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Abstract 

 

Over the last two decades, the discovery of antibodies directed against neuronal surface 

antigens in patients with different forms of encephalitis has provided a basis for 

immunotherapies in previously undefined disorders. These important findings have raised 

questions regarding the role of neuronal antibodies in patients with other possibly immune-

mediated diseases. Nevertheless, the pathogenicity of specific neuronal surface antibodies has 

not been adequately demonstrated in animal models.  

The presence of neuronal surface antigens in other disorders was examined by three 

approaches in patients with narcolepsy type 1, in patients with chronic neurological conditions 

(temporal lobe epilepsy and patients with neurodegenerative disorders), and in healthy and 

other disease controls. To establish an animal model, antibodies against contactin-associated 

protein 2 (CASPR2) were injected intraperitoneally daily into mice that were given a single 

lipopolysaccharide injection to open the blood brain barrier. Behavioural performance was 

studied over five days, and the mouse brains carefully investigated for presence of bound 

antibodies and neuropathological changes. 

Overall, patients with central nervous system disorders showed a higher frequency of 

antibodies compared to controls, but no antibodies specific to any one disorder were identified. 

Mice with high serum CASPR2 antibodies showed altered working memory and anxiety-like 

behaviours only in a social context. There were human immunoglobulins bound to the brain 

parenchyma along with a mild Purkinje cell loss and astrocytosis in the cerebellum, increased 

c-fos expression in the piriform-entorhinal cortex and hypothalamus, and microglial and 

astrocyte activation. These results not only support a pathogenic role for CASPR2 antibodies 

but provide the first demonstration in this field that a brief opening of the blood brain barrier is 

sufficient to allow access of antibodies into the brain with behavioural and neuropathic 

consequences. These findings are of relevance to other neuronal antibodies and stimulate 

further work in the field. 
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Chapter 1: Introduction  
 

“…the organism possesses certain contrivances by means of which the immune reaction, so 

easily produced by all kinds of cells, is prevented from acting against the organism’s own 

elements and so giving rise to autotoxins…so that we might be justified in speaking of a “horror 

autotoxicus” of the organism. These contrivances are naturally of the highest importance for 

the individual.” 

 

With these words, in 1901, Paul Ehrlich proposed for the first time the idea that individuals 

might make antibodies that were toxic to themselves, posing the basis for the concept of 

autoimmunity (Ehrlich P, 1957). The mechanisms’ “contrivances” were subsequently defined 

as “tolerance”.  

As Burnet theorised “The need and the capacity to distinguish between what is 

acceptable as self and what must be rejected as alien is the evolutionary basis of immunology” 

(Burnet M, 1969). Tolerance is achieved through central and peripheral mechanisms. Central 

tolerance is established in the thymus, where developing lymphocytes undergo positive 

selection in the cortex before maturing and entering the circulation; in the meantime, 

lymphocytes with potential reactivity against self-peptides are negatively selected and deleted 

in the thymic medulla. Once in the periphery, mature T cells are subjected to a secondary 

selection (peripheral tolerance) by which the majority of self-reactive T cells are deleted or 

rendered anergic. If immature B cells express surface IgM that recognises ubiquitous self-cell-

surface antigens, they are eliminated by a process known as clonal deletion. Mature B cells are 

also under the control of peripheral tolerance.  

However, despite the strict vigilance of central and peripheral tolerance, small numbers 

of potentially self-reacting lymphocytes can still ‘escape’ into the periphery, even in otherwise 

normal individuals. The existence of these potential self-reactive T and/or B lymphocytes, and 

the ability of the B cells to produce autoantibodies, does not necessarily lead to pathology 

(Salinas GF et al. 2013). Accordingly, autoimmunity can sometimes be classified as 

‘physiological’ (Hang LM et al. 1997; Avrameas S and Selmi C, 2013). Physiological 

autoimmunity is usually transient, without evidence of clinical disease. This is exemplified by 

the presence of naturally occurring autoantibodies (Panda S and Ding JL, 2015), which help 

eliminate degraded self- and foreign antigens for maintenance of homeostasis. Therefore, to be 

defined as disease, the immune reaction needs to be associated with damage to the target tissue.  
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1.1 How to define autoimmunity: The Witebsky’s criteria 

 

Given the existence of naturally occurring auto-antibodies in the population, there is a need to 

apply specific criteria to establish the autoimmune nature of a disease. These criteria are based 

on the Koch/Witebsky postulates (reviewed in Rose NR and Bona C, 1993), which were later 

adapted to antibody-mediated diseases (Drachman DB, 1990), and are based on the following 

principles:  

1. Presence of auto-antibody or self-reactive lymphocytes during the clinical manifestation in 

the sera or affected tissue; 

2. Transfer of pathology by antibodies or lymphocytes from an affected individual to 

laboratory animals or to cells in culture;  

3. Experimental disease must show immunopathological lesions that parallel those in the 

natural disease.  

Three lines of evidence exist for the pathogenicity of autoantibodies: 

• Circumstantial - these include clinical observations such as a) presence of genetic 

susceptibility (i.e recurrence in the same family and HLA association); b) association of 

antibodies with a specific clinical phenotype; c) response to immunotherapy. 

• Indirect - reproduction of the autoimmune disease in experimental animals through active 

immunisation.  

• Direct - from transfer of pathogenic antibody from a human subject to experimental animals. 

1.2 Immunoglobulins structure and mechanisms of antibody-mediated autoimmunity 

  

Immunoglobulins (Ig) are made of two heavy (H) and two light (L) chains, where the L chain 

can consist of either a κ or a λ chain. Each component chain contains one NH2-terminal 

“variable” (V) domain and one or more COOH-terminal “constant” (C) domains. In humans, 

Ig are of five different isotypes: M, G, D, A, E, which differ in structure, concentration and 

functional features. The choice of isotype is dependent upon the antigen itself and the signaling 

pathways that are activated, as well as the local microenvironment (Janeway CA Jr et al. 2001).  

Immunoglobulin-antigen interactions take place between the paratope, the site on the Ig 

at which the antigen binds, and the epitope, which is the site on the antigen that is bound. In 

vivo, immunoglobulins tend to be produced against intact antigens in soluble form, and thus 

preferentially identify surface epitopes that can represent conformational structures.  
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IgGs are the main isotype found in the body and they have the longest serum half-life 

of all immunoglobulin isotypes. Papain digests IgG into two Fab fragments, each of which can 

bind antigen, and a single Fc fragment. Pepsin splits IgG into an Fc fragment and a single 

dimeric F(ab)2 that can cross-link as well as bind antigens.  

Based on structural, antigenic and functional differences in the constant region of the 

heavy chain, IgG are divided into four subclasses, numbered in reference to the rank order 

(IgG1>IgG2>IgG3>IgG4) of the serum levels of these antibodies in the blood of healthy 

individuals. The IgG subclasses exhibit different functional activities. Activation of the 

complement cascade is an important means of clearance of opsonized pathogens. Affinity for 

C1q, which is the first component of the complement pathway, differs between members of the 

IgG subclasses, IgG3>IgG1>IgG2, while IgG4 antibodies fail to fix complement. Within the 

secondary antibody response, there is skewing in the predominant subclass that is induced. For 

example, IgG1 and IgG3 antibodies are generally induced in response to protein antigens 

whereas IgG2 and IgG4 are associated with polysaccharide antigens. The response to a given 

antigen can also result in a skewed IgG subclass response and this is frequently a source of 

investigation as it can correlate with protection from disease or for the design of vaccines. 

Specific subclasses can also be associated with individual disease processes. For example, 

antibodies against LGI1 or MuSK are mainly IgG4.  

Fc receptors for immunoglobulin link the humoral immune compartment to the cellular 

immune compartment. The net result of binding of Ig to the Fc receptor is a function of the 

receptor, the cell on which it is expressed, and on ancillary signals. Fc receptors for IgG are 

termed FcγR. In humans, three classes of FcγR have been identified as FcγRI, II and III. IgG 

subclasses show different affinity for the three classes of FcγR (I, II and III). IgG1 and IgG3 

bind to all three FcγR classes. IgG4 binds only FcγRII and III, albeit significantly weaker than 

the binding of IgG1, and IgG2 binds only to FcγRII.  

 

1.3 Mechanism of antibody mediated damage 

 

Antibodies can affect their targets through different mechanisms (reviewed in Ludwig RJ et al. 

2017):  

1. Complement activation. Complement is a component of the innate immune system. 

Antibodies activate complement through the classical pathway, where C1 binds with its C1q 

subunits to Fc fragments of IgG or IgM, which has formed a complex with the specific antigen. 
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C4b and C3b are also able to bind to the Fc domains of the antigen-associated IgG or IgM, to 

its Fc portion. Binding of C1q leads to the subsequent activation of serine protease C1r and 

C1s, propagating the cascade. Antibody-independent pathways are known as the alternative and 

lectin pathways. All three pathways converge at the assembly of C3 convertase, a proteolytic 

enzyme that cleaves C3 in to C3a and C3b molecules. The terminal stage of the complement 

cascade is the formation and insertion of the membrane attack complex (MAC, also known as 

C9) into the cell surface, which disrupts the integrity of the cell membrane, resulting in osmotic 

lysis and destruction of the targeted cell. In addition, cleaved peptide fragments C3a, C4a and 

C5a are anaphylatoxins and promote inflammation, and C3b fragments bind to the surface of 

antibody bound cells, and act to mark the cell for phagocytosis.  

2. Antibody mediated cell-mediated cytotoxicity (ADCC). This is part of the adaptive immune 

response by which an effector cell actively lyses a target whose membrane-surface antigens 

have been bound by specific antibodies. ADCC requires an effector cell which classically is a 

natural killer (NK) cell; however, macrophages, neutrophils and eosinophils can also mediate 

ADCC.   

3. Neutralization or alteration of function of targeted molecules. Antibodies to cellular 

receptors can activate intracellular signaling cascades thereby modulating the cellular function 

or triggering apoptotic pathways.  

4. Binding to neurotransmitter receptors and mediating receptor internalization, with 

consecutive reduction of their surface expression. Antibodies to cell surface molecules can also 

block functions including cellular interactions with soluble molecules, other cells, or 

extracellular matrix components and can, thereby, change molecular or cellular function.  These 

are the aspects that are most relevant to this Thesis. 

5. Induction of inflammation at the site of autoantibody binding, which occur though 

recruitment of effector immune cells and relies of cytokines and chemokines.  

1.4 The prototype of neurological antibody mediated disorders: myasthenia gravis 

 

Myasthenia gravis (MG) is an autoimmune disorder characterised by muscle weakness and 

fatigability caused by antibodies directed against components of the postsynaptic muscle 

endplate localised at the neuromuscular junction (NMJ). Over two-thirds of all patients with 

MG begin with symptoms localised to their eye muscles (ocular MG) (Berrih-Aknin S and Le 

Panse R, 2014). The symptoms usually progress to other muscles during the first 2 years, 
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resulting in generalised MG. Approximately 15% of patients with MG have a thymoma, and 

50% of thymoma patients develop MG (Romi F, 2011). 

In 1960, Simpson suggested that MG was caused by autoantibodies to the acetylcholine 

receptor (AChR) (Simpson JA, 1960). Nowadays the pathogenicity of these antibodies is 

clearly established. Indeed about 90% of generalised MG is caused by pathogenic 

autoantibodies to muscle nicotinic AChRs. Plasmapheresis leads to a substantial, but 

temporary, improvement in muscle function (Pinching AJ et al. 1976). In animals, experimental 

MG (EAMG) can be induced by immunisation with AChR purified from the electric organ of 

Electrophorus electricus (Patrick J and Lindstrom J, 1973) or by injection of monoclonal 

antibodies (mAbs) to AChR (Tzartos S et al. 1987). Moreover, injection of patients’ IgG or 

isolated AChR autoantibodies from affected individuals into laboratory animals passively 

transfers several features of MG (Toyka KV et al. 1977; Kordas G et al. 2014). The pathological 

autoantibodies are directed at conformation-dependent extracellular epitopes on AChRs, 

especially the AChR α1 subunits (Vincent A et al. 2001). The predominant isotypes of 

autoantibodies to AChR are IgG1 and IgG3. These autoantibodies impair neuromuscular 

transmission primarily by three mechanisms:  

1) Focal complement-mediated lysis of the postsynaptic membrane that destroys the 

postsynaptic membrane that contains the AChRs and, therefore, disrupts synaptic morphology 

(Engel AG, 1984; Engel AG and Arahata K, 1987); 

 2) Cross-linking of AChRs by the autoantibodies on the surface of the postsynaptic 

membrane that accelerates endocytosis and lysosomal destruction of AChRs (Drachman DB et 

al. 1978);  

3) Inhibition of AChR function by direct blockage of acetylcholine (ACh) binding sites 

(Bufler J et al. 1998) (Figure 1.1).  

The loss of AChR numbers or function results in the recruitment of fewer muscle fibres and a 

decrement in the compound muscle action potential (CMAP).  

AChR antibodies are present in around 80% of patients with generalised MG. Around 

half of those patients without AChR antibodies have antibodies, instead, to muscle-specific 

kinase (MuSK) (Hoch W et al. 2001). MuSK is an essential component for NMJ formation 

through its interaction with low-density lipoprotein receptor-related protein 4 (LRP4), a 

receptor for agrin (a protein secreted from the motor neuron terminal) (Kim N et al. 2008; Zhang 

B et al. 2008). MuSK mediates clustering and stabilisation of AChR in developing and mature 

muscle. Patients with MuSK-antibody mediated MG have more focal involvement and wasting 

of the involved muscles (Vincent A et al. 2003). 
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Figure 1. 1 Molecular mechanism of the antibodies associated with MG 

 

 

 

 

 

 

 

 

 

 

  

A) 

  

B) 

  

C) 
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A) Immunoglobulin G1 (IgG1) and IgG3 can activate the complement cascade via their Fc 

domains, which interact with complement proteins C1 and C1q. The complement cascade 

culminates in the formation of the membrane attack complex which disrupts the phospholipid 

bilayer, resulting in loss of the junction folds and acetylcholine receptors (AChRs). B) IgG1 and 

IgG3 can crosslink antigenic targets, leading to internalisation and degradation of the antigen in 

lysosomes. C)  Some AChR autoantibodies can directly block AChR currents. D) Muscle skeletal 

receptor tyrosine-protein kinase (MuSK) autoantibodies are mainly of the IgG4 subclass. They 

inhibit agrin-induced binding of low-density lipoprotein receptor-related protein 4 (LRP4) to 

MuSK disrupting AChR clustering.  
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Autoantibodies to MuSK are mainly of the IgG4 isotype and the IgG4 fraction alone can 

transfer disease to mice (Klooster R et al. 2012). The binding of IgG4 autoantibodies to MuSK 

disrupts its interaction with agrin-bound LRP4 and directly suppress the postsynaptic tyrosine 

kinase pathway thus indirectly reducing the metabolic stability of endplate AChRs, but IgG1-3 

also disrupt this pathway by a different mechanism (Koneczny I et al. 2013) (Figure 1.1).  

The knowledge of the antibody mechanisms in MG have promoted the development of 

novel therapies, particularly therapies based on the inhibition of complement pathways (Soltys 

J et al. 2009). MG is an ideal disease for antigen-specific immunotherapy because of its clearly 

defined autoantigen. Theoretically, an antigen-specific immunotherapy would eliminate the 

pathogenic autoimmune response to autoantigen without affecting the other functions of the 

immune system, and thus avoiding severe adverse effects. The idea of specific 

immunosuppression of autoimmune response to AChR by administration of AChR peptides or 

fragments has been investigated in EAMG for many years. For instance, a vaccine using AChR 

cytoplasmic domains has been shown to be effective at specifically suppressing EAMG (Luo J 

and Lindstrom J, 2014), but none of the many published approaches have reached the clinic. 

 

1.5 Antibody-mediated CNS autoimmune disorders 

 

The brain has long been considered an immunologically privileged organ due to the presence 

of the blood brain barrier (BBB) which ideally prevents the access of antibodies and immune 

cells from the peripheral circulation. In the late ’60s there was the first description of an 

autoimmune limbic encephalitis (LE) in three patients with small cells lung carcinoma (SCLC) 

(Corsellis JA et al. 1968). Subsequently a few more cases were described and different 

onconeural antigens, such as Hu, Yo, CRMP5 and Ma2, were discovered (Dalmau J and 

Rosenfeld MR, 2008). The presence of antibodies against intracellular antigens (nuclear or 

cytoplasmic) have been described in patients with a range of central and peripheral neurological 

manifestations including LE, cerebellar ataxia and sensory neuropathy, and are commonly 

associated with an underlying malignancy; they are referred to as paraneoplastic neurological 

disorders. Despite the presence of an antibody, these disorders are not considered to be 

antibody-mediated due to the following lines of evidence (reviewed in Dalmau J and Rosenfeld 

MR, 2008):  

1) Intracellular antigens are inaccessible to circulating antibodies; 

2) Attempts to transfer human disease by passive transfer of patient IgG or active 

immunisation of the specific antigen have failed to reproduce neurological features reminiscent 
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of disease in vivo, despite inducing antibody responses (Graus F et al. 1991; Greenlee JE et al. 

1995);  

3) Patients generally do not improve clinically with immunotherapies aimed to reduce 

antibody levels.  

Indeed, these diseases are considered to be T-cell mediated as supported by neuropathological 

findings showing extensive cytotoxic T-cell infiltrates and neuronal death in patients’ post 

mortem brain tissue (Dalmau J et al. 1991; Giometto B et al. 1997). These paraneoplastic 

antibodies are likely to be bystanders of a T-cell immune response; however, their detection is 

important for the identification of an underlying malignancy. Since these antibodies are not 

pathogenetically relevant, they will not be discussed further.  

Neuromyotonia (NMT), also known as Isaacs’ syndrome, is a rare disorder 

characterised by spontaneous and continuous muscle activity at rest, which manifests clinically 

as visible muscle twitching (90%), cramps (70%), myopathy, stiffness and impaired muscle 

relaxation (reviewed in Maddison P, 2006). Indirect evidence for an autoimmune aetiology 

came from the demonstration that plasma exchange significantly reduced the number of 

neuromyotonic discharges, and injection of the antibodies into mice (passive transfer) produced 

a raised threshold to d-tubocurarine in the diaphragm muscle (Sinha S et al. 1991; Newsom-

Davis J and Mills Kr, 1993). In 1995, Shillito P et al. developed a radioimmunoprecipitation 

assay (RIA) using mammalian brain extract as a concentrated source of Kv1 type voltage-gated 

potassium channels (VGKCs). VGKCs were labelled with iodinated alpha-dendrotoxin (125I- 

αDTX), a neurotoxin derived from the venom of the Dendroaspis angusticeps (Green mamba 

snake) which binds specifically to the Kv1.1, 1.2 and 1.6 subtypes of the Shaker channel family 

(Scott VE et al. 2002). The authors found that three of six patients studied precipitated 125I-

αDTX counts that were significantly higher than controls levels (Shillito P et al. 1995), 

indicating that their antibodies had bound to the VGKC or related proteins.  

In 2001, Liguori et al. reported a 76-year-old man with Morvan’s syndrome (MoS) and 

antibodies against VGKCs (Liguori R et al. 2001). The striking response to plasmapheresis, the 

presence of oligoclonal bands in the cerebrospinal fluid (CSF), and the absence of 

morphological alterations but suggestion of diffusion of IgG into the thalamus and striatum at 

postmortem, when the patient died subsequently, all supported an antibody-mediated basis for 

the condition. This began a shift from the paradigm that only peripheral antibodies could cause 

disease, to recognition that antibodies could also affect the central nervous system. This was 

supported by the finding of VGKC-antibodies in patients with limbic encephalitis, mainly 
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without tumours or onconeural antibodies, first in two patients (Buckley C et al. 2001) and then 

in two small case series (Vincent A et al. 2004; Thieben MJ et al.2004).   

In 2005, the field began to extend to other antibody-mediated CNS diseases. Seven 

patients with subacute limbic encephalitis were described, six with antibodies that bound the 

neuropil of hippocampus or cerebellum on rat brain sections and one to an intracellular antigen 

(Ances BM et al. 2005). Only in one case was the pattern of reactivity compatible with VGKC-

antibodies whereas in the other cases the antigens appeared diverse, but all expressed on the 

neuronal cell membrane and dendrites. All patients, except the one with antibodies to 

intracellular antigens, had dramatic clinical and neuroimaging responses to immunotherapy or 

tumour resection. On the basis of these features the authors suggested a classification of 

antibody-associated encephalitis with implications for prognosis and treatment. One group 

comprises patients with antibodies to intracellular antigens including most of the previously 

characterised paraneoplastic antibodies, whereas the other comprised patients with antibodies 

that react with the brain neuropil and includes VGKC antibodies and the collectively termed 

‘novel neuropil antibodies’.  

Soon after, a new disorder, presenting with prominent psychiatric symptoms, seizures, 

memory deficits and decreased level of consciousness in young women, in association with 

ovarian teratomas, was described (Vitaliani R et al. 2005). This disorder was considered to 

represent a new category of severe but treatment-responsive paraneoplastic encephalitis and 

further studies led to the identification of the antigen as the GluN1 subunit of the N-methyl-D-

aspartic acid receptor (NMDAR) (Dalmau J et al. 2007).  

 In 2010, it was found that the VGKC antibodies were actually directed against two 

proteins that co-precipitate with the Kv1 subunits, contacting-associated protein 2 (CASPR2) 

and leucine rich glioma inactivated protein 1 (LGI1) (Irani SR et al. 2010), rather than the 

VGKC itself. In the following years, in the effort of elucidating the cause of previously 

considered idiopathic encephalitis, several new neuronal surface antigen-antibodies (NSA-Abs) 

involved in autoimmune encephalitis were identified, each one associated with partly 

characteristic clinical features, as summarised in Table 1.1. In the meantime, more and more 

studies focused on demonstrating the pathogenic role of the antibodies and on elucidating the 

underlying pathogenetic mechanisms (summarised in Table 1.2). In the following paragraphs 

the methods of detection, the triggering factors and the main antibodies against neuronal surface 

antigens (NSAs) will be described (Figure 1.2).    
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Table 1. 1 Neuronal surface antibody-mediated autoimmune encephalitis 

Antigen Main clinical 

syndromes  

Other 

syndromes 

CSF 

features 

Associations HLA Equivalent genetic 

syndrome 

  Antibodies against synaptic receptors  

N-methyl-D-

aspartate  

receptor 

(NMDAR) 

NMDAR 

encephalitis: 
psychiatric 

syndrome, 

seizures, 

amnesia, 

movement 

disorders 

catatonia, 

autonomic 

instability  

Few cases 

with purely 

psychotic 

features; few 
in cryptogenic

 epilepsy 

syndromes  

Lymphocy

tosis in 

early 

stages 

(70%) and 

OBs after 

(>50%); 

Abs 

usually 

present 

Ovarian 

teratoma in 

about 50%; 

post-HSV 

encephalitis 

Unknown GRIN1 mutations 

(encoding for 

GluN1) associated 

with severe 

intellectual 

disability, seizures, 

movement 

disorders and 

dysmorphic 

features  

Glycine  

Receptor 

(GlyR) 

PERM, SPS LE, brainstem 

encephalitis; 

cryptogenic 

epilepsy 

Pleocytosis 

in half of 

the cases, 

OBs (20%) 

Thymoma 

(<10%) 

Unknown GLRA1 (encoding 

α1 subunit) or 

GLRB (encoding β 

subunit) associated 

with hereditary 

hyperekplexia  

α-amino-3-

hydroxy-5- 

methyl-4-

isoxazole-

propionic 

acid 

receptor 

(AMPAR) 

LE Psychosis  Lympho-

cytosis; 

OBs; abs 

usually 

present 

Tumor in 

50% cases 

(lung, 

thymoma, 

breast)  

Unknown GRIA2 (subunit 2) 

and GRIA3 (subunit 

3) mutations 

associated with 

intellectual 

disability and 

autism  

Gamma-

aminobuty-

ric acid A 

receptor 

(GABAAR) 

LE with 

prominent 

seizures  

Psychiatric 

syndromes; 

various 

presentation 

including SPS, 

opsoclonus, 

ataxia 

OBs; abs 

can be 

absent in 

the CSF 

Tumor in 

70% cases 

(thymoma, 

lung, and 

breast)  

Unknown GABRA1, GABRB3, 

GABRG2 and 

GABRD associated 

with different 

idiopathic epilepsy 

syndromes 

Gamma-

aminobuty-

ric acid B 

receptor 

(GABABR) 

LE Ataxia, 

opsoclonus, 

status 

epilepticus 

Common 

pleocytosis

; rare OBs 

Tumour in 

60 % 

(mainly 

lung)  

Unknown No 

Dopamine 

receptor 2 

(D2R) 

Basal ganglia 

encephalitis 

with 

movement 

disorders and 

psychosis  

Sydenham 

chorea and 

Tourette 

syndrome  

Pleocy-

tosis  

Streptococ-

cus 

infections 

Unknown Mutations 

associated with 

myoclonus dystonia 

or schizophrenia 

Metabotro-

pic 

glutamate 

receptor 1 

(mGluR1) 

Cerebellar 

ataxia 

  Common 

pleocyto-

sis; rare 

OBs 

Usually 

associated 

with tumors 

(HL and T 

cells 

lymphoma) 

Unknown  GRM1 mutations 

associate with 

psychiatric 

disorders and 

epilepsy 

Metabotro-

pic 

glutamate 

receptor 5 

(mGluR5) 

Ophelia 

syndrome 

(limbic 

encephalopath

y in patients 

with HL) 

Schizophrenia 

(0.1% cases) 

Lymphocy

tosis; abs 

presence 

unknown 

Hodgkin 

lymphoma 

(2/2 

patients)   

Unknown No 
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Continuation table 1.1 

  Antibodies against synaptic proteins or other cell surface proteins  

Leucine-rich 

glioma 

inactivated 1 

(LGI1) 

LE with or 

without FBDS 

and or 

hyponatremia  

Cryptogenic 

epilepsy 

Usually 

normal, 

rare OBs; 

Abs can be 

absent  

Tumor in 

10% cases 

DRB1*07:01 

DQB1*02:02 

haplotype (in 

HLA class II 

genes, as well 

as with 

B*44:03 and 

C*07:06 in the 

HLA class I 

region  

Mutations 

associated with 

autosomal 

dominant lateral 

temporal lobe 

epilepsy (ADLTE) 

with prominent 

auditory seizures  

Contactin-

associated 

protein like 

2        

(CASPR2) 

LE, MoS, 

NMT 

Cerebellar 

ataxia, 

movement 

disorders, 

cryptogenic 

epilepsies, 

Guillain-

Barre–like 

syndrome 

Usually 

normal; 

rare OBs; 

abs can be 

absent 

Tumor in 

30% cases 

(mainly 

thymoma) 

Unknown Mutations 

associated with 

autism, epilepsy 

and intellectual 

disability 

Dipeptidyl-

peptidase-

like protein-

6   

(DPPX) 

Cognitive 

impairment, 

brainstem 

symptoms and 

diarrhea  

Cerebellar 

ataxia, PERM 

Pleocytosis 

OBs; Abs 

usually 

present   

B cells 

tumour 

(<30% 

cases)  

Unknown Mutations 

associated with 

susceptibility to 

ALS and with 

autism or familial 

ventricular 

fibrillation 

Ig-Like 

Domain-

Containing 

Protein 

family 

member 5 

(IgLON5) 

NREM sleep 

disorder, 

abnormal 

movement and 

behaviours 

obstructive 

sleep apnoea 

and stridor, 

occasional gait 

instability and 

brainstem 

symptoms 

Dementia, 

movement 

disorders; 

isolated 

dysphagia  

Pleocytosis 

Abs 

usually 

present  

Tauopathy  HLA-

DRB1*1001 

and HLA-

DQB1*0501 

(all patients 

investigated) 

No 

Neurexin3α Prodromal 

fever, 

headache or 

GI symptoms, 

followed by 

confusion, 

seizures, and 

decreased 

level of 

consciousness 

  Pleocytosis No Unknown Genetic variation at 

this locus has been 

associated with a 

range of behavioral 

phenotypes 

Abbreviations: Abs: antibodies; ALS: amyotrophic lateral sclerosis; CSF: cerebrospinal fluid; HL: Hodgkin’s 

lymphoma; HLA: human leukocyte antigen; HSV: Herpes Simplex virus; FBDS: facio-brachial dystonic seizures; GI: 

gastrointestinal; LE: limbic encephalitis; MoS: Morvan’s syndrome; NMT: neuromyotonia; OBs: oligoclonal bands; 

PERM: progressive encephalopathy with rigidity and myoclonus; SPS: stiff person syndrome. 

 

 

 



 

 24 

  

Table 1. 2 Molecular and pathophysiological mechanisms of antibodies to NSA 

 
Target Main 

epitope 

Other 

epitopes 

IgG 

subclasses 

and other 

Ig classes 

Mechanism of 

Abs 

Functional 

consequences 

Passive 

transfer 

NMDAR GluN1 GluN2a-

2b 

IgG1; IgA, 

IgM 

Cross-linking 

and 

internalisation 

with reversible 

reduction in 

cluster density; 

surface 

receptors 

laterally 

displaced out of 

synapse   

Reduced 

NMDAR 

currents, reduced 

LTP and hyper-

glutamatergic 

state; reduction in 

strength of 

interaction 

between 

NMDAR and 

ephrin-B2 

receptors  

Yes 

GlyR α1 subunit   IgG1 Cross-linking 

and 

internalisation 

in HEK cells 

Unknown  No 

AMPAR GluA1, 

GluA2  

  N.A. Internalisation 

and degradation 

with reduction 

of surface 

synaptic 

AMPAR 

Decreased 

AMPAR- 

mediated 

currents; changes 

in the pattern of 

action potential 

firing in neurons 

No 

GABAAR α1 subunit β3/𝛾2 IgG Cross-linking 

and 

internalisation 

with selective 

reduction of 

GABAA 

receptor clusters 

at synapses 

Unknown No 

GABABR R1 subunit   mainly 

IgG1 

Unknown Unknown No 

Kv4.2 DPPX   IgG; no Unknown but 

reduced 

expression of 

DPPX and 

Kv4.2 in 

hippocampal 

neurons 

Hyper- 

excitability of 

enteric neurons 

No 

D2R D2   IgG Unknown Unknown No 

IgLON5 Ig-like 

domain 2 

  IgG4 but 

also IgG1 

Internalisation 

with reduction 

of IgLon5 

expression 

Unknown No 

mGluR1 mGluR1   IgG Unknown Reduced mGluR- 

mediated current 

in cerebellar 

slices  

Yes 
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Continuation of table 1.2      

mGluR5 mGluR5    IgG; 

unknown 

Unknown Unknown No 

LGI1 LRR and 

EPTP 

repeat 

domains 

  IgG4, rarely 

IgG1 

Unknown but 

disruption of 

the interaction 

with ADAM22 

and reduction of 

AMPAR; 

possible 

complement 

activation  

Increased 

spontaneous 

depolarisations in 

hippocampal 

CA3; enhanced 

hippocampal 

mossy fibre to 

CA3 pyramidal 

cell transmission  

No but 

reported cats 

with epilepsy 

and LGI1 abs 

CASPR2 Discoidin 

domain 

Lam1, 

Lam2, 

Egf1 

domains  

IgG4 but 

also IgG1 

Alteration of 

the interaction 

with contactin2; 

possible 

complement 

activation 

Reduction of 

hippocampal 

synaptic gephyrin 

clusters/ 

disruption of 

inhibitory 

synaptic contacts 

of GABAergic 

neurons; 

reduction of 

Kv1.1 expression 

on DRG neurons 

with 

hyperexcitability 

PNS 

symptoms 

peripheral 

administration 

model; model 

of maternal-

fetal transfer 

Neurexin3α Unknown   IgG Reduced 

expression and 

reduced 

synaptic 

number 

Unknown No 

DRG: dorsal root ganglia; HEK: human embryonic kidney cells; LTP: long-term potentiation; PNS: peripheral 

nervous system.  

  



 

 26 

  

 

 

 

 
 

 

Figure 1. 2 Schematic representation of central excitatory and inhibitory synapses and main 

antibodies targets 

  
  

The proteins targeted by antibodies associated with autoimmune encephalitis are proteins and 

channels expressed on the neuronal surface, often at both pre- and post-synaptic levels on 

inhibitory (gabaergic) and/or excitatory (glutamatergic) neurons in the CNS (adapted from 

Giannoccaro MP et al. 2018). 
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1.5.1. Methods of detection of NSA-Abs 

 

Since the antibodies directed against NSA-Ab are directed against extracellular portions of the 

protein and its conformational epitopes, it is important that the method of detection of these 

antibodies preserves the native structure of the protein. Cell-based assays (CBAs), which 

measure the binding visually (Figure 1.3) or by flow cytometry, using live cells that preserve 

the structure of membrane proteins, meet these requirements. CBAs have been shown to be 

superior for the detection of NSA-Ab compared to other methods such as western blots (WB) 

or peptide enzyme-linked immunosorbent assays (ELISAs), in which the proteins are not 

necessarily conformational (Waters PJ et al. 2012).  

CBAs and flow cytometry use live cells transiently transfected with the protein of 

interest and then incubated with patient’s serum, and antibody binding is detected by a 

secondary immunofluorescent anti-human antibody. This method is, of course, only valid for 

known antigens.  

