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The effectiveness of different sampling rates in

vegetation high-impedance fault classification

Douglas P. S. Gomes, Cagil Ozansoy,
Anwaar Ulhaq, José Carlos de Melo Vieira Júnior

Abstract

This paper investigates the alarming fire igniting scenario of High-Impedance
Faults (HIF) resulting from the contact of vegetation with the power lines.
Our findings are based on a set of experiments performed on a data set
of real staged fault-signals sampled by two distinct channels with differ-
ent band-pass filters. Representations from these two sampling methods
are extracted by different signal processing methods and ranked by their
discriminative potential. Experimental results obtained by our proposed
methodology show the effectiveness of wide band signals sampled at higher
frequencies. Their features result in higher separability potential and are
more effective at discriminating fault occurrences than ones from the low-
frequency channel. As the approach of employing high-frequency signals in
such task may be faced with skepticism, the paper also discusses the possible
concerns and feasibility of using higher sampling rate technologies for HIF
fault classification.
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1 Introduction

In the occurrence of an electric fault, the resulting fault current amplitude
might not exceed the threshold that triggers protection devices. Such events
are specifically treated in the related literature as High Impedance Faults
(HIFs). In the electrical distribution systems context, these distinct events
represent an enduring and vastly discussed subject [1].

Nevertheless, despite their lasting history, there isn’t a consensus regard-
ing a definite solution or methodology for detecting such events. In fact, a
global solution for HIFs may be impractical given the numerous factors that
influence the phenomena behavior. Examples are network grounding type,
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voltage level, fault impedance value, signal sampling parameters, and more
importantly, the fault contact surface [2, 3, 4, 5]. Recent works [6, 7, 8]
strongly argue that a possible solution may be achievable if HIFs receive
special treatment regarding their specific types. In [6], the present authors
propose a methodology for fault detection inspired in existing methods but
solely addressing vegetation HIFs. A model for tree-related HIFs is pro-
posed in [7], with the premise that there is no single model that represents
the expected behaviors of such faults in the literature. A further paper by
the same authors [8] uses the same premise to propose a tree-related HIF
location methodology. By focusing on a specific type of fault and challeng-
ing the limitations of low-frequency sampling, such works indicate that the
aforementioned definition may be too limited for the set of intricate problems
related to HIFs.

In this manner, the present paper focuses its efforts on investigating a
specific type of fault, labeled here as vegetation HIFs. This definition, used
throughout this document, relates to all scenarios where powerlines come
in contact with vegetation, resulting in single-digit ampere fault currents.
Powerlines breaking and falling to vegetation at ground level, vegetation
brought by heavy winds bridging two phase conductors, or tall trees reach-
ing powerlines are examples of such scenarios. Similar to general HIFs, these
faults do not represent a great risk regarding equipment stress. Their im-
portance is rather related to their ability to ignite fires. Once in contact
with vegetation, powerlines pose a significant fire risk, even if the resulting
current has a single-digit ampere value in amplitude [9].

Although this is of special concern for certain weather and flora condi-
tions such as the one often encountered in the state of Victoria, Australia,
countries such as United States, Spain, and Brazil have been associated with
fires created by power distribution lines [9, 10, 11]. Relevant weather condi-
tions are high temperatures, low humidity, rain frequency, the proportion of
dry vegetation, and wind strength [12]. Australia’s history with bushfires is
so dense that, after dramatic events in 2009, a fire risk mitigation program
called Powerline Bushfire Safety Program (PBSP) was created by the Vic-
torian government [13]. It resulted in a variety of network augmentations
and research projects, such as the ‘Vegetation ignition testing’, which per-
formed hundreds of staged vegetation faults resulting in the data set further
analyzed in this paper.

The challenges of detecting vegetation HIFs are often connected to the
limitations of existing hardware, the ambiguity of measurements throughout
distribution feeders, and the fact that fault currents cannot be distinguished
from a simple increase in customer load. These constraints often guide the
most relevant HIF detection methods proposed in the literature [14]. The
obtained processed signals are generally resulted from simulations or staged
faults in laboratories [14]. They also do not contemplate high-frequency
(>10 kHz) components since their sampling rate is chosen using existing
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hardware sampling capabilities [6]. Nevertheless, a different approach was
taken by the authors in [6] by proposing a vegetation HIF detection method-
ology that relied on features calculated from High-Frequency (HF) sampled
signals. The investigation described in the present paper follows such context
by presenting a comparison between the discriminative potential of features
calculated from the previously discussed HF sampling, in contrast to the
traditional low-frequency approaches. The signals used in the analysis were
sampled from staged vegetation HIFs, made in a real loaded 22 kV network,
with high resolution, and wide-band recordings. The derived conclusions
were strongly connected to the network neutral connection type, which in
this case is given by a compensated (resonant) grounding scheme. This
means that the system operates with an isolated or a non-solidly earthed
neutral connection. Some Nordic countries [3] and Australia’s distribution
systems can be cited as examples of such use. Nevertheless, it must be
stated for clarification purposes, that this paper does not propose a HIF
detection method like many in the related literature. It rather intends to
add value to researchers and industry when considering the development of
high-frequency sampling HIF detection methods.

The diversion (high-frequency investigation) from the standard (low-
frequency) fault detection methodology is often followed by understandable
and strong skepticism given by its practicality and feasibility. Therefore,
this paper also presents relevant related points for a justifiable concern and
attention to these non-standard, evolving sampling technologies. These ar-
guments are given in the discussion section, which precedes the description
of the dataset characteristics, the disclosure of the utilized methodology, and
its subsequent results, each one in their following respective sections.

