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SUMMARY: 

Fiskebein og algefiber som gjødsel til raigras 
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In organic growing, both in Norway and elsewhere in Europe, significant amounts of fertiliser 

products not derived from certified organic farming are used, such as dried poultry manure or 

other types of fertilisers derived from conventional farms such as animal by-products. Organic 

agriculture aims to be independent of conventional agriculture, and fertilisers derived from 

harvesting of natural materials may be a relevant alternative. Catching of wild fish, and collection 

or cultivation of seaweeds, result in residual products which contain essential plant nutrients. 

Sediments of fish bones, which are residues from hydrolysis of fish remains used to produce fish oil 

and soluble proteins, are rich in nitrogen and phosphorus. Residues from seaweeds (algae fibre), 

after extraction of soluble nutrients sold as a liquid fertiliser, are rich in potassium and sulphur. 

However, we do not know much about how such residues affect plant growth. This topic was 

studied in a pot experiment with annual (Westerwold) ryegrass, which was harvested five times 

during the experimental period, April-August 2018. We had four replicates per treatment, and fish 

bones and algae fibre were applied either as fresh material or after drying at 105 °C. The control 

treatment was an experimental soil without any fertiliser, and we also had a treatment with 

calcium nitrate (Calcinit). The three types of fertilisers were applied in low and high amounts, 

where we aimed at a fertilisation level corresponding to 300 or 600 kg nitrogen (N) per ha 

(corresponding to 30 or 60 kg per daa). However, the actual amounts of N applied in fish bones, 

and algae fibre were somewhat lower than this. The total number of treatments was 11. 

Application of fish bones gave a significant increase in the production of ryegrass. In total, across 

two N levels, and the drying status of materials, the accumulated above-ground yield over five 

harvests (stubble included) was 3.3 g DM per pot for fish bones, as compared with 2.2 g DM per 

pot in the control treatment. Fertilisation of ryegrass with algae fibre and Calcinit both gave an 

average yield of 2.6 g DM per pot. Converting these numbers to kg DM per ha, the accumulated 

yields were 7 166 kg/ha without any fertiliser, 8 541 kg/ha with algae fibre, 8 616 kg/ha with 

Calcinit and 10 916 kg/ha with fish bones. The average yield increase in % of the control yield was 

19% with algae fibre, 20% with Calcinit and 52% for fish bones. 

Nitrogen was the nutrient which was supposed to give the most significant effect on the 

production of plant dry matter. Somewhat more N was applied with Calcinit than with fish bones, 

but the yields were still considerably higher with fish bones. This was likely explained by the 

phosphorus (P) content of the fish bones (no P is present in Calcinit). Drying at 105 °C did not 

reduce the positive growth effect since slightly higher yields were observed with dried than with 

fresh materials. Fertilisation with algae fibre led to luxury uptake of potassium (K) in above-ground 

material of ryegrass while causing low uptake of calcium (Ca) and magnesium (Mg). In spite of high 

concentrations of arsenic (As) (33 mg/kg DM) in algae fibre, the concentrations of As in ryegrass 

plants amended with this material were below the limit of detection.  

Both fish bones and algae fibre contain valuable plant nutrients and organic matter, which may 

have a positive effect as fertilisers and soil amendments. However, they are not well balanced as 

compared with the requirements of agricultural crop plants. Hence, unless special nutrients are 

requested, they need to be combined or mixed with other sources of nutrients and organic matter, 

to produce a valuable fertiliser which will also be easy to use in practice.  



 

 
 
 

  

 
 

Several further studies are required to possibly develop commercial fertiliser products for organic 

growing from marine-derived residual materials such as fish bones and algae fibre.  

Sammendrag  

I økologisk dyrking, både i Norge og i resten av Europa, brukes det betydelige mengder av 

konvensjonell fjørfegjødsel og andre gjødselprodukter basert på konvensjonelt husdyrhold. 

Økologisk landbruk ønsker å være uavhengig av konvensjonell drift, og gjødsel basert på materialer 

som høstes fra naturen kan være et aktuelt alternativ. Tradisjonelt havfiske, og innsamling eller 

dyrking av brunalger, gir restprodukter som inneholder viktige plantenæringsstoff. Sedimenter av 

fiskebein, etter at kvernet fiskeavfall er hydrolysert til olje og løselig protein, inneholder mye 

nitrogen og fosfor. Rester etter pressing av plantestyrkende algeekstrakt fra grisetang (algefiber) 

inneholder mye kalium og svovel. Men hvordan virker slike produkter på plantevekst? Det 

undersøkte vi i et potteforsøk med ettårig (Westerwold) raigras, som ble høstet fem ganger i 

forsøksperioden, som varte fra april til august 2018. Vi hadde fire gjentak av hver behandling, og 

tilførte fiskebein og algefiber enten i fersk form, eller etter tørking ved 105 °C i varmeskap. Som 

kontroll hadde vi forsøksjord uten gjødsel, og forsøksjord tilsatt kalksalpeter (kalsiumnitrat). De tre 

gjødseltypene ble tilført i to ulike mengder, slik at vi totalt kom opp i 11 behandlinger. Vi tok sikte 

på å tilføre gjødsel tilsvarende 300 eller 600 kg nitrogen (N) per ha (30 eller 60 kg per daa). For 

algefiber og fiskebein viste det seg imidlertid at tilført mengde var noe lavere enn dette. 

Gjødsling av raigras med fiskebein ga rask og stor plantevekst, med en total produksjon av tørrstoff 

(TS) (blad, stengler og stubb, ikke røtter) over fem høstinger på 3.3 g per potte, som et 

gjennomsnitt for begge N-nivå og ferskt og tørket materiale. I jord uten gjødsel var 2.2 g TS per 

potte. Gjødsling med algefiber og kalksalpeter (Calcinit) ga i gjennomsnitt samme avlingsnivå, 2.6 g 

TS per potte. Omgjort til kg per daa blir de akkumulerte avlingene 717 kg/daa uten gjødsling, 854 

kg med algefiber, 862 med kalksalpeter og 1092 med fiskebein. Gjennomsnittlige avlingsøkning, når 

økningen beregnes som prosent av kontrollavling, var 19% for algefiber, 20% for kalksalpeter og 

52% for fiskebein. 

Vi forventet at tilførselen av nitrogen (N) ville være det som ga størst utslag på produksjonen av 

plantemateriale. Til tross for at mer N ble tilført med kalksalpeter enn med fiskebein, var 

tørrstoffavlingen høyest i pottene med fiskebein. Dette skyldes sannsynligvis at fiskebeina, i 

motsetning til kalksalpeter, inneholder mye fosfor (P).  

Tørking ved 105 °C reduserte ikke den positive veksteffekten av fiskebein eller algefiber, for 

avlingene var minst like høye ved tilførsel av tørka som av ferskt materiale. Gjødsling med algefiber 

førte til luksusopptak av kalium (K) i raigraset og lavt opptak av Ca og magnesium (Mg). Til tross for 

høye konsentrasjoner av arsen (As) (33 mg / kg TS) i algefiber, var konsentrasjonen av As i 

raigrasplanter med tilførsel av algefiber under deteksjonsgrensen.  

Både fiskebein og algefiber inneholder verdifulle plantenæringsstoffer og organisk materiale som 

kan ha en positiv effekt som gjødsel og jordforbedring. Imidlertid er ikke næringsinnholdet godt 

balansert med hensyn til behovene til jordbruksplanter. Med mindre det er ensidige gjødselslag 

som etterspørres, bør algefiber og fiskebein bør kombineres med hverandre og/eller med andre 



 

 
 
 

  

 
 

kilder for å bli et godt balansert gjødselprodukt. Det trengs grundigere studier på mange områder 

for å utvikle kommersielle gjødselprodukter fra marine restmaterialer som fiskebein og algefiber. 
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Preface   

Organic agriculture seeks to utilise locally available resources of plant nutrients and organic matter, 

and to be independent of non-organic agriculture, e.g. with respect to inputs of fertilisers. Currently, 

significant amounts of poultry manure and other animal-derived fertilisers from non-organic 

management are used in organic farming in Norway, as well as in many other European countries. 

One option to reduce the input of fertilisers derived from non-organic agriculture could be to harvest 

nutrients and organic matter from the sea and use these materials for fertilisation. Since significant 

amounts of nutrients are leached and lost from terrestrial environments into the sea, this could close 

nutrient gaps and reduce current challenges of eutrophication, which are substantial, for example, in 

the Baltic Sea. Both fish and seaweed (algae) have a long tradition to be used as soil amendments. 

However, to potentially replace, e.g. pelletized poultry manure as a commercial product by a 

fertiliser made from marine materials, a range of issues need clarification. For instance, crop plants 

need a fertiliser which is balanced into macro- and micronutrients. A commercial fertiliser product 

must be easy to store and spread, as well as biologically stable, and should not contain pathogens or 

toxic compounds. The county council of Møre and Romsdal has provided funding for a research 

project, “Marine rest raw materials for fertilisers to organic agriculture” (RESTOR), which is run by 

NORSØK during 2018 - 2020 to explore such issues.  

After communicating with industry stakeholders, we decided to start-up with two materials: 

seaweed residues, and fishbone sediments from hydrolysed fish residues. Both materials are 

available in the region of Møre and Romsdal, and elsewhere along the coastline in significant 

quantities. The algae fibre used in the study and reported here was a left-over product from the 

production of seaweed extracts, applied for promoting plant growth. Fish residues are usually 

treated by formic acid for conservation during hydrolysis; however, the fish bones used in this study 

were remains from pilot-scale hydrolysis with no use of formic acid. Seaweed residues contain high 

amounts of potassium (K) and some sulphur (S), and fish bones contain high amounts of nitrogen (N) 

and phosphorus (P). If applied in combination, these marine residues may give a well-balanced 

fertiliser for crop plants. However, in this study, we applied the materials separately, to study the 

growth effect of each material. 

A pot experiment was conducted where relevant marine materials were applied as fertilisers to 

annual (Westerwold) ryegrass. Using marine residues for fertilisation is of interest also for other 

European countries. NORSØK participates in the Horizon 2020-project “Pathways to phase-out 

contentious inputs from organic agriculture in Europe” (Organic-PLUS), where marine-derived 

fertilisers may be one option to reduce the contentious input of non-organic animal manure to 

organic farming. Whereas the RESTOR-project provided resources for conducting the pot 

experiment, the Organic-PLUS project has provided funding for chemical analyses and the writing of 

this report.  
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1 Introduction 

Nutrients present in various organic waste possess the potential to replace traditional fertilisers in 

agriculture.  Fertiliser products may be made from processed organic waste from agriculture, 

fisheries and aquaculture, households, recreational areas, and the food processing industry. 

Compound products such as park waste compost and digestates from anaerobic digestion of various 

organic waste are gradually becoming more familiar for Norwegian farmers and growers (Brod et al., 

2017; Brod et al., 2018). In other countries, where anaerobic digestion has a longer history than 

Norway, such fertiliser products have become quite common to use (Mostafazadeh-Fard et al., 2019; 

Tampio et al., 2016).  

Norway has a significant marine sector with great potential to recycle organic material and 

plant nutrients present in residues from algae and the fish industry as fertilisers. Marine residues 

may perform well as fertilisers (Arioli et al., 2015; Hartz et al., 2010; Illera-Vives et al., 2015a; Illera-

Vives et al., 2015b; Nabti et al., 2017). Several fertilisers made from fish waste and/or seaweed have 

been produced and tested on crop and horticultural plants (Archer et al., 2001; Craigie, 2011; Illera-

Vives et al., 2017; López-Mosquera et al., 2011; Sahu et al., 2014). A lot of commercial products 

made from fish processing waste and/or seaweeds are available mainly in the US and Canada, partly 

also approved for use in certified organic growing (OMRI, 2019a, b; Sharma et al., 2014).  

In Norway, in recent years, the cultivation of macroalgae (in Norwegian: tang, and tare) has 

gained attraction due to its potential role in the emerging bioeconomy, with applications in human 

food, domestic animal and fish feed products, fertiliser, prebiotics, cosmetics, bioactive peptides, 

pharmaceuticals and nutraceuticals (Stévant et al., 2017; Thangstad, 2018). However, macroalgae 

may contain trace elements with possible negative consequences for public health, such as arsenic 

(As) (Maher, 1984; Stévant et al., 2018a; Stévant et al., 2018b). Contrarily, they may possess valuable 

trace elements such as iodine (I). 

Coastal communities have applied seaweeds traditionally as a soil amendment and fertiliser 

(Rebours et al., 2014a; Rebours et al., 2014b). It is over 65 years since the first commercial seaweed 

extract was manufactured for agricultural use in 1951, as described by Craigie (2011). Seaweed-

derived extracts/fertilisers are commercially available worldwide (Chojnacka, 2012; Nabti et al., 

2017; Sharma et al., 2014), and some are also approved by the Organic Materials Review Institute 

(OMRI) for use in certified organic crop production (OMRI, 2019b). OMRI is an international non-

profit organisation that determines which input products are allowed for use in organic production 

and processing https://www.omri.org/.  

Seaweeds have been exploited through ages for fodder and as fertiliser along the Norwegian 

coast but lost their value through modernisation of agriculture and due to the production of mineral 

fertilisers (Holm, 2002). In his book about Norwegian geography, “Norges Naturlige Historie” from 

1752, bishop Pontoppidan described the use of seaweed (tang) as fertiliser and for soil improvement 

(Indergaard, 2010). Norwegian farmers have been using algae for soil improvement by gathering 

seaweed from the shoreline and spreading it over their fields (Fleddum, 2013). In the field 

experiments near Trondheim, during 1958 – 1960, the seaweeds were applied to turnips, fodder 

beets, and cauliflower. Seaweed fertilisers showed positive effects in addition to those expected 

from the content of N, P and K (Myklestad, 1963). On a study tour to Jæren, Norway, in 2000, 

https://www.omri.org/
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McKinnon and Holm experienced that farmers still used seaweeds as fertiliser and to reduce soil 

erosion (McKinnon et al., 2004). In trials conducted by NORSØK (McKinnon et al., 2004), the seaweed 

knotted wrack (Ascophyllum nodosum) composted with straw, wood cuttings and peat, and freshly 

cut knotted wrack, both increased yields of oilseed rape, and subsequent yields of ryegrass.   

