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Abstract 

 

 

Abstract 

Master transcription factors are cell fate determining factors that can force new 

identities onto cells by evoking distinct gene transcription patterns. This potential can be 

detrimental for an organism when activated erroneously, which is why genes of master 

transcription factors have to be regulated tightly. Chromatin features like DNA 

methylation have been implied in transcriptional regulation, the direct causalities and the 

underlying mechanisms are however still largely unclear.  

Here I investigated the role of the neurogenic transcription factor Sex-

determining-region-y-box 1 (Sox1) in directing neural stem cell identity. I employed a 

targeted trans-activating domain (dCas9-VP64) to induce Sox1 expression in vitro in 

neural progenitor cells (NPCs) and characterized the invoked phenotypic changes. 

Inducing Sox1 expression in NPCs restored their neuronal differentiation potential, and 

transcriptome analysis revealed a shift in cell identity towards neural stem cells (NSCs), 

underlining the role of Sox1 as cell fate determining factor. 

Analysis on single cell basis however revealed that only a small subset of NPCs 

responded to the targeted gene induction with Sox1 upregulation. Using a GFP knock in 

as reporter, I separated responsive from unresponsive cells and investigated 

differences in chromatin features at the Sox1 promoter. I identified DNA methylation as 

a strong barrier against trans-activation by combining transcriptional engineering and 

epigenome editing via dCas9-Tet1. Furthermore, I found similar barriers at the 

promoters of other master transcription factor genes, including Oct4 and Nkx2-2.  

Lastly, I employed a screening approach to identify potential regulatory regions 

distal of the Sox1 gene. By transducing NPCs with a gRNA library of high complexity, I 

was able to identify targeting sites for dCas9-VP64 in the locus of Sox1 that have the 

potency to induce gene transcription even outside of the promoter. 

In conclusion, I have confirmed Sox1 as a neurogenic master transcription factor 

and identified mechanisms that control expression of this gene. These findings could 

serve to optimize future trans-activation approaches and underline the importance of 

chromatin features in the regulation of cell fate determining factors.  
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1 Introduction 

1.1 Cell types and cellular identity 

Since their discovery as the smallest structural unit of a living organism in 1824, it 

has become clear that cells not only carry out a function as frameworks for organs, but 

also conduct physiologic processes (Harris 1999). In highly complex multicellular 

organisms like the human body, which consists of approximately 1013 cells (Bianconi et 

al. 2013), they vary strongly in their characteristics, enabling their classification in 

different cell types that are primarily defined by morphology, functionality, or potential to 

generate cells of other types. During development, these different types are all derived 

from a single, totipotent stem cell (Mitalipov and Wolf 2009), a circumstance that was 

first postulated by Conrad Waddington in the Waddington landscape (Waddington 2012) 

(Figure 1): This schematic depicts the process of cellular differentiation as a marble 

rolling down a hill towards terminally differentiated cells. The different paths that are 

available become more and more restricted along the way, representing a gradual 

commitment of the stem cell to first a lineage, and ultimately a cell type. While first it 

was postulated that this loss of potency might originate from a loss of genetic 

information in differentiating cells, John Gurdon showed in 1958 that indeed even 

terminally differentiated cells contain the same genetic material as their ancestry 

(Gurdon, Elsdale, and Fischberg 1958). By now we know that different cell types make 

use of different parts of the same rather than possessing different genetic material, i.e. 

they exhibit differential transcription patterns (Arendt et al. 2016).  

During development, the activation of certain genes, so called cell fate 

determining factors, is sufficient to trigger different transcriptional programs that direct a 

stem cell towards a certain lineage and subsequently to a specified terminally 

differentiated cell (Smith, Sindhu, and Meissner 2016). The expression of distinct 

genetic networks in a cell in turn stabilizes and protects its identity. Collectively, this 

concept of changing transcriptional programs that guide the increasing specialization of 

a cell during development reflects the formation of the valleys and hills in the 

Waddington landscape, and how they define the available paths for the marble. The 
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identification of cell types based on uniquely expressed marker genes (Arendt et al. 

2016, Regev et al. 2017) can thus improve the definition of the ever increasing number 

of cell types and subtypes being discovered in the human body (Vickaryous and Hall 

2006).  

 

Figure 1: Waddington’s epigenetic landscape. The schematic depicts a pluripotent stem cell at the beginning of 

development. Preferential transcriptional states are depicted as valley. These guide cells during differentiation to 
specific cell fates, while transcriptional barriers, depicted as hills, interfere with spontaneous change to a cell identity 
from a different lineage. From Bard, 2008 (permission received form Springer Nature). 

 

1.1.1 Master transcription factors  

While genes of various gene families have been described to be of considerable 

importance for cell fate choices during reprogramming, transcription factors are clearly 

the most abundant in this context. These are proteins that can induce gene expression 

by interaction with the DNA (Spitz and Furlong 2012). The locus of their binding is 

defined by short sequences, so called binding motifs that are often highly specific for 

certain transcription factors (Whyte et al. 2013).  
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Individual transcription factors that trigger cell type specific programs and 

therefore direct and protect cell identities, are called master transcription factors, and 

because of their potency to direct cellular fate are highly specific in their expression 

pattern (Vaquerizas et al. 2009). Derivation from this pattern can be highly detrimental 

to multicellular organisms. For example, erroneous activation of a master transcription 

factor of a different lineage in a terminally differentiated cell can overwriting existing 

transcriptional patterns with a new ones, thereby changing the cell fate determining 

features of this cell and defining a different cell type (Iwafuchi-Doi and Zaret 2014). 

1.1.2 Reprogramming factors 

The ability of some master transcription factors to induce a new cell type outside 

of their natural context even in terminally differentiated cells can be exploited in a 

process called cellular reprogramming. The first direct reprogramming of one somatic 

cell type into another was performed 1987 in fibroblasts (Davis, Weintraub, and Lassar 

1987). When MyoD, a basic helix loop helix transcription factor was ectopically 

expressed in these cells, they changed their identity to myocytes. By now, this concept 

has been widely adapted to generate cells of various lineages from fibroblasts (Guo and 

Morris 2017). Of note, Yamanaka and colleagues managed to generate induced 

pluripotent stem cells by combining four reprogramming factors, Oct4, Klf4, Sox2, and 

c-Myc (OKSM, (Takahashi and Yamanaka 2006)). 

Interestingly, once acquired, the new identity is stable even upon removal of the 

reprogramming factor(s). This distinguishes them from terminal selector genes that can 

define a cell type while transcribed; upon loss of their expression, a cell however loses 

the existing identity and switches to a new one in an undirected manner. This indicates 

that reprogramming factors fundamentally change transcriptional patterns and instruct 

changes even to the cell fate determining factors (Hobert 2008). 

It should be noted that under physiological conditions, such switches in cell 

identity occur only rarely. It is therefore likely that master transcription factors with such 

potency are tightly regulated in their expression in order to safeguard this specificity.  
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1.2 Cell fate determinants in neural development 

The development of the mammalian brain is a complex process that starts as 

early as gastrulation at embryonic day 6.5 (E6.5) in mice (third gestational week in 

humans) (Stiles and Jernigan 2010). During gastrulation, the embryonic structure 

changes essentially – while hypoblasts, cells from the lower layer of the embryo form 

extra-embryonic tissues, epiblasts, cells from the upper layer, differentiate into the three 

germ layers of the embryo (Stiles and Jernigan 2010). During this process, a part of the 

epiblasts migrate through the primitive streak and give later rise to the endoderm and 

mesoderm, while cells that stay in the former epidermal layer give rise to the two parts 

of the ectoderm – the epidermal ectoderm and the neurectoderm (Stiles and Jernigan 

2010). Cells of the neurectoderm form the neural plate at E7.5 and are the first 

appearance of neural stem cells (NSCs). During the next major step of brain 

development, the neural plate folds and forms the neural tube, a hollow structure filled 

with cerebrospinal fluid (CSF) and lined by a monolayer of NSCs. While initially 

cylindrical, the hollow center of the neural tube will eventually give rise to the ventricular 

system of the brain, which is why the bordering region containing the NSCs is called 

ventricular zone. Because NSCs form the epithelium of the neural tube, they are also 

called neuroepithelial cells (NECs) at this developmental stage. Just before neural tube 

closure at E8.0, its anterior end expands and forms the three primary brain vesicles, 

precursors of the three major brain regions forebrain, midbrain, and hindbrain (Stiles 

and Jernigan 2010). To expand the stem cell pool, NECs undergo a number of 

symmetric divisions, each producing two new NECs. At the onset of neurogenesis (E9.5 

in spinal cord, shortly after in the CNS), NECs turn into apical radial glia cells (aRGCs) 

that produce the first output of neurons in asymmetric divisions (producing one aRGC 

and one neuron, or neuronal progenitor; (Jiang and Nardelli 2016). At birth, 

neurogenesis, as well as formation of the general architecture of brain structures is 

largely complete; there are however NSCs that continue to give rise to newborn 

neurons throughout life.  
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1.3 The master transcription factor Sox1 

It is obvious that a vastly complex process like neural development has to be 

tightly regulated and that disruption of its control mechanisms can lead to tremendously 

detrimental consequences, and ultimately dysfunction of the CNS (Jiang and Nardelli 

2016). Indeed, neural development is controlled by a cascade of master transcription 

factors. The earliest marker of NSCs, and an essential regulating factor in this sequence 

is the sex-determining-region-y-box transcription factor 1 (Sox1) (Wood and Episkopou 

1999). This transcription factor is already expressed during the neural plate stage, as 

early as E7.5. During development it is specifically expressed in neural tissue, with the 

lens as only exception. Here, Sox1 protein can be detected starting mid-gestation, and 

throughout embryonic development. In neural tissue, Sox1 expression is lost when 

NSCs exit the neuronal lineage to become glial progenitors (precursors of astrocytes 

and oligodendrocytes), and when neuronal progenitors exit mitosis during differentiation 

towards mature neurons, while it is continuously expressed in the proliferative 

ventricular zone (Pevny et al. 1998); see Figure 2). Even in the adult brain, Sox1 

expression can be found, albeit in a very limited number of NSCs, and only in regions of 

ongoing neurogenesis (i.e. subventricular zone and dentate gyrus), where it marks 

progenitor cells with long-term neurogenic potential (Venere et al. 2012).  

Sox1 is a member of the SoxB1 family of transcription factors (along with Sox2 

and Sox3), and shares ca. 50% amino acid sequence identity with these factors. 

Furthermore, Sox1 can replace Sox2 in inducing pluripotency (Nakagawa et al. 2008) 

and it is a strong read-out for efficiency in the reprogramming of astrocytes to induced 

pluripotent stem cells (iPSCs) (Nakajima-Koyama et al. 2015). It is however not 

expressed in PSCs or extraembryonic tissue like Sox2, and the phenotype of Sox1 

knock-out mice underlines the hypothesis that these factors are indeed not redundant: 

while Sox2 expression can compensate the lack of Sox1 during embryonic 

development, it later on leads to an epileptic phenotype and is eventually lethal. Of note, 

the placeholder model indeed suggests that these two members of the SoxB1 subfamily 

in some cases bind subsequently to the same site: during pluripotency Sox2 is bound 

and keeps the chromatin accessible, however without inducing gene transcription of 
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targets; when cells exit pluripotency and enter the neural lineage, Sox2 is then replaced 

by Sox1 binding, which in turn is necessary for the propagation of NSCs (Buecker and 

Wysocka 2012).  In vitro the knock-down of Sox1 in NSCs has been shown to lead to 

deficiency to produce neurons, and overexpression in vivo and in vitro leads to 

increased neuronal output (Kan et al. 2004, Kan et al. 2007). This has been linked not 

only to the promotion of neuronal differentiation in NSCs, but also to stimulation of 

proliferation (Kan et al. 2007, Venere et al. 2012). Furthermore, it has been shown that 

only those astrocytes that upregulate Sox1 transiently during reprogramming with only 

two factors, namely Oct4 and Klf4, are able to give rise to pluripotent colonies 

(Nakajima-Koyama et al. 2015). These studies strongly suggest a function for Sox1 as 

lineage specifying master transcription factor; however its exact function is still poorly 

understood (especially compared to Sox2 and Sox3; (Julian, McDonald, and Stanford 

2017). 

The expression pattern of Sox1 in vivo during development can be paralleled in 

vitro; in 2003, Aubert et al. isolated embryonic stem cells (ESCs) from transgenic mice 

carrying a heterozygous GFP knock-in in the open reading frame (ORF) of Sox1. While 

ESCs do not express Sox1, cells start to be strongly Sox1GFP positive when neural 

differentiation is induced (Aubert et al. 2003). This is accompanied by the formation of 

neural rosettes (NRs), the in vitro correlate of NSCs of the neural tube. At this stage, 

Sox1GFP positive cells can give rise to cells of the neuronal and the glial lineage, when 

further differentiated. However, if they are kept under proliferative conditions they 

change their morphology significantly and lose Sox1GFP expression. In line with knock-

down experiments, these Sox1GFP negative cells also lose their neurogenic 

differentiation potential. Due to the limited potential of these cells compared to NSCs 

with strong Sox1 expression, these cells are termed neural progenitor cells (NPCs) 

(Pollard et al. 2006). 
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 These findings underline the importance of Sox1 during neural development and 

suggest its role as neurogenic master transcription factor. In turn, it is very probable that 

its gene is subject to strict regulatory mechanisms to prevent erroneous transcription, a 

hypothesis further corroborated by its highly specific expression patterns during neural 

development. 

 

Figure 2: Expression of Sox1 during neural development. Sox1 is the earliest marker of NSCs, already 

expressed in cells of the neural plate. Sox1 is downregulated when cells exit the neural lineage to become 
progenitors of glial cells, or when neural progenitors terminally differentiate into post-mitotic neurons. 
Modified from Tang et al., 2017 (open access). 
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1.4 Epigenetic gene regulation 

A possible mechanism that has often been implied in gene regulation, especially 

in the case of tightly regulated genes, is the chromatin complex and its modifications 

(Stricker, Köferle, and Beck 2017, Bultmann and Stricker 2018). Chromatin is a 

multimolecular complex in the nuclei of eukaryotic cells that consists of DNA and 

proteins. Its components can be modified to form chromatin features, some of which 

have been shown to correlate to the transcriptional status of genes. This postulates a 

suppositive link between the genetic code and the cell type defining transcriptional 

patterns that form the Waddington epigenetic landscape (Waddington 2012) (Figure 1). 

Despite many studies that show a correlation between certain chromatin features and 

gene regulation, it has proven difficult to establish a definitive causal role for such 

features in the induction of phenotypic outcomes (Bultmann and Stricker 2018). 

1.4.1 DNA modifications 

The most prevalent modification of DNA is methylation of the Carbon atom at 

position 5 of the cytosine base (5-methylcytosine, 5mC). It was also the first chromatin 

feature to be discovered (Hotchkiss 1948). Methylation of cytosine is conducted by DNA 

methyltransferases (Dnmts), which either set the mark on unmodified DNA strands 

(Dnmt1) or methylate the newly generated strand during DNA replication (Dnmt3) 

(Smith et al. 1992, Kho et al. 1998). Methylation of cytosine is correlated to repressed 

transcription, when present in the promoter of a gene. However, more complex 

correlations have been suggested for other genomic contexts (Colot and Rossignol 

1999, Grosjean 2009). 

Demethylation can occur indirectly, through oxidation of the methyl group. This is 

facilitated over several steps by enzymes of the ten-eleven translocation family (Tet1, 2, 

and 3, (Ito et al. 2011). While the first product of oxidation, hydroxymethylation (resulting 

in 5 hydroxymethylcytosine, 5hmC) is far more dynamic and quickly further processed, it 

has been reported to carry out its own regulatory functions, as it has been linked to 

impaired self-renewal in ESCs upon removal (Freudenberg et al. 2012, Teif et al. 2014). 

Further oxidation of the hydroxyl-residue leads to 5-formylcytosine (5fC) and 5-
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carboxycytosine (5caC). These modifications are however only transient and 

unmodified cytosine is then restored by base excision repair (BER, (He et al. 2011). 

Demethylation of the unoxidized methyl group can be passive (by DNA replication in the 

absence of Dnmt1) or facilitated through deamination, followed by BER (He et al. 2011). 

Furthermore, methylation of other DNA bases, specifically adenine has been 

reported (m6A, (Luo et al. 2015)) 

1.4.2 Histone modifications 

More complex than modifications of the DNA are those of histones. Histones are 

DNA binding proteins that form the structural core of chromatin. While H1 is a linker 

histone and binds DNA by itself, the other histones form octamers of H2A, H2B, H3, and 

H4 (each octamer consists of 2 of each histone). These octamers bind 147bp of DNA to 

form together the nucleosomes, the main way of a cell to store DNA (Lowary and 

Widom 1997). Of each histone, there are genetic variants with distinct functional roles, 

even though they are structurally very similar (Khare et al. 2012). Furthermore, the 

proteins can be modified at in total 130 amino acid residues, mostly located in the N-

terminal tail (Tessarz and Kouzarides 2014). Currently, 12 different modifications are 

known, that carry different regulatory function, in part dependent on the modified 

residue (Tan et al. 2011). Even though we still lack clear understanding of all 

modifications and their function, some features have been shown to clearly correlate to 

certain states of gene transcription. Above all, acetylation at different residues, and 

methylation of the lysine 4 residue of Histone 3 (H3K4) are connected to active genes, 

while methylation of lysine 9 and lysine 27 of histone 3 (H3K9 and H3K27 respectively) 

are primarily located at repressed genes (Zhou, Goren, and Bernstein 2011). The vast 

amount of potential combinations of modifications and modified residues enables highly 

differential and specific gene regulation. It is therefore clear, that these chromatin 

features themselves underlie tight regulation by histone modifying enzymes (Zhou, 

Goren, and Bernstein 2011). A variety of such enzymes has been discovered to date, 

and the most common ones are listed in Table 1.  
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Table 1: Common Histone modifying enzymes 

 

1.4.3 Other chromatin features 

1.4.3.1 DNA Topology 

Apart from modifications on the two major parts of the chromatin complex, 

several other features play a role in gene regulation. One important factor is the DNA 

topology, the three dimensional structure and compaction that DNA assumes in the 

nucleus. The compaction can be visualized even by unspecific DNA stains like Dapi, 

and can impact gene regulation by tuning accessibility for e.g. transcription factors. 

Function Location Enzyme Source 

Methylation 

H3R2 Carm1 (Chen et al. 1999) 

H3K4 

Set1A 
(Schneider, Bannister, 

and Kouzarides 2002) 

Set1B 
(Schneider, Bannister, 

and Kouzarides 2002) 

Set7 (Wang et al. 2001) 

H3K9 
Suv39 (Jenuwein et al. 1998) 

G9a (Tachibana et al. 2001) 

H3K27 Ezh2 (Laible et al. 1997) 

H3K36 Set2 (Strahl et al. 2002) 

Demethylation 

H3K4 Lsd1 (Shi et al. 2004) 

H3K9 

Jmjd2a (Huang et al. 2006) 

Jmjd2b (Fodor et al. 2006) 

Jmjd2c (Loh et al. 2007) 

H3K36 

Jhdm1 (Tsukada et al. 2006) 

Jhdm1b (Tsukada et al. 2006) 

Gasc1 (Cloos et al. 2006) 

Acetylation ubiquitous p300 (Eckner et al. 1994) 



1 Introduction 

- 20 - 

 

Regions of high compaction, so called heterochromatin, are generally less accessible 

and therefore correlate to low transcriptional activity, and are often marked by tri-

methylation of H3K9 and H3K27. In contrast, euchromatin specifies regions of low 

compaction usually associated to high activity of the genes located in these areas, and 

is marked by H3K4 tri-methylation and histone acetylation (Dame 2005, Bernstein et al. 

2006). 

Furthermore, compaction can bring distal DNA regions to spatial proximity. By 

that, interactions between regulatory elements can be created even when these 

elements are thousands of basepairs apart. These are called topologically associated 

domains (TADs (Pombo and Dillon 2015)), and new methods have arisen that can map 

these interactions on different scales (3C, 4C, HiC; (de Wit and de Laat 2012)). Already, 

proteins have been discovered that regulate DNA structure by maintaining and 

modifying interactions (e.g. Ctcf and Cohesin, (Bell and Felsenfeld 2000, Hark et al. 

2000, Merkenschlager and Nora 2016).  

1.4.3.2 RNA modification and non-coding RNAs 

Over 100 different modifications of different bases of RNA have been discovered 

(Cantara et al. 2011), of which at least 12 are also present in eukaryotic cells (Li and 

Mason 2014). For some of these modifications, functional roles have been implicated 

(Roundtree et al. 2017). For example, methylation of adenosine has been shown to 

regulate RNA stability (Mauer et al. 2017). Many techniques for characterization of 

various RNA modifications have been published recently (Helm and Motorin 2017), and 

new techniques are constantly being developed. 

