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Abstract—An effective electrocardiogram (ECG) signal 
compression method based on two-dimensional wavelet 
transform which employs set partitioning in hierarchical trees 
(SPIHT) and beat reordering technique is presented. This 
method utilizes the redundancy between adjacent samples and 
adjacent beats. Beat reordering rearranges beat order in 2D 
ECG array based on the similarity between adjacent beats. This 
rearrangement reduces variances between adjacent beats so that 
the 2D ECG array contains less high frequency component. The 
experiments on two datasets from MIT-BIH arrhythmia database 
revealed that the proposed method is more efficient for ECG 
signal compression in comparison with several previous proposed 
methods in literature. The experimental results show that the 
proposed method yields relatively low distortion at high 
compression rate. 

ECG compression; set partitioning in hierarchical trees 
(SPIHT); wavelet transform; multirate signal processing 

I. INTRODUCTION 
ECG signal is a very important source of information for 

cardiologist in diagnosing their cardiac patients. Long term 
ECG monitoring is recommended for patients who have been 
diagnosed with mild version of a cardiac disorder but still 
maintain active lifestyle [1]. This long term ECG monitoring is 
called ambulatory monitor. An ambulatory monitor with the 
sampling rate of 360 Hz, 11bit/sample data resolution, a 24-
hour recording requires about 43 Mbytes of storage per 
channel. Recent advances in sensor technology allow 
ambulatory monitor to record ECG signal at higher sampling 
rate and data resolution. As the sampling rate, data resolution, 
and observation time increase, the amount of storage 
requirement also increases. The amount of transmission time 
and bandwidth also increases when the ECG signal needs to be 
transmitted. Therefore, ECG signal compression becomes an 
important issue in biomedical engineering and signal 
processing research area. 

SPIHT is a wavelet-based coding technique, which supports 
progressive coding capability. In progressive coding, signal 
quality can be improved gradually as the compressed bit rate 
increases. The encoded bit stream can be stopped when desired 
quality is met [2]. Several ECG signal compression methods 
based on SPIHT and its modification has been presented 
recently. Lu et al. proposed 1D SPIHT coding for single/multi-
lead ECG signal compression [3]. Pooyan et al. divided ECG 

signal into non-overlapped frames and applied 1D SPIHT 
coding on each frame of ECG signal [4]. Goudarzi et al. 
proposed SPIHT coding on multiwavelet transformed 2D ECG 
array [5]. Rezazadeh et al. applied similar technique to 
Goudarzi to construct 2D ECG array with the implementation 
of sub-band energy compression before SPIHT coding [6]. Tai 
et al. also used similar technique to construct 2D ECG array 
and proposed modified SPIHT coding that divided wavelet 
transformed image into three partitions [7]. Sharifahmadian 
presented enhanced SPIHT coding that limits redundant 
evaluation in the sorting pass of SPIHT for multi-lead ECG 
signal compression [8]. Sharaeian and Fatemizadeh applied 
vector quantization on residual image obtained from SPIHT 
coding [9]. Nayebi et al. proposed run length coding on SPIHT. 
Nayebi used similar 2D ECG array to Goudarzi, as an input for 
SPIHT coding [10]. Wang et al. applied lifting wavelet 
transform and adopted different threshold value for high 
frequency subband in SPIHT coding [11]. 

In this paper, we proposed a beat reordering technique to 
optimize SPIHT coding for ECG signal compression. Beat 
reordering rearranges beat order in 2D ECG array based on 
similarity among adjacent beats. The rearrangement will reduce 
variances among adjacent beats so that the 2D ECG array 
contains less high frequency. SPIHT coding work more 
efficiently on the signal with less high frequency component 
[12]. This paper is organized as follows: wavelet-based 
baseline wander removal technique, beat normalization, 2D 
ECG array construction, beat reordering, and short introduction 
to the SPIHT coding are presented in section II. The evaluation 
of the proposed method using the selected records from MIT-
BIH arrhythmia database and the comparison with other 
methods are explained in section III. Finally, the conclusion 
will be given in section IV. 