While the fertilisation effects of fresh or decomposing seaweeds are well-known and 

studied, residual materials from industrial processing of seaweed are also available, for instance, 

after extraction of nutrients as liquid fertiliser products, or production of alginate. These residues 

contain valuable nutrients and may affect positively on soil characteristics such as water holding 

capacity (Riley, 2002). In a field-study with potatoes (Riley, 2002), algae fibre by-product (with about 

40 % perlite) was obtained from FMC Biopolymer, a large producer of alginate. The application 

enhanced soil concentrations of sodium (Riley, 2002). However, it increased the water holding 

capacity of various test soils and showed a positive effect on yields of potato tubers. The growth 

effect of 1 tonne algal fibre (DM) per daa, containing about 12 kg N, was equal to 20 - 25 kg of 

compound fertiliser NPK (11-5-17).  Significant amounts of mineral N were present in the soil at 

potato harvest, and some of this N was available for a subsequent crop of ryegrass in the next 

growing season (Riley, 2002).  

In the pot experiment, presented here, the algae fibre was obtained from the Algea AS in 

Kristiansund. The algae fibre is residual material from knotted wrack collected along the coast of 

Norway, which has been dried, grounded and extracted by acid/alkali to produce fertiliser extracts, 

which are exported and marketed by Valagro AS, which owns the company Algea AS.  

Large amounts of fish processing waste are produced in countries with a significant fish 

industry, such as Canada, US, UK, India, the Republic of Korea, China, Senegal, Spain and Norway 

(Balraj et al., 2014; Ghaly et al., 2013; Kazemi et al., 2017; Teh and Sumaila, 2013). Through the 

discussions with partners involved in the RESTOR project, we came to know that grinded fish bones, 

conserved by formic acid, are a type of fish waste that is currently poorly utilised, and usually 

disposed of by incineration. The conserved fish bones are produced when fish residues, mainly from 

filleting of cod and saithe such as bones, heads, skin, fins, and intestines, are grinded, mixed with 

formic acid and stored in large tanks as fish silage. During storage, top layers of oil and soluble 

protein separate by hydrolysis. On the bottom, there is a layer of sediments, comprised mostly of 

bone residues, but also other particles such as cartilage. The sediments are rich in nutrients and 

hence were of interest for further study as fertilisers. The high contents of P and N in fish bones 

(Toppe et al., 2007; Zheng et al., 2013) makes them very relevant to be used for fertilisation 

purposes.  

Annual ryegrass (Lolium westerwoldicum) is a common forage grass in Norwegian 

agriculture. This species is also commonly used as an experimental crop, due to its ability to 

germinate very fast and rapidly produce a new canopy after repetitive cutting. Hence, the pattern of 

nutrient uptake can be recorded in detail with several harvests of the canopy.   
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The current study was conducted to evaluate the effects of fish bones and algae fibre, applied as 

fertilisers on the growth and nutrient uptake of ryegrass, and soil nutrient concentrations.  These 

residues were selected because they are readily available in the county of Møre and Romsdal. We 

aimed to answer the following questions:  

(i) Whether fish bones and algae fibre enhance the growth and nutrient uptake of ryegrass?  

(ii) Whether the addition of fish bones or algae fibre to soil has modified the soil 
characteristics such as pH, loss on ignition and nutrient concentrations?  

(iii) Whether the soil that was fertilised with fish bones and algae fibre contained potentially 
toxic trace elements, for example, arsenic, lead, and mercury?  
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2 Materials and methods 

2.1 Soil, fertilisers and other experimental conditions 

Sifted topsoil (0 - 20 cm) from a field called “Sagmyra” (translation: the moorland (“myr”), next to the 

sawmill (“sag”), on Tingvoll farm (location of NORSØK) was used. This soil (loamy sand; “siltig 

mellomsand”) has about 70% sand, 23% silt, and 7% clay in the mineral fraction. It contains 12% 

organic matter and about 40 mg AL-extractable phosphorus (P) per kg air-dry soil which is low to 

medium-high. Extraction by ammonium-acetate lactate (AL) is the standard method to characterise 

soil P availability in Norway. The soil has a pH (H2O) of about 5.5. This soil was used because it had 

proven good characteristics to demonstrate the effect of various organic fertilisers in previous 

studies (Løes, 2017). With medium to low P concentration, effects of fertilisation are easier to 

explore. Further, the soil structure remains satisfactory over time due to a high content of sand and 

organic matter. The volume weight of the soil, measured as bulk density in field condition (Løes et 

al., 2013) was 1 kg per dm3, and the factors used for converting fertilisation per pot to fertilisation 

per ha of topsoil (0 - 20 cm) was 2000 kg of soil per ha (1 kg/dm3 x 0.2 m x 10 000 m2), and 600 g of 

soil per pot (550 g plus 50 g to cover ryegrass seeds).  

Fertilisation levels are usually higher in pot experiments than in the field. Ryegrass is a crop which 

can take high nitrogen (N) fertilisation, and we aimed for an application of 300 or 600 kg N per ha, 

corresponding to 0.09 or 0.18 g N per pot (600 g soil). We applied the fertilisers at the start of the 

experiment only.  

Soil, or soil mixed with fertilisers, was filled into plastic pots of 12 cm height with aeration holes in 

the bottom, where a round piece of the metallic net was placed to avoid soil loss. The pots were 

filled carefully with the requested weight of soil, which was distributed in three portions. Between 

each portion, the pot was gently kicked towards the table 10 times, while turning it a quarter around 

for each kick. This was done to ensure even physical conditions for the growth of plants. 

To establish an appropriate level of watering the pots, the pot “field capacity” was measured by 

filling five pots with 600 g of sifted soil as described above, carefully saturating them with water and 

then let them drain for about 1 hour until no more free water was visible under the pot. The water 

content of the soil upon filling was 26%, implying that 600 g of soil contained 444 g of dry soil. On an 

average, this amount of soil could hold 349 g of water, which means that at field capacity (in this 

sifted soil), when 600 g is filled into a plastic pot, the water content is about 44% and the pot 

contains 444 g soil + 349 g water = 793 g. For watering in pot experiments, it is usually recommended 

to apply water to 50 - 70 % of field capacity, which implies that each pot should weigh between 618 

(50%) and 688 (70%) after watering. Pots with soil were placed in trays containing a water-absorbing 

cloth and 11 pots. The weight of the tray, including cloth and 11 empty pots was 1010 g. Hence, the 

recommended weight per tray after watering would be between 7808 g (= 618 g x 11 + 1010 g), and 

8578 g (= 688 g x 11 + 1010 g). The weight of the tray at field capacity would be 8723 + 1010 g = 9733 

g. 
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2.1.1 Fish bones as fertiliser 

Frozen fish bones received from pilot-scale hydrolysis with no use of formic acid (Picture 1) were 

obtained from SINTEF Ocean AS Ålesund in February 2018. The average content of DM in fish bones, 

as determined by four replicate samples of 50 g, after drying at 105 °C was 52.5%.  

 
 
Picture 1. Materials used as fertilisers in the pot experiment with ryegrass. 

 

The content of N in fish bones was estimated following (Toppe et al., 2007), where the fish bones 

from cod and saithe (caught in Norway), were reported to contain on average 356 g protein per kg of 

lipid-free DM, which corresponds to 57.28 g N kg-1 DM (6.25% total N in protein). As per calculations, 

following this paper, we applied 3.0 and 6.0 g fresh fish bones, and 1.5 and 3.0 g dried fish bones per 

pot, corresponding to fertilisation levels of 308.5 kg N and 617.0 kg N ha-1 (Table 1). The subsequent 

  Table 1. An overview of treatments in the pot experiment. 
 

 Treatment Details Sample codes 

1 Control Experimental soil (ES): 600 g/pot ES 
2 Dried fish bones (low N) 

0.052 g N/pot = 262 kg N/ha 
ES: 600 g/pot + Dried fish bones (DFB): 1.5 g /pot ES+DFB-LN 

3 Dried fish bones (high N) 
0.104 g N/pot = 524 kg N/ha 

ES: 600 g/pot + DFB: 3.0 g/pot  ES+DFB-HN 

4 Fresh fish bones (low N) 
0.052 g N/pot = 262 kg N/ha 

ES: 600 g/pot + Fresh fish bones (FFB): 3.0 g/pot 
(52.5% DM) 

ES+FFB-LN 

5 Fresh fish bones (high N) 
0.104 g N/pot = 524 kg N/ha 

ES: 600 g/pot + FFB: 6.0 g/pot 
(52.5% DM) 

ES+FFB-HN 

6 Dried algal fibre (low N) 
0.057 g N/pot = 190 kg N/ha 

ES: 600 g/pot + Dried algal fibre (DAF): 4 g/pot ES+DAF-LN 

‘7 Dried algal fibre (high N) 
0.114 g N/pot = 380 kg N/ha 

ES: 600 g/pot + DAF: 8 g/pot ES+DAF-HN 

8 Fresh algal fibre (low N) 
0.057 g N/pot = 190 kg N/ha 

ES: 600 g/pot + Fresh algal fibre (FAF): 12.8 g/pot 
(32 % DM) 

ES+FAF-LN 

9 Fresh algal fibre (high N) 
0.114 g N/pot = 380 kg N/ha 

ES: 600 g/pot + FAF: 25.6 g/pot 
(32 % DM) 

ES+FAF-HN 

10 Mineral fertiliser (low N) 
0.09 g N/pot = 300 kg N/ha 

ES: 600 g/pot + Calcinit (CAL): 0.580 g/pot ES+CAL-LN 

11 Mineral fertiliser (high N) 
0.18 g N/pot = 600 kg N/ha 

ES: 600 g/pot + CAL: 1.161 g/pot ES+CAL-HN 
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chemical analysis of fish bones (Eurofins, Jena), showed that 1.5 and 3.0 g amounts of dried fish 

bones per pot, corresponded to fertilisation levels of 262.0 kg N or 524.0 kg N ha-1 (Table 1). The 

amounts of N shown for algae fibre and fish bones in Table 1 were calculated from the analytical 

values of samples dried at 105 °C (Table 4).  

The dried bones used in the experiment were dried at 105 °C, with no active aeration but an opening 

for letting out the humid air. We assumed that drying at high temperature could reduce the N 

content of the material, and this was the reason to compare dried and fresh (frozen) fish bones. 

However, we did not consider that drying at 30 °C would affect the N content significantly. 

Therefore, the fresh fish bones were dried at 30 °C before sending the material for chemical analysis, 

in a cabinet with active aeration.  

In early 2019, another batch of sediments of fish bones, which were received from a commercial fish 

industry was sent for chemical analyses to Eurofins. The analyses showed that the method of drying 

of fish bone sediments significantly affects the N content. Nitrogen is easily lost, even at a 

temperature of 30 °C, if the drying is combined with active aeration. When fish bone sediments from 

two batches (ICP tanks) were analysed after passive drying at room temperature with the laboratory, 

Eurofins (about 25 °C), the total N contents were 13.3 and 15.3% of DM. However, the samples that 

were dried at 40 °C with active aeration from a fan contained only 5.0 and 5.9% of total N. Samples 

that were dried at 105 °C with no active aeration had 4% of total N. 

The results of chemical analysis of fish bones used in the present study are presented in section 3.1. 

2.1.2 Algae fibre as fertiliser 

Fresh algae fibre (Picture 1) was obtained from Algea AS, Kristiansund on March 22, 2018. In 2002, 

Algea became part of the international company Valagro AS. The company collects and processes 

knotted wrack (Ascophyllum nodosum) to make extracts and phytocomplexes for use in agriculture 

and animal feed (Algea, 2019). The production of seaweed extracts from A. nodosum leaves a filter 

cake (algae fibre), which is currently used as a substrate for composting organic waste in a nearby 

municipality (Vestnes). However, new regulations for fertilisers and soil amendments made from 

organic waste were proposed in 2018, with a strict limit to arsenic (NorwegianAgricultureAgency, 

2018). If these regulations are adopted, such kind of utilisation of this material would be hampered. 

The average content of DM in algae fibre, as determined by four replicate samples of 150 g fresh 

weight, after drying at 105 °C, was 32%. 

The content of N in the algae fibre was estimated using analytical values from former chemical 

analyses. We had access to two analyses of algae fibre from Algea AS in 2011 (Table 2, samples 2 and 

3), and one from a former Norwegian study (Hanssen, 1996; Table 2, sample 1). We used the average 

N value of samples from 2011 to calculate the amount of N in algae fibre. 

Assuming an average value of 1.55% of DM of total N (Table 2), we applied amounts of 12.8 g and 

25.6 g of fresh algae fibre per pot, or 4.0 g and 8.0 g of dried algae fibre per pot, corresponding to 

300 kg or 600 kg N ha-1. The subsequent analysis of dried algae fibre (Eurofins, Jena), showed that the 

applied amounts corresponded to fertilisation levels of 190.0 or 380.0 kg N ha-1 (Table 1). The dried 

algae fibre used in the experiment was dried at 105 °C, with no active aeration but an opening for 

letting out the humid air. The dried algae fibre samples, which became very compact after drying, 
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were grinded in a mortar before applying the material to the soil (Picture 1), and before sending it to 

Eurofins for analysis. Fresh algae fibre was relatively easy to mix with the soil.  

Table 2. Chemical composition of algal fibre from Algea AS: samples from 2011 and 1995.  
 