Apart from post-transcriptional modifications on the RNA itself that regulate e.g. 

its stability, RNA itself can bear a regulatory function. This is specifically the case for 

non-coding RNAs (ncRNA). These RNAs are not translated into proteins, but regulate 

transcription and translation of coding genes via e.g. interfering with polymerases or 

ribosomes (Lee 2012). The length of such RNAs varies strongly from very short 

(miRNAs, siRNAs) to long (lncRNAs, macro ncRNAs) RNA molecules (Guenzl and 

Barlow 2012).  
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1.5 Epigenetic engineering 

The steadily increasing number of methods for the discovery and mapping of 

chromatin features, and their constant improvements has led to a plethora of data on 

such features. But even though they have been intensively examined, most studies are 

purely descriptive, generating many credent correlations between specific modifications 

and e.g. gene transcription. These correlations are however no clarification as to 

whether chromatin features play causal roles in defining a cellular identity. Furthermore, 

even when a correlation for a specific type of modification has been shown, it still 

remains unclear whether a function can be directed by a single mark, or only by a 

combination.  

Recent advances in DNA binding proteins have made it possible to tackle these 

problems and investigate the causality of chromatin modifications with very high 

resolution and specificity. Particularly, these methods allow for the induction of 

endogenous transcription factors, which in turn enables the investigation of their 

behavior in the physiologic chromatin context (in contrast to previous methods like 

ectopic expression), and for the manipulation of chromatin features to directly infer their 

functional meaning in different contexts. 

1.5.1 dCas9 

The first DNA targeting systems were based on zinc finger proteins (ZFP), a 

class of transcription factors accounting for almost half of all mammalian transcription 

factors (Vaquerizas et al. 2009, Wolfe, Nekludova, and Pabo 2000). These proteins all 

have in common a DNA binding domain that recognizes distinct DNA motives of usually 

three basepairs (Wolfe, Nekludova, and Pabo 2000). Synthetic design of proteins 

combining several of these domains results in a DNA binding domain recognizing a 

unique DNA sequence of variable length (e.g. combination of 10 zinc finger domains 

would lead to a recognition sequence of 30 basepairs) (Kim, Lee, and Carroll 2010). A 

similar approach was later taken to develop TALE (Transcription Activation-Like 

Effector) domains, synthetic proteins derived from bacterial transcription factors (Reyon 

et al. 2013). While the length of DNA binding domains used in TALEs is similar to that of 
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ZNFs, the former only recognize one specific DNA base. By combining these domains, 

it is in principle possible to target any desirable DNA sequence, however the resulting 

proteins are far bigger than ZNFs. In addition, for each new target, a new protein has to 

be designed and synthesized when using ZNFs or TALEs, as the target site is encoded 

in their amino acid sequence. The discovery of RNA guided DNA targeting systems 

overcame this problem by replacing DNA binding based on protein-DNA-interaction with 

DNA-RNA hybridization.  

The most commonly used system based on RNA guidance is the CRISPR/Cas9 

(Clustered Regularly Interspaced Palindromic Repeats/CRISPR-associated proteins). 

Originally evolved as adaptive immune response against invading phages in bacteria 

and archaea, this system has been modified as a tool for genomic engineering by fusing 

the endogenous targeting RNAs into one single guide RNA (gRNA) (Jinek et al. 2012).  

The scaffold sequence of this RNA molecule binds the Cas9 protein, while the 

preceding 17-20bp sequence, called protospacer, defines the target DNA sequence. If 

the DNA features a specific three basepair sequence following the protospacer 

sequence of a gRNA (5’-NGG-3’ in case of Cas9, but specific for each CRISPR/Cas 

variant), the gRNA/dCas9 complex binds to the target site. This sequence is called 

protospacer adjacent (PAM) motive and is compulsory for DNA binding (see Figure 3) 

(Sternberg et al. 2014). In its unmodified form, Cas9 then introduces a double strand 

break in the target sequence, enabling different approaches to genetic engineering.  By 

exchanging one amino acid in each of the two nuclease domains of Cas9,  Perez-

Pinera et al. developed a nuclease deficient version of the protein (dCas9) in 2013 (see 

Figure 3) (Perez-Pinera et al. 2013). Fusion of different effector domains to this system 

facilitates directed transcriptional activation, repression, or even targeted manipulation 

of chromatin modifications.  
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1.5.2 Transcription activating factors 

By fusing trans-activating domains to the dCas9 protein, and targeting the 

system to gene promoters via specific gRNAs, strong induction of endogenous genes 

can be achieved. The majority of these so called transcription activating factors (TAFs) 

is based on the viral trans-activating domain VP16, that can be combined with itself or 

other activator domains to form potent tools for transcriptional induction. To this point 

the most commonly used TAF is dCas9-VP64, four copies of VP16 fused to the dCas9 

targeting system (Maeder et al. 2013). Recently, even stronger versions have been 

developed, by increasing the number of VP16 copies (VP128, 8 copies (Li et al. 2017); 

VP160, 10 copies (Perrin, Rousseau, and Tremblay 2017); coupling VP64 to both ends 

of dCas9, butterfly dCas9 (Black et al. 2016)), or fusing additional trans-activators to 

VP64. By adding the p65 subunit of NF-κ B and the R trans-activator of the Epstein-Barr 

virus, Chavez et al. developed VPR, a new TAF with up 120-fold increased efficiency in 

gene induction, compared to VP64 alone (Chavez et al. 2015). 

While the efficiency in gene induction of such TAFs differs strongly, some rules 

for the design of gRNAs to achieve the maximum possible effect are common to all of 

them: 

Figure 3: The dCas9/gRNA 
complex. A complex formed by 

dCas9 fused to the 
transcriptional activator VP64 
and a gRNA is bound to the 
DNA double strand at the target 
site specified by the gRNA. The 
DNA target is followed by a 
PAM (NGG). Mutations D10A 
and H840A delete the nuclease 
activity. Modified from Perez-
Pinera et al., 2013 (permission 
received from Springer Nature). 
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a) TAFs recruit the endogenous transcriptional machinery and therefore must 

be targeted to the promoter region of the target gene, or regions that are 

in its structural vicinity (see TADs, chapter 1.3.3.1). It has been shown that 

in general the efficiency of a TAF is highest when targeted to within 500 

basepairs of the transcription start site (TSS) of a gene (Wang, La Russa, 

and Qi 2016). Binding of the dCas9-complex within a gene transcript can 

however interfere with the transcriptional machinery and by that even 

repress the target (CRISPRi,(Qi et al. 2013)); 

b) Like the combination of several trans-activating domains into the same 

TAF, targeting the same promoter with several TAFs can severely 

enhance the effect on transcription. In general, a combination of two or 

three gRNAs is the most potent (Maeder et al. 2013, Chavez et al. 2015, 

Cheng et al. 2013). It is however important to design the gRNAs in a way 

that they do not inhibit each other, and a minimum distance of around 100 

basepairs between each gRNA has been reported to be highly beneficial 

(Wang, La Russa, and Qi 2016); 

 

1.5.3 Targeted epigenetic modifiers 

The fusion of dCas9 and chromatin modifying enzymes enables the direct 

investigation of chromatin features and their functional relevance. By manipulating 

specific types of chromatin modifications in a defined region, the function of these 

modifications can be derived from the impact on a given phenotype of interest. This in 

turn could allow answering not only the question of cause or consequence of chromatin 

marks, but also of the relevance of their location for their functional impact.  

To that end, several different enzymes have been fused to the targeting system 

and tested towards their potency to modify chromatin marks. In first efforts, catalytic 

domains of histone methyl transferases were tethered to dCas9, including PRDM9 

(methylates H3K4 (Cano-Rodriguez et al. 2016)), G9a (H3K9 (O'Geen et al. 2017)), and 

EZH2 (H3K27 (O'Geen et al. 2017)). These can methylate histones at specific lysine 
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residues, to varying degrees of efficiency. In a similar way, targeted demethylation was 

achieved with histone demethylases (Kearns et al. 2015). Interestingly, when 

successful, the manipulation of chromatin marks in promoter or enhancer regions were 

sufficient to significantly change mRNA levels of related genes. Methylation of H3K9 or 

demethylation of H3K4 significantly reduced gene transcription (Kearns et al. 2015, 

Braun et al. 2017), while the inverse manipulation led to significant increase in gene 

transcription (Cano-Rodriguez et al. 2016).  

Similar advances have been accomplished in the field of DNA-methylation. 

Several DNA-methyltransferases have been fused to dCas9, either as their full length 

version or catalytic domains, and achieved methylation of DNA up to 100% (Amabile et 

al. 2016, Vojta et al. 2016, Anton and Bultmann 2017, Ziller et al. 2018) with subsequent 

repression of transcription. Likewise, targeted DNA demethylation by dCas9-Tet1 has 

been employed successfully, and was in some cases reported to be accompanied by 

changes in gene transcription (Choudhury et al. 2016, Anton and Bultmann 2017, 

Gallego-Bartolomé et al. 2018) and even changes in a proliferation phenotype 

(Choudhury et al. 2016, Morita et al. 2016). 

The most widely-used epigenetic modifier to date is dCas9-p300. This enzyme 

transfers acetyl-residues to the histone tail of H3, a chromatin feature strongly 

correlated with active genes (Eckner et al. 1994). In line with this function, a significant 

increase of mRNA was observed upon targeting of p300 to gene promoters (Hu et al. 

2014). It is however not precisely clear to which amount the observed effect was 

facilitated by chromatin acetylation, because besides its modifying function, p300 also 

recruits several factors of the endogenous transcriptional machinery in a cell, a catalytic 

mutant of p300 is still lacking.  

Of note, catalytic mutants have been developed for several other chromatin 

modifiers, which demonstrated the necessity of the chromatin manipulation to exert the 

observed transcriptional changes, proving a causal role of the chromatin marks therein 

(Hilton et al. 2015, Pflueger et al. 2018).  
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1.5.4 gRNA systems 

1.5.4.1 gRNA design 

Apart from the general rules for the layout of gRNA target sequences for a 

maximum effect in gene induction (discussed in 1.4.2), some major points have to be 

considered when designing gRNAs. For one, off-target binding is a common threat to 

the potency of targeting systems in general, and dCas9 is no exception. It has been 

shown that especially mismatches in the 5’-region of the protospacer do not interfere 

strongly with gRNA binding. Therefore, it is crucial to choose a targeting sequence that 

is unique for at least 15 3’-nucleotides, as mismatches in that part are detrimental to 

binding efficiency (Fu et al. 2013, Cho et al. 2014). 

Furthermore, it has been suggested that certain motives and the presence of 

particular nucleotides can modulate the affinity of the gRNA/dCas9 complex to the DNA. 

Several algorithms have been developed that employ and unify these findings into easy 

to handle pipelines for gRNA design (Doench et al. 2014). 

1.5.4.2 gRNA multiplexing 

As indicated in chapter 1.4.2, many dCas9 approaches benefit from the 

combination of different gRNAs to increase the efficiency of the intended effect. The 

need to deliver multiple gRNAs is even more pronounced, when more than one target 

needs to be modified in an experimental setup (e.g. trans-activation of reprogramming 

factors). This can be readily achieved by co-transfection of gRNA expressing vectors, 

an approach which however bears significant draw-backs, as it cannot be controlled 

whether a cell received all relevant gRNAs (Weber et al. 2015, Maresch et al. 2016). 

The more gRNAs needed, the lower the efficiency of this strategy and it soon becomes 

unfeasible. This problem has been addressed by gRNA multiplexing, strategies that 

combine several different gRNA expressing cassettes into one plasmid, allowing 

efficient and homogenous delivery. Various such methods have been published, with a 

maximum of 14 gRNAs per plasmid (Kabadi et al. 2014, Peterson et al. 2016, Vazquez-

Vilar et al. 2016, Breunig et al. 2018). 
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1.5.4.3 dCas9 screens 

The bipartite nature of the dCas9 system makes it especially feasible for 

screening approaches that require the targeting of a vast number of sequences 

simultaneously in different cells. This is due to the fact that the target is solely defined 

by the gRNA – these are then usually delivered by lentiviruses, leading to stable 

integration of the gRNA cassette into the genome, and enabling easy identification of 

target sequences in hit cells by next generation sequencing (NGS) (Hartenian and 

Doench 2015). The variable nature of the targeted Cas9 protein (as wtCas9 or dCas9 

fused to different effectors) allows for a broad variety of different screens, such as 

genetic or trans-activator screens. 

Depending on the desired library complexity, different gRNA libraries can be 

employed. In arrayed libraries, each gRNA is present in a different well of a plate 

(usually 96-well or 384-well format). This allows for the investigation of complex 

phenotypes, since neither separation of hits from non-hits, nor retrieval of the gRNA 

sequence from hits is needed. The number of different gRNAs is however severely 

limited (Agrotis and Ketteler 2015). To circumvent this problem, pooled libraries can be 

used. In this case, gRNAs are synthesized together in one tube and delivered as a pool. 

This allows for much higher complexity of the library. On the downside, hits need to be 

identified from the pool of cells and gRNAs retrieved from the hits. This limits the 

possible phenotypes to screen for (Shang et al. 2017). By switching from synthesis of 

gRNAs to less-defined sources, e.g. genomic DNA, for the production of target 

sequences, the complexity can be further increased. Such libraries however contain 

many non-functional gRNAs (due to lack of PAM sites, length etc.) and are far less 

manageable during preparation and screening due to their complexity (Lane et al. 2015, 

Köferle et al. 2016). 
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1.5.5 Barriers to dCas9 

The efficiency of DNA binding proteins is subject to chromatin features at their 

target site. This is apparent for endogenous proteins like transcription factors, but also 

applies to targeting systems like ZNFs, TALEs, and dCas9. Especially chromatin 

compaction has been investigated in this context, as the spatial requirements for dCas9 

can be quite substantial (depending on the fused effector). It is an ongoing debate in the 

field, to which extent closed chromatin interferes with dCas9 binding. It has been shown 

to favor sites of open chromatin over those with high nucleosome occupancy (Hinz, 

Laughery, and Wyrick 2015); (Kuscu et al. 2014, O'Geen et al. 2015). It is however also 

clear that even though reduced, binding in heterochromatin is still possible to efficient 

levels (Perez-Pinera et al. 2013), and even a pioneering factor character has been 

suggested for dCas9 (Polstein et al. 2015). 

Once bound, it is widely assumed that artificial trans-activators induce 

transcription independently of the chromatin landscape at the target locus, and indeed 

many genes have been efficiently upregulated by various dCas9-TAFs in 

methodological publications (Chavez et al. 2015). Targets used in such publications 

(e.g. Actc1, Ttn) however have a far less decisive effect on cell identity than 

reprogramming factors. Of note, in approaches where the gene of a reprogramming 

factor was induced by a dCas9 targeted trans-activator, the efficiency of reprogramming 

was often lower than by ectopic overexpression of the gene (Weltner et al. 2018, Liu et 

al. 2018). This hints towards barriers that are present specifically at the endogenous 

locus of a reprogramming gene, where they potentially interfere with the function of 

trans-activators and reduce their efficiency. While this observation has not been 

investigated in detail as of yet, it would fit to the fundamental of a cell to protect its 

identity by tightly regulating cell fate determining genes (see chapter 1.1). 
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1.6 Aim of study 

Sox1 is the first specific marker of cells of the neural lineage and a potential 

master transcription factor. It exhibits a highly specified expression pattern and its 

transcription is tightly regulated throughout development, as its erroneous expression 

could have devastating consequences on neural development and subsequently lead to 

dysfunctions of the CNS. Although chromatin features such as histone and DNA 

modifications have been implicated in this regulatory process, it remains still largely 

unknown, a) which marks b) in which regions contribute to such barriers, and how they 

do so. Furthermore, the precise function of Sox1 is still largely understudied despite its 

fundamental role in neural development, especially compared to the other members of 

the SoxB1 family of transcription factors (Sox2 and Sox3). 

Here I aimed firstly to investigate the potency of cells for neurogenic 

differentiation upon Sox1 induction. It has been shown in vivo and in vitro that the 

neurogenic potential of neural stem or progenitor cells correlates strongly with Sox1 

expression. I therefore investigated whether induction of the neurogenic master 

transcription factor in NPCs using dCas9-VP64 would restore their neuronal 

differentiation potential and a phenotype resembling that of NSCs. 

Secondly, I investigated chromatin features that act as barriers against induction 

of Sox1 transcription by identifying chromatin marks with different levels in Sox1 

expressing versus non-expressing NPCs, and combining Sox1 induction via dCas9-

VP64 with targeted removal of these marks. 

Lastly, I investigated the chromatin landscape surrounding the Sox1 gene locus 

in large scale screening approaches, employing pooled gRNA libraries in combination 

with different chromatin modifying enzymes tethered to dCas9, in order to identify 

candidate distal regulatory elements. 



2 MATERIAL AND METHODS 

- 30 - 

 

2 MATERIAL AND METHODS 

2.1 Materials 

2.1.1 Chemicals 

Chemicals that were routinely used are listed in Table M1. 

Name Catalogue # Manufacturer 

0.2µm Polyvinylidene membrane LC2002 Thermo Fisher Scientific 

10% APS A3678-25G Sigma 

16% Formaldehyde (w/v), Methanol-free 10321714 Thermo Fisher Scientific 

5x Laemmli Buffer   

6x DNA loading dye R0611 Thermo Fisher Scientific 

Agarose 870055 Biozym, Oldendorf 

Aqua poly mount 18606 Polysciences 

Bovine Serum Albumine A2153-1KG Sigma-Aldrich 

DAPI Nuclear Staining Dye 1351303 Bio-Rad Laboratories 

ECL Luminol Reagent sc-2048 Santa Cruz Biotechnology 

Ethanol, 99.9% 9065.2 Carl Roth 

GeneRuler 1kb DNA ladder SM0313 Thermo Fisher Scientific 

Gibson Assembly Master Mix E2611 NEB 

HotStar Taq 203203 Qiagen 

Methanol 34860-1L-R Sigma-Aldrich 

Methanol-free Formaldehyde 28906 ThermoFisher Scientific 

Milk powder, blotting grade T145.1 Carl Roth 

Nuclease-free water AM9932 Life Technologies 

Paraformaldehyde 158127-5G Sigma-Aldrich 

Poly-D-Lysine P6407-5MG Sigma-Aldrich 

Phusion DNA Polymerase Master Mix M0531S NEB 

Potassium Perurethate 10378-50-4 Sigma-Aldrich 

Protease Inhibitor Cocktail P8340 Sigma-Aldrich 
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PowerUpTM Sybr Green Master Mix A25742 ThermoFisher Scientific 

RIPA buffer R0278 Sigma-Aldrich 

Sodium Hydroxyde, 50% in H2O 1310-73-2 Sigma-Aldrich 

SYBR Safe DNA Gel Stain 5001208 Life Technologies 

TEMED T9281 Sigma 

Triton-X 100 T8655.1 Biomol 

Bovine serum albumin A9418 Sigma-Aldrich 

Table M1: Chemicals and reagents 

 

2.1.2 Cell Culture Media and Supplements 

Frequently used cell culture reagents are listed in Table M2. 

Name Catalogue # Manufacturer 

Accutase A6964-100ML Life Technologies 

BDNF PHC7074 Gibco 

bFGF 78003 Stemcell Technologies 

Blasticidin S R21001 ThermoFisher Scientific 

Bovine Serum Albumin 10773877 Thermo Fisher Scientific 

cAMP A6885 Sigma-Aldrich 

Cryotubes 10577391 Thermo Fisher Scientific 

DMSO D5879-100ML Sigma-Aldrich 

eBioscienceTM Fixable 

Viability dye eFluorTM 660 

65-0864-14 ThermoFisher Scientific 

EGF 78006 Stemcell Technologies 

Fetal calf serum C8056-500ML Sigma-Aldrich 

GDNF PHC7041 Gibco 

Hygromycin B 10687010 ThermoFisher Scientific 

Laminin L2020 Sigma 

Lipofectamin® 2000 11668027 ThermoFisher Scientific 
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NT3 PHC7036 ThermoFisher Scientific 

NeuroCultTM Proliferation Kit 05702 Stemcell Technologies 

Puromycin A1113803 ThermoFisher Scientific 

Table M2: Cell culture media and supplements 

2.1.3 Kits 

Frequently used kits are listed in Table M3. 