In order to identify new antigenic targets two commonly used methods are: 

1) Immunohistochemistry on rat brain sections: antibodies to neuronal antigens usually bind 

the neuropil, each with a specific pattern; 

2) Immunofluorescence on hippocampal rat neurons in culture: the majority of NSA-Ab 

recognise protein expressed on hippocampal neurons.     

If binding is found with these screening methods, the following steps are the identification of 

the target by mass spectroscopy and the establishment of a new specific CBA. 

 

1.5.2. Triggering causes of autoimmune encephalitis 

 

Tumours 

NSA-Ab can be associated with cancer and the frequency and type of tumour varies accordingly 

to the type of disease and the autoantibody. Some autoimmune encephalitis rarely associates 

with tumours, as in the case of LGI1 encephalitis (Irani SR et al. 2010; Lai M et al. 2010), 

whereas others show strong association with cancer such as small cell carcinoma with GABAB 

receptor antibodies, or teratoma with NMDAR encephalitis (Hoftberger R et al.  2013; Jeffery 

OJ et al. 2013; Dalmau J et al. 2007). In the cases with tumours, the neoplastic cells express the 

neural surface antigen against which the antibodies are directed. Therefore, it is thought that 

the ectopic expression of neuronal proteins by the tumour breaks immune tolerance for these 

proteins contributing to the development of the immune response (DeLuca I et al. 2009). 
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A) Schematic representation of human embryonic kidney (HEK) cells expressing a protein 

of interest after transfection. On the left: an example of positive serum containing specific 

IgG directed against the target protein; bound IgG antibodies on the cell surface are detected 

by a secondary anti-human IgG antibody. On the right: a negative serum does not contain 

antibodies specific for that antigen. B) Microphotographs of HEK cell from a positive (left) 

and negative (right) control.  

  

Figure 1. 3 Schematic representation of a cell-based assay (CBA) 
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In the case of ovarian teratoma, the tumour itself contains mature or immature neural tissue 

(Dalmau J et al. 2007) which express NMDARs that likely contribute in triggering the 

autoimmune response. In line with this hypothesis, the tumours of these patients contain larger 

amounts of inflammatory infiltrates compared with the teratomas from patients who do not 

develop anti-NMDA receptor encephalitis (Tuzun E et al. 2009).  

 

Herpes Simplex and other viruses  

Several recent reports describe the occurrence of NSA-Abs within weeks of herpes simplex 

virus (HSV) infection of the CNS (Armangue T el al. 2015, Armangue T et al. 2013; Hacohen 

Y et al. 2014). Most cases show new synthesis of antibodies against NMDAR and less 

frequently against other receptors or NSA (GABAA receptors, dopamine receptors, 

uncharacterised cell surface proteins) (Armangue T el al. 2015; Hacohen Y et al. 2014; 

Mohammad SS et al. 2014). In these cases, treatment with immunotherapy rather than viral 

therapy associates with neurological improvement. This observation suggests that 

autoantibodies may be generated in the context of inflammation and neural damage caused by 

a primary viral infection. Indeed, a possible link between other infections and anti-NMDA 

receptor encephalitis has been suggested (varicella zoster virus, mycoplasma), but the number 

of cases is too small to confirm this association (Gable S et al. 2009; Schabitz WR et al. 2014). 

 In a substantial number of patients with autoimmune encephalitis (AE), the trigger of 

the autoimmune response is unknown; in these cases, screening studies for an occult tumour or 

recent viral infections are negative. The young age and lack of tumour risk factors in some 

patients, as well as long clinical follow-up during which patients remain tumour free, support 

the existence of other unknown immunological triggers. The fact that some patients have other 

autoantibodies with a frequency higher than expected in the normal population suggest an 

underlying predisposition to autoimmunity (Florance NR et al. 2009; Lai M et al. 2009; Tuzun 

E et al. 2011).  

Genetic susceptibility to develop AE has only been investigated in a few of these 

disorders. Recent studies show specific human leukocyte antigen (HLA) associations in patients 

with LGI1 and IgLON5 antibodies (Gelpi E et al. 2016; Van Sonderen ARD et al. 2017). LGI1-

antibody associated encephalitis with HLA-DR7 and HLA-DRB4 was identified. Interestingly, 

this haplotype association did not appear to apply to patients who developed the disorder in the 

context of a systemic tumour, suggesting that the absence of those haplotypes could raise 

suspicion for an underlying tumour or paraneoplastic mechanism (Van Sonderen ARD et al. 

2017; Binks S et al. 2018).  
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1.5.3. Anti-NMDAR encephalitis  

 

Anti-NMDAR encephalitis, the classical syndrome associated with NMDAR antibodies, is the 

most commonly recognised AE. Up to 70% of patients have prodromal symptoms consisting 

of headache, fever, nausea, vomiting, diarrhoea, or upper respiratory-tract symptoms. 

Psychiatric symptoms, such as memory problems, confusion, abnormal behavior, paranoia and 

hallucinations may also be present, in addition to seizures, dyskinesia, autonomic instability, 

catatonia, hypoventilation, lethargy and language deficits. Hypoventilation and memory 

problems appear more frequently in adults (Dalmau J et al. 2011). Although initially only 

recognised as a neurological syndrome in the context of ovarian teratoma, it is now known that 

the majority of patients have no neoplasia (around 60-70%) and that the disease can affect men 

and women of all ages (Irani SR, Bera K et al. 2010, Titulaer MJ et al. 2013).  

Despite the severity of the clinical picture, brain MRI is normal in approximately half 

of patients, with hyperintensity visible in the other half (Dalmau J et al. 2011; Dalmau J et al. 

2008; Irani SR, Bera K et al. 2010). However, EEG often show diffuse slow and disorganized 

activity, and some epileptic discharges, and CSF analysis reveals lymphocytosis early in the 

disease, sometimes associated with raised protein levels (Dalmau J et al. 2008; Dalmau J et al. 

2011; Irani SR, Bera K et al. 2010). As the disease progresses, CSF-specific oligoclonal bands 

and evidence of intrathecal NMDAR autoantibody synthesis can be detected (Irani SR, Bera K 

et al. 2010). The prognosis of NMDAR-encephalitis is largely time-dependent, including time 

to diagnosis, time to tumour removal (when present), and time to initiation of 

immunosuppressive therapy.  

Overall about 75% of patients experience only mild long-term deficits or recover 

completely, but the remaining quarter have severe sequelae, and mortality due to intensive care 

complications can be up to 7% (Dalmau J et al. 2011; Wandinger KP et al. 2011; Titulaer MJ 

et al. 2013).  

In paraneoplastic cases, response to tumour removal and first-line therapy is 

approximately 80%, whereas patients without tumours have an initial response rate of 48%. 

Second-line therapy, most commonly rituximab and/or cyclophosphamide, is often needed in 

patients without tumours and in those with a late diagnosis. Approximately 65% of patients 

show substantial improvements with second-line immunotherapy (Dalmau J et al. 2011; 

Titulaer MJ et al. 2013). Patients can relapse, especially those without tumours, although 

relapse symptoms are typically less severe than the initial presentation (Titulaer MJ et al. 2013).  
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Pathogenic mechanism of NMDAR antibodies  

The NMDAR is a subtype of ionotropic glutamate receptor composed of two GluN1 (also called 

NR1) and two GluN2/3 (also called NR2 and NR3) subunits that form a central ion channel. 

Patients’ antibodies were shown to react against the NR1 subunit and to significantly decrease 

NR1, NR2A, NR2B and NMDAR surface and total cluster densities in a titre-dependent fashion 

with consequent reduction of synaptic NMDAR currents but without disruption of the neuronal 

structure. The reduction of NMDAR expression is mediated by the antibodies that cross-link 

NMDARs, resulting in their internalisation, and appeared to be independent from complement 

deposition (Hughes EG et al. 2010). In parallel, the antibodies alter receptor trafficking. At the 

synaptic level they induce dispersal of GluN2A-NMDAR, preventing their dynamic synaptic 

retention through the blockade of the interaction between the extracellular domains of GluN1/2 

subunits and ephrin-B2 receptors (EPHB2R) whereas at the extrasynaptic level they reduce the 

GluN2B-NMDAR dynamics through endocytosis (Mikasova L et al. 2012) (Figure 1.4). All 

together these changes affect long term potentiation, which is the cellular substrate of learning 

and memory, explaining some, but not all, the symptoms observed in patients. 

The pathogenicity of NMDAR-Abs has been partially demonstrated in animal models. In 

mice, a single intraventricular (ICV) injection of immunoglobulin G (IgG) from individuals 

with anti-NMDAR encephalitis induced, in association with the chemoconvulsant 

pentylenetetrazol, more frequent and severe seizures than a single injection with IgG from 

control individuals (Wright S et al. 2015). Continuous intraventricular infusions of CSFs pooled 

from individuals with anti-NMDAR encephalitis to mice over 14 days reproduced some of the 

clinical features observed in patients such as memory deficits, anhedonia and depression-like 

behaviours but no other core features such as motor disorders or seizures. IgG deposition and a 

decrease in NMDAR clusters was observed in the hippocampi of NMDAR-Abs injected mice, 

which resolved within days after discontinuing the infusion (Planagumà J et al. 2015). These 

two animal models support the proposed mechanisms of cross-linking, internalisation and 

altered NMDAR trafficking, and together with the absence of complement activation, explain 

why patients often respond promptly to immunotherapy. Indeed, a good clinical outcome 

correlates with a significant decrease of NMDAR-Abs in patients’ CSF (Dalmau J et al. 2008).

 However, recent findings demonstrated that patients may have long term cognitive 

deficit and structural hippocampal damage as shown by brain MRI, in which severity correlated 

with disease duration and delayed and inefficient treatment (Finke C et al. 2016). This suggests 

that, while the acute effects of NMDAR-Abs are functional and reversible, their persistence can  
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In normal conditions GluN2A receptors are anchored at the synaptic levels through the 

interaction with the ephrin receptor, EPHB2R, whereas GluN2B are more extrasynaptic. 

Patients’ IgGs against NMDAR prevent the interaction between NMDAR and EPHB2R in the 

synaptic area causing their lateral displacement. Moreover, patients’ IgGs reduce surface 

NMDAR expression, likely by causing their internalisation and degradation (adapted from 

Mikasova L et al. 2012).  

  

Figure 1. 4 Schematic representation of the proposed functional effects of NDMAR 
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impact on neuronal function in a way that is not yet understood. Nevertheless, it is possible that 

the long-term damage is related to the accumulation of excitatory mediators such as glutamate 

at synaptic levels as occurs when NMDAR-antagonists are administered to normal animals. 

Indeed, patients’ CSFs and purified IgGs resulted in an acute increase of both glutamate levels 

and the excitability of the motor cortex in a rat model (Manto M et al. 2010). It is worth noting 

that in experimental animal studies, NMDAR-antagonists are able to produce reversible or 

irreversible effects depending on the dosage and duration of the administration (Newcomer JW 

et al. 2000). 

 

1.5.4 LGI1 antibody related syndromes 

After the discovery that VGKC antibodies were associated with some cases of NMT, their 

presence was also identified in patients with CNS diseases (Buckley C et al. 2001; Vincent A. 

et al. 2004). It was subsequently found that the ‘VGKC’ autoantibodies actually bound to 

contactin-associated protein 2 (CASPR2) or LGI1 (Irani SR et al. 2010; Lai M et al. 2010); 

both of these proteins co-precipitate with the Kv1 subunits, which explains why the 

autoantibodies were able to precipitate the dendrotoxin-labelled VGKCs.  

Autoantibodies to LGI1 (LGI1-Abs) are the most common autoantibody in patients with 

limbic encephalitis (LE), a clinical syndrome characterised by the acute development of mood 

changes, anxiety, short term memory deficit and seizures due to an inflammatory process 

involving the limbic system that includes the medial temporal lobes, hippocampus, amygdala, 

and fronto-basal and cingulate cortices (Graus F et al. 2016). LGI1-Ab encephalitis 

preferentially affects elderly patients (median age 60 years) with a male predominance (Irani 

SR et al. 2010; Lai M et al. 2010). Most patients do not have cancer (5% have thymoma). 

 The onset of an overt limbic dysfunction can be preceded by episodes of facio-brachial 

or crural seizures that last a few seconds and occur many times during the day; these episodes 

have been described as facio-brachial dystonic seizures (FBDS) (Irani SR et al. 2011; Irani SR 

et al. 2013). MRI studies show basal ganglia hyperintensity in 42% of patients with this type of 

seizure, suggesting a basal ganglia contribution (Flanagan EP et al. 2015). About 70% of the 

patients show substantial neurological improvement after immunotherapy, but only 35% are 

able to return to their baseline cognitive function. Clinical relapses occur in 24–35% of the 

patients (Ariño H et al. 2016; Van Sonderen ARD et al. 2016). 
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Pathogenic mechanism of LGI1 antibodies  

LGI1 mutations have been associated with an autosomal dominant lateral temporal lobe 

epilepsy manifesting often with auditory features (Kalachikov S et al. 2002), and epilepsy is 

also one of the features of the autoimmune encephalopathy associated with LGI1-Abs. 

However, the autoimmune form of epilepsy in this case is characterised by contractions of 

homolateral face, arm and sometimes leg, known as FBDS, whereas auditory seizures are rare 

(Irani SR et al. 2011). LGI1 antibodies are predominantly IgG4. Since these antibodies do not 

fix complement and are less effective than IgG1 in crosslinking and internalising the target 

antigen, they are thought to affect their targets by interference with protein-protein interactions. 

LGI1 is a protein secreted by the presynaptic terminals of neurons. This protein binds 

to ADAM22 and ADAM33, two proteins involved in cell-cell adhesion and located post-

synaptically and pre-synaptically respectively. LGI1 forms a bridge between these two proteins 

establishing a physical contact between the pre- and the post-synapse which is believed to play 

an important role in synaptic maturation (Fukata Y et al. 2006; Owuor K et al. 2009). Binding 

to ADAM22, LGI1 regulates AMPA receptor-mediated synaptic currents in the hippocampus. 

Binding to ADAM23, LGI1 selectively prevents inactivation of the presynaptic voltage-gated 

potassium channel Kv1.1 mediated by a cytoplasmic regulatory protein, Kvβ (Schulte U et al. 

2006).  

LGI1 antibodies disrupt the ligand-receptor interaction of LGI1 with ADAM22, 

resulting in reversible reduction in synaptic AMPARs in cultured hippocampal neurons 

(Ohkawa T et al. 2013) (Figure 1.5). This observation, along with the presence of the antibodies 

in the CSF and the good response to immunotherapy support a pathogenic role of these 

antibodies. Indeed, their pathogenicity has been recently confirmed by a passive transfer animal 

model which showed severe memory impairment, but not seizures, in LGI1-Ab injected mice 

(Petit-Pedrol M et al. 2018). Moreover, LGI1-Abs have been detected in the sera of cats with a 

spontaneous form of autoimmune encephalitis with complex partial seizures with orofacial 

involvement. Postmortem analysis in these cases, showed complement deposition, a feature 

also shared by post-mortem examination of the small number of available brains from patients 

with LGI1-related encephalitis (Klang A et al. 2014). The finding of complement deposition 

suggests that LGI1-Abs are able to induce neuronal death through complement activation which 

may explain why, despite a good response to immunotherapy, only 35% of patients return to 

their baseline cognitive function (Ariño H et al 2016). This appears to be inconsistent with the 

observation that LGI1-Abs belong to the IgG4 subclass, which is classically considered unable 

to activate complement. However, the post-mortem findings, which are infrequent, may reflect  
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LGI1 interacts with presynaptic ADAM23 and postsynaptic ADAM22 organizing 

a trans-synaptic protein complex that includes presynaptic Kv1.1 potassium 

channels and postsynaptic AMPA receptors. LGI1-Abs interfere with the normal 

interactions of LGI1 probably decreasing the levels of the postsynaptic AMPA 

receptors and altering the function of the presynaptic Kv1 channels, leading to 

increased neuronal excitability (adapted from Van Sonderen A, Petit-Pedrol M et 

al. 2017).  

 

 

Figure 1.5 Schematic representation of the proposed functional effects of LGI1 

antibodies 
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the relatively small, but more pathogenic, IgG1 antibodies that are present in patients with 

limbic encephalitis (Irani SR et al. 2010; Thompson J et al. 2018).   

 

1.5.5 CASPR2 antibody related syndromes 

CASPR2 is one of the targets within the complex of proteins that includes the voltage-gated 

potassium channels (VGKCs). CASPR2 antibodies (CASPR2-Abs) have been associated with 

CNS symptoms including cognitive impairment, memory loss, hallucinations, delusions, 

cerebellar symptoms and epilepsy as well with peripheral nerve involvement with pain, 

neuropathy and hyperexcitability causing neuromyotonia (NMT). Some patients present with 

Morvan Syndrome (MoS), characterised by the combination of neuromyotonia, neuropathic 

pain, encephalopathy with hallucinations, and a characteristic sleep disorder described as 

agrypnia excitata (Liguori R et al. 2001; Provini F et al. 2011). This term (agrypnia - loss of 

sleep; excitata - increased motor activity and restlessness) was developed to describe the sleep 

disturbances that occur in several pathogenically unrelated diseases such as fatal familial 

insomnia (a prion disease) or delirium tremens (Montagna P and Lugaresi E, 2002). Patients 

with agrypnia excitata have severe insomnia, dream-like stupor (hallucinations and enacted 

dreams), sympathetic hyperactivity (hyperthermia, perspiration, tachypnea, tachycardia, and 

hypertension), and motor agitation. Key neurophysiological features include the loss of slow-

wave sleep, which represents the transitional process of falling asleep, and the presence of 

abnormal REM sleep without atonia in the antigravity muscles (Montagna P and Lugaresi E, 

2002).  

Approximately 20% of patients with CASPR2-Ab associated symptoms have an 

underlying thymoma (Vincent A and Irani SR, 2010; Irani SR et al. 2010; Irani SR et al. 2012; 

Van Sonderen A, Arino H et al. 2016). Immunotherapy and treatment of the tumour (when 

appropriate) resulted in improvement in 93% of the patients, but 25% had relapses (Van 

Sonderen A, Arino H et al. 2016).  

Pathogenic mechanisms of CASPR2-Abs 

CASPR2 is a neurexin-related cell adhesion molecule expressed in the central and peripheral 

nervous system and CASPR2-Abs react with both the brain and peripheral nerve tissues (Irani 

SR et al. 2010). CASPR2 is essential for clustering Kv1.1 and Kv1.2 at the juxtaparanodes of 

myelinated axons (Figure 1.6). These channels are important for repolarisation of the nerve 

axon, avoiding repetitive firing and helping to maintain the internodal resting potential.  
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CASPR2 localises at the juxtaparanode of myelinated axons. CASPR2 binds to 

contactin-2/TAG-1 via its extracellular domain and links to PDZ-binding proteins, and 

to the cytoskeleton via protein 4.1B, stabilizing Kv1 channels (from Giannoccaro MP 

et al. 2018). 

 

 Figure 1.6 Schematic representation of CASPR2 protein 
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 For CASPR2-Abs the mechanisms of action are still largely unclear. CASPR2-Abs are 

mainly IgG4, and therefore the most likely common mechanism of their action is a disruption 

of the interaction of CASPR2 with its associated molecules rather than internalisation and 

complement activation which are typical of IgG1, 2 and 3 antibodies. Accordingly, a recent 

study showed that CASPR2-Abs do not reduce CASPR2 expression on the surface of cultured 

hippocampal neurons, but they appeared to act by altering CASPR2 interaction with contactin-

2 (Patterson KR et al. 2018). However, these findings contrasted with the pathology in a case 

showing reduced CASPR2 expression in the brain (Sundal C et al. 2017) and with two 

pathological cases associated with the presence of complement deposition (Liguori R et al. 

2001; Kortvelyessy P et al. 2015). These discrepancies might be related to several factors; in 

particular, IgG1 CASPR2 antibodies are present in many of the patients, and may be responsible 

for complement mediated neuronal loss, and different antibody levels may explain some of the 

limitations of the in vitro studies, which only partially reproduce the variety of mechanisms 

involved in vivo. 

How CASPR2-Abs produce the CNS symptoms is still largely unknown. CASPR2 is 

expressed throughout the brain as well as at the juxtaparanodes of motor and sensory axons 

(Figure 1.6). CASPR2-Abs have been described in association with several different disorders 

ranging from cerebellar ataxia to a wide range of movement disorder. Such a broad spectrum 

of presentations could be related to difference in epitope specificity, antibody titres and or the 

site of antibody production. A recent study showed that CASPR2-Abs can bind to different 

epitopes, although the majority reacted against the first extracellular discoidin domain. No 

correlation of antibody specificity with the phenotype was made (Olsen Al et al. 2015). One 

study found CASPR2-Abs in the CSF and serum in patients with autoimmune encephalitis, 

whereas they were detected only in the serum in patients with NMT or MoS (Joubert B et al. 

2016). The highest antibody titres appear to be specific for LE, MoS and ataxia (Bien CG et al. 

2017), and CASPR2 antibodies are usually low in patients with neuromyotonia, explaining why 

they might not have been detected in the CSF.   

 A study, using cultured hippocampal neurons, showed that serum IgGs targeted 

inhibitory interneurons where they reduced the number of synaptic gephyrin clusters (Pinatel 

D et al. 2015) which anchors GABAA receptors. More recently, however, treatment of cultured 

dorsal root ganglia (DRG) neurons with CASPR2-Abs caused a reduction in Kv1 channel 

surface expression and consequent neuronal hyperexcitability (Dawes JM et al. 2018). The 

same study produced the first passive transfer model of CASPR2-Abs by intraperitoneal (IP) 
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injections showing that these antibodies are able to cause mechanical-pain hypersensitivity in 

the exposed mice. However, the effects on the CNS were not investigated.  

 Interestingly, mutations in the CNTNAP2 gene, encoding for CASPR2, are associated 

with focal epilepsy, schizophrenia and autism spectrum disorder (Friedman JI et al. 2008). Two 

recent studies using a maternal-fetal transfer model showed that the offspring of dams injected 

with CASPR2-Abs demonstrated behavioural disorders and neuropathological features 

(Brimberg L et al. 2016; Coutinho E et al. 2017) raising interesting questions about the role of 

these antibodies in neurodevelopment disorders. 

 

1.5.6 GABAA receptor antibody related syndromes 

Autoantibodies to the GABAA receptor (GABAAR) were first reported in some patients with 

AE characterised by encephalitis, prominent seizures or status epilepticus, and multifocal MRI 

abnormalities (Ohkawa T et al. 2014; Petit-Pedrol M et al. 2014). They were then found in 

patients with a wider spectrum of disorders (Pettingill P et al. 2015; Spatola M et al. 2017) such 

as focal neurological signs, hemiparesis, dyskinesias, aphasia or oculomotor disturbances. CSF 

findings are variable and abnormal in most cases and include pleocytosis, elevated protein 

concentration, or oligoclonal bands (Petit-Pedrol M et al. 2014). Coexistence of other 

autoantibodies occurs in some patients including thyroid peroxidase (TPO), GAD65, and 

GABAB receptor antibodies (Ohkawa T et al. 2014; Petit-Pedrol M et al. 2014). Approximately 

75% of the patients develop multifocal FLAIR and T2 hyperintense MRI abnormalities 

involving various cortical and subcortical brain regions (Spatola M et al. 2017). This finding 

provides a clue towards the identity of the disorder. Approximately 30% of the patients have 

an underlying tumour, mainly a thymoma; older patients are more likely to have a tumour than 

younger patients (Spatola M et al. 2017). Treatment with anticonvulsants is frequently 

ineffective, and pharmacologically induced coma can be necessary to control seizure activity. 

In a recent review of all reported cases, 86% of the patients improved with immunotherapy and 

the other 14% died of status epilepticus or secondary medical complications (Spatola M et al. 

2017).  

Pathogenic mechanisms of GABAA -Abs 

The GABAA receptor is a ligand-gated ion channel that mediates the majority of fast inhibitory 

transmission in the brain (Macdonald RL and Olsen RW, 1994). GABAARs are 

heteropentamers consisting of five homologous subunits forming the channel pore. In patients 
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with autoantibodies against the GABAAR, the predominant targets are α1 and β3, and less 

frequently the subunit 𝛾2 (Petit-Pedrol M et al. 2014; Pettingill P et al. 2015; Spatola M et al. 

2017). In cultured primary neurons, application of patients’ antibodies led to a reduction of 

synaptic and extrasynaptic density of GABAAR receptors (Ohkawa T et al. 2014; Petit-Pedrol 

M et al. 2014; Pettengill P et al. 2015). Animal models have not yet been reported. 

 

1.5.7 GABAB receptor antibody related syndromes 

Antibodies against the GABAB receptor (GABABR) associate with LE accompanied by 

prominent seizures or status epilepticus, with 50% of patients having an underlying SCLC 

(Hoftberger R et al.  2013; Lancaster E et al. 2010; Jain A et al. 2015). Most patients have 

complete or substantial neurological improvement after immunotherapy and tumour therapy 

when needed. The neurological outcome is similar in patients with or without tumour, but the 

long-term prognosis is dictated by the presence of SCLC and cancer recurrence.  

 

Pathogenic mechanism of GABABR-Abs 

The GABABR is a G protein-coupled receptor for the inhibitory neurotransmitter GABA. The 

receptors are heterodimers comprised of two subunits, GABA-B1 and GABA-B2, which are 

both necessary for receptor function (Bettler B et al. 2004). GABA-B1 binds GABA with its 

extracellular domain, and GABA-B2 activates G proteins intracellularly.  

GABABR autoantibodies bind the extracellular domain of the GABA-B1 subunit (Lancaster E 

et al. 2010). The potential pathogenic effects of patients’ autoantibodies were recently 

examined using cultured rat hippocampal neurons. In culture, neurons develop numerous 

synapses and spontaneously produce synaptic currents and actions potentials. This electrical 

activity is attenuated by the application of the GABABR agonist baclofen. Application of 

patients’ autoantibodies did not modify the levels of cell surface or synaptic receptors but 

abrogated the effects of baclofen on culture excitability, suggesting that GABABR-Abs may 

directly block the function of the receptor (Jain A et al. 2015). Although the exact mechanism 

whereby antibodies block GABABR function is unknown, the findings provide a plausible 

explanation for the extremely common seizures and life-threatening status epilepticus seen in 

patients with LE related to these autoantibodies. 
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1.5.8 AMPA receptor antibody related syndromes 

Most patients with AMPAR-Abs develop a typical LE, 40% of them showing additional 

symptoms beyond the limbic system, and only a few patients presenting with a different 

syndrome, such as rapidly progressive dementia or psychosis (Hoftberger R et al. 2015; Lai M 

et al. 2009). About 70% of the patients have an underlying tumour including SCLC, thymoma, 

ovarian or breast cancer, or teratoma. Approximately 70% of the patients respond to 

immunotherapy or treatment of the tumour, most showing a partial neurological response. 

Patients who do not receive aggressive immunotherapy are more likely to have clinical relapses. 

The presence of concurrent paraneoplastic antibodies was found associated with additional 

symptoms and a poor prognosis (Hoftberger R, et al. 2015).  

 

Pathogenic mechanisms of AMPAR-Abs 

The AMPA receptor is an ionotropic glutamate receptor that mediates most of the fast- 

excitatory transmission in the brain (Shepherd JD and Huganir RL, 2007). The majority of 

AMPA receptors are tetramers composed of GluA1, 2, 3, or 4 subunits that combine in a brain 

region-dependent manner (Palmer CL et al. 2005). The highest levels of GluA1/2 and GluA2/3 

receptors are found in the hippocampus, subiculum, cerebellum, caudate-putamen, and cerebral 

cortex (Sprengel R, 2006). The AMPAR-Abs are directed against extracellular epitopes of the 

GluA1 or GluA2 subunits (Lai M et al. 2009). Preincubation of cultured rodent neurons with 

patients’ IgG to either GluA1 or GluA2 led to a decrease of synaptic clusters of AMPA receptor 

subunits and to a reduction of fluorescence intensity of the remaining AMPA receptor clusters 

(Lai M et al. 2009; Peng X et al. 2015). As a result, frequency and peak amplitude of AMPA 

receptor-mediated miniature excitatory postsynaptic currents (mEPSC) were reduced in 

primary neurons following incubation with antibodies to the GluA1 and GluA2 receptor subunit 

(Lai M et al. 2009; Peng X et al. 2015). These preliminary findings point toward a direct 

pathogenic effect of patients’ AMPA receptor autoantibodies on synaptic function, but the 

evidence is sparse and animal models have not been developed. 

1.5.9 GlyR antibody related syndromes  

Antibodies against the glycine receptor (GlyR-Abs) have been described in patients with stiff-

person syndrome (SPS) and with progressive encephalitis with rigidity and myoclonus 

(PERM). SPS is characterised by muscle stiffness, rigidity, and painful spams predominantly 

involving the paraspinal, abdominal, and lower extremity muscles. The spasms can be 
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spontaneous or triggered by movement or sensory (tactile, auditory) and emotional stimuli. 

Patients with SPS have a normal brain and spinal MRI, and the CSF is often normal except for 

the presence of oligoclonal bands in 35% of the patients (Saiz A et al. 2008). PERM has a more 

aggressive clinical course compared with SPS. In addition to encephalomyelitis with rigidity 

and myoclonus, other symptoms include sensory problems (pruritus and neuropathic pain), 

brainstem dysfunction (nystagmus, ophthalmoparesis, dysphagia, trismus), and dysautonomia 

(profuse sweating, dry mouth, bladder dysfunction). Brain and spinal MRI are usually normal, 

but the CSF frequently shows pleocytosis (Carvajal-González A et al. 2014).  

 

Pathogenic mechanisms of GlyR-Abs  

Glycine receptors (GlyRs) are pentameric proteins belonging to the superfamily of ligand gated 

ion channels. These receptors can exist as α1-4 subunits homers or as heteromers consisting of 

α and β subunits. The different α subunits are differentially expressed in the CNS and the 

binding of autoantibodies to these different subunits could explain the range of spinal cord and 

brainstem symptoms observed in individuals with GlyR autoantibodies (GlyR-Abs). However, 

a recent study showed that the majority of sera from GlyR-Ab positive patients bind to α1β 

heteromers, and no correlation between different subunit binding affinities and clinical 

phenotype was found (Carvajal-González A et al. 2014). 

Under physiological condition, glycine-mediated activation of the GlyR leads to an 

influx of Cl- into the neurons and results in hyperpolarisation of the membrane potential with 

consequent reduced excitation (Legendre P, 2001). Indeed, incubation of HEK293 cells 

expressing GlyRs with IgG derived from individuals with GlyR-Abs resulted in internalisation 

and targeting of the receptors to lysosomes. Therefore, if a similar response occurs in vivo, the 

expected reduced glycinergic neurotransmission may explain the symptoms seen in patients 

with PERM.  

1.5.10 GAD antibody syndromes  

 

Highly raised antibodies against glutamic acid decarboxylase 65 (GAD-65) have been detected 

in 60-100% of patients with SPS (Costa M et al. 2002; Chang T, Alexopoulos H, McMenamin 

M et al. 2013) and at much lower titres in 80% of newly diagnosed type 1 diabetes mellitus 

(Baekkeskov S et al. 1990). GAD antibodies have also been detected in some patients with 

subacute cerebellar ataxia (Honnorat J et al. 1995; Saiz A et al. 1997; Abele M et al. 1999) and 

limbic encephalitis with prominent temporal lobe epilepsy (Malter MP et al. 2012).  
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Pathogenic mechanisms of GAD-Abs 

GAD65 is a rate-limiting enzyme of GABA synthesis. Despite being an intracellular antigen, it 

is still unclear if these antibodies paly a pathogenic role. A loss of GAD activity may lead to 

decreased GABA synthesis and a reduction in inhibitory interneuron activity, resulting in 

hyperexcitability and epileptiform activity. However, it is not clear how the GAD antibodies 

can exert this effect on an intracellular enzyme. Specific and distinct staining of hippocampal 

neurons by sera from GAD-positive patients with drug-resistant epilepsy, ataxia and SPS has 

been demonstrated (Vianello M et al. 2006) and implies that the sera may contain additional 

specificities. In vitro studies have suggested that IgG from GAD-positive patients can be 

pathogenic, selectively suppressing GABA-mediated transmission on cerebellar Purkinje cells 

(Mitoma H et al. 2000), and a few patients have responded to IvIg treatment (Abele M et al. 

1999). It is unclear whether the pathogenicity lies in the GAD antibodies or in an additional 

unidentified antibody. The immunisation of experimental animals with GAD65 resulted in the 

production of antibodies that immunoprecipitated GAD and bound to GAD intracellularly but 

also to the surface of cerebellar neurons in culture. Immunised animals did not show any 

behavioral abnormality, but they showed immunoglobulin diffusion into the brainstem, and a 

partial loss of GAD-EGFP expressing GABAergic neurons in the brainstem, suggesting the 

possible existence of a humoral response to antigen expressed on the surface of these neurons 

(Chang T et al. 2013).    