Macronutrients, carbon and pH 

Sample DM 
(%) 

Total-N  
g /100g 
DM 

Total-C  
g/100g 
DM 

NH4-N  
mg/kg DM 

NO3-
N 
mg/kg 
DM 

P 
g/kg 
DM 

K  
g/kg 
DM 

Ca  
g/kg 
DM 

Mg 
g/kg 
DM 

S  
g/kg 
DM 

pH 

1 * 81.3 1.0 27.8 7.4 9.3 1.8 7.2 28.3 - 6.6 8.9 
2 73 1.4 - 6.4 1993 1.1 5.3 31 8.6 6.9 9.1 
3 70 1.7 - 1.2 2968 0.8 58 31 9.2 7.0 9.2 
Mean of 
2 & 3 

71.5 1.55          

 
Micronutrients and potentially toxic elements 

Sample Na 
g/kg 
DM 

B 
g/kg 
DM 

Cl 
g/kg 
DM 

Fe 
mg/kg 
DM 

Cd 
mg/kg 
DM 

Hg 
mg/kg 
DM 

Pb  
mg/kg 
DM 

Ni  
mg/kg 
DM 

Cr 
mg/kg 
DM 

Zn,  
mg/kg 
DM 

As, 
mg/
kg 
DM 

1 37 - 7.4 544 0.96 0.012 0.28 - - - - 
2 41 43 - 230 0.58 0.007 1.1 1.5 0.98 61 21 
3 8.5 0.05 - 120 0.64 0.018 1.1 1.3 0.56 76 22 

The data presented in this table were made available from Algea AS as a part of a former cooperation activity 
with Dr Sissel Hansen, NORSØK. 
*Sample 1: Received from Algea in Drammen, Norway; analysed at «Landbrukets analysesenter», Ås 16.3.1995 
(Hanssen, 1996). Sample 2: Sampled by Algea AS, Kristiansund 2.12.2011; analysed by Eurofins. Sample 3: 
Sampled by Algea AS, Kristiansund 6.12.2011; analysed by Eurofins. 
 

2.1.3 Mineral fertiliser  

Calcium nitrate was purchased as Calcinit from YaraLiva. Calcinit has 15.5% N + 19% Ca (Picture 1). It 

is a free-flowing fully water-soluble nitrogen and calcium fertiliser. One gram of Calcinit contained 

0.155 g N. Hence, 0.58 g Calcinit was applied to supply the soil with 0.09 g N per pot, corresponding 

to 300 kg N ha-1, and 1.16 g to supply the soil with 0.18 g N per pot, corresponding to 600 kg N ha-1 

(Table 1).  

2.1.4 Mixing of soil and fertilisers  

Each fertiliser was thoroughly mixed into a portion of the experimental soil before the soil was filled 

into the pots, on March 27, 2018, as described in section 2.1.  

2.2 Design of the pot experiment 

The experimental set up was a randomised “block” design with soil as control (no fertilisation), and 

ten treatments of soil plus fertilisers fish bones (dry and fresh), algal fibre (dry and fresh), and 

Calcinit, all in two N levels (Table 1).  One replicate pot from each treatment (n = 11) was put 

together on a tray (= “block”), which was covered by a thick textile cloth to ensure even distribution 

of applied water. The plastic pots were labelled with codes indicating the treatments (Table 1, 

Picture 2). When all pots were filled and distributed into trays, 35 ml of deionised water was applied 

on top of each pot to moisten the soil surface.  
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Thirty seeds of annual ryegrass (Lolium westerwoldicum) (Barenbrug grass seeds) were then evenly 

placed on the soil surface and covered with 50 g of finely sieved soil. About 1050 g of deionised 

water was then applied to the cloth of each tray, to achieve a weight of 8300 g per tray, to let the soil 

moisten from below. The pots were then covered with a plastic sheet until the seeds germinated, 

which occurred on April 4, 2018 (Picture 2).  

 

 
Picture 2. Pots were labelled, filled with soil or soil mixed with fertilisers, kept on trays, covered with plastic 
sheets until germination of ryegrass seeds, and kept on tables in a growth room with controlled environmental 
conditions. 

 
The analysis of fish bones and algae fibre (Eurofins, Jena) (described later in section 3.1), after drying 

at 105 °C and 30 °C showed different values for total N (Table 4). Since the values were not very 

much affected by the difference in temperature, the calculation of N amounts given in fresh and dry 

material (Table 1) is based on the N concentration after drying at 105 °C. For algae fibre, the total N-

concentrations after drying at 105 and 30 °C were 1.43 and 1.51 g 100 g-1 DM. For fish bones, the 

total N-concentrations after drying at 105 °C and 30 °C were 5.24 and 5.04 g 100 g-1 DM.  If we had 

instead used the value obtained after drying at 30 °C, the applied amount of total-N would be slightly 

different than presented in Table 1; 402.6 as compared with 380.0 kg N/ha for algae fibre, and 504.0 

as compared with 524.0 kg N/ha for fish bones.  

We did not analyse fresh fish bones and fresh algae fibre since we were not aware of the significant 

impact that drying conditions may have on N-concentrations.  
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2.3 Watering and management of ryegrass plants 

At the beginning of the experiment (Picture 3), plants were given more water than intended. The 

weight of a tray was 9800 g after watering (Figures 1 and 2), which is slightly above the field capacity 

of 9733 g (section 2.1). Since pots with different fertilisation were mixed in the same tray and should 

not affect each other via leaching, this should have been avoided; however, even if the soil was quite 

wet, free water did not occur on the soil surface. Watering was levelled off, and from 13.04.2018, 

and until the end of the experiment (08.08.2018) and happened thrice a week (Monday-Wednesday-

Friday). At each occasion, the initial weight of each tray was recorded, and after applying deionised 

water to the underlying cloth the weight of trays with pots was brought up to 8500 g (Mondays and 

Wednesday), and 8700 g on Fridays (Figures 1 and 2). During each watering procedure, all trays were 

turned horizontally 180°, and their position on the table was systematically changed (inner tray 

became outer tray, and others were moved one position inwards), to equalise differences in growing 

conditions. Along with the ryegrass, some weeds also germinated, which were picked out from the 

soil by forceps and left to decompose on the soil surface of the pot. 

 

Figure 1. Watering during the experimental period (27.03.2018 - 06.08.2018). 

 

 

Figure 2. Amount of water that was added per tray on Monday, Wednesday and Friday during the experimental 
period (27.03.2018 - 06.08.2018). 
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Picture 3. Seedling emergence of ryegrass as observed on April 4, 2018. (A and B) Weighing of the tray with 11 
pots to add water up to the required weight. (C, D) Plants as observed on 6th April 2018.  

 

2.4 Harvesting of ryegrass plants 

A total of five harvests were completed during the entire growth period of 125 days (04. 04.2018-

08.08.2018) (Picture 3, Table 3). The four first harvests were performed by cutting the above-ground 

plant material 4 cm above the soil surface, and the weight was recorded per pot. At the final harvest, 

this procedure was repeated, but then the stubble of the plants was also cut, at the soil surface, and 

weighed separately. All aboveground plant material which was harvested was put in paper bags. The 

plant material was weighed (fresh wt.) and dried at 40 °C to a constant weight, and the dry weights 

were recorded.  
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Table 3. Main activities during the pot experiment.  
  

Date Activity 

27.03.2018 Filling of pots with soil/soil + fertilisers, weighing and watering of trays.  
28.03.2018 Placement of seeds on the soil surface of each pot and covering of pots with plastic sheets.  
04.04.2018 Seeds germinated. Plastic sheets were removed. The trays with pots were weighed and 

watered.  
06.04.2018 – 
26.04.2018 

Most of the weeds were found before the first harvest, were removed and placed on the soil 
surface of the same pot.  

27.03.2018 – 
06.08.2018 

Watering of trays with 11 pots/tray during the whole experimental period (Figures 1 and 2). 

26.04.2018   First harvest.  Recording of fresh and dry weights of above-ground plant material, stubble 
height 4 cm. 

16.05.2018 Second harvest. Recording of fresh and dry weights of above-ground plant material, stubble 
height 4 cm. 

13.06.2018 Third harvest. Recording of fresh and dry weights of above-ground plant material, stubble 
height 4 cm. 

11.07.2018 Fourth harvest. Recording of fresh and dry weights of above-ground plant material, stubble 
height 4 cm. 

08.08.2018 Fifth and final harvest and completion of the experiment. Weighing of each pot; recording 
of fresh and dry weights of above-ground plant material, stubble height 4 cm; besides, the 
weight of stubble at height 0 cm. The soil in pots was loosened, and soil samples were taken 
for chemical analysis (one sample per pot). 

2.5 Microscopic examination of soil 

After the final harvest of plants, soil samples were observed under a stereomicroscope (Leica M205C; 

Leica Microsystems, Switzerland; Camera model: MC170 HD); to look for indications of remains or 

possibly degradation of fish bones and algal fibre. The soil samples (about 5 g) from unfertilised and 

fertilised soil (high N level) were placed in glass Petri dishes and subsamples brought to a glass plate, 

to take images. The images were made using the software Leica Application Suite version 4.4.0.  

2.6  Chemical analysis of organic fertilisers   

Representative samples of fish bones and algal fibre were dried at 30 °C and 105 °C and sent to 

Eurofins, Moss, Norway, with further analysis at Eurofins Umwelt Ost GmbH, Jena, Germany. Upon 

communication with the laboratory, samples were subject to an analysis package adapted to 

agricultural compost (Eurofins Agro, 2019), which included the analyses of dry matter content, bulk 

density, loss on ignition (LOI), pH, total-N, ammonium-N, nitrate-N, total organic C, AL-extractable 

nutrients, Olsen-extractable P,  total P, K, Ca, Mg, S (Table 4), micronutrients and potentially toxic 

elements (Table 5). The concentrations of total K, Ca, and Mg were recorded upon request. 

In the laboratory, the samples were put in flat plastic bowls and stored in a drying room, where 

samples of compost etc. normally dry within about 15 hours. The average drying temperature is 

about 25 °C ± 5 °C, which is a bit lower than in a normal drying process. Instead of heating the room, 

water is extracted using the circulating air. That process is more efficient at lower temperatures. 

After drying, samples were grinded with a razor blade mill and sieved to < 1.5 mm particle size. The 

grinded samples were then aliquoted for further processes. 

For determination of the content of dry matter, ashes (loss on ignition) and density, fresh (non-dried) 

material from the samples was used. For dry matter, 100 g of fresh material was dried at 105 °C.  
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The bulk density was determined by filling a graduated cylinder with the material, and a specific 

weight put on top to compress the material for 3 minutes. After that, the bulk density was calculated 

from records of volume and weight.  

For determination of loss on ignition (LOI), an aliquot of fresh material was pre-dried at 40 °C. After 

that, the sample was grinded with a razor blade mill, sieved to < 1.5 mm and ignited at 450 °C. The 

LOI method for the determination of organic matter involves the heated destruction of all organic 

matter in the sample (Øien and Krogstad, 1989).  

The pH in the materials was measured after mixing the grinded samples with de-ionised water (1:2.5 

v/v). The settling time is between 1 and 3 hours, and pH is measured in the liquid phase of the 

suspension.  

The total N was determined by modified DIN EN 13654 method, Soil improvers and growing media - 

Determination of nitrogen - Part 1: Modified Kjeldahl method. The Kjeldahl-N is a well-known 

method to determine total-N in organic materials, which implies to heat the material with H2SO4 to 

release N as (NH4)2SO4 and measure the amount of N indirectly by titrating the amount of NH4 in 

boric acid (Brod et al., 2018; EN13654-1, 2001; Øien and Krogstad, 1989).  

Ammonium-N (NH4-N) was determined following standard EN ISO 11732 (Brod et al., 2017; 

ENISO11732, 1997; Magnusson et al., 2008). The dried and grinded samples were extracted with a 

mixture of CaCl2 and DTPA (diethylenetriaminepentaacetic acid or pentetic acid), called CAT extract. 

After shaking and filtration, concentrations of ions were detected by a photometrical method where 

complex building chemicals were added to the filtrate to produce coloured components to be 

detected in a continuous flow analysis (CFA).  

The total organic carbon (TOC) was determined by combusting the dried and grinded samples and 

detecting the carbon via elemental analysis.   

AL-extractable P, K, Ca, Mg and Na were determined following the AL-method (Egner et al., 1960), 

where the soil is extracted with 0.1 M ammonium lactate and 0.4 M acetic acid, pH 3.75 with a ratio 

of soil to solution of 1:20 (w/v) (Riley et al., 2003). In Norway, this method has been used since 1960, 

and this method is also used in Sweden, Iceland, Germany, and the Netherlands (Krogstad, 2009). 

The method is described in a standard as SS 0283110 + T1 (Standardising Commission in Sweden, 

1993). 

Easily extractable P was determined by the “Olsen-P” method, which estimates the relative 

bioavailability of ortho-phosphate (PO4-P) in soils or other substrates by extraction with alkaline 

sodium bicarbonate (pH 8.5) solution. The P concentration in the extract is determined 

calorimetrically. It is applicable to soils that are mildly acidic to alkaline pH and is based on the 

method developed by (Olsen et al., 1954) to correlate crop response to fertiliser on calcareous soils. 

For determination of the concentrations of “total” P, K, Ca, Mg, micronutrients and heavy metals, 

aqua regia (a mixture of nitric acid, HNO3 and hydrochloric acid, HCl) was used for extraction. For an 

accurate determination of total concentrations of elements, the addition of hydrofluoric acid (HF) to 

the aqua regia is required. This is rarely done with commercial laboratories, and aqua regia-extracted 

concentrations are hence often stated as “so-called totals”. Detection of the elements was done by 

ICP-MS (inductively coupled plasma – mass spectrometry). Sulphur and micronutrients (S, B, Co, Fe, 

Mn, Mo, Cu, Zn), and potentially toxic metals (Ni, Cd, Pb, As and Hg) were determined by EN ISO 
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11885 method (ENISO11885, 2009; ISO11885, 2007). Since we did not expect that the drying 

temperature would affect the concentrations of minerals except nitrogen, total K, Mg and Ca, plus 

micronutrients and potentially toxic metals were only analysed in samples dried at 30 °C.  

2.7 Chemical analysis of soil  

After the final harvest, the soil in each pot was carefully emptied into a tray, roots gently removed, 

and samples of soil for chemical analysis were collected from each pot and were dried overnight at 

30 °C. In addition to the 44 samples from experimental pots, four parallel samples were taken before 

the study started to characterise the initial experimental soil. The soil samples were sent for chemical 

analysis at Eurofins Umwelt Ost GmbH, Jena, Germany (Eurofins, 2019). The package “Soil Analysis” 

provided information about soil volume weight, soil pH (soil: water suspension 1:5 w/w) (EN ISO 

10390)(ISO10390:2005), loss on ignition (LOI), and AL-extractable nutrients (P, K, Mg, Ca, and Na), 

(see section 2.6)(SS 028310 + T1)(Standardising Commission in Sweden, 1993). Further, the 

concentrations of potentially toxic elements As, Cd, Cr, Cu, Ni, Pb and Zn were analysed according to 

the standard NS-EN ISO 17294-2, and Hg according to EN 16175-1. One soil sample amended with 

Calcinit was lost in the Eurofins laboratory.   