Name Catalogue # Manufacturer 

Agencourt AMPure XP magnetic beads A63881 Beckman Coulter 

Auto iDeal ChIP-Seq Kit for Histones C01010171 Diagenode 

Bradford Assay kit 5000201 Bio-Rad 

Extractme total RNA kit EM09.1 DNAGDANSK 

EZ DNA Methylation Gold Kit D5005 Zymo 

Maxima first strand cDNA Synthesis kit K1671 Thermo Fisher Scientific 

MicroPlex Library Preparation Kit v2 C05010012 Diagenode 

Micro-Bio-Spin P-6 SCC columns 7326201 Bio-Rad 

Nextera DNA Library Preparation Kit FC-121-1012 Illumina 

PicoPureTM RNA Isolation Kit KIT0204 Thermo Fisher Scientific 

PureLinkTM HiPure Plasmid Filter 

Maxiprep Kit 

K210027 Invitrogen 

QIAprep Spin Miniprep Kit 27104 Qiagen 

Quant-iTTM PicoGreenTM dsDNA assay Kit P7589 Thermo Fisher Scientific 

SMART-SeqTM v4 UltraTM 634894 TaKaRa 

RNeasy Mini Kit 74104 Qiagen 

Table M3: Kits 
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2.1.4 Cell lines and bacterial strains 

Embryonic stem cells containing a heterozygous GFP knock in in the open 

reading frame of Sox1 (Sox1wt/GFP) were obtained from the Austin Smith lab and 

differentiated to neural stem cells by Dr. Stefan Stricker as described previously (Ying et 

al. 2003). Neural stem cells were sorted as described (2.2.2.3) to obtain neural rosettes, 

or differentiated further to obtain neural progenitor cells. Clonal NPC lines stably 

expressing dCas9-fusion proteins or gRNAs were established as described below 

(2.2.3.3). 

2.1.5 Plasmids 

Table M4: Plasmids used in this study 

 

2.1.6 Primers 

Primers used for this study were designed using Primer3Plus 

(http://primer3plus.com/cgi-bin/dev/primer3plus.cgi) or MethPrimer 2.0 (Urogene, 

http://www.urogene.org/cgi-bin/methprimer2/MethPrimer.cgi, for Bisulfite Sequencing 

primers), and purchased from Metabion. Further specifications for the design of qPCR 

and bisulfate sequencing primers are described in the respective chapters (2.2.4.1 and 

2.2.5.1) Primer sequences are listed in TableM5. 

Plasmid Addgene # 

PMLM3705 47754 

pLKO.1 10878 

P300 template plasmid 23252 

Set7 template plasmid 24082 

JMJD2a template plasmid 38846 

Tet1 catalytic domain template plasmid 39454 

Plenty-dCas9-VP64-Blast 61425 
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Primer name Sequence Tm[°C] 

Hygro_1fwd AGTCAATAATCAATGTCAACCGGGTAGGGGAGGC

G 

57 

Hygro_1rev GGTGGGCGAAGAACTCTCGGCATCTACTCTATTC

CTTTG 

57 

Hygro_2fwd GAATAGAGTAGATGCCGAGAGTTCTTCGCCCACC

CC 

57 

Hygro_2rev AAGTGCCACCTGACGTCGACGGGTATACAGACAT

GATAAGATACATTGATGA 

57 

P300_fwd CGATGACAAGGCTGCAGGAGGCGGAGGTAGCAA

AGAAAATAAGTTTTCTGCTAAAAGG 

54 

P300_rev GCTGATCAGCGGGTTTTCAGCATTCATTGCAGGT

GTAGACAAA 

54 

Set7_fwd CGATGACAAGGCTGCAGGAGGCGGAGGTAGCTT

CTTCTTTGATGGCAGCACC 

58 

Set7_rev GCTGATCAGCGGGTTTTCACTTTTGCTGGGTGGC

C 

58 

Tet1_fwd CGATGACAAGGCTGCAGGAGGCGGAGGTAGCGA

ACTGCCCACCTGCAGCTG 

61 

Tet1_int_rev GGCAGTGACGAAGGCTTACT 61 

Tet1_int_fwd AGTAAGCCTTCGTCACTGC 61 

Tet1_rev GCTGATCAGCGGGTTTTCAGACCCAATGGTTATA

GG 

61 

JMJD2a_fwd CGATGACAAGGCTGCAGGAGGCGGAGGTAGCGC

TTCTGAGTCTGAAACTCTGAATCC 

59 

JMJD2a_rev GCTGATCAGCGGGTTTTCATGCTTCTGGCGTGGG

CAG 

59 

Tet1_mut_fwd GTGCTCATCCCTACAGGGCCATTCACAACAT 61 

Tet1_mut_rev ATGTTGTGAATGGCCCTGTAGGGATGAGCAC 61 

dCas9-lenti-T2A-

puro_fwd 

ATTTCAGGTGTCGTGACGTACGGCCACCATGGAT

AAAAAGTATTCTATTGGTTTAG 

62 
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dCas9-lenti-T2A-

puro_rev 

GCCCTCTCCACTGCCTGTACAGTTAATTAACATAT

CGAGATCGAAATCG 

62 

amp_gRNA_fwd CCATTCGATTAGTGAACGGATC 62 

amp_gRNA_rev CGACTCGGTGCCACTTTTTC 62 

libgen_fwd CTTGTGGAAAGGACGAAACA 63 

libgen_rev GCCTTATTTTAACTTGCTATTTCTAGC 63 

SoxI_BiS_fwd TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGT

TTTGGGTTTTTAATTTAAT 

52 

SoxI_BiS_rev GCTGATCAGCGGGTTTTCACTTTTGCTGGGTGGC

C 

52 

ActcI_BiS_fwd CGATGACAAGGCTGCAGGAGGCGGAGGTAGCGA

ACTGCCCACCTGCAGCTG 

52 

ActcI_BiS_rev GGCAGTGACGAAGGCTTACT 52 

SoxI_qPCR_fwd AGACAGCGTGCCTTTGATTT 60 

SoxI_qPCR_rev TGGGATAAGACCTGGGTGAG 60 

eGFP_qPCR_fwd GAAGCAGCACGACTTCTTCAA 60 

eGFP_qPCR_rev AAGTCGATGCCCTTCAGCTC 60 

Gapdh_qPCR_fwd TTGCAGTGGCAAAGTGGAGA 60 

Gapdh_qPCR_rev CGTTGAATTTGCCGTGAGTG 60 

ActcI_qPCR_fwd ATGTGTGACGACGAGGAGAC 60 

ActcI_qPCR_rev CGGACAATTTCACGTTCAGCA 60 

Actc1_ChIP_fwd GGCCATATAGGGAGCTAGGG 60 

Actc1_ChIP_rev AGAGCAATAAGCCCACTCCA 60 

Gapdh_ChIP_fwd ACCAGGGAGGGCTGCAGTCC 60 

Gapdh_ChIP_rev TCAGTTCGGAGCCCACACGC 60 

Oct4_ChIP_fwd CCCCAGGGAGGTTGAGAGTT 60 

Oct4_ChIP_rev AAGGGCTAGGACGAGAGGGA 60 

SoxI_ChIP_fwd GCTGAGCTGAGTGCAAAGTG 60 

SoxI_ChIP_rev CCCTGGGTCGTGTTTAAATG 60 

Cas9_qPCR_fwd TCGTAGGGACCGCACTCATT 60 

Cas9_qPCR_rev TCGCTTTTCGCGATCATCTT 60 
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Actc1_ChIP_fwd GGCCATATAGGGAGCTAGGG 60 

Actc1_ChIP_rev AGAGCAATAAGCCCACTCCA 60 

Oct4_BiS_1_fwd 

 

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGG

GAGTGGTTTTAGAAATAATTGG 

52 

Oct4_BiS_1_rev GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG

CACCCCTACCTTAAATCAC 

52 

Oct4_BiS_2_fwd TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGG

GTGAGAGGATTTTGAAGGT 

52 

Oct4_BiS_2_rev GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG

AAAAACAAAACTATAAAAATAAAAA 

52 

Nkx2-2_BiS_1_fwd TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGT

TTTTAGAGTAAGATGAGAGGTG 

52 

Nkx2-2_BiS_1_rev GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG

ATATTAAAAAAAATTCTTTACCCCC 

52 

Nkx2-2BiS_2_fwd TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGA

TAGAAAGGAGGGGGTAAAGAATTT 

52 

Nkx2-2_BiS_2_rev GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG

TAAATCTTATTTAAAAAACCACCAA 

52 

NeuroD4_BiS_fwd TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGG

GAGGGGTTATTTTGTGGGTA 

52 

NeuroD4_BiS_rev GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG

CACTACCAAAATACCTTCATATCAATAC 

52 

Ngn2_BiS_1_fwd TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGT

AATGAGTTGTTGAAAGGGAG 

59 

Ngn2_BiS_1_rev GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG

CAACTAACCAATCAATATTCC 

59 

Ngn2_BiS_2_fwd TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGT

GATTAGATAAAGGGGGGA 

59 

Ngn2_BiS_2_rev GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG

ACCCCCTCCTCACCTACCCTT 

59 

Il1rn_BiS_1_fwd TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGG 52 
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GTTTTAGGGTAGAGGTTAGTAAA 

Il1rn_BiS_1_rev GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG

AAACAATAAAACCTAATAAACAAAAA 

52 

Il1rn_BiS_2_fwd TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGG

GATTTGTTATGTAAATGAGGGAG 

52 

Il1rn_BiS_2_rev GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG

CACCAACCTATACTACTATCATTC 

52 

MyoD_BiS_fwd TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGT

TGAGGTTAGTATAGGTTGGAGGAG 

59 

MyoD_BiS_rev GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG

TATTTATCCAAAATAACCTAAAAACC 

59 

Table M5: Primers used in this study 

 

2.1.7 Antibodies 

Primary and secondary antibodies for immuncytochemistry (ICC) and Western 

Blot, as well as ChIP Antibodies that were used in this study are listed in Table M6. 

Antigen Catalogue # Application Dilution Company 

a-Tubulin T5168 Western Blot 1:2000 Sigma 

ActcI 66125-1-1G ICC 1:250 Proteintech 

Calbindin AB1778 ICC 1:1000 Merck/Millipore 

Cas9 NBP2-36440 Western Blot 1:500 Novus 

CD133 141201 ICC 1:300 Biolegend 

E-Cadherin 14-3249-82 ICC 1:300 Invitrogen 

Flag-M2 F3165 ChIP 1:1000 Sigma 

GFAP G3893 ICC 1:500 Sigma 

H3 ab1791 ChIP 1:1000 Abcam 

H3K27me3 C15410195 ChIP 1:1000 Diagenode 

H3K9me3 ab8898 ChIP 1:500 Abcam 

IgG C15400001-15 ChIP 1:1000 Diagenode 
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Il1rn HPA001482 ICC 1:500 Sigma-Aldrich 

Map2 MAB378 ICC 1:300 Merck/Millipore 

MyoD MA5-12902 ICC 1:250 Invitrogen 

Nestin MAB5326 ICC 1:500 Millipore 

NeuroD4 NBP2-13932 ICC 1:500 Novus 

Ngn2 MAB3314 ICC 1:1000 R&D Systems 

Nkx2-2 MAB8162 ICC 1:500 R&D Systems 

Notch1 MA5-11961 ICC 1:500 Invitrogen 

Occludin NBP1-87402 ICC 1:250 Novus 

Pou5F1 Ab181557 ICC 1:300 Abcam 

SoxI ab87775 Western Blot 1:1000 Abcam 

SoxI ab87775 ICC 1:400 Abcam 

Tuj1 T8660 ICC 1:1000 Sigma 

vGlut1 AB5905 ICC 1:300 Millipore 

Zo-1 Sc-10804 ICC 1:500 Santa-Cruz 

Table M6: Antibodies used throughout this study 

2.1.8 gRNA Sequences 

gRNA Sequences employed for promoter targeting are listed in Table M8.  

 

gRNA name gRNA construct Sequence 

ActcI_1 ActcI Stagr GGCTCCAAGAATGGCCTCAG 

ActcI_2 ActcI Stagr GGGAGGGGCAGGCCAGCAAG 

Il1rn_1 Il1rn- Stagr AGGAGCTGGATTTATGAGGT 

Il1rn_2 Il1rn- Stagr ACAAGTGCTCTCACAAACAC 

MyoD1_1 MyoD1- Stagr CCACCAATCACAATAGACAG 

MyoD1_2 MyoD1- Stagr ACTGACCTCAGTGCTCACTT 

NeuroD4 NeuroD4- Stagr TGACTCTACTACCCTACATG 

Ngn2_1 Ngn2- Stagr CCACCAATCACAATAGACAG 

Ngn2_2 Ngn2- Stagr AGTGTTCCCGGGACTCCGGG 
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Nkx2-2_1 Nkx2-2- Stagr GCCCTCTAGAGCAAGATGAG 

Nkx2-2_2 Nkx2-2- Stagr TCCTTTGTATGTAAATACTG 

Oct4_1 Oct4- Stagr GGATGTTTTAGGCTCTCCAG 

Oct4_2 Oct4- Stagr CATCGCACCACAAAGCCTGT 

SoxI_1 S1-9 Stagr GTTAATCATTCGGAGCGCGC 

SoxI_9 S1-9 Stagr GCGCGGGCGGCGGAGCAAGG 

SoxI_4 S4-7 Stagr GAGGCAAAGGGGGCGAGCTC 

SoxI_7 S4-7 Stagr GGGGGGGAACAAGGGCAGGA 

SoxI_1 SoxProm GTTAATCATTCGGAGCGCGC 

SoxI_2 SoxProm GCGGGCGGGGAGAGGCAAAG 

SoxI_3 SoxProm GCGCGGGCGGGGAGAGGCAA 

SoxI_4 SoxProm GAGGCAAAGGGGGCGAGCTC 

SoxI_5 SoxProm GCCGCCGCGCGCGCGCGCTC 

SoxI_7 SoxProm GGGGGGGAACAAGGGCAGGA 

SoxI_9 SoxProm GCGCGGGCGGCGGAGCAAGG 

Table M7: gRNA Sequences for promoter targeting 

2.1.9 Buffers 

2.1.9.1 Western Blot 

4 X Tris/SDS pH 6.8 

60.5 g/l Tris base (Roth, 4855.2) 

4g/l SDS (Roth, 0183.3) 

adjust pH to 6.8 
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4 X Tris/SDS pH 8.8 

182g/l Tris base 

4g/l SDS 

adjust pH to 8.8 

 

Blotting Buffer 10X 

144,2g/l Glycin (Roth, 3790.3) 

30.2g/l Tris base 

2g/l SDS 

 

PAGE Running buffer 10X  

144,2g/l Glycin 

30.2g/l Tris base 

10g/l SDS 

 

TBS  10X PH 7,4 

24.22g/l Tris base 

87.66g/l NaCl (Roth, P029.2) 

 

TBST  10X  PH 7,4 

24.22g/l Tris base 

87.66g/l NaCl 

10ml/l Tween20 (Roth, 9127.1) 
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2.1.9.2 Bacterial culture 

LB Medium 

16g/l Trypon/Pepto from Casein (Roth, 8952.2) 

5g/l yeast extract (Roth, 2363.2) 

10g/l NaCl (Roth, P029.2) 

 

LB Agar 

15g/l agar (Roth, 5210.2) in LB-medium 

 

2.1.9.3 Other 

TAE 50X 

242g/l Tris base 

18.61g/l EDTA (Roth, 8043.3) 

57.1 Glacial Acetic Acid (Roth, 6755.1) 

2.1.10 Software and statistics 

Software packages used for data analysis and gRNA design are referenced in 

the respective chapters. PCA plots, heatmaps, gRNA enrichment plots and hierarchical 

clustering plots were generated in RStudio v1.1.442 using the pheatmap (version 

1.0.12), RColorBrewer (version 1.1-2), and ggplot2 (version 3.1.0) packages. All other 

graphs were generated in Microsoft® Office Excel® 2007 (12.0.6787.5000) SP3 MSO 

(12.0.6785.5000).  

Values are depicted as mean±standard deviation and sample sizes are specified 

in the respective figures. For unpaired comparison of means, Mann-Whitney-U Test was 
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performed to test for statistically significant differences. Where n>10, Shapiro-Wilk-Test 

was used to check for normal distribution of data, and if given, Student t-test was 

applied. 

2.2 Methods 

2.2.1 Plasmid generation 

2.2.1.1 dCas9-Effectors 

For the generation of dCas9 expression vectors, a hygromycin cassette was 

cloned into the pMLM3705 plasmid (Addgene plasmid 47754). The backbone was 

digested with restriction enzymes SgrDI (Thermo Scientific ER2031) and MluI (Thermo 

Scientific ER0561). The resistance cassette was amplified from Addgene plasmid 

41721 with the primers Hygro_1fwd and Hygro_1rev. A SV40 polyadenylation sequence 

was amplified from Addgene plasmid 13820 with SV40_1fwd and SV40_1rev using the 

Phusion DNA Polymerase Master Mix according to the manufacturer’s protocol. For 

Gibson assembly, inserts and backbone were combined in a molar ratio of 3:3:1, and 

Gibson Mastermix (NEB E2611S) was added. The reaction mix was incubated for 30 

minutes at 50°C to generate dCas9-VP64-Hygro. For the exchange of VP64 with 

chromatin modifying domains, this plasmid was digested with PstI (NEB R3140S) and 

PmeI (NEB R0560S). Templates and primers used for the PCR of insert sequences are 

listed in Table M4 and M5 respectively. PCR was performed using the Phusion DNA 

Polymerase Master Mix according to the manufacturer’s protocol. Gibson reaction was 

performed as described above with molar ratios of 3:1 (insert:backbone) to produce 

dCas9-Tet1-Hygro, dCas9-P300-Hygro, dCas9-JMJD2a-Hygro, and dCas9-Set7-Hygro 

respectively. Mutagenesis PCR was performed on dCas9-Tet1-Hygro to generate the 

catalytic mutant of Tet1 (Tahiliani et al. 2009) using the Phusion DNA Polymerase 

Master Mix according to the manufacturer’s protocol. To generate lentiviral constructs, 

plenti-dCas9-VP64-Blast (Addgene Plasmid 61425) was digested with BsiWI (NEB 

R3553S) and BsrGI (NEB R0575S). The dCas9-fusion domains were amplified from the 

expression plasmids with the primers dCas9-lenti_fwd and dCas9-lenti_rev using the 
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Phusion DNA Polymerase Master Mix according to the manufacturer’s protocol. Inserts 

and backbone were mixed in a ratio of 3:1 and Gibson assembly was performed as 

described above to produce the respective dCas9-Effector-T2A_Blast plasmids. Primers 

are listed in Table M5.  

2.2.1.2 gRNA design and plasmid generation 

Promoter gRNAs were designed manually. As target sequence, 250bp upstream 

of the transcription start site (TSS) of the targeted gene to the TSS were selected. To fit 

the requirements of the human U6 promoter on the gRNA expression plasmids, only 

gRNA Sequences with a 5’G were considered. To avoid spatial interference of targeted 

proteins, sequence pairs that were used for simultaneous targeting were selected to be 

at least 100pb apart.  Lentiviral gRNA plasmids were generated by modification of the 

pLKO.1 plasmid as described in Koferle et al., 2016.  Single gRNAs were ordered as 

strings (Table M7) with a 5’ and a 3’ overhang for Gibson cloning (see below) and 

amplified with libgen_fwd and libge_rev using the Phusion DNA Polymerase Master Mix 

according to the manufacturer’s protocol. The modified pLKO.1 backbone was digested 

with AgeI and combined with the insert at a molar ratio of 1:3. Gibson assembly was 

performed as described above. 

Overhangs: 

5'overhang: TCTTGTGGAAAGGACGAAACACC 

3'overhang: GTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCT 

STAgR cloning was performed according to the protocol published by Breunig et 

al., 2018 in order to combine two gRNAs for simultaneous targeting in one vector. For 

subcloning of these constructs into the modified lentiviral gRNA backbone, the gRNA 

expression casettes were amplified using amp_gRNA_fwd and amp_gRNA_rev and the 

Phusion DNA Polymerase Master Mix according to the manufacturer’s protocol. The 

modified pLKO.1backbone was digested with AgeI (NEB M0531S) and combined with 

the insert at a molar ratio of 1:3. Gibson assembly was performed as described above.  
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For the design of the Sox20000 gRNA library, the genomic locus 

chr8:12,295,501-12,495,500 of the mouse genome mm10 was obtained from the UCSC 

genome browser (genome.ucsc.edu/cgi-bin/hgTracks?db=mm10). Potential gRNA 

sequences of the form GN20GG (first G necessary as transcription start nucleotide for 

the human U6 promoter, last NGG is the PAM sequence) were extracted from both 

DNA strands using RStudio v1.1.442 and the Biostrings (version 2.50.2) package. 