 

1.5.11 Proposed criteria for the diagnosis of autoimmune encephalitis 

 

Until a few years ago, the most common cause of acute encephalitis was considered to be 

infectious. However, with the discovery of so many new antibody targets, it has become clear 

that autoimmune encephalitis is more common than previously thought. Given the importance 

of an early treatment in determining patients’ outcome however, it is clear that a prompt 

diagnosis cannot rely solely on the presence of antibodies. Moreover, despite the increasingly 

large number of targets, some CSF and sera are negative for known antibodies (“seronegative” 

autoimmune encephalitis). Recently a Consensus paper established guidelines to help the 

clinician in the early identification and treatment of patients with suspected autoimmune 

etiology (Graus F et al. 2016). 

A patient with new onset encephalitis should be considered as having a possible 

autoimmune encephalitis if all three of the criteria shown in Table 1.3 are met. Of course, this 

diagnosis is only possible if a series of conditions, listed in Table 1.4, are excluded. According  
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Table 1. 3 Diagnostic criteria of possible autoimmune encephalitis 

The diagnosis of POSSIBLE autoimmune encephalitis can be made if all the following 

criteria are met:  

1)  Subacute onset (rapid progression of less than 3 months) of working memory deficits 

(short term memory loss), altered mental status (defined as decreased or altered level of 

consciousness, lethargy, or personality change), or psychiatric symptoms; 

2)  At least one of the following: 

·      New focal CNS findings 

·      Seizures not explained by a previously known seizure disorder 

·      CSF pleocytosis (white cell count of more than five cells per mm3) 

·      MRI features suggestive of encephalitis (hyperintense signal in T2-weighted fluid 

attenuated inversion recovery sequences highly restricted to one or both medial temporal 

lobes, or in multifocal areas involving grey matter, white matter or both compatible with 

demyelination or inflammation) 

3)  Reasonable exclusion of other causes. 

 

Table 1. 4 Differential diagnosis of autoimmune encephalitis 

DISORDER 

CNS infections 

Septic encephalopathy 

Matabolic encephalopathy 

Drug toxicity (including use of illicit drugs, direct neurotoxic effects of prescribed drugs or 

through induction of seizures, posterior reversible encephalopathy, idiosyncratic reaction, 

drug interaction or withdrawal) 

Cerebrovascular disease 

Neoplastic disorders 

Creutzfeldt-Jakob disease 

Epileptic disorders 

Rheumatologic disorders (i.e. lupus, sarcoidosis…) 

Kleine-Levin syndrome 

Reye syndrome 

Mithocondrial diseases 

Inborn errors of metabolism (children) 
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to these guidelines, the diagnosis of definite autoimmune limbic encephalitis can be made when 

all four criteria listed in Table 1.5 are met. If one of the first three criteria is not met, a diagnosis 

of definite LE can be made with the detection of antibodies against cell-surface, synaptic, or 

onconeural proteins. Finally, if antibodies are negative, the diagnosis of autoantibody negative 

but probable autoimmune encephalitis can be made when all four of the criteria listed in Table 

1.6 have been met. 

1.6 NSA-Abs in “discrete” neurological disorders 

 

After the discovery of the NSA-Abs and their report in the classical syndromes described above, 

an increasing number of studies investigated the presence of these or other antibodies in 

neurological and psychiatric disorders, either because their presentation might involve some of 

the symptoms observed in autoimmune encephalopathies, or because their subacute onset and 

clinical course suggested an autoimmune etiology. The significance of these findings is still 

often unclear, but it has been suggested that these cases may represent a less severe form of 

limbic encephalitis.  

 

1.6.1 NSA-Abs in epilepsy 

 

Seizures are frequently observed in patients with NSA-Abs either in the course of the disease 

either at onset, and sometimes they represent the main clinical feature. Although the 

mechanisms of seizures in AE are unclear, the pathogenic role of the antibodies is likely.  

More recently, however, these antibodies have been reported also in unselected patients 

with recent onset and chronic forms of isolated epilepsies. McKnight et al. compared 139 

epilepsy patients, composed of 26 patients with definite concomitant autoimmune disorders 

(systemic lupus erythematosus, Hashimoto’s encephalopathy, antiphospholipid syndrome, 

etc.), 46 patients with suspected concomitant autoimmune disorders, and 67 patients with solely 

drug resistant epilepsy, to a control group of 150 patients. They reported VGKC complex 

antibodies in 11.5 % of the patients with epilepsy, spread across all 3 patient populations, vs 

0.5 % of the control subjects, as well as GAD65 antibodies in 3.6 % of the epilepsy patients 

and none of the controls. Among the group with VGKC-complex antibodies, 6 patients 

presented with a short duration of seizures and five of them were treated with immunotherapy 

and had a good response. By contrast, GAD65-positive patients presented with a long history 

of drug resistant epilepsy and did not respond to immunotherapy (McKnight K et al. 2005).  
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Table 1. 5 Diagnostic criteria for defined limbic encephalitis 

The diagnosis of DEFINED limbic encephalitis can be made if all the following criteria 

are met:  

1) Subacute onset (rapid progression of less than 3 months) of working memory deficits, 

seizures, or psychiatric symptoms suggesting involvement of the limbic system; 

2) Bilateral brain abnormalities on T2-weighted fluid-attenuated inversion recovery MRI 

highly restricted to the medial temporal lobes (18Fluorodeoxyglucose (18F-FDG) PET can be 

used to fulfil this criterion); 

3) At least one of the following: 

• CSF pleocytosis;  

• EEG with epileptic or slow-wave activity involving the temporal lobes;  

4)  Reasonable exclusion of other causes (see table 1.4). 

 

Table 1. 6 Diagnostic criteria for possible autoimmune encephalitis 

The diagnosis of PROBABLE autoimmune encephalitis can be made if all the following 

criteria are met:  

1) Rapid progression (less than 3 months) of working memory deficits (short-term memory 

loss), altered mental status, psychiatric symptoms; 

2) Exclusion of well-defined syndromes od autoimmune encephalitis (e.g., typical limbic 

encephalitis, Bickerstaff’s brainstem encephalitis, acute disseminated encephalomyelitis)  

3) Absence of well characterised autoantibodies in serum and CSF, and at least two of the 

following criteria: 

• MRI abnormalities suggestive of autoimmune encephalitis; 

• CSF pleocytosis, CSF specific oligoclonal bands or elevated CSF IgG index, or both; 

• Brain biopsy showing inflammatory infiltrates and excluding other disorders (i.e. Tumour). 

4)  Reasonable exclusion of other causes (see table 1.4). 
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Another study of 106 female patients with chronic epilepsy found VGKC-complex 

antibodies in 6.5% of the subjects. Only one patient was positive for voltage gated calcium 

channel (VGCC) and none for GAD65. Seizures were mainly generalised tonic-clonic (GTCS) 

and MRIs were normal in patients with VGKC-complex antibodies (Majoie HJ et al. 2006).  

Quek et al. retrospectively investigated 32 patients with refractory epilepsy and a 

suspected autoimmune aetiology, and found 18 with VGKC-complex antibodies, 7 with 

GAD65-antibodies, and one patient with NMDAR-antibodies. In this study, 81% of patients 

improved after immunotherapy, with 67% achieving seizure freedom within a period of 10 

months (Quek AM et al. 2012). Overall, patients with autoantibodies often had frequent, 

antiepileptic drug (AED)-refractory seizures with neuropsychiatric comorbidities.  

Another study, found 5 NMDAR antibody positive patients and 3 GAD65 antibody 

positive patients in a group of 19 female patients with new onset unexplained epilepsy 

(Niehusmann P et al. 2009). Brenner et al. reported the presence of neuronal antibodies in 46 

of 416 adult patients with epilepsy (11%). Among those patients, 21 (5%) had VGKC-complex 

Abs, 12 (3%) had GlyR-Abs, 7 (1.7%) had GAD65-Abs, and 7 (1.7%) had NMDAR-Abs 

(Brenner T et al. 2013). The presence of GlyR-Abs is of interest as these antibodies are usually 

associated with a completely different phenotype.  

Many of these studies have two particular limitations: 1) they are retrospective and 2) 

they include patients with suspected autoimmune etiology. To determine the prevalence of 

NSA-Abs associated with immune-mediated epilepsy, Dubey et al (2017) enrolled 112 

consecutive patients with epilepsy of unknown etiology. Serum Abs suggesting a potential 

autoimmune etiology were detected in 39 (34.8%) cases; 15 (13.4%) had thyroid peroxidase 

(TPO)-Ab, 14 (12.5%) had GAD65-Ab, 12 (10.7%) had VGKC-complex Ab (4 of whom were 

positive for LGI1-Ab), and 4 (3.6%) had NMDAR-Ab. The presence of GlyR-Abs was not 

investigated. More than one Ab was detected in 7 patients (6.3%): 3 (2.7%) had TPO-Ab and 

VGKC-complex Abs, 2 (1.8%) had GAD65-Ab and VGKC-complex Ab, 1 had TPO-Ab and 

GAD65-Ab, and 1 had Hu Ab and GAD65-Ab. Thirty-two patients (28.6%) had a single Ab 

marker. Even after excluding TPO-Ab and low-titre GAD65-Ab, Abs strongly suggesting an 

autoimmune cause of epilepsy were seen in 23 patients (20.5%). Certain clinical features, such 

as autonomic dysfunction, neuropsychiatric changes, viral prodrome, facio-brachial dystonic 

spells or facial dyskinesias, and mesial temporal sclerosis abnormality on magnetic resonance 

imaging, correlated with seropositivity (Dubey D et al. 2017). In patients who were 

seropositive, reduction in seizure frequency was associated with use of immunomodulatory 

therapy.  
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 In another consecutive series, including 111 patients with mesial temporal lobe 

epilepsy with hippocampal sclerosis (MTLE-HS), 30 healthy volunteers and 50 patients with 

relapsing remitting multiple sclerosis, antibodies against CASPR2 were found in 11 patients, 

uncharacterised VGKC-complex antibodies in four patients, GlyR-Abs in 5 patients, NMDAR-

Abs in 4 patients and GABAAR in 1 patient; these antibodies were not found in controls. The 

history of status epilepticus, diagnosis of psychosis and positron emission tomography or 

single-photon emission computer tomography findings in temporal plus extratemporal regions 

were found significantly more frequently in the seropositive group (Vanli-Yavuz EN et al. 

2016). 

 A few studies investigated the presence of NSA-Abs in children with various forms 

of epilepsy, with a frequency of positivity around 10% (Dhamija R et al. 2011; Suleiman J et 

al. 2011; Suleiman J, Brilot F et al. 2013; Suleiman J et al. 2013; Wright S et al. 2016). 

Interestingly, Wright S et al. (2016) found neuronal antibodies at low levels in 9.5% of 178 

patients with new-onset pediatric epilepsy. However, these antibodies did not necessarily 

persist over time, and the development of antibodies de novo in later samples suggests they 

could be due to a secondary response to neuronal damage or inflammation.  

 Overall, these data suggest that these antibodies are present in increased numbers in 

the general epilepsy population, even when these patients do not present as typical limbic 

encephalitis. In those patients with a more abrupt onset of seizures, multiple studies provide 

consistent observational evidence to suggest a preferential response to immunotherapy over 

AEDs (Quek AM et al. 2012; Toledano M et al. 2014; Dubey D et al. 2017). However, the 

results of these studies are not conclusive and there are still unanswered questions such as the 

pathogenic role of the antibodies, the optimal methods used to identify patients with epilepsy 

and autoantibodies, and the rationale for immunotherapy. 

1.6.2 NSA-Ab in degenerative disorders 

 

Many NSA-Ab related syndromes associate with cognitive impairment and sometimes this is 

the first and prevalent manifestation. Case series have demonstrated that progressive dementia 

without delirium may represent an autoimmune neurological disorder (Geschwind MD et al. 

2008; McKeon A et al. 2007). Given the fact that these are potentially treatable disorders, 

several studies tried to identify the main features associated with an “autoimmune dementia”. 

These have been classically defined as: 1) subacute onset with a rapidly progressive course; 2) 

coexisting organ-specific autoimmunity; 3) inflammatory CSF; 4) presence of MRI changes 
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suggestive of an inflammatory process (McKeon A et al. 2010; Castillo P et al. 2006; 

Geschwind MD et al. 2008; McKeon A et al. 2007).  

In a setting when an autoimmune etiology for the dementia is strongly suspected, 

Flanagan et al. reported the presence of autoantibodies targeting the VGKC complex in 15% of 

cases. In the same cohort, 64% of cases responded to immunotherapy. A shorter delay from 

symptom onset to initiation of therapy for autoimmune dementia increased the likelihood of 

response (Flanagan EP et al. 2010). However, 41% of immunotherapy-responsive dementia 

patients had normal brain MRIs, and many patients showed normal CSF and EEG; almost 9% 

of the disorders had been initially diagnosed as Creutzfeldt-Jakob disease (CJD) (Flanagan EP 

et al. 2010).  

Despite the clear existence of cases of immunotherapy-responsive dementia associated 

with NSA-Ab, the presence of several neuronal antibodies has been reported in patients with 

ascertained prion disease (Mackay G et al. 2012; Fujita K et al. 2012; Angus-Leppan H et al. 

2013; Fujita K, Yuasa T, Takahashi Y et al. 2012; Rossi M et al. 2015), challenging the 

significance of this finding and further complicating this diagnostic dilemma in cases with more 

chronic presentations. In another study, 6.4% of patients with suspected CJD had autopsy 

findings of potentially treatable diseases, with immune-mediated disorders being the most 

frequent (Chitravas N et al. 2011). In a large cohort of 346 patients with suspected CJD 1.7% 

showed the presence of NSA-Ab in CSF versus none of 49 patients with definite CJD. The 

target antigens included CASPR2, LGI1, NMDAR, aquaporin 4 (AQ4), Tr (DNER [δ/notch-

like epidermal growth factor–related receptor]), and an unknown protein. All patients improved 

or stabilized after appropriate treatment (Grau-Rivera O et al. 2014). Indeed, most patients with 

well diagnosed CJD do not have these antibodies (Rossi M et al. 2015). 

However, not all patients with antibody-mediated dementia present with a rapidly 

evolving clinical picture. Autoimmune-mediated cognitive decline can progress slowly over 

many months, and therefore may be mistaken for a primary neurodegenerative disorder such as 

Alzheimer’s disease (AD) or frontotemporal dementia (FTD) (Castillo P et al. 2006; Geschwind 

MD et al. 2008; McKeon A et al. 2007). To explore the prevalence of NSA-Ab in patients with 

defined primary dementias, Coban A et al. (2004) investigated 50 patients finding NMDAR 

antibodies in one case presenting with dementia with Lewy body (DLB) phenotype. Despite 

the fact that this patient had some features suggestive of an autoimmune etiology, the presence 

of atypical features in the remaining cases failed to predict the presence of an NSA-Ab, 

highlighting the necessity to identify other markers predictive of an autoimmune dementia.  
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The presence of NMDAR antibodies of the IgA isotype was initially described in a small 

cohort of patients with atypical dementia. A subgroup of positive patients partially responded 

to immunotherapy (Pruss H et al. 2012). Purified IgA containing NMDAR IgA antibodies 

caused substantial loss of NMDARs and further synaptic proteins in primary hippocampal 

cultures, resulting in marked changes of NMDAR-mediated currents (Pruss H et al. 2012). 

These results were further explored in a large series of 660 cases including different 

neurological disorders and controls.  Serum NMDAR antibodies of IgM, IgA, or IgG subtypes 

were detected in 16.1% of 286 dementia patients and in 2.8% of 217 cognitively healthy 

controls. Higher prevalence of serum antibodies was detected in patients with “unclassified 

dementia” followed by progressive supranuclear palsy (PSP), corticobasal syndrome (CBD), 

Parkinson’s disease-related dementia (PDD), and primary progressive aphasia (PPA). Among 

the unclassified dementia group, 60% of 20 patients had NMDAR antibodies, accompanied by 

higher frequency of CSF abnormalities, and subacute or fluctuating disease progression. 

Immunotherapy in selected prospective cases resulted in clinical stabilisation, loss of 

antibodies, and improvement of functional imaging parameters. Epitope mapping showed 

varied determinants in patients with NMDAR IgA-associated cognitive decline. However, 

antibodies were rarely found in CSF (Doss S et al. 2014), and therefore their role in the clinical 

manifestations is unclear. 

As emerged from this and other reports, not only dementias but also other 

neurodegenerative disease, mainly presenting with movement disorders, can be associated with 

the presence of NSA-Ab. Patients with LGI1, IgLON5, DPPX and GAD65 antibodies have 

been misdiagnosed with Parkinson’s disease, PSP or multisystem atrophy (MSA) (Pittock S et 

al. 2006; Tobin W et al. 2014; Kurtis MM et al. 2015; Sabater L et al. 2014; Kannoth S et al. 

2015). However, the prevalence of NSA-Ab in a population of patients with a diagnosis of 

parkinsonism has not yet been reported. REM sleep behavior disorder (RBD) is associated with 

neurodegeneration and can anticipate by decades the onset of a neurodegenerative disease, in 

particular MSA and PD. RBD has been reported in patients with LGI1-antibody-associated 

limbic encephalitis (Iranzo A et al. 2006; Irani SR et al. 2010) and with IgLON5-antibody 

linked neurodegeneration (Sabater L et al. 2014). Finally, status dissociatus, a complete 

breakdown of the boundaries of the different states of being, which are wakefulness, REM 

sleep, and non-REM sleep, with motor hyperactivity, which may be observed in the final phase 

of several different neurodegenerative disorders, has also been reported in patients with 

CASPR2-Abs, and less commonly, LGI1-Abs or NMDAR-Abs (Stamelou M et al. 2012; 
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Abgrall G et al. 2015), widening the overlap between neurodegenerative and autoimmune 

conditions. 

Finally, the question of the relation between antibodies and neurodegeneration is made 

more complex by the description of IgLON5 antibodies. These were firstly described in a small 

group of patients with prominent sleep-related movement disorders, mainly characterised by a 

non-REM sleep parasomnia with simple or finalistic movements, resembling daytime activities 

such as eating, drinking or manipulating objects. Other sleep abnormalities included RBD and 

periodic limb movements of sleep. Breathing disorders, including obstructive sleep apnea 

(OSAS) and stridor, both in sleep and wakefulness, are almost a constant feature and are often 

associated with respiratory failure. Other clinical manifestations include ataxia, bulbar signs, 

abnormal eyes movements and dysautonomia (Sabater L et al. 2014). Over time other clinical 

manifestations were reported including dementia and chorea (Simabukuro MM et al. 2015; 

Brüggemann N et al. 2016; Haitao R et al. 2016). In the first case series, all eight patients 

reported received immunotherapy, but six of them died during the follow-up period (Sabater L 

et al. 2014). To date more than 60 patients have been reported and response to immunotherapy 

seems to occur in certain cases and to some extent (Bonello M et al. 2017; Simabukuro MM et 

al. 2015; Brüggemann N et al. 2016; Haitao R et al. 2016; Honorat JA et al. 2017; Montagna 

M et al. 2108). However, mortality remains high (Gaig C et al. 2017; Honorat JA et al. 2017). 

Neuropathology, intriguingly show the presence of hyperphosphorylated three- and four-repeat 

tau aggregates in neurons, and neuronal loss predominantly in the hypothalamus and the 

brainstem tegmentum, and absence of inflammatory infiltrates (Sabater L et al. 2014; Gelpi E 

et al. 2016). These findings suggest neurodegeneration as the primary disease mechanism, 

which would fit with the observed absence of a significant response to immunotherapy. 

However, all genotyped patients had HLA-DQB1*0501 and HLA-DRB1*1001 alleles, 

suggesting a genetic susceptibility for autoimmunity (Sabater L et al. 2014, 2016).  

The IgLON5 antibodies target the extracellular domain of the protein and are 

predominantly of the IgG4 subtype, and to a lesser extent IgG1. The latter are responsible for 

the internalisation of IgLON5 in neuronal cultures (Sabater L et al. 2016), whereas this effect 

was not seen with IgG4 antibodies, which are likely to act in a different way, and which may 

lead to secondary neurodegenerative changes. However, it is also possible that their presence 

is secondary to a primary tauopathy. Future studies have to address the link between 

autoantibodies and neurodegeneration. 
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1.6.3 NSA-Ab in Narcolepsy with cataplexy 

Narcolepsy is a chronic sleep disorder, characterised by excessive daytime sleepiness (EDS) 

and cataplexy, often in association with hallucinations at sleep onset (hypnagogic) or/and at 

awakening (hypnopompic) and sleep paralysis (Yoss RR and Daly DD, 1957); the presence or 

absence of cataplexy defines two groups of patients; narcolepsy with cataplexy (narcolepsy 

type 1, NT1) and narcolepsy without cataplexy (narcolepsy type 2, NT2) (AASM, 2005). The 

disease, and in particularly NT1, has been linked to the loss of a small group of neurons in the 

posterior lateral hypothalamus producing hypocretin 1 and 2 (HCRT-1 and 2) (also known as 

orexin A and B) (Scammell TE, 2003; Peyron C et al. 2000; Thannickal TC et al. 2000). Patients 

with narcolepsy and cataplexy have low concentrations of hypocretin in the CSF, typically 

below 100 ng/L and most often undetectable with conventional radioimmunoassays (Nishino S 

et al. 2000; Nishino S et al. 2001). Although it is clear that the loss of orexin neurons is 

responsible for many of the symptoms observed in NT1 patients, the cause of this loss in 

unknown. The specific and highly selective depletion of hypocretin-secreting neurons and the 

strong association with the HLA DRB1*06:02 (Mignot E et al. 1997) led to the hypothesis that 

narcolepsy is an autoimmune driven process within the hypothalamus. However, to date, many 

observations supporting this hypothesis are circumstantial and clear evidence of an ongoing 

autoimmune process are missing, although, recently, autoreactive T cells clones directed 

against hypocretin were found in narcolepsy patients (Latorre D et al. 2018), supporting an 

autoimmune T cell-mediated disorder. It remains to be established if these T cells are primary 

or if they are secondary to the destruction of hypocretin neurons produced by other mechanisms.  

 Immunohistochemical studies screening for hypothalamic antibody binding (Knudsen 

S et al. 2007; Martinez-Rodriguez JE et al. 2007; Overeem S et al. 2006), as well as antibody 

studies screening for specific antigens such as the hypocretin precursor-peptide (Black JL III et 

al. 2005), HCRT1 and 2, hypocretin receptors 1 and 2 (HCRTR1 and 2) (Tanaka S et al. 2006) 

and other neuronal and non-neuronal autoantigens in narcoleptic patients (Black JL III et al. 

2002) gave negative or inconclusive results. A possible explanation for these inconclusive 

findings is the fact that in many cases the studies were performed on patients with symptoms 

of an unspecified or lengthy duration, which could result in a negative study if the antibodies 

are only transiently present. The relevance of timing in the autoimmune process related to 

narcolepsy is suggested by the observation that a better, though insufficient, control of 

symptoms could be obtained by human IvIg administered within a few months from disease 

onset (Dauvilliers Y et al. 2004), and from the anecdotical report of symptom disappearance 



 

 53 

  

and normalization of HCRT-1 CSF levels when the IvIg was administered within the first 15 

days from onset (Dauvilliers Y et al. 2009). 

 Sleep disturbances are common in patients with autoimmune encephalitis (Vincent A et 

al. 2011), who often present with low levels of orexin A in the CSF (Mignot E et al. 2002; 

Küçükali Cİ et al. 2014). LGI1 antibodies, associated with limbic encephalitis, appear to co-

localise with orexin neurons (among other neurons; Irani SR et al. 2012). Also, NMDAR 

antibodies were recently found in three orexin-deficient NT1 patients who presented with 

psychiatric disturbances (Tsutsui K et al. 2012). However, although 4/13 patents stained on rat 

brain sections, screening for antibodies associated with encephalitis (i.e. CASPR2, LGI1, 

NMDAR) was negative in post vaccine (Pandemrix®) narcolepsy cases (Thebault S et al. 

2015). Moreover, the association between narcolepsy, psychosis and presence of NMDAR-Ab 

was not confirmed by a small subsequent study (Dauvilliers Y et al. 2016). Finally, new 

interesting clues about antibody-mediated pathogenic mechanisms in narcolepsy came from 

Ahmed and colleagues, who found antibodies against the HCRTR2 in 85% of post-Pandemrix® 

narcolepsy cases as well as in 35% of controls (Ahmed SS et al. 2015). The significance of this 

finding is unknown, and HCRTR2-antibodies were only rarely found in patients with idiopathic 

narcolepsy (Giannoccaro MP et al. 2017).  

 

1.7 Open questions 

 

Despite their relative rarity, antibody-mediated CNS diseases have been one of the most 

intriguing and research-driving fields in neurology over the last 15 years. However, several 

questions remain unanswered. Among these, is the site of production and distribution of the 

antibodies. To cause symptoms the antibodies must access the brain. Are they produced in the 

periphery and gain access to the brain when or where the BBB is less efficient, or are they 

produced locally in the brain? These two scenarios are not mutually exclusive, and their 

importance may change during the course of the disease. In NMDAR encephalitis the 

autoantibodies are present in patients’ serum and CSF, the latter usually showing intrathecal 

synthesis and high antibody concentrations (Dalmau J et al. 2008). B-cells are able to cross the 

BBB where they are believed to undergo antigen driven re-stimulation, clonal expansion and 

differentiation into antibody producing plasma cells (Hauser SL et al. 2008). Indeed, NMDAR 

encephalitis responds to cyclophosphamide and rituximab therapies, both able to deplete B cell 

populations. However, the contribution of intrathecal versus systemic production is not clear.  
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In some diseases, it may be essential for CNS symptoms, as implied in cases of CASPR2-Abs 

(Joubert B et al. 2016), or the antibodies in the CSF may just reflect higher serum levels.   

Very little is known about the origin of these antibodies. The role of tumours in paraneoplastic 

syndromes is well accepted, and the role of infections in precipitating the disease is also 

common, with clear relationship between HSV and NMDAR-Ab encephalitis. However, the 

role of triggering infections in other forms of autoimmune encephalitis or of other 

environmental factors have not been explored and epidemiological studies are missing. Genetic 

factors may also contribute to the pathogenesis of these disorders. Indeed, distinctive HLA 

associations are linked to clinical features and antibody subtypes in myasthenia (reviewed in 

Nacu A et al. 2015) and a recent study showed a strong association between LGI1 antibodies 

and HLA II DRB1*07:01–DQB1*02:02 haplotype (Kim TJ et al. 2016). The strong association 

of LG1 antibodies to HLA-DRB1*07:01 was confirmed in another study, which also found an 

association between CASPR2 antibodies and the HLA-DRB1*11:01 (Binks S et al. 2018). 

 Similarly, autoimmune encephalopathy with the IgLON5 autoantibody appears to be 

associated with specific HLA genotypes (Sabater L et al. 2014). However, the presence of a 

specific HLA locus association in other NSA-Abs syndromes is still unknown. In the future, 

more studies will be oriented in exploring the influence of genetic and environmental factors.  

Another major question relates to how these antibodies can produce specific syndromes 

when the antigens are often expressed throughout the CNS. Epitope differences may play a role 

as well as the site of access of the antibodies into the CNS. Also, the relevance of different Ig 

classes and whether they cause disease requires further study. High frequency of IgM and IgA 

have been found in patients with dementia or different psychiatric disorders (Doss S et al. 2014; 

reviewed by Pollak TA et al. 2016). A recent study showed that, independently from the Ig 

class and the associated clinical condition, all NMDAR-Abs directed against the GluN1 subunit 

are able to provoke NMDAR1 internalisation in human-induced pluripotent stem cell-derived 

neurons and reduction of glutamate-evoked currents in NR1-1b/NR2A-expressing Xenopus 

oocytes; these results showed that all antibodies had pathogenic potential (Castillo-Gómez E et 

al. 2016). If this is confirmed and expanded to other antibodies, the diagnostic significance of 

this finding needs to be revised.  

To be considered as pathogenetic some line of evidence needs to be satisfied. For 

antibodies the most compelling line of evidence derives from passive transfer studies of the 

human antibody into an animal model. This has been accomplished for some antibodies, i.e. 

NMDAR given intraventricularly (Planagumà J et al. 2015; Wright S et al. 2015), but for many 

others such evidence in still lacking. Indeed, although many of the NSA-Abs have been 
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associated with specific and recognisable clinical syndromes, there can be problems about their 

significance. This occurs when they are found in cases where the clinical expression of disease 

and a particular autoantibody have not been previously described, or in cases with a very 

restricted clinical phenotype such as epileptic syndromes or neurodegenerative disorders. 

Moreover, there is insufficient data regarding the prevalence of these antibodies in the general 

population. From a recent revision of the literature (Lang K and Pruss H, 2017) it emerged that 

NSA-Ab are overall rarely found in the healthy controls (HC) (mean 0.23%), however this 

result was variable for different antibodies and HC population size. Indeed, in a cohort of 1,703 

HC samples analyzed for antibodies against AMPAR1/2, AQP4, DNER, DPPX, GABABR, 

GlyR, mGluR5, myelin oligodendrocytes glycoprotein (MOG), NMDAR/NR1, CASPR2, and 

LGI1, no positive samples were found for AQP4, DNER, GABABR, and mGluR5. The most 

frequent antibody was that against the NMDAR/NR1 in 20 cases (1.2%) (Dahm L et al. 2014). 

On the other hand, the same study revealed that NSA-Ab were present in 1.5% of disease 

controls, with frequencies varying among different subgroups from 0.25% to 3.46% (Lang K 

and Pruss H, 2017). These findings, together with the possibility of antibodies in epilepsy, 

narcolepsy or neurodegenerative cases raises several questions on the utility of antibody 

screening in cases without an obvious autoimmune suspicion, and on the clinical significance 

of positive findings. One could speculate that at least some of these positives in patients as well 

as controls could be “false positive”.  

The other possibility is that these antibodies are often present in the sera but do not cause 

disease because they are unable to reach their target. Therefore, in these cases, a “second hit”, 

like disruption of the BBB, could be necessary to allow the manifestation of the disease and 

access of B cells into the cerebral compartment. Indeed, in many diseases and healthy controls, 

the positive finding of serum antibody has not been accompanied by CSF testing.   

Another possible scenario is that the antibodies in healthy individuals are pathogenic 

but do not cause an obvious clinical phenotype because the changes induced go undetected – 

that is they are not sufficient to cause neurological symptoms. It is also possible that functional 

differences (i.e. affinity) in the antibodies play a role in their pathogenic potential. Finally, a 

positive neuronal antibody in a patient not initially suspected to have an antibody-mediated 

disease can still be “true-positive” and represent the further expanding phenotypic spectrum 

seen in most antibody-specific syndromes. Investigations into these restricted clinical 

phenotypes are relevant due to the implications for patients’ treatment and prognosis.  
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1.8 Aims of this PhD 

 

The aim of this PhD was to investigate the presence and pathogenic role of antibodies directed 

against neuronal surface antigens in different neurological conditions. Methods are described 

in Chapter 2. At first, the presence and frequency of these antibodies were explored in three 

different cohorts of patients. These included those (1) for which an autoimmune aetiology is 

strongly suspected (narcolepsy type 1), (2) patients with chronic neurological conditions with 

unknown or not primarily an immunologically-related aetiology (patients with temporal lobe 

epilepsy and patients with neurodegenerative disorders), and (3) healthy and disease 

(seronegative myasthenia gravis patients) controls. The presence of the antibodies was related 

to patients’ clinical features (results are presented in Chapter 3). Finally, the pathogenic effects 

of antibodies against neuronal surface antigens in vivo were examined by a passive transfer 

animal model, using lipopolysaccharide (LPS) to open the blood-brain barrier. For this 

experiment, CASPR2 antibodies were chosen for several reasons: (1) they were one of the most 

common antibodies found in our cohorts; (2) they are some of the most commonly observed 

antibodies in patients with autoimmune encephalitis; (3) there are no previous studies 

attempting to model their CNS effects; (4) most importantly, plasma derived from the 

plasmapheresis of a patient with CASPR2 related encephalitis was available for the study. In 

this animal model, the behavioural and neuropathological effects of the antibodies were 

evaluated (results in Chapters 4 and 5).  
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Chapter 2: Materials and Methods  

2.1 Antibody screening in human cohorts  

The CNS disorders cohorts were provided from the UOC Clinica Neurologica of the IRCCS 

Istituto delle Scienze Neurologiche di Bologna. Population controls from elderly individuals 

(age over 60 years) and serum samples from patients with seronegative myasthenia gravis 

(SNMG), which served as disease controls, were kindly provided by the Nuffield Department 

of Clinical Neurosciences. It is important to note that all this work was retrospective, and no 

patients or controls were prospectically included in the study. The initial work included the 

search for antibodies in different cohorts in order to assess their frequency in specific 

neurological disorders and their association with specific phenotypes. In a second step the 

frequency of antibodies among patients with different neurological disorders and healthy 

controls were compared.  

 

2.1.1 Narcolepsy type 1 cohort  

 

Narcolepsy type 1 (NT1) patients’ sera were collected at the Sleep Centre of the IRCCS Istituto 

delle Scienze Neurologiche di Bologna. Inclusion criteria were diagnosis of narcolepsy with 

cataplexy on unknown etiology or related to infections and vaccination (i.e. Pandemrix); 

patients were excluded if brain imaging documented the presence of brain lesions potentially 

responsible for secondary narcolepsy. Both children and adults could participate to the study. 