As per personal communication from Eurofins, based on method (ISO10390:2005), the laboratory at 

Jena is measuring pH in H2O, and not in CaCl2. ISO 10390:2005 specifies an instrumental method for 

the routine determination of pH using a glass electrode in a 1:5 (volume fraction) suspension of soil in 

water (pH in H2O), in 1 mol/l potassium chloride solution (pH in KCl) or in 0,01 mol/l calcium chloride 

solution (pH in CaCl2) (ISO10390:2005). As per Krogstad and Haraldsen, the method (EN ISO 10390) 

that Eurofins applies to measure pH, is based on the addition of 50 ml deionised water to 10 ml dry 

soil to get 1:5 (volume fraction) (Krogstad and Haraldsen, 2018). However, in Norway, the standard 

method to measure pH in the soil is using 10 ml dry soil in 25 ml de-ionised water (Krogstad, 2009; 

Krogstad and Haraldsen, 2018; Riley et al., 2003). In principle, the method that Eurofins applies 

would dilute the soil solution, and it would affect the concentration of hydrogen ions. As mentioned 

by Krogstad and Haraldsen, a comparison of these two methods showed that between pH 5.5 -and 7, 

the difference between the two methods is neglectable (or small). Outside this interval, however, the 

use of a higher proportion of water as in EN ISO 10390 can affect the pH value by 0.2 to 0.3 (Krogstad 

and Haraldsen, 2018).   

2.8 Chemical analysis of above-ground plant material 

The dried above-ground plant material from all harvests, including the stubble, was compiled for 

each replicate pot and sent for milling and chemical analysis to the Activation Laboratories (Actlabs, 

Canada), (Actlabs Agriculture, 2019).  Actlabs is a commercial laboratory that is accredited to both 

ISO 17025 with CAN-P-1579 for specific registered tests (Actlabs, 2019; Laiho et al., 2012). The 

nutrients were analysed by the Plant Tissue Analytical Package (PTP), which includes N, P, K, Mg, Ca, 

Na, S, Fe, Al, Mn, B, Cu, and Zn. Additionally, As, Cd, Co, Cr, Cu, Pb, Hg, Mo and Ni were analysed by a 

Heavy Metal Package. Macro and micronutrients and potentially toxic elements were extracted in an 

open vessel by a combined nitric acid/peroxide digestion, using an in-house proprietary 

method. Total N was analysed by the combustion method (AOAC 990.03) (AOAC Official Method 

990.03), while P, S, K, Mg, Ca, Na, Fe, B, Cu, Mn and Zn were analysed by inductively coupled plasma 
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optical emission spectrometry (ICP-OES).  The minerals Mo, Se, Co, Al, Ni, Cr, As, Cd, Hg and Pb were 

analysed by inductively coupled plasma mass spectrometry (ICP-MS).  

The contents of macronutrients, N, P, K, S, Mg, and Ca are given as % of DM, while the contents of 

micronutrients and potentially toxic elements (Fe, B, Cu, Mn, Zn, Mo, Se, Co, Al, Ni, Cr, As, Cd, Hg and 

Pb) are given as ppm.  

The plant uptake of nutrients (mg per plant) was calculated by converting the concentrations of 

nutrients from % and ppm into mg g-1 DM and then multiplying with the amount of total plant total 

above-ground DM (foliage + stubble, g).  

2.9 Evaluation of N fertilisation effects  

The apparent nitrogen recovery (ANR, %) in total aboveground DM yield (stubble included) was 

calculated based on the difference method, following (Brod et al., 2017).  

ANR (%) = N uptake (N+) – N uptake (NoN) / N applied x 100 

Where: N uptake (N+) (mg N per pot) is N taken up in aboveground DM yield by fertilised plants; 

N uptake (NoN) (mg N per pot) is N taken up in aboveground DM yield by non-fertilised plants 

(experimental soil), and  

N applied (mg N pot) is N applied with the fertiliser.  

The value shows how much of the applied N was utilised to produce above-ground plant tissue. 

2.10 Statistical analysis  

Even if the replicate plots were distributed in four trays acting as “blocks”, these “blocks” were 

moved systematically around to level out differences in environmental conditions. Hence, the tray 

(“block”) was not used as a factor in the statistical analysis. The data were analysed using one-way 

ANOVA (analysis of variance) for each type of fertiliser, to compare relevant results (e.g. total above-

ground DM yield) with results obtained in the control treatment (no fertiliser). When the ANOVA 

showed a significant difference (P < 0.05), the statistically significant differences between treatments 

were evaluated by Tukey’s t-test. The relations between the application of different levels of 

nitrogen and above-ground DM accumulation were analysed by performing Simple Linear Regression 

by selecting option fitted line plot, where DM yield was response and nitrogen, applied in fertiliser, a 

continuous predictor. The statistical software that was applied for the analysis was MINITAB v.18.   



 
 

NORSØK REPORT Vol. 4, Nr. 7 Page 24 of 64 

 
 

3 Results and Discussion 

3.1 Characteristics and chemical composition of fish bones and algae 

fibre 

Samples of fish bones and algae fibre were dried at 30 °C and 105 °C. The values of pH, total organic 

carbon (TOC), C:N ratio, total- K, Mg and S were higher in algae fibre than in fish bones (Table 4). The 

TOC was almost two-fold higher in fish bones than algae fibre. The concentrations of total N, total P, 

P-Olsen, and total calcium (Ca) were higher in fish bones than algae fibre. The concentrations of P-AL, 

K-AL, Mg-AL, Ca-AL, and Na-AL were above the limit of detection in both materials.  

Table 4. Characteristics and chemical composition of fish bones and algae fibre after drying at 30 °C 
and 105 °C.  
 

Parameter  Algae fibre 
(dried at 105 °C) 

Algae fibre  
(dried at 30 °C) 

Fish bones 
(dried at 105 °C) 

Fish bones 
(dried at 30 °C) 

pH 10 9.6 6.8 6.9 

TOC (g 100 g-1 DM) 32.3 31.3 16.2 15.1 

C/N 23 21 3 3 

DM (g 100 g-1) 98.7 91.4 99.5 93.4 

LOI (g 100 g-1 DM) 54.9 54.7 33.6 33.5 

Bulk density (g/l) 573 676 562 538 

Total N (g 100 g-1 DM) 1.43 1.51 5.24 5.04 
NH4-N (g 100 g-1 DM) 0.01 0.006 0.015 0.037 

NO3-N (g 100 g-1 DM) 0.17 0.23 < 0.0005 < 0.0005 

P-Olsen (mg 100 g-1) 69.7 49.9 421 472 

P-total (g kg-1 DM) 2.4 2.5 120.0 120.0 

Total Ca (g kg-1 DM)  68.0  300.0 

Total K (g kg-1 DM)  130.0  1.7 

Total Mg (g kg-1 DM)  25.0  3.8 

S (g kg-1 DM)  15.0  2.8 

P-AL (mg 100 g-1) > 40 > 40 > 40 > 40 

K-AL (mg 100 g-1) > 40 > 40 > 40 > 40 

Mg-AL (mg kg-1 DM) > 60 > 60 > 60 > 60 

Ca-AL (mg 100 g-1) > 200 > 200 > 200 > 200 

Na-AL (mg 100 g-1) > 20 > 20 > 20 > 20 

AL ammonium lactate; (AL-method), C:N carbon-nitrogen ratio, Ca Calcium, DM dry matter, N total nitrogen 
(Kjeldahl N), LOI loss on ignition, Na sodium, NH4-N ammonium-nitrogen, NO3-N nitrate- nitrogen, P 
phosphorous, P-Olsen (Olsen method), K potassium, Mg magnesium, S sulfur, TOC total organic carbon.  
 

We had expected that a higher drying temperature would decrease the concentration of total N. We 

did not have much information about this at initiation of this pot experiment, but after the 

completion of that study, fish bones conserved with formic acid were received from a commercial 

hydrolysis process with Fjordlaks AS in two International Container Pool (ICP) containers. These fish 

bones were analysed for total N after three different drying procedures. The samples were taken 

from each ICP-container: 1) as frozen, 2) dried at 40 °C (active ventilation), or 3) dried at 105 C° 

(passive ventilation) and sent to Eurofins. Frozen bones were dried at the Eurofins laboratory in room 

temperature with de-humified air, as described in section 2.6.   
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The drying conditions significantly affected total-N values. Frozen bones, dried in air temperature, 

had 13 - 15 % total N (% of DM), whereas dried bones (also dried again at Eurofins) had 4 - 6% total 

N. This shows that drying may affect N concentration in fish bones. Possibly, for the samples of fish 

bones analysed from the pot experiment, the active ventilation used at 30 °C may have compensated 

for the effect of higher temperature, but passive ventilation at 105 °C, since the N concentrations 

were quite equal at both temperatures (Table 4). However, since the fresh bones used in the pot 

experiment were not dried at all, the growth effect of fresh bones should have been higher if more N 

was available in that material. The relationship between drying conditions and N concentrations in 

fish bones needs to be studied in more detail. 

The concentrations of cobalt (Co) and molybdenum (Mo) were below the limit of detection (Table 5). 

Concentrations of boron (B), iron (Fe), and manganese (Mn) were higher in algae fibre than fish 

bones. Algae fibre had 5-fold higher levels of S than fish bones (Table 4), and a significant 

concentration of Fe and Mn (Table 5). For Cu and Zn, concentrations were about equal in algae fibre 

and fish bones. Zn concentrations were quite high in both materials (Table 6), close to the limit of 

class 0 soil amendment products. Soil conditioners in class 0 may be applied according to crop 

demands on all types of land (Table 6), whereas soil conditioners in class I may be used in amounts 

up to 40 tons of DW per ha of agricultural land over a period of 10 years, or applied as a top layer up 

to 5 cm on land not used for growing of food or feed crops. Soil conditioners in class II may be used 

in amounts up to 20 tons of DW per ha of agricultural land over a period of 10 years or applied as a 

top layer as described for class I products. Soil conditioners in class III may be used as a top layer as 

described for class I and II or used as a top layer up to 15 cm to cover waste deposits. 

Table 5. Concentrations of micronutrients and potentially toxic elements (mg/kg DM) in fish bones 
and algae fibre after drying at 30 °C.   
 

    Algae fibre   Fish Bones 

B  94.0 27.0 

Co  < 1.0 < 1.0 

Fe  210.0 < 10 

Mn  50.0 14.0 

Mo  < 2.0 < 2.0 

Cu  9.4 7.3 

Zn  94.0 100.0 

Ni  < 1.5 < 1.5 

Cd  0.9 < 0.10 

Pb  < 0.30 < 0.30 

Hg  0.080 0.089 

Cr  3.8 < 0.30 

As  33.0 1.3 

As Arsenic, B Boron, Cd Cadmium, Co Cobalt, Cr Chromium, Cu Copper, Fe Iron, Hg Mercury, Ni Nickel, Pb Lead, 
Mn Manganese, Mo Molybdenum, Zn Zinc.  
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The concentrations of potentially toxic elements were below the limit of detection for Ni and Pb in 

both materials (Table 5). Concentrations of Cd were 0.9 mg/kg DM in algae fibre, while they were 

below the limit of detection in fish bones. The concentrations of Hg were almost equal in both 

materials, whereas Cr and As were found in much higher concentrations in algae fibre than in fish 

bones. The concentration of As (Table 5) would hamper a future use of algae fibre as an ingredient in 

growing media or composts if the proposed new regulations are implemented (Norwegian 

Agriculture Agency, 2018). In the proposal for revised fertiliser regulations, a threshold of 5 mg As 

per kg of DW is proposed for soil conditioners or fertilisers classified in class 0. Further proposed 

threshold values for As are 8 mg in class I; 16 mg in class II and 32 in class III. For substrates to be 

included in soil conditioners and fertilisers, the values should not exceed class I threshold (8 mg) for 

class 0 products. For class I and II products of soil conditioners/fertilisers, the substrates should not 

contain more than the threshold for class II, and substrates used for a class III product may not 

contain more than the threshold value for class III products. For clarification, the proposed values for 

As have been shown in Table 6. 

The concentration of Cr is well below the limit of 50 mg per kg DM for class 0 (Table 6), whereas for 

Cd, the concentration in algae fibre would categorise this material as a class II product.  

Table 6. Limits of concentrations of potentially toxic elements (heavy metals, mg/kg DM) currently 
allowed in soil conditioners and organic fertilisers in Norway (LOVDATA 2003), and proposed limits 
for arsenic (Norwegian Agriculture Agency 2018).  
 

  Quality classes: 0 I II III 
 

Cd 0.4 0.8 2 5 

Pb 40 60 80 200 

Hg 0.2 0.6 3 5 

Ni 20 30 50 80 

Zn 150 400 800 1500 

Cu 50 150 650 1000 

Cr 50 60 100 150 

As 5 8 16 32 

As arsenic, Cd Cadmium, Cr Chromium, Cu Copper, Hg Mercury, Ni Nickel, Pb Lead, Zn Zinc.  

 

3.2 Germination and plant number at final harvest 

In each pot, 30 ryegrass seeds were planted. Fertilisation did not affect germination as about 90% 

germination was observed in non-fertilised as well as fertilised pots (data not shown).  

The number of plants per pot was recorded during the final harvest. No significant differences were 

observed for the average number of plants per pot, which varied between 24 (dried algae fibre, high 

N) and 29 (Calcinit, high N). 
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3.3 Effect of fertilisers on growth of ryegrass  

3.3.1 The appearance of ryegrass plants at first harvest 

 

 

Picture 4. The appearance of ryegrass plants on 26.04.2018 (first harvest), before harvest (A), and after harvest, 
with a stubble height of 4 cm (B).  