Bowtie aligner (Bowtie 2.3.4.3, John Hopkins University) was used to identify all gRNAs 

with a unique target sequence in the mouse genome. To increase specificity, 5 5’-

nucleotides were cropped for this analysis. This left a total of ca. 6000 gRNA 

sequences. In addition, 150 gRNAs were generated using the rice genome (RGAP 7) 

that do not bind in mm10, 100 random gRNAs that bind in the promoter region of Igf2R 

and Airn each, and 150 gRNAs in the Sox1 locus, that do not have a PAM. These 

served as negative control gRNAs, and were generated similarly.  

gRNA sequences were ordered with a 5’ and a 3’ overhang for Gibson cloning as 

a pool from arbor biosciences and cloned in a pool as described above for single 

gRNAs. The pool was transformed in 50 reactions into 50µl chemocompetent 5-alpha 

E.coli (NEB, C2987) each according to the manufacturer’s protocol, and plated on a 

25cmx25cm LB Agar plate (SigmaAldrich, D8679-1CS). After incubation over night at 

37°C, the bacteria lawn was washed off with LB medium and collected. The plasmid 

DNA from the collected bacterial suspension was extracted using the PureLink HiPure 

Plasmid Filter Kit according to the manufacturer’s protocol. Plasmids were resuspended 

in sterile H2O and DNA concentration measured at a Nanodrop ND-1000 (NanoDrop 

Technologies, Inc.). 

2.2.1.3 Gel electrophoresis and DNA isolation 

PCR products for cloning steps were analyzed on agarose gels to confirm 

specific amplification. DNA Gel loading dye was added to PCR products in a proportion 

of 1:5, and DNA was loaded on 1%agarose gels (in TAE buffer, containing 1:20000 

Sybr® Safe DNA Gel Stain). DNA was separated at 120V and visualized on a 

ChemiDocTM MP System (Bio-Rad). If specific amplification was confirmed, DNA was 
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purified using Agencourt AMPure XP magnetic beads according to the manufacturer’s 

protocol. 

2.2.1.4 Transformation, plasmid isolation, and Sanger Sequencing 

Chemocompetent 5-alpha E.coli (NEB, C2987) were transformed with DNA 

according to the manufacturer’s protocol. 50µl transformed bacteria were plated on an 

LB agar plate supplemented with 50µg/ml ampicillin and incubated at 37°C over night. 

Single colonies were resuspended in 2ml LB medium containing 50µg/ml ampicillin and 

incubated over night at 37°C and 200rpm. Plasmid DNA was isolated using the QIAprep 

Spin Miniprep Kit according to the manufacturer’s protocol. For quality control, plasmids 

were sequenced at Eurofins Genomics (Ebersberg, Germany). Cultures of validated 

plasmids were inoculated in 200ml LB medium supplemented with 50µg/ml ampicillin 

and incubated over night at 37°C and 200rpm. Plasmids were isolated using the 

PureLink HiPure Plasmid Filter Kit according to the manufacturer’s protocol. Plasmids 

were resuspended in sterile H2O and DNA concentration measured at a Nanodrop ND-

1000 (NanoDrop Technologies, Inc.). DNA was stored at -20°C. 

2.2.2 Cell culture 

2.2.2.1 Generation and cultivation of murine Sox1-GFP cells 

Neural progenitor cells (NPCs), neural stem cells (NSCs), and neural rosettes 

(NRs) were derived from embryonic stem cells with a heterozygous GFP knock-in in the 

open reading frame of SoxI (Figure 5), SoxIwt/GFP cells, gifted from Austin Smith lab) as 

described (Ying et al. 2003). NPCs were cultured in NeuroCultTM Proliferation kit, 

supplemented with 10ng/ml human recombinant bFGF, 20ng/ml human recombinant 

EGF, and 1µg/ml Laminin, and grown in a monolayer on cell culture dishes at 37°C and 

5% CO2.  

Cells were passaged at around 95% confluency to avoid overgrowth. Medium 

was aspirated and the cells were washed with sterile PBS. PBS was aspirated and 

Accutase was added. Cells were incubated at 37°C for 5 minutes and Accutase stopped 
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by addition of 4x the volume of wash medium. Cells were transferred to 15ml centrifuge 

tubes and centrifuged for 5 minutes at 350 rcf. Supernatant was aspirated and the cell 

pellet resuspended in growth medium and plated on fresh cell culture dishes. 

2.2.2.2 Transfection 

450000 cells were plated per well on 6-well plates one day prior to transfection. 

2µg of STAgR plasmid or 3.2µg of dCas9 expression plasmid respectively were 

transfected with Lipofectamin 2000 according to the manufacturer’s protocol. Cells 

successfully transfected with dCas9 expression plasmids were selected with 150µg/ml 

Hygromycin B, starting 2 days after transfection. 

2.2.2.3 Flow cytometry and fluorescence activated cell sorting (FACS) 

Cells were detached using Accutase as described in chapter 2.2.1. After 

centrifugation, cells were twice washed with PBS by resuspending the pellet in 1ml and 

centrifugation for 5 minutes at 350rcf. The cells were then resuspended in 1ml PBS 

containing 1µl eBioscienceTM Fixable viability dye eFluorTM 660 and incubated at 37°C 

for 10 minutes. After incubation, 9ml PBS were added to each sample, and the samples 

were centrifuged for 5 minutes at 350rcf. The supernatant was then aspirated and cells 

resuspended in PBS containing 10% BSA at a maximum of 10x10^6 cells/ml. Cells 

were sorted into cell culture medium containing 5% BSA and cultured immediately after 

sorting as described in chapter 2.2.1. For flow analysis and sorting, the FACSAriaIIITM 

flow cytometer (Becton Dickinson) was used. Analysis was performed with the FlowJo X 

10.0.7r2 software. 

2.2.3 Lentiviral work 

2.2.3.1 Lentivirus generation 

5x10^6 HEK 293T cells were plated for transfection of the lentiviral vector 

cocktail 1 day before transfection on 3 10cm cell culture dishes and cultivated at 37°C 

and 5% CO2. Each dish was then transfected with a mix of 15µg packaging plasmid 
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pCMVDR8.9, 20µg pseudotyping plasmid pVSVG and 10µg of the lentiviral expression 

plasmid using TransIT according to manufacturer’s protocol. To harvest the virus, the 

supernatant was transferred into a 50ml centrifuge tube 96 hours after transfection, 

centrifuged for 10 minutes at 4500rcf, and filtered through a 0.45µm filter. To pellet viral 

particles, the supernatant was then centrifuged for 2 hours at 27000rcf and 

resuspended in 50µl TBS-5. 

2.2.3.2 Titer measurement 

For titer measurement of gRNA lentiviruses, 100000 SoxI-GFP NPCs were 

plated on each of 6 wells of a 12-well cell culture plate. 1 day later, a series of 6 

dilutions of the lentivirus was prepared as follows: 1µl of virus was added to 1.5ml of 

medium and mixed by pipetting up and down several times. Of that dilution, 0.5ml were 

transferred to 1ml of medium and mixed similarly. This step was repeated 4 times, each 

time transferring 0.5ml of the new dilution to 1ml medium. The medium on the plated 

cells was aspirated, and 0.9ml of each dilution added to 1 well. 24 hours later the cells 

were detached and the cells from each well were plated on two new wells of a 12-well 

cell culture plate. 0.08µl Puromycin was added to one of the wells of each dilution, while 

the other wells were kept without selection. 3 days after the start of selection, the cells 

were detached from each well, pelleted, and resuspended in 10µl medium. 10µl of 

Trypan Blue were added and living cells were counted with a counting chamber. For 

each dilution the ratio of infected cells was calculated as follows: 

 

with 

TU = transduction units [/ml] 

x = cellcount in puromycin treated cells 

y = cellcount in non-treated cells 

s = number of cells at transduction 

v = volume of virus in this dilution [ml] 
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2.2.3.3 Establishment of stable cell lines 

To establish clonal dCas9-effector expressing cell lines, 300000 SoxI-GFP NPCs 

were plated per well on a 6-well cell culture plate. After 1 day, 2.5µl of the respective 

lentivirus were added to the different wells, and 24 hours later the medium was 

exchanged. Selection for dCas9 expression was started 3 days after transduction with 

8µl/ml Blasticidin S. Resistant cells were seeded as single cells on a 96-well cell culture 

plate 7 days later, and clones were expanded. dCas9 expression was verified by qPCR 

and Western Blot. Stable cell lines were kept under Blasticidin S throughout all 

experiments. 

To establish clonal NPC lines stably expressing gRNAs targeting the Sox1 

promoter, 300000 NPCs were seeded on a 6 well cell culture plate and transduced the 

next day with the SoxProm lentivirus pool at an MOI of 4. The next day medium was 

changed and Puromycin added to the Medium at 0.6µg/ml. Cells were kept under 

selection for the duration of the experiments. 5 days after transduction, cells were 

seeded on 96 well cell culture plates at a density of one cell per well, and expanded. 

2.2.3.4 Transduction of gRNA lentivirus 

For candidate approaches, 250000 SoxI-GFP NPCs were plated on T25 cell 

culture flasks one day prior to transduction. An equivalent of 1x10^6 viral particles 

(equals multiplicity of infection (MOI) of 4) were added the next day. For screens, 

1.5x10^6 SoxI-GFP NPCs were plated on T75 cell culture flasks one day prior to 

transduction. An equivalent of 600000 viral particles (equals an MOI of 0.4) was added 

the next day. Medium was changed 24 hours after transduction and selection with 

0.08µl/ml Puromycin was started 48 hours after transduction. Cells were kept under 

selection for the remainder of the respective experiments. 
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2.2.4 Molecular methods 

2.2.4.1 Reverse transcription and qPCR 

For extraction of RNA, cells were detached using Accutase as described in 

chapter 2.2.1. Cells were centrifuged for 5 minutes at 350rcf and the supernatant was 

aspirated. RNA was extracted using the RNeasy Mini Kit according to the 

manufacturer’s protocol. RNA content was measured using the NanoDrop ND-1000 and 

RNA was stored at -80°C or directly proceeded with. Maxima first strand cDNA 

synthesis kit was employed for DNAse treatment and reverse transcription of mRNA. 

100ng RNA per sample were employed, and reverse transcription performed according 

to the manufacturer’s protocol. For quantification of targets on the QuantStudioTM 6 Flex 

Real-Time PCR System (Life Technologies), the PowerUPTM Sybr Green Master Mix 

was used. Each sample was analyzed in triplicates and quantified as mRNA content 

normalized to Gapdh. qPCR primers are listed in Table M7. Primers were designed to 

produce amplicons of 80 – 120 basepairs and efficiency was tested on a dilution of 

genomic DNA (reaching from 100ng/µl to 1.5625ng/µl in dilutions of 1:4. mRNA levels 

were quantified as relative levels compared to Gapdh.  

2.2.4.2 Western Blotting 

For western blot analysis, cells were detached using Accutase as described in 

chapter 2.2.1 and centrifuged at 350rcf for 5 minutes. The supernatant was aspirated 

and the cells resuspended in RIPA buffer supplemented with 1x protease inhibitor at 

density of 100000 cells per 50µl for optimal protein extraction. Samples were used 

immediately. Protein content of each sample was measured in duplicates using a 

Bradford assay according to manufacturer’s protocol. Protein extract was stored at -

80°C. Sterile H2O was added to 40µg protein to a total of 16µl per sample, and 4µl 5x 

Laemmli buffer was added. Samples were boiled for 5 minutes at 95°C and separated 

using SDS PAGE on a 10% gel (see below) in PAGE running buffer at 100V for 90 

minutes. After separation, proteins were blotted onto a 0.2µm nitrocellulose membrane 

(ThermoFisher, LC2009) in blotting buffer, using the Trans-Blot® TurboTM Transfer 
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System (Bio-Rad) according to the manufacturer’s protocol. Membranes were blocked 

at room temperature in 5% milk powder in TBS-T for 60 minutes and incubated in 

primary antibodies (at working concentration) in TBS-T over night at 4°C. Membranes 

were washed 3 times for 5 minutes in TBS-T and incubated at room temperature for 2 

hours in secondary andtibodies (linked to HRP, at working concentration) in TBS-T. 

Membranes were washed three times for 5 minutes and analyzed on a ChemiDocTM MP 

System (Bio-Rad) using ECL solution. Antibodies and gel concentrations are listed in 

Table M6. 

 

 

 

 

 

 

 

 

2.2.4.3 Differentiation assay 

40000 SoxI-GFP NPCs were plated per well on poly-D-lysine coated coverslips 

in 24-well cell culture plates. Cells were cultured in NeuroCultTM Proliferation kit 

supplemented with 1% FCS (v/v) and 1µg/ml Laminin, but without growth factors. Every 

other day, the medium was changed. For short analysis, cells were fixed in 4% 

Paraformaldehyde as described in chapter 2.4.4 after 7 days. For neuronal subtype 

analysis, cells were differentiated for an additional 14 days. Medium was changed to 

1ml NeuroCultTM supplemented with 1% FCS (v/v), 1µg Laminin, 10ng/ml NT3, BDNF, 

GDNF, and cAMP at day 7 and was exchanged every other day thereafter. Cells were 

fixed after 21 days. 

Reagent Volume 

Bis/Acrylamid 0,75ml 

4xTris/SDS pH 6.8 1.25ml 

H2O 3ml 

10% APS 0.05ml 

Temed 0.01ml 

 Table M8: Stacking and Running Gel for PAGE 

Reagent Volume 

Bis/Acrylamid 3.3ml 

4xTris/SDS pH 8.8 2.5ml 

H2O 4.2ml 

10% APS 0.05ml 

Temed 0.01ml 
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2.2.4.4 Immunofluorescence staining and microscopic analysis 

To fix cells, medium was aspirated and cells were washed two times in PBS. 4% 

PFA were added and the coverslips were incubated for 10 minutes at room 

temperature. After 15 minutes of permeabilization in 0.5% TritonX-100  in PBS (PBS-T), 

cells were treated for 30 minutes in 3% BSA (Sigma-Aldrich A2153-1KG) in PBS-T at 

room temperature. Cells were incubated overnight at 4°C in primary antibodies in 

3%BSA in PBS-T. Coverslips were washed three times with PBS-T and incubated in the 

respective secondary antibodies at room temperature. From this step on, stainings were 

covered whenever possible to avoid quenching of fluorophores. Coverslips were 

washed three times and treated with DAPI. Coverslips were then mounted on glass 

slides using Aqua-Poly/Mount. Stainings were analyzed on an epifluorescence 

microscope (Zeiss). Per coverslip, several randomly selected pictures were taken and 

counted using Fiji software (National Institute of Health, USA). Pictures were treated the 

same way across all samples from a biological replicate and with linear processing 

techniques only. Antibodies are listed in Table M6. 

2.2.4.5 Chromatin Immunoprecipitation (ChIP)-qPCR 

Cells were detached using Accutase as described in chapter 2.2.1, aliquoted in 

500000 cells, and washed twice in PBS. Cells were then fixed in 500µl 1% methanol 

free formaldehyde in PBS for 8 minutes at room temperature. The formaldehyde was 

then quenched using 57µl 1.25M glycine for 5 minutes at room temperature. Cells were 

centrifuged for 5 minutes at 500rcf and the supernatant was aspirated. After two washes 

with 4°C cold PBS, the pellet was resuspended in 500µl hypotonic buffer containing 1x 

protease inhibitor for 10 minutes on ice. Cells were centrifuged for 5 minutes at 500rcf, 

the supernatant aspirated, and the pellet resuspended in 500µl lysis buffer containing 1x 

protease inhibitor. After 30 minutes incubation on ice, the chromatin was transferred to 

sonication tubes and sheared with 5 on/off cycles of 30 seconds each with a BioruptorTM 

(Diagenode). Each aliquot of sheared Chromatin, containing 500000 cells, was used for 

4 ChIP reactions and 1 input control (equals 100000 cells per reaction) on the IP-Star® 

Compact (Diagenode). The Auto iDeal ChIP-seq kit for Histones was employed 
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according to manufacturer’s protocol. The chromatin enrichment at target loci was 

quantified vie qPCR in technical triplicates to control for variance, and quantified as % 

enrichment of the input sample. qPCR was performed as described in chapter 2.4.1. 

Primers and Antibodies used for ChIP-qPCR are listed in Tables M6 and M7. 

2.2.5 Sequencing 

2.2.5.1 Bisulfite and oxidative bisulfite sequencing 

Primers for Bisulfite sequencing were designed to produce amplicons of 70 – 300 

basepairs, which contain at least 4 CpGs. CpGs in the primer sequence itself were not 

admitted, and a minimum of 4 Cs in non-CpG context was applied. This guarantees the 

amplification of completely converted DNA only. 

Prior to extraction of genomic DNA for bisulfite conversion, cells were detached 

with Accutase as described in chapter 2.2.1, aliquoted to 200000 cells per aliquot, and 

centrifuged at 350rcf for 5 minutes. After aspirating the supernatant, genomic DNA was 

extracted with the DNeasy Blood and Tissue kit. DNA was stored at -20°C. For oxidative 

bisulfite conversion, 1µg of DNA was denatured in 0.05M NaOH at 37°C for 30 minutes. 

Micro-Bio-Spin P-6 SCC columns were centrifuged at 1000 x rcf for 1 minute and 

washed four times with 500µl H2O. After incubation, DNA was loaded on washed 

columns and centrifuged for 8 minutes at 1000 x rcf, and then cooled on ice for 5 

minutes. 1µl of 15mM KRuO4 (in 0.05M NaOH) was added to the DNA and DNA 

oxidized for 1 hour on ice. After Oxidation, DNA was loaded on prewashed columns and 

centrifuged for 8 minutes at 1000 x rcf. After oxidation, DNA was immediately converted 

as follows. 

DNA was converted with the EZ DNA Methylation-Gold Kit directly after 

extraction of genomic DNA to measure the amount of Cytosine methylation (5mC) and 

hydroxymethylation (5hmC) combined, or after oxidation to measure the amount of 5mC 

specifically. The converted DNA was used as template for the sequencing library 

preparation. Converted DNA was stored at -20°C. 
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To amplify target loci and to introduce overhangs for the Illumina indexing 

adapters, a primary PCR was performed. 1µl of bisulfite converted DNA was mixed with 

2.5µl 10x buffer, 1µl of 10nM dNTPs, 0.25µl of each, the forward and reverse primer 

targeting the locus of interest, 0.5µl HotStarTaq Polymerase, and 19.5µl H2O. Reagents 

were taken from the HotStarTaq kit. PCR products were purified with Agencourt 

AMPure XP magnetic beads according to Manufacturer’s specifications. In a second 

PCR, purified products were amplified with Illumina Sequencing adapters from the 

Nextera DNA Library Preparation Kit to introduce sequencing adapters. 1µl of DNA was 

mixed with 12.5µl of Phusion® High-Fidelity PCR Master Mix, 10µl H2O, and 0,75µl of 

each, forward and reverse primer. Each sample was amplified with a different 

combination of barcodes to ensure simple identification of reads after sequencing. The 

PCR products were purified with Agencourt AMPure XP magnetic beads according to 

Manufacturer’s specifications.  

The DNA content in the purified samples was measured on the Infinite® M1000 

plate reader (Tecan), using the Quant-iTTM PicoGreenTM dsDNA Assay Kit according to 

the manufacturer’s protocol.  

Samples were pooled in an equimolar ratio, and the quality was analyzed with an 

Agilent Bioanalyzer 2100 on a DNA High Sensitivity chip according to the 

manufacturer’s protocol. 

For Sequencing of the Bisulfite Pool, a Miseq kit v2 was used. The pool was 

diluted to 4nM with H2O and 5µl of the pool were added to 5µl of 0.2M NaOH. The mix 

was vortexed briefly, centrifuged for 1 minute at 280rcf, and incubated at room 

temperature (20-25°C) for 5 minutes to allow denaturation. 990µl of Hyb Buffer were 

added, and 210µl of the resulting dilution were mixed with 390µl Hyb Buffer to achieve a 

final library concentration of 7pM. 2µl PhiX control library were mixed with 3µl Tris x HCl 

and 5µl 0.2M NaOH, vortexed briefly, centrifuged at 280rcf for 1 minute, and incubated 

at room temperature for 5 minutes. PhiX was diluted with 990µl Hyb Buffer. 540µl of the 

7pM library were mixed with 60µl PhiX library and loaded on the sequencing cartridge. 

The sequencing was performed on a MiSeq (Illumina).  
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Demultiplexed sequencing reads were retrieved. Trim Galore (Babraham 

Institute) was used with default settings to trim the adapter sequences and filter reads of 

insufficient quality. Trimmed sequences were aligned versus a bisulfite converted 

mouse genome (version mm10) using the Bowtie aligner (Bowtie 2.3.4.3, John Hopkins 

University), the methylation count calculated, and the bed file converted to bedGraph 

using the Bismark methylation extractor with default settings (Babraham Institute). The 

methylation levels of CpGs of interest were extracted in R Studio v1.1.442 using the 

RSamtools (version 134.1) and the BiSeq (version 1.22.0) packages.  

