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Abstract 8 

The late Carboniferous-early Permian coal seams of the Qinshui Basin in Shanxi Province are 9 

the most prolific producer of coalbed methane (CBM) in China. Methane formed in the late 10 

Triassic during deep burial and reheating in late Jurassic-early Cretaceous driven by 11 

magmatic underplating. Basin inversion brought the coal seams to 400-700 m from the 12 

surface in the mid-late Cenozoic. Here we present results of a study aimed at understanding 13 

the origin of the methane, and how it was affected by Cenozoic exhumation of the basin. 14 

Methane from a 12 km traverse perpendicular to the basin margin in the southeast part of the 15 

basin have stable isotope compositions (δ13C = -30.2 to -35.2‰, and δD = -155 to -194‰) 16 

indicating a thermogenic origin with limited biogenic input. They are, however, lighter than 17 

expected based on coal maturity, and C1/(C2+C3) (>1000) are significantly higher than typical 18 

thermogenic methane (<50). This is due to diffusive fractionation during commercial gas 19 

extraction. He-Ne-Ar isotopes are a mixture of crustal-radiogenic gas with air-derived noble 20 

gases. 4He concentrations (0.52 to 33.25 ppmv) and 4He/40Ar* ratios (0.06-1.74) are unusually 21 

low. He-Ne-Ar concentrations are consistent with the open system Rayleigh fractionation of 22 

noble gases derived from air-saturated water with 4He/40Ar* = 1 during gas extraction. The 23 

low 4He/40Ar*, compared with average crust (5) or local production (13) values, implies that 24 

more than 90% of the radiogenic 4He produced in the coals has been lost prior to equilibrium 25 

between gas and water phase in the reservoir. This likely occurred in response to gas loss 26 

process during rapid exhumation in Cenozoic, showing that the He and Ar content of natural 27 

gases is a sensitive indicator of gas loss event caused by recent basin inversion. The event 28 

may have led to the loss of up to 44% of the methane from the coal seams. This study 29 

demonstrates the importance of basin inversion on gas preservation in shallow CBM, and 30 

shows that, in contrast to δ13CCH4, the light noble gases are essential for tracing such a 31 

process. 32 
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Highlights 37 

 Gas compositions and stable isotopes indicate diffusive fractionation during 38 

commercial gas extraction. 39 

 There is no indication of mantle volatiles in gas samples, no evidence of mantle 40 

heating during the Yanshanian Orogeny. 41 

 The low radiogenic He and He/Ar ratio indicate loss of free gas during basin 42 

exhumation.   43 
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1. Introduction  44 

Coalbed methane (CBM) was first commercially exploited in USA in the late 1970s (Flores, 45 

1998; Golding et al., 2013; Moore, 2012) and accounted for 8-10% of the national natural gas 46 

production (Al-Jubori et al., 2009; USEIA, 2013). Australia and China commenced the 47 

exploitation of CBM in 1990s, followed by Canada and India (Golding et al., 2013; Moore, 48 

2012). The presence of shallow coalbeds in many parts of the world and the recent 49 

developments on horizontal drilling techniques means that CBM can be cheaper to exploit 50 

than other conventional onshore and offshore natural gas reservoirs (Golding et al., 2013; 51 

Moore, 2012).  52 

Coalbed methane is adsorbed on the coal matrix or absorbed in the micropores (Al-Jubori et 53 

al., 2009; Hildenbrand et al., 2012; Rice, 1993). It can be generated by biogenic processes, at 54 

the early stage of coalification by methanogens through acetate fermentation or CO2 55 

reduction (up to 70°C) (Whiticar, 1996), or it can be thermogenic in origin, produced by 56 

thermal breakdown of kerogen with increasing temperature and further coalification (>150°C, 57 

vitrinite reflectance (Ro) >0.5%) (Clayton, 1991; Strąpoć et al., 2011). The gas yield is 58 

suggested to be positively correlated with the coal rank (Moore, 2012; Rice, 1993; Zhang et 59 

al., 2008). Generally, the adsorption capability of coal to gas also increases with higher coal 60 

rank if all other variables (e.g. coal ash, moistures) are equal (Laxminarayana and Crosdale, 61 

1999; Moore, 2012). The inversion of coal-bearing basins results in a decrease of the 62 

reservoir pressure that can induce gas loss by desorption, diffusion and free gas flow (Rice, 63 

1993; Xia and Tang, 2012). Interaction with shallow groundwaters can result in the 64 

generation of secondary biogenic methane, the consumption of methane and wet 65 

hydrocarbons (C2+) and the dissolution and removal of methane (Qin et al., 2006; Rice, 1993; 66 

Strąpoć et al., 2007; Tao et al., 2007). 67 

The stable isotope and major gas compositions of coalbed gases have been used to constrain 68 

their origin and accumulation history (Aravena et al., 2003; Flores et al., 2008; Hoşgörmez et 69 

al., 2002; Kinnon et al., 2010; Rice, 1993; Strąpoć et al., 2007; Zazzeri et al., 2016; Zhang et 70 

al., 2018). The methane is generally accompanied by minor amounts of wet gases, carbon 71 

dioxide and nitrogen. CBM is generally deficient in wet gases compared to conventional 72 

natural gases (Song et al., 2012). The stable isotope composition of CBM worldwide is 73 

highly variable (13C CH4 = -83 to -17‰, D CH4 = -415 to -117‰) reflecting the formation 74 

mechanism and temperature, and the basin history (Aravena et al., 2003; Flores et al., 2008; 75 

Rice, 1993; Song et al., 2012). 76 
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The concentration and isotopic composition of the noble gases (He, Ne, Ar, Kr and Xe) in 77 

natural gases provide complementary information on gas source and the physical processes 78 

that have acted upon them (Ballentine and O'Nions, 1992; Ballentine et al., 1991; Barry et al., 79 

2016; Battani et al., 2000; Byrne et al., 2018; Sherwood Lollar et al., 1997; Torgersen and 80 