 
Pictures 4 and 5 show the appearance of ryegrass plants at, and after the first harvest. Plants that 

were given a high level of N showed a higher production of above-ground plant material for all 

treatments (Picture 5). Plants receiving high levels of N as fish bones produced more leaves at first 

harvest than those receiving Calcinit or no fertiliser (Picture 5D, E), and plants receiving high amounts 

of fresh algal fibre produced more leaves than those receiving Calcinit or no fertiliser (Picture 5 F). 
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Picture 5. Appearance and comparison of ryegrass plants on 26.04.2018 (first harvest), grown in soil 
(unfertilised), always to the left and in soil with three types of fertilisers, as explained in Table 1. 
 (A) ES, ES+DFB-HN, ES+DAF-HN (B) ES, ES+FAF-HN, ES+DAF-HN (C) ES, ES+FFB-LN, ES+FFB-HN (D) ES, ES+CAL-
HN, ES+DFB-HN (E) ES, ES+CAL-HN, ES+FFB-HN (F) ES, ES+CAL-HN, ES+FAF-HN. 
ES= Experimental soil, FB= fish bones, AF= algae fibre, D= dried (material), F = fresh (material), HN= high N level, 
LN = low N level.  
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3.3.2 Yields of above-ground plant material 

In Figure 3, the total above-ground production of plant material (dry matter, DM), as a sum of the 

material produced in each of the four replicate pots in each treatment, is shown. One reason to 

present the data in this way is that this shows the actual amounts of accumulated plant material that 

was produced during the study; is in total was 122.61 g. 

 

Figure 3. Effect of different treatments on total above-ground DM yields of ryegrass from different harvests (n = 
4).  
ES= Experimental soil, FB= fish bones, AF= algae fibre, D= dried (material), F = fresh (material), HN= high N level, 
LN = low N level. 

 

Overall, fertilisation with fish bones, algae fibre and Calcinit enhanced the above-ground DM yield 

compared to the experimental soil (Figure 3). The total above-ground DM yield (including stubble) 

showed the highest value (14.5 g) for plants that received high levels of N (524 kg N/ha) as dried fish 

bones. The lowest total yield was lowest (8.6 g = 2.2 g per pot) was found for plants that received no 

fertilisation. Even if the amount of N applied with Calcinit was higher than for fish bones, 300 or 600 

kg N ha-1 as compared with 262 or 524 kg N ha-1, fish bones gave higher yields for most of the 

harvests (Figure 3). Across N-levels and drying status of materials, the average total above-ground 

DM yield where fish bones were applied was 13.10 g (3.3 g/pot), compared with 10.34 g for Calcinit 

(2.6 g per pot), and 10.25 g for algae fibre (2.6 g per pot). Even if considerably less N was applied with 

algae fibre than with Calcinit (190 or 380 vs. 300 or 600 kg N ha-1), the average total above-ground 

DM yield was almost equal to the yield from Calcinit (Figure 3). These yield levels may be converted 

to yields per ha by dividing the weight in g by 4 (number of replicate pots) and multiply with a factor 

of 3 333 333.33. This factor is the weight of soil per ha if we assume that the nutrient uptake is taken  
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from the upper 20 cm and the soil bulk density = 1 kg/dm3 soil = 2 000 000 kg soil per ha, divided by 

0.6 which was the weight of soil in each pot. Using this factor, the total production of aboveground 

dry matter was 7 166 kg/ha without any fertiliser, 10 916 with fish bones, 8 616 with Calcinit and 

8 541 kg/ha with algae fibre. The values obtained in a pot experiment are of course highly artificial 

and should not be directly compared with field results. Still, it is interesting to see that the value that 

was achieved for fish bones comes close to a value recorded with intensive growing conditions in 

practice; 11.1 tons of DM per ha with perennial ryegrass in southern Norway (Nærland, 2018).  

The average yield increases across low and high N levels and drying status of materials, in % of the 

control yield with no fertiliser, was 52% for fish bones, 20% with Calcinit and 19% with algae fibre. 

The stubble weight (in total across all treatments, 23.65 g) was about 20% of the total dry matter 

production (122.61 g). Since the stubble was present at each harvest, it may be more interesting to 

focus on how the yields of the leafy canopy developed over the experimental period. Hence, in 

further sections variations in yields between different harvests for each type of fertiliser are 

presented without the weight of the stubble, as an average value of aboveground plant material 

(DM) per pot (Figures 4 - 8).  

3.3.3 Growth effect of fish bones 

Fish bones (dried or fresh) had a very positive effect on DM yield, particularly at the first three 

harvests (Figures 4 and 5). Statistically significantly higher yields were achieved at the second and 

third harvests, with no significant variations between N levels or drying of the material (Figure 5). At 

the fourth harvest, there was a significant yield increase with high N level applied with dried fish 

bones. This possibly indicates that the N concentration in fresh fish bones may have been somewhat 

underestimated by the chemical analysis, which was conducted with material dried at 30 and 105 °C. 

If our assumption was correct, that drying of fish bones would decrease the N concentration as 

shown for fish bones conserved with formic acid (section 3.1), the growth effect of fresh fish bones 

should have been higher than the effect of dried fish bones. However, this seems not to be the case. 

Since no material is left of the fish bones which were used in this study, we are not able to explain 

this result in more detail. 

 

Figure 4. Above-ground yields of dry matter (DM, g/pot), stubble excluded, for ryegrass amended with no 
fertiliser (ES) or low or high levels of N applied as dried or fresh fish bones (262 or 524 kg N ha-1) or Calcinit (300 
or 600 kg N ha-1). Error bars represent the means ± SD (n = 4). 
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Figure 5. Above-ground yields of dry matter (DM, g/pot), stubble excluded, for ryegrass amended with no 
fertiliser (ES) or low or high levels of N (262 or 524 kg ha-1) applied as dried or fresh fish bones (FB). Error bars 
represent the means ± SD (n = 4). Different letters above the bars indicate statistically significant differences 
between treatments within each harvest date, based on Tukey t-test (P = 0.05).   
 

In general, fish bones as fertiliser provided clearly better yields than Calcinit; on average 2.5 - 3 g DM 

of leaves and stems per pot (Figure 5), as compared to about 2.1 g of DM per pot for Calcinit (Figure 

8). This is likely due to the application of P with the fish bones (Table 4). The soil concentration of P 

expected to be available for plant uptake (P-AL) was medium to low; which may explain the good 

growth performance of ryegrass with this fertiliser.  

In the control treatment, the yield was highest at the second harvest, then declined by about 1/3 on  

third harvest and maintained there at the fourth harvest; then declined by about 1/2 at the final 

harvest (Figure 4). This clearly shows that the soil became very depleted in nutrients during the 

experimental period. With fish bones, the yields were also most often highest at the second harvest 

and maintained high also at the third harvest. Then they levelled off quite rapidly, in a pattern quite 

similar to the control treatment. The yield at the final harvest was clearly lower than at the fourth 

harvest. Calcinit had a less rapid growth effect than fish bones. The yields with Calcinit were also 

higher at the second than at the first harvest but clearly higher at the third harvest than at the 

second. The reduction in yield from third to the fourth harvest was somewhat less than for control 

and fish bones, while the low yield at the final harvest shows that also in this treatment, the soil + 

fertiliser nutrients were clearly depleted at the end of the study.   

The total yields of leaves and stems (sum of all harvests excluding stubble) with high N of fish bones 

was about 1.8-times higher, about 3.0 g DM per pot, as that which was produced with no 

fertilisation, which was about 1.7 g of DM per pot (Figure 4). 

3.3.4 Growth effect of algae fibre  
The growth effect of algae fibre was much less than for fish bones, but comparable with Calcinit, in 

spite of that the amounts of N applied were quite much lower: 190 or 380 kg N ha-1 as compared 

with 300 and 600 kg. Yields increased with increased amounts of algae fibre applied (Figure 6). 

Statistical analysis showed that algae fibre with high N level increased the yield levels significantly as 

compared to the control treatment at third harvest, and dried algae fibre with high N level also at the 

final harvest (Figure 7).  
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Figure 6. Above-ground yields of dry matter (DM, g/pot), stubble excluded, for ryegrass amended with no 
fertiliser (ES) or low or high levels of N applied as dried or fresh algae fibre (190 or 380 kg N ha-1) or Calcinit (300 
or 600 kg N ha-1). Error bars represent the means ± SD (n = 4). 

 

Also, for algae fibre, the yield of leaves and stems was most often highest at the second harvest, but 

the increase from the first harvest was not very high. What made the production of dry matter 

higher across five harvests with algae fibre higher than for the control, was a long-term effect where 

the yields maintained a quite stable level even at the final harvest, whereas in the control the yields 

levelled off (Figure 6). With high amounts of algae fibre applied, the yields were nearly equal or 

higher at the final than at the fourth harvest. At the final harvest, the yield with algae fibre was 

clearly higher than with Calcinit. This is a different pattern of growth effect as compared with the 

other treatments, and shows that the algae fibre has a rather slow, but long-term growth effect. 

 

Figure 7. Above-ground yields of dry matter (DM, g/pot), stubble excluded, for ryegrass amended with no 
fertiliser (ES) or low or high levels of N applied as dried or fresh algae fibre (AF) (190 or 380 kg N ha-1). Only 
harvests where statistically significant differences between treatments were found are shown. Error bars 
represent the means ± SD (n = 4). Different letters above the bars indicate statistically significant differences 
between treatments within each harvest date, based on Tukey t-test (P = 0.05).   
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3.3.5 Growth effect of calcium nitrate 
Calcinit, applied in low or high amounts corresponding to 300 or 600 kg N ha-1 decreased the yield of 

ryegrass at the first harvest as compared with the control (Figure 8). The difference was statistically 

significant and somewhat surprising. It may indicate that this mineral fertiliser may have some 

temporary negative effect on plant growth. At later harvests, the yields were as expected, clearly 

higher with Calcinit (Figure 6), and statistically significant differences were obtained at the third 

harvest (Figure 8). For Calcinit, we could also see a clear positive effect of increasing the level of N for 

the sum of all harvests (Figure 8).   

 

Figure 8. Above-ground yields of dry matter (DM, g/pot), stubble excluded, for ryegrass amended with no 
fertiliser (ES) or low or high levels of N applied as Calcinit (300 kg N or 600 kg N ha-1). Only harvests where 
statistically significant differences between treatments were found are shown. Error bars represent the means ± 
SD (n = 4). Different letters above the bars indicate statistically significant differences between treatments 
within each harvest date, based on Tukey t-test (P = 0.05).   

 

3.3.6 Nitrogen utilisation with different fertilisers  
The apparent N recovery (ANR), which shows how much of the applied N was utilised to produce 

above-ground plant tissue, was about 4-fold higher for fish bones than for Calcinit (Figure 9). As 

expected, the N was better utilised with low N application. More than 60% of the applied N with fish 

bones was then recovered in above-ground plant material. With high N level, this value decreased to 

about 54% for fish bones. The fish bones had a C:N ratio of 3 (Table 4) (section 3.1), which is less than 

the optimal value of 24:1 commonly referred to for soil organisms (Weil and Brady, 2016). With 

organic materials of low C:N, enough N is present to meet the needs of soil microorganisms, while 

also concurrently feeding crop plants. With the application of fish bones, lots of nitrogen became 

available in the soil for the growth of ryegrass plants, as was observed here by enhanced N uptake in 

plants fertilised by fish bones (discussed later in section 3.6.4). 

The ANR with algae fibre showed a negative trend with a maximum negative value (-19%) for fresh 

algae fibre with low application of N (Figure 9). A positive value (12.5%) was observed only with dried 

algae fibre with high nitrogen application. The C:N ratio of algae fibre was about 22 (Table 4). This is 

not so far from the ideal value of 24, but the N in this material may not have been easily available for 

plants. The negative or only weakly positive ANR values, and generally slow, but clearly positive 

growth effect of algae fibre in ryegrass, may indicate that microorganisms competed with the plants 

for available N during the start of the experiment, while the organic matter was decomposed to 
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release N from the algae fibre. Even though some of the soil N and algae fibre-derived N was likely 

consumed by microorganisms, still some was available, which led to better growth of ryegrass plants.  

 

 
 Figure 9. Apparent nitrogen recovery (ANR, %) in ryegrass plants amended with low and high N levels (LN or 
HN) of dried or fresh fish bones (DFB or FFB), Calcinit (CAL) or dried or fresh algae fibre (DAF or FAF). ANR = N 
uptake in a fertilised treatment minus N uptake in the control, divided by the amount of N applied with fertiliser 
times 100.  

 

For Calcinit, the utilisation was surprisingly low with both N levels; only about 15.5% of the applied N 

was recovered in the above-ground plant material (Figure 9). This may show that when other 

nutrients, such as P and K, were not applied, the plants were not able to utilise the applied N very 

well.  

3.3.7 Relationships between N application and above-ground plant material 
production 

Linear regressions fitted to the N fertilisation and mean above-ground DM yield per pot, excluding 

the stubble (as presented in Figures 4 - 8) did not give significant relationships at the first or second 

harvest (r2 = 2.4 and 29.3, Figure 10 A and B). At the third and fourth harvests, significant 

relationships were found (r2 = 47.9* and 47.4*, P < 0.05, Fig 10 C and D). For the average 

accumulated harvest, the relationship was also significant, and the N level explained about 45% of 

the variation (r2 = 46.4*, P < 0.05, Figure 10 F).  
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Figure 10. Fitted line plots showing the relationships with linear regression equations between levels of nitrogen 
application (kg N/ha) and the mean above-ground DM yield (g per pot) of leaves and stems at each harvest and 
for a total of all harvests. (A) DM yield at first harvest, (B) DM yield at second harvest, (C) DM yield at third 
harvest, (D) DM yield at fourth harvest, (E) DM yield at fifth harvest, (F) DM yield for total of all harvests.  
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When the stubble was included in the total DM yield (as presented in Figure 3), a significant 

relationship was again found between the N fertilisation and the total DM yield (sum of 4 replicate 

pots per treatment) (r2 = 47.8*) (Figure 11 C). However, for the stubble weight alone, no significant 

relationship was observed between N fertilisation and yield (r2 = 8.0, Figure 11 B). For comparison, 

also the relationship between the amount of N applied and the accumulated aboveground yield 

excluding the stubble is shown in Figure 11 A. 

 

Figure 11. Fitted line plots showing the relationships with linear regression equations between levels of nitrogen 
application (kg N/ha) and the above-ground DM yield across all harvests for leaves and stems, the yield 
including the stubble at the final harvest, and the yield of stubble at the final harvest. (A) Sum of leaves and 
stems at all harvests (B) stubble only, at the final harvest, (C) total aboveground weight at final harvest 
including stubble.  