II. METHODOLOGY 
The schematic diagram of compression and decompression 

stage of the proposed method is shown in Fig. 1. First, we used 
wavelet-based baseline wander removal proposed by 
Sargolzaei to remove baseline wander from ECG signal [13]. 
The duration of each beat then calculated from RR interval of 
detected QRS complexes. Since the duration of each beat is 
different, we applied beat normalization based on period and 
amplitude normalization (PAN) method [14]. Next, the output 
of beat normalization process is reorganized into 2D array 

2012 IEEE International Conference on Systems, Man, and Cybernetics 
October 14-17, 2012, COEX, Seoul, Korea

978-1-4673-1714-6/12/$31.00 ©2012 IEEE 226

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Binus University Repository

https://core.ac.uk/display/227486333?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Figure 1.   Schematic diagram of the proposed method 

 
(a) Original signal 

 
(b) After baseline wander removal 

Figure 2.   Signal plot of first 3072 samples from record 109 
form. Beat reordering technique is employed to optimize 
SPIHT coding by rearranging beat order in 2D ECG array 
based on their similarities. Beat reordering is done by grouping 
similar beats in 2D ECG array into the same cluster using fuzzy 
c-means clustering, the order of each beat on each cluster then 
sorted by their distance to the centroid. We applied 2D wavelet 
transform to transform 2D ECG array into the time-frequency 
domain. Finally, SPIHT coding is applied to the beat reordered 
of 2D ECG array. Detail explanation of each stage will be 
covered in the next part of this paper. 

A. Wavelet Based Baseline Wander Removal 
Baseline wander is a common phenomenon in biomedical 

electric recording such as ECG.  The baseline wander appears 
as significant drift from the baseline of the ECG signal mainly 
caused by patient breathing, body movement, bad electrodes 
and improper electrode site preparation, etc. [15]. Removing 
baseline wander is essential preprocessing step to enhance 
ECG signal characteristics for clinical diagnoses. 

In this paper, we applied adaptive baseline wander removal 
method that constructs a model of baseline wander with 
multiresolution analysis of the ECG signal using discrete 
wavelet transform [13]. Sargolzaei et al. indicates that the 
spectrum of the baseline is below the spectrum of the ECG 
signal, therefore its energy concentration in corresponding 
time-scale plane does not change as much as the scale is 
changed in the wavelet based decomposition procedure, but the 
energy of the ECG signal decreases as the scale is changed. 
Therefore, baseline wander can be estimated from inverse 
wavelet transform of approximation coefficients when the 
energy of detail coefficient in certain level of decomposition 
reaches local minima. Fig. 2 shows the original signal of record 
109 from MIT-BIH arrhythmia database and the result of 
baseline wander removal. 

B. 2D ECG Array Construction 
There are two types of correlation in the ECG signal, which 

are correlation in a single ECG cycle (intrabeat correlation) and 
the correlation among ECG cycles (interbeat correlation). An 
optimal ECG signal compression needs to decorrelate both 

types of correlations to achieve high compression rate at low 
distortion. The original ECG signal needs to be arranged into 
two-dimensional ECG array, which consists of one or more 
normalized heartbeats. The intrabeat correlation can be seen in 
each column, while the interbeat correlation can be shown in 
each row of the 2D ECG array. For this purpose, the peaks of 
ECG signal should be detected to obtain each heartbeat 
duration. Different QRS complex detection techniques can be 
used to find the peaks of ECG signal [16][17]. Since each 
heartbeat can have a different duration, it should be normalized 
into constant number in order to construct 2D ECG array. Our 
experimental result on MIT-BIH arrhythmia database shows 
that the optimal duration of each heartbeat consists of 256 
samples. We used PAN method [14] to normalize each 
heartbeat duration without amplitude normalization step since 
this step does not give a substantial contribution to optimize 
overall compression stage.  

To perform beat normalization, the variable beat vector is 
first interpolated by a factor L. The signal is then downsampled 
by the appropriate factor, so that the length of all heartbeat 
becomes constant. If x(n) is the input to an interpolation filter 
with an upsampling factor L and impulse response h(n), then 
the output y(n) is defined as, 

 �ሺ�ሻ ൌ σ �ሺ�ሻ�ሺ� െ ��ሻஶ
୩ୀିஶ  (1) 

The upsampler inserts L-1 zeros between successive samples. 
The filter h(n), which operates at a rate L times higher than 
input signal, replaces the inserted zeros with the interpolated 
values. Polyphase implementation of this filter ensures efficient 
interpolation. The output y(n) of a decimation filter with an 
impulse h(n) and a downsampling factor M is defined as, 