2.2.5.2 RNA sequencing 

The RNA of 100000 cells per sample was isolated with the PicoPureTM RNA 

Isolation Kit according to the manufacturer’s protocol. RNA was stored at -80°C. The 

RNA quality was assessed on the Agilent Bioanalyzer 2100. RNA samples with an 

integrity of <8 were dismissed. cDNA synthesis, amplification, and purification were 

performed with 4.5ng RNA per sample, using the SMART-SeqTM v4 Ultra Low Input 

RNA Kit according to the manufacturer’s protocol. cDNA was amplified with 8 cycles. 

Shearing of the DNA was performed on the Covaris S220 sonicator, and the library was 

prepared using the MicroPlex Library Preparation Kit v2. The quality and quantity of the 

library were assessed on the Agilent Bioanalyzer 2100. Samples were pooled in an 

equimolar ratio and the pool was diluted to a final concentration of 5nM. The library was 

sequenced on a HiSeq4000 (Illumina) by the Sequencing Core Facility of the Helmholtz 

Zentrum München. 

The demultiplexed reads were retrieved and Sequences aligned to the mouse 

transcriptome (mm10) using the STAR v2.6 RNA-seq aligner. Expression was 

calculated using the RSEM tool (v1.1.14), and analyzed in R Studio v1.1.442 using the 

DESeq2 package (Love, Huber, and Anders 2014).  

2.2.5.3 Sequencing of gRNA amplicons 

For DNA extraction of screened cells, cells were sorted directly into the Lysis 

buffer of the DNeasy Blood and Tissue kit. DNA was extracted according to 
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manufacturer’s specifications, and stored at -20°C. To amplify the gRNA locus from the 

genomic DNA, a PCR with 1µl of each, Nextera_fwd and Nextera_rev primers in 

Phusion® High-Fidelity PCR Master Mix was performed. PCR products were purified 

with Agencourt AMPure XP magnetic beads to Manufacturer’s specifications. To 

introduce Illumina sequencing adapters, DNA amplicons were amplified with Illumina 

Sequencing adapters from the Nextera DNA Library Preparation Kit using Phusion® 

Master Mix. Samples were pooled at equimolar ratio and quantity and quality assessed 

on the Agilent Bioanalyzer 2100. The library was sequenced on a HiSeq4000 (Illumina) 

by the Sequencing Core Facility of the Helmholtz Zentrum München. 

Demultiplexed sequencing reads were retrieved. Trim Galore (Babraham 

Institute) was used with default settings to trim the adapter sequences and filter reads of 

insufficient quality. Trimmed sequences were aligned against the gRNA library 

sequences using the Bowtie aligner (Bowtie 2.3.4.3, John Hopkins University). 

Sequence enrichment was calculated in R using the Rsamtools, dplyr (version 0.8.0.1), 

and the DESeq2 packages. 
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3 Results 

3.1 Generation and characterization of dCas9-expressing cell lines 

Deactivated Cas9 lacking the nuclease activity of its wild type form has been 

successfully used as tool for targeting of various effector domains to specific genomic 

loci. In this study, I made use of different dCas9 fusion proteins to target a variety of 

genes in mouse neural progenitor cells (NPCs). In order to guarantee expression of 

dCas9-fusion proteins in all experiments, clonal cell lines of cultured NPCs stably 

expressing the respective fusion protein were established for different effector domains 

fused to dCas9 as described in chapter 2.2.3.3. Transgene expression was confirmed 

via qPCR, where high levels of dCas9 mRNA were detected in all tested clonal lines 

(Figure 4). Clonal cell lines were kept under Blasticidin S selection for all experiments to 

avoid silencing of the trans-genic construct. 

 

 

Figure 4: Clonal lines 
express high levels of 
dCas9 mRNA. The 

established clonal lines 
were tested for dCas9 
expression with qPCR. 
For each dCas9 modifier, 
three cell lines were 
tested, and strong 
expression could be 
confirmed in each of 
them. 
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3.2 Targeted activation of Sox1 

Chapter 3.2 of this thesis was prepared in parallel with the manuscript "Targeted 

removal of epigenetic barriers during transcriptional reprogramming", published in 

Nature Communications (Baumann et al. 2019). Therefore, the text and data presented 

in this thesis may overlap with the manuscript. 

Neural stem cells (NSCs) that are cultured in proliferative conditions differentiate 

to NPCs. These differ not only in morphology, but also lose the potency for neuronal 

differentiation. The neural transcription factor Sox1 that is strongly expressed in NSCs 

but not in NPCs, has been shown to be neurogenic in vivo and in vitro, which makes it a 

potential cell fate determining factor for NSCs. To test this hypothesis we aimed to 

induce transcription of the endogenous Sox1 in NPCs by transcriptional engineering, 

and further investigate whether reactivation of this gene would restore the neurogenic 

differentiation potential. To this end we made use of NPCs stably expressing dCas9-

VP64, a targetable transcriptional activator. 

3.2.1 Sox1 upregulation following VP64 targeting 

To test the capacity of the transcriptional activator VP64 to induce the expression 

of  Sox1 in NPCs, I used the three generated clonal NPC lines expressing dCas9-VP64, 

and transfected an expression plasmid containing two gRNAs targeting the promoter of 

Sox1 (S1-9).  As positive control, I transfected an expression plasmid with two gRNAs 

targeting Actc1 (A1-9), an actin gene expressed in heart and muscle tissue, which has 

been shown to be easily induced by this tool (Chavez et al. 2015) (see Figure 5A+B for 

gRNA position). The effect of VP64 targeting was assessed by qPCR. Strong induction 

of Actc1 mRNA (>100-fold) to expression levels comparable to those found in heart 

tissue (as quantified by qPCR, Figure 5C) confirmed the functionality of dCas9-VP64 in 

the NPCs. In contrast, upregulation of Sox1 mRNA was, albeit statistically significant, 

almost forty fold lower (Figure 5C).  
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Figure 5: Targeted induction of Sox1 in NPCs is significant, but minor. A gRNA position of all 

gRNAs used for Sox1 targeting. Sox1 gene shown in blue, heterozygous GFP knock-in in the ORF of 
Sox1 shown in green. B gRNAs targeting Actc1. C Targeting dCas9-VP64 to the promoter of Sox1 and 

Actc1 leads to significant increase of the respective mRNA. Increase ~120-fold for Actc1 and ~3-fold 
for Sox1. No off-target effects can be observed. D Variation of the employed Sox1 targeting gRNAs 

does not significantly increase the efficiency of gene induction. Data shown as mean + standard 
deviation of three biological replicates (performed on different days in different clonal NPC lines). N.s. 
not significant; * p-value < 0.05; *** p-value < 0.005; 
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Several publications have shown that the amount of gRNAs employed and the 

position of targeting relative to the gene’s transcription start site (TSS) can strongly 

impact the efficiency of TAFs. I therefore designed an alternative STAgR construct 

containing two different gRNAs (S4-7), as well as a pool of 7 individual gRNAs 

(SoxProm, Figure 5A) , each targeting the Sox1 promoter. To furthermore rule out the 

possibility that differences in transfection efficiency affect the efficiency of target 

activation, we exchanged gRNA expression plasmids for lentiviral particles. All 

lentiviruses were transduced into the dCas9-VP64 expressing NPCs at an MOI of 4 to 

guarantee high gRNA levels in all cells, and cells were selected for gRNA expression 

with Puromycin as described in chapter 2.2.3.4. Even though the induction of Sox1 

mRNA was slightly stronger compared to transfection of gRNA plasmids without 

selection, it still was over 10-fold weaker than that of Actc1. In addition, exchanging 

gRNAs did not lead to increased efficiency (Figure 5D), indicating that neither the exact 

target site or sequence, nor the mode of gRNA delivery were responsible for the minor 

response.  

To test whether the limited response was due to minor, but uniform induction of 

expression, or rather strong induction in only a subpopulation of the NPCs, I performed 

immuncytochemistry (ICC) on cells co-transfected with A1-9 and S1-9 gRNA expression 

plasmids, co-staining for both targets. While control cells without gRNAs were largely 

negative for both markers, Actc1 was expressed in a majority of cells, whereas only 

around 10% of the cells were positive for Sox1 after targeting VP64 to the promoter of 

the respective gene (Figure 6A+B). To confirm this result, I made use of NPCs derived 

from ESCs carrying a heterozygous GFP knock-in in the ORF of Sox1, earlier described 

by Aubert et al. in 2003 (see page 14 and Figure 5A). In these cells, GFP expression 

correlates to Sox1 expression and can be used as a direct read-out thereof. For clarity, 

throughout this thesis cells expressing GFP will be termed Sox1GFP positive, while 

others will be termed Sox1GFP negative. I transduced dCas9-VP64 expressing NPCs 

with the S1-9 lentivirus at an MOI of 4 and analyzed GFP expression at 7 days after 

transduction via flow cytometry. Cells without gRNAs or transduced with control gRNAs 

(non-targeting) were almost exclusively Sox1GFP negative. However, even when 

transduced with Sox1 targeting gRNAs, only a minority of NPCs reacted with GFP 
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upregulation (on average 2.9% cells in GFP positive gate, p-value < 0.0001, n = 18 

biological replicates performed in three different clonal lines and on different days; 

Figure 6C+D). These results underline the findings of the ICC, in that only a small part 

of NPCs react to the activating stimulus of VP64 at the Sox1 promoter, while the 

majority remains unresponsive. 

 

Figure 6: Majority of NPCs is unresponsive to Sox1 induction. A 

Quantification of Sox1 and Actc1 positive cells after targeted gene 
activation. ICC revealed a significantly higher amount of cells positive for 
the respective targets. A significantly lower amount of NPCs responded to 
Sox1 induction, compared to Actc1 induction. Data shown as Mean + 
standard deviation of three biological replicates (performed in different 
clonal lines on different days). B Representative pictures of Sox1/Actc1 
ICC. C Representative FACS plots of NPCs with and without Sox1 
targeting gRNAs. D Quantification of the amount of GFP positive NPCs in 

flow cytometry. Targeting VP64 to the Sox1 promoter leads to a 
significant amount of GFP positive cells, however most cells do not 
respond. Data shown as mean + standard deviation of 18 biological 
replicates performed in 3 different clonal lines. * p-value < 0.05; *** p-
value < 0.005, compared to no gRNA control; # p-value < 0.05 compared 
to Sox1. 
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To confirm that GFP expression is representative of Sox1 levels, I sorted 

Sox1GFP positive and negative cells from samples with S1-9 gRNAs and control samples 

(without gRNAs or with non-targeting gRNAs) and performed qPCR and Western Blot 

analysis for Sox1. All controls expressed Sox1 at very low levels, both in the Sox1GFP 

positive as well as the Sox1GFP negative population; the same was observed in the 

Sox1GFP negative population from NPCs expressing S1-9 gRNAs. This indicated that in 

control samples, the events that are recorded in the GFP gate were false-positive and 

did not represent Sox1 expression (Figure 7A). Sox1GFP positive cells that were sorted 

from the sample transduced with S1-9 gRNAs did however express significantly higher 

levels of Sox1 mRNA (Figure 7A) and, even more pronounced, Sox1 protein. The 

upregulation reached levels of around 30-fold compared to control samples (Figure 7B).   

 

 

Figure 7: GFP and Sox1 levels correlate in Sox1
wt/GFP

 NPCs. A  qPCR performed on unsorted and sorted 

NPCs with and without Sox1 targeting gRNAs reveals that cells sorted from the GFP positive gate do indeed 
express significantly higher levels of Sox1 mRNA. B  Western Blot for Sox1 on sorted NPCs verifies this finding 

on protein level. Data shown as mean + standard deviation of three biological replicates (performed in different 
clonal lines on different days). * p-value < 0.05; *** p-value < 0.005; 
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To further assess the stability of induced Sox1 expression in NPCs, I sorted 5000 

GFP positive cells from the control (no gRNAs) and the sample expressing S1-9 

gRNAs, and expanded them. Flow cytometry performed 14d after FACS showed that 

cells from the control resembled the initial population, corroborating the finding that 

these cells are false positives with no stable Sox1 expression (Figure 8). Cells sorted 

from the gRNA expressing sample on the other hand were strongly GFP positive (up 

45% cells in the GFP gate, see Figure 8). This indicates that expression of the target 

gene is stable, once induced. 

Taken together, these results confirm the functionality of targeted induction of 

Actc1 by dCas9-VP64 in NPCs. Transcriptional activation of the developmental 

transcription factor Sox1 however proved difficult, as the majority of cells were 

unresponsive to the stimulus. In those cells that did however induce Sox1 expression, 

this effect was long-lasting. 

 

Figure 8: GFP induction is stable 
in induced cells. Sorted GFP 

positive cells from the control 
sample cluster comparable to the 
starting population after expansion. 
Cells sorted from S1-9 expressing 
NPCs show a high proportion of 
GFP positive cells after expansion, 
indicating that gene induction is at 
least in part stable.  
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3.2.2 Characterization of Sox1 positive cells 

To test whether transcriptional activation of Sox1 in NPCs would restore the 

identity of NSCs, I investigated the transcriptome of these cells. I performed RNA 

sequencing on sorted Sox1GFP positive cells from Sox1wt/GFP NPCs transduced with the 

S1-9 gRNA lentivirus, untransduced NPCs as control, and NSCs derived from 

Sox1wt/GFP embryonic stem cells (ESCs). As these cells display heterogeneous levels of 

Sox1, I sorted Sox1GFP positive cells to obtain a strictly Sox1 positive control (Neural 

Rosettes, NR).  

Principal component analysis (PCA) of these samples revealed two clusters of 

cells, one containing the developmentally Sox1 positive controls (NSCs and NR), and 

the other containing the NPCs (both untransduced and Sox1GFP positive). Within this 

latter cluster however, the two states of NPCs clustered clearly apart from each other 

(Figure 9A). This was confirmed by hierarchical clustering: analysis of all four cell types 

showed a strong separation of NSCs and NR, and NPCs (untransduced and GFP 

positive), however within the NPC cluster, cells showed only a mild tendency to cluster 

according to their Sox1 expression status. This effect was however more pronounced 

when these two methods were applied to only untransduced and Sox1GFP positive 

NPCs (Figure 9B), strongly indicating that even though the global changes induced by 

Sox1 upregulation are seemingly small compared to the difference of the two 

developmental stages, they are enough to clearly distinguish Sox1GFP positive NPCs 

from the negative baseline.  

I further analyzed differentially regulated genes to investigate in more detail the 

nature of the propagated change.  Between the Sox1GFP positive NPCs and the 

untransduced control, 1060 genes were significantly upregulated (>4fold, p-value<0.05) 

and 482 genes were significantly downregulated (>4fold, p-value<0.05), as shown in 

Figure 10A. Most of the significantly upregulated genes were also found to be 

significantly increased in the transcriptomes of NSCs and NR, when compared to 

Sox1GFP negative NPCs (Figure 10C), indicating a progression of NPCs towards a NSC 

identity upon Sox1 induction. To confirm this hypothesis, I investigated the mRNA levels 

of different neuroepithelial markers that should be strongly expressed in NSCs. 3 of the 
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9 genes that I analyzed, namely E-Cadherin, Prominin, and Sox10, were not 

differentially regulated between control NPCs and Sox1GFP positive NPCs. The other 6 

displayed significantly different levels after the induction of Sox1, even though none of 

them reached the levels present in NSCs (Figure 10B). This further indicated a clear, 

albeit not fully pronounced change in cell identity towards NSCs. 
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Figure 9: Transcriptomes of Sox1 positive and negative cells cluster apart. Heatmaps and PCA of either NSCs, 

NR, Sox1 positive NPCs, and control NPCs, or only Sox1 positive NPCs and control NPCs displays a strong clustering 
of the two developmental stages (A, red: control; blue; neural rosettes; green: NSCs; purple: Sox1 positive NPCs), but 
also the two Sox1 stages in NPCs (B, red: control; blue; Sox1 positive NPCs), indicating cell identity changes. 
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Figure 10: Transcriptome analysis reveals phenotypic changes in NPCs after Sox1 
induction.  
A A Volcano plot showing all significantly regulated genes with at least 4-fold difference in 
transcription between the baseline and Sox1 positive NPCs in red. B Some of the selected 

neuroepithelial markers differentiate significantly between Sox1 positive and negative NPCs. 
Data shown as mean + standard deviation of three biological replicates (performed in different 
clonal lines on different days). C The 100 most upregulated genes after Sox1 induction are 

mostly also significantly stronger expressed in NSCs, further supporting the hypothesis that 
Sox1 induction leads to a more NSC like cell identity. Data shown as mean + standard deviation 
of three biological replicates (performed in different clonal lines on different days). * p-value < 
0.05; ** p-value < 0.01; *** p-value < 0.005; 

Log2 

B 

A 

  Significant 
>4-fold change 
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To further test the neuroepithelial character of NPCs after induction of Sox1, I 

performed immuncytochemistry (ICC) on sorted Sox1GFP positive cells from NPCs 

transduced with the S1-9 lentivirus, and untransduced NPCs as control. Sox1 positive 

NPCs showed a significantly higher proportion of cells positive for 4 out of 6 

neuroepithelial markers. More specifically, Nestin, Notch1, and the tight junction 

proteins Occludin and zonula occludens 1 (Zo1) were expressed in a significantly higher 

number of cells. Of note, the amount of cells expressing the surface protein E-Cadherin 

and the early NSC marker CD133 were not significantly increased (Figure 11). These 

findings confirmed the results of RNA sequencing, in that Sox1 induction partially 

restores a neuroepithelial character in NPCs. 

 

Sox1 has been shown to have strong neurogenic potential in vivo and in vitro 

(Kan et al. 2004, Kan et al. 2007). It is furthermore known that NSCs, which bear the 

potential to generate not only glial cells but also cells of the neuronal lineage, strongly 

express Sox1, while more committed NPCs are negative for the transcription factor. I 

therefore aimed to test, whether the lost neurogenic potential can be restored by 

upregulation of Sox1 in NPCs. To that end I sorted Sox1GFP positive and negative cells 

from an untransduced control sample and a sample transduced with the S1-9 lentivirus, 

 

Figure 11: Sox1 induction leads to expression of neuroepithelial markers in NPCs. A Representative 
image of ICC for different neuroepithelial markers in Sox1 positive and negative NPCs. B Quantification of 

cells expressing the different tested marker genes reveals a significantly higher amount of marker positive 
NPCs for 4 out of six markers after Sox1 induction. Data shown as mean + standard deviation of 3 biological 
replicates replicates (performed in different clonal lines on different days). *** p-value < 0.005; 
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and differentiated the cells for 7 days by removing growth factors from the culture 

medium. I then performed an immunostaining for the astrocytic marker S100β and the 

early neuronal marker Tuj1 to investigate possible changes in the differentiation 

potential of NPCs. As expected, cells differentiated from both, Sox1GFP positive and 

negative untransduced control samples, as well as Sox1GFP negative cells isolated from 

the transduced NPCs, were almost exclusively positive for S100β, while almost no Tuj1 

positive cells were observed. The amount of cells positive for the neuronal marker were 

however significantly increased in the NPC population with induced Sox1 expression, 

where significantly fewer cells expressed the astrocytic marker (Figure 12A+B).  

To further analyze the generated neurons, cells were stained for the markers of 

mature neurons Map2 and NeuN. However, after 7 days of differentiation, none of the 

Tuj1 positive cells were positive for the mature neuronal markers (Figure 12). I therefore 

extended the period of differentiation to 21 days, adding neuronal survival medium 

every other day, from day 7 of differentiation. After prolonged differentiation, generated 

neurons were positive for Map2. To investigate their subtypes, I stained differentiated 

neurons for the subtype specific markers vGlut1 (glutamatergic neurons (Bellocchio et 

al. 2000)), Calbindin (gabaergic neurons (Hendry et al. 1989)), and tryptophan 

hydroxylase (TH, serotonergic neurons (Walther et al. 2003)). Over 70% of Map2 

positive neurons were also positive for vGlut1, while only 15% expressed Calbindin. 

None of the neurons were positive for TH (Figure 12C+D).  
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3.3 Investigation of technical barriers to targeted gene activation 

The analysis of Sox1GFP positive NPCs showed a substantial change in 

phenotype, as indicated by changes in their transcriptome, expression of neuroepithelial 

markers, and regeneration of neuronal differentiation potential. Given the potency of the 

dCas9-VP64 tool to invoke such phenotypic changes in NPCs, it is striking that despite 

the strong stimulus only a small subpopulation was responsive to the Sox1 induction. I 

therefore aimed to test whether technical limitations of the dCas9 targeting tool could be 

the reason for the disparate cellular response.  