Kennedy, 1999; Xu et al., 1995; Zartman et al., 1961). They have, however, only been used 81 

sparingly in studies of CBM. Zhou et al. (2005) demonstrated that the isotopic and elemental 82 

ratios of noble gases fractionate during the gas extraction process in San Juan Basin, and they 83 

developed a model on gas-water interaction in the reservoir and its influence on CBM 84 

production. The 4He content in CBM gas samples has been used to determine the age of 85 

formation waters in reservoirs to constrain the timescale of hydrodynamic processes which 86 

have affected hydrocarbon preservation (Zhou and Ballentine, 2006). Györe et al. (2018) 87 

argued the influence of external heating on gas generation based on the presence of mantle-88 

derived noble gases in CBM from central Scotland, and the possibility of using high helium 89 

concentrations in CBM (100s-1000s ppmv) to monitor gas emission during CBM extraction 90 

activities. Noble gases in CBM from Illinois Basin also has been used to identify and quantify 91 

the exogenous thermogenic gas in the reservoir, and improve the understanding of the origin 92 

of methane in the reservoir (Moore et al., 2018). 93 

The Qinshui Basin is the largest coal bed methane basin in China. It has proven reserve of 94 

4.35 × 1011 m3 methane and by the end of 2017 it was responsible for more than 70% of 95 

Chinese national CBM production (Song et al., 2018). The main commercial CBM extraction 96 

focuses on the coal seams in southeast part of the basin (SQB) (Su et al., 2005) where the 97 

pore pressure is approximately equal to the hydrostatic pressure (Meng et al., 2011). The coal 98 

of the SQB is high rank (vitrinite reflectance, Ro=2.4-4.5%) which is believed to have been 99 

the result of a thermal pulse caused by the intrusion of mantle-derived melts in the late 100 

Mesozoic (Song et al., 2018; Su et al., 2005 ). The SQB gases are typically methane-rich (> 101 

95%) (Li et al., 2014; Zhang et al., 2018; Song et al., 2018) with C isotopic compositions that 102 

imply a thermogenic origin with only minor contributions of biogenic methane (Li et al., 103 

2014; Su et al., 2005; Zhang et al., 2018; Zhang et al., 2019). The basin exhumed to its 104 

current state during the Cenozoic (Cao et al., 2015; Ren et al., 2005; Zeng et al., 1999). The 105 

extent to which this affected CBM preservation is poorly understood. Thus, the basin is an 106 

ideal natural laboratory to detect the role of recent exhumation to gas migration from the 107 

reservoir rocks. 108 
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In this study we use the C, H isotopes of methane and noble gas isotope composition of well 109 

gases from the SQB to determine the role the late Mesozoic mantle-derived melts may have 110 

played in methane generation, and to understanding the extent to which the high coal rank 111 

and Cenozoic exhumation have played in accumulation of the CBM. 112 

2. Geological setting 113 

The Qinshui Basin in Shanxi Province, northeast China, is a syncline of Palaeozoic-Mesozoic 114 

sediments in the central belt of the North China craton (Figure 1) (Cai et al., 2011; Song et 115 

al., 2018; Su et al., 2005; Zhang et al., 2015). Coal deposition started in the Late 116 

Carboniferous in response to marine transgression and ended in the Early Permian with 117 

fluvial-deltaic sedimentation (Ma et al., 2016; Su et al., 2005). Subsidence continued until the 118 

Late Triassic by which time the coal had reached ~135°C (corresponding to more than 4 km 119 

depth), inducing the first period of methane generation and maturation of coal to medium 120 

volatile bituminous (Ro ≈ 1.2%) (Cai et al., 2011; Zeng et al., 1999). The Indosinian orogeny 121 

resulted in uplift and basin inversion in the early Jurassic, followed by modest sedimentation 122 

until Late Jurassic (Ma et al., 2016; Zeng et al., 1999). Magmatic activity during the 123 

Yanshanian orogeny (Late Jurassic to Early Cretaceous) is evident from diorite porphyry 124 

bodies that are exposed at the margin of the basin. These are widely accepted to have caused 125 

a second peak of gas generation (Ren et al., 2005; Xu et al., 2004; Zeng et al., 1999). Zircon 126 

fission track data suggest that temperatures reached over 250°C, which resulted in the 127 

conversion of the bituminous coals to semi-anthracite and anthracite with Ro values reaching 128 

2.2-4.5% (Ren et al., 2005; Su et al., 2005). The basin underwent a major phase of 129 

exhumation during the Cenozoic that is ultimately related to the extensional tectonic regime 130 

induced by the subduction of the Indian Plate in the southwest, or roll back of the subducting 131 

Pacific Plate in the east (Cai et al., 2011; Cao et al., 2015). Fission tracks in apatites from 132 

sediments overlying coal seams in the SQB reveal that the basin cooled from over 250°C to 133 

~100°C in the last 50 million years then experienced a pulse of rapid cooling to less than 134 

60°C in the last 11 million years (Cao et al., 2015; Ren et al., 2005). Denudation is continued 135 

until at least 5 million years (Cao et al., 2015). 136 

The main coal-bearing strata are the 50-135 m thick Pennsylvanian Taiyuan Formation and 137 

the 20-40 m thick Early Permian Shanxi Formation (Figure 2) (Su et al., 2005). Coal seam 3 138 

(2-7 m thick) in the Shanxi Formation (Ro=2.5-4.5%) and coal seam 15 (1-6 m thick) in the 139 

Taiyuan Formation (Ro=2.7-4.5%) are present across the whole basin and are the most 140 

economically important coals (Song et al., 2018; Su et al., 2005). The Taiyuan Formation 141 
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coal seams are mostly located at less than 700 m depth, approximately 80 m deeper than the 142 

main Shanxi Formation coals. In the study region, a third major coal seam (no. 9) in the 143 

Taiyuan Formation, which is about 40 m deeper than coal seam 3, is co-exploited with seams 144 

3 and 15 (Wang et al., 2013). 145 

The main hydrological influence on coal seams is sourced from the confined C3t aquifer and 146 

P1s-P1x aquifer (Figure 1D) (Zhang et al., 2015). The no. 9 and 15 coal seams in the Taiyuan 147 

Formation are isolated from the underlying aquifer by bauxite and shale in Benxi Formation 148 

(Figure 2) (Zhang et al., 2015). The roof of the no. 15 coal seam is a 2-30 km thick limestone, 149 

belonging to the C3t aquifer. The roof and floor of mudstones isolated the no.9 coal seam 150 

(Wang et al., 2013). The no. 3 coal seam belongs to P1s-P1x aquifer (Zhang et al., 2015). The 151 

roof and bottom of the no. 3 coal seam are fine sandstone and mudstone, respectively, which 152 

seals the layer as an individual aquifer (Su et al., 2005). The outcrops of the east and south 153 

coals in the SQB are the main source of recharging water (Su et al., 2005; Zhang et al., 2015). 154 

