mean (μg g
-1

) < 0.01 0.258 0.050 0.975 0.004

1s n.a. 0.020 0.011 0.050 0.001

% RSD n.a. 7.8 21.8 5.1 34.9

% RSD (Hwz) n.a. 19.6           25.1         16.1         37.3         

Syenite

Nepheline 

syenite
4

GeoPT -39A 

(MNS-1)

LoD = limit of dection; LoQ = limit of quantification; % RSD (Hwz)= Target % RSD calculated using the 

Horwitz function;  n.a. = non applicable; * Number of individual determinations

GeoPT -40 

(ShWYO-1)
4

Silty marine 

shale

Andesite

Metal-rich 

sediment

Rhyolite

GeoPT -38 

(OU-7)
4

Ardnamurchan 

gabbro

Modified 

harzgurgite
4

GeoPT -38A 

(HARZ01)

4
GeoPT -41 

(ORA-1)

GeoPT -39 

(SyMP-1)
4

GeoPT -33 

(DBC-1)
4

4
GeoPT -37 

(ORPT-1)

GeoPT -36A 

(SdAR-M2)
4

Ball Clay

Granite4
GeoPT -34 

(GRI-1)

Tonalite

Gabbro4
GeoPT -36 

(GSM-1)

GeoPT -35 

(TLM-1)
4

GeoPT -31 

(SdAR-1)
4

Modified River 

Sediment

Woodstock 

basalt
4

GeoPT -32 

(WG-1)

GeoPT -29 

(NKT-1)
4 Nephelinite

Syenite4
GeoPT -30 

(CG-2)

GeoPT -25 

(HTB-1)
4 Basalt

Andesite4
GeoPT -27 

(MGL-AND)

GeoPT -23 

(OU-9)
4

Separation Lake 

pegmatite

Longmyndian 

greywacke
4

GeoPT -24 

(OU-10)

GeoPT -21 

(MGT-1)
4 Granite

Basalt4
GeoPT -22 

(MBL-1)
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Table 4. 

      Assigned, provisional and median values for GeoPT proficiency test 

samples 

 

       
Sample ID 

Assigned, p ovision l  n  me i n v lues (μg g
-

1
) Reference 

  Te As Bi Sb Se   

GeoPT-06 0.17 3.379 0.2 0.305 8 Potts et al. (2000) 

GeoPT-08 0.32 1.85 0.098 0.302 4 Potts et al. (2000b) 

GeoPT-10 n.r. 4.465 0.31 1.05 0.9 Potts et al. (2001) 

GeoPT-11 0.30 2.45 0.067 0.42 1.5 Potts et al. (2002) 

GeoPT-12 n.r. 121.1 0.07 12.29 1.8 Potts et al. (2003) 

GeoPT-13 n.r. 6.746 0.13 0.58 1.1 Potts et al. (2003b) 

GeoPT-15 0.22 7.32 0.11 0.49 1.05 Potts et al. (2004) 

GeoPT-16 13.5 2.328 0.4 0.13 2 Potts et al. (2005) 

GeoPT-17 0.04 1.214 0.043 0.215 0.414 Potts et al. (2005b) 

GeoPT-18 0.35 2.21 0.945 10.005 2.93 Webb et al. (2006) 

GeoPT-19 0.072 1.75 0.068 0.124 1 Webb et al. (2006b) 

GeoPT-20 0.03 0.8 0.1 0.145 0.31 Webb et al. (2007) 

GeoPT-21 0.036 2.315 1.06 0.2 n.r. Webb et al. (2007b) 

GeoPT-22 0.502 1.8 0.069 0.29 0.07 Webb et al. (2008) 

GeoPT-23 0.24 2.82 0.19 7.669 0.25 Webb et al. (2008b) 

GeoPT-24 0.05 2.02 0.1 0.287 0.238 Webb et al. (2009) 

GeoPT-25 0.09 1.915 0.053 0.1 0.329 Webb et al. (2009b) 

GeoPT-27 1 2.346 0.106 0.237 0.31 Webb et al. (2010) 

GeoPT-29 0.03 2.2 0.023 0.12 0.2 Webb et al. (2011) 

GeoPT-30 0.041 5.85 0.17 1.054 1.5 Webb et al. (2012) 

GeoPT-31 0.825 36.43 1.77 6.667 1.48 Webb et al. (2012b) 

GeoPT-32 0.1 1.486 0.07 0.12 0.556 Webb et al. (2013) 

GeoPT-33 0.101 9 2.04 2.809 3.006 Webb et al. (2013b) 

GeoPT-34 0.07 0.99 0.057 0.205 0.158 Webb et al. (2014) 

GeoPT-35 0.023 3.255 0.083 1.49 1 Webb et al. (2014b) 

GeoPT-36 0.836 2.86 0.079 1.83 0.41 Webb et al. (2015) 

GeoPT-36A 2.12 75.82 1.05 106.6 2.5 Webb et al. (2015b) 

GeoPT-37 0.19 1 0.09 0.27 1.8 Webb et al. (2015c) 

GeoPT-38 0.424 0.7 0.013 0.079 0.153 Webb et al. (2016) 

GeoPT-38A 0.03 0.39 0.1 1.473 0.05 Webb et al. (2016b) 

GeoPT-39 0.439 7.1 0.79 0.194 0.8 Webb et al. (2016c) 

GeoPT-39A 0.4 22.94 1.086 2.8 1.02 Webb et al. (2016d) 

GeoPT-40 0.085 11.75 0.3 0.9 0.784 Webb et al. (2017) 

GeoPT-41 0.048 1.35 0.04 0.858 0.801 Webb et al. (2017b) 

       Assigned values in bold type; Provisional values in underlined italic type; Median values in Roman type. 
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