According to these criteria, sera from 59 consecutive patients (22 F, 37 M) diagnosed with NT1 

accordingly to the ICSD, 2nd edition (AASM, 2005) were included. All patients underwent 

MSLT the day after a complete polysomnography and protracted EEG monitoring. CSF HCRT-

1 levels and HLA status at locus DQB1*0602 were available in all patients.  

 

2.1.2 Epilepsy cohort  

 

Patients were collected by different adult and pediatric epilepsy centers in the Bologna area. 

Inclusion criteria was an ascertained diagnosis of temporal lobe epilepsy, with or without 

family history, and with or without mesial temporal sclerosis. Exclusion criteria were history 

and/or imaging evidence of stroke, tumor, trauma, vascular malformation, abscess or 

infectious lesion. No age limits were established. On the basis of these criteria, this cohort 

included 73 patients (34 F, 39 M).  
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2.1.3 Neurodegenerative cohort  

Patients consecutively admitted for a neurodegenerative disorder to our clinic were included 

in this study if they satisfied the following inclusion criteria: parkinsonism or cognitive 

impairment/dementia of suspected neurodegenerative aetiology in absence of other causes 

(i.e. vascular dementia, drugs, syphilis). Patients with family history or mutations in genes 

associated to parkinsonism and/or dementia could be included. Patients with abnormal 

complete blood count, blood biochemistry analyses, thyroid function tests, sedimentation rate, 

vasculitic/rheumatological antibody screening, and cranial MRI were included only if these 

alterations were not considered responsible for the clinical picture. Sixty-one patients (21 F, 

40 M), diagnosed with different neurodegenerative conditions, on the basis of current clinical 

criteria, were included.  

2.1.4 Control cohorts 

 

These included 50 population controls aged over 60 years (from a study started in the 1990s 

and used in Vincent A et al. 2004) and 159 patients with SNMG collected from 2000-2003. As 

specific ethics were not available for these samples to be used as controls, they were 

anonymized and unfortunately age and gender are not available. 

 

2.2 Methods 

 

2.2.1 Cell-based assays (CBAs) 

 

Proteins that are expressed on the neuronal surface and relevant for neurological disorders were 

chosen for the screening of the cohorts using human embryonic kidney (HEK) 293 T cells after 

transfection with the plasmid of interest.   

 HEK 293 cells were cultured in Dulbecco’s modified eagle’s medium (DMEM) media 

supplemented with 10% foetal calf serum (FCS) (Biowest®) and 1% each of penicillin G and 

streptomycin 1 in 175 cm 3 plastic flasks at 37°C 5% CO2. After 3-4 days, cells were collected 

after 1-minute incubation with trypsin (GIBCO®, 0.5% diluted in PBS) and centrifuged (1100 

RCF, 5 min) at room temperature (RT). Pellets were resuspended in 10 ml of HEK culture 

medium and counted on a hemocytometer using Tryptan blue to stain dead cells to exclude in 

the counting. 4.6x105 HEK cells were seeded in 6 well plates containing 4 borosilicate glass 
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coverslips (13 mm, VWR) and coated with poly-L-lysine (PLL). 24 hours after seeding, cells 

were transiently transacted with the plasmid encoding for the protein of interest associated in 

some cases with the enhanced green fluorescent protein (EGFP) encoding plasmid. A total of 3 

or 3.2 µg of DNA respectively was diluted in 50 µL DMEM, 0.82 µL of 20% glucose and 1.5 

µL of polyethylenimine (9 mM, PEI) per well. After 12-16 hours of incubation (37°C) the 

media was replaced, and cells cultured for a further 24 hours (hr). EGFP was used as a marker 

of the successful transfection.  

 

Indirect immunofluorescence 

Sera antibodies were diluted in DMEM supplemented with N-(2-hydroxyethyl)piperazine-N’-

2-thanesulphonic acid (HEPES) buffer (4.6 mg/ml) and 1% bovine serum albumin (BSA) and 

incubated with coverslips transferred to individual well on a 24 wells plate (1 hr, RT). For 

NMDAR, LGI1, AMPAR, IgLON5 and HCRTR2 constructs, sera were screened at 1:20 

dilution; GABAAR antibodies were screened at 1:50 dilution; GlyR, GABABR and CASPR2 

were screened at 1:100. These dilutions were those in use by the routine laboratory.  

 After incubation, coverslips were washed 3 times in DMEM/HEPES and fixed in 

paraformaldehyde (PFA) (4%, TAAB®). After a further three washes, secondary antibodies 

(usually Alexa Fluor™ 568 anti-human IgG H&L chain rises in goat) were incubated in the 

dark (1 hr, RT). Finally, cells were washed in DMEM/HEPES (x3) and phosphate buffered 

saline (PBS) (x3) and the coverslips were mounted onto glass microscope slides (VWR®) using 

mounting medium (Dako®) containing a 1:1000 dilution of 4’,6’-diaminidino-2-

phenlindoledichloride (DAPI) in order to stain cells nuclei. This protocol was subjected to 

minor changes due to the use of different secondary antibodies, as described in the appropriate 

sections. 

 Antibody binding to the expressed antigen was observed using a fluorescence 

microscope (Leica DM 2500™). Successful transfection and antibody binding were usually 

confirmed by green (EGFP) and red (secondary antibody against human IgG) fluorescence 

respectively. A subjective visual scoring system was adopted to assess the presence and the 

intensity of the antibody binding to the cells of each coverslip (adapted from Leite I et al. 2008). 

In all experiments, positive and negative controls were included. The scoring system was the 

following: 0= no labelling; 1= weak, considered as a low positive; 2= moderate; 3= moderate-

strong; 4= strong. Also, intermediate scores were possible and therefore 0.5 point could be 

added at each number when the observed staining was in between two scores. For instance, a 

score of 1.5 was given when observed binding was stronger than the low positive control but 
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did not satisfy criteria for score 2. Any result with observed reactivity (score ≥0.5) was 

reassessed by repeat assay. As anti H&L chain secondaries can bind IgG as well as IgM, to 

further confirm the positivity and the relevance of the observed staining, secondary antibodies 

against the human IgG Fc fragment were used to confirm that the antibodies were IgG. In 

positive cases, serum dilutions were performed, when possible, to assess the antibody titre. All 

samples were tested blind to the serum identify and retested on HEK cells transfected with a 

different construct to exclude non-specific binding to the cells.  

 Pictures were taken using an Imaging Rolera XR™ camera or with Leica Confocal 

microscope under the same conditions. No specific features within any image was enhanced, 

obscured, removed or introduced unless explicitly stated.  

 

2.2.2 Screening approaches 

 

2.2.2.1 Immunostaining on rat and mouse brain sections 

 

Rat brain collection and preparation 

Sprague Dawley rats were decapitated, and their brains removed by careful dissection, cut 

sagittally and immediately immersed for 1 hour in 4% PFA at RT. After fixation, the half brains 

were transferred in a sucrose solution at 40% and stored at 4 °C. The passage in sucrose solution 

ensure cryoprotection of the tissue. Brains were left in the solution for 24-48 hours and then 

embedded in optimum citing temperature (OCT) compound (Tissue-Tek®) and snap-frozen in 

dry-ice cooled isopentane. Frozen brains were wrapped in foil and stored at -80°C. Frozen tissue 

was mounted with OCT compound and cut on a cryostat (10 µm) (ThermoScientific 

Cryotome® FSE) sagittally. Cut section were transferred onto SuperFrost® Plus slides, dried 

overnight and stored at -20°C wrapped in aluminum foil.  

 

Immunohistochemistry (IHC) 

Slides were allowed to dry at RT and hydrophobic wells were created around each section using 

a Dako® delimiting pen. All procedures were performed at RT if not otherwise specified. After 

a rinse in cold tris-buffered saline (TBS) solution, endogenous peroxidase blocking was 

achieved by submersion in a solution of TBS-0.3% H2O2 for 15 min RT. Slides were than 

washed with TBS (3 x 5 min) and unspecific binding was blocked in normal goat serum (NGS) 

(10% in TBS for 1 hr). Sections were rinsed in TBS and then incubated in primary antibodies 

(1:100 dilution in 5% NGS-TBS) overnight at -4 °C in a humidity chamber. The day after, 
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slides were washed with TBS (3 x 5 min) and incubated with secondary antibodies (Biotinylated 

Goat Anti-Human IgG Antibody, Vector lab,1:1000 in TBS) for 2 hours. After washing with 

TBS (3 x5 min), in order to amplify the signal of the secondary antibody, a further incubation 

was performed with the avidin-biotin complex (ABC, Vectastain Elite ABC Kit Standard) 

(1:100 in TBS, 1 hr). Sections were further washed with TBS (3 x 5 min) and the reaction 

developed using brown 3,3’-diaminobenzidine DAB (ImmPACT DAB Peroxidase (HRP) 

Substrate, Vector lab) prepared as per manufactures instructions. Slides were left to dry in the 

fume hood before proceeding with dehydration procedure by immersion in progressive 

concentration of ETOOH solutions followed by p-Xylene. Slides were mounted with DPX 

mountant for histology (Sigma-Aldrich®) and viewed using a light Microscope (Nikon Eclipse 

E400). Section location was identified by comparison with a rat brain atlas (Paxinos G and 

Watson C, 2007).  

 Screening of patient sera binding to sagittal sections was assessed in the hippocampus, 

cortex, thalamus and cerebellum. Binding to these areas was scored using a subjective scoring 

system (0= no binding, 0.5= weak/questionable binding, 1=weak definitive binding, 2= 

moderate, 3= strong) in each brain area and appearance of binding. All patients showing a score 

≥ 0.5 in at least 1 brain area was repeated and the final score was the mean value.  

 

2.2.2.2 Immunostaining on primary hippocampal neuronal cultures  

 

Neuronal cultures 

The protocol for neuronal cultures was adapted from Kaech S and Banker G (2006). Following 

sacrifice of the pregnant dam, E17-19 fetuses were removed from the uterus and placed on ice. 

Brains were removed and immersed in ice cold antibiotic-antimycotic (AA) supplemented 

Hanks’s Buffered Saline Solution (HBSS) (Gibco®). After midline sagittal bisection of the 

brain and involution of the cortex, the hippocampus was identified and dissected from each 

side. When all of the hippocampi had been removed, they were gently transferred with a Pasteur 

pipette to a Falcon tube containing 5 ml of a solution of HBSS-0.5% trypsin and incubated for 

20 min at 37°C. After removal of the trypsin solution, the tissue was resuspended in complete 

minimum essential medium (MEM) (1X MEM alpha, Gibco®, supplemented with 10% FCS, 

1% AA solution), triturated by repeatedly pipetting up and down and then centrifuged (1000 

RCF for 10 minutes) before being re-suspended in complete MEM. Dissociated cells were 

plated-out in complete Neurobasal medium (NBS) (Neurobasal media 1 X, Gibco®, 

supplemented with 1% AA solution, 0.5 mM L-glutamate, Sigma, and 1% B27 supplement) in 



 

 62 

  

6 well-plates containing 5-9 borosilicate glass coverslips (12 or 10 mm, VWR) previously 

coated with PLL. One third of media was replaced with fresh NBS medium every 5 days and 

maintained in culture for 12 days. Three days after plating, cytosine arabinoside was added at 

a concentration of 5 µM to curb glial proliferation.   

 

Indirect immunofluorescence  

After 12 days in culture, antibody binding studies to neurons were performed. Coverslips were 

transferred to individual wells on a 24 well plate and incubated with serum (1:100) diluted in 

NBS medium supplemented with HEPES buffer (4.6 mg/ml) and 1% BSA. Coverslips were 

then washed 3 times (NBS-HEPES) and fixed with PFA 3% in PBS (10 min, RT). After 3 

additional washes with PBS, neurons were incubated with Alexa Fluor® Goat anti-human IgG 

H&L 488 secondary antibody (1:1000 in complete NBS-1%BSA) (45 min, RT). After further 

washing with PBS (3x), cells were permeabilised with PBS-T 0.3% (15 min, RT) prior to 

incubation with anti-microtubule associated protein 2 (MAP2) commercial antibodies (1:1000 

in PBS-T 0.1%-5% NGS) (1 h, RT). Following PBS washes, appropriate secondary antibodies 

were added (Alexa Fluor® Goat anti Mouse 568) (45 min, RT). After final PBS washes, 

coverslips were mounted with DAPI and visualised using a fluorescence microscope (Leica 

DM 2500™) or a confocal microscope (Zeiss® LSM 710 TM).  

 Binding of patients’ IgG to neurons was considered positive only if MAP2 staining was 

present, showing the neurons to have been healthy. The binding was scored subjectively on a 

scale of 0-3 (0= no binding, 1=weak definitive binding, 2= moderate, 3= strong). In the case of 

repeated experiments, the final score was the mean of the previous scores.  

 

2.3 Passive transfer animal model 

 

2.3.1 IgG purification  

 

The plasma from the CASPR2-Ab positive patient and the serum form the healthy donor were 

centrifuged, diluted 1:1 with Hartmann’s solution and incubated with Protein G Sepharose 

column beads (Sigma-Aldrich, Inc.) overnight at 4°C on a roller. The Sepharose-IgG mixture 

was then percolated trough a chromatography column before elution of IgG with 0.1M glycine 

solution (pH 2.3); the eluate was immediately neutralised with 100 μl of 1M Tris pH 8. The 

protein concentration of the elution was measured using a Coomassie Plus assay kit (Pierce, 
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USA). The eluted fractions were pooled, dialysed against 2 liters of Hartmann’s physiological 

solution two times over 24 hours at 4°C, concentrated by dialysis against polyethylene glycol 

and filter-sterilized. The concentration was determined using NanoDrop 3300 

(ThermoScientific, UK), and IgG was stored at 4°C. The specificity of the binding and the 

antibody titre of the CASPR2-IgG in the original plasma were already reported  (Coutinho E et 

al. 2017). Absence of other antibodies in the plasma of the patient with CASPR2-Ab related 

encephalitis was demonstrated by showing the absence of binding to CASPR2-null neurons and 

brain sections (Coutinho E et al. 2017). 

 

2.3.2 Animals 

 

Nineteen C57Bl6 male mice aged 6 weeks (18-22 g) were purchased from a licensed breeding 

establishment (Charles River). The animals were housed in group of four or five under standard 

laboratory conditions (ad libitum access to food and water; 12:12 light:dark cycle, with lights 

on at 7:00) and monitored daily during the experimental period. Mice were tagged and 

randomly assigned to each experimental group. All in vivo experiments were performed in the 

Biomedical Services Unit at the John Radcliffe Hospital in accordance with the United 

Kingdom Home Office Animals in Scientific Procedures Act (1986) and in accordance with 

institutional guidelines. 

 

2.3.3 Intraperitoneal injections 

 

Two cohorts of mice were injected intraperitoneally (IP) with purified IgG from either a patient 

with CASPR2-antibodies (CASPR2-IgG, n=10 mice) related encephalitis or a healthy control 

(HC-IgG, n= 9). Animals were injected daily for 8 days. At day 3 all mice were injected IP with 

lipopolysaccharide (LPS, 1 mg/Kg). Further details are provided in results.  

 

2.3.4 Behavioural testing 

Behavioural testing was done during the light phase. The animals were brought to the 

experimental room approximately 15 minutes before testing. A rest period of at least 2 hours 

was allowed between a test and the following one. Between mice the walls and the floor of the 

different apparatus were cleaned with 70% ethanol and water and dried with a dry tissue. All 

tests were performed at baseline and after starting of the IgG injections, from day 5, in order to 
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allow animals to recover after the LPS injection, which could have affected behaviour. The 

olfaction test and the reciprocal social interaction test were performed only after the IgG 

administration. 

 

2.3.4.1 Accelerating rotarod (AR) 

Accelerating rotarod was used to assess motor coordination (Deacon R, 2013). The mice were 

placed place on the rotating rod, facing away from the direction of rotation. The rotarod was 

initially set with a speed of 4 rpm for the initial 10 seconds after which an acceleration of 20 

rpm/minute was applied. Time to fall was recorded. If the mouse had fallen off during the initial 

10 seconds it would have another try, to a maximum of 3 trials (Figure 2.1).  

 

2.3.4.2 Kondziela’s inverted screen test (IS) or grip test 

This test was used to assess muscle strength. The inverted screen consisted of a 43 caesurae of 

wire mesh consisting of 12 mm squares of 1 mm diameter wire, surrounded by a 4 cm deep 

wooden beading to prevent the mice from climbing to the other side. At the beginning of the 

test the mouse was placed in the centre of the apparatus on the deeper side and the screen was 

quickly inverted while the timer was started. The inverted screen was held 50 cm above a 

padded surface for a maximum of 5 minutes. The time to fall was recorded. The average of 

three trials was taken as a final result (Figure 2.1).   

 

2.3.4.3 Narrow beams (NB) 

Narrow beams or static rods were used as another test of coordination (Deacon R, 2013). For 

this test three wooden rods of varying thickness (35 (rod 1), 22 (rod 2) and 9 (rod 3) mm 

diameter) each 60 cm long were fixed to a laboratory shelf such that the rods horizontally 

protrude into space at a height of about 60 cm from a padded floor. The end of the rod near the 

bench has a mark 10 cm from the end, to denote the finishing line. The mouse was placed at 

the far end of the widest rod and the timer was started. The orientation time (time taken to 

orientate 180° from the starting position towards the shelf) and transit time (the time taken to 

travel to the shelf end) were recorded for a maximum of 5 minutes. If the mouse had not fallen 

and had arrived at the end of the rod, was transferred on the next smaller rod. If the mouse had 

not reached the end by this time the test was ended, and the mouse transferred to the next rod 

(Figure 2.1).  
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2.3.4.4 Marble burying test (MBT) 

This test was used to assess the presence of repetitive, compulsive-like behaviors (Angoa-Pérez 

M et al. 2013). Standard polycarbonate mouse cages with fitted filter-top covers were fitted 

with fresh mouse bedding to a depth of 5 cm and its surface leveled by inserting another cage 

of the same size onto the surface of the bedding. Ten standard glass toy marbles (assorted styles 

and colors, 14 mm diameter) were placed on the surface of the bedding in 2 rows of 5 marbles. 

The mouse was placed into a corner of the cage containing the marbles and left undisturbed for 

30 min. Food and water access was allowed during the test. At the end of the test the mouse 

was returned to its home cage and the marbles buried were counted and the number expressed 

as percentage. A marble was scored as buried if two-thirds of its surface area was covered by 

bedding (Figure 2.1).  

 

2.3.4.5 Open field (OF) 

The open field was used to assess motricity but also anxiety. The apparatus consisted of a dark 

closed arena of 50 x 50 cm divided into 10 cm squares illuminated with a 60 W lamp posed 45 

cm above the centre of the floor of the box. The mouse was placed in a corner square facing the 

wall and its movement recorded on camera for 5 minutes. The latency to move, the number of 

peripheral and central square entered (four paws), the number of rears (both back paws on the 

ground but not part of grooming), the number of grooming and time spent grooming, the time 

spent in the peripheral and in the central squares, the time spent moving and the time spent 

freezing were recorded. The number of faecal boli and the presence/absence of urine were also 

recorded (Figure 2.1).  

 

2.3.4.6 Light-dark box (LDb) 

The LD box test was used to assess anxiety. The apparatus consisted of an open white 

compartment 30 x 20 x 20 cm joined by a 3 x 3 cm opening to a dark box 15 x 20 x 20 cm. The 

white compartment was illuminated by a 60 W lamp placed 45 cm above the centre of the floor. 

One side of the white compliment of the box was transparent allowing detection of the mouse 

movement. The mouse was placed in the middle of the light side facing away from the opening 

and a count-down timer for 5 min started. The latency to cross with all four feet to the dark 

side, the latency to cross with all four feet to go back for the first time to the light side, the total 

time spent on the light side and on the dark side and the number of transitions through the 

opening were registered for the test. The number of faecal boli and the presence/absence of 

urine were also recorded (Figure 2.1).  
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A) Accelerating rotarod; B) Inverted screen; C) Narrow beams; D) Marble burying 

test; E) Open field test; F) Light-dark box test. 

 

A) B) 

C) D) 

E) F) 

 

Figure 2.1 Motor, compulsive-like behaviour and anxiety behavioural testing 



 

 67 

  

2.3.4.7 Forced alternation test (FA) or spatial preference test  

This test was considered as a short memory test. The apparatus was a Y-maze constructed from 

transparent Perspex and mounted on an opaque square Perspex board (64.5 cm x 56.5 cm). The 

walls of the Y-maze were 20 cm high and 0.5 cm thick. Each arm was 30 cm long and 8 cm 

wide. The test consisted of 3 periods: a habituation period (5 minutes), a delay period (1 minute) 

and a test period (2 minutes). During the exposure training trials, the entrance to one arm (the 

Novel arm) was blocked using a rectangular piece of Perspex. The Novel arm (NA) was 

counterbalanced in each group between right and left side. At the start of a trial the mouse was 

placed at the end of the Start arm (which was always considered as the one closest to the 

experimenter) and allowed to explore the Start arm and the Other arm. During this period the 

time spent in each arm and the number of entries to each arm were recorded. An arm entry was 

defined as when a mouse had placed all four paws into an arm. At the end of the trial the mouse 

was removed from the maze and returned to its home cage for 1 minute during which the maze 

was cleaned and the block to the Novel arm removed. At the beginning of the test period the 

mouse was returned at the end of the Start arm and now allowed to explore the Start, Other, and 

Novel arms and exploratory behavior assessed for 2 minutes. During the test the time spent in 

each arm and the number of entries into each arm were recorded. Preference for the Novel arm 

was calculated as a Preference Index (entries/time in the new-entries/time in the old 

arm)/(entries/time in the new + entries/time in the old arm) for both the time in arms and number 

of arm entries (Rubovitch V et al. 2010). Scores greater than 0.5 indicate a preference for the 

Novel arm (Figure 2.2). 

 

2.3.4.8 Continuous spontaneous alternation (CSA) test 

The continuous spontaneous alternation test was used as a test of working memory. The test 

was conducted in the same Y-maze as described above and it consisted of a single 5 min trial, 

in which the mouse was allowed to explore all three arms of the Y-maze. The start arm was 

varied between animals to avoid placement bias. CSA was assessed by scoring the pattern of 

entries into each arm during the 5 min of the test. Spontaneous alternation performance (SAP) 

was defined as successive entries into each of the three arms as on overlapping triplet sets (i.e., 

ABC, BCA, . . .) and scored as percentage of spontaneous alternation (total alternations/total 

arm entries - 2* 100) (Wietrzych M et al. 2005). The percentage of alternate arm returns (AARs) 

(i.e. ABA) and same arm returns (SARs) (i.e. AAB) were also scored for each animal in order 

to assess aspects of attention within spontaneous working memory (Wall PM and Messier C, 

2002). Total entries were scored as an index of ambulatory activity in the Y-maze (Figure 2.2). 
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A) Forced alternation test: in the habituation period the mouse could explore only two arms 

of the Y-maze for 5 minutes before being returned to its home cage; after 1 minute delay, 

the mouse was returned in the Y-maze and allowed to explore all arms; B) Continuous 

spontaneous alternation test; C) Novel object recognition test: in the familiarization phase 

the mouse was left to explore two identical objects; after 24 hours one of the object was 

substituted by a novel object.  

 

A) 

C) 

B) 

 Figure 2.2 Memory tests 
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2.3.4.9 Novel object recognition (NOR) test 

The novel object recognition test was used to evaluate long term memory (Antunes M and Biala 

G, 2012). The open field arena was used in order to benefit from previous habituation. Towers 

of Lego bricks (X-cm high and X-cm wide) and Falcon tissue culture flasks filled with bedding 

(9.5 cm high, 2.5 cm deep and 5.5 cm wide, transparent plastic) were used as objects. Animals 

were randomly assigned one of those pairs of object for the familiarization phase. The test 

comprised two phases: a familiarization phase and a test phase performed 24 h later. During the 

familiarization session two identical objects (either towers of Lego bricks or Falcon tissue 

culture flasks) were placed in the open field arena, 5 cm away from the walls. The mouse was 

placed in the open field, its head positioned opposite the objects, and left free to explore for 5 

minutes. The test phase was identical to the familiarization phase but one of the familiar object 

was replaced in the same position with a new object. The position of the novel object (left or 

right) was randomized between each mouse. The test was video recorded and subsequently 

analysed for number of visit and time spent with each object during both the familiarization and 

the test phase. The object exploration was scored whenever the mouse sniffed the object or 

touched the object while looking at it (i.e., when the distance between the nose and the object 

was less than 2 cm). Climbing onto the object (unless the mouse sniffs the object it has climbed 

on) or chewing the object did not qualify as exploration. If an animal had a total objects 

exploration time < 5 sec during any phase it was excluded from the analysis. The preference 

for the new object was expressed as Preference index [PI= (time new object - time familiar 

object)/(time new object + time familiar object)]. This result can varies from +1 to -1 with a 

positive score indicating preference for the novel object (Antunes M and Biala G, 2012) 

(Figure 2.2).  

 

2.3.4.10 Reciprocal social interaction test (RSI) 

This is a social interaction test where two mice of the same treatment group, unknown to each 

other, are allowed to interact freely (Barkus C et al. 2012). The apparatus was the same used 

for the open field as the mice were already habituated to it. Two animals from the same 

treatment group but housed in different cages, tightly matched for weight (within 5% 

difference), were exposed to each other for 5 minutes. The test was video recorded and scored 

offline for the latency to start the interaction and for time spent in social and non-social 

behaviours and number of social and non-social events. Social behaviours included sniffing, 

grooming and following closely; non-social behaviours included self-grooming, rearing and 

freezing. The time active and inactive was also measured. 
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2.3.4.11 Olfaction test (OT) 

An olfaction test was performed in order to assess olfaction deficits that could interfere with 

the results from the social interaction tests. The open field arena was used in order to benefit 

from previous habituation. A small plastic container with an odour (1 mL of vanilla or citrus 

food flavouring) was placed at two corners. The test comprised 3 phases: a sample phase (5 

minutes), a delay period (5 minutes) and a test phase (5 minutes). During the first phase, the 

same odour was placed in both containers (half of the mice for treatment group would smell 

one odour, while the other half would smell the other). After this, the mice would return to the 

home cage for 5 minutes. During the test phase, a container with the alternate (new) odour was 

placed in one of the corners. The location of the new odour was counterbalanced across 

treatment groups. The test was video recorded and subsequently analysed for number of visit 

and time spent with each odour.  

2.3.5 Blood and brain tissue processing 

 

At day 11, eleven animals (6 CASPR2-IgG and 5 HC-IgG injected) were randomly selected 

and sacrificed by CO2. Blood samples were collected by cardiac puncture from 10 animals, 

centrifuged and sera stored at -20 °C. Brains were harvested and split sagittally. For each animal 

half brain was embedded with freezing media and snap frozen in chilled isopentane for 

histological analysis whereas the other half-brain was snap frozen without embedding for 

protein extraction. The remaining eight animals (4/group) were used for morphological and 

immunofluorescence analysis of the brain. Mice were deeply anesthetized with isoflurane 

followed by pentobarbital injection (100 mg kg−1 i.p) and transcardially perfused with 50 ml 

of phosphate-buffered saline (PBS) followed by 50 ml of ice-cold 4% paraformaldehyde (PFA) 

in 0.1 M phosphate buffer. Brains were removed and post-fixed for 24 hours (h) at room 

temperature (RT), cryoprotected with 30% sucrose in PBS and snap frozen in ice-cold 

isopentane. All brains were stored at -80°C. 

 

2.3.6 Morphological and immunofluorescence analysis of the brain and image processing 

 

For morphological and immunofluorescence analysis, perfused fixed brains were cut at 50 µm 

thickness using a Leica CM1900 cryostat in 10 series of free-floating sections. Confocal images 

were taken of immunofluorescently labeled brain sections using a Zeiss LSM 710 confocal 

microscope and images were analysed with FiJi software (Open Source HR Software). 
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2.3.6.1 IgG deposition in the brain and CASPR2 expression 

To look at the similarity between CAPSR2 staining and IgG staining, two consecutive series 

were fixed with 4% PFA, washed 3 times in PBS, blocked for 1 hr in PBS 10% NGS and 

incubated respectively with anti-human IgG antibodies (Biotium, USA, 20022, 1:500) and with 

rabbit monoclonal anti-CASPR2 antibodies (Abcam, EPR8738, ab137052, 1:500) in blocking 

solution overnight at 4°C. We used two consecutive sections instead of a single one to avoid 

the interactions between secondaries we noted in preliminary experiments. In the same 

experiments, we also excluded the presence of interactions between the rabbit CASPR2 

antibodies, the secondary anti rabbit antibodies and the human IgG already present in the tissue 

(data not shown). The day after, the latter sections were washed 3 times in PBS and incubated 

with goat anti-rabbit Alexa Fluor® 568 secondary (1:500) for 1 hr at RT. All sections, included 

the one incubated with anti-IgG, were washed 3 times in PBS and coverslips were mounted 

using fluorescent mounting media containing DAPI (1:1000). For each staining, images were 

acquired using a confocal microscope. For quantitative analysis of the mean fluorescent 

intensity, 32 single plain pictures (4 from the dentate gyrus, 4 from the CA3, 6 from the CA1 

areas of the hippocampus, 6 from the somatosensory cortex, 6 from the thalamus, 6 from the 

cerebellum) were taken from 2 sections per animal. Mean fluorescence intensity was analysed 

with FiJi software (Open Source HR Software) and results plotted with GraphPad 6 as the mean 

of the intensity per each area per mouse.  

 

2.3.6.2 Morphometric studies  

The presence of gross morphological alterations was evaluated on Nissl-stained sections. The 

cresyl violet solution (Sigma C5042) that stains Nissl bodies (granular endoplasmic reticulum 

and ribosomes) allows observation of neuronal soma. Sections were mounted on super frost 

plus slides (vWR), left to dry at RT, fixed with 4% PFA for 10 minutes, rinsed twice in PBS 

and once in deionized water for 5 minutes and immersed in cresyl violet solution (Sigma 

C5042) for 10 minutes. Slides were than dehydrated by immersion in ethanol solutions of 

increasing concentrations until 100%, cleared with xylene and coverslipped with DPX 

mounting medium. Slides were scanned with the Aperio AT2 scanner and analysed with the e-

pathology Aperio ImageScope image analysis system from Leica Biosystems. The sums of the 

area of a series of sections (12 sections), from the appearance of the frontal pole cortex to the 

most posterior part of cerebellum, was multiplied for the number of sections and the thickness 
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of the section (50 µm) to obtain the total brain volume on the coronal plain. The same formula 

was used to calculate the cerebellum and hippocampus volumes (at least 4 sections). Thickness 

of the following structures were measured (25-50 measurements per area): anterior cingulate, 

motor, piriform and somatosensory cortices, neuronal layers of dentate gyrus, CA3 and CA1, 

CA4, CA3 and CA1 fields, granular and molecular layer of the cerebellum. 

2.3.6.3 Neuron and astrocyte counts 

Neurons and astrocytes were identified by immunofluorescence using a mouse anti-NeuN 

(Chemicon, MAB377; 1:500) and a polyclonal rabbit anti-glial fibrillary acidic protein (GFAP) 

antibody (Dako, Z0334; 1:500) respectively. Free-floating sections were fixed with 4% PFA, 

washed with PBS then blocked with 10% NGS in PBS-Triton-X-100 (0.3%) for an hour then 

incubated overnight with primary antibodies at 4°C. The next day the sections were washed in 

PBS then incubated for two hours at RT with goat anti-mouse (568) and goat anti-rabbit (488) 

Alexa-Fluor secondary antibodies from life technologies at 1:500 dilutions in blocking solution. 

Sections were subsequently washed in PBS, mounted on slides after a brief wash in TNS (pH 

= 7.4) and counterstained with DAPI mounting medium, left to dry then sealed and stored 

protected from the light at 4°C for confocal imaging. Cerebellar sections were stained similarly. 

In this case, however, primary antibodies included also guinea pig anti-calbindin D28K 

antibody (Millipore, AB1778; 1:200) for the identification of Purkinje cells. Secondaries 

antibodies included goat anti-mouse (648), goat anti-rabbit (488/568), goat anti-guinea pig 

(555). Neuronal and astrocyte cell densities were determined in the hippocampal fields (CA4, 

CA3, CA1), the somatosensory cortex and the piriform cortex. Confocal images were taken 

across the z-plane spanning the entire hippocampus in all cases in both hemispheres. Six images 

were taken per hemisphere for each cortical region. Eighteen stacks were taken every 2 μm z-

plane for the hippocampus. For the neuronal density, cells were counted in every fifth image in 

the same stack. For astrocytes density, images were z-projected, cells counted, and the density 

calculated as number of cells per volume of area. In the cerebellum, confocal images were taken 

across the cerebellar lobules. Fifteen stacks were taken for each case every 3 μm z-plane. To 

avoid bias related to the different distribution of Purkinje cells across photographs the Purkinje 

cell density was calculated as linear density (number of calbindin positive cells per mm). At 

least 100 cells were counted for each case over 5,3 mm length. Astrocytes density was assessed 

in the molecular layer of the cerebellum as mean fluorescence intensity of the GFAP staining. 