To first investigate whether variations in gRNA levels due to different copy 

numbers or integration sites could be limiting to the activating potential of dCas9-VP64, 

I then generated clonal NPC lines expressing gRNAs from the SoxProm pool (see 

Figure 12: Sox1 positive NPCs 
regain neuronal differentiation 
potential. A After 7 days of 

differentiation, sorted NPCs with 
induced Sox1 expression give rise to 
significantly more neurons and less 
astrocytes than NPCs without Sox1 
expression.  B+D Representative 

images of NPCs after 7 and 21 days 
of differentiation. C Most neurons 

generated from Sox1 positive NPCs 
are positive for the glutamatergic 
subtype marker vGlut1. Data shown 
as mean + standard deviation of 3 
biological replicates (performed in 
different clonal lines on different days. 
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chapter 2.2.3.3). I transfected a dCas9-VP64 expression plasmid into four different 

gRNA expressing cell lines and compared the amount of responsive cells in the different 

clones 8 days after transfection. Flow cytometry revealed that no clone failed to respond 

completely, with at least 1.5% Sox1GFP positive cells in each clone. Furthermore, there 

were no clones with a significantly higher amount of GFP positive cells than any other 

clone or the clonal dCas9-VP64 expressing NPCs transduced with Sox1 targeting 

gRNAs (chapter 3.2.1, Figure 13). It is therefore unlikely that differences in gRNA levels 

after transduction are responsible for the discrepant response of NPCs to Sox1 

induction. 

Next, to rule out differences of dCas9 levels in responsive and unresponsive 

NPCs, I sorted Sox1GFP positive and negative cells from NPCs transduced with S1-9 

gRNAs, and the corresponding populations from two control samples (without gRNAs, 

or with non-targeting gRNAs), and performed western blot analysis for dCas9. All six 

populations expressed similar levels of dCas9 protein, with no significant differences 

(Figure 13A).  

Several recent publications on Cas9 suggest that chromatin compaction and high 

histone occupancy at the target site can influence the binding efficiency of the nuclease. 

This could also affect its modified catalytic mutant, dCas9, and subsequently the 

activating effect of VP64 and lead to a heterogeneous response to the stimulus even in 

cells with comparable levels of dCas9 protein and gRNAs. I therefore aimed to quantify 

the amount of bound dCas9 protein at the Sox1 promoter of responsive and 

unresponsive NPCs using chromatin immunoprecipitation (ChIP)-qPCR. As shown in 

Figure 13B, dCas9 is specifically enriched at the Sox1 promoter, but not at control loci. 

Furthermore, levels of bound dCas9 at the target site are comparable between GFP 

positive and negative populations, excluding dCas9 as reason for the discrepancy in 

Sox1 activation. 

The possibility however remained that VP64 was too limited in its efficiency and 

that a stronger transcriptional activator could overcome the barriers in NPCs that are 

unresponsive to Sox1 induction by VP64. Several of such TAFs have been published 

over the last years with varying degrees of potency (see chapter 1.5.2). VPR is a VP64 
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domain additionally fused to two trans-activating domains from the NF-kappa-B p65 

subunit and the Eppstein-Barr-Virus (Rta). This modified VP64 has been shown to 

activate target genes to up to 120 fold compared to the traditional VP64, when targeted 

in the same fashion (Chavez et al. 2015). To compare the effect of the two TAFs on 

Sox1 expression in Sox1-GFP NPCs, clonal NPC lines expressing Sox1 targeting 

gRNAs were transfused with dCas9-VP64 and dCas9-VPR respectively, and selected 

for the expression of fusion protein as described in chapter 2.2.2.2. 8 days after 

transfection Sox1 expression was analyzed on mRNA level via qPCR, and on protein 

level as GFP expression via flow cytometry. qPCR confirmed that VPR is indeed a 

stronger trans-activator than VP64, as Sox1 mRNA levels were significantly higher after 

targeting with the former than the latter. However, the amount of GFP positive cells as 

determined by flow cytometry was not significantly different between the two TAFs 

(Figure 13D). This indicated that even though induction of Sox1 is indeed stronger with 

VPR than with VP64, no additional cells were responsive to this stronger stimulus. 

Taken together, these results show that not only do all NPCs express dCas9-

VP64 to comparable levels, independent of their responsiveness to Sox1 induction, and 

that gRNA levels are likely not responsible for the heterogeneity in the response, but 

also that similar amounts of dCas9 are bound to the Sox1 promoter in both the 

responsive and unresponsive population. This strongly suggests that the targeting tool 

itself is working properly, and that cell intrinsic differences in NPCs impair the induction 

of Sox1 downstream of dCas9-VP64 binding. 
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Figure 13: Discrepancy in response to induction not based on technical issues. A Western Blot of dCas9 

on sorted NPCs with and without S1-9 gRNAs shows comparable levels of the targeting protein between all 
samples. B Quantification of dCas9 via ChIP qPCR reveals strong enrichment at the Sox1 promoter in the 
positive and negative population. C Analysis of GFP positive cells after Sox1 induction in different gRNA clonal 

lines. Comparable amount of activation in all tested lines. Data shown as mean + standard deviation of technical 
replicates. D VPR leads to a significantly stronger induction of Sox1 mRNA compared to VP64, the amount of 

responsive cells however stays the same. Data shown as single data points of biological replicates (performed 
on different days; flow cytometry) or mean + standard deviation of technical replicates. 
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3.4 Investigation of chromatin barriers to targeted gene activation 

3.4.1 Characterization of chromatin features at the Sox1 locus 

VP64 can induce gene transcription by direct recruitment of Polymerase II or 

indirectly by recruiting other transcription factors (Wysocka and Herr 2003). It is 

therefore not unlikely that transcriptional barriers that safeguard a cellular identity during 

development impair the function of a trans-activator like VP64 even when it is properly 

targeted to a gene’s promoter. To investigate the chromatin landscape at the promoter 

of Sox1 and identify such potential barriers, I sorted GFP positive and negative cells 

from NPCs expressing Sox1-targeting gRNAs. I then performed ChIP-qPCR to quantify 

regulatory chromatin marks at the target locus, as well as the promoters of an active 

gene (Gapdh) and a repressed gene (Oct4) as controls.  

Tri-methylation of the Lysine 9 and Lysine 27 residue of Histone 3 (H3K9me3 

and H3K27me3) is strongly correlated to gene repression when present in the promoter 

of a gene (Zhou, Goren, and Bernstein 2011). In line with this correlation, both marks 

were significantly enriched at the promoter of Oct4, compared to the promoter of 

Gapdh. However, the enrichment of the two marks at the Sox1 promoter differed 

strongly. While H3K27 tri-methylation levels were comparable to those at the active 

Gapdh promoter (Figure 14A) and did not vary between responsive and unresponsive 

populations, tri-methylation of H3K9 was enriched at the Sox1 promoter to levels 

comparable to those at the inactive Oct4 promoter. This however only held true for the 

Sox1GFP negative cells, while levels in the Sox1GFP positive cells were significantly 

reduced, and not anymore significantly different from those at the Gapdh promoter 

(Figure 14B).  
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Figure 14: Quantification of histone modifications at the Sox1 promoter. A H3K27me3 was quantified via 

ChIP-qPCR. Levels at the Sox1 promoter were comparable to levels at promoters of actively transcribed genes. 
Data shown as mean + standard deviation of 3 technical replicates. B H3K9me3 was quantified via ChIP-qPCR. 

Sox1 negative NPCs exhibit levels at the Sox1 promoter comparable to those at the promoter of repressed genes. 
Levels at the Sox1 promoter in Sox1 positive NPCs are significantly lower. Data shown as mean + standard 
deviation of 3 biological replicates performed in different clonal lines on different days. * p-value < 0.05; 



3 Results 

- 74 - 

 

 

A similar, inverse correlation between responsiveness to Sox1 induction and 

abundance of a repressive mark at the promoter was found for DNA methylation. I 

performed bisulfite and oxidative bisulfite sequencing to quantify levels of 5mC and its 

metabolite 5hmC, a modification that correlates to active transcription. Control NPCs 

without gRNA expression sorted for positive and negative GFP expression respectively 

exhibit strong and comparable levels of cytosine methylation (Figure 15A+C). As cells 

transduced with gRNA lentivirus and sorted for no GFP expression show similar levels 

of DNA methylation, VP64 targeting to the promoter alone does not seem to modify this 

particular mark (Figure 15C). However, methylation levels were strongly reduced at the 

promoter of NPCs with active Sox1 expression (sorted for GFP expression from NPCs 

Figure 15: DNA methylation strongly reduced in 
Sox1 expressing NPCs. A In control NPCs (without 

gRNAs), DNA methylation at the Sox1 promoter is 
comparable between GFP positive and negative 
populations. B  Sox1 positive NPCs exhibit strongly 

reduced levels of DNA methylation at the Sox1 promoter. 
C Average DNA methylation and hydroxyl-methylation 

levels of all analyzed CpGs at the Sox1 promoter of 
different samples. Methylation levels are strongly 
reduced in Sox1 positive NPCs, while 
Hydroxymethylation is higher than in control samples. 
Data shown as mean of 2 biological replicates performed 
on different days in different clonal lines(A+B) or mean 

of all analyzed CpGs of 2 biological replicates, 
performed on different days in different clonal lines (C).  
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transduced with S1-9 lentivirus), with all CpGs at the core of the promoter exhibiting 

methylation levels below 20% (between 14 and 16 CpGs were methylated to over 40% 

in the different control samples; Figure 15B+C).  

 

Analysis of methylation levels at the Actc1 promoter as control revealed similar 

and very high methylation levels, confirming that the effect observed at the Sox1 

promoter was indeed not an artifact of the sequencing method itself, but linked to the 

transcriptional state of Sox1. Surprisingly, even though the Actc1 promoter is strongly 

methylated, activation with dCas9-VP64 was not compromised at this locus (Figure 

16A+B). To compare the effect of VP64-induced gene transcription on methylation-

levels at the two loci, I performed bisulfite sequencing at the Actc1 locus in NPCs 

transfected with the A1-9 Stagr (see chapter 3.2.1). In contrast to Sox1 activation, the 

induction of Actc1 did not lead to reduction of methylation at its promoter (Figure 16C). 

This opposed effect could originate from the different densities of CpGs at the 

promoters of Actc1 and Sox1. 

 

Figure 16: DNA Methylation at a control locus does not vary. A+B Methylation levels at single CpGs or 
averaged over all CpGs of the Actc1 promoter do not vary between Sox1 positive and negative NPCs. C  

Inducing Actc1 does not lead to reduced DNA methylation levels at its promoter. Data shown as mean of 2 
biological replicates performed on different days in different clonal lines; 
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3.4.2 Combining transcriptional editing with epigenome engineering enhances 

efficiency of gene induction 

Next, I aimed to test whether the observed inverse correlation between 

responsiveness to Sox1 induction on the one hand, and H3K9me3 and DNA 

methylation on the other hand, might be the cause of the heterogeneous response to 

Sox1 induction, or merely the consequence of gene activation. To that end, chromatin 

modifying enzymes were fused to dCas9 in a similar manner as VP64 (see chapter 

2.2.1.1). I transfected them into NPCs stably expressing Sox1-targeting gRNAs. 

Chromatin modifying enzymes used were Tet1, a DNA demethylase that catalyzes the 

oxidation of 5mC to 5hmC, Jmjd2a, a demethylase that removes trimethylation from the 

Lysine 9 residue of histone 3, and P300, an acetyltransferase that has been shown to 

bear activating potential (Eckner et al. 1994). By themselves, these enzymes activated 

Sox1 in a significant amount of NPCs when targeted with the S1-9 gRNAs, but their 

efficiency was significantly lower than the effect of VP64 (Figure 17A). I then transfected 

these constructs into NPCs stably expressing dCas9-VP64 and transduced Sox1 

targeting gRNAs (S1-9). 8 days after transfection, I analyzed the amount of GFP 

positive cells via flow cytometry to test whether chromatin modulation in combination 

with a transcriptional activator would enhance gene induction.  

Transfection of an expression plasmid for dCas9 without a fused effector domain 

did not have a significant effect on the amount of GFP positive cells after induction with 

VP64. While demethylation of K9 with Jmjd2a only increased the amount of responsive 

cells slightly (Figure 17B, not statistically significant as tested with Kruskal-Wallis-Test), 

this effect was more pronounced for P300 and most strongly Tet1. Demethylation of 

DNA at the Sox1 promoter simultaneous to VP64 targeting increased the amount of 

responsive cells on average 3-fold compared to VP64 alone. Furthermore, this effect 

was dependent on the catalytic activity of Tet1, as the catalytically dead mutant of Tet1 

(dTet1) did not increase the amount of responsive cells significantly (tested with 

Kruskal-Wallis-Test) when combined with VP64. Furthermore, addition of an inhibitor of 

the DNA methyltransferase Dnmt3, Zebularine (Zhou et al. 2002), to NPCs expressing 

dCas9-VP64 and Sox1 targeting gRNAs had a significant effect on the amount of GFP 

positive cells (tested with Kruskal-Wallis-Test), corroborating the hypothesis that this 
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effect is dependent on DNA demethylation. When added to NPCs without gRNA 

expression, this inhibitor did not lead to GFP positive cells, confirming that VP64 

targeting to the Sox1 promoter is necessary to conduct this effect (Figure 17B). 

To further confirm that infact the promoter of Sox1 is demethylated by Tet1, but 

not by dTet1 targeting, I performed bisulfite and oxidative bisulfite sequencing on 

different NPC samples: a) as control, I used NPCs stably expressing dCas9-VP64, but 

no gRNAs; b) the same NPCs were transduced with S1-9 expressing lentivirus to target 

VP64 to the promoter of Sox1; c) dCas9-dTet1 and d) dCas9-Tet1 expression plasmids 

were additionally transfected and selected for. To investigate the demethylation 

efficiency independently of responsiveness to Sox1 induction by VP64, NPCs were not 

sorted, but analyzed as a bulk. As before, methylation levels at the Actc1 promoter did 

not differ between the different samples, indicating that possible changes at the Sox1 

locus would not be an artifact of library preparation or sequencing. Methylation levels at 

the Sox1 promoter did not vary between the control sample (a) and the sample with 

VP64 targeting (b), and were at around 40-50%. This was expected, as the Sox1 

positive population, exhibiting significantly lower methylation levels, only accounts for a 

small amount of NPCs in this sample (see Figure 6). Similar methylation levels were 

observed in NPCs with dCas9-dTet1 targeted to the Sox1 promoter, in addition to VP64; 

when however Tet1 instead of dTet1 was targeted to the locus, strong demethylation 

occurred (Figure 17C). This finding, combined with the significantly enhanced amount of 

responsive cells when Tet1 is added to VP64, supports the claim that methylation of 

DNA impairs gene induction by VP64, and that this effect can be reversed by targeted 

demethylation.  

Ultimately, I analyzed whether cells that are initially unresponsive to Sox1 

induction by VP64, but upregulate the target after additional targeting of Tet1 to the 

promoter, would exhibit a similar change in phenotype as cells that are responsive to 

the VP64 stimulus alone. To that end I performed a differentiation assay on NPCs, 

NPCs with VP64 targeted to the Sox1 promoter, and NPCs with additional Tet1 

targeting the same promoter. After 7 days, not only was the amount of neurons 

significantly higher after Sox1 induction with VP64 alone, compared to the control, but 

further increased significantly when VP64 was combined with Tet1 (Figure 17D).  
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Figure 17: Combination of dCas9-VP64 and dCas9-Tet1 leads to an increase in the amount of 
responsive NPCs. A Targeting Chromatin modifying enzymes to the promoter of Sox1 in NPCs with 
dCas9 leads to induction of Sox1 in a minor proportion of NPCs. B Targeting VP64 in combination with 

chromatin modifying enzymes leads to a significant increase in the number of Sox1 positive cells, 
specifically for Tet1. This effect appears to be DNA demethylation dependent. C The combination of VP64 
and Tet1 targeting leads to strong demethylation at the Sox1 promoter even in unsorted cells. D The 

number of Sox1 positive cells as assessed by ICC, as well as the number of neurons generated from 
unsorted NPCs is significantly higher when VP64 and Tet1 are targeted to the Sox1 promoter together. 
Data shown as mean + standard deviation of 3 (A+D) or 4 (B+C) biological replicates performed on 

different days in different clonal lines. * p-value < 0.05;.  
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Taken together, these results suggest that DNA methylation is a primary barrier 

to targeted activation of Sox1 expression in NPCs. By demethylation of DNA at the 

target site, this barrier can be overcome, as significantly more cells respond to the 

activation, when Tet1, but not dTet1 is targeted to the Sox1 promoter in addition to 

VP64. Moreover, these additional responders exhibit a similar change in phenotype as 

assessed by neuronal differentiation. 

3.4.3 DNA methylation as barrier to transcriptional engineering is not exclusive to 

Sox1 

Investigating the response of NPCs towards the activating stimulus of a TAF, I 

revealed DNA methylation to be a strong transcriptional barrier at the Sox1 promoter. It 

is however not clear, whether this phenomenon is specific for Sox1, or whether the 

same chromatin modifications are also relevant at other promoters. I therefore aimed to 

analyze potential epigenetic barriers at other developmental transcription factors that 

would be detrimental to the NPCs’ identity if activated mistakenly.  

I analyzed DNA methylation levels at the promoter of six different transcription 

factors associated with cell fate determination or used in reprogramming. These were 

Il1rn (a marker of progenitors from the hematopoietic lineage (Arend et al. 1998)), 

MyoD1, for reprogramming to muscle cells (Davis, Weintraub, and Lassar 1987), 

NeuroD4 and Neurogenin2 (Ngn2), both used for direct reprogramming to neurons 

(Berninger et al. 2007, Masserdotti et al. 2015), Nkx2-2, which is necessary for 

differentiation into pancreatic beta cells (Sussel et al. 1998), and Oct4, used amongst 

other factors for the generation of induced pluripotent stem cells (Takahashi and 

Yamanaka 2006). Four out of six of the analyzed promoters were strongly methylated, 

with varying densities of CpGs in the proximity to the TSS (Il1rn, MyoD1, Nkx2-2, Oct4), 

while NeuroD4 and Ngn2 exhibited very low levels of the DNA modification (Figure 

18B).  

I designed two gRNAs for each of the six promoters, each pair at least 100bp 

apart, and cloned them pair wise into gRNA expression vectors as described in chapter 

2.2.1.2. I then transfected these plasmids into NPCs expressing dCas9-VP64. To 
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analyze the amount of cells that upregulated transcription of the respective target, I 

performed ICC and counted the amount of NPCs positive for each target. The number 

of responsive cells varied strongly for the different targets, ranging from below 5% 

positive cells (Ngn2) to around 50% positive cells (NeuroD4), as depicted in Figure 18. 

However, the amount of responsive cells did not seem to correlate with the levels of 

DNA methylation, as the two targets that were unmethylated produced the strongest 

and weakest effect respectively. 

To test whether DNA demethylation could increase the amount of cells 

upregulating the different targets, I transfected dCas9-Tet1 and dCas9-dTet1 as control, 

in addition to the respective gRNA expression constructs, to NPCs expressing dCas9-

VP64. Cells were selected for expression of the transfected dCas9 fusion proteins and 

analyzed 8 days after transfection. Additional targeting of dCas9-dTet1 did not have a 

significant effect on the number of responsive cells, as determined by ICC, for any of 

the targets (Figure 18C+D). Targeting dCas9-Tet1 to the different promoters did 

however significantly increase the number of positive cells for some, but not all of the 

targets. Interestingly, the number of NPCs that upregulated the expression of NeuroD4 

and Ngn2 respectively, did not significantly increase with additional targeting of the DNA 

demethylase (Figure 18C+D). The reason for this effect most likely lies in the low levels 

of methylation at those promoters. Gene induction efficiency by targeting the other four, 

strongly methylated promoters, did however change upon presence of Tet1. In each 

case, the amount of responsive NPCs increased significantly when the promoter of the 

target was demethylated with Tet1 (Figure 18C+D). 

Taken together, these results show that DNA methylation is acting as a barrier to 

transcriptional activation not only at the Sox1 promoter, but also at the promoters of 

other developmental transcription factors. This regulatory mechanism however 

presupposes DNA methylation at the respective target region. In case of Ngn2 and 

NeuroD4, demethylation of the target DNA did not increase the response of NPCs – it is 

nevertheless noteworthy that in the case of Ngn2, there seemed to be a different barrier 

to activation, since even in the absence of DNA methylation, only a small subset of 

NPCs reacted to transcriptional activation at this promoter. 
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Figure 18: DNA methylation as 
barrier to transcriptional editing 
is not specific to Sox1. A gRNA 
positions at target genes. B 

Average DNA methylation levels at 
target promoters. C Amount of 

marker positive cells, assessed by 
ICC, after targeting VP64 alone or 
in combination with dTet1 or Tet1 
respectively to the different target 
promoters. Data shown as mean + 
standard deviation of three 
biological replicates in different 
clonal lines performed on different 
days. D Representative ICC 

images. * p-value < 0.05; *** p-
value < 0.001 
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3.5 Identification of regulatory domains at the Sox1 locus 

It is clearly established that gene promoters and distal regulatory elements like 

enhancers play important roles in the regulation and activation of genes. These regions 

can be predicted based on the chromatin state and certain sequence motifs, but clear 

definitions of what constitutes such regulatory elements of genes are still lacking. We 

therefore aimed to characterize the Sox1 locus in a broad range and identify potential 

enhancers and repressors by epigenetic screens. 