 



 
 

NORSØK REPORT Vol. 4, Nr. 7 Page 37 of 64 

 
 

3.4 Microscopic examination of soil 

The examination of soil in the microscope revealed some differences between unfertilised soil and 

amended soils (Picture 6). Remains of fish bones were observed in soil amended with high amounts 

of fish bones (Picture 6 C, D, E and F). Soil amended with a high amount of algae fibre (Picture 6 G 

and H) appeared relatively dark in colour compared to the experimental soil with no fertiliser (Picture 

6 A) and Calcinit (Picture 6 B).  

 

Picture 6. The appearance of soil samples fertilised with high levels of fresh fish bones (C, E and F), dried fish 
bones (D), dried or fresh algae fibre (G and H), and Calcinit (B) after the final harvest of ryegrass, as compared 
with unfertilised soil (A). Images are taken by Anne de Boer, NIBIO, Tingvoll. 



 
 

NORSØK REPORT Vol. 4, Nr. 7 Page 38 of 64 

 
 

3.5 Effects of fertilisers on soil characteristics  

3.5.1 Soil pH 

At the start of the experiment, soil pH (on average for 4 parallel samples) was 5.3. After about 4 

months of plant growth, soil pH ranged from 5.1 to 6.8 (Figure 12 A). In the control soil, the pH value 

was not affected by the growth of ryegrass. The lowest values were observed for soil amended with 

Calcinit. Soil pH was not affected by the high content of calcium in fish bones (Table 4), and the pH in 

this soil was equal to the control.   

For algae fibre, which had a pH of about 10 (Table 4), the soil pH increased significantly (Figure 12 B), 

and even more with the higher application. Soil pH with the low application was 6.2, and with high N 

level it was 6.8. Soil pH above 7.5 may affect negatively the uptake of P and micronutrients such as 

Fe, B, Zn and Cu, so this effect of algae fibre should be considered while using algae fibre in high 

amounts as fertiliser. Concurrently, this shows that algae fibre may be applied as a liming agent to 

soils where a higher pH would be beneficial. 

 

Figure 12. Soil pH before and after growth of ryegrass in pots for about 4 months.  
(A) Experimental soil at the start of the study (ES-SS), experimental soil at the end of the study (ES), soil 
amended with dried or fresh fish bones (DFB or FFB), soil amended with dried or fresh algae fibre (DAF or FAF), 
and soil amended with Calcinit (CAL), with low or high application of each fertiliser (LN or HN). 
(B) Statistical evaluation of pH in the soil at the end of the study (ES), and soil amended with dried or fresh 
algae fibre (DAF or FAF). Error bars represent the means ± SD (n = 4; except ES+CAL-LN where n = 3).  
Different letters above the bars indicate statistically significant differences based on Tukey t-test (P = 0.05).   
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3.5.2 Soil organic matter 

The initial average value of soil organic matter (SOM) as measured by loss-on-ignition was 11.5% 

(Figure 13) with a range between 11.0 and 12.1. Regardless of no fertilisation and no application of 

organic matter, this value increased was higher in the unfertilised at the end of the study. The 

average value was to 12.1, with a range between 11.4 and 12.8. This is likely due to that the ryegrass 

produced soil organic matter during growth. With 444 g of dry soil per pot initially, the amount of soil 

organic matter produced comprises about 2.6 g per pot. Each pot contained 444 g dry soil with on 

average 11.5 % SOM = 51.1 g SOM at the start of the experiment. 

 

Figure 13. The concentration of soil organic matter (SOM) before and after the growth of ryegrass in pots for 
about 4 months. Experimental soil at the start of the study (ES-SS), experimental soil at the end of the study 
(ES), soil amended with dried or fresh fish bones (DFB or FFB), soil amended with dried or fresh algae fibre (DAF 
or FAF), and soil amended with Calcinit (CAL), with low or high application of N (LN or HN). Error bars represent 
the means ± SD (n = 4). Different letters above the bars indicate statistically significant differences between 
experimental soil and soil amended with algae fibre, based on Tukey t-test (P = 0.05).  
  

With Calcinit, the average value of SOM was 12.7% with low N, and 12.8% with high N (Figure 13). 

This increase is likely due to SOM produced from the ryegrass plants, which was supported by 

Calcinit. The increase in SOM was about 5.5 g SOM per pot. With fish bones, SOM values varied 

between 12.0 and 12.8. Some organic matter was applied with the fish bones; 34 g/100 g of DM 

(Table 4), and the plants grew vigorously. Hence, we might have expected a somewhat stronger 

increase in SOM with fish bones than was obtained with Calcinit (Figure 13). However, the root: 

shoot relationship may be been affected by the fertilisation, with possibly fewer roots in the 

relatively better-fertilised ryegrass plants amended with fish bones. 

A significant increase in SOM was obtained with application of algae fibre (Figure 13). However, the 

values did not vary between lower and higher N applications. With low N level, the SOM was 13.2% 

and 13.4% for dried and fresh material, and with high N level, the values were again 13.2% for dried 

and 13.4% for fresh material. The high values of SOM in algae fibre amended soils can be due to the 

high amount of organic matter in algae fibre, which was about 55 g/100 g DM (Table 4) (section 3.1).  
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3.5.3 AL-extractable macronutrients and Na 

3.5.3.1 P-AL concentrations 

With the application of fish bones, soil P-AL concentrations increased significantly, from an initial 

average value of 3.6 mg/100 g soil to values between 8.2 and 27.5 (Table 7, Figure 14 A). Higher 

applications of fish bones provided higher values. The drying at 105 °C seems to have had a positive 

effect on this fertilisers’ capacity to increase soil P-AL. With no fertiliser, the P-AL decreased slightly, 

from 3.6 to 3.1 (Table 7), and with Calcinit, the values decreased somewhat more to 2.9 (Figure 15A). 

With algae fibre, the P-AL values were maintained with low N application and increased slightly with 

high applications. The P-AL concentrations were significantly higher in algae fibre amended soil than 

in the control soil (Figure 16 A).  

Table 7. AL-extractable macronutrients and sodium, mg/ 100g air-dried soil, before and after 
growth of ryegrass in pots for about four months. 
 

Sample Code P-AL K-AL Ca-AL Mg-AL Na-AL 

ES-SS 3.6 5.1 140.0 6.6 6.3 

ES 3.1 3.2 140.0 5.5 7.1 

ES+DFB-LN 11.1 2.8 152.5 5.3 6.7 

ES+DFB-HN 27.5 3.0 190.0 5.8 8.0 

ES+FFB-LN 8.2 2.9 150.0 5.6 6.5 

ES+FFB-HN 13.2 3.1 160.0 5.8 6.2 

ES+DAF-LN 3.4 39.8 182.5 22.3 21.3 
ES+DAF-HN 3.9 90.8 212.5 36.5 33.8 

ES+FAF-LN 3.2 44.5 177.5 20.8 21.8 

ES+FAF-HN 3.6 107.5 210.0 35.3 38.0 

ES+CAL-LN 2.9 3.4 153.3 5.2 6.7 

ES+CAL-HN 2.9 2.7 165.0 5.1 6.1 

Average values (n = 4; except ES+CAL-LN where n = 3). AL ammonium-acetate lactate; Ca Calcium, Na sodium, P 
phosphorous, K potassium, Mg magnesium, experimental soil at the start of the study (ES-SS), experimental soil 
at the end of the study (ES), soil amended with dried or fresh fish bones (DFB or FFB), soil amended with dried or 
fresh algae fibre (DAF or FAF), soil amended with Calcinit (CAL), with low or high application of N (LN, HN). 
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Figure 14. AL-extractable phosphorus (P) and calcium (Ca) in soil amended with fish bones compared with 
unfertilised soil after growth of ryegrass for about four months. Experimental soil (ES), soil amended with dried 
or fresh fish bones (DFB or FFB), low or high application of N (LN, HN). Error bars represent the means ± SD (n = 
4). Different letters above the bars indicate statistically significant differences based on Tukey t-test (P = 0.05).   

 

 

Figure 15. AL-extractable phosphorus (P) and calcium (Ca) in soil amended with Calcinit compared with 
unfertilised soil after growth of ryegrass for about four months. Experimental soil (ES), soil amended with 
Calcinit (CAL), low or high application of N (LN, HN). Error bars represent the means ± SD (n = 4; except ES+CAL-
LN where n = 3). Different letters above the bars indicate statistically significant differences based on Tukey t-
test (P = 0.05).   

 



 
 

NORSØK REPORT Vol. 4, Nr. 7 Page 42 of 64 

 
 

 

Figure 16. AL-extractable phosphorus (P) and potassium (K) in soil amended with algae fibre compared with 
unfertilised soil after growth of ryegrass for about four months. Experimental soil (ES), soil amended with dried 
or fresh algae fibre (DAF or FAF), low or high application of N (LN, HN). Error bars represent the means ± SD (n = 
4). Different letters above the bars indicate statistically significant differences based on Tukey t-test (P = 0.05).   

 

 

3.5.3.2 K-AL concentrations 

With algae fibre, soil K-AL concentrations increased significantly, from an initial value of 5.1 mg/100 g 

air-dried soil to values about 40 to 45 for low application, and 90 - 108 for high application (Table 7, 

Figure 16 B). This was also confirmed by a former study, where K levels were significantly higher in 

seaweed-treated potato plots compared to control and conventionally fertilised plots (López-

Mosquera and Pazos, 1997). In unfertilised soil, K-AL levels decreased from 5.1 to 3.2. A similar value 

was found after application of Calcinit, 3.4 mg K-AL/100 g soil with low, and 2.7 with high N 

application (Table 7). For fish bones, the values of K-AL also decreased significantly and varied 

between 2.8 and 3.1 (Table 7). This illustrates how ryegrass is efficient to harvest soil K, especially 

when significant amounts of N and P are applied. 
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3.5.3.3 Ca-AL concentrations  

The initial concentration of Ca-AL in the experimental soil was very high; 140 mg/100 g soil (Table 7), 

and the value was similar in the control soil after the growth of ryegrass (Table 7). The concentration 

of total Ca was much higher in fish bones (300 g per kg DM) than in algae fibre (68 g per kg DM, Table 

4). With algae fibre, 544 mg Ca per pot was applied with high N levels, and with fish bones, 900 mg 

per pot. The soil Ca-AL concentration increased significantly with high application of dried fish bones 

(Figure 14 B). For algae fibre, the concentrations increased more, to about 183 with low amounts 

applied, and about 213 with high amounts applied (Figure 17 B). The Ca-AL concentrations increased 

also with the application of Calcinit, to 153 and 165 mg/100 g air-dried soil with low and high N 

applications (Figure 15 B, Table 7). The calcium in fish bones seems to be somewhat less extractable 

in AL-solution than the calcium in Calcinit and algae fibre. The drying of fish bones did not decrease 

the AL-extractability of Ca (Figure 17 B). 

3.5.3.4 Mg-AL concentrations  

The initial concentration of Mg-AL in the experimental soil was 6.6 mg/100 g soil. In parallel to what 

was observed for K-AL, this value decreased to 5.5 without fertiliser application and even more to 5.2 

and 5.1 with low and high applications of Calcinit (Table 7). The values decreased slightly also with 

the application of fish bones, ranging from 5.3 - 5.8. With the application of algae fibre, these values 

increased significantly, to about 21 with low, and 35 with high N application (Figure 17 A). This 

corresponds well with high levels of total Mg in algae fibre (Table 4); 200 mg of Mg was applied per 

pot with high applications of algae fibre. 

3.5.3.5 Na-AL concentrations  

Soil Na-AL concentrations should be kept low to avoid competing with the uptake of K. The initial 

value of Na-AL in experimental soil was 6.3. With no fertilisation, this value increased slightly to 7.1 

(Table 7). With fish bones and Calcinit, the value was not notably affected, as concentrations varied 

between 6.1 and 8.0. With algae fibre, the values increased significantly, to about 21 with low and 35 

with high N application (Figure 17 C). The concentrations of Na were not measured in the fertilisers 

used here, but obviously, they were high in algae fibre, and this characteristic should be observed in 

future studies to avoid imbalances in plant nutrition.  
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Figure 17. AL-extractable magnesium (Mg), calcium (Ca), and sodium (Na) in soil amended with algae fibre 
compared with unfertilised soil after growth of ryegrass for about four months. Experimental soil (ES), soil 
amended with dried and fresh algae fibre (DAF or FAF), with low or high application of N (LN, HN). Error bars 
represent the means ± SD (n = 4). Different letters above the bars indicate statistically significant differences 
based on Tukey t-test (P = 0.05).   
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3.6 Effects of fertilisers on element concentrations in above-ground 
plant material  

 

From each pot, the dry plant material (foliage + stubble) from all harvests was compiled and analysed 

for concentrations of elements (Tables 8 - 10, Figures 18 – 20).  

3.6.1 Macronutrients and sodium 
The total N concentration in the unfertilised (control) plants was 3.1% (of DM) (Table 8), which 

indicates that the control soil had a relatively high capacity to supply plants with N. With fish bones 

and Calcinit, the concentrations were slightly higher than control and varied between 3.2 and 3.5%. 

The algae fibre significantly reduced total N concentrations in above-ground plant material compared 

with the unfertilised plants (Figure 18 A).  

Table 8. Concentrations of macronutrients and sodium (% of DM) in above-ground material of 
ryegrass.  
 

Sample Code N P K Ca Mg S Na 

ES 3.1 0.265 2.18 0.985 0.327 0.290 0.488 

ES+DFB-LN 3.5 0.345 1.74 1.007 0.336 0.237 0.599 

ES+DFB-HN 3.4 0.500 1.37 1.191 0.388 0.232 0.519 

ES+FFB-LN 3.2 0.407 1.75 1.040 0.346 0.266 0.556 

ES+FFB-HN 3.5 0.470 1.38 1.060 0.376 0.223 0.616 

ES+DAF-LN 2.5 0.321 4.86 0.463 0.262 0.321 0.158 
ES+DAF-HN 2.6 0.359 5.15 0.341 0.256 0.366 0.243 

ES+FAF-LN 2.5 0.376 5.05 0.421 0.237 0.315 0.166 

ES+FAF-HN 2.4 0.427 5.31 0.304 0.240 0.325 0.173 

ES+CAL-LN 3.3 0.218 1.88 1.216 0.333 0.243 0.484 

ES+CAL-HN 3.4 0.198 1.47 1.272 0.310 0.207 0.438 

Mean values (n = 4) of accumulated aboveground plant material, stubble included. Ca Calcium, N Nitrogen, Na 
Sodium, P Phosphorous, K Potassium, Mg Magnesium, S Sulphur. Unfertilised plants in experimental soil (ES), 
plants amended with dried or fresh fish bones (DFB, FFB), plants amended with dried or fresh algae fibre (DAF, 
FAF), plants amended with Calcinit (CAL), low or high application of N (LN, HN). 