For the neuronal density in the molecular layer, images were z-projected on FiJi and NeuN 

positive cells counted. 
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2.3.6.4 C-fos expression 

To assess the expression of neuronal c-fos, free flowing sections were rinsed in TNS, fixed with 

4% PFA for 15 minutes than washed 3 times in PBS, blocked for one hour in 10% NGS 0.3% 

PBS-T and incubated with rabbit anti-c-fos (Abcam, ab190289; 1:100) and mouse anti-NeuN 

(Chemicon, MAB377; 1:500) in blocking solution overnight at 4°C. The day after sections were 

washed and incubated with goat anti-rabbit (488) and goat anti-mouse (568) Alexa-Fluor® 

secondary antibodies at 1:500 dilution in blocking solution in the dark at room temperature for 

two hours. Sections were subsequently washed in PBS, mounted on slides after a brief TNS 

wash (pH = 7.4) and counterstained with DAPI mounting medium, left to dry then sealed and 

stored at -20°C for confocal imaging. Quantification of c-fos expressing neurons (defined as c-

fos/NeuN positive cells) was performed in the somatosensory, entorhinal and piriform cortex, 

the CA4, CA3 and CA1 fields of the hippocampus, the amygdala, the torso-medial and lateral 

nuclei of the hypothalamus. For each hemisphere, twelve z-stacks were taken in the 

hippocampus (3 for the CA4, 4 for the CA3 and 6 for the CA1), four in the somatosensory area, 

3 in the piriform cortex, 4 in the amygdala, 2 in the entorhinal and 4 z-stacks (2 per subarea) 

were taken in the hypothalamus. The z-step interval was 2 µm within a 50 µm depth. An 

average density was obtained (cells/mm3) for each area. 

2.3.6.5 Microglia counts and morphological analysis 

Microglial cells were identified by the combined expression of Iba1 and CD68 markers. Free 

floating sections were fixed with 4% PFA, washed with PBS then blocked with 10% NGS in 

PBS-T 0.3% for an hour then incubated overnight with a rat anti-CD68 (BioRad, MCA1957; 

1:400) and a rabbit anti-Iba1 (Wako chemicals, 019-19741) primary antibodies in blocking 

solution at 4°C. The sections were washed the next day with PBS-T 0.3% then incubated for 

two hours at room temperature with goat anti-rat (488) and goat anti-rabbit (568) Alexa-Fluor® 

secondary antibodies at 1:500 dilution in blocking solution in the dark. Sections were 

subsequently washed in PBS, mounted on slides after a brief TNS wash (pH = 7.4) and 

counterstained with DAPI mounting medium, left to dry then sealed and stored at -20°C for 

confocal imaging. Quantification of reactive microglia (defined as CD68/Iba-1 positive cells) 

was performed in the somatosensory and piriform cortex, the CA4, CA3 and CA1 fields of the 

hippocampus and in the granular and molecular layers of the cerebellum. For each hemisphere, 

seventeen z-stacks were taken in the hippocampus (3 for the CA4, 4 for the CA3 and 10 for the 

CA1), nine in the somatosensory area, 4 in the piriform cortex and 5 z-stacks per layer were 
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taken in the cerebellum. The z-step interval was 2 µm and microglial cells were counted within 

a 50 µm depth. An average density was obtained (cells/mm3) for each area. 

Microglial morphology was assessed in confocal z-stacks detecting fluorescence on Iba-1 

expressing cells in the hippocampus and in the molecular layer of the cerebellum as previously 

described (Coutinho E et al. 2017). Soma size (μm2) and total cell body size (μm2) were 

measured and the soma/total cell body size ratio calculated and used as a marker of microglia 

activation. The length of the longest ramification (max ramification length) was recorded 

manually in Fiji. 

 

2.3.6.6 Astrocyte complement C3 expression and morphology 

Double staining for complement C3 fraction and GFAP was used to evaluate astrocytes 

activation. Free floating brain sections were mounted on SuperFrost plus slides. When dry, 

sections were washed with TNS, immersed for 10 minutes in a boiled solution of citrate EDTA 

buffer and then left in the same solution for 20 minutes on ice. Sections were washed three 

times in PBS-T 0.3% and incubate with rat anti-C3 (Abcam, EPR19394, ab200999, 1:100) and 

rabbit anti-GFAP (Dako, 1:500) primary antibodies overnight at 4°C. The day after, sections 

were washed in PBS-T 0.3% and incubated with goat anti-rat (488) and goat anti-rabbit (568) 

Alexa-Fluor secondary antibodies at 1:500 dilution in 5% NGS PBS-T 0.3% solution in the 

dark at room temperature for one hour. Slides were than washed in PBS-T 0.3% and TBS, 

counterstained with DAPI mounting medium, left to dry then sealed and stored at -20°C for 

confocal imaging. For each hemisphere, three z-stacks were taken in the hippocampus, 

somatosensory cortex and cerebellum at 40X magnification with a z-step of 2 µm within a 

50 µm depth. Images were analyzed using Fiji. After z-projecting and automatic thresholding, 

the composed images were split in three channels. Images were magnified. Single astrocyte 

cells were manually selected, and for each cell the area on the GFAP and on the C3 channels 

measured. For each cells the C3 expression was calculated as C3/GFAP stained cell areas ratio. 

200 cells/group were analyzed in the hippocampus, 81 cells/group in the somatosensory cortex 

and 100 cells/group in the cerebellum, and the results plotted as both cells average and 4 

animals/group average. Astrocytes morphology was assessed on the same z-stacks detecting 

fluorescence in GFAP expressing cells using the same script as for assessing microglia 

morphology (Coutinho E at al. 2017). The total cell body size (μm2) was measured and the 

number of ramifications and the length of the longest ramification (max ramification length) 

were recorded manually in Fiji. 
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2.3.7 Immunoblot analysis  

For total brain protein extraction, frozen brain tissue (3 brains and cerebellar hemispheres per 

mice/group) was homogenate in lysis buffer (50 mM TRIS-HCL, 150 mM NaCl, 0.1% SDS, 

1% triton-X 100, pH 7.4) supplemented with protease inhibitors (1:100) with a mechanical 

homogenizer. The homogenate was than spinned at 17000 rpm for 20 minutes at 4°C. 

Supernatant was collected and protein concentration measured by a PierceTM BCA protein assay 

kit (23225). 

 

2.3.7.1 Western blot analysis of CASPR2 expression 

For western blot (WB) analysis, NuPAGE sample reducing agent (10x; Invitrogen, NP0009) 

and LDS sample buffer (4x; Invitrogen, NP0008) were added to 10 to 30 µg of an appropriate 

amount of solubilized tissue, boiled for 10 minutes and the proteins separated into 3-8%Tris 

acetate SDS polyacrylamide gels (Invitrogen, NP0322) and transferred with dry blotting on 

nitrocellulose membranes. Membranes were blocked in 5% non-fat skimmed milk in PBS 0.1% 

Tween 20 solution and incubated overnight at 4°C with rabbit anti CASPR2 (Abcam, EPR8738, 

ab137052, 1:1000) and anti-glyceraldehyde-3-phosphate dehydrogenase (GAPDH) antibodies 

(Abcam, [EPR16891] ab181602 1:2000). Membranes were washed in PBS-Tween 0.1% and 

incubated with secondary antibodies in blocking solution for 1 h at room temperature (anti-

rabbit IgG HRP 1:1000). Signals were detected by enhanced chemiluminescence (Amersham 

GE Healthcare) and captured on autoradiography film (GE Healthcare). All studies were done 

in duplicate or triplicate. Films were digitally scanned, and signals quantified using Fiji ImageJ 

software. The signal intensity of each antigen was normalized to that of GAPDH in the same 

lane. The mean OD intensity of signal in CASPR2-IgG and HC-IgG treated animals was 

compared in GraphPad Prism 6. 

 

2.3.7.2 Cytokine and chemokine array 

Brain cytokine expression was analyzed using a Mouse Cytokine Antibody Array (22 Targets) 

(Abcam, ab133993) as per manufacturer instructions. Briefly, membranes were blocked in 

blocking buffer for 30 minutes at room temperature than incubated with 250 µg of proteins 

from the brain lysates in blocking buffer overnight at 4°C. The day after, membranes were 

thoroughly washed and incubated with biotin-conjugated anti-cytokines antibodies overnight 

at 4°C. Following washing, streptavidin-HRP was applied for 2 hours at room temperature. 
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Immunoreactivity was then visualized using enhanced chemiluminescence reagent. X-ray film 

was than scanned and densitometric analysis performed using Fiji. Positive controls were 

included on each membrane and used for results normalization. The mean intensity of the 

normalized signal in HC-IgG injected mice was defined as 1 and the other intensities expressed 

relatively to this value.  

 

2.4 Statistics  

 

A student’s t test or a Mann-Whitney was used to compare the mean of two groups, depending 

if the data distribution was normal or not respectively. Holm–Sidak correction was applied to 

correct for multiple comparisons. Chi square or Fisher’s exact test were applied to determinate 

the relations between categorical data. One-way ANOVA was performed when more than two 

groups were compared. For weight changes over time a two-way ANOVA was used with post 

hoc analysis. Behavioural data were analyzed by one-way ANCOVA, using the baseline 

behavior as a covariate. Post hoc analysis was performed when appropriate. Significance for 

all experiments was placed at p<0.05. Statistical tests were carried with GraphPad prism version 

6 (GraphPad software, San Diego, California, USA) or IBM SPSS statistics version 20.0 (SPSS 

Inc., Chicago, USA). Graphs were plotted using Graph Pad prism version 6. Data is shown as 

the mean ± SEM if not otherwise specified.
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Chapter 3. Antibodies in cohorts of patients with central nervous system 

disorders and controls 
 

3.1 Introduction 

As discussed in the Introduction, the discovery of syndromes associated with the presence of 

antibodies directed against neuronal surface antigens (NSA-Abs) has helped to define a clear 

aetiology and a rationale for a specific therapy in several cases of autoimmune encephalitis. 

However, patients with “a minora” phenotypes, with a more restricted clinical presentation, 

have been reported in every neurological field from epilepsy to neurodegenerative disorders. 

As a result, an effort has been made to identify the clinical features that may suggest an 

antibody-mediated disorder in those cases which do not have a “classical” presentation but 

could still benefit from the immunotherapy.  

On the other hand, the search for antibodies has also been extended to several disorders for 

which the aetiology is still obscure but in which an autoimmune aetiology is strongly suggested 

by circumstantial evidences (i.e. Narcolepsy type 1). These efforts, have, as a counterpart, 

raised new questions, particularly about the role and relevance of the antibodies in “discrete” 

neurological syndromes, their pathogenicity and, of course, their pathophysiological 

mechanisms. Moreover, the discovery of antibodies against neuronal-surface antigens (NSA) 

in a small proportion of healthy controls (Dahm L et al. 2014) or patients with other confirmed 

neurological diagnosis (Rossi M et al. 2015) or transiently during the course of a neurological 

disease (Wright S et al. 2016), has led to the hypothesis that these antibodies might be clinically 

irrelevant or a secondary phenomenon.      

The purpose of this study was, therefore, to evaluate the frequencies of NSA-Abs in 

different CNS neurological disorders and in controls with PNS disorders or none, and to try to 

establish a correlation with specific clinical phenotypes and, thereby, shed light on their 

significance. Three groups of patients were studied: narcolepsy type 1 (NT1) as an example of 

a highly specific disease, epilepsy patients representing a potentially diverse group, mostly with 

unknown and possibly autoimmune aetiologies, and patients with neurodegeneration who 

represented a diverse group of patients with brain pathology of other primary causes. For 

antibody screening, three approaches were used: two screening approaches combining search 

for unknown antigens by immunohistochemistry (IHC) on rat brain sections and 

immunofluorescence on dissociated neurons cultures, and a candidate antigen approach using 

cell-based assays (CBAs) for specific antigens. The clinical data were subsequently collected 
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from medical records available at the UOC Clinica Neurologica di Bologna. All methods are 

available in Chapter 2.   

3.2 Screening of antibodies in narcolepsy type 1  

 

This cohort included 59 patients (22 F, 37 M), aged 31.10  17.71 years (range 8-69) at 

sampling. Data are summarised in Table 3.1. Based on the age at sampling, the cohort included 

22 children (age < 17 years). The typical association of reduced CSF HCRT1 levels and 

positivity for the allele DQB1*0602 was observed in 54 patients, whereas one was HLA 

negative with normal HCRT-1 levels, two were HLA negative with reduced HCRT-1, and two 

were HLA positive with normal HCRT-1 in the CSF. Patients’ age at excessive daytime 

sleepiness (EDS) onset was 20.4  13.7 years (range 6-62) and age of cataplexy onset was 22 

 14.4 years (range 6-62). Patients with age at onset over 40 years were considered as late onset 

(n=6). EDS usually presented before cataplexy and the time gap between EDS and cataplexy 

onset was 28.9  51.8 months (range 0-276). On the basis of the time lapse between EDS and 

cataplexy onset, we divided NT1 patients into subjects with acute onset (cases with gap between 

symptoms ≤ 6 months) and those with a more chronic evolution (progressive). Twenty-eight 

patients (15 children) were considered as acute onset. 

 The timing of sampling in relation to symptom onset was highly variable (time lapse 

from EDS onset 128.3  131.6 months, range 0-528; time lapse from cataplexy onset 108.9  

133.6 months, range 1-504) but 22 patients (11 acute) were sampled within 1 year from onset.  

 After antibody screening, more detailed clinical information regarding additional 

symptoms, brain imaging, and CSF analysis were collected and correlation with the antibody 

status performed. First, we screened for the presence of general reactivity, subsequently we 

looked for specific antigens by CBAs. 

 

3.2.1 Screening for unknown antigens  

 

Immunohistochemistry (IHC) on sagittal rat brain sections showed the presence of antibody 

binding to the neuropil in 10 (16.9%) NT1 patients (Figure 3.1). The binding was generally 

diffuse and concentrated on the hippocampus, cortex, cerebellum and thalamus; no new 

patterns, potentially specific to this disease, were identified.  
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Table 3. 1 Demographic and clinical features of the NT1 cohort 

 

N. of subjects 59 
   

Female:Male 22:37       

Children:adults 22:37       

Age at sampling (mean ± SD) 

(years) 

31.1 ± 17.7       

Age EDS onset (mean ± SD) 

(years) 
20.4  13.7        

Age cataplexy onset (mean ± SD) 

(years) 
22  14.4    

Time lapse between EDS onset-

sampling (mean ± SD) (months) 
128.3  131.6        

Time lapse between cataplexy onset-

sampling (mean ± SD) (months) 
108.9  133.6    

Acute:progressive 29:30       

Late onset (>50 y)  6       

Sampled close to onset (1 year) 22       

Post-vaccine/H1N1 cases 2       

HCRT-1 levels Reduced Reduced Normal Normal 

HLA-DQB1*0602 + - - + 

Number 55 1 1 2 

EDS: excessive daytime sleepiness; HCRT-1: hypocretin 1; SD: standard deviation.  
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A) Representative images of immunohistochemistry (IHC) from a healthy control 

(HC) and a patient with NT1 showing neuropilar reactivity. B) Representative images 

of neuronal staining. C) Score results.  

  

 

C) 
 
 
 
 
 

B) 
 
 
 
 
 

A)  
 
 
 
 
 

Figure 3.1 Screening for unknown antigens in NT1 patients 
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Immunofluorescence on rat hippocampal neurons showed punctate staining, suggestive 

of the presence of an antibody against a neuronal surface antigen, in 8 patients (13.5%) (Figure 

3.1). Among these reactive sera, 5 (8.4%) were positive on both tissue and neurons, 5 (8.4%) 

were positive only on tissue and 3 (5%) positive only on neuronal cultures.  

 

3.2.2 Antibody screening for known antigens on CBAs 

 

The 59 samples from this cohort were screened by CBA for NMDAR, CASPR2, LGI1, 

AMPAR, GABABR, GABAAR, D2R, GlyR, Neurexin 1α (NRX1) (Zandian A et al. 2017) and 

HCRTR2 (Giannoccaro MP et al. 2017) antibodies. Overall, 15 patients had positive antibodies: 

8 against NMDAR, 1 against LGI1, 1 against GlyR, 1 against GABAAR, 1 against NRX1 and 

3 against HCRTR2. Titres were generally low: 1:20 (n=6), 1:100 (n=1) to 1:500 (n=1) for 

NMDAR, 1:200 for GlyR, 1:500 for NRX1, 1:100 to 1:200 for HCRTR2 (Figure 3.2). Titres 

were not determined for GABAAR and LGI1 antibodies. Among the CBA positive patients 3 

(1 LGI1-, 1 GlyR- and 1 GABAAR-Abs) were positive also on brain sections and neuronal 

cultures, 1 (NMDAR) was positive also on neuronal cultures and 2 (NMDAR) were positive 

also on immunohistochemistry. The absence of a perfect correspondence between the three 

different techniques is not surprising as CBAs are known to be more sensitive for most neuronal 

antibodies. Overall, only 2 patients showed reactivity on both neurons and brain sections in the 

absence of antibodies against known antigens on CBAs.  

 Patients with NMDAR antibodies (5 M, 3 F) included 4 adults and 4 children. Age at 

EDS (P=0.4) and cataplexy onset (P=0.37), age at sampling (P=0.40), time lapse between EDS 

(P=0.7) and cataplexy onset (P=0.88) and sampling, Epworth sleepiness scale (ESS) (P=0.26) 

and HCRT-1 CSF levels (P=0.81) were not different from the rest of the patients (independent 

samples t test; Table 3.2). However, the presence of NMDAR antibodies was associated with 

an acute onset of the disease (P= 0.022, Fisher’s exact test, two tailed) and unexpectedly, these 

antibodies were inversely associated with the presence of hypnagogic hallucinations (P=0.019, 

Fisher’s exact test, two tailed) (Table 3.3 A and B).  

Patients with HCRTR2 antibodies were 2 M and 1 F, and all three had prominent 

psychiatric symptoms. One male patient, aged 38 years, HLA positive, with undetectable CSF 

HCRT-1, presented at age 15 years with EDS; cataplexy onset was at 27 years. Since disease 

onset he had an associated psychosis. The female patient, aged 23 years, HLA negative and 

with normal CSF HCRT-1, presented with EDS onset at age 16 years followed 2 years later by 

cataplexy. Recently she displayed severe paranoia and psychotic symptoms. The last patient  
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A) Score results for different antigens; B) Representative images of a CBA from a 

negative (HC) and a positive (NT1) patient. 

. 

Figure 3.2 Screening for target antigens by CBAs in NT1 patients 
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Table 3. 2 Demographic features of patients with NMDAR-Abs 
 

NMDAR positive 

(n=8) 

NMDAR negative 

(n=51) 

p-value 

Gender (M, F) 5,3 32,19 >0.999 $ 

Age EDS onset (years) 16.6 ± 8.1 21 ± 14.14 0.40 ^ 

Age cataplexy onset (years) 17.7 ± 9.2 22.6 ± 15 0.37 ^ 

Time lapse EDS-cataplexy 

onset (months) 

13.6 ± 38.1 31.3 ± 53.5 0.37 ^ 

Age at sampling (years) 26.5 ± 17.5 31.8 ± 17.7 0.40 ^ 

Time lapse EDS onset-

sampling (months) 

115.5 ± 134.5 130.3 ± 132.4 0.77 ^ 

Time lapse cataplexy onset-

sampling (months) 

102.2 ± 123.6 110 ± 136.3 0.88 ^ 

HCRT-1 CSF levels 27.1 ± 41.4 32.7 ± 65.7 0.81 ^ 

ESS 18.1 ± 3.6 16.4 ± 3.9 0.26 ^ 

$: Fisher’s exact test, two tailed; ^: independent samples t-test; CSF: cerebrospinal fluid; 

EDS: excessive daytime sleepiness; Seaworth Sleepiness Scale; F: female; HCRT-1: 

hypocretin 1; M: male. 

 

         

Table 3. 3 Association between NMDAR-positivity in the CBA and acute onset of 

narcolepsy symptoms (A) and absence of hypnagogic hallucinations (B). 

A) Association between NMDAR positivity  

and acute onset 

NMDAR CBA (Fc)  

Positive: Negative 

Acute onset (n=28) 7 : 21  

Progressive onset(n=31) 1 : 30  

P= 0.022 Fisher's exact test, two tailed 

B) Association between NMDAR positivity  

and absence of hypnagogic hallucinations 

NMDAR CBA (Fc)  

Positive: Negative 

Hypnagogic hallucinations (n=38) 6 : 15  

No hallucinations (n=21) 2 : 36  

P= 0.019 Fisher's exact test, two tailed 
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was a 17-year old male, HLA positive but with normal CSF HCRT-1 levels. He presented an 

acute onset of EDS and cataplexy at age 16 years; recently he reported a worsening of auditory 

hallucinations and mild behavioural problems. No patients had H1N1 infection/vaccination; all 

had elevated anti-streptolysin O (ASO) titres.  

 

3.2.3 Clinical features of NT1 patients showing any antibody reactivity 

 

Overall 22 patients (37.3%) showed the presence of some reactivity (found either by CBAs, 

immunohistochemistry or immunofluorescence on neurons). We than analysed if patients with 

antibody reactivity showed any specific clinical feature. Examined clinical features are 

described in Table 3.4.  

No differences were found in demographics between patients with or without any 

reactivity (Table 3.5). However, the presence of any antibody reactivity was more frequent in 

patients with an altered blood-brain barrier (BBB) (P=0.048, Fisher’s exact test, two tailed), as 

expressed by an altered CSF/sera albumin concentration ratio, and less frequent hypnagogic 

hallucinations (P=0.050, Fisher’s exact test, two tailed). The association with an altered BBB 

was even stronger after exclusion of patients showing isolated reactivity (i.e. only on neurons 

or tissue) (P=0.018, Fisher’s exact test, two tailed). No other associations were found with acute 

onset, other clinical features (presence of sleep paralysis, other sleep disturbances, psychiatric 

disorders, other immunological disorders), brain MRI features or other CSF alterations (Table 

3.6).  

The cohort included 9 patients with NT1 and psychosis. Clinical features are 

summarised in table (Table 3.7). Surprisingly, none of them had NMDAR-Abs, but, although 

the frequency of antibody reactivities was not different from the rest of the cohort, 4/9 cases 

with psychosis showed some evidence of antibody reactivity (1 on immunohistochemistry, 1 

for LGI1 and 2 for HCRTR2, as already discussed).  

3.3 Screening for antibodies in the Epilepsy cohort  

 

This cohort included 73 patients (6 children) (34 F, 39 M), with clearly defined temporal lobe 

epilepsy, with or without family history. Age at sampling was 31.7  14.6 years (range 4-82); 

the age at onset and, therefore, the time lapse between sampling and onset, was not available. 

After screening for antibodies, clinical information about family history, response to 

antiepileptic drugs (AEDs), and the presence of temporal lesion or mesial temporal sclerosis  
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Table 3. 4 Examined clinical features in NT1 patients 

Clinical features N. of data available N. of patients (%) 

Sleep features  

ESS 58 n.a. 

Paralysis 59 34 (57.6) 

Hypnagogic Hallucinations 59 38 (64.4) 

• visual  55 31 (56.4) 

• auditory  55 14 (25.5) 

• somesthetic 55 14 (25.5) 

• multimodal 55 19 (34.5) 

RBD 59 21 (35.6) 

Other sleep disorders 59 21 (35.6) 

Psychiatric disorders 

Psychosis 59 9 (15.3) 

Depression 59 18 (30.5) 

Anxiety  59 6 (10.2) 

Anti streptolysin O titre 48 18 (37.5) 

MRI  
  

Altered 49 10 (20.4) 

• white matter abnormalities 49 5 (10.2) 

• other lesions 49 5 (10.2) 

CSF data 
  

altered proteins 44 12 (27.3) 

altered white cells 43 3 (7) 

altered IgGs CSF index 35 8 (22.9) 

altered blood-brain barrier index 34 6 (17.6) 

OBs 
  

• absent 42 32 (76.6) 

• present 42 5 (11.9) 

• mirror pattern 42 4 (9.5) 

• mixed 42 1 (2.4) 

ESS: Epworth Sleepiness Scale; RBD: REM sleep behaviour disorder; MRI: magnetic 

resonance imaging; CSF: cerebrospinal fluid; OBs: oligoclonal bands 
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Table 3. 5 Demographic and clinical features of patients with any reactivity 
 

Seropositive 

(n=22) 

Seronegative 

(n=37) 

p-value 

Gender (M:F) 13:9 24:13 0.78 $ 

Age EDS onset (years) 21.4 ± 14.7 19.8 ± 13.3 0.67 ^ 

Age cataplexy onset (years) 23.9 ± 15.5 20.8 ± 13.8 0.47 ^ 

Time lapse EDS-cataplexy onset (months) 35.5 ± 66.3 24.9 ± 41.4 0.45 ^ 

Age at sampling (years) 31.5 ± 18.8 30.8 ± 17.2 0.87 ^ 

Time lapse EDS onset-sampling (months) 122.1 ± 143.2 132 ± 126.1 0.78 ^ 

Time lapse cataplexy onset-sampling 

(months) 

91.2 ± 133.7 119.4 ± 134.3 0.43 ^ 

HCRT-1 CSF levels 47.8 ± 91.2 22.2 ± 33.9 0.21 ^ 

ESS 17.5 ± 4.1 16 ± 3.8 0.16 ^ 

$: Fisher’s exact test, two tailed; ^: independent samples t-test; CSF: cerebrospinal fluid; 

EDS: excessive daytime sleepiness; ESS: Epworth Sleepiness Scale; F: female; HCRT-1: 

hypocretin 1; M: male. 

 

 

Table 3. 6 Contingency table correlating clinical features and antibody positivity 
 

Seropositive 

(n=22) 

Seronegative 

(n=37) 

p-value 

HCRT-1 CSF levels (low:normal) 20:2  36:1 0.54 

HLA DQB1*06:02 20:2  36:1 0.54 

Onset (acute:progressive) 10:12 16:21 0.43 

Sampling from onset (close:far) 10:12 12:25 0.40 

Hypnagogic hallucinations (yes:no)  8:13 23:11 0.050 

Sleep paralysis (yes:no) 9:13 25:12 0.059 

RBD (yes:no) 8:14 13:24 > 0.999 

Psychiatric disorders (yes:no) 13:9 17:20 0.42 

Other autoimmune diseases 

(yes:no) 

4:18 4:33 0.45 

Brain MRI (altered:normal) 6:14  4:25 0.27 

CSF analysis data    

Blood brain barrier (altered:normal) 4:6 2:22 0.048* 

CSF proteins (increased:normal) 5:11 7:21 0.73 

CSF WBC (increased:normal) 0:16 3:24 0.28 

CSF IgGs index (altered:normal) 0:10 8:17 0.073 

*: significant value (Fisher’s exact test, two tailed); WBC: white blood cells  
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Table 3. 7 Clinical features of patients with NT1 and psychosis 

  Case   

17 

Case 

19 

Case 

25 

Case  

39 

Case  

40 

Case  

41 

Case  

61 

Case  

50 

Case 

62 

Age at 

sampling 

22 13 15 38 15 12 22 14 23 

Sex M F M M F M M M F 

Age EDS 

onset (y) 

15 11 9 15 14 9 11 12 16 

Age 

cataplexy 

onset (y) 

15 12 15 27 14 9 15 13 17 

Type lapse 

sampling- 

cataplexy 

onset (m) 

7 1 1 

month 

11 1 3 7 1 6 

Acute onset Yes No Yes No Yes Yes No No No 

HCRT-1 

levels 

(pg/ml) 

0 10.2 10.8 0 13.3 0 0 23.1 410 

HLA-

DQB1*0602 

+ + + + - + + + - 

Paralysis + - + + - + + + + 

Hypnagogic 

hallucinatio

ns 

+ + - + + + + + + 

Auditory 

hallucinatio

ns 

+ + - + + + + - - 

RDB - - - + + + + + - 

Age 

psychosis 

onset 

21 12 15 16 13 11 21 16 25 

Brain MRI Norm. N.A. Norm. Norm. Norm. Norm. Norm. Norm. Norm. 

CSF 

analysis 

Altered 

protein 

levels 

N.A. Altered 

IgG 

index 

N.A.  N.A. N.A. Norma

l 

Altered 

IgG 

index 

N.A. 

IHC + - - - + - - - - 

Neurons - - - - + - - - - 

CBAs - - - HCRTR2 LGI1 - - - HCRTR2 

Any 

reactivity 

+ - - + + - - - + 

CSF: cerebrospinal fluid; EDS: excessive daytime sleepiness; IHC: immunohistochemistry;  m: months; 
MRI: magnetic resonance imaging; N.A. not available; norm: normal; y: years; + present; - absent. 
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(MTS) on brain MRI were retrieved and correlated with the antibody status. These data are 

presented below. No information on the specific type or frequency of seizures, EEGs or CSF 

data were available. 

 

3.3.1 Screening for unknown antigens  

 

Neuropil binding was observed by immunohistochemistry in 14 patients (19.1%). The pattern 

of staining was diffuse and did not suggest a specific reactivity for this cohort. Neuronal cell 

binding was observed with 11 sera (15.1%) (Figure 3.3). Among these reactive sera, 7 (10.1%) 

were positive on both tissue and neurons, 7 (10.1%) were positive only on tissue and 5 (5.8%) 

only on neuronal cultures.  

 

3.3.2 Antibody screening for known antigens  

 

The 73 samples were screened by CBA for NMDAR, CASPR2, LGI1, AMPAR, GABABR, 

GABAAR, GlyR, IgLON5 and HCRTR2 antibodies. Given the reported association between 

GAD65 antibodies and epilepsy, these were also tested by radioimmunoassay (RIA). Fourteen 

patients (19.1%) had specific antibodies: 2 to GAD65, 2 to GlyR, 5 to CASPR2, 4 to GABAAR, 

3 to GABABR (Figure 3.3). Two showed multiple reactivities: 1 to CASPR2 and GAD65 and 

1 to GABAAR and GABABR. Overall, 4 patients (1 GlyR, 1 CASPR2, 2 GABAAR) showed 

reactivity on neurons and tissue, and 4 (1 GlyR, 1 CASPR2, 1 GABABR, 1 GAD65) also by 

immunohistochemistry. Only three patients had undetermined reactivities on both tissue and 

neurons.  

Features of positive patients are described in Table 3.8. No difference in age at sampling 

were found between patients with different specific antibodies (F (4, 11)=2.064, P= 0.15, one-

way ANOVA). No specific features were associated with specific antibodies (Table 3.8). 

However, the presence of GABABR antibodies was associated with AED resistance (P=0.026, 

Fisher’s exact test, two-tailed) (Table 3.8B). 
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Table 3. 8 Clinical features of Epilepsy patients with specific antibodies 
 

CASPR2 + GABAAR + GABABR + GlyR + GAD65 + 

Number of patients (%) 5 (6.8) 4 (5.4) 3 (4.1) 2 (2.7) 2 (2.7) 

Sex (F:M) 3:2 1:3 1:2 1:1 1:1 

Age at sampling 24.6 ± 10.4 44.2 ± 7.4 31.3 ± 15.8 34 ± 9.8 27.5 ± 4.9 

Family history (n of patients) 1 0 2 0 0 

MTS (n of patients) 2 1 2 0 1 

Temporal lesion (n of 

patients) 

2 1 2 0 0 

AED resistance (n of patients) 3 3 3 0 2 

AED: antiepileptic drugs; MTS: medial temporal sclerosis. 

 

Table 3. 8B Association between GABABR antibodies and resistance to anti-epileptic 

therapies (AEDs) 

 

Association between GABABR positivity 

and AED resistance 

GABABR CBA (Fc) Positive: 

Negative 

AEDs resistance (n=22) 3 : 19  

AEDs response (n=50) 0 : 50 

P= 0.026 Fisher's exact test, two tailed 
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A) IHC and neuronal score results; B) Representative images of a low positive on 

neuronal cultures; C) Score results of CBAs.  

 

 
Figure 3.3 Results of antibody screening in Epilepsy patients 
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3.3.3 Clinical features of patients showing any antibody reactivity 

 

Overall, 24 patients (32.9%) demonstrated some antibody reactivity (either on CBAs, RIA, 

immunohistochemistry on rat brain tissue or immunofluorescence on neurons).  

Epilepsy patients’ clinical features are described in Table 3.9. Patients with a family 

history were significantly younger at sampling than other patients (t(68)=2, P=0.048, 

independent samples t-test). The presence of temporal lesions was more common in female 

patients (P= 0.014, Fishers’ exact test, two-tailed) and, as expected, mesial temporal sclerosis 

(MTS) associated closely with other temporal lesions on the brain MRI (P < 0.0001, Fishers’ 

exact test, two-tailed). 

 Patients with antibody reactivity were significantly younger at sampling compared to 

seronegative patients (t(71)=2, P=0.04, independent samples t-test) (Table 3.10), and again, 

antibody reactivity was correlated with resistance to AEDs (P=0.016, Fisher’s exact test, two 

tailed) (Table 3.10), and this association remained after excluding patients with only single, 

undefined, reactivities (P=0.028, Fisher’s exact test, two tailed) (i.e. positive only on tissue or 

neurons). 

There were no differences in other clinical features, including gender distribution, 

presence of temporal lesions or mesial temporal sclerosis (MTS) on brain MRI between 

seropositive and seronegative patients (Table 3.10).  