The groundwater flows northwest and is prevented by a gas and water-sealed fault, Sitou 155 

Fault (Su et al., 2005). 156 

3. Sampling and analytical techniques 157 

Nineteen gas samples were taken in April 2017 from wellheads along an E-W transect 158 

perpendicular to the boundary fault in the Panzhuang block (Figure 1). This transect is 159 

approximately along the groundwater recharge pathway. Seventeen gas samples are from 160 

vertical wells, all but one combines the three main coal seams. Well gas Qs19 is from coal 161 

seam 15. only. Two gas samples (Qs15 and Qs17) are from horizontal wells within coal seam 162 

15. Well depths vary from 300 to 650 m (Table 1). The wells have been producing methane 163 

for between 3 months and 15 years (Table 1).  164 

Samples were collected and stored in Cu tubes at 1.5-2 bar using the method described in 165 

Györe et al. (2015). Approximately half of the gas in each tube was used for the 166 

determination of the major gas composition and stable isotopes. Gases were expanded into a 167 

glass gas-purification system (p < 0.01 mbar) and an aliquot was extracted by a 100 μL 168 

Hamilton syringe. Major gas composition was determined in nine gas samples by a newly set 169 

up Hewlett Packard 5890 gas chromatograph (GC) in SUERC. It is equipped with a single 170 

filament thermal conductivity detector, a 2.13 m long, 1.0 mm internal diameter Restek 171 

100/120 packed column operated with helium carrier gas. The temperature of the column 172 

during analysis was kept at 30°C for 3 minutes and increased to 150°C at a rate of 173 
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15°C/minute and then held at the maximum temperature for 5 minutes. The reproducibility of 174 

CH4/(C2H6 + C3H8) and CH4/CO2 ratios is ±1%. 175 

The carbon isotopic composition was determined using a VG SIRA II dual inlet isotope ratio 176 

mass spectrometer (Dunbar et al., 2016) using established procedures in Györe et al. (2018). 177 

δCCH4 values were determined relative to PDB (Craig, 1957). The hydrogen isotope 178 

composition of the water vapour was analysed by a VG Optima dual inlet isotope ratio mass 179 

spectrometer (Donnelly et al., 2001). δDCH4 values were determined relative to V-SMOW 180 

(Gonfiantini, 1978). Experimental uncertainties (1σ) of δ13CCH4 and δDCH4 values are ±0.3‰ 181 

and ±3‰, respectively. 182 

The remaining gas was used for noble gas analysis using a MAP 215–50 mass spectrometer 183 

following procedures described elsewhere (Györe et al., 2015). Blank levels for all isotopes 184 

are negligible compared with the signal of samples. Mass spectrometer sensitivity and mass 185 

fractionation were determined using the HESJ standard for He (Matsuda et al., 2002), and air 186 

(Eberhardt et al., 1965; Györe et al. 2019; Lee et al., 2006; Mark et al., 2011; Ozima and 187 

Podosek, 2002) for Ne and Ar. The reproducibility of the absolute concentrations is <4%, and 188 

isotopic ratios are less than 1%.  189 

4. Results 190 

Methane is the dominant gas (>95%) in all samples, with minor N2 and trace CO2. The wet 191 

gases (C2H6, C3H8) were below detection limit (0.1%) of the GC, which indicates the 192 

CH4/(C2H6 + C3H8) ratio is higher than 1,000. The CH4/CO2 ratio varies from 152 to 806 193 

(Table 1). The carbon and hydrogen isotopic compositions of methane range from -30.2 to -194 

35.2‰ and -155 to -194‰, respectively (Table 1). 195 

4He concentrations range from 0.52 to 33.3 ppmv. 3He/4He ratios vary from 0.009 ± 0.002 to 196 

0.482 ± 0.007 RA, where RA is the atmospheric ratio of 1.34 × 10-6 (Mishima et al., 2018). 197 

20Ne concentrations range from 0.001 to 5.61 ppmv. Neon isotopes appear to be largely air-198 

derived without evident mantle or crustal contribution; 20Ne/22Ne and 21Ne/22Ne ratios vary 199 

from 9.69 ± 0.09 to 10.18 ± 0.03 and from 0.0285 ± 0.0005 to 0.0301 ± 0.0007, respectively. 200 

Radiogenic 21Ne is unequivocally present in Qs6, Qs21 and Qs22. 40Ar concentrations range 201 

from 23 to 2290 ppmv. 40Ar/36Ar range from 291 ± 1 to 497 ± 1, with samples Qs7, Qs 9 and 202 

Qs14 having ratios that are lower than the air value (298.6 ± 0.3; Lee et al. (2006); Mark et 203 

al. (2011)). 38Ar/36Ar ratios are indistinguishable from air (0.1885 ± 0.0003; Lee et al. (2006); 204 

Mark et al. (2011)) (Table 2). The gas from coal seam 15 (Qs15, Qs17 and Qs19) is not 205 
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evidently distinct from the combined-seam gases in gas compositions, stable isotopes and 206 

noble gases. 207 

5. Discussion 208 

5.1. The post-generation fractionation of molecular and stable isotopic compositions  209 

The C, H isotopic compositions (δCCH4 = -30.2 to -35.2‰ and δDCH4= -155 to -194‰) of the 210 

methane is indicative of a thermogenic origin (Figure 3). However, based on the coal 211 

maturity in SQB, the lowest δ13CCH4 value is predicted to be -27‰ (Hu et al., 2001; Li et al., 212 

2014). This is up to 8‰ higher than measured values and hints at modification by other 213 

process(es). Stable isotopes of the SQB methane are apparently lighter than reported for 214 

methane from other CBM reservoirs of similar maturity (Kotarba and Rice, 2001; Schoell, 215 

1980). Further, C1/C2+ ratios are significantly higher than typical thermogenic gases (<50; 216 

Bernard et al. (1976)). The abnormally lighter stable isotopes and high C1/C2+ in SQB have 217 

been commonly reported (Chen et al., 2007; Hu et al., 2001; Li et al., 2014; Qin et al., 2006; 218 

Zhang et al., 2018). 219 

Similar major gas and methane C isotope values for SQB gases have previously been 220 

explained as due to the preferential dissolution of 13CH4 and heavy hydrocarbons in 221 

groundwater (Li et al., 2014; Qin et al., 2006). However, this is difficult to reconcile. 222 