 
The concentrations of P were higher in control, 0.27%, than with Calcinit, 0.22 and 0.20% with the 

low and high application (Table 8). With application of algae fibre, the values were significantly 

higher, ranging from 0.32% with low application of dried fibre to 0.43% with high-level fresh fibre 

(Figure 18 B). This may be due to that even if the P concentration in algae fibre was low as compared 

with the fish bones, more P than N was actually applied with this fertiliser (P:N ratio = 1.7). As 

expected, from the much higher P:N ratio of 17.5 in fish bones, P concentrations were significantly 

higher in ryegrass amended with fish bones. The values were 0.35 and 0.41% with low N level and 

about 0.5% with a high level of applied material (Figure 19 A). 

The K concentrations were significantly affected by fertilisation. Without fertilisation, the K 

concentration was 2.2% of DM (Table 8). With the application of high amounts of P and N in fish 

bones, but no K, the K concentration was much lower (1.4 - 1.8%, Figure 19 B), and the same was 

valid for Calcinit (1.5 - 1.9%, Table 8). With application of algae fibre, the concentrations of K 

increased significantly and reached very high levels, ranging from 4.9 to 5.3% of DM (Figure 18 C). 
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Figure 18. Concentrations of N, P and K (% of DM) in above-ground plant material of ryegrass (compiled from 
five harvests, stubble included) grown on unfertilised soil and soil amended with algae fibre (dried and fresh).  
Experimental soil (ES), soil amended with dried or fresh algae fibre (DAF and FAF), with low or high application 
of N (LN, HN). Error bars represent the means ± SD (n = 4). Different letters above the bars indicate statistically 
significant differences based on Tukey t-test (P = 0.05).   

 

The concentration of Ca was 0.99% of DM in the unfertilised soil, which was quite similar with values 

obtained with application of fish bones and Calcinit. These values ranged from 1.01 to 1.19 with fish 

bones, and from 1.22 to 1.27 % with Calcinit for low and high applications (Table 8, Figure 19 D). 

With algae fibre, the average concentration across the treatments was only 0.38%, which was 2.6-

fold lower than control, differing significantly (Figure 20 A). Since the algae fibre increased soil Ca-AL 

concentrations significantly (Figure 17B, section 3.5.3.3), this may seem to be a surprising result. 

However, it may be explained by the large uptake of K from algae fibre since monovalent cations (K+) 

are taken up more easily than divalent cations (Ca2+). 
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Figure 19. Concentrations of P, K, S and Ca (% of DM) in above-ground plant material of ryegrass grown on 
unfertilised soil and soil amended with fish bones (dried and fresh). Experimental soil (ES), and soil amended 
with dried or fresh fish bones (DFB or FFB), with low and high application of N (LN, HN). Error bars represent the 
means ± SD (n = 4). Different letters above the bars indicate statistically significant differences, based on Tukey 
t-test (P = 0.05).   

 

The Mg concentration was about 0.33 % of DM and did not differ between unfertilised plants 

(control) and plants fertilised with Calcinit (Table 8). With fish bones, the Mg concentrations 

increased slightly, to 0.34% with low and 0.39% with high applications. With algae fibre, the values 

decreased significantly to 0.24 - 0.26% of DM (Figure 20B). This pattern is the same as was observed 

for calcium, where algae fibre increased soil Mg-AL concentrations significantly (Figure 17 A) but did 

not increase concentrations in the aboveground plant material (Figure 20B), which is likely due to 

high concentrations of K (Figure 18 C).  

The S concentrations were somewhat lower in plants fertilised with fish bones and Calcinit (0.21 - 

0.27 % of DM), as compared with the control (0.29%).  (Table 8, Figure 19 C). With algae fibre, the 

values increased significantly and varied between 0.32 and 0.37% (Figure 20 C). This is likely 

explained by the high applications of S with algae fibre; 120 mg per pot. 

Sodium is not an essential plant nutrient and has been classified as a functional plant nutrient 

(Subbarao et al., 2003). The Na concentration in unfertilised plants was 0.49% of DM, which was 

comparable to levels obtained with Calcinit (Table 8). It increased to an average of 0.58% of DM with 

the application of fish bones (Table 8). With algae fibre, the values decreased significantly to 0.17 - 

0.24% of DM. Low application of algae fibre showed lower values than with high application.  
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Figure 20. Concentrations of P, K, S and Ca (% of DM) in above-ground plant material of ryegrass grown on 
unfertilised soil and soil amended with algae fibre (dried and fresh). Experimental soil (ES), soil amended with 
dried or fresh algae fibre (DAF or FAF), low or high application of N (LN, HN). Error bars represent the means ± 
SD (n = 4). Different letters above bars indicate statistically significant differences (Tukey t-test, P = 0.05).   

 

3.6.2 Micronutrients  
In comparison to the control plants, all fertilised treatments had lower concentrations of Fe (Table 9). 

The Fe concentration in control was 0.116 mg/g of DM, whereas the lowest value, 0.071 mg/g DM, 

was observed with fresh algae fibre. B concentrations were not much affected by fertilisation and 

ranged from 0.010 to 0.012 mg/g DM (Table 9), except from algae fibre where the values ranged 

from 0.016 to 0.017. For Cu and Mo concentrations, there was not much effect of fertilisation and 

values ranged from 0.006 to 0.009 mg/g DM for Cu, and 0.001 to 0.003 mg/g DM for Mo. Similar to 

what was found for Fe, the concentrations of Mn were  lowest  in plants amended with algae fibre 

(0.060 to 0.077 mg/g DM), as compared with 0.145 mg/g DM in the control (Table 9). The 

concentrations of Zn were similar for the control (0.041 mg/g DM), and plants amended with Calcinit 

(0.039 and 0.041 mg/g DM). Plants amended with fish bones and algae fibre showed slightly lower 

values, ranging from 0.032 to 0.038 mg/g DM (Table 9). 
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Table 9. Concentrations of micronutrients (mg per g DM) in above-ground material of ryegrass.  
 

Sample Code Fe  B  Cu Mn Zn Mo 

ES 0.116 0.012 0.008 0.145 0.041 0.002 

ES+DFB-LN 0.095 0.010 0.008 0.124 0.037 0.001 

ES+DFB-HN 0.086 0.011 0.008 0.118 0.036 0.001 

ES+FFB-LN 0.088 0.011 0.008 0.127 0.038 0.002 

ES+FFB-HN 0.092 0.011 0.007 0.110 0.035 0.001 

ES+DAF-LN 0.084 0.017 0.007 0.066 0.032 0.003 
ES+DAF-HN 0.078 0.017 0.009 0.060 0.036 0.003 

ES+FAF-LN 0.071 0.016 0.007 0.072 0.034 0.003 

ES+FAF-HN 0.073 0.016 0.006 0.077 0.035 0.003 

ES+CAL-LN 0.090 0.011 0.009 0.135 0.039 0.002 

ES+CAL-HN 0.078 0.011 0.008 0.125 0.041 0.001 

Mean values (n = 4) of accumulated aboveground plant material, stubble included. B Boron, Cu Copper, Fe iron, 
Mn Manganese, Mo Molybdenum, Zn Zinc. Unfertilised plants in experimental soil (ES), plants amended with 
dried or fresh fish bones (DFB, FFB), plants amended with dried or fresh algae fibre (DAF, FAF), plants amended 
with Calcinit (CAL), low or high application of N (LN, HN). 

 

3.6.3 Trace elements and potentially toxic elements  

The concentrations of potentially toxic elements As and Hg were below the limit of detection in all 

treatments (Table 10), which was for As < 0.0005, and for Hg < 0.0001 mg/g DM. Since the 

concentration of As in algae fibre was quite high (33 mg/kg DM; Table 5), this was an exciting result. 

The concentration of Pb was near the limit of detection, < 0.0002 mg/g DM, except for a few 

treatments. For Cr, the concentrations were quite similar across all treatments. The concentrations 

of Cd varied from < 0.0004 to 0.00015 mg/g DM, being lowest in plants amended with algae fibre and 

highest in plants given Calcinit (Table 10). The concentrations of Co also varied from below the limit 

of detection < 0.0002 to 0.0006 mg/g DM, being highest in plants amended with algae fibre. 

Concentrations of Al and Ni were lower in plants fertilised with algae fibre (Table 10). Selenium is an 

important essential nutrient which often is scarce in Norwegian soil. Plants amended with algae fibre 

had somewhat higher concentrations of this nutrient.
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Table 10. Concentrations of trace elements / heavy metals (mg/g DM) in ryegrass above-ground plant material (n = 4).  

Trace 

element 

ES ES+DFB-LN ES+DFB-HN ES+FFB-LN ES+FFB-HN ES+DAF-LN ES+DAF-HN ES+FAF-LN ES+FAF-HN ES+CAL-LN ES+CAL-HN 

Se    0.0003 < 0.0002 

 
< 0.0002 

 
< 0.0002 

 
< 0.0002 

 
  0.0004 

 
  0.0006 

 
  0.0005 

 
  0.0006 

 
< 0.0002 

 
< 0.0002 

 

Co < 0.0002 

 
< 0.0002 

 
 < 0.0002 

 
< 0.0002 

 
< 0.0002 

 
  0.0004 

 
  0.0006 

 
  0.0005 

 
  0.0006 

 
< 0.0002 

 
< 0.0002 

 

Al    0.0546 

 
   0.0224 

 
   0.0171 

 
   0.0180 

 
   0.0259 

 
   0.0243 

 
   0.0168 

 
   0.0143 

 
   0.0137 

 
   0.0301 

 
   0.0132 

 

Ni    0.0012 

 
   0.0013 

 
   0.0012 

 
   0.0012 

 
   0.0012 

 
   0.0010 

 
   0.0007 

 
   0.0008 

 
   0.0007 

 
   0.0013 

 
   0.0012 

 

Cr    0.0029 

 
   0.0030 

 
   0.0025 

 
   0.0030 

 
   0.0026 

 
   0.0031 

 
   0.0028 

 
   0.0028 

 
   0.0030 

 
   0.0027 

 
   0.0026 

 

Cd    0.00012 

 
   0.00012 

 
   0.00011 

 
   0.00011 

 
   0.00011 

 
   0.0008 

 
   0.0006 

 
   0.0007 

 
   0.0004 

 
   0.00015 

 
   0.00014 

 

Pb < 0.0002 

 
 0.0003 

 
 0.0002 

 
 < 0.0002 

 
  0.0002 

 
  0.0002 

 
< 0.0002 

 
< 0.0002 

 
< 0.0001 

 
< 0.0002 

 
< 0.0002 

 

As < 0.0005 

 
< 0.0005 

 
< 0.0005 

 
< 0.0005 

 
< 0.0005 

 
< 0.0005 

 
< 0.0005 

 
< 0.0005 

 
< 0.0005 

 
< 0.0005 

 
< 0.0005 

 

Hg < 0.0001 < 0.0001 

 
< 0.0001 

 
< 0.0001 

 
< 0.0001 

 
< 0.0001 

 
< 0.0001 

 
< 0.0001 

 
< 0.0001 

 
< 0.0001 

 
< 0.0001 

 

Mean values (n = 4) of accumulated aboveground plant material, stubble included. Se Selenium, Co Cobalt, Al Aluminium, Ni Nickel, Cr Chromium, Cd Cadmium, Pb Lead, As 
Arsenic, Hg Mercury. Unfertilised plants in experimental soil (ES), plants amended with dried or fresh fish bones (DFB, FFB), plants amended with dried or fresh algae fibre 
(DAF, FAF), plants amended with Calcinit (CAL), low or high application of N (LN, HN). 
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3.7 Effects of fertilisation on plant nutrient uptake  
The uptake of plant nutrients (mg per pot) from untreated and fertilised soil was calculated by 

multiplying the concentrations (section 3.6) by the total amount of above-ground plant material 

(stubble included), and are presented in Tables 11 - 13. Statistically significant effects are shown in 

Figures 21 - 24.  

3.7.1 Macronutrients  
The N uptake in above-ground plant material varied from 65.1 mg per pot in the control treatment to 

123.8 mg per pot in plants fertilised with the high amount of dried fish bones (Table 11). In general, 

the N uptake increased by N fertilisation. Fertilisation with fish bones having high N significantly 

enhanced N uptake compared to the control plants (Figure 21A). With algae fibre, the N uptake also 

increased with higher applications but was not statistically different from the control (Figure 22A).   

Table 11. Uptake of macronutrients (mg per pot) in above-ground plant material of ryegrass.  
 

Sample Code N P K Ca Mg S Average  
Total DM (g) 

ES 65.1 5.7 46.7 21.2 7.0 6.2 2.15 

ES+DFB-LN 103.6 10.2 52.3 30.0 10.0 7.1 2.98 

ES+DFB-HN 123.8 18.0 50.2 43.0 14.0 8.4 3.62 

ES+FFB-LN 98.6 12.5 53.8 32.1 10.7 8.2 3.09 

ES+FFB-HN 117.6 16.0 46.8 36.1 12.8 7.6 3.41 

ES+DAF-LN 61.5 7.9 119.5 11.5 6.5 7.9 2.47 
ES+DAF-HN 79.3 10.8 156.2 10.4 7.8 11.1 3.04 

ES+FAF-LN 54.1 8.1 110.0 9.2 5.2 6.8 2.18 

ES+FAF-HN 60.0 10.9 135.6 7.8 6.1 8.3 2.55 

ES+CAL-LN 79.5 5.3 45.4 29.6 8.1 5.9 2.43 

ES+CAL-HN 92.7 5.4 40.0 35.0 8.5 5.6 2.74 

Mean values (n = 4) of plant uptake in accumulated aboveground plant material, stubble included. Ca Calcium, 
N Nitrogen, P Phosphorous, K Potassium, Mg Magnesium, S Sulphur. Unfertilised plants in experimental soil 
(ES), plants amended with dried or fresh fish bones (DFB, FFB), plants amended with dried or fresh algae fibre 
(DAF, FAF), plants amended with Calcinit (CAL), low or high application of N (LN, HN). 