 

5.4. Screening for antibodies in the Neurodegeneration cohort  

 

This cohort included serum samples from 61 patients (21 F, 40 M), aged 67.9  10.1 years 

(range 46-84) at sampling, diagnosed with a broad range of neurodegenerative disorders (Figure 

3.4), according to current clinical diagnostic criteria. If the clinical criteria for a specific disease 

were not met, the patients were defined as undetermined dementia (UD) or undetermined 

parkinsonism (UP). The diagnoses included progressive supranuclear palsy (PSP, n= 5), 

cortico-basal degeneration (CBD, n= 4), multiple system atrophy (MSA, n= 3), Parkinson’s 

disease (PD, n= 2), PD with dementia (PDD, n= 7), PD with dysautonomia (PDDy, n= 2), 

Alzheimer’s disease (AD, n = 6), Creutzfeldt-Jakob disease (CJD, n= 3), behavioral variant 

fronto-temporal dementia (FTD, n= 4), dementia with Lewy body (DLB, n=3), UD, n= 14 and 

UP, n=7. Age at onset was 62.5  13.4 years (range 16-81) and the time lapse between onset 

and sampling was 71.1  112.7 months (range 1-732).  
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Table 3. 9 Demographic and clinical features of Epilepsy cohort patients 

Feature (n of 

patients) 

Sex 

(M:F) 

Age at 

sampling 

Family 

history 

(yes:no) 

Temporal 

lesions 

(yes:no) 

MST  

(yes:no) 

AEDs 

resistency 

(yes:no) 

Family history 
      

Yes (n = 24) 12:12 26.8 ± 12.4 - 8:16 3:16 7:17 

No (n = 46) 26:20 34.1 ± 15.4 - 17:29 18:27 15:31 

p-value  0.62 $ 0.048*^ - 0.79 $ 0.082 $ >0.999 $ 

AEDs resistency  
      

AEDs resistant (n= 22) 14:8 30.9 ± 15.3 7:15 8:14 9:9 - 

AEDs responders 

 (n = 50) 

24:26 32.2 ± 14.5 17:31 17:33 12:36 - 

p-value  0.30 $ 0.73 ^ >0.999 $ >0.999 $ 0.075 $ - 

Temporal lesions  
     

Yes (n = 25) 8:17 33.2 ± 14.2 8:17 - 17:5 8:17 

No (n = 47) 30:17 31.1 ± 15 16:29 - 4:40 14:33 

p-value  0.014*$ 0.56 ^ 0.79 $ 
 

<0.0001*$ >0.999 $ 

MST 
      

Yes (n = 21) 7:14 34.6 ± 14.7 3:18 17:4 - 9:12 

No (n = 45) 27:18 32.2 ± 14.9 16:27 5:40 - 9:36 

p-value  0.064 $ 0.54 $ 0.082 $ <0.0001*$ - 0.075 $ 

*: significant value; $: Fishers’ exact test, two tailed; ^: independent samples t test; AEDs: 

antiepileptic drugs; MST: mesial temporal sclerosis.  

 

 

Table 3. 10 Contingency table correlating clinical features and antibody positivity 
 

Seropositive (n=24) Seronegative (n=49) p-value 

Gender (M:F) 13:11 26:23 > 0.999 $ 

Age at sampling 26.7 ± 12.6 34.1 ± 15 0.040* ^ 

Family history (yes:no) 8:15 16:31 > 0.999 $ 

MTS (yes:no) 6:14 15:31 > 0.999 $ 

Temporal lesion (yes:no) 8:16 17:31 > 0.999 $ 

Resistency to AEDs (yes:no) 12:12 10:38 0.016* $ 

*:significant value; $:Fishers’ exact test, two tailed; ^: independent samples t test; AEDs: 

antiepileptic drugs; MST: mesial temporal sclerosis.  
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After screening for antibodies, detailed clinical information about disease onset, clinical 

presentation, additional features and results of imaging, CSF, neuropsychological and 

neurophysiological testing were collected for associations with the antibody status.  

 

3.4.1 Screening for unknown antigens  

 

Immunohistochemistry on rat brain sections showed a pattern compatible with the presence of 

antibodies against neuronal antigens in 9 (14.8%) cases. Neuronal punctate binding was 

observed with 14 (23%) sera (Figure 3.4). Of these positive sera, 5 (8.2%) were positive with 

both methods, 9 (14.8%) bound only live neurons in cultures and 4 (6.6%) only on tissue.  

 

3.4.2 Antibody screening for known antigens  

 

Samples were screened by CBA for NMDAR, CASPR2, LGI1, AMPAR, GABABR, GABAAR, 

GlyR and IgLON5 antibodies. We identified 11 patients (18%) with specific antibodies (Figure 

3.4): 4 to GlyR, 1 to CASPR2, 2 LGI1, 3 to GABAAR, one of whom positive also for AMPAR-

Abs, 1 to GABABR. Overall, 3 patients (1 LGI1, 2 GABAAR) showed reactivity on neurons 

and tissue and 1 (GABAAR) on neurons. Two patients (3.3%) had undetermined reactivities on 

both tissue and neurons. Four patients (6.6%) remained positive only on tissue and 8 (13.1%) 

only on neurons. Demographic and clinical data of patients with specific antibodies are in given 

in Table 3.11.  

 

3.4.3 Clinical features of patients showing any antibody reactivity 

 

Overall 25 patients (40.9%) showed the presence of some reactivity (either on CBAs, 

immunohistochemistry or immunofluorescence on neurons). The diagnoses of positive patients 

were: PSP (n=3), MSA (n=1), PD (n=1), PDD (n=2), PDDy (n=1), CJD (n=2), FTD (n=1), 

DLB (n=3), UD (n=8), UP (n=3). Clinical diagnosis and demographic data are described in 

Table 3.12. No associations were found between diagnosis at discharge and antibody presence 

(P=0.15, Pearson Chi-Square), after dichotomizing patients between defined vs undefined 

diagnoses (P=0.27, Fishers’ exact test, two tailed), or between prevalent parkinsonism or 

cognitive impairment (P>0.999, Fishers’ exact test, two tailed). However, the presence of 

antibody reactivity was associated with subacute onset in patients with prevalent dementia 

(P=0.029, Fishers’ exact test, two tailed) (Table 3.13 A) but not in patients with prevalent   
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A) Pie-chart of diagnosis at admission (top); pie-chart of diagnosis at discharge 

(bottom); B) results of antibody screening by immunohistochemistry (IHC) on rat brain 

tissue and immunofluorescence on hippocampal rat neurons (left) and representative 

image of a serum showing reactivity towards an antigen expressed on the surface of 

live neurons (right); C) Summary of CBA results. 

 

 

 
Figure 3.4 Diagnosis and results of antibody screening in Neurodegenerative patients 



 

 

  

 

Table 3. 11 Clinical features of patients with Neurodegenerative disorders and specific antibodies 

Patient 

sex, 

age at 

sampling 

Antibody 

target 

Diagnosis at 

discharge 

Age 

at 

onset 

Onset Acute 

worsening 

and main 

feature 

Main 

presentation 

Response to 

symptomatic 

therapy 

Brain MRI CSF EEG MMSE Other 

features 

F, 68 CASPR2 PSP 64 Chronic Yes, 

hypersomnia 

Parkinsonism Yes Normal Normal N.D. 25 RLS 

F, 76 GABAAR PSP and 

dementia 

66 Chronic No, but step-

down 

Parkinsonism Partial White matter 

hyperintensity 

and atrophy 

Normal N.D. 25 RLS, 

RBD 

F, 75 GABAAR Rapidly 

evolving 

dementia 

71 Subacute No Cognitive and 

behavioural 

impairment 

Partial White matter 

hyperintensity 

and atrophy 

Lymphocytosis

; OBs (mirror 

pattern) 

Slow 26 AchR+ 

MG and 

previous 

thymo-

ma 

M, 78 GABAAR 

+ AMPAR 

Rapidly 

evolving 

parkinsonism 

and ataxia 

78 Subacute No Parkinsonism 

and ataxia 

No Compatible 

with CJD 

Increased tau 

protein and 

positive 14.3.3 

Aspeci-

fic 

N.D. Hyperso

mnia 

M, 79 LGI1 DLB 78 Subacute No Parkinsonism, 

cognitive and 

psychiatric 

features 

No White matter 

hyperintensity 

and atrophy 

Normal Slow 27 RBD 

 

 

 

  
M, 66 LGI1 Rapidly 

evolving 

dementia 

66 Subacute No Cognitive and 

behavioural 

impairment; 

GTC seizures 

N.A. White matter 

hyperintensity 

and atrophy 

Increased 

proteins and 

altered BBB 

Slow and 

epileptic 

24 Status 

dissocia-

tus 

M, 65 GlyR PDD 63 Chronic No Cognitive and 

behavioural 

impairment 

N.A. White matter 

hyperintensity 

and atrophy 

Altered BBB Normal 28 - 

9
5
 



 

 

  

Continuation of Table 3.11 

F, 59 GlyR Undefined 

dementia 

50 Chronic No Ataxia and 

dysautonomia 

N.A. Leukodystroph

y 

N.D. Aspeci-

fic 

N.A. Seizures; 

ADLD 

M, 70 GlyR PDD 65 Chronic No Cognitive and 

behavioural 

impairment 

N.A. Normal Lymphocytosis Normal 29 RBD 

F, 77 GlyR Undefined 

parkinsonism 

16 Chronic No Parkinsonism Yes White matter 

hyperintensity 

and atrophy 

Normal N.D. 29 - 

F, 53 GABABR Undefined 

dementia 

51 Subacute No  Cognitive and 

mood 

disorders; 

insomnia 

N.A. White matter 

hyperintensity 

Mild 

lymphocytosis 

and altered 

CSF/serum IgG 

ratio 

Slow and 

aspecific 

19 - 

ADLD: autosomal dominant leukodystrophy; BBB: blood brain barrier; CJD: Creutzfeldt-Jakob disease; DLB: dementia with Lewy bodies; EEG: electroencephalogram; GTC: 

generalized tonic-clonic; MG: myasthenia gravis; MMSE: Mini mental State Evaluation; N.A.: Not available; N.D.: Not done; OBs: oligoclonal bands; PDD: Parkinson’s disease and 

dementia; PSP: progressive supranuclear palsy; RBD: REM sleep behavior disorder; RLS: restless legs syndrome. 

 

 

9
6
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 parkinsonism (P > 0.999, Fishers’ exact test, two tailed) (Table 3.13 B).  

Overall, irrespective of the clinical diagnosis, the presence of antibody reactivity was 

associated with a subacute onset or a sudden worsening of symptoms (P=0.005, Fisher’s exact 

test, two-tailed), with the positivity of other antibodies (i.e. anti-nuclear antibodies) (P=0.038, 

Fisher’s exact test, two-tailed) and the presence of sleep disorders (P=0.036, Fisher’s exact test, 

two-tailed). Patients with any reactivity had significantly higher levels of CSF beta-amyloid 

compared to seronegative cases (P= 0.001, independent sample t test) and lower CSF tau/a-beta 

ratio IgG (P=0.04, independent sample t test) (Table 3.14 and 3.15).  

After exclusion of patients with single undetermined reactivity (i.e. positive only on 

neurons or tissue), 13 patients (21.3%) still showed Ab-reactivity. This was found to be 

associated with the presence of cognitive impairment (P=0.006, Chi-square test, two-tailed).  

3.5 Control cohorts 

The controls included 50 sera from elderly healthy subjects (EHC) over 60 years of age and 

159 sera from patients with seronegative myasthenia gravis (SNMG). All sera were anonymised 

and no information about demographic data were available.  

 

3.5.1 Screening for unknown antigens  

 

No patients from the EHC cohort showed reactivity on tissue or neurons (Figure 3.8). Among 

the SNMG patients 16 (10%) bound to rat brain sections and 12 (7.5%) bound neurons. Of these 

only 1 bound both tissue and neurons (Figure 3.5). 13 (8.1%) patients remained positive only 

on tissue and 10 (6.2%) only on neurons. 

 

 3.5.2 Screening for known antigens by CBAs 

 

The control samples were screened by CBA for NMDAR, CASPR2, LGI1, AMPAR, 

GABABR, GABAAR and GlyR antibodies. Among the EHC, only 1 was positive for NDMAR 

(Figure 3.5). This serum was not positive on tissue or neurons. Among the SNMG, 5 sera were 

positive: 1 to CASPR2, 2 for GABAAR, 1 for GlyR and 1 for GABABR. Of these 2 were 

positive also by IHC (GlyR and CASPR2-Abs) and 1 was positive also on neurons (GABAAR) 

(Figure 3.5). No patients were positive by all methods. Overall in the SNMG cohort only 1 

serum presented an undefined reactivity on both tissue and neurons. 
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Table 3. 12 Clinical diagnosis and demographic data of Neurodegenerative patients 

Diagnosis at 

discharge 

Sex (M:F) Age at sampling (y) 

(mean ± SD) 

Age at onset (y) 

(mean ± SD) 

Time lapse onset-

sampling (m) 

(mean ± SD) 

PSP 2:3 73.2 ± 7.3 68.6 ± 6.9 57.6 ± 36.3 

CBD 1:3 74 ± 5.2 72 ± 5 24.7 ± 15.5 

MSA 3:1 63 ± 4.9 58.2 ± 3.4 57 ± 38.4 

PD 1:1 69.5 ± 7.7 64.5 ± 4.9 60 ± 33.9 

PDD 5:2 69.4 ± 12.8 67.8 ± 8.1 92.5 ± 70.5 

PDDy 2:0 77.5 ± 3.5 61.5 ± 23.3 132 ± 152.7 

AD 6:0 67.8 ± 7.9 64.8 ± 7.9 36 ± 25.1 

CJD 2:1 71.6 ± 6.5 71.3 ± 7 5.3 ± 5.7 

FTD 4:0 58.5 ± 9 55.7 ± 6.1 36 ± 34.9 

DLB 2:1 78.6 ± 2.5 76.6 ± 3.2 24 ± 12 

UD 8:6 60.5 ± 9.9 55.2 ± 15 64.2 ± 104.6 

UP 3:4 72.7 ± 9.3 56.7 ± 23.2 192 ± 255 

Total 39:22 67.9 ± 10.1 62.5 ± 13.4 71.1 ± 112.7 

Y: years; m: months; PSP, progressive supranuclear palsy; CBD, corticobasal degeneration; 

MSA, multiple system atrophy; PD, Parkinson’s disease; PDD, Parkinson’s disease and 

dementia; PDD, Parkinson’s disease and dysautonomia; AD, Alzheimer’s disease; CJD, 

Creutzfeldt-Jakob disease; FTD, fronto-temporal dementia; DLB, dementia with Lewy bodies; 

UD, undefined dementia; UP, undefined parkinsonism. 

 

 

Table 3. 13 Association between subacute onset and antibody reactivity in patients with 

prevalent parkinsonism (A) or dementia (B) 

A) 

 

Association between subacute onset and antibody 

reactivity in patients with prevalent 

parkinsonism 

Antibody Positive: Negative 

Subacute onset (n =11) 1 : 2 

Chronic progression (n=17) 10 : 15 

P> 0.999 Fisher's exact test, two tailed 

 

B) 

 

Association between subacute onset and antibody 

reactivity in patients with prevalent dementia 

Antibody Positive: Negative 

Subacute onset (n =13) 9 : 4 

Chronic progression (n=20) 5 : 15 

P= 0.029 Fisher's exact test, two tailed 
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Table 3. 14 Clinical features of seropositive and seronegative Neurodegenerative 

patients 
 

Seropositive (n=25) Seronegative 

(n=36) 

p-value 

Gender (M:F) 14:11 26:10 0.27 $ 

Age at sampling (y)(mean ± SD) 68.5 ± 11.1 67.5 ± 9.4 0.70 ^ 

Age at onset (y)(mean ± SD) 61.9 ± 17.1 63 ± 10.3 0.75 ^ 

Time lapse onset-sampling (m) 

(mean ± SD) 

82 ± 157.2 63.5 ± 68.3 0.53 ^ 

Family history (yes:no) 6:19 14:22 0.27 $ 

Subacute onset/acute worsening 13:12 6:30 0.005* $ 

          Main presentation (onset) 
  

Parkinsonism (yes:no) 7:18 13:23 0.58 $ 

Seizures (yes:no) 2:23 1:35 0.56 $ 

Mood disorders (yes:no) 6:19 7:29 0.75 $ 

Cognitive impairment (yes:no) 10:15 17:19 0.61 $ 

          Neurological examination   
 

Myoclonus (yes:no) 4: 20 11:24 0.23 $ 

Ataxia (yes:no) 5:19 3:32 0.25 $ 

Altered ocular movement 

(yes:no) 

10:14 16:19 0.79 $ 

Parkinsonism (yes:no) 17:7 25:10 > 0.999 $ 

Postural instability (yes:no) 4:20 8:27 0.74 $ 

Pyramidal signs (yes:no) 6:18 6:29 0.52 $ 

Neuropathy (yes:no) 3:21 1:34 0.29 $ 

Other clinical features    

Other autoimmune diseases 

(yes:no) 

4:21 6:30 > 0.999 $ 

History of tumour (yes: no) 3:20 3:32 0.67 $ 

Sleep disorders 16:9 12:23 0.036* $ 

Hallucinations (yes:no) 3:22 7:29 0.50 $ 

*: statistically significant; $: Fishers’ exact test, two tailed; ^: independent samples t test; 

y: years; m: months. 
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Table 3. 15 Laboratory, imaging, neurophysiological and neuropsychological features of 

seropositive and seronegative Neurodegenerative patients 
 

Seropositive (n=25) Seronegative (n=36) p-value 

Presence of other antibodies 

(yes:no) 

6:2 5:13 0.038*$ 

          CSF findings 
   

OBs (yes:no:mirror) 2:0:9 1:2:20 0.27 $ 

Lymphocytosis (yes:no)    

(mean value ± SD) 

3:15         

 9.5 ± 28.8 

5:28             

7.4 ± 25.1 

0.78 ^ 

Increased proteins (yes:no)                    

(mean value ± SD) 

5:13                 

44.8 ± 15 

6:26           

43.7 ± 15.3 

0.82 ^ 

Increased IgGs (yes:no)  

 (mean value ± SD) 

8:7                     

4.5 ± 1.8 

11:13           

3.5 ±  1.9 

0.13 ^ 

Altered CSF index (yes:no)    

(mean value ± SD) 

2: 11             

0.59 ± 0.07 

5:18          

0.68 ±0.43 

0.46 ^ 

Altered BBB (yes:no)                

(mean value ± SD) 

6:6                

7.8 ± 3.9 

8:15             

7.1 ± 4.3 

0.64 ^ 

Increased tau protein (yes:no) 

(mean value ± SD) 

6:13          

356.5 ± 360.5 

10:21       

381.9 ± 457.3 

0.83 ^ 

A-beta (mean value ± SD) 808.6 ± 232.2 457.8 ± 209 0.001*^ 

Altered tau/a-beta ratio (yes:no) 

(mean value ± SD) 

3:7             

0.38 ± 0.31 

7:11           

0.77 ± 0.70 

0.40* ^ 

14.3.3 (yes:no) 2:15 1:29 0.54 $ 

         Brain MRI findings 
   

White matter hyperintensities 

(yes:no) 

15:9 19:17 0.59 $ 

Atrophy (yes:no) 13:9 21:15 0.47 $ 

Inflammatory changes (yes:no) 5:17 2:34 0.092 $ 

other features (yes:no) 0:22 2:34 0.52 $ 

         EEG findings 
   

slowing 7:4 8:11 > 0.999 $ 

aspecific 9:4 8:11 0.16 $ 

epileptic  2:10 1:18 0.54 $ 

         Neuropsychological testing 
 

MMSE (mean value ± SD) 23.7 ± 5.5 23 ± 5 0.64^ 

BBMD (mean value ± SD) 0.16 ± 0.9 0.32 ± 1.5 0.69^ 

*: statistically significant; $: Fishers’ exact test, two tailed; ^: independent samples t test. 

BBMD: brief battery for mental deterioration; CSF: cerebrospinal fluid; EEG: 

electroencephalogram; MMSE: Mini-Mental State Examination; MRI: magnetic resonance 

imaging; OBs: oligoclonal bands. 
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A) Immunohistochemistry, immunofluorescence on neuronal culture (left) and CBAs results 

(right) in the elderly healthy controls population; B) Immunohistochemistry, 

immunofluorescence on neuronal culture (left) and CBAs results (right) in the seronegative 

myasthenia gravis population. 

 

A) 
 
 
 
 
 
 
 

B) 

 
Figure 3.5 Antibody testing results in control cohorts 
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3.6 Frequency of antibody distribution between cohorts of patients versus controls 

The frequency of seropositive cases was compared between patients with CNS disorders (NT1, 

epilepsy, neurodegenerative) and controls (EHC and SNMG). Results are shown in Table 3.16. 

The overall frequency of reactivity was higher in the CNS disorders (all patients, n= 193) than 

in controls (all controls, n= 209) (P < 0.0001, Fisher’s exact test, two tailed). Irrespective of 

CBA positivity, positivity on tissue (IHC) (P=0.006, Fisher’s exact test, two tailed) or neurons 

(P < 0.0001, Fisher’s exact test, two tailed) were both associated with CNS disorders, but single 

positivity on either tissue or neurons were not different between groups. Positivity on CBAs 

alone (P < 0.0001, Fisher’s exact test, two tailed) or combined positivity on one or both 

screening assays were more frequent in CNS patients than controls (P=0.031, Fisher’s exact 

test, two tailed). The analysis was, therefore, repeated excluding cases with single undetermined 

reactivities. The frequency of seropositivity remained significantly higher in the CNS diseases 

group (P< 0.001, Fisher’s exact test, two tailed) and binary logistic regression analysis showed 

a significant predictive value of this variable (Table 3.17).   

The frequency of antibodies between each cohort of CNS disorders and controls were 

then compared. The EHC were compared only with the neurodegenerative patients due to the 

similar age distribution. Results are in Table 3.18. 

NT1 patients were significantly more seropositive (after excluding single reactivities) 

than SNMG patients (P < 0.0001, Fisher’s exact test, two tailed) and showed more frequent 

positivity for NMDAR antibodies (P < 0.0001, Fisher’s exact test, two tailed).  

Epilepsy patients showed more reactivity (after excluding single reactivities) than 

SNMG patients (P < 0.0001, Fisher’s exact test, two tailed) and more frequent positivity for 

CASPR2 antibodies (P = 0.01, Fisher’s exact test, two tailed) and GABAAR (P = 0.009, Fisher’s 

exact test, two tailed).  

Patients with neurodegenerative disorders displayed more reactivity than both EHC and 

SNMG (Table 5.18) and more frequent positivity for GABAAR (P = 0.02, Fisher’s exact test, 

two tailed) and GlyR (P = 0.02, Fisher’s exact test, two tailed) antibodies compared to SNMG 

patients.  
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Table 3. 16 Comparison of antibody testing between patients with CNS disorders and 

controls 
 

CNS 

disorders 

patients 

(n=193) 

Controls 

(n=209) 

p-value$ 

N. of positive on tissue (IHC) (%) 33 (17.5) 16 (7.8) 0.006* 

N. of positive on neurons (IF) (%) 33 (17.5) 12 (5.7) 0.000* 

N. of isolated positivity on tissue (IHC) (%) 11 (5.7) 13 (6.2) 0.83 

N. of isolated positivity on neurons (IF) (%) 14 (7.3) 10 (4.8) 0.40 

N. of combined positivity on tissue and 

neurons (%) 

7 (3.6) 1 (0.5) 0.031* 

N. of isolated positivity on CBAs (%) 26 (13.5) 3 (1.4) <0.0001* 

N. of combined positivity by all assays (%) 10 (5.2) 0 0.001* 

N. of cases with any positivity (%) 66 (34.2) 30 (14.4) <0.0001* 

N. of cases with any double positivity (%) 46 (23.8) 7 (3.3) <0.0001* 

N. of CASPR2 positive cases (%) 6 (3.1) 1 (0.5) 0.058 

N. of LGI1 positive cases (%) 3 (1.6) 0 0.10 

N. of AMPAR positive cases (%) 1 (0.5) 0 0.47 

N. of GABAAR positive cases (%) 8 (4.1) 2 (1) 0.054 

N. of GABABR positive cases (%) 4 (2.1) 1 (0.5) 0.20 

N. of NMDAR positive cases (%) 8 (4.1) 1 (0.5) 0.016* 

N. of GlyR positive cases (%) 7 (3.6) 1 (0.5) 0.031* 

*: statistically significant; $: Fisher’s exact test, two tailed; CBAs: cell-based assays; IHC; 

immunohistochemistry; IF: immunofluorescence; N: number. 

 

 

Table 3. 17 Logistic regression analysis 

Variable Sig.  Odds ratio Confidence interval (95%) 

IHC only 0.68 1.24 0.53-2.86 

Neurons only 0.094 2.05 0.88-4.77 

CBA only 0.50 1.73 0.34-8.64 

Any combined positive 0.000 7.33 2.4-21.99 
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Table 3. 18 Comparison of frequency of reactivity between each CNS disorder and 

controls 
 

SNMG 

(n=159) 

EHC 

(n=50) 

NT1 

patients 

(n=59) 

p-value$ Epilepsy 

patients 

(n=73) 

p-value$ Neurode

generati

ve 

patients 

(n=61) 

p-value$ p-value§ 

N. of positive 

on tissue 

(IHC) 

12 0 10 0.07* 14 0.01* 9 0.13 0.003* 

N. of positive 

on neurons 

(IF) 

12 0 8 0.19* 11 0.09 14 0.004* 0.0002* 

N. of isolated 

positivity on 

tissue (IHC) 

13 0 3 0.56 4 0.59 4 0.78 0.12 

N. of isolated 

positivity on 

neurons (IF) 

10 0 2 0.52 4 >0.999 8 0.10 0.007* 

N. of isolated 

positivity on 

CBAs 

2 1 9 0.0002* 13 <0.0001

* 

11 <0.0001

* 

0.01* 

N. of cases 

with any 

positivity 

29 1 22 0.01* 24 0.01* 25 0.0008* <0.0001

* 

N. of cases 

with any 

double 

positivity 

6 1 17 <0.0001

* 

16 <0.0001

* 

13 0.0002* 0.002* 

N. of 

CASPR2 

positive cases 

1 0 0 >0.999 5 0.01* 1 0.48 >0.999 

N. of LGI1 

positive cases 

0 0 1 0.27 0 >0.999 2 0.07* 0.5 

N. of 

AMPAR 

positive cases 

0 0 0 >0.999 0 >0.999 1 0.27 >0.999 

N. of 

GABAAR 

positive cases 

0 0 1 0.27 4 0.009* 3 0.02* 0.25 

N. of 

GABABR 

positive cases 

1 0 1 >0.999 3 0.09 1 0.48 >0.999 

N. of 

NMDAR 

positive cases 

0 1 8 <0.0001

* 

0 >0.999 0 >0.999 0.45 

N. of GlyR 

positive cases 

1 0 1 0.46 1 0.2 4 0.02* 0.12 

$: comparison with SNMG cohort, Fisher’s exact test, two tailed; §: comparison with EHC cohort, Fisher’s exact 

test, two tailed; *: significant value CBAs: cell-based assays; EHC: elderly healthy controls; IHC; 

immunohistochemistry; IF: immunofluorescence; N: number; NT1: narcolepsy type 1; SNMG: 

seronegative myasthenia gravis. 
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3.7 Frequency of antibody distribution between cohorts of patients with CNS disorders  

There were no differences in gender distribution between the cohorts, but age at sampling was 

different (F(2)=132, P<0.0001, one-way ANOVA). Post hoc analysis (Bonferroni) showed that 

NT1 (P<0.0001) and Epilepsy (P<0.0001) patients were significantly younger at sampling than 

Neurogenerative patients, as expected. No differences were found between NT1 and epilepsy 

patients (Table 3.19).   

There were no differences in terms of frequency of general seropositivity among cohorts 

as found by reactivity on IHC, neurons or CBAs. Surprisingly, NT1 patients showed higher 

frequencies of NMDAR antibodies compared to epilepsy (P = 0.001, Fisher’s exact test, two 

tailed) and neurodegenerative patients (P = 0.002, Fisher’s exact test, two tailed) (Table 3.20).  

 

3.8 Features of all patients with antibody reactivity  

 

Clinical features of all patients with CNS disorders showing antibody positivity are summarized 

in Table 3.21. There were no differences in gender distribution between seropositive and 

seronegative cases nor difference in mean age. This did not change after exclusion of cases with 

single unspecified reactivities (Table 3.21). 

Clinical features of patients showing specific antibody reactivity at CBAs are 

summarised in Table 3.22. There were no differences in gender distribution among different 

antibodies. However, age at sampling was significantly different between patients with 

different antibodies (F(5,31)=0.29, P=0.008, one-way ANOVA). Post hoc analysis showed that 

patients with NMDAR antibodies were significantly younger than patients with GABAAR-Abs 

(P=0.001) or GlyR-Abs (P=0.004).  The median age at onset is shown in Table 3.23. Compared 

to literature data, there was a tendency towards a different age and gender distribution for some 

antigens.  

Among the patients with identified antibody reactivities, for which this information was 

available, none showed MRI or CSF evidence of inflammation. Overall, only 5 patients, 4 from 

the neurodegeneration cohort, and 1 from the NT1 met the criteria for possible AE (3 LGI1, 1 

GABAAR, 1 GABABR) (Table 3.24). 
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Table 3. 19 Demographic data of patients with CNS disorders 
 

NT1 Epilepsy Neurodegenerative p-value 

Sex (M:F) 40:21 39:34 37:22 0.31$ 

Age at sampling 31.1 ± 17.7 31.7 ± 14.6 67.9 ± 10.1 <0.0001*^ 

$ Fisher’s exact test; ^: one-way ANOVA; *: significant value.  

 

 

Table 3. 20 Comparison of frequency of reactivities among patients with CNS disorders 
 

NT1 

patients 

(n=59) 

Epilepsy 

patients 

(n=73) 

p-

value$ 

Neurodegenerativ

e patients (n=61) 

p-

value$ 

p-

value§ 

N. of positive on 

tissue (IHC) 

10 14 0.65 9 0.80 0.49 

N. of positive on 

neurons (IF) 

8 11 0.80 14 0.23 0.37 

N. of isolated 

positivity on tissue 

(IHC) 

3 4 >0.999 4 0.78 >0.999 

N. of isolated 

positivity on 

neurons (IF) 

2 4 0.69 8 0.10 0.007* 

N. of isolated 

positivity on CBAs 

9 13 0.81 11 0.80 >0.999 

N. of cases with any 

positivity 

22 24 0.85 25 0.46 0.37 

N. of cases with any 

double positivity 

17 16 0.42 13 0.4 >0.999 

N. of CASPR2 

positive cases 

0 5 0.06 1 >0.999 0.21 

N. of LGI1 positive 

cases 

1 0 0.45 2 >0.999 0.21 

N. of AMPAR 

positive cases 

0 0 >0.999 1 >0.999 0.45 

N. of GABAAR 

positive cases 

1 4 0.37 3 0.61 >0.999 

N. of GABABR 

positive cases 

1 3 0.25 1 >0.999 0.62 

N. of NMDAR 

positive cases 

8 0 0.01* 0 >0.999 0.41 

N. of GlyR positive 

cases 

1 1 >0.999 4 0.36 >0.999 

N. of HCRTR2 

positive cases 

3 0 0.05 - - - 

* significant value; Fisher’s exact test; $: against NT1 patients; §: against Epilepsy patients; CBAs: cell-

based assays; IHC; immunohistochemistry; IF: immunofluorescence; N: number. 
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Table 3. 21 Demographic data of seropositive and seronegative patients with CNS 

disorders 
 

Sex (M:F) Age at sampling (mean 

± SD) 

Any reactivity 
 

Seropositive (n=66) 38:28 43.8 ± 23.9 

Seronegative (n=127) 78:49 42.5 ± 21.4 

p-value 0.64 0.68 

Any reactivity excluding undetermined single reactivities 

Seropositive (n=46) 23:23 42.8 ± 22.2 

Seronegative (n=147) 93:54 43 ± 22.3 

p-value 0.12 0.95 

 

 

Table 3. 22 Demographic data of patients with different specific antibodies reactivities 
 

Sex (F,M) Mean age at sampling ± SD 

CASPR2 (n=6) 4,2 31.8 ± 20 

LGI1 (n=3) 1,2 53.3 ± 33.8 

GABAAR (n=8) 4,4 58.3 ± 16.2 

GABABR (n=4) 2,2 36.7 ± 16.9 

NMDAR (n=8) 3,5 26.2 ± 17.5*§ 

AMPAR (n=1) 0,1 78 

GlyR (n= 7) 3,4 57.2± 17.4 

*Significantly different from GABAAR; § Significantly different 

from GlyR 

 

 

 

 

Table 3. 23 Comparison between present study’s data and literature data 
 

Present study data Literature data  
Median age at 

sampling 

Upper 

limit 

Lower 

limit 

Median age Upper 

limit 

Lower 

limit 

CASPR2 (n=6) 24.5 68 17 66 77 25 

LGI1 (n=3) 66 79 15 64 84 31 

GABAAR (n=8) 51 78 36 53 80 2 

GABABR (n=4) 40.5 53 13 70 75 51 

NMDAR (n=8) 23.5 56 9 25 33 16 

GlyR (n= 7) 62 77 27 50 75 1 
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Table 3. 24 AE criteria in patients with specific antibody positivity 

Antibody Acute 

onset 

CSF feature MRI features Other features AE 

criteria 

NMDAR Yes Normal Normal - No 

NMDAR No OBs Normal - No 

NMDAR Yes Normal Normal - No 

NMDAR Yes Altered BBB 

and increased 

proteins 

N.A. - No 

NMDAR Yes N.A. Mild cerebral and 

cerebellar 

atrophy 

- No 

NMDAR Yes N.A. n.a. - No 

NMDAR Yes N.A. Normal - No 

NMDAR Yes N.A. Normal - No 

LGI1 Yes N.A. Normal Multimodal hallucinations, 

including olfactive, and 

psychosis 

Possible 

LGI1 Yes Normal White matter 

hyperintensities 

Parkinsonism, cognitive and 

psychiatric features 

Possible 

LGI1 Yes Altered BBB 

and increased 

proteins 

White matter 

hyperintensities 

Cognitive and behavioural 

impairment; GTC seizures 

Possible 

GlyR No Normal White matter 

hyperintensities 

- No 

GlyR No Altered BBB White matter 

hyperintensities 

Cognitive and behavioural 

impairment 

No 

GlyR No N.A. Leukodystrophy Ataxia and dysautonomia No 

GlyR No Lymphocytosis Normal Cognitive and behavioural 

impairment 

No 

GlyR No Normal White matter 

hyperintensities 

Parkinsonism No 

GABAAR No OBs White matter 

hyperintensities 

- No 

GABAAR No Normal White matters 

hyperintensities 

and atrophy 

Cognitive impairment No 

GABAAR Yes Lymphocytosis White matters 

hyperintensities 
and atrophy 

Cognitive impairment Possible 

GABAAR 

+AMPAR 

Yes Normal Diffuse cortical 

hyperintensities 

Ataxia and parkinsonism No 

CASPR2 No but 

acute 

worsening 

Normal Normal Parkinsonism, hypersomnia No 

GABABR Yes Lymphocytosis 

and altered CSF 

IgG index 

White matter 

hyperintensities 

Cognitive and mood disorders; 

insomnia 

Possible 

AE: autoimmune encephalitis; GTC: generalized tonic-clonic; OBs: oligoclonal bands; N.A.: not available. 
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3.9 Discussion  

In this Chapter, the frequency of neuronal antibodies in patients with different CNS disorders 

and in both healthy and disease controls was assessed. For each disorder the results were 

compared with the clinical features in order to see which could predict the seropositive status. 