Experimental work has demonstrated that dissolution of methane should result in only small 223 

depletion of δ13C (< -0.5‰) in the free methane phase, and a δD enrichment (< -16‰) that is 224 

in the opposite sense to that recorded by the methane (Bacsik et al., 2002). 225 

The addition of secondary biogenic methane has been proposed in several studies to explain 226 

the high C1/C2+ and light δ13C of SQB methane (Chen et al., 2007; Li et al., 2014; Rice, 1993; 227 

Zhang et al., 2018). The light δ13CCH4 (up to -61.7‰) of methane desorbed from SQB coal 228 

cores supports the addition of biogenic methane. However, fewer than 10% of all SQB 229 

samples have δ13CCH4 lighter than -40‰. Using an upper limit of δ13C = -50‰ for biogenic 230 

methane, and δ13C = -27‰ for thermogenic methane (Li et al., 2014), the methane sampled in 231 

this study should be up to 50% biogenic in origin. The factor of two difference in C1/C2+ is 232 

not high enough to explain the complete absence of heavy hydrocarbons in most of the SQB 233 

gases in this study. Thus, while there may be modest contributions of biogenic methane, it is 234 

unlikely to be the key to the ubiquitous high C1/C2+ and light δ13CCH4. 235 

Desorption and diffusion of deep methane to shallow depths during basin exhumation has 236 

also been proposed to explain the high C1/C2+ and light δ13CCH4 (Chen et al., 2007; Zhang et 237 
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al., 2018; Zhang and Tao, 2000; Zhang et al., 2019). The δ13C of methane gas desorbed for 4 238 

hours from SQB anthracite is 8‰ lighter than the methane collected after 96 hours of 239 

desorption, supporting the hypothesis that light methane readily desorbs at early stages 240 

(Zhang and Tao, 2000). The negative trends in δ13CCH4 vs. C1/C2+ and δ13CCH4 vs. C1/CO2 241 

(Figure 4A, B) reveal that desorption and diffusion have also caused molecular fractionation 242 

as C2+ and CO2 are harder to desorb and diffuse in coalbeds than CH4 (Bae and Bhatia, 2006; 243 

Rice, 1993). However, if isotopically light methane migrates up-seam (Zhang et al., 2019), 244 

there should be a positive relationship between coal seam depth and δ13CCH4, C1/C2+ ratio and 245 

C1/CO2. This is not apparent in this study (Table 1). A positive relationship between δ13CCH4 246 

and gas production rate is evident from the dataset (Figure 4C). This implies that the change 247 

of δ13CCH4 has occurred during natural gas extraction. At the early stage of gas extraction, the 248 

most easily desorbed gases are produced, and as production continues and the rate of gas 249 

production rises, the isotopically heavier CH4 and the more adsorbent gases (C2+, CO2) are 250 

released (Figure 4). 251 

It is important to note that even when δ13C CH4 approaches the predicted value, the C1/C2+ ratio 252 

(> 400) is evidently higher than typical value (< 50) (Figure 4A) (Zhang et al., 2018). Even 253 

considering the addition of biogenic methane, the maximum C1/C2+ ratio can only be two 254 

times higher (< 100). Ethane and propane are cracked to methane by pyrolysis or the 255 

existence of redox couples at temperature in excess of 250°C (Burruss and Laughrey, 2010). 256 

The absence of heavy hydrocarbon gases in SQB is thus likely to be the result of cracking of 257 

wet gases into methane at high temperature. This is consistent with the detrital zircon fission 258 

track thermochronology that indicates such temperatures were attained during the early 259 

Cretaceous (Ren et al., 2005). This gives further credence to the idea that the methane 260 

generation peak occurred during the Yanshanian Orogeny.   261 

5.2. Identifying the noble gas components  262 

The He and Ne in the SQB gases appear to plot on mixing lines between a deep gas with high 263 

He/Ne (> 700)-low 3He/4He (< 0.03 RA) and noble gases with composition that can be 264 

derived from mass fractionated air (Figure 5A). The five gases with the lowest 4He/20Ne 265 

(grey circles in Figure 5A) have air-like 40Ar/36Ar ratios and high concentrations of 20Ne and 266 

36Ar (Table 2) that are consistent with being dominated by air-derived noble gases. Both the 267 

high and low He/Ne samples have a similar range of 4He concentrations but the air-rich (low 268 

He/Ne) gases have higher 20Ne concentrations (Figure 5B), suggesting that air-derived noble 269 

gases have been added to deep gas. As well as fractionated He/Ne (Figure 5A), the five air-270 
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rich samples have Ne isotopes that plot along the mass fractionation line in the 20Ne/22Ne vs. 271 

21Ne/22Ne space (Figure 6), and three samples have 40Ar/36Ar that are lower than air value, 272 

also suggestive of fractionation (Table 2). The fractionated air-derived light noble gases may 273 

originate in liquids injected during hydraulic fracturing before pumping (Barry et al., 2018) 274 

or acquired during the sampling process. It dominates the noble gases of the five low He/Ne 275 

samples and these samples are not discussed further. 276 

The high 4He/20Ne ratio (37-691) of the remaining samples rules out a significant 277 

contribution of air. After correcting the measured 3He/4He for minor air-derived He on the 278 

basis of the atmospheric He/Ne (0.32), these gases yield values of between 0.008 and 0.035 279 

RA. This range is typical of crust-derived gases where radiogenic production of 4He occurs by 280 

U and Th decay and nucleogenic production of 3He by the reaction 6Li(n,α)3H(β-)3He 281 

(Morrison and Pine, 1955). Using the range of Li measured in coal seam 15 (12-78 ppmm, 282 

n=12), and the concentration of the large neutron cross-section elements (B, Be, Nd, Gd, etc.) 283 

in the Jincheng coals which is the closest coal mine to the study site (Zhang et al., 2004; 284 

Zhao, 1997; Zhao et al., 2018), we calculate a 3He/4He production ratio of 0.015 to 0.085 RA 285 

(Figure 5A). This covers much of the range measured in the high He/Ne gases. The extremely 286 

low 3He/4He of samples Qs18 and Qs22 implies that, locally, Li concentrations may be lower, 287 

or the concentration of large neutron cross-section elements may be higher. 288 

There is a possibility that the range of 3He/4He is due to the presence of a small contribution 289 

of mantle-derived He (3He/4Hemagma = 6-7 RA; Gautheron and Moreira (2002)) from the early 290 