 �ሺ�ሻ ൌ σ �ሺ�ሻ�ሺ�� െ �ሻஶ
୩ୀିஶ  (2) 

The antialiasing effect caused by the downsampling of the 
signal is removed by lowpass filter h(n). The change of 
sampling rate is a reversible process. If the resampled beat is 
brought back to the original sampling rate by multirate 
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(a) Top view                                             (b) 3D view 

Figure 3.   2D ECG array of record 109 

   
 

(a) Top view                                                (b) 3D view 

Figure 4.   2D ECG array of record 109 after beat reordered 

processing, there will be no distortion. The output of overall 
normalization process is,  

 ܻሺ݊ሻ ൌ σ ܺሺ݇ሻ݄ሺ݊� െ ሻିଵܮ݇
ୀ  (3) 

Where Xi(n), Yi(n) are n-th samples of the i-th input beat and 
output of normalized beat respectively, h(n) is the impulse 
respose of the filter, Pi is the number of samples in i-th original 
beat. L and Mi are the upsampling and downsampling factor for 
the i-th beat vector. 

We applied different strategy to construct 2D ECG array 
than those applied in [5]. Each row of 2D ECG array in our 
method extracted start from the peak of ECG signal or R wave 
to the next R wave, instead of P wave to the next P wave. R 
wave is more preferred than P wave, since R wave easier to 
detect than P wave. There are some cases on ECG recordings 
where no P wave on particular ECG cycle. P wave detection on 
this kind of ECG signal could lead to some inaccuracies. Fig. 3 
shows 2D ECG array of record 109 from MIT-BIH arrhythmia 
database. Each of 2D ECG array is composed of 256 columns, 
which contains the amplitude of each ECG cycle, and 256 rows 
or 256 ECG cycles. 

C. Beat Reordering 
To achieve high compression rate at low distortion, an 

optimal ECG signal compression needs to decorrelate intrabeat 
and interbeat correlation. Most of data compression methods 
have taken advantage of high correlation among the adjacent 
samples. The higher correlation between adjacent samples, the 
easier to predict the next samples of data. Therefore, the higher 
compression rate is easier to achieve on high predictable data. 
Some of the data have high predictable properties naturally, 
such as the population growth in the city. But, other data such 
as electroencephalography (EEG) signal does not have this 
predictable property. ECG is a pseudo-periodic signal in the 
sense that the cardiac cycle repeats according to heart rate [1]. 
However, several ECG cycle could have different signal 
characteristics from the others. This particular ECG cycle 
reduces overall predictability properties of ECG signal. 
Rearranging the order of each ECG cycle could increase the 
predictability of this kind of ECG signal, so that similar ECG 
cycle placed in a close position. 

In this paper, we proposed beat reordering technique to 
optimize SPIHT coding by rearranging beat or ECG cycle 
order in 2D ECG array based on their similarities. The first step 
of beat reordering is to cluster similar beats using fuzzy c-
means clustering. The next step is rearranging the order of 
beats inside each cluster based on their distance to the centroid. 
Since the frequency distribution only affected by the order of 
beats inside each cluster, so that the order of each cluster does 
not affect to the beat ordering efficiency. Fig. 4 shows the 
result of beat reordering on record 109 from MIT-BIH 
arrhythmia database. The arrows on Fig. 3 and Fig 4. indicates 
the position of spikes on 2D ECG array. Compared to Fig. 3, 
beat-reordered 2D ECG array is smoother. There are less strips 
or fluctuations on Fig. 4 than those on Fig. 3. Beat reordering 
reduces the variances among adjacent beats. Consequently, this 
rearrangement of beat order reduces the high frequency 
component of 2D ECG array. This leads to higher efficiency of 

wavelet-based data compression methods such as SPIHT 
coding [12].  

D. Wavelet Transform 
Wavelet is a wave-like oscillation signal of limited duration 

that starts out at zero, increases, and then decreases back to 
zero. A family of wavelets can be constructed from a function 
ψ(t), sometimes known as a "mother wavelet," which is 
confined in a finite interval. "Daughter wavelets" ψa,b(t) are 
then formed by translation (b) and contraction (a), 

 ɗୟǡୠሺ�ሻ ൌ ଵ
ξୟ ɗ ቀ

୲ିୠ
ୟ ቁ (4) 

Discrete Wavelet Transform (DWT) that is based on sub-
band coding is found to yield a fast computation of Wavelet 
Transform. DWT uses the set of dyadic scales and translates 
from the mother wavelet to form an orthonormal basis for 
signal analysis. DWT decomposes the signal into an 
approximation and detail coefficients. The approximation 
coefficients is subsequently divided into new approximation 
and detailed coefficients. Decomposition of a signal x(t) can be 
expressed in (5). 