Moreover, the frequencies of antibodies between different cohorts were compared.  

Several studies have tried to identify specific antibodies in patients with Narcolepsy 

type 1 with results that indicate the presence of specific reactivities in a variable, and usually 

small, percentage of cases (Bergman P et al. 2014; Thebault S et al. 2015; Cvetkovic-Lopes V 

et al. 2010; Ahmed SS et al. 2015). Here, antibodies were found against heterogeneous targets, 

in 16.9% of NT1 patients. HCRTR2 antibodies had been previously reported in a high 

proportion of NT1 patients who developed the disease after Pandemrix® vaccination (Ahmed 

SS et al. 2015). In a previous study, we showed that the frequency of these antibodies in 

idiopathic NT1 patients was very low (3%; Giannoccaro MP et al. 2017). Here one new case 

was added, and the previous cases followed up, which confirmed the low frequency of these 

antibodies in NT1, but interestingly, also the association with atypical clinical features, such as 

normal HCRT-1 CSF levels and psychiatric disorders. Surprisingly, although the most common 

antibodies found in this cohort were directed against NMDAR, and their presence was 

associated with an acute onset of the disease, there were no other distinctive clinical features. 

These observations suggest a secondary phenomenon occurring as a bystander effect during the 

neuronal destruction caused by another, possibly T-cell mediated, immune process.  

The presence of NMDAR antibodies has previously been described in a few patients 

with NT1 and associated psychosis (Tsutsui K et al. 2012) but this finding was not replicated 

in a later study (Dauvilliers Y et al. 2016). Indeed, not only did the NDMAR patients studied 

here not have psychotic symptoms but the presence of NDMAR antibodies was inversely 

correlated with the presence of hypnagogic hallucinations.  

On the other hand, this cohort included 9 patients with NT1 and psychosis and 4/9 cases 

showed antibody reactivity (1 by immunohistochemistry, 1 for LGI1 and 2 for HCRTR2, as 

already discussed). This suggests that antibody screening could be appropriate in patients with 

atypical features. This is further supported by the fact that other atypical features were observed 

in these patients, including negative HLA and/or normal HCRT-1 CSF levels.  

In the Epileptic cohort antibodies were detected in 32.8% of cases, but specific 

antibodies were only observed in 13.6%, a percentage lower than other cohorts where the 

frequency was between 20 and 22% (Dubey D et al. 2017; Vanli-Yavuz EN et al. 2016). As 
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expected from previous studies (Quek AM et al. 2012; Barajas RF et al. 2010), the seropositive 

status was associated with AED resistance, particularly in the case of GABABR antibodies. This 

observation is consistent with a pathogenic role for these antibodies at least in some cases. 

However, the occurrence of seropositivity also in cases with a positive family history for 

epilepsy and in a patient with an ascertained genetic form of epilepsy due to CASPR2 mutations 

(GAD65 positive), point to a likely secondary phenomenon.  

Due to the limited clinical information available for this cohort, it was not possible to 

establish other possible relationships that might help identify seropositive cases. Interestingly, 

seropositive patients were younger than the rest of the population, which is an unexpected 

finding considering the general increase in antibody reactivity with aging, and the fact that the 

majority of antibodies against neuronal surface antigens occur in older subjects. This finding, 

if confirmed, suggests that younger patients with refractory epilepsy of unknown aetiology 

could be the ones who would benefit the most from an immunotherapy trial.  

The most commonly observed antibody in our Epilepsy cohort was CASPR2 (6.8%). 

This is similar to what observed in a previous study reporting a prevalence of 10% for CASPR2 

antibodies in a cohort of 111 patients with mesial temporal lobe epilepsy and hippocampal 

sclerosis (Vanli-Yavuz EN et al. 2016). However, in our cases CASPR2 antibodies were not 

associated with temporal lobe lesions or mesial temporal sclerosis.  

The highest frequency of reactivity was observed in the Neurodegenerative cohort 

patients (40.9%), mostly related to the high proportion of sera binding only to neurons. Indeed, 

only 18% of patients presented specific antibody reactivities. Nevertheless, the proportion of 

positive cases was higher than previously reported. This could be related to the use of live-cell 

CBA, which is known to be a more sensitive method than commercial assays using fixed cells 

(Coban A et al. 2014) or to the use of sera instead of CSFs (Grau-Rivera O et al. 2014).  

The most frequently encountered antibodies in this cohort were directed against GlyR. 

All patients with these antibodies had a chronic disease course and variable clinical phenotypes. 

Most of the previous studies concentrated on patients with rapidly evolving dementia, as this is 

one of the most common differential diagnosis of autoimmune encephalitis in elderly patients 

(Coban A et al. 2014; Grau-Rivera O et al. 2014; Flanagan EP et al. 2010). This cohort included 

a large range of different neurological conditions and no differences in antibody frequencies 

were found in patients presenting with prominent dementia compared to patients presenting 

with prominent parkinsonism. Seropositive status, however, was associated with an acute onset 

of symptoms and the presence of sleep disorders. Sleep disorders, like hypersomnia, insomnia, 
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status dissociatus or agrypnia excitata, are common features of patients with autoimmune 

encephalitis (Liguori R e al. 2001; Stamelou M et al. 2012).  

Not surprisingly, seropositivity was also associated with the presence of other 

antibodies, such as anti-nuclear antibodies, irrespectively of the presence of another 

autoimmune disease. Interestingly, seropositive patients showed significantly higher levels of 

A-beta protein in the CSF as well as a lower tau/A-beta ratio, a profile that has been previously 

associated with Alzheimer’s disease (AD) (Tapiola T et al. 2009). However, recently the same 

findings, with normal levels of CSF total-tau protein, have been reported in patients with 

chronic insomnia (Chen Dw et al. 2018). Whether our findings correlate with the sleep disorders 

observed in these patients needs to be investigated. This observation might also have clinical 

utility, particularly in the context of the differential diagnosis between an autoimmune dementia 

and AD. This is even more relevant considering that the majority of cases with specific 

reactivities did not show inflammatory changes either on brain MRI or in the CSF, as previously 

reported (Escudero D et al. 2017). 

Overall, patients with CNS disorders showed more frequently the presence of antibodies 

against neuronal surface antigens compared to elderly healthy controls and SNMG patients. 

The differences in antibody reactivities, however, were similar among all cohorts when 

considering single uncharacterised reactivities found with only one method (i.e. isolated 

reactivity on tissue or on neurons). These findings are in line with a previous retrospective study 

comparing the frequency of antibodies in patients and healthy controls reported in the literature 

(Lang K and Pruss H, 2017) and suggests that, in screening cohorts for the presence of 

antibodies, positive findings should concentrate on cases showing reactivity on at least two 

different assays to support their specificity.  

Given the small numbers involved, no differences were observed in the frequencies of 

antibody reactivities among CNS disorder patients, although some specific antibodies were 

more common in some cohorts, such as NMDAR antibodies in NT1 patients. This suggests that 

in several neurological conditions at least a proportion of patients might have an autoimmune 

aetiology. Of course, the role of these antibodies remains unclear. Few sera bound strongly on 

tissue, neurons or CBAs and CSFs were not available. Moreover, not all cases with positive 

antibodies on CBAs bound to neurons or tissue. This could reflect the low titres of the 

antibodies as well as the different serum dilutions used on these assays and the different 

concentration of the antigens.  

Only a few patients in our cohorts met the criteria for possible autoimmune encephalitis. 

These cases may represent misdiagnosis. The other cases might represent cases with a 



 

  112 

  

“restricted” or “atypical” phenotype. Antibody-associated phenotypes might change in relation 

with the age of patients. For example, for LGI1 antibodies the typical facio-brachial dystonic 

seizures were not described in children (López-Chiriboga AS et al. 2018). Indeed, in our 

cohorts, compared to literature data, there was a tendency towards a different age and gender 

distribution for some antigens. For example, CASPR2 antibodies were more frequent in female 

and in younger patients, whereas GABABR and GlyR antibodies were observed in older patients 

compared to the cases reported in the literature.  

Antibodies might also be a secondary phenomenon. However, it is important to note 

that patients with a previous different neurological condition could develop antibodies in the 

course of their disease, as shown by cases presenting a sudden worsening of symptoms, and 

they could still benefit from immunotherapy in this situation.  

Our study has several limitations. Clinical data were not homogenous among cohorts 

and in some cases very limited (i.e. for the Epilepsy cohort), and demographic data were not 

available for the controls. Moreover, the lack of systematic titrations and of CSFs hampered 

our ability to understand better the role of these antibodies in these patients. Finally, it is 

important, of course, that in this essentially exploratory study, none of the clinical associations 

were corrected for multiple comparisons. Despite these limitations, we have shown that 

antibodies against neuronal surface antigens are more common in patients with CNS conditions 

than in controls and that some clinical features might help to identify those cases that could 

benefit for immunotherapy.   

In order, to prove pathogenicity of antibodies, it is necessary to perform both in vitro 

and in vivo experiments. With the availability of plasma from plasma exchange from a patient 

with an atypical limbic encephalitis/Morvan syndrome, it was possible to investigate the 

pathogenic role of CASPR2 antibodies as described in the next two Chapters. 
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Chapter 4: Behavioural findings in CASPR2-antibody injected mice  
 

4.1 Introduction 

As discussed in Chapter 1, antibodies to CASPR2 (CASPR2-Abs) have been associated with 

limbic encephalitis and a wide range of central and peripheral nervous system disorders. Passive 

transfer of antibodies to experimental animals is considered the best way to prove pathogenicity 

of an antibody, but this has not yet been done by the peripheral route for any of the recently-

described antibodies to neuronal surface antigens (NSAs).  

CASPR2-Abs are typically at higher titres in serum than in CSF. Intraperitoneal injection 

of purified IgG from two CASPR2-Ab positive patients to mice over 18 days, without attempt 

to breach the blood-brain barrier (BBB), reduced the thresholds for mechanical stimuli and 

enhanced the excitability of dorsal root ganglia (DRG) neurons through reductions in Kv1 

channel expression, but in that study brain pathology was only marginally investigated (Dawes 

JM et al. 2018). To explore the effects of CASPR2-Ab in the CNS, we used a similar protocol 

with 8 daily injections of IgG purified from one patient with autoimmune encephalitis and from 

one healthy control (as used in previous studies: Coutinho E et al. 2017; Dawes JM et al. 2018). 

We added a single dose of lipopolysaccharide (LPS) at day 3 to disrupt the BBB. We evaluated 

the effects of the antibody on mouse behaviors from day 5 of the injections and for three days 

following the last injection, and then looked for evidence of brain pathology.  

 

4.2 Purification of IgG from CASPR2-Ab patient and healthy individual 

 

Plasma obtained from a patient who underwent plasma exchange during the course of his 

disease was used in this animal model. The serum of a sex- and age-matched healthy individual 

was used as control. All methods are described in Chapter 2. Human IgG was purified using 

the Protein G Sepharose beads, and concentrations measured using a NanoDrop 

spectrophotometer. The patient with CASPR2-Ab encephalitis was a 70-year old man who 

presented with cerebellar ataxia and neuropathic pain in his feet and hands, memory complaints 

(short- and long-term memory, and particularly word-finding difficulties) and short episodes of 

lack of perception with “goosebumps” suggestive of temporal seizures. Oncological screening 

excluded the presence of a tumour. A cell-based assay revealed the presence of very high titres 

of CASPR2 antibodies (1:62500) and he partially responded to plasmapheresis and 

immunosuppression. The absence of other, concomitant, antibodies and the specificity of the 
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reactivity against CASPR2 was previously ascertained by Coutinho E et al. (2017), who showed 

that the binding of this IgG to mouse brain tissue was lost on brain sections from CASPR2 K.O. 

mice. The healthy control serum was negative for all known antigenic targets. 

For the purpose of this thesis, purified IgG from this patient with CASPR2-Ab 

encephalitis, and from the healthy control, will be designated CASPR2-IgG and HC-IgG, 

respectively.  

4.3 Experimental design  

The experimental design is summarised in Figure 4.1. Nineteen C57Bl6 male mice aged 6 

weeks (18-22 g) were daily injected intraperitoneally (i.p.) with either CASPR2-IgG (10 mice) 

or HC-IgG (9 mice) (20 mg/ml on day 0; 12-6 mg/ml afterwards; volume 1-2 ml) for 8 days. 

At day 3 all animals were injected i.p. with lipopolysaccharide (LPS, E. Coli, 1 mg/Kg). 

Behavioural testing, including tasks assessing locomotion (open field), strength (inverted 

screen) and coordination (accelerating rotarod and narrow beam), working memory (continuous 

spontaneous alternation), short- (forced alternation and) and long-term memory (novel object 

recognition), anxiety (light-dark box), compulsive-like behaviour (marble burying test), social 

behavior (reciprocal social interaction tests) and olfaction (olfaction test) was then performed 

from day 5 to 10. At day 11 animals were sacrificed and sera and brains collected for analysis 

(details in Chapter 2). 

4.3 Weight 

 

Animals were weighted daily during the course of the experiment as a general assessment of 

well-being. No differences were observed between CASPR2- and HC-IgG injected mice (group 

P=0.83, time x status P=0.35, repeated measure ANOVA with Greenhouse-Geisser correction, 

Figure 4.1).  

 

4.4 Tests of strength and coordination 

 

Strength was assessed by the inverted screen. No difference was observed in the time to fall 

between groups (F(1,16)=3.8, P=0.06, one-way ANCOVA), although CASPR2-IgG injected 

animals showed a trend towards a reduced time to fall compared to HC-IgG injected animals 

(Figure 4.1). 
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B) Weights       C) Accellerating rotarod D) Inverted screen 

E) Narrow beams  

 

 

 

 A) Experimental design.  AR= accelerating rotarod; OF= open field; IS= inverted screen; 

NORf= novel object recognition, familiarization phase; NORt= NOR, test phase; LDb= 

light-dark box; FA= forced alternation test; NR= narrow beams; MB: marbles burying 

test; CSA= continuous spontaneous alternation test; OT= olfaction test; RSI= reciprocal 

social interaction test B) Weights changes over time. Accelerating rotarod (C), inverted 

screen (D) and narrow beams tests results (E). No differences were observed between 

HC-IgG and CASPR2-IgG injected mice. Data are expressed as mean ± SEM. 

 
Figure 4.1 Experimental design and locomotor tests results 
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Coordination was evaluated by two tests, the accelerating rotarod and the successive 

narrow beams test. During the accelerating rotarod no differences were observed in the time to 

fall between groups (F(1,16)=0.26, P=0.61, one-way ANCOVA). For the narrow beams we 

evaluated the results obtained using the smallest rod as no animals fell from the wider ones. No 

differences were observed between groups in orientation time (F(1,16)=1.71, P=0.20, one-way 

ANCOVA) or in transit time (F(1,16)=1.79, P=0.20, one-way ANCOVA) (Figure 4.1). 

 

4.6 Open field test 

 

The open field test was used to evaluate different behaviours including locomotor activity, 

anxiety and repetitive behaviour. Locomotor activity was evaluated by the total number of 

entries in each square, the number of rearing and the total time spent active. No differences 

were observed between CASPR2- and HC-IgG injected mice in the total number of entries 

(F(1,16)=0.48, P=0.49, one-way ANCOVA), number of rearings (F(1,16)=2.5, P=0.13, one-

way ANCOVA) or total time spent active (F(1,16)=0.85, P=0.36, one-way ANCOVA). 

Anxiety-like behaviour was evaluated by counting the number of entries in peripheral vs central 

squares, the total time spent in the periphery or in the center of the arena, and counting the 

number of foecal boli which signify stress. No difference was observed between groups in the 

number of peripheral entries (F(1,16)=0.77, P=0.39, one-way ANCOVA), central entries 

(F(1,16)=0.11, P=0.73, one-way ANCOVA), time spent in the periphery (F(1,16)=0.24, 

P=0.62, one-way ANCOVA) or in the center of the arena (F(1,16)=0.24, P=0.62, one-way 

ANCOVA) and number of foecal boli (F(1,16)=0.40, P=0.53, one-way ANCOVA). Finally, 

repetitive behaviour was assessed by analysis of grooming. No differences were observed 

between groups in the number of grooming events (F(1,16)=0.39, P=0.54, one-way ANCOVA) 

or in the time spent grooming (F(1,16)=1.8, P=0.19, one-way ANCOVA) between the two 

groups (Figure 4.2). 

 

4.7 Test of anxiety  

 

Beside the open field, anxiety was specifically evaluated by the light-dark box test, which 

explores the innate preference of mice to explore dark areas. There were no differences between 

groups in latency to move to the dark side of the box (F(1,16)=1.05, P=0.32, one-way 

ANCOVA), time spent in the dark (F(1,16)=0.13, P=0.71, one-way ANCOVA) or number of 

crossings between the two chambers (F(1,16)=0.14, P=0.71, one-way ANCOVA) (Figure 4.3). 
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Open field 
test  

N. total entries        N. of rearing                Time active 

N. peripheral entries        N. central entries        Time in periphery     Time in center 

N. foecal boli      N. grooming events      Time grooming 

  

No differences were observed between HC-IgG and CASPR2-IgG injected mice in 

any of the parameters analysed during the open field test. Data are expressed as 

mean ± SEM. 

  

 Figure 4.2 Open field test results 
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No differences were observed between HC-IgG and CASPR2-IgG injected 

mice in anxiety (A) or compulsive-like behaviour (B). Data are expressed 

as mean ± SEM. 

 

A) Light-dark box test 

  

                        

B) Marbles burying test 

Figure 4.3 Light-dark box and marbles burying test 
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4.8 Test of compulsive-like behavior  

 

Compulsive-like behaviour was assessed using the marble burying test (MBT). No differences 

were observed between groups in the percentage of marbles buried (F(1,16)=0.52, P=0.47, one-

way ANCOVA) (Figure 4.3). 

4.9 Tests of memory 

Different memory subtypes were explored using three tests. Both the forced alternation and the 

novel object recognition tests are based on the innate tendency of mice to prefer novelty. The 

forced alternation was used as a test of short-term memory. Although CASPR2-IgG injected 

mice showed a trend towards a reduced preference index for number of entries (F(1,16) = 3.36, 

P=0.085, one-way ANCOVA) in the novel arm (NA), no differences were observed between 

groups in the time spent (F(1,16)=0.26, P=0.61, one-way ANCOVA) in the new arm. The novel 

object recognition test was used to evaluate long-term memory. No differences between groups 

were observed in the preference index for the novel object (NO) (F(1,16)=2.45, P=0.14, one-

way ANCOVA). However, a significant reduction was observed in the percentage of 

spontaneous alternations (F(1,16)=5.04, P = 0.039, one-way ANCOVA) in the CASPR2-IgG 

injected animals compared to controls, despite a similar number of total arms entries between 

groups (F(1,16)=0.37, P=0.55, one-way ANCOVA), suggesting a possible working memory 

impairment in CASPR2-IgG exposed mice. In the same test, there was no difference in the 

percentage of alternate arm re-entries (F(1,16)=0.93, P=0.34, one-way ANCOVA) or in the 

percentage of same arm re-entries (F(1,16)=3.66, P = 0.074, one-way ANCOVA) (Figure 4.4).  

 

4.10 Olfaction test  

As mice rely heavily on smell for orientation and for their social interactions, an olfaction test 

was performed once at the end of the protocol as a control for the memory test and social 

interaction experiment. This experiment consisted of a sampling phase, where the same odour 

was placed in 2 containers and the test mouse allowed to freely explore, a delay period and a 

test phase, when the mouse was allowed to choose between the old or a novel odour. The mouse 

was expected to preferentially explore a novel odour, if its olfaction sense was intact. No 

differences were observed between groups in the time spent (P=0.36, independent samples t-

test) or in the number of visit to the new odour (NO) (P=0.67; independent samples t-test) 

(Figure 4.4). 
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Figure 4.4 Memory tests and olfaction test results 

A) In forced alternation, there were no differences in the preference index for number of 

entries or time spent in the novel arm (NA). B) Novel object recognition test did not show 

differences between the two groups in the preference index for the novel object (NO) 

although there was a trend to reduced preference in CASPR2-IgG injected mice. C) 

Alternations were reduced in CASPR2-IgG injected mice compared with HC-IgG injected 

mice. D) The olfaction test showed no differences between groups in the time spent or in the 

number of visits to the novel odour (NO). Data are expressed as mean ± SEM. 

A) Forced alternation test  
 
 
 
 
 

B) Novel object recognition test  
 
 
 
 
 

C) Continuous alternation test 
 
 
 
 
 

D) Olfaction test 
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4.11 Reciprocal social interaction test 

 

Social behaviour was investigated by the reciprocal social interaction test in pairs of animals of 

the same group. The animals were tightly matched according to weight (within 5% of the 

weight), so any variation resulting from this factor was avoided. This meant that only 6 pairs 

per group could be tested, in order to avoid repeating the test in each animal more than twice. 

Since this test is based on the interaction between mice that have not been in contact before and 

given the limited number of animals, the test could only be done once, after the injections. 

During the test phase, a pair of animals was allowed to interact freely while the interaction was 

video recorded; later on, both social (licking, sniffing, grooming and following closely the other 

animal) and non-social behaviours (time spent inactive, number of rearing, self-grooming) were 

scored offline.  

CASPR2-IgG injected mice showed longer latency to start interacting compared to HC-

IgG injected mice (U= 5.5, P=0.04; Mann-Whitney U test) but similar interaction time (P=0.58; 

Mann-Whitney U test) and number of interactions (P=0.18; Mann-Whitney U test). Concerning 

non-social activities, CASPR2-IgG injected animals showed less exploratory behaviour as 

indicated by less rearing events (t(22)=3.01, P=0.006; independent samples t-test) and longer 

time spent immobile (t(22)=3.42, P=0.002; independent samples t-test), compared to HC-IgG 

injected animals. No differences, however, were observed between groups in the time spent 

self-grooming (P=0.97; Mann-Whitney U test) but HC-IgG injected mice showed a higher 

number of grooming actions (t(22)=2.61, P=0.015; independent samples t-test), corresponding 

to a longer duration of each self-grooming bout in CASPR2-IgG injected mice (t(22)=2.48, 

P=0.002; independent samples t-test) (Figure 4.5). It is noteworthy that all these non-social 

behaviours were assessed also during the open field and no differences were observed between 

groups, suggesting a specific influence of the social context. 

4.12 Discussion  

In this Chapter, the in vivo behavioural outcomes of mice injected with CASPR2 IgG were 

described. In patients with CASPR2 antibodies, there are a wide range of CNS behavioural 

changes from anxiety and depression to memory impairment, seizures and sleep disorders, 

representing limbic encephalitis or Morvan Syndrome spectra. Ataxia has also been described 

in some patients. In addition, genetic defects of CNTNAP2, the gene encoding for CASPR2, 

have been reported in patients with autism and epilepsy (Friedman JI et al. 2008).  
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Figure 4.5 Reciprocal social interaction test 

 

In the reciprocal social interaction test there was reduced latency to interact but no differences 

in the interaction time, or number of interactions between CASPR2-IgG and HC-IgG injected 

mice. However, in the non-social aspects of the test, CASPR2-IgG injected mice showed 

increased time spent immobile, reduced rearing, reduced grooming and longer duration of 

each grooming bout. Data are expressed as mean ± SEM. 
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Given the difficulty in anticipating the specific deficits that might be caused by CASPR2-Abs 

in a mouse model, a broad range of functions and behaviours were studied in an exploratory 

model. 

No differences were observed in total body weight, motor tasks, anxiety tests and 

compulsive-like behavior between groups. However, mice injected with CASPR2-IgG showed 

less alternation in the continuous spontaneous alternation tests, with similar trends in the forced 

alternation and novel object recognition tests, suggestive of memory impairment. During the 

social interaction test CASPR2-IgG injected mice showed longer latency to interact and 

increased immobility suggestive of anxiety-like behaviour. Since the same non-social activities 

were normal during other tests (i.e. open field) they are likely to be related to the social novelty 

context (Meeker H et al. 2013). This interpretation is also supported by the longer grooming 

bouts during the same test (Kalueff AV and Tuohimaa P, 2004). This needs to be explored in 

more detail in the future.  

Two previous studies assessed the effects of CASPR2 antibodies in different passive 

transfer animal models. The first one, showed that in utero CASPR2-IgG exposed mice 

displayed pronounced social interaction defects and increased repetitive behaviours such as 

grooming and digging in the absence of alterations of locomotor or anxiety behaviours. In this 

model memory or cognitive deficits were not extensively explored, but there was a strong trend 

for an impairment of working memory in CASPR2-IgG exposed mice, when assessed by 

spontaneous alternation in the T-maze (Coutinho E et al. 2017). However, this study used a 

placental passive transfer model, so the mice were exposed to the antibodies early in their 

neurodevelopment and this is expected to cause different and wider effects compared to the 

exposure of adult mice. In this respect, indeed, that approach might be expected to recapitulate 

more closely the effects of CASPR2 mutations.    

The second model was focused on the peripheral effects, specifically the presence of 

pain, of CASPR2-Abs in adult mice and used peripheral CASPR2-IgG injections, very similar 

to that used here, but in the absence of LPS to open the blood-brain barrier (Dawes JM et al. 

2018). Therefore, the authors explored the presence of pain and the presence of alterations in 

locomotor activity and coordination without exploring CNS functions. Mice exposed to 

CASPR2-IgG showed mechanical pain-related hypersensitivity. Reassuringly, no differences 

were observed between groups in the open field and in the accelerating rotarod in that model, 

similar to the results described here. 

Interestingly, the same study compared the effects induced by the antibodies on pain 

sensitivity with those observed in knockout mice (KO) lacking CASPR2 (CNTNPA2−/−). 
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These mice demonstrated enhanced pain-related hypersensitivity to noxious mechanical 

stimuli, although more severe than that obtained with the antibodies, and that was extended to 

heat and algogens. Nevertheless, either immune or genetic-mediated ablation of CASPR2 

enhanced the excitability of dorsal root ganaglia (DRG) neurons through regulation of Kv1 

channel expression at the soma membrane. These findings imply that in adult mice, antibodies 

can recapitulate the effects induced by genetic mutation but in a more limited and less severe 

manner. CNTNAP2 KO mice were shown to have social deficits, abnormal motor activity, 

cognitive deficits and seizures (Penagarikano O et al. 2011). More recently, a model showed 

also the presence of hypoactivity and wake fragmentation with a flattened diurnal activity 

rhythm (Thomas AM et al. 2017). Performance in memory tasks have shown contrasting results 

suggesting a lack of spatial learning and memory impairments but a significant impairment in 

learning (Peñagarikano O et al. 2011), or the presence of significant deficits in spatial working 

and reference memory (Rendall AR et al. 2016). The reasons for these different findings might 

be related to the tests used and to the different difficulty of the tasks. However, this suggests 

that CASPR2 KO mice do not display obvious memory impairment, like the CASPR2-IgG 

injected mice, which showed only modest changes. 

Our approach has some limitations. It is always difficult to establish correlations 

between animal phenotypes and human disorders and this might explain why we observed such 

mild changes in our model. The fact that the major differences in behaviour were observed in 

tests performed at day 10 suggest as well that behavioural changes may need a longer period to 

fully develop. Indeed, in previous passive transfer models the maximal behavioural effect was 

observed after 14 days of injections (Dawes JM et al. 2018; Planagumà J et al. 2015). In our 

study, the limited amount of plasma available for CASPR2-IgG purification did not allowed a 

longer period of IgG administration.  

In conclusion, CASPR2-IgG injected mice showed clear although mild behavioural 

alterations in the tests performed. A wider and more targeted range of tests needs to be 

established for further studies. As it stands, it is difficult to interpret the results in the light of 

the clinical implications but to look further into the effects of the antibodies in vivo, we 

evaluated the presence of neuropathological changes that might relate to these alterations. The 

results of behavioural and histological changes will be integrated in the general discussion. 

  



 

  125 

  

Chapter 5. IgG transfer and pathological changes in CASPR2-antibody 

injected animals 

5.1 Introduction 

A detailed analysis of the brain was conducted in a randomly selected subgroup of animals at 

the end of the experiment, in order to look for IgG deposition in the brain and provide a 

histological substrate for the behaviour abnormalities found in the CASPR2 IgG-injected mice. 

Firstly, the presence of CASPR2-IgG was assessed in the sera and brain parenchyma of 

CASPR2-IgG inject animals versus controls. Subsequently, a general morphometric study was 

conducted. Afterwards, a hypothesis-driven analysis looked for similarities with the 

histological abnormalities described in the few neuropathological cases of patients with 

CASPR2-Ab encephalitis reported in the literature; for example, reduced expression of 

CASPR2, neuronal loss and microglia activation (Sundal C et al. 2017; Liguori R et al. 2001; 

Kortvelyessy P et al. 2015), as well as the findings of previous animal models such as increased 

neuronal activity, using c-fos as a surrogate marker (Dawes JM et al. 2018). In addition, changes 

of CASPR2 expression and levels of cytokines and chemokines were evaluated in brain protein 

extracts. 

5.2 Overview on sera and brain processing  

Eleven animals (6 CASPR2-IgG and 5 HC-IgG injected) were randomly selected and sacrificed 

by CO2. Blood samples were collected by cardiac puncture, centrifuged and the sera used for 

testing by cell-based assay for CASPR2-IgG (see Chapter 2). Brains from the same animals 

were harvested and snap-frozen for protein extraction. Eight animals (4/group) were perfused 

with phosphate-buffered saline (PBS) followed by ice-cold 4% paraformaldehyde (PFA). 

Histological studies were performed on PFA-fixed, free-floating, 50 m coronal sections of the 

brain. Nissl staining was conducted to assess gross morphological abnormalities and to 

determine volume and/or thickness of total brain or specific brain regions. The remaining 

studies were done by immunofluorescence. Protein analysis was conducted on 3 brains per 

group by western blot for CASPR2 expression and by a commercial array for 

cytokine/chemokine expression. The statistical analysis compared the results between CASPR2 

and HC IgG-injected animals using an N number of 4, if not otherwise specified. All 

experiments were coded for treatment groups.  
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5.3 Serum CASPR2 antibodies and brain human IgG deposition  

A cell-based assay for CASPR2-Abs confirmed high levels in the CASPR2-IgG injected mice 

even on Day 11, 4 days after the last IgG injection (Figure 5.1).  

The distribution of human IgG was investigated in different brain regions by 

immunofluorescence (Figure 5.1). Both CASPR2- and HC-IgG injected animals showed the 

presence of IgG in the brain. However, the level of deposited IgG, as evaluated by fluorescence 

intensity, was higher in the cortex (t(6)=2.71, P=0.03, independent samples t-test), 

hippocampus (t(6)= 3.03, P=0.023, independent samples t-test) and thalamus (t(6)= 7.14, 

P=0.0004, independent samples t-test ) of CASPR2-IgG injected mice compared to controls 

(Figure 5.1). No differences between groups were observed in the cerebellar cortex which was 

analysed overall, without distinguishing the different layers (t(6)=1.57, P=0.16, independent 

samples t-test). 