Cretaceous Yanshanian magmatism (Ren et al., 2005; Xu et al., 2004). Using the lowest 291 

measured 3He/4He (0.008 RA) as representative of the crustal radiogenic He composition, and 292 

6.1 RA to represent the magmatic end-member, the highest measured 3He/4He requires a 293 

maximum mantle He contribution of 0.5%. This is trivial and provides no support for the 294 

contention that the main methane generation occurred in response to magmatic heating. 295 

Mantle-derived Ne is present in CBM deposits from sedimentary basins that have been 296 

intruded by magmatic bodies (e.g. Györe et al. 2018). The absence of mantle-derived Ne in 297 

the SQB methane is consistent with the He isotope record. 298 

 299 

5.3.Helium loss during Cenozoic exhumation 300 

Compared with other CBM reservoirs of a similar age (e.g., Illinois coals, Moore et al. 301 

(2018); Airth coals, Györe et al. (2018)), the 4He concentrations in the high 4He/20Ne SQB 302 

gases are extremely low (Figure 7A). However, the concentration of radiogenic 40Ar (denoted 303 
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as 40Ar* and calculated by removing atmospheric 40Ar and assuming negligible magmatic 304 

40Ar*) in the SQB natural gases overlaps the range recorded by CBM from similar age coals 305 

above (Figure. 7B). Consequently, 4He/40Ar* ratios (0.06 to 2) in the SQB gases are lower 306 

than the average production ratio of the upper continental crust (4.9, Ballentine and Burnard 307 

(2002)) or the local coals (> 13), calculated using the lowest U (0.5 ppmm) and Th (0.6 308 

ppmm) (Zhang et al., 2004) and highest K concentration (0.16%, Zhao (1997)). 309 

4He/40Ar* in natural gases are commonly higher than produced in the shallow crust 310 

(Ballentine et al., 1994), a function of the low temperature mobility of He relative to Ar. 311 

Considering the evident fractionation of C isotope composition and the C1/C2+ ratio of the 312 

SQB gases during pumping process, it is reasonable to assume that 4He/40Ar* ratio also 313 

experienced fractionation during this process. We use the Rayleigh fractionation law (Eq. 1) 314 

to test it: 315 

(
 𝐴

𝐵
)w =(

𝐴

𝐵
)o f 

(α-1)                         (1) 316 

where (
 𝐴

𝐵
)w is the current elemental ratio in the water phase, (

𝐴

𝐵
)o is the initial elemental ratio 317 

in the water phase, f is the proportion of residue B in the water, and α is the fractionation 318 

factor. Assuming the ratio of water to gas volume (Vw/Vg) at each degassing stage is close to 319 

zero, the partition of noble gases reaches equilibrium. The elemental ratios of noble gas in 320 

gas bubbles can be estimated by Eq.2 : 321 

(
 𝐴

𝐵
)g =(

𝐴

𝐵
)w α                     (2) 322 

where (
 A

B
)g is the elemental ratio in the gas. Initial 20Ne/36Ar = 0.154 in formation water is 323 

calculated from ASW equilibrated 10°C at an altitude of 740 m, with 10% Ne excess air 324 

(Kipfer et al., 2002; Peeters et al., 2003). The fractionation factor is calculated for the 325 

Henry’s constants of noble gas and corrected from liquid phase activity coefficients and gas 326 

phase fugacity coefficients (Ballentine et al., 2002; Crovetto et al., 1982; Smith and Kennedy, 327 

1983) in groundwater at 27°C and 4 MPa, and salinity of 0.04 mol/L (Wang et al., 2015). If 328 

the kinetic diffusion under non-equilibrium condition controls the noble gases partition, the 329 

Rayleigh equation is still applicable, only with the fractionation factor proportional to the 330 

inverse of the square root of the reduced mass which could be assumed to be equal to the 331 

mass of noble gas isotope (Ballentine et al., 2002; Zhou et al., 2005). However, the extent of 332 

20Ne/36Ar change for mass-controlled fractionation cannot explain the range observed in the 333 

samples (Figure 8). The least air-contaminated SQB gases (i.e. 4He/20Ne > 400) plot on a 334 
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trend in 4He/40Ar*-20Ne/36Ar space that is consistent with open system Rayleigh fractionation 335 

of gas with 20Ne/36Ar of air-saturated water (ASW) based on local conditions (Figure 8). This 336 

demonstrates that the radiogenic 4He and 40Ar in the reservoir were dissolved in the formation 337 

water and degassed during CBM extraction. Formation water with an initial 4He/40Ar* ratio of 338 

13.0 (local production in coals) and 4.9 (average continental crust) provide poor fits to the 339 

data. The best fit to the data is derived for an initial 4He/40Ar* that approaches a value of 1.0. 340 

This implies that the formation water had an abnormally low 4He/40Ar* prior to commercial 341 

extraction of methane. 342 

The main storage mechanism of gas in coal is by adsorption on the coal matrix or absorption 343 

in the micro-pores (Al-Jubori et al., 2009; Hildenbrand et al., 2012; Rice, 1993). The rapid 344 

uplift of sedimentary basins induces a drop of reservoir pressure, weakening the sorption 345 

capability of coal (Rice, 1993; Xia and Tang, 2012). Adsorbed and absorbed gases are 346 

released (desorbed) and accumulate in coal microstructures, generating a pressure gradient 347 

that results in gas escape by diffusion or viscous flow (Hildenbrand et al., 2012; Rice, 1993). 348 

Gas escape is mainly controlled by the permeability of the coals and pressure gradient 349 

between gas phase and wetting phase (Hildenbrand et al., 2012). The rapid Cenozoic 350 

inversion of the Qinshui Basin, from over 3 km to ~400 m deep, is likely to have resulted in 351 

episodic gas expulsion from the coal seams. A series of detailed gas breakthrough 352 

experiments on high rank coals (Ro = 2.3%) from the Qinshui Basin mimicked the effect of 353 

over-pressure (Han et al., 2010a). It revealed that at reservoir conditions, He and Ar could 354 

escape from wet-coal matrix due to high pressure gradient by mainly diffusion and rarely 355 

capillary-viscous flow if macro fractures (e.g. cleats) existed in coalbeds (Han et al., 2010a). 356 

They also showed that the effective permeability of He for diffusion is significantly higher 357 

than for Ar (Han et al., 2010a). Consequently, during continuous and intensive basin 358 

inversion, Ar is likely to have remained trapped in the coalbeds while most of the He lost. 359 