 �ሺ�ሻ ൌ σ σ �୨ǡ୩Ԅ୨ǡ୩ሺ�ሻ୩א  σ �୨ǡ୩ɗ୨ǡ୩ሺ�ሻ୩אିஸ୨ழ  (5) 

߶(t) is the scaling function, ȥ(t) is the wavelet functions. The 
decomposition formula of x(t) for the wavelet transform is, 

 �୨ǡ୩ ൌ σ �୬ିଶ୩�୨ାଵǡ୬୬  (6) 
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 �୨ǡ୩ ൌ σ �୬ିଶ୩�୨ାଵǡ୬୬  (7) 

hn and gn are the wavelet transform conjugate mirror filter of 
߶(t) [11]. 

E. Overview of SPIHT 
Set partitioning in hierarchical trees (SPIHT) is one of the 

“state of the art” wavelet-based coding techniques, which 
orders the transform coefficients using a set partitioning 
algorithm based on the sub-band pyramid. The information 
required to reconstruct signal is very compact since SPIHT 
sends only the most important ordered coefficients information 
first. SPIHT is also one of the codecs that provides user 
selectable bitrate and progressive transmission of encoded bit 
stream. Encoding process can be terminated at any point, 
allowing a bitrate or distortion parameter to be met exactly. 
Embedded coding is comparable to binary finite precision 
representation of a real number. A string of binary digits can 
represent any real number. For each digit added to the right of 
binary digits, the precision of the real number becomes higher. 
Encoding can stop at any time and provide the best 
representation of the real number achievable within the 
framework of the binary digit representation. SPIHT encoder 
also can be terminated at any time and provide the best 
representation of the signal achievable within the framework 
[18]. 

SPIHT coding adopts a hierarchical quad-tree data structure 
on a wavelet-transformed signal. The energy of a wavelet-
transformed signal is centered on the low frequency 
coefficients. Those coefficients are hierarchical ordered and 
have a parent-child relationship through subbands. SPIHT 
utilizes this relationship to save many bits from representing 
insignificant coefficients. Brief SPIHT algorithm described as 
follows. 

1) Initialization: Set the list of significant points (LSP) as 
empty. Set the roots of similarity trees in the list of 
insignificant points (LIP) and the list of the in- 
significant sets (LIS). Set the threshold T0 = 2n with 
݊ ൌ ଶ�ሺ���ȁܿሺ݅ǡ݈݃ہ ݆ሻȁሻۂ , where c(i,j) denotes the 
coefficient at position (i,j). 

2) Sorting pass in LIP: Each coefficient in the LIP is 
checked and the significant coefficients are moved to 
the LSP. The sign bits of the significant coefficients are 
encoded. 

3) Sorting pass in LIS: If an entry in the LIS is significant, 
a one is sent and then its two offspring are checked like 
an entry in the LIP. If an entry in the LIS is 
insignificant, a zero is sent. 

4) Refinement pass: Each old entry of LSP is checked. If 
it is significant under current threshold, a one is sent 
and its magnitude reduced by the current threshold. If it 
is insignificant, a zero is sent. 

III. EXPERIMENTAL RESULT AND DISCUSSION 
To verify the effectiveness of the proposed method, we 

compared the performance of the proposed method with other 
previous methods. The proposed algorithm was tested and 

evaluated using two datasets from the MIT-BIH arrhythmia 
database. All records on this database were sampled at 360 Hz 
and 11 bits resolution. The first dataset consists of 15 records 
from the database, i.e. 100, 101, 102, 103, 107, 117, 118, 119, 
201, 209, 212, 215, 217, 219, and 234. The first two-minute 
signal from each record on this dataset was used on three 
experiments: 1) to determined the most optimal wavelet basis; 
2) to verify the effectiveness of beat reordering process; 3) to 
compare the performance of the proposed method with SPIHT-
based ECG signal compression proposed by Goudarzi [5]. 
Goudarzi used the same records as the first dataset in the 
experiment. The second dataset consists of 11 records from the 
database, i.e. 100, 101, 102, 103, 107, 109, 111, 115, 117, 118, 
119. The first two-minute signal from each record on this 
dataset was used to compare the performance of the proposed 
method with four other previous methods proposed by 
Alshamali [19], Benzid [20], Blanco [21], Lu [3]. They used 
the same records as this dataset in their experiment. 