5.4 CASPR2 expression  

To look at the similarity between CAPSR2 and IgG staining, two consecutive series were 

incubated with anti-human IgG antibodies and with rabbit monoclonal anti-CASPR2 antibodies 

respectively. We used two consecutive sections instead of a single one to avoid the interactions 

between secondary anti-human and anti-rabbit antibodies we noted in preliminary experiments. 

In the same experiments, we also excluded the presence of interactions between the rabbit anti-

CASPR2 antibodies, the secondary anti-rabbit antibodies and the human IgG already present 

in the tissue.  

We would have expected a reduction of CASPR2 expression as a consequence of the 

IgG binding. Nevertheless, there were no apparent differences in CASPR2 expression, 

measured by mean fluorescence intensity between the two groups in the cortex (t(6)=1.04, 

P=0.33, independent samples t-test), hippocampus (t(6)= 1.23, P=0.26, independent samples t-

test), thalamus (t(6)=0.23, P=0.82, independent samples t-test) or cerebellum (t(6)=0.34, 

P=0.74, independent samples t-test) (Figure 5.1). Similar results were obtained when total 

CASPR2 protein was quantified by western blot (WB) in whole brain lysates (t(4)=1.65, 

P=0.17, independent samples t-test) (Figure 5.2); indeed, CASPR2 expression showed a trend 

towards a small increase.  
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Figure 5.1 Sera and brain IgG and CASPR2 expression 

A) Representative images of cell-based assays showing CASPR2-Ab in the serum from a 

CASPR2-IgG injected mouse but not in the serum from a HC-IgG injected mouse. 63X, scale 

bar 10 µm. B) Representative images of IgG and CASPR2 expression in perfused fixed 

brains. C) CASPR2-IgG injected animals had higher levels of IgG in the cortex (Cx), 

hippocampus (Hip) and thalamus (Th) compared to HC-IgG injected mice, but not in the 

cerebellum (Cb). No differences were observed in the levels of CASPR2 expression in the 

same areas (C). 40X, scale bar, hippocampus 200 µm, cerebellum 50 µm. Data are expressed 

as mean ± SEM. 
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Figure 5.2 Western blot analysis of CASPR2 expression 

Western blots of the whole brains from CASPR2-IgG injected mice (C2) showed a trend 

towards increased CASPR2 expression, normalized by GAPDH, compared to HC-IgG 

injected mice (HC) (3 brains/group; means of 4 replicates for each brain). Data are expressed 

as mean ± SEM. 
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5.5 Morphometric analysis  

No gross morphological changes were observed on Nissl-stained sections between the two 

groups. In particular, there were similar hippocampal (t(6)=0.5, P=0.63, independent samples 

t-test), cerebellar (t(4)=1.19, P=0.29, independent samples t-test) and total brain volumes 

(t(4)=1.5, P=0.20, independent samples t-test) between the two groups. Likewise, there were 

no differences in the thickness of the anterior cingulate (t(6)=0.25, P=0.80, independent 

samples t-test), primary motor (t(6)=0.11, P=0.91, independent samples t-test), piriform 

(t(6)=2, P=0.07, independent samples t-test) or somatosensory cortex (overall: t(6)=0.2, 

P=0.82; layer I t(6)=0.7, P=0.46, layers II-IV t(6)=0.2, P=0.83, layers V-VI t(6)=0.19, P=0.84, 

independent samples t-test). No differences were observed in the thickness of the hippocampal 

cell body layers (dentate gyrus t(6)=0.04, P=0.96, CA3 t(6)=0.24, P=0.81, CA1 t(6)=0.77, 

P=0.46; independent samples t-test) or fields (CA4 t(6)=1.2, P=0.27, CA3 t(6)=0.37, P=0.72, 

CA1 t(6)=1.9, P=0.10, independent samples t-test). The thickness of the cerebellar molecular 

(t(6)=1.5, P=0.16, independent samples t-test) and granular (t(6)=0.77, P= 0.46, independent 

samples t-test) layers was also not different (Figure 5.3).  

5.6 Neuronal counts and neuronal activation  

To evaluate if CASPR2-Abs were able to cause neuronal death we measured the density of 

neurons, stained by the NeuN marker. No evidence of neuronal loss was found in the CASPR2-

IgG compared to the HC-IgG injected mice in the somatosensory cortex (t(6)= 1.12, P=0.30, 

independent samples t-test), in the piriform cortex (t(6)= 0.54, P=0.60, independent samples t-

test) or in the hippocampus (overall t(6)=1.6, P=0.15; CA4 t(6)= 0.13, P= 0.89; CA3 t(6)=0.27, 

P= 0.79; CA1 t(6)=1.60, P= 0.16; independent samples t-test). In the cerebellum, however, 

despite no difference in the count of NeuN positive cells in the molecular layer (t(6)= 0.86, 

P=0.42, independent samples t-test), there was a 14.6% reduction in the number of calbindin-

positive Purkinje cells (t(6)=2.45, P=0.049, independent samples t-test) (Figure 5.4).  

 We used c-fos expression on NeuN stained neurons as a marker of neuronal activity. 

Compared to the HC-injected mice, mice injected with CASPR2-IgG showed a higher density 

of c-fos expressing neurons in the entorhinal-piriform cortex (t(6)=3.11, P=0.020), dorsomedial 

(t(6)=2.67, P=0.036) and lateral (t(6)=2.79, P=0.031, independent samples t-test) 

hypothalamus. No differences between groups in the density of c-fos expressing neurons were 

detected in the hippocampus (overall: t(4)=0.77, P= 0.48; DG t(6)=0.87, P=0.41; CA3 t(6)= 

1.77, P=0.12; CA1 t(6)=0.96, P=0.37; independent samples t-test), somatosensory cortex 
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(t(6)=1.2, P=0.26, independent samples t-test) and amygdala (t(6)=1.03, P=0.34, independent 

samples t-test) (Figure 5.5). 

5.7 Microglia analysis  

Microglia are the resident tissue macrophages of the CNS. These cells can transform from a 

surveillance state to an activated phenotype in response to brain injury. Under normal 

conditions they are characterised by a small cell body with fine, ramified processes and low 

expression of surface antigens. In response to brain injury, ischemia and inflammatory stimuli, 

microglia rapidly transform into an activated phenotype associated with proliferation, migration 

to the site of injury, elaboration of both neurotoxic and neurotrophic factors and phagocytosis 

of cellular debris (Garden GA and Moller T, 2006; Hanisch UK and Kettenmann H, 2007; Streit 

WJ, 2002). Activated microglial cells, as identified by expression of Iba1 and CD68, were 

measured in the somatosensory and piriform cortices, the hippocampus and the cerebellum. 

Microglial density was increased in the somatosensory cortex of CASPR2-IgG injected mice 

(t(6)=2.63, P=0.038, independent samples t-test) and molecular layer of the cerebellum 

(t(6)=4.99, P=0.002, independent samples t-test) but not in the piriform cortex (t(6)= 1.31, 

P=0.23, independent samples t-test), the hippocampus (overall t(6)=1.34, P=0.22, CA4 

t(6)=0.86, P=0.41, CA3 t(6)=0.59, P= 0.57, CA1 t(6)=1.92, P= 0.10, independent samples t-

test) or the granular layer (t(6)= 0.27, P=0.79, independent samples t-test) of the cerebellum 

(Figure 5.6). 

Analysis of microglial morphology was performed on Iba1 positive cells (Figure 5.6) in 

the hippocampus and in the molecular layer of the cerebellum. When activated, microglia 

assume an ameboid morphology characterised by a larger soma body and shorter processes. In 

the hippocampus, microglia from CASPR2-IgG injected mice showed a higher cell soma/cell 

total body size ratio (t(6)=4.74, P=0.0032, independent samples t-test), less (t(6)=3.27, 

P=0.017, independent samples t-test) and shorter (t(6)=3.68, P=0.010, independent samples t-

test) ramifications than HC-IgG injected mice, compatible with an activated phenotype. Similar 

results were found in the molecular layer of the cerebellum, with a higher soma/total body area 

size ratio (t(6)=7.35, P=0.0003, independent samples t-test) and shorter ramification maximal 

length (t(6)=3.68, P=0.008, independent samples t-test) in CASPR2-IgG than in HC-IgG 

injected mice (Figure 5.6). 
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A) Photograph showing the cresyl violet staining of a brain serie (left panel) and volumetric 

measurements. B) Cortical thickness measurements. C) Photograph showing an example of 

cortical layers measurement in the somatosensory cortex and quantification of the layers 

thickness. D) Photograph showing an example of hippocampal cell body layers and fields 

measurements and their quantification. E) Quantification of the thickness of cerebellar layers. 

No differences were observed in any parameter between HC-IgG and CASPR2-IgG injected 

mice. 40X, scale bar, hippocampus 400 µm, cortex 300 µm. Data are expressed as mean ± 

SEM. 
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Figure 5.3 Nissl staining 
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Figure 5.4 Analysis of neuronal count in mouse brains 

A) Representative pictures of NeuN expression and quantification of NeuN positive cell 

densities in three brain regions. There were no differences between CASPR2-IgG and HC-

IgG injected brains. B) Calbindin expressing Purkinje cells (PC), but not NeuN expressing 

neurons, were reduced in the cerebellum of CASPR-IgG injected mice. Data are expressed as 

mean ± SEM. 
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Figure 5.5 C-fos expression 

C-fos expression in the entorhinal-piriform cortex, dorsomedial hypothalamus (DMH) and 

lateral hypothalamus (LH) was higher in the CASPR2-IgG injected compared to the HC-IgG 

injected mice (Representative images are shown from the entorhinal-piriform cortex). DG= 

dentate gyrus. 40X, scale bar 50 µm. Data are expressed as mean ± SEM. 
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Figure 5.6 Microglial density and morphological analysis 

 

A) Representative images of the molecular layer of the cerebellum showing microglia 

staining. 40X, scale bar 20 µm. B) CASPR2-IgG injected mice showed higher microglia 

densities in the somatosensory cortex and in the molecular layer (ML) of the cerebellum but 

not in the granular layer (GL) or in the hippocampus. N= 4 animals/group. C) Representative 

images of the z-stack projected Iba1 staining used for morphological analysis. 40X, 10 µm. 

D) Quantification of morphological data in the hippocampus and molecular layer of the 

cerebellum showed that microglia from CASPR2-IgG injected mice had a higher cell 

soma/cell total body size ratio and shorter ramifications than HC-IgG injected mice, 

compatible with an activated phenotype in both the hippocampus and the cerebellum. N=200 

cells from 4 animals/groups were analysed from the hippocampus and 100 from the cerebellar 

molecular layer. Data are expressed as mean ± SEM. 
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5.8 Astrocyte analysis  

 

The presence of astrocytosis was assessed by measuring the density of GFAP positive cells. 

We did not observe an increased density of astrocytes in the somatosensory (t(6)= 0.46, P= 

0.66, independent samples t-test) and piriform cortices (t(6)=0.45, P=0.66, independent 

samples t-test) or hippocampus (overall: t(6)=1.44, P=0.19, CA4 t(6)=1.69, P=0.14, CA3 

t(6)=0.32, P=0.75, CA1 t(6)=1.06, P=0.32, independent samples t-test). However, mean 

fluorescence intensity for GFAP in the molecular layer of the cerebellum showed increased 

GFAP staining (t(6)= 2.5, P=0.043, independent samples t-test) in the CASPR2-IgG injected 

compared to control mice compatible with the presence of a mild reactive gliosis (Figure 5.7). 

 Since the presence of activated microglia is often associated with a shift of astrocyte 

morphology towards an activated profile, we investigated the presence of reactive astrocytes 

by complement C3 expression in the hippocampus, somatosensory cortex and molecular layer 

of the cerebellum and by morphological analysis. The C3/GFAP co-stained area was raised in 

CASPR2-IgG injected mice in the hippocampus (t(398)=4.87, P < 0.0001, 200/cells per group, 

independent samples t-test), somatosensory cortex (t(160)=2.41, P=0.01, 81/cells per group, 

independent samples t-test) and cerebellum (t(204)=7.14, P < 0.0001, 103/cells per group, 

independent samples t-test) (Figure 5.7). The morphological analysis on GFAP stained cells 

showed that astrocytes from CASPR2-IgG injected mice also presented a smaller cell total body 

size (U=22052, P= 0.0051, Mann Whitney test U) and shorter (U=19946, P< 0.0001, Mann 

Whitney test U) maximal ramification length than HC-IgG injected mice, compatible with an 

activated phenotype, in the hippocampus (Figure 5.7). 

 

5.9 Cytokine and chemokine expression 

As these microglial and astrocyte changes suggested a state of mild neuroinflammation in the 

CASPR2-IgG injected mice, a commercial cytokine/chemokine array was performed on three 

whole brain lysates from each group to look for changes in neuroinflammatory markers. A trend 

towards increased levels was noted for several cytokines and chemokines, and particularly for 

interleukin (IL)-10, stem cell factor (SCF), and vascular endothelial growth factor (VEGF), but 

also for granulocyte-macrophage colony-stimulating factor (GM-CSF), granulocyte-colony 

stimulating factor (GCSF), IL2 and monocyte chemotactic protein 5 (MCP-5), but none reached 

significance after correction for multiple comparisons (Figure 5.7). 
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Figure 5.7 Astrocyte morphology and inflammatory markers 

 

A) Representative images of GFAP staining in the molecular layer of the cerebellum and 

quantification of the mean fluorescence intensity in the same area showing higher GFAP 

expression in the CASPR2-IgG injected mice. 40X, scale bar 10 µm. B) Representative 

images of complement C3 expression on GFAP positive cells. Percentage of C3/GFAP area 

ratio per cell showed increased C3 expression of astrocytes in the hippocampus, 

somatosensory cortex and cerebellum of CASPR2-IgG injected mice. 40X, scale bar 10 µm. 

C) Representative pictures of the z-stack projected GFAP staining used for morphological 

analysis (40X, 10 µm). The astrocytes from CASPR2-IgG injected mice showed a smaller cell 

total body size and shorter maximal ramification length than HC-IgG injected mice, 

compatible with an activated phenotype, in the hippocampus. D) Compared to HC-IgG 

injected mice, CASPR2-IgG exposed animals showed changes in several cytokines and 

chemokines, but none reached significance after correcting for multiple comparisons. 
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5.10 Discussion 

 

In this Chapter, the results of brain analysis of mice injected with CASPR2-IgG were presented. 

After LPS, CASPR2-Abs were able to access and bind to the brain parenchyma. CASPR2-IgG 

injected mice showed a mild loss of Purkinje cells with cerebellar astrocytosis and increased c-

fos expression in the hypothalamus and piriform-entorhinal cortex. Moreover, CASPR2-IgG 

injected mice displayed increased microglia density and increased numbers of microglia and 

astrocytes with a reactive phenotype. This observation was supported by a trend toward 

elevated levels of microglia and astrocyte derived cytokines and chemokines.  

In modeling of brain antibody-mediated disease through peripheral administration of 

the antibodies, it is often necessary to disrupt the BBB integrity in order to allow them to reach 

their target antigen. Previous studies showed that LPS is able to breach the BBB (Kowal C et 

al. 2004; Banks WA et al. 2014) and allow peripherally administered antibodies to penetrate 

the brain parenchyma without causing, per se, sustained neurotoxicity (Kowal C et al. 2004). 

According to these studies, we observed increased human IgG in the brain parenchyma of 

CASPR2-IgG injected mice. Human IgG was localised mainly in the somatosensory cortex, in 

the hippocampus and in the thalamus in the perfused brains. Although the preferential 

localisation of the IgG in the CASPR2-IgG injected mice might be related to a preferential 

penetration of the antibodies in some regions, as has been observed in a feline model of LGI1 

encephalitis (Tröscher AR et al. 2017), it might also be related to a selective opening of the 

BBB by the LPS. Indeed, a previous study showed that LPS-induced BBB disruption occurred 

mainly in the frontal cortex, thalamus, pons-medulla and cerebellum (Banks WA et al. 2014).  

Once in the brain, antibodies targeting neuronal antigens can cause their effects through 

different mechanisms, such as internalisation of their target and consequent loss of function, 

blocking of the interactions with other molecules, inflammation and complement-dependent 

cytotoxicity with consequent cell lysis (Ludwig RJ et al. 2017). Mechanisms of action of 

CASPR2-Abs are still largely unclear. CASPR2-Abs are IgG4, often in association with IgG1; 

they are most likely to act through a disruption of CASPR2 interaction with associated 

molecules than through internalisation and complement activation. Accordingly, a recent study 

showed that CASPR2-Abs do not reduce CASPR2 expression on the surface of cultured 

hippocampal neurons, but they may act by reducing CASPR2 interaction with contactin-2 

(Patterson KR et al. 2017). By contrast, a neuropathological study on human tissue showed a 

reduction of CASPR2 staining in the cortex of a patient with autoimmune encephalitis (Sundal 

C et al. 2017) and in the previous mouse model we found a reduction in Kv1 channel surface 
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expression on DRG neurons following CASPR2-Abs treatment, consistent with an increased 

internalisation of CASPR2 following antibody binding (Dawes JM et al. 2018) as shown 

previously for many antibodies (e.g. Drachman DB et al 1978; Hughes EG et al. 2010). In our 

model, CASPR2-Abs did not appear to be associated with a reduction of CASPR2 surface 

expression although we cannot exclude that, at the time of our observation, a compensatory 

mechanism had not intervened to compensate for an initial reduction in CASPR2 expression. 

Indeed, a trend towards higher total CASPR2 levels was noted by western blotting of the brains 

of CASPR2-IgG injected mice. 

Antibodies can change neuronal activity through several mechanisms, including 

modification of channels and receptor expression or neuroinflammation. C-fos is an immediate 

early gene product, produced by individual neurons and commonly used as a marker of cell 

activation. CASPR2-IgG exposed mice showed significantly higher levels of c-fos expression 

in the entorhinal-piriform cortex and in the dorsomedial and lateral hypothalamus. The 

expression in the latter area could be related to the sleep-wake cycle. Particularly, c-fos 

expression has been shown to be increased during the dark period, when the mice are active, 

and decreased during the light period, when they are asleep (Basheer R et al. 1997) consistently 

with the presence of wake-active neurons in the lateral hypothalamus (Hsieh KC et al. 2011). 

Therefore, an increase of c-fos expression during the light period in our animals (euthanized 

between 1:00 and 5:00 p.m.) might suggest an increased wakefulness, consistent with the 

insomnia typical of patients with Morvan’s Syndrome (Liguori R et al. 2001). 

Complement activation has been reported in neuropathological studies of patients with 

CASPR2-Abs (Körtvélyessy P et al. 2015, Sundal C et al. 2017). Although we did not directly 

evaluate the presence of apoptotic cells or complement C9 expression, there was no loss of 

NeuN positive cells in the cortex and hippocampus. In the cerebellum, however, CASPR2-Abs 

caused a mild loss of Purkinje cells (PC) but not a reduction of NeuN positive cells in the 

molecular layer. CASPR2-Abs bind to the axons of granule cerebellar neurons in the molecular 

layer and have been associated with cerebellar ataxia in some patients (Becker E et al. 2013) as 

well as with morphological changes of PC in a neuropathological case (Sundal C et al. 2017). 

The loss of PC we observed was modest and this might explain why we did not observe ataxia 

in mice. It is also possible that the neuronal loss needed more time to manifest extensively and 

that the behavioural motor tests were performed at a time when the effects were not yet 

complete. The mechanisms of the Purkinje cell loss are not clear, and they might be related to 

a direct effect of the antibodies or indirectly to an effect of neuroinflammatory changes. 
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 Indeed, one of the most striking finding in this work is the activation of microglia and 

astrocytes. Microglia are neuroglia cells that represent the major immune cells in the brain and 

together with astrocytes are responsible for the innate immunity. Microglia and astrocyte 

functions are strictly interconnected, and, on the one hand, astrocytes support microglia 

functions, while on the other, microglia activation is required to initiate and support the 

astrocytic response (Pascual O et al. 2012). Previous studies showed that, under physiological 

condition, astrocytes express C3 complement (Lian H et al. 2016; Liddelow SA et al. 2017). In 

pathological conditions, (Lian H et al. 2016; Liddelow SA et al. 2017) activated microglia are 

able to induce reactive astrocytes, which up-regulate C3 expression and become responsible for 

neurotoxicity and synaptic loss. Accordingly, alongside microglia activation and increased 

density we found increased C3 expression on the surface of astrocytes and higher numbers of 

activated astrocytes in CASPR2-IgG injected mice. These findings were supported by trends 

towards elevated levels of cytokines produced by and targeted to astrocytes and microglia, such 

as GM-CSF, MCP-5 and VEGF. The microglial and astrocyte activation was particularly 

evident in the cerebellum. Here, reactive microglia have been shown to cause PC death during 

development (Marin-Teva JL et al. 2004) and in a mouse model of cerebellar degeneration an 

increase of activated microglia has been associated with PC loss and reactive gliosis (Zaho Z 

et al. 2011). 

Interestingly, microglia activation has been reported in neuropathological cases of 

patients with CASPR2-Abs encephalitis (Sundal C et al. 2017; Körtvélyessy P et al. 2015). 

Moreover, microglia activation and increased density was noted in the infralimbic, pre-limbic 

and somatosensory cortex of animal exposed to CASPR2-Abs in utero and this activation 

persisted in adulthood (Coutinho E et al. 2017). By contrast, the peripheral administration of 

CASPR2-IgG, without LPS, induced only a mild increase of microglia in the spinal cord and 

not in the somatosensory cortex of exposed animals (Dawes JM et al. 2018), suggesting that 

microglia activation might be dependent on the contact with IgG and that, once initiated, this 

process might be maintained independently from the initial trigger. In our model, LPS allowed 

the penetration of the IgG antibodies into the brain where they could have bound to the Fc 

receptors expressed on microglia, but the alternative possibility that the CASPR2-Abs bound 

to neurons and that this initiated inflammatory reactions that up-regulated microglia would 

explain better the differences between CASPR2-IgG and HC-IgG injected mice. 

Although the mechanisms by which CASPR2 antibodies produce neuropathological 

changes are not clear, we showed that peripheral injection of CASPR2-IgG can produce, after 
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a single dose of LPS, extensive CNS changes. This model needs to be further investigated with 

a wider range of more targeted behavioural tests. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

  141 

  

 

Chapter 6. General discussion 
 

In the last decades, the discovery of antibodies directed against neuronal surface antigens has 

provided aetiology and treatment for many disorders for which those were previously unknown. 

In the meantime, several questions have emerged, including the role of these antibodies in 

patients with different phenotypes or other neurological disorders, and their pathogenicity in 

these circumstances. Moreover, despite the circumstantial clinical evidence of the pathogenic 

role of these antibodies in classical autoimmune encephalitis, only in a few cases have these 

been supported by a definite proof through a passive transfer animal model. The work of this 

thesis aimed to answer some of these questions by investigating the frequency and role of 

antibodies directed against neuronal antigens in patients with different central nervous system 

disorders and in controls, and by establishing a passive transfer animal model of CASPR2 

antibody, one of the most commonly encountered antibodies in clinical practice.  

 The results showed that antibodies against neuronal surface proteins are more frequent 

in patients with central nervous system disorders compared to healthy controls or patients with 

peripheral nervous system disorders. An important finding in this respect was that this 

difference was significant only when CBAs or the combination of positivity by different 

methods was used, suggesting that the combined approach ensured more specificity. A few 

studies have also shown antibodies against neuronal antigens are ubiquitous in the sera of both 

healthy and disease controls when using immunohistology (Levin EC et al. 2010; Nagele RG 

et al. 2011).   

Overall, the frequency of antibodies was similar among patients, despite differences in 

the distribution of some specific antibodies, which were more prevalent in one cohort compared 

to others (i.e. NMDAR antibodies in narcoleptic patients). This implies that, irrespective of the 

clinical diagnosis, a percentage of patients, between 15 and 40%, could potentially benefit from 

immunotherapy. However, the clinical features of patients with antibody reactivity were only 

rarely suggestive of a possible autoimmune encephalitis, and typical imaging or CSF 

inflammatory changes were often absent. Moreover, the majority of patients with specific 

antibodies did not show the usual clinical, and sometimes not even demographic, features 

associated with that antibody; this adds difficulties to the interpretation of the results but could 

reflect the influence of age and gender on the clinical presentation associated with particular 

antibodies, and partially explain these atypical presentations. 
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This study has several limitations. Patients and controls were not demographically 

homogeneous and the clinical information available was sometimes limited or not available at 

all. Antibodies were not systematically titrated, and subclasses were not determined. Moreover, 

CSFs were not available for testing; the finding of the antibodies in the CSFs would have 

supported their pathogenic role, although the pathogenic relationship between serum and CSF 

antibody is not clear in all patients with autoimmune encephalitis, let alone the disorders that 

were investigated here. Finally, the retrospective nature of the study means that seropositive 

patients were not treated and followed up. Therefore, the main question about the significance 

of these findings remains open.  

The results are also complicated by those of others, using the commercially available 

fixed CBAs. Antibodies against brain proteins were found in healthy individuals (Dahm L et 

al. 2014; Lang K and Prüss H, 2017) as well as in patients with several neurological or 

psychiatric presentations (reviewed in Pollak TA et al. 2016; Balint B et al. 2018). Whereas the 

physiological role of some natural occurring antibodies is partially understood (i.e. cellular 

debris removal) (Panda S and Ding JL, 2015), for antibodies against specific neuronal antigens 

this is unknown, nor are the possible circumstances and mechanisms that may turn these 

potentially ‘harmless’ antibodies into disease-relevant ones. Dahm L et al. (2014) found no 

difference in immunoglobulin classes distribution (IgM, IgG and IgA) or antibody titres 

between patients and controls. Therefore, the role of the blood-brain barrier (BBB) in defining 

the disease status was investigated. It was found that schizophrenic individuals with a past or 

present history of BBB disturbance were more likely to have more pronounced neurological 

symptoms if NMDAR antibody seropositive (Hammer C et al. 2014). It is of interest that in the 

narcolepsy type 1 patients studied here, seropositive status was associated with BBB disruption.  

An important possibility is that the difference between health- or disease-status could 

be related to different functionality or epitope specificity of the antibodies. Castillo-Gomez E 

et al. (2017) showed that all NMDAR-Ab positive sera, derived from randomly selected 

individuals, were able to induce NMDAR internalisation in inducible pluripotent stem cell 

(IPSC)-derived human cortical neurons. Several different epitopes recognised by NMDAR-Abs 

were identified, without any consistent functional or epitope pattern related to health/disease 

state. However, these findings were contradicted by a subsequent study showing different 

functional effects of NMDAR-Abs from schizophrenic patients versus those found in healthy 

individuals (Jezequel J et al. 2017). NMDAR-Ab from patients, but not from healthy subjects, 

were shown to alter the surface dynamics and nanoscale organisation of synaptic NMDAR and 

its anchoring partner the ephrin-B2 receptor in heterologous cells, cultured neurons and in 
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mouse brain and preventing long-term potentiation at glutamatergic synapses, while leaving 

NMDAR-mediated calcium influx intact. 

It is clear that more studies are needed to clarify the role of the antibodies in health and 

disease, mainly to identify the factors associated with the disease status, looking not only at the 

antibodies per se but also at all those factors that could influence their ability to reach their 

targets (i.e. blood-brain barrier integrity) and those which could modulate the immune response 

(i.e. HLA status). The implications of these findings could help support the use of 

immunotherapy in patients that otherwise would have remained untreated and avoid ineffective 

and potentially harmful treatment in those cases which would not benefit.  

Part of the process of investigating antibody-associated diseases is to prove the 

pathogenicity of disease-relevant antibodies, which was the aim of the second part of this work 

(Chapters 4,5). Since there was no clear novel antibody emerging from the work in Chapter 3, 

and because the quantities of IgG needed for pathogenicity studies can only be obtained from 

plasma exchange, a passive transfer animal model was established to investigate the pathogenic 

role of CASPR2 antibodies. Mice injected with CASPR2-IgG showed working memory deficits 

and anxiety-like behaviour during social tasks with a global reduction of locomotor activity. 

Neuropathology showed that CASPR2-Abs were able to access and to bind to the brain 

parenchyma. CASPR2-IgG injected mice showed a mild loss of Purkinje cells with cerebellar 

astrocytosis and increased c-fos expression in the hypothalamus and piriform-entorhinal cortex. 

Moreover, CASPR2-IgG injected mice displayed increased microglia density and increased 

microglia and astrocytes with a reactive phenotype. This observation was supported by a trend 

towards elevated levels of microglia and astrocytes derived cytokines and chemokines. 

Surprisingly, no changes in CASPR2 expression were observed, suggesting that the main 

mechanisms of the antibodies might not be the internalisation of the protein but the interaction 

with its partners, namely Kv 1.1 and Kv 1.2 and contactin-2. 

The results strongly suggest that CASPR2-Abs can affect many different brain regions 

and therefore potentially different functions. CASPR2-Abs have been associated with a broad 

range of clinical manifestations, many of which, e.g. autonomic and sleep dysfunction, would 

require additional tests that were not available on the Home Office license. The main finding 

was a mild memory impairment, which might appear inconsistent with the lack of histological 

changes in the hippocampus. However, although working memory is related to hippocampal 

integrity, other brain areas play a role in these tasks (Lalonde R, 2002). Among those the 

entorhinal cortex, where CASPR2 is highly expressed (Gordon A et al. 2016), is the main 

source of hippocampal afferents from the neocortex and is involved in different forms of 
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memory (van Groen T et al. 2003). Indeed, in mouse models of Alzheimer’s disease, memory 

impairment was associated with an early hyper-excitability of the entorhinal cortex (Xu W et 

al. 2015) which would be consistent with increased neuronal excitability following reduction 

in Kv1 expression seen in the dorsal root ganglia (DRG) in the peripheral CASPR2-Ab model 

(Dawes JM et al. 2018). These changes may have been responsible for the higher levels of c-

fos expression in the entorhinal-piriform cortex, rather than in the hippocampus.   

The long-term effects of CASPR2-Abs are not clear in patients but in general brain MRI 

studies do not demonstrate brain atrophy. This would be consistent with previous findings 

(Dawes JM et al. 2018) as CASPR2-Abs did not caused frank neuronal loss in the periphery, 

and with the findings here where the only neuronal abnormality identified was a mild loss of 

cerebellar Purkinje cells. More striking was the activation of microglia and astrocytes. 

Microglial activation has been reported in neuropathological cases of patients with CASPR2-

Ab encephalitis (Körtvelyessy P et al. 2015; Sundal C et al. 2017). Moreover, microglial 

activation and increased density was noted in cortex of animals exposed to CASPR2-Abs in 

utero and this activation persisted into adulthood (Coutinho E et al. 2017). By contrast, the 

peripheral administration of CASPR2-IgG, without LPS, induced only a mild increase of 

microglia in the spinal cord but not in the somatosensory cortex of exposed animals (Dawes JM 

et al. 2018).  

This study also has limitations. The use of LPS, could have induced additional 

inflammation and contributed to determining the site of BBB disruption, leading to or changing 

some of the antibody effects observed. Indeed, the intracerebroventricular (ICV) injection of 

the antibodies could have overcome the need to use other molecules to open the BBB, 

guaranteeing a direct access of the antibodies to the brain; but there is no evidence yet that the 

ICV approach provides a more realistic or complete model of autoimmune disorders 

(Planagumà J et al. 2015; Wright S et al. 2015). Indeed, as there is an incomplete understanding 

regarding the relative roles of CSF and serum antibodies in some of these conditions, a direct 

comparison between the two approaches could be very interesting. The behavioural studies 

were broad but did not focus on all the features of CASPR2-related encephalitis, as mentioned 

above, and these need to be investigated in further studies. The experimental timing we chose 

could have prevented us from seeing the acute effects of the antibodies while some behavioural 

and histological effects might have required more time to become fully established.  

Finally, other questions remain unanswered such as the mechanisms by which CASPR2-

Abs affect CASPR2 function in the CNS and if the glial changes are relevant in the human 

disease. In vitro studies would have been useful to clarify if CASPR2-Abs caused 
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internalisation of the antigen as seems suggested by studies on DRG neurons (Dawes JM et al. 

2018), or an alteration of their interaction with other proteins as suggested by these findings 

and other studies (Patterson KR et al. 2017). However, due to the lack of time, these studies 

could not be performed during the course of this PhD. 

Many of the recently-described antibody-mediated CNS diseases have higher serum 

than CSF antibody levels, emphasizing that in many or most cases they are likely to be initiated 

by a peripheral immune response. It was timely, therefore, to see whether peripheral injection 

of antibodies could, under conditions where the BBB is briefly compromised, lead to evidence 

of CNS dysfunction. Despite the mentioned limitations, this study not only supports the 

pathogenic effect of CASPR2-Abs, but also supports a model where peripherally administered 

CASPR2-Abs, in the presence of a temporary breach in the BBB, are able to access the brain 

and produce histological and behavioural changes.  

The data collected in this thesis should stimulate further research, both epidemiological and 

experimental, into the role of potentially pathogenic antibodies against neuronal surface 

proteins in central nervous system disorders and their mechanisms of action. 
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