Further, the solubility of Ar in water is higher than He (Crovetto et al., 1982; Smith and 360 

Kennedy, 1983). Thus the preservation of old formation waters in the SQB (Wang et al., 361 

2018) will tend to have further reduced the 4He/40Ar*. The loss of He after magmatic events 362 

explains that absence of mantle He in the SQB methane. 363 

21Ne excess (denoted as 21Ne*) in samples is generated by nucleogenic reactions, 18O(α,n)21Ne 364 

and 24Mg(n,α)21Ne, in the coals (Yatsevich and Honda, 1997). Only samples Qs6, Qs21 and 365 

Qs22 have evident 21Ne*excess (9.6 ± 3.3×10-14 to 3.1 ± 1.6×10-13 cm3 STP/cm3) beyond 366 

analytical uncertainty. It gives the 21Ne*/40Ar* ratio of 1.1 ± 0.6 ×10-8 to 2.0 ± 1.0 ×10-8. The 367 
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minimum theoretical local production of 21Ne*/40Ar* in SQB is estimated to be 7.8×10-8 based 368 

on O (5.5%), Mg (0.4%) (Yin et al., 2016; Zhao, 1997) and lowest U, Th concentrations in 369 

coals. It is far higher than calculated value in the samples. The absence of crustal-radiogenic 370 

or mantle Ne in the samples, demonstrating that most of the non-atmospheric Ne was lost 371 

with 4He. 372 

As the He in the SQB well gases has mainly degassed from the coal formation water, the 373 

accumulation time of 4He can be estimated (Craig and Lupton, 1976; Torgersen, 1980; Zhou 374 

and Ballentine, 2006) from Eq 3 & 4: 375 

[He]in situ = 
𝜌𝛬𝐽(1−𝜑)

𝜑
 𝑡               (3) 376 

Ј=0.2355×10-12[U]{1+0.123([Th]/[U]-4)}         (4) 377 

where [He]in situ is the in situ production rate in cm3 STP 4He/(cm3
H2O yr), ρ is the density of 378 

the coal in g/cm3, Λ is the fraction of He generated in the coal that enters the pore fluid and 379 

assumed to be 1 following Zhou and Ballentine (2006). φ is the porosity of the coal and Ј is 380 

the production rate of 4He in the coal in cm3 STP 4He/(cm3
H2O yr). [U], [Th] are the 381 

concentrations in the coal seams in ppmm. Assuming that the coals have density of 1.6 g/cm3, 382 

porosity of 5% (Cai et al., 2011), and all the 4He has been generated in rock with average U 383 

and Th concentrations of 3.9 ppmm and 8.5 ppmm, respectively (Zhang et al., 2004), it gives 384 

the in situ production rate of 1.8×10-11 cm3 STP 4He/(cm3
H2O yr) in SQB coals. As He-Ne-Ar 385 

follows the open system Rayleigh fractionation, with assumption that the original 20Ne/36Ar 386 

in formation water is ASW (0.154), the residual 36Ar (f) in the formation water can be 387 

calculated based on equation 1 and 2, allowing the initial 4He/36Ar to be calculated. The 388 

initial 36Ar in ASW under local conditions is about 1.3×10-6 cm3 STP/cm3
H2O. The initial 389 

concentration of 4He in formation water before fractionation is therefore easily estimated and 390 

gives the He accumulation age of between 0.5 and 11 million years, which supports the 391 

contention that the majority of He has been lost. 392 

This contrasts with the observed 40Ar* concentration. Using the maximum concentration of K 393 

(0.16%, Zhao (1997)) and assuming the transfer rate of Ar from rock to fluid of 1, it gives the 394 

maximum in situ production rate of 1.5×10-13 cm3 STP 40Ar*/(cm3
H2O yr). As the solubility of 395 

40Ar* and 36Ar is indistinguishable at this scale, the calculated 40Ar* concentration in 396 

formation water requires 192-1,680 million years, which exceeds the deposition age of coal, 397 

and requires the incorporation of the crustal flux of 40Ar flux and/or 40Ar exsolved from 398 
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solidifying mantle melts (Castro et al., 1998; Györe et al., 2018; Torgersen et al., 1989). Both 399 

of these processes will result in incorporation of 4He in excess of in situ production. 400 

Following the method of Zhou and Ballentine (2006), with total thickness of three coal seams 401 

to be 8.6 m, we assume that the regional 4He and 40Ar* fluxes are 4.9×10-8 cm3 STP 402 

4He/(cm3
H2O yr) and 8.6×10-9 cm3 STP 40Ar*/(cm3

H2O yr), respectively. With both in situ and 403 

external production, the accumulated age for 4He is 173 – 4×103 yr and 3.3×103 – 2.9×104 yr 404 

for 40Ar*. The older age defined by 40Ar* again supports the contention that He has been most 405 

efficiently lost from SQB coals. The 40Ar* age overlaps the 14C age of the production water 406 

from other regions in SQB (5×103 – 4×104 yr) (Wang et al., 2018). 407 

Based on the local 4He/40Ar* production rate of 13, the initial 4He/40Ar* ratio of 1 before 408 

fractionation indicates that over 92% of He has been lost during basin inversion. However, 409 

the SQB coals have, obviously, retained economic quantities of methane. This reflects 410 

different physical behaviour of CH4 and the light noble gases. Compared with He and Ar, 411 

methane is strongly adsorbed onto the coal and only moves by diffusion in SQB coalbeds 412 

(Han et al., 2010a; Han et al., 2010b; Hildenbrand et al., 2012). A model which considers 413 

both adsorption/desorption and diffusion during methane loss has been introduced by Xia and 414 

Tang (2012). For total organic carbon of 71% (Yin et al., 2016), assuming overpressure of 60 415 

MPa with 250 °C before basin inversion and final conditions of 4 MPa and 27 °C after basin 416 

inversion, the free methane concentration decreases from 692 mol/m3 to 81 mol/m3, assuming 417 

the Peng-Robinson equation of state. The adsorbed gas amount drops from 786 mol/m3 to 418 