The performance of the proposed method is measured 
according to its percent root mean square difference (PRD) for 
each experiment. Although PRD does not exactly relate to the 
result of a clinical subjective test, it is widely used in the ECG 
data compression literature and facilitates the comparison of 
various schemes. The PRD is defined by, 

 ��� ൌ ටσ ሾ୶౨ሺ୧ሻି୶౨ౙሺ୧ሻሿ
సభ
σ ୶౨ሺ୧ሻమ
సభ

���ͳͲͲ� (8) 

Where xorig and xrec are the original and reconstructed ECG 
signal, respectively. n is the number of samples. To compare 
the PRD, each experiment should be performed at the same 
compression rate (CR). 

A. The Optimal Wavelet Basis 
In this experiment we compressed all of the records from 

the first dataset using different wavelet basis, i.e. db6, db14, 
db22, sym6, sym8, sym10, coif2, coif3, coif4, bior2.2, bior4.4, 
and bior6.8 at 8, 16, 24, and 32 compression rates. 2D wavelet 
transform was calculated with 8 level of decomposition. The 
mean of PRD from each experiment scenario then compared to 
determine optimal basis wavelet on the proposed method. Fig. 
5 shows the plot of the first 3072 samples of original and 
reconstructed signal of record 109 at various compression rates. 
There is no notable difference between the original and 
reconstructed signals at all compression rates. The mean of 
PRD at 8, 16, 24, and 32 compression rates are less than 2, 
which is considered as a very good reconstructed signal [22]. 
The mean of PRD from each experiment scenario is shown on 
Table I. The smallest mean of PRD at 16 and 24 compression 
rates was achieved by bior6.8 wavelet basis, while at 8 and 16 
compression rates was achieved by sym8 and coif4, 
respectively. Based on this fact, bior6.8 was chosen as the 
wavelet basis for the entire experiments. 

B. The Effect of Beat Reordering to Reconstructed Signal 
Accuracy 
We compared the performance of the proposed method 

with and without beat reordering by compressing all of the 
records from the first database using bior6.8 wavelet basis at 8, 
16, 24, and 32 compression rates. Table II shows the mean of 
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(a) Original signal 

 
(b) Reconstructed signal CR = 8, PRD = 0.75 

 
(c) Reconstructed signal CR = 16, PRD = 1.23 

 
(d) Reconstructed signal CR = 24, PRD = 1.82 

 

(e) Reconstructed signal CR = 32, PRD = 1.97 

Figure 5. Original and reconstructed signal of  
record 109 at various CR 

TABLE I.   THE MEAN OF PRD OF RECONSTRUCTED SIGNAL USING 
DIFFERENT WAVELET BASIS 

Wavelet 
basis 

CR 
8 16 24 32 

db6 
db14 
db22 
sym6 
sym8 
sym10 
coif2 
coif3 
coif4 
bior2.2 
bior4.4 
bior6.8 

2.02 
2.07 
2.04 
1.90 
1.89 
1.99 
1.96 
1.94 
1.92 
2.06 
1.99 
1.94 

3.52 
4.22 
4.24 
3.60 
3.43 
3.94 
3.61 
3.53 
3.57 
3.69 
3.61 
3.29 

4.84 
5.47 
5.92 
4.76 
4.71 
4.73 
4.55 
4.83 
4.54 
5.22 
4.71 
4.50 

5.93 
6.21 
7.24 
5.68 
5.74 
5.86 
5.90 
5.49 
5.43 
6.04 
5.75 
6.10 

TABLE II.   THE MEAN OF PRD OF RECONSTRUCTED SIGNAL WITH AND 
WITHOUT BEAT REORDERING 

Beat 
reordering 

CR 
8 16 24 32 

without 
with 
 

1.94 
1.71 

3.29 
3.08 

4.50 
3.79 

6.10 
4.64 

difference 0.23 0.21 0.71 1.46 

TABLE III.   THE MEAN OF PRD OF RECONSTRUCTED SIGNAL COMPARED 
TO GOUDARZI [5] 