For this approach, I designed 6000 gRNA sequences targeting the Sox1 locus in 

a range of 200kb in the mouse genome (mm10, genomic coordinates chr8:12,295,501-

12,495,500; Figure 19). As quality control for screening approaches, I included 500 

negative gRNA sequences, targeting either a different genome or genes unrelated to 

Sox1, or lacking a PAM. These sequences were purchased from a company and cloned 

as a pool into lentiviral gRNA backbones (as described in chapter 2.2.1.2), and a 

lentiviral library, from here on denoted as Sox20000. I employed this library in two 

different approaches using either VP64 or different chromatin modifying enzymes 

tethered to dCas9 as effector domains.  

3.5.1 VP64 Screen: Identification of distal regulatory elements 

 

Figure 19: Sox20000 library positions. Distribution of gRNAs in the Sox20000 gRNA library, covering the Sox1-

locus over 200000bp. 
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In a first screen, VP64 was employed to validate the reliability of the screening 

approach and to identify candidate distal regulatory domains for Sox1. Sox1wt/GFP NPCs 

stably expressing dCas9-VP64 were transduced with the Sox20000 library lentivirus at 

an MOI of 0.4. This approach ensured a high amount of cells receiving only one, not 

multiple gRNAs, limiting potential false positive reads by contamination of cells with 

negative gRNAs. To prevent biases in the delivery of gRNA sequences, 1.5 million cells 

were transduced, so that at the given MOI around 100-fold representation of each 

gRNA sequence in the library would be achieved. Cells were selected for gRNA 

expression as described in chapter 2.2.1.2, expanded, and GFP expression was 

analyzed via Flow cytometry 7 days after gRNA transduction (Figure 20A). At this stage, 

transduced NPCs did not differ strongly from untransduced control samples (Figure 

20B). To enrich GFP expressing cells, 10 million NPCs were sorted with the sorting gate 

set to the highest 5% cells in GFP expression of the control sample. Sorted cells were 

expanded again to 10 million cells and subsequently resorted to further enrich for 

positive cells and deplete false positives. In the second sort, the sorting gate was set to 

the highest 2.5% GFP-positive cells in the untransduced control. NPCs were again 

expanded and sorted a third time, with the sorting gate was set to the highest 0.5% 

GFP-positive cells in the control sample (Figure 20A). The continuous narrowing of the 

sorting gates allowed enrichment of strictly Sox1GFP-positive NPCs (Figure 20A). From 

each sorting step, including unsorted NPCs, 1 million transduced cells were subjected 

to sequencing. DNA was isolated, the gRNA locus amplified, and the sequencing library 

prepared as described in chapter 2.2.5.3. Figure 21A shows the bioanalyzer trace of an 

exemplary sequencing pool. 
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Figure 20: Enrichment of 
Sox1

GFP
-positive cells over three 

subsequent sorts. A 

Experimental setup for all screens. 
NPCs stably expressing a dCas9-
effector fusion protein were 
transduced with the gRNA library, 
and sorted three times with 
increasingly stringent gates. B At 

the first sort, transduced and 
untransduced samples were 
comparable, while transduced 
samples exhibited a clear 
enrichment of GFP-positive cells at 
the time point of the third sort. 

 

To assess the quality of the gRNA library, the reads from unsorted NPCs were 

demultiplexed, aligned to the mouse genome, and the relative abundance of each 

gRNA sequence calculated. Only one sequence from the in silico designed gRNA pool 

was absent in all samples. Furthermore, the reads exhibited distribution over the locus 

comparable to the theoretical design. This indicated that no large biases were 

introduced to the library during cloning, preparation of the virus, or transduction of NPCs 

(data not shown). 
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To further investigate the quality of the FACS setup for the screen, reads from 

triple sorted samples were analyzed for the presence of negative control sequences. 

Only one negative gRNA sequences was significantly enriched over the control 

samples, while all others were virtually absent after three sorting steps. Interestingly, the 

enriched gRNA sequence was a Sox1 targeting sequence with a missing PAM (see 

library design, chapter 2.2.1.2). In all, this supported the enrichment of truly GFP-

positive cells by subsequent sorts. 

To determine potential candidate gRNAs activating transcription of Sox1, gRNA 

sequences with a significant increase in their relative abundance between the unsorted 

samples and one or three sorting steps respectively were identified. The enrichment of 

each significantly regulated gRNA was plotted versus the relative location to the Sox1 

TSS (Figure 21B). This revealed a uniform enrichment of gRNAs over the whole 

analyzed region, with no obvious candidate regulatory regions. This included the 

promoter region, a target that has been shown to induce Sox1 expression (chapter 3.2).  

 

 

 

 

 

 

 

 

 

Figure 21 (next page): gRNAs are equally enriched over the Sox1 locus. A The bioanalyzer file of the sequenced 
pool shows a single peak at the expected size (261bp). B Enrichment of significantly regulated gRNAs after one sort 
(B’) or three sorts (B’’) did not reveal obvious regulatory elements at the Sox1-locus. Candidate gRNA sequences for 
hit verification are highlighted in red and with red arrows. 
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Five gRNA sequences from the triple sorted, significantly enriched sequences 

were chosen randomly in addition to one significantly enriched gRNA at the Sox1 

promoter. These sequences were cloned as single gRNAs into expression plasmids as 

described in chapter 2.2.1.2. In addition, two gRNA sequences that were significantly 

depleted after three sorts were cloned as negative controls. To verify the functionality of 

the gRNA hits, each of the plasmids was transfected into dCas9-VP64 expressing 

NPCs, and the amount of GFP positive cells measured after 8 days via flow cytometry. 

Five out of six gRNAs led to higher numbers of GFP positive cells compared to the 

negative control gRNAs. This indicated that even though the enriched gRNAs seemed 

to be randomly distributed, enriched sequences were in fact functional. 

 

Taken together, these results show that by triple sorting of transduced NPCs for 

GFP expression, false positive hits can be depleted, and functional sequences identified 

reliably. Based on the chosen way to analyze sequencing data, an identification of the 

most promising hits or candidate regulatory regions is difficult, because no obvious 

candidate regions appear in the pattern of significantly enriched gRNAs. The analysis 

could therefore profit from being refined; a more stringent selection of candidate gRNAs 

could potentially reveal clusters by depletion of hits in less potent regions. In addition, 

the investigation of unsorted NPCs reveals that almost all sequences designed in silico 

Figure 22: gRNA 
candidates are 
functional. Five out of 

six randomly chosen 
gRNAs, including one 
targeting the Sox1 
promoter (candidate 
gRNA 6), induce 
Sox1

GFP
 expression. 

This verifies the 
reliability of the hit 
identification. 
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are present in the actual lentiviral pool, and that no strong biases were introduced 

during library preparation or transduction. 

3.5.2 Future Experiments 

To identify distal elements that regulate Sox1 expression through chromatin 

features, I performed the screen with the same library in NPCs expressing dCas9 

tethered to one of three chromatin modifying enzymes. These can manipulate chromatin 

features and change modifications to a state correlated to active gene transcription by 

either demethylation of H3K9 by Jmjd2a, methylation of H3K4 by Set7 or acetylation by 

p300. These enzymes have been shown to induce transcription when targeted to the 

promoter of a gene (Figure 16), but it is not yet clear whether the same manipulations in 

distal regulatory elements can achieve the same effect. 

To that end I performed the screens in the same way as described for dCas9-

VP64. Briefly, NPCs were transduced with the gRNA library virus at an MOI of 0.4 and 

sorted three subsequent times to enrich for GFP positive and deplete negative cells. 

From each sorting step, 1 million cells were subjected to sequencing of the integrated 

gRNA locus to identify targets of the chromatin modifiers that lead to gene induction. 

While the analysis of the sequencing data is still pending, this allows to identify 

regulatory chromatin features in the locus of Sox1 and might ultimately even help to 

further the understanding and definition of regulatory elements. 
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4 Discussion 

4.1 Sox1 is instructive for neuroepithelial cell identity 

Many members of the Sox family of transcription factors have been shown to be 

potent master transcription factors playing fundamental roles during development. While 

Sox10 for example is important for neural crest development (Kelsh 2006), recent 

studies on Sox2 have described its capability to induce pluripotency, even on its own 

(Liu et al. 2018), when induced in somatic cells. Furthermore, some of them are 

pioneering factors and as such able to bind even tightly compacted chromatin to induce 

gene transcription (Kamachi and Kondoh 2013). Sox1 on the other hand, another 

member of the same subfamily as Sox2 (SoxB1), is relatively understudied: It is clear 

that its expression pattern during embryonic development is highly specific for the 

neural lineage, and that it marks a population of neurogenic progenitor cells in the adult 

subventricular zone and hippocampus (Aubert et al. 2003, Venere et al. 2012). 

Furthermore, overexpression of Sox1 in NPCs in vitro significantly increases neuronal 

differentiation potential (Kan et al. 2004). Based on these findings, and considering the 

potential of other Sox transcription factors, an instructive role for Sox1 during 

development seems likely. Direct proof for its pioneering potential or reprogramming 

capabilities is however still lacking, and it is not clear, whether it classifies as master 

transcription factor, able to impose a NSC identity on a cell by overexpression or other 

means. 

Here, I investigated the impact of Sox1 induction in strictly Sox1 negative NPCs, 

corresponding to a developmental stage of glial progenitor cells. These cells differ from 

Sox1 expressing NSCs in their transcriptional patterns, their morphology, and their 

differentiation potential. qPCR, flow cytometry, ICC, and Western Blot analysis 

confirmed strong expression of Sox1 in NPCs after targeting of the trans-activating 

domain VP64 to its promoter, and that the majority of cells that activated Sox1 

expression did not lose it again over time. This is reminiscent of reprogramming factors 

that have been shown to introduce a new cell identity stably, even when the expression 

plasmid of the initial reprogramming factor is lost again (Hobert 2008). Reprogramming 
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approaches based on transcriptional induction of reprogramming factors rather than 

ectopic overexpression moreover showed a fundamental remodeling of chromatin 

features at the promoters of the respective reprogramming genes (i.e. H3K27 

acetylation and H3K4me3)(Black et al. 2016, Liu et al. 2018). I observed a similar 

remodeling also at the Sox1 promoter, albeit for other features, indicating a substantial 

intrusion in the cell intrinsic transcriptional regulation. Despite these similarities, I can 

however not conclude the behavior of NPCs upon loss of targeted Sox1 induction from 

my experiments, because I used stable expression of all components of the TAF during 

all long-term experiments. 

Furthermore, when differentiated for seven days in an undirected manner, NPCs 

expressing Sox1 gave rise to a significantly larger amount of Tuj1 positive immature 

neurons, compared to control NPCs. This is in line with the overexpression phenotype 

that was earlier reported for Sox1 and confirmed the functionality of the employed TAF. 

Further analysis of the subtype of the generated neurons after prolonged differentiation 

revealed that around 70% are positive for the marker of glutamatergic excitatory 

neurons, vGlut1, while ca. 15% expressed Calbindin, a marker of gabaergic inhibitory 

neurons.  During embryonic development, both of these subtypes originate in the 

ventricular zone, and are generated from Sox1 positive aRGCs during the second wave 

of neurogenesis, direct descendants of NSCs (Jiang and Nardelli 2016). In line with 

these findings, Zhu and colleagues have shown that Sox1 positive neuroepithelial cells 

derived from human ESCs give rise to a similar proportion of glutamatergic to gabaergic 

neurons (76%±3.1% and 21.5%±8.9% respectively) (Zhu et al. 2016). Furthermore, the 

proportion of produced neurons of the two subtypes corresponds to neural 

development, where a majority of newborn neurons are radially migrating excitatory 

glutamatergic neurons (Marín and Müller 2014). The resemblance of early born neurons 

indicates that the Sox1 expressing NPCs that gave rise to those neurons were indeed, 

at least partially neuroepithelial in character. This in turn underlines the potential cell 

fate instructing role of Sox1. 

The results of long term differentiation of NPCs were corroborated by the results 

of the transcriptome analysis following Sox1 induction. Over 1500 genes exhibited 

significant differential expression with a more than 4-fold change in transcript levels, 
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indicating a pronounced shift in cell identity induced by Sox1 expression. A more 

detailed analysis of the evoked transcriptional changes revealed a resemblance to the 

differences between truly Sox1 positive NSCs and Sox1 negative NPCs. This effect was 

in particular observed for significantly upregulated genes following Sox1 induction. Most 

of these transcripts were also significantly higher in NSCs and NRs, the in vitro correlate 

of the cells lining the neural tube, NECs, compared to NPCs. Many of the upregulated 

genes have been shown to be specific for Sox1GFP positive in the E10.5 embryo (e.g. 

Nestin, Vimentin (Aubert et al. 2003)). Moreover, four out of six neuroepithelial markers 

that are specifically expressed in neural stem cells during early embryonic development 

(Nocht1, Nestin (Higuchi et al. 1995, Lendahl, Zimmerman, and McKay 1990)), or 

different epithelial cells throughout development, including neuroepithelial tissue 

(Occludin, Zo-1 (Hirase et al. 1997, Aaku-Saraste, Hellwig, and Huttner 1996)), were 

significantly enriched on protein level in the Sox1 positive NPC population. Taken 

together, these results reveal a pronounced change in transcriptional patterns of NPCs 

elicited by Sox1 expression. This change indicates a shift in the cells’ identity, and this 

newly instructed identity exhibits attributes that are characteristic for NSCs. This in turn 

implies a cell fate determining role for Sox1 and suggests that it indeed acts as a 

developmental master transcription factor. 

It is however noteworthy that the shift of NPCs towards a NSC-like identity was 

only partial. Firstly, even though four neuroepithelial markers were significantly 

upregulated following Sox1 induction, as assessed by ICC, two other markers were still 

not expressed at detectable levels. These markers were E-Cadherin, a cell-cell 

adhesion glycoprotein that is specifically expressed in epithelial cells, and Cd133, which 

in the neural lineage is specific for early neuroepithelial cells (Uchida et al. 2000). 

Furthermore, the transcriptome data reveal that even though the majority of the 100 

most upregulated genes in NPCs after Sox1 induction resembles those of NSCs, this 

similarity was far less pronounced in the 100 most downregulated genes. In addition, 

levels of upregulated genes in NPCs did often still not reach the levels in NSCs. 

Hierarchical clustering and principal component analysis of transcriptomes exhibited 

that the developmental Sox1 expressing stage (i.e. NSCs and NRs) clustered apart 

from NPCs with induced Sox1 expression.  
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Taken together, I was able to substantiate the hypothesis that Sox1 is a master 

transcription factor with the potential to instruct a shift in the identity of NPCs. This shift 

was, albeit directed towards NSCs, only partial. The reasons for this could be manifold. 

It has for example been shown to be beneficial for reprogramming efficiency to combine 

various transcription factors for optimized efficiency. The efficiency of inducing 

pluripotency for example is lower when using only Sox2 or Oct4, compared to the 

original combination of four factors (Takahashi and Yamanaka 2006, Liu et al. 2018, 

Kim et al. 2008). Likewise, first approaches in neuronal reprogramming relied on the 

combination of Ascl1, Brn2, and Myt1l to reliably generate neurons from fibroblasts, an 

approach that is still being used up-to-date (Vierbuchen et al. 2010, Black et al. 2016). 

Similarly, it could be that Sox1 alone is not sufficient to completely convert Sox1-

negative NPCs to NSCs. Furthermore, even though stronger induction using VPR did 

not help in increasing the number of responsive cells (as shown in Figure 13D), it did 

induce Sox1 to higher levels. RNAseq revealed that Sox1 levels in the Sox1GFP positive 

is significantly higher than in the baseline, but also still significantly lower than in Sox1 

positive neural stem cells (data not shown). Higher levels that could be reached by a 

stronger tool could therefore also help to increase the extent of the phenotypic shift. It 

seems however obvious that the strong potential of Sox1 can be detrimental to neural 

development if errors in its expression arise. This is in line with a study that linked high 

levels of Sox1 with different neurological disorders. Even though the prevalence of 

patients with increased Sox1 levels was low, it indicates a role of Sox1 not only in 

neural development, but also in disease (Berger et al. 2016).  It therefore seems likely 

that Sox1 expression is tightly regulated to interfere with erroneous expression. 

4.2 DNA methylation serves as transcriptional barrier at several 

master transcription factors 

Since the development of dCas9 as a shuttle for effector domains in 2013, the 

system has been widely used to deliver trans-activators to gene promoters for targeted 

gene induction (Black et al. 2016, Chavez et al. 2015, Liu et al. 2018, Perez-Pinera et 

al. 2013). The corresponding studies soon revealed that the effect of targeted activation 

varies strongly (to about 4 magnitudes between very inefficient and highly efficient 
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trans-activation) between different target genes, but the molecular mechanisms leading 

to the observed discrepancies have not been investigated so far. And despite recent 

studies using TAFs to induce transcription of endogenous reprogramming factor genes, 

most approaches to date employ ectopic over-expression of reprogramming factors, 

thusly circumventing barriers at the respective promoters. This work is therefore one of 

the first studies to examine the effect of targeted gene induction on single cell level, and 

to analyze the cell-intrinsic barriers that are the basis for the heterogeneous response to 

the targeted induction of a master transcription factor. 

Strikingly, my results demonstrated a strong reluctance of NPCs to targeted Sox1 

induction by dCas9-VP64. This came as a surprise, because the extent of the evoked 

changes in responsive NPCs demonstrates that the employed TAF possesses high 

activating potency. Still, VP64, and even the more potent VPR were not able to 

overcome the transcriptional barriers present in unresponsive cells. On the one hand, 

these findings make low efficacy as reason for the unresponsiveness in the majority of 

NPCs unlikely (as discussed below in more detail). On the other hand, they further 

substantiate the hypothesis that as a master transcription factor, Sox1 needs to be 

tightly regulated to withstand erroneous activation in the wrong settings. 

By separating Sox1GFP positive and negative cells I was able to investigate the 

chromatin landscape at the promoter of Sox1 and deduct potential causes for the 

discrepancy in the response to Sox1 induction. I analyzed three different chromatin 

modifications that are by and large correlated to repressed genes: H3K27me3 is a mark 

that is regulated in a rather dynamic manner and is set at gene promoters already 

shortly after silencing (Ferrari et al. 2014). It can furthermore be found at the promoter 

of poised genes; these genes carry bivalent chromatin features at their promoters (most 

commonly H3K4me3 and H3K27me3), a condition that allows for quick gene induction 

(Vastenhouw and Schier 2012). In contrast, H3K9me3 is a mark for highly compacted 

and silenced heterochromatin and correlates to a more substantial gene repression 

(Schotta et al. 2004). The relation between DNA methylation and gene transcription is 

more complex; in general DNA-demethylation at a gene promoter is correlated with 

expression of the respective locus (Feng et al. 2010, Zemach et al. 2010). Accordingly, 

low levels of H3K27me3, paired with higher levels of H3K9me3 at the Sox1 promoter 
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indicate a robust repression of this gene. This finding is further underlined by the fact 

that Sox1GFP positive NPCs have significantly lower levels of the latter mark at the Sox1 

locus.  

I further focused on DNA methylation as a potential barrier to gene induction, 

because there was a pronounced difference between responsive and unresponsive 

cells in DNA methylation levels at the Sox1 promoter. The comparable levels of DNA 

methylation at the Actc1 promoter before and after gene induction by VP64 suggests 

that the difference at the Sox1 locus is not simply the consequence of the presence of 

VP64 at a gene promoter, or of active transcription, but might indeed be causal for the 

response in NPCs with low DNA methylation levels. Moreover, combining the targeting 

of dCas9-VP64 with dCas9-Tet1, a DNA demethylating enzyme, led to a significantly 

increased proportion of Sox1GFP positive NPCs, an effect that was a) dependent on the 

catalytic activity of Tet1, as dTet1 did not elicit any effect, and b) was reproduced by the 

inhibition of DNA methyltransferases Dnmt1 and 3 by application of Zebularine, 

underlining the necessity of DNA demethylation for the effect of Tet1. While DNA 

methylation has been correlated to gene repression, and targeted demethylation can 

de-repress genes (Liu et al. 2016), this study is the first to show direct proof that DNA 

methylation interferes with targeted gene activation. These findings indicate that DNA 

methylation plays an important role in the upkeep of specific Sox1 expression patterns 

during development, a finding that corroborates recent implications of this particular 

chromatin mark in neural cell fate decisions (reviewed in (Stricker and Götz 2018)). 

Several studies discussed in this review implicate that temporal change of DNA 

methylation in NSCs during embryonic development lead to changes in the expression 

of cellular programs (Takizawa et al. 2001, Sanosaka, Namihira, and Nakashima 2009, 

Lee, Hore, and Reik 2014). This in turn leads to a temporal resolution of lineage 

commitment and has been suggested to be the reason for e.g. the late onset of 

gliogenesis (Takizawa et al. 2001). 