749 mol/m3 following the Langmuir equation (Xia and Tang, 2012). Considering both the 419 

loss of free and adsorbed gas, approximately 44% of the methane has been lost from the SQB 420 

during basin inversion. Based on the model in Xia and Tang (2012), the δ13C of the residue 421 

methane would be less than 2‰ heavier than the initial composition. This is contrast with 422 

observed lighter δ13CCH4 compared with predicted value. Thus, although the carbon isotope of 423 

methane might have been influenced by gas loss event, it has been obscured by later 424 

fractionation caused by desorption during gas extraction. This suggests that basin inversion 425 

and gas loss are not recorded by stable isotopes (or major gas composition). Although the 426 

noble gases experienced open system Rayleigh distillation during gas extraction as well, 427 

through modelling, the gas loss could be revealed by light noble gases (He-Ne-Ar). In 428 

particular, the radiogenic 4He and 40Ar* provide a keen tracer of the timing of gas loss during 429 

basin inversion. 430 

6. Conclusion 431 
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The stable isotope and major gas composition of CBM from the Qinshui Basin indicates a 432 

thermogenic origin with limited biogenic methane. The characteristics have been over-printed 433 

by fractionation during gas extraction. The noble gases reveal a mixture of air-derived gases 434 

from groundwater (ASW) with deep gases in the reservoir. The mixing of radiogenic 4He and 435 

40Ar and ASW derived noble gases occurred in water phase. Then, they degassed from water 436 

following open system Rayleigh fractionation during gas extraction. A gas loss process which 437 

happened before the commercial extraction can explain the significantly lower 4He/40Ar* in 438 

all samples even considering the fractionation process. Meanwhile it also explains the 439 

absence of mantle volatiles in the reservoir although the basin was thought to be heated 440 

during a magmatic activity in Yanshanian Orogeny (Late Jurassic to Early Cretaceous). The 441 

He loss is related to the exhumation of the basin mainly in Cenozoic. Compared with He, Ar, 442 

with lower diffusive efficiency and higher solubility, was partly stored in the coal and 443 

dissolved in water, which caused the low 4He/40Ar* ratio in formation waters. Although about 444 

half of the methane also lost during basin inversion, the diagnostic of stable isotopes is weak 445 

and easily covered by post fractionation processes. This study demonstrates the possibility of 446 

using He-Ne-Ar content in natural gases to track gas evolution caused by recent basin 447 

activities. 448 
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Figure Captions 719 

Figure 1. Location and geologic map of the southeast Qinshui Basin (China). A) The location 720 

of study area in China; B) Simplified geological map of southeast Qinshui Basin; C) Location 721 

of wells sampled in this study; D) Simplified hydrological cross-section of the basin along the 722 

line L-L’ above. Figures are modified after Wang et al. (2014) and Zhang et al. (2015). 723 

Figure 2. Stratigraphic column of the coal-bearing formations in southeast Qinshui Basin. 724 

Modified after Su et al. (2005) and Cai et al. (2011). 725 

Figure 3. Genetic characterization of methane from SQB. Data from this study show that 726 

methane is thermogenic in origin. Data sources: San Juan (Zhou et al., 2005); UK (Györe et 727 

al., 2018); Powder River (Flores et al., 2008); Illinois (Moore et al., 2018; Strąpoć et al., 728 

2007); Bowen (Kinnon et al., 2010); Elk Valley (Aravena et al., 2003); Ishikari (Shimizu et 729 

al., 2007); NW Germany (Schoell, 1980); Lower Silesia (Kotarba and Rice, 2001); Black Sea 730 

(Hoşgörmez et al., 2002); Qinshui 1 (Li et al., 2014); Qinshui 2 (Zhang et al., 2018). 1 σ 731 

errors are covered by printed symbols. Modified after Strąpoć et al. (2011). 732 

Figure 4. The relationship between δ13CCH4 with molecular composition of gases and gas 733 

production rate. The evident negative trends between δ13CCH4 and CH4/(C2H6+) (A), CH4/CO2 734 

(B) and positive trend between δ13C and gas production rate (C) indicate that molecular and 735 

isotopic compositions of produced gases have been affected by the diffusive fractionation 736 

process during gas extraction. Data source: Qinshui 1 (Li et al., 2014); Qinshui 2 (Zhang et 737 

al., 2018). 1 σ errors are covered by printed symbols. 738 

Figure 5. The He and Ne systematics of CBM gases from SQB. A) 3He/4He ratio plotted 739 

against 4He/20Ne of SQB methane. The solid black lines are mixing lines between deep gases, 740 

with high 4He/20Ne, and mass fractionated air. The range of 3He/4He of radiogenic He 741 

produced within the coals (see text) is shown by black dashed lines. MFL: Mass fractionation 742 

line after square root law(Kaneoka, 1980). The black circles represent deep gases; grey 743 

circles represent air-dominated samples. The black and grey squares represent the mass 744 

fractionated air and air, respectively. B) 20Ne vs. 4He concentrations. Air-dominated samples 745 

have relatively higher 20Ne concentration but similar 4He concentration range with deep 746 

gases. Uncertainties are 1 σ. 747 
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Figure 6. 20Ne/22Ne vs. 21Ne/22Ne for SQB methane-rich gases. Air is after Eberhardt et al. 748 

(1965) and Györe et al. (2019). The air-dominated samples (grey circles) are following the 749 

mass-controlled fractionation line (MFL) in consistent with He-Ne molecular trend. The deep 750 

gases (black circles) are mainly air-derived without evident crustal addition of 21Ne. 751 

Uncertainties are 1 σ.  752 

Figure 7. He and Ar contents of Carboniferous and Permian coals worldwide. The 753 

concentration of 4He in the SQB is evidently lower than that in other basins with similar age 754 

(A). 40Ar* concentrations in gases from SQB overlaps with that in other basins (B). Data 755 

source: Illinois, USA (Moore et al., 2018); Airth, Scotland (Györe et al., 2018); Central 756 

England (Györe et al., 2018); Lower Silesia, Poland (Kotarba and Rice, 2001), Bowen, 757 

Australia (Kinnon et al., 2010). 1 σ errors are covered by printed symbols.  758 

Figure 8. 4He/40Ar* vs. 20Ne/36Ar for Southeast Qinshui Basin CBM. The black lines reflect 759 

solubility-controlled Rayleigh fractionation of open system with an initial 20Ne/36Ar of 0.154. 760 

The grey dashed lines are mass-controlled kinetic fractionation (Ballentine et al., 2002; Zhou 761 

et al., 2005). Open system Rayleigh fractionation of gas from formation water with initial 762 