Method 
CR 

8 10 14 18 22 26 28 30 

Goudarzi 
Proposed 
 

2.12 
1.71 

2.52 
2.05 

3.33 
2.73 

4.20 
3.18 

5.08 
3.64 

5.93 
4.05 

6.34 
4.29 

6.72 
4.39 

difference 0.41 0.47 0.60 1.02 1.44 1.88 2.05 2.33 

 

PRD from each experiment scenario. The result shows that beat 
reordering significantly reduces the mean of PRD. The range of 
the mean of PRD without beat reordering at different 
compression rates is 4.16, this value reduced to 2.93 after beat 
reordering applied. The differences between the mean of PRD 
from the proposed method with beat reordering and without 
beat reordering become larger as the compression rate higher. 
This fact indicates that the effect of beat reordering also 
effective for higher compression rate. 

C. Performance Comparison with Other Methods 
To compare the performance of the proposed method with 

other methods, we performed two different experiments. First, 
the performance of the proposed method compared to the 2D 
multiwavelet transform compression for ECG signal proposed 
by Goudarzi [5]. In this experiment, we used the first dataset 
which includes the same records from MIT-BIH arrhythmia 
database as used in [5]. We also used the same compression 
rates for this comparison, i.e. 8, 10, 14, 18, 22, 26, 28, and 30. 
The second experiment was intended to compared the 
performance of proposed method with four other previous 
methods proposed by Alshamali [19], Benzid [20], Blanco 
[21], Lu [3]. For the second experiment, we used the second 
dataset, which includes the same records from MIT-BIH 
arrhythmia database as used in their experiment. 

The result of the first experiment is shown on Table III. 
This result suggests that the performance of the proposed 
method is better than [5]. The mean of PRD of the proposed 
method at all compression rates are smaller than [5]. The mean 
of PRD of the proposed method increased gradually at higher 
compression rates, these increment levels are smaller than 
those in [5]. The differences of the mean of PRD at different 
compression rates become more noticeable at higher 
compression rates, i.e. 0.41 at compression rates of 8 and 2.33 
at compression rate of 30.This fact suggests that the proposed 
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TABLE IV.   THE MEAN OF PRD OF RECONSTRUCTED SIGNAL OF 
PROPOSED METHOD COMPARED TO OTHER METHODS 

Method CR PRD 

Proposed 
13 
16 
24 

2.49 
2.82 
3.46 

Alshamali [19] 
 

12.75 
14.46 

3.80 
4.83 

Benzid [21] 
 

12.6 
15.95 

3.51 
4.84 

Blanco [22] 
 

11.62 
14.13 

3.73 
4.79 

Lu [3] 
 

12 
16 

3.57 
4.85 

method maintains lower distortion even at the higher 
compression rate. 

Table IV shows the result of the second experiment. This 
result indicates that the performance of the proposed method 
also better than the other four methods [19], [20], [21], and [3]. 
The mean of PRD of the proposed method at the similar (not 
exact) compression rate is lower than those other four methods. 
At the range of 11~13 compression rates, the mean of PRD of 
the proposed method is 2.49, which is significantly lower than 
the other methods, i.e. 3.8, 3.51, 3.73, and 3.57, proposed by 
[19], [20], [21], and [3], respectively. The same fact occurred at 
the range of 14~16 compression rates, the mean of PRD of the 
proposed method is 2.82, while the other methods generate 
higher distortion, i.e. 4.83, 4.84, 4.79, and 4.85 for methods 
proposed by [19], [20], [21], and [3], respectively. At a higher 
compression rate, i.e. 24, the mean of PRD of the proposed 
method is 3.46, this value still smaller than the distortions from 
those other methods at the lower compression rate.  

IV. CONCLUSION 
We proposed an ECG signal compression method based on 

two-dimensional wavelet transform which employs SPIHT 
coding and beat reordering technique. The performance of the 
proposed method was compared with the other five previous 
proposed ECG signal compression methods using two datasets 
from MIT-BIH arrhythmia database. The result shows that the 
proposed method was performed better than the other methods. 
The experiment also reveals that the beat reordering technique 
gives significant performance improvement to the SPIHT-
based ECG signal compression. The experiments showed that 
the proposed method gives lower distortion at a higher 
compression rate. Further improvement would be the 
implementation of an optimal weight initialization in fuzzy c-
means clustering to optimize beat reordering technique. 
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