 
The uptake of P in control plants was 5.7 mg per pot (Table 11). Following a similar trend as was 

found for N uptake, P uptake also increased with the level of fertilisation, except from plants 

amended with Calcinit, where the uptake was similar at both N levels (5.3 mg per pot for low and 5.4 

for high levels of N). Plants amended with fish bones had a very high P uptake, ranging from 10.2 to 

18.0 mg per pot (Figure 21 B, Table 11). Since the levels of total P were high in fish bones (120.0 g per 

kg DM, Table 4), this was not an unexpected outcome. Plants amended with algae fibre also had a 

significantly higher P uptake than the control with both low and high applications, ranging from 7.9 

to 10.9 mg per pot (Figure 22 B, Table 11). This shows that even if the P concentration in the algae 

fibre was not very high (2.4 - 2.5 g per kg DM as compared with 120 g in fish bones, Table 4), it was 

enough to support plant growth and uptake of P. 

 



 
 

NORSØK REPORT Vol. 4, Nr. 7 Page 52 of 64 

 
 

 
Figure 21. Uptake of N and P (mg per pot) in above-ground plant material of ryegrass grown in unfertilised soil 
and soil amended with fish bones (dried and fresh). Unfertilised plants in experimental soil (ES), plants amended 
with dried or fresh fish bones (DFB, FFB), low or high application of N (LN, HN). Error bars represent the means ± 
SD (n = 4). Different letters above bars indicate statistically significant differences (Tukey t-test, P = 0.05).   

 

The K uptake was 46.7 mg per pot in the control treatment (Table 11). With fish bones, the values 

were comparable, ranging from 46.8 to 53.8 mg per pot. Plants fertilised with Calcinit had a relatively 

lower K uptake, decreasing from 45.4 to 40 mg per pot with the low and high application. Algae fibre 

significantly enhanced K uptake, and the uptake increased with fertilisation level (Figure 22 C).  With 

low application, K uptakes were 110 and 120 mg per pot, and with a high application they were 136 

and 156 mg (Figure 22 C). This result corresponds well with the high concentration of total K in algae 

fibre (130.0 g per kg DM, Table 4). If sufficiently large amounts of easily available K are present, then 

uptake of K can be exaggerated by the tendency of plants to take up much more K than they require, 

which is known as luxury consumption (Weil and Brady, 2016). This may hamper the uptake of less 

mobile, divalent cations such as Ca and Mg. 
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Figure 22. Uptake of N, P and K (mg per pot) in above-ground plant material of ryegrass grown on unfertilised 
soil and soil amended with algae fibre (dried and fresh). Unfertilised plants in experimental soil (ES), plants 
amended with dried or fresh fish bones (DFB, FFB), with low or high application of N (LN, HN). Error bars 
represent the means ± SD (n = 4). Different letters above bars indicate statistically significant differences (Tukey 
t-test, P = 0.05).   

 

The uptake of Ca in the control plants was 21.2 mg per pot (Table 11). With Calcinit, this value 

increased to 30 and 35 mg per pot with low and high fertilisation levels. Fish bones also significantly 

enhanced the uptake of Ca compared with control (Figure 23 A), and more with a high application. 

Contrary to what was found for fish bones and Calcinit, amendment with algae fibre showed reduced 

uptake of Ca, where the maximum reduction was observed with the application of high amounts of 

fresh algae fibre (Figure 24 A). Ca uptake in plants amended with algae fibre ranged from 7.8 to 11.5 

mg per pot (Table 11). The concentration of Ca in algae fibre was 68 g per kg DM (Table 4), and the 

soil Ca-AL was significantly increased with the application of this material (Figure 17 B). Hence, the 

low uptake of Ca by plants amended with algae fibre is somewhat surprising but may be explained by 

a luxury uptake of K as discussed above. Hence, application of algae fibre should be done with care, 

especially when growing feed for animals who need calcium for producing bones, milk, eggshells and 

more. 
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Figure 23. Uptake of Ca, Mg and S (mg per pot) in above-ground plant material of ryegrass grown on 
unfertilised soil and soil amended with fish bones (dried and fresh). Unfertilised plants in experimental soil (ES), 
plants amended with dried or fresh fish bones (DFB, FFB), with low or high application of N (LN, HN). Error bars 
represent the means ± SD (n = 4). Different letters above bars indicate statistically significant differences (Tukey 
t-test, P = 0.05).   

 

The uptake of Mg in control plants was 7.0 mg per pot and increased by fertilisation with fish bones 

to 10 - 14 mg per pot (Table 11, Figure 23 B). Calcinit fertilisation also slightly increased Mg uptake to 

8.1 and 8.5 mg per pot with a low and high application (Table 11).  For algae fibre, there seemed to 

be somewhat better uptake of Mg from dried fibre than from fresh fibre (Figure 24 B), but in general, 

the uptake was not much higher than in the control in spite of reasonable concentrations of Mg in 

the fibre, 25 g per kg DM (Table 4). Again, this may be explained by a luxury uptake of K.  

Na uptake was 10.5 mg per pot in above-ground plant material of control plants (Table 12). Na 

uptake in plants treated with Calcinit was slightly higher (about 12) than in the control. Na uptake 

increased with the application of fish bones, from 18 to 21 mg per pot, and decreased with 

application of algae fibre. The K uptake was very high in plants amended with algae fibre (Figure 22 

C), and the low Na uptake in these plants is likely caused by a competition between K+ and Na+  since 
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K and Na ions compete for entry into plant cells due to their similar radius and ion hydration 

strategies (Zhang et al., 2009). Since Na concentrations in the fertilisers were not measured, this 

cannot be further assessed in this study. 

 

 

Figure 24. Uptake of Ca, Mg and S (mg per pot) in above-ground plant material of ryegrass grown on 
unfertilised soil and soil amended with algae fibre (dried and fresh). Unfertilised plants in experimental soil (ES), 
plants amended with dried or fresh algae fibre (DFB, FFB), low or high application of N (LN, HN). Error bars 
represent the means ± SD (n = 4). Different letters above the bars indicate statistically significant differences 
(Tukey t-test, P = 0.05).   
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Table 12. Uptake of sodium (mg per pot) in above-ground material of ryegrass.  
 

Sample  
Code 

Uptake Average  
total DM (g) 

ES 10.5 a 2.15 

ES+DFB-LN 18.0 2.98 

ES+DFB-HN 19.3 3.62 

ES+FFB-LN 17.1 3.09 

ES+FFB-HN 21.0 3.41 

ES+DAF-LN 3.9 c 2.47 
ES+DAF-HN 7.3 b 3.04 

ES+FAF-LN 3.5 c 2.18 

ES+FAF-HN 4.4 c 2.55 

ES+CAL-LN 11.7 2.43 

ES+CAL-HN 12.0 2.74 

Mean values (n = 4) of plant uptake in accumulated aboveground plant material, stubble included. Unfertilised 
pants in experimental soil (ES), plants amended with dried or fresh fish bones (DFB, FFB), plants amended with 
dried or fresh algae fibre (DAF, FAF), plants amended with Calcinit (CAL), low or high application of N (LN, HN). 
Different letters in brackets indicate statistically significant differences (Tukey t-test, P = 0.05).   
 

3.7.2 Micronutrients  
The uptake of several micronutrients is affected by soil pH, and pH levels above 6 in sandy soils may 

decrease the uptake of Mn, which is the most sensitive micronutrient governed by soil pH (Scheffer 

and Schachtschabel, 1982). Also, the uptakes of Cu, Zn and Fe may be restricted by too high pH in soil 

(Marschner, 1995). Application of algae fibre in this study increased soil pH from 5.3 to 6.2 with low 

fertilisation level, and 6.8 with high level (Figure 12, section 3.5.1). Concentrations of Cu and Zn were 

comparable in algae fibre and fish bones, whereas algae fibre had much more B, Fe and Mn (Table 5, 

section 3.1). For Mo and Co, the concentrations in both materials were below the limit of detection. 

The uptake of Fe was 0.238 mg per pot in above-ground plant material of control plants (Table 13). It 

was slightly lower (0.213 and 0.222 mg per pot with low and high N) in plants that were given 

Calcinit. With fish bones, the uptake of Fe was slightly higher, ranging from 0.284 to 0.314 mg per 

pot. For algae fibre, where much more Fe was applied, the uptake was lower and ranged from 0.153 

to 0.237 mg per pot with slightly lower uptake in plants amended with fresh algae fibre. However, 

the uptake increased with the level of applied fertiliser and hence with increasing soil pH.   

The uptake of B, Cu and Mn did not vary between the control and plants fertilised with Calcinit (Table 

13). The uptake of B was significantly enhanced with high applications of fish bones and algae fibre. 

Cu uptake also increased significantly with high applications of fish bones, but with algae fibre, Cu 

uptake was significantly enhanced only with high application of dried material. For Mn and Zn 

uptake, higher values were observed with fish bones (Table 13). The uptake of Mn was lowest in 

plants amended with algae fibre, whereas for Mo, the uptake increased with algae fibre.  
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Table 13. Uptake of micronutrients (mg per pot) in above-ground material of ryegrass.  
 

Sample  
Code 

Fe B Cu Mn Zn Mo Average total 
DM (g) 

Experimental soil in comparison to fish bones fertilisation 
ES 0.238 0.025 c 0.018 c 0.309 b 0.088 b 0.004 2.15 

ES+DFB-LN 0.284 0.029 bc 0.023 bc 0.369 ab 0.110 ab 0.004 2.98 

ES+DFB-HN 0.310 0.041 a 0.030 a 0.427 a 0.133 a 0.004 3.62 

ES+FFB-LN 0.272 0.034 abc 0.023 bc 0.390 ab 0.118 ab 0.005 3.09 

ES+FFB-HN 0.314 0.037 ab 0.025 ab 0.376 ab 0.120 ab 0.004 3.41 

Experimental soil in comparison to algae fibre fertilisation 
ES 0.238 0.025 c 0.018 b 0.309 a 0.088 b 0.004 b 2.15 

ES+DAF-LN 0.209 0.041 ab 0.016 b 0.161 b 0.079 b 0.008 a 2.47 

ES+DAF-HN 0.237 0.052 a 0.028 a 0.182 b 0.109 a 0.009 a 3.04 

ES+FAF-LN 0.153 0.035 bc 0.015 b 0.156 b 0.074 b 0.007 a 2.18 

ES+FAF-HN 0.186 0.042 ab 0.016 b 0.197 b 0.088 b 0.008 a 2.55 

Experimental soil in comparison to Calcinit fertilisation 
ES 0.238 0.025  0.018  0.309  0.088 b  0.004 2.15 

ES+CAL-LN 0.222 0.028 0.023 0.326 0.095 ab 0.004 2.43 

ES+CAL-HN 0.213 0.029 0.022 0.342 0.113 a 0.004 2.74 
Mean values (n = 4) of plant uptake in accumulated aboveground plant material, stubble included. Unfertilised 
plants in experimental soil (ES), plants amended with dried or fresh fish bones (DFB, FFB), plants amended with 
dried or fresh algae fibre (DAF, FAF), plants amended with Calcinit (CAL), low or high application of N (LN, HN). 
Different letters indicate statistically significant differences (Tukey t-test, P = 0.05).   
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4 Conclusions  

• Fertilisation of ryegrass with fish bones gave more rapid plant growth, and higher yields of 

above-ground dry matter (DM) compared with algae fibre and mineral fertiliser Calcinit. 

Nitrogen (N) was applied in a higher amount with Calcinit than with fish bones, but the yields 

were still considerably higher with fish bones. This is likely due to the high concentration of 

phosphorus (P) in the fish bones. 

• The utilisation of N in the fertilisers was much better for fish bones than for Calcinit. This may 

show that soil P concentrations were limiting the plant growth in this soil so that applied N 

may not be utilised if no P is applied. 

• Drying of algae fibre and fish bones at 105 °C did not affect negatively on the growth effects 

of these materials applied as fertilisers to ryegrass. 

• Algae fibre had a high pH (10), which increased soil pH from initially 5.3 to 6.2 with low and 

6.8 with high application of fertiliser. This may be beneficial in acidic soil but may affect the 

uptake of plant nutrients where the uptake is affected by soil pH. 

• Application of algae fibre caused a luxury uptake of K in above-ground material of ryegrass, 

causing a low uptake of Ca, Mg and Na in plants fertilised with algae fibre. 

• Concentrations of arsenic (As) in the algae fibre was high; 33 mg/kg DM. In spite of this, the 

concentrations of As in ryegrass plants were below the limit of detection. 

• Both materials, fish bones and algae fibre, contain valuable plant nutrients and organic 

matter, which may have a positive effect as fertilisers and soil amendments. However, they 

are not well balanced with respect to the needs of agricultural crop plants. Hence, they need 

to be combined, with each other or with other sources of nutrients and organic matter, to 

produce a balanced fertiliser which fulfils the demand for crop plants. 

• Further studies are required to possibly develop a commercial fertiliser product for organic 

growing from marine residual materials such as fish bones and algae fibre. Arsenic and 

cadmium in seaweeds need attention, as well as sodium. Algae fibre contains high 

concentrations of potassium, which may easily lead to luxury uptake, decreasing the uptake 

of calcium and magnesium with potentially negative health effects in animals.  
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The private, independent foundation Norwegian Centre for Organic Agriculture (NORSØK) is a national centre of expertise for 

the development of organic agriculture through interdisciplinary research and knowledge dissemination. 

Its offices are located on Tingvoll gard in the Nordmøre region in northwestern Norway. NORSØK is also responsible for the 

management of Tingvoll gard, which is to be run as an organic farm. The foundation’s work is based on the four principles of 

organic agriculture: health, ecology, fairness and care. 

Address: 
Norwegian Centre for Organic Agriculture / Gunnars veg 6 / NO-6630 TINGVOLL/ Tel: +47 930 09 884 /  

E-mail: post@norsok.no/ www.norsok.no 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FrontPage Picture: Image taken by Anne de Boer, NIBIO. The picture shows close-up of fish bones particles surrounded by roots 
and experimental soil.   
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