4He/40Ar* = 1 provides the best fit to the least air-contaminated gas samples (black filled 763 

circles, 4He/20Ne >400). This implies that radiogenic 4He and 40Ar in the reservoir were 764 

dissolved in the formation water and degassed with air-derived 20Ne and 36Ar during pumping 765 

process. 766 
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Tables 767 

Table 1. Gas compositions and stable isotopes of coalbed methane from southeast Qinshui Basin. 768 

Sample ID Depth (m) 

Distance to 

the basin 

margin (km) 

Gas extraction 

duration (month) 

Total gas production 

(×105) 
CH4/CO2 δ13C  δD  

Qs1 406 20.2 132 125 na -32.7 -178 

Qs3 567 21.3 86 24.4 na -32.4 -176 

Qs4 585 21.8 25 41 na na na 

Qs5 606 22.5 96 335 152 -31.6 -183 

Qs6 390 20.4 96 377 na -30.4 -162 

Qs7 529 13.8 83 105 na na na 

Qs9 552 12.0 69 39.1 349 -31.4 -180 

Qs10 638 10.8 99 138 423 -33.5 -185 

Qs11 673 10.2 125 217 na -33.4 -173 

Qs12 660 9.9 128 57.9 na -32.0 -155 

Qs14 487 13.6 71 6.51 806 -35.1 -194 

Qs15 446 17.4 23 10.4 na na na 

Qs17 519 16.8 15 0.85 329 -34.3 -185 

Qs18 394 15.3 24 2.5 na -35.2 -166 

Qs19 420 14.9 3 0.29 na na na 

Qs20 482 16.5 27 52.7 330 na na 

Qs21 375 19.3 25 36.7 237 -31.8 -194 

Qs22 390 18.9 26 29.1 na -33.0 -159 

Qs23 361 20.0 96 40.5 235 -30.2 -171 

1σ standard deviation for C1/C2+, CH4/CO2, δ13C and δD are 2%, 2%, 0.3‰ and 3‰, respectively.  769 

δC CH4 and δD CH4 are in permil and relative to PDB (Craig, 1957) and V-SMOW (Gonfiantini, 1978), respectively.  770 

Volume of produced gas is given in m3 STP, where standard conditions are: p=0.101 MPa and T=0 °C. 771 

na: not analysed. 772 

773 
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Table 2. Noble gas compositions of well gases from southeast Qinshui Basin. 774 

Sample 

ID 

4He 

(×10-6) 

20Ne 

(×10-8) 

40Ar 

(×10-5) 

3He/4He 

(RA)  

20Ne/22Ne 

 

21Ne/22Ne 

 

40Ar/36Ar 

 

38Ar/36Ar 

 

40Ar* 

(×10-5) 

Qs1 4.15(12) 0.75(3) 4.8(2) 0.031(8) 9.81(3) 0.0288(4) 431(2) 0.202(5) 1.46(5) 

Qs3 29.23(86) 9.36(34) 13.8(5) 0.032(2) 9.94(3) 0.0290(3) 392(2) 0.188(3) 3.29(13) 

Qs4 22.24(65) 3.25(12) 5.0(2) 0.026(2) 9.81(3) 0.0290(3) 401(2) 0.190(5) 1.28(5) 

Qs5 8.27(23) 1.20(4) 5.2(2) 0.030(1) 9.73(3) 0.0292(4) 497(1) 0.193(5) 2.09(8) 

Qs6 0.52(2) 0.115(4) 2.3(1) 0.017(4) 9.77(3) 0.0297(3) 493(2) 0.189(4) 0.92(3) 

Qs7 8.47(25) 561(20) 229(8) 0.428(20) 10.06(4) 0.0293(3) 291(3) 0.187(4) n/a 

Qs9 3.10(9) 187(7) 72(3) 0.482(7) 10.07(3) 0.0296(3) 291(1) 0.187(6) n/a 

Qs10 1.58(5) 2.86(10) 11.3(4) na 9.82(9) 0.0285(5) 341(1) 0.186(4) 1.39(6) 

Qs11 0.96(3) 2.59(9) 9.2(3) na 9.84(3) 0.0289(2) 343(2) 0.187(8) 1.20(6) 

Qs12 1.27(4) 3.46(13) 10.1(4) 0.027(3) 9.84(6) 0.0294(7) 320(2) 0.188(5) 0.68(6) 

Qs14 2.55(7) 84(3) 42(2) 0.307(10) 10.08(3) 0.0296(3) 298(1) 0.190(5) n/a 

Qs15 18.30(54) 195(7) 86(3) 0.115(4) 10.04(4) 0.0295(3) 302(2) 0.185(5) 0.91(43) 

Qs17 33.25(96) na 18.8(7) 0.026(1) na na 368(1) 0.188(10) 3.58(14) 

Qs18 2.16(6) 0.51(2) 12.5(4) 0.013(1) 9.87(3) 0.0295(3) 358(2) 0.196(4) 2.06(9) 

Qs19 3.50(10) 52(2) 31(1) 0.153(3) 10.18(3) 0.0293(2) 309(1) 0.186(4) 1.06(10) 

Qs20 6.38(18) 3.83(14) 12.3(4) 0.022(1) 9.69(9) 0.0289(5) 365(1) 0.196(4) 2.23(8) 

Qs21 0.93(3) 0.150(6) 2.8(1) 0.023(3) 9.81(3) 0.0301(7) 451(2) 0.187(1) 0.95(4) 

Qs22 2.38(7) 0.37(1) 5.2(2) 0.009(2) 9.78(3) 0.0297(4) 428(3) 0.184(8) 1.56(6) 

Qs23 14.14(42) 10.54(38) 19.1(7) 0.037(2) 9.91(3) 0.0289(3) 370(3) 0.193(10) 3.71(18) 

Air 5.24(5) 16.45(4) 934(1) 1.000(9) 9.80(8) 0.0290(2) 298.6(3) 0.1885(3)  

1σ standard deviation is shown as the last significant figures in parentheses. 775 

Noble gas concentrations are in unit of cm3 STP/cm3 with standard conditions after Ozima and Podosek, (2002) (p =0.101 MPa, T = 0 °C). 776 

Air composition is after Eberhardt et al. (1965); Györe et al. (2019); Lee et al. (2006); Mark et al. (2011); Ozima and Podosek (2002). 777 

RA is the atmospheric 3He/4He ratio of 1.34 × 10-6  (Mishima et al., 2018). 778 

40Ar* is calculated air-free 40Ar. 779 

na: not analysed; n/a: not applicable. 780 