Importantly, I discovered a similar role of DNA methylation in the regulation of 

additional master transcription factors, two of which have been successfully used in 

reprogramming, namely MyoD1 and Oct4 (Davis, Weintraub, and Lassar 1987, 

Takahashi and Yamanaka 2006). It is therefore obvious that this principle is not specific 
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for Sox1 or the neural lineage. My findings could thus be of broad interest in the field of 

reprogramming, because an increasing amount of reprogramming approaches relies on 

targeted induction of reprogramming genes by trans-activators tethered to dCas9, rather 

than ectopic expression of the reprogramming factors. DNA methylation, but also other 

chromatin features (see also next chapter) can potentially interfere with the 

transcriptional activation of reprogramming factors and thereby be detrimental to the 

efficiency of reprogramming in a similar manner as observed in this study. In such 

cases, combination of transcriptional engineering with epigenetic editing would be a 

major benefit, and might even render the need for exceedingly potent TAFs 

unnecessary (as discussed below). The result of targeted trans-activation of NeuroD4 

respectively shows however that this combination is not necessarily needed (as 

NeuroD4 can readily be activated by VP64 alone). In any case, DNA methylation at the 

target region is a substantial factor for the impact of Tet1 on gene induction. 

Of note, the mechanism that underlies the ability to resist targeted gene induction 

by high DNA methylation levels still remains unknown. It is however clear that VP64 

recruits cell intrinsic proteins, such as other transcription factors, to facilitate 

transcriptional activation (Wysocka and Herr 2003). I therefore searched the Sox1 

promoter region for predicted transcription factor binding sites and indeed binding 

motives of several transcription factors are present. Further analysis revealed that of 

these transcription factors some have been shown to exhibit DNA methylation sensitive 

binding, and to play important roles during neural development, namely YY1, Sp1, and 

E2F-1 (Campanero, Armstrong, and Flemington 2000, Cooper-Kuhn et al. 2002, Zhu et 

al. 2003, He et al. 2011, He and Casaccia-Bonnefil 2008). Interestingly, the promoters 

of Nkx2-2 and Pou5F1 also feature binding motives for YY1 or YY1, Sp1, and E2F-1 

respectively. RNAseq revealed that these factors are indeed expressed in all 

investigated states of NPCs and NSCs. Furthermore, while YY1 and Sp1 are 

significantly lower in NSCs, NRs, and Sox1GFP-positive NPCs compared to baseline 

NPCs, E2F-1 behaved the other way around (Data not shown). Taken together, this 

suggests potential common actors that mediate trans-activation dependent on DNA 

methylation levels. Even though other factors might be relevant in the context of DNA 

methylation barriers, these transcription factors might be good candidates to further 
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investigate; ChIP-qPCR for example could give important cues on whether their 

recruitment is dependent on demethylation their respective binding sites. 

Another point worth noting in regard of DNA methylation as transcriptional barrier 

is the density of CpGs at the different targets analyzed in this thesis. NeuroD4 and 

Actc1 both have a low number of CpGs in the investigated region in specific, and the 

promoter locus in general. Both genes could be readily activated, and interestingly 

independently of the methylation levels. Furthermore, gene activation did not entail 

Demethylation at the Actc1 locus. This is in line with studies that insinuate only little 

functional relevance to DNA methylation in CG-poor promoters (Schübeler 2015). The 

promoters of Sox1, Oct4, Ngn2, and Nkx2-2 on the other hand did exhibit a higher 

density of CpGs. These four loci displayed a significantly restricted response to targeted 

gene induction, again independent of DNA methylation levels, a finding that has so far 

not been shown in the literature. Noteworthy, two of the investigated loci even have 

annotated CpG-islands, which are DNA regions with a minimum C+G content (e.g. 

50%) and CpG density over a certain DNA length (e.g. 400-500bp) (Illingworth and Bird 

2009). These thresholds are however arbitrarily defined, and even though Oct4 and 

Nkx2-2 do not possess annotated CpG islands, they exhibited similar behavior to 

targeted activation as those promoters with annotated CpG islands (Sox1 and Ngn2). It 

might therefore be necessary to refine the definition of these regulatory elements to 

class them according to their function. It needs to be stressed however that based on 

the small number of analyzed promoters, no significant pattern can be deducted, and 

further investigations are required to support this claim.  

4.3 Additional epigenetic barriers against activation of transcription 

Interestingly, even though demethylation at the Sox1 promoter led to a significant 

increase in trans-activation efficiency, a major amount of NPCs still remained 

unresponsive to Sox1 induction, even though DNA methylation level dropped to below 

5% in all cells (Figure 17). This implies that even though DNA methylation potentially 

regulates Sox1 transcription, and furthermore safeguards the gene against 

unphysiologic activation, it seems to be not the only barrier present at the Sox1 
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promoter. This is further supported by the behavior of Oct4, MyoD1, Il1rn, and Nkx2-2 

upon combined targeting of dCas9-VP64 and dCas9-Tet1 to their respective promoters. 

Even though DNA demethylation of the highly methylated, CpG-rich promoters did 

increase gene induction facilitated by VP64, in all cases a significant amount of NPCs 

did not react with activation of the respective target, underlining the probability of other 

barriers being present. Furthermore, targeting VP64 to the promoter of Ngn2 was not 

successful, as NPCs did not respond with target induction, even though the CpG rich 

promoter exhibits only very low levels of DNA methylation. Collectively, it is therefore 

evident that even though important, DNA methylation is not the only barrier 

safeguarding cell identity. 

Of the analyzed set of chromatin features at the Sox1 promoter, H3K9me3 could 

potentially act as a transcriptional barrier, as it was present in high levels, comparable to 

those at the promoter of a repressed control gene. Furthermore, its levels were 

significantly lower in Sox1GFP positive NPCs. Nevertheless, combining targeted gene 

induction via dCas9-VP64 with the H3K9-demethylase Jmjd2a fused to dCas9 did not 

lead to a significant increase in activation efficiency. Whether the lack of effect is due to 

incomplete histone demethylation, or due to a lack of functionality of the chromatin 

mark, at least in this context, cannot be inferred from this data. ChIP-qPCR on NPCs 

following targeting of Jmjd2a to the Sox1 promoter to investigate whether H3K9me3 

levels are decreased could shed light on this specific question. 

H3K27me3 is an important repressive chromatin mark in the context of poised 

gene promoters and is correlated to dynamic changes in gene transcription (Ferrari et 

al. 2014, Vastenhouw and Schier 2012)). It does however not seem to play an important 

role in the regulation of Sox1, as levels were almost not detectable at the gene locus. 

The findings on H3K9me3 and H3K27me3 collectively indicate a substantial, rather than 

dynamic repression of Sox1 (as discussed above). 

There are many chromatin features, for which the investigation was beyond the 

scope of this thesis, but which could be relevant in the regulation of master transcription 

factors, and thereby the upkeep of cell identities. H3K9me3 for example has been 

correlated to highly compacted and silenced heterochromatin (Schotta et al. 2004), and 
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it has been shown to perform lineage-specifying functions during development, where it 

represses lineage specific genes as long as they are not in need and silence 

pluripotency or stem cell genes as soon as they are not longer transcribed to allow the 

cell further differentiation (Nicetto et al. 2019). In line with these results, the levels of this 

mark at the Sox1 promoter of Sox1GFP-positive and –negative NPCs suggest that 

H3K9me3 might infact play a role in silencing and compacting the proneural gene 

during the transition of NSCs to glial precursors. Therefore it could be interesting to 

further look into chromatin accessibility at the Sox1 promoter between Sox1GFP positive 

and negative NPCs. In addition, its silencing function could take over when the Sox1 

promoter loses other barriers like DNA-methylation to keep the integrity of the cells 

intact. This could explain the substantial number of unresponsive cells that are present 

even after complete demethylation of the Sox1 promoter (Figure 17A+C). 

It is furthermore likely that not only the promoter region of the gene locus 

possesses a regulatory function on the transcription. Distal regulatory elements might 

regulate a gene in a similar manner as barriers at its promoter. I therefore performed 

screens with VP64 and different chromatin modifying enzymes tethered to dCas9 in 

order to identify candidate regulatory regions around the Sox1-gene. While the analysis 

did not reveal explicit, clearly defined regions with regulatory functions (Figure 21), the 

verification of the activating potential of six randomly chosen gRNA candidates from the 

VP64 screen indicates that I was indeed able to isolate functional gRNAs from the 

library. By refining the method of analysis it will likely be possible to identify regulatory 

regions from the four different modifiers employed, which in turn will give valuable 

information on functional chromatin networks and gene regulation. 

4.4 The chromatin model of epigenetic gene regulation 

To date, many publications have shown correlations between certain chromatin 

modifications and different transcriptional states. This is also the case for DNA 

methylation, which is associated with repressed genes when present in CpG-rich 

regions in the promoter of the respective gene. Low levels of DNA methylation in gene 

promoters on the other hand have been implied in active gene transcription (Grosjean 
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2009). In conflict with these correlations are studies in ESCs lacking all DNA 

methylation and hydroxymethylation by triple Dnmt knock-out. These cells did not 

exhibit any changes in their transcriptome, indicating that the expected de-repression by 

lack of DNA methylation did not take place. Upon differentiation however, the knock-out 

cells died (Domcke et al. 2015, Verma et al. 2018). It appears thusly that only when the 

transcriptional patterns in a cell need to undergo profound alterations, in this case when 

ESCs exit pluripotency and commit to embryonic lineages, missing DNA methylation will 

lead to gene misregulation. This is further supported by my findings upon inhibition of 

Dnmts with Zebularine, where the resulting reduction of DNA methylation on a global 

level did not affect NPCs in any obvious way. Upon targeted induction of Sox1, global 

demethylation did however lead to a significant increase in the amount of responsive 

NPCs. This indicates that on the one hand, DNA methylation is a potent barrier of 

transcription, confirming previously described correlations. On the other hand, without 

an external stimulus (i.e. a stimulus from outside the cellular context, as it also appears 

during differentiation) the removal of that barrier does not induce any phenotype. This is 

furthermore shown by the NeuroD4 promoter, where the lack of DNA methylation only 

comes into effect when an external stimulus activates transcription of the gene. This 

suggests that even though a causal role for DNA methylation seems obvious, the 

correlation is not as linear as might be expected, and a complex connection exists 

between chromatin features and gene transcription.  

In line with this complex relationship between DNA methylation and transcription, 

my findings do not support a direct correlation of the methylation status and trans-

activation at the Actc1, Ngn2 and NeuroD4 loci. Despite the lack of the putative 

repressive chromatin modification while CpGs are found in the respective promoters, 

Ngn2 and NeuroD4 are not expressed in NPCs, as assessed by transcriptome analysis 

and ICC, an observation that is in line with earlier studies that showed that many CpG 

islands in gene promoters stay unmethylated independently of the transcriptional state 

of the respective gene (Weber et al. 2007, Mohn et al. 2008). Similar to the 

observations made by Domcke et al., the lack of DNA methylation at the NeuroD4 

promoter only comes into effect, when the gene is targeted by a trans-activator, while 

the Ngn2 locus is unresponsive even to such a manipulation. On the other hand, at the 
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Actc1 promoter, high DNA methylation levels (over 85% methylation at all analyzed 

CpGs) did not interfere with trans-activation of the gene via dCas9-VP64. Furthermore, 

induction of transcription in turn did not change the DNA methylation levels significantly. 

This promoter therefore seems to be independent of any functional potential that DNA 

methylation might exert at other loci, probably due to the low density of CpGs that have 

earlier been linked to a lack of function (Schübeler 2015). 

Taken together, the results shown in this thesis generally confirm functional 

implications of DNA methylation. In line with my findings, DNA methylation has been 

shown to play a substantial role in cell fate decision and survival in the neural lineage, 

and misregulation of this chromatin feature is related to psychiatric diseases like 

schizophrenia (reviewed in (Symmank and Zimmer 2017). At the same time, I clearly 

demonstrate that regulatory functions of chromatin features are part of a much more 

complex mechanism than simple correlations might suggest, and is locus-specific and 

dependent on external stimuli. This is in line with the mentioned functional studies from 

the Schübeler Lab (Weber et al. 2007, Mohn et al. 2008, Domcke et al. 2015). 

4.5 Implications for the dCas9 tool 

Recent publications on the binding behavior of Cas9 sparked discussions in the 

field on whether or not nucleosome occupancy at the target site could interfere and thus 

be detrimental to the binding efficiency of the nuclease (Hinz, Laughery, and Wyrick 

2015, Kuscu et al. 2014, O'Geen et al. 2015). The relevant studies focused on the wild 

type protein, while the mutant version (dCas9) has commonly been neglected. 

Therefore, the kinetics downstream of Cas9 binding has not yet been investigated in 

depth. Nevertheless, when used as a shuttle for an effector domain, knowledge of 

subsequent processes becomes substantial in order to estimate the efficiency of the 

desired effect.  

Herein I was able to show that even though NPCs react very heterogeneously to 

a trans-activating stimulus at the Sox1 promoter, all cells have comparable dCas9 

occupancy at the target site, independently of their phenotype. While this rules out 

defective binding as a reason for differential responsiveness, it also underlines the 
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possibility of additional factors modulating the potency of targeted effector domains 

downstream of their binding (e.g. chromatin barriers, see above). It is therefore 

substantial for the field to not only focus on optimization of binding efficiencies (e.g. by 

new or re-worked algorithms or analysis of Cas9 kinetics (Doench et al. 2014)) but also 

to investigate in more detail the mechanisms that interfere with trans-activation, and 

how these could be circumvented.  

My findings not only address potential obstacles of trans-activation, but also point 

out a profound divergence between the potency of a TAF to induce a target gene to 

high levels, and its efficiency to do so in a high amount of cells. Comparing the 

efficacies of VP64 and VPR on Sox1 induction, I was able to show that even though 

VPR leads to higher levels of mRNA, the number of responsive NPCs did not change. A 

number of recent methodical papers continually improved TAFs, with VPR being one of 

the most potent domains this far (La Russa and Qi 2015). However, the magnitude of 

trans-activation is mainly determined by qPCR and does not take single cell analysis 

into consideration. Even though this method appears laborious for verification of a trans-

activating domain, my results conclusively show confirmation on the single-cell level 

would indeed be an important aspect to take into account. This is especially relevant for 

experimental approaches that rely not only on the level of gene induction, but also on 

the number of responsive cells. Since the results presented in this work indicate that 

this issue is mostly relevant for master transcription factors, reprogramming approaches 

in particular will benefit from further advancement of dCas9-tools. 

Considering the functional proof for a gene regulatory role of DNA methylation 

and other chromatin modifications presented here and elsewhere, it would be of high 

interest to combine potent trans-activating domains like dCas9-VPR with chromatin 

modifying enzymes. Recent advances in the development of orthogonal methods would 

allow for elegant targeting of several effector domains with the same dCas9, and by that 

maximize spatial efficiency of the targeting machinery. For example, by tagging dCas9 

with a specific peptide sequence that contains 10 copies of an antibody epitope and 

linking VP64 to an antibody light-chain that recognizes this epitope, it is possible to 

target 10 trans-activating domains with only one dCas9 protein (Tanenbaum et al. 

2014). In a different study, a SAM loop was introduced into the gRNA stem loop. This 
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loop protrudes from the gRNA-dCas9 complex and can be bound by an MS2 binding 

protein, enabling the combination of three different effector domains to produce a potent 

TAF (Zhang et al. 2015). However, my findings suggest that merely enhancing the 

potency of targeted trans-activators further might not be the best approach to overcome 

barriers at gene promoters. The mentioned approaches would however allow for the 

combination of up to four different effector domains on one dCas9 protein when fused to 

the N- and C-terminal tail of dCas9 as well as the respective tags. This would open up 

the potential for highly intricate modifying complexes, which could manipulate the 

chromatin on several levels into a more admissive state and at the same time induce 

transcription of a target gene with high efficiency.  

4.6 Conclusion 

Taken together, my study underlines the importance of Sox1 as cell fate 

determining factor during neural development that has been suggested previously. Its 

potency to change the identity of NPCs at least partially to NSCs requires a tight 

transcriptional regulation. I identified DNA methylation at the promoter of such master 

transcription factors as potential barrier against trans-activation, a finding that does not 

only shed new light on the functional role of chromatin features, but also emphasizes 

the relevance of new approaches in transcriptional engineering (Figure 23). I showed 

that combination with epigenetic editing is a worthwhile method on this context.  



4 Discussion 

- 103 - 

 

 

Figure 23: Sox1 transcription is blocked by promoter DNA methylation in NPCs. I found that the 

induction of Sox1 and other master transcription factors by dCas9-VP64 is prevented by DNA methylation. 
Targeted Demethylation allows for gene induction with subsequent changes in cell identity (in case of Sox1 
to NSCs). 
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List of abbreviations 

(l)ncRNA (long) non-coding RNA 

5caC 5-Carboxymethylcytosine 

5fC 5-formylcytosine 

5hmC 5-hydroxymethylcytosine 

5mC 5-methylcytosine 

Actc1 Actin alpha cardiac muscle 1 

aRGC apical radial glia cell 

BDNF Brain-derived neurotrophic factor 

BER base excision repair 

bFGF basic fibroblast growth factor 

bp base pair 

BSA Bovine Serum Ablumin 

cAMP cyclic AMP 

Cas CRISPR associated protein 

cDNA complementary DNA 

ChIP Chromatin immuno precipitation 

CNS central nervous system 

CpG Cytosine-phosphate-Guanine 

CRISPR Clustered regularly interspaced palindromic repeats 

Ctcf CCCTC binding factor 

Dapi 4',6-Diamino-2-Phenylindole 

dCas9 deactivated Cas9 

DMSO Di-methyl-sulfoxide 

DNA Desoxiribonucleic acid 

Dnmt1 DNA methyltransferase 1 

Dnmt2 DNA methyltransferase 2 

Dnmt3 DNA methyltransferase 3 

dTet1 deactivated Tet1 

E2F-1 E2F transcription factor 1 

ECL Electrochemiluminescence 

EDTA Ethylendiamitetraacetic Acid 

EGF epithelial growth factor 
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ESC embryonic stem cell 

FACS Fluorescent Activated Cell Sorting 

Gapdh Glyceraldehyde 3-phosphate dehydrogenase 

GDNF Glial cell line-derived neurotrophic factor 

GFAP glial fibrillary acidic protein 

GFP green fluorescent protein 

gRNA guide RNA 

H2A/B histone 2 A/B 

H3 histone 3 

H3K4/9/27/36 Histon 3 lysine 4/9/27/36 

H3K4/9/27/36 me3 Trimethylation of histon 3 lysine 4/9/27/36 

HEK human embryonic kidney cells 

ICC immunohistochemistry 

IgG Immunoglobulin G 

Il1rn Interleukin 1 receptor antagonist 

Jmjd2a Lysine-specific demethylase 4A 

kb kilobases 

Klf4 Krüppel like factor 4 

LB medium lysogeny broth medium 

Map2 Microtubuli associated protein 2 

miRNA micro RNA 

MOI multiplicity of infection 

mRNA messenger RNA 

MyoD myogenic differentiation 1 

NEC neuroepithelial cell 

Ngn2 Neurogenin 2 

NGS next generation sequencing 

NPC neural progenitor cell 

NR neural rosette 

NSC neural stem cell 

NT3 Neurotrophin 3 

Oct4 Octamere binding factor 4 

ORF open reading frame 

PAGE  Polyacrylamide gel electrophoresis 



List of abbreviations 

- 122 - 

 

PAM protospacer adjacent motive 

PBS phosphate buffered saline 

PCA Principal Component Analysis 

PSC pluripotent stem cell 

qPCR quantitative PCR 

rcf relative centrifugal force 

RIPA radioimmunoprecipitaion assay 

RNA ribonucleic acid 

RNA-seq RNA Sequencing 

S100beta S100 calcium-binding protein B 

SDS Sodium Dodecyl Sulfate 

Set7 Histone-lysine N-methyltransferase SETD7 

siRNA small interfering RNA 

Sox1 Sex-determining-region-y-box 1 

Sox2 Sex-determining-region-y-box 2 

Sox3 Sex-determining-region-y-box 3 

Sp1 specificity protein 1 

Stagr String assembly gRNA 

TAD topologically associated domain 

TAF transcription activating factor 

TALE Transcription activater like effector 

TEMED N,N,N',N'-Tetramethyl ethylenediamine 

Tet Ten eleven translocation 

TH Tryptophane hydroxylase 

TSS transcription start site 

Tuj1 Neuron-specific class III beta-tubulin 

vGlut1 Vesicular glutamate transporter 1 

wt wild type 

YY1 Yin Yang 1 

ZNF Zinc finger protein 

Zo-1 zona occludens 1 
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