2 Vegetation faults dataset

In order to clarify methodology decisions and problem background, the fol-
lowing sections discuss the origins, characteristics, and preparation of the
analyzed dataset.

2.1 Origins and data collection

The state of Victoria in Australia is no stranger to bushfires associated with
electric distribution systems. One drastic example is the fires of “Black
Saturday” in 2009. A series of fifteen fires that collectively burnt over 270
000 ha, caused more than 150 fatalities, and destroyed more than 1800 homes
[15]. Six of these major fires were attributed to faulty electric assets.

These events led to the creation of the Powerline Bushfire Safety Program
(PBSP), an initiative to reduce the risk of bushfires caused by distribution
systems. Such goal was to be achieved by carrying out legislative measures,
network augmentations, and funding of research projects related to new
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fault detection technologies. The ‘Ignition Conduction Ignition Testing’ [6],
a program responsible for sampling local vegetation species and using them
to stage vegetation faults on a real 22-kV feeder, was one of these projects.
By the end of it, more than a thousand of tests were performed with different
species and fault configurations.

Despite much research, nine years after the Black Saturday, fires ripped
through country Victoria between March 17-18, 2018. These fires, now
known as St. Patrick day fires, destroyed homes and killed many livestock.
At least two of these fires were powerpole/powerline related, attesting for
the inadequacy of overcurrent methods at protecting against HIFs hazards.

2.2 Fault tests

The team responsible for the tests made numerous valuable and a few ques-
tionable decisions in the test arrangements and project design. Between the
beneficial, the decision of sampling the fault signals with high resolution,
low-noise, in wide-band recordings was crucial. Likewise, the idea of con-
templating different fault configurations labeled as ‘Branch touching wires’
(phase to earth), ‘Branch across wires’ (phase to phase), and ‘Wire into
vegetation’ (phase to earth) faults. In fact, the decision to include phase-to-
phase tests represent one of the most valuable aspects of the resulted dataset.
HIFs are disturbances often modeled by a scenario where a conductor breaks
and falls to a surface such as asphalt or gravel. These are phase to earth
faults, that despite their relevance, have different arcing characteristics from
a vegetation phase-to-phase fault involving only phase currents. Moreover,
the decision to set the majority (99%+) of the tests’ fault current thresh-
olds between 0.5 and 4 A was key to the program findings and insights. The
thresholds were set with the help of high-voltage resistors to replicate the
nature of HIFs in real life. They helped prove that such single-digit fault
currents can still ignite fires in contact with vegetation, and that such fire
risk could be significantly reduced if the faults were detected in five seconds
or less [6].

The former, in particular, was reinforced by having a well-known com-
mercial protection relay with an embedded HIF detection function that did
not detect any of the staged faults [6], corroborating the inadequacy claim
from current technologies at detecting such faults. The outcomes of such
experiments can not only aid fault detection research but also as to set
guidelines for future detection technologies. Additional findings include: as-
sessment of the fire ignition probability at different current values, study
of the ignition phases in vegetation conduction, and the effect of chemical
composition and species’ type regarding their likelihood to ignite fires. For
example, the species found to be the most dangerous regarding fire risk were
Willows, and the safest ones to be Peppercorns.

It is important to specifically note that the mentioned current thresholds
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represent a massive deviation to the ones found in standard HIF detection
research literature. Since the definition usually used for HIFs embraces
all the faults that overcurrent devices cannot detect, the assumed current
fault values are often much higher [14, 16, 17]. The fact such fault currents
can ignite fires, despite having small amplitudes, represents an important
problem to be considered. This can be highlighted as the most relevant
arguments for the need for higher sensitivity protection devices in vegetation
areas with high risk of fire ignition, and the treatment of HIFs by specific
scenarios. In the state of Victoria, which has compensated networks (known
by their smaller earth-fault currents), protection device sensibility ranges
between 5 to 10 A.

The not so valuable decisions, however, was mainly related to the test
methodology design. The choice of placing a vegetation sample between
the conductors prior to their energization can be firstly cited as the most
important. It resulted in instant conduction after the energization of the
conductors, excluding the possibility of pre-fault signal analysis. Neverthe-
less, a strategy adopted to counter such relevant drawback, discussed in the
next section, allowed the creation of non-fault observations and further com-
parative analysis. In like manner, another constricting decision was to stage
the faults in a dedicated feeder, constructed purely for the sake of tests.
This implied that, although connected to a loaded network, the sampled
signals did not include the load current contribution. Such drawback drove
the present analysis to discuss the information content of voltages, rather
than current signals. In this manner, it can certainly be considered as a
shortcoming from the dataset but, when placed in the context of the prac-
tical high sampling rate hardware (expanded in discussions), it is realized
that the voltage signals is indeed the domain where such investigations can
be useful.

2.3 Sampling

Throughout the fault experiments, both fault current and voltage signals
were sampled in two different channels. That is, two electrical quantities
were sampled via two channels at the same time. Such redundancy was
chosen due to the intention to characterize the signals in a wideband with
low-noise. These channels were unambiguously labeled as Low-Frequency
(LF) and HF channels due to their bandwidth. The first had a low-pass
filter with 50 kHz corner frequency, sampling signals at 100 kSa/s in a
continuous sampling mode. The HF channel was connected to a high-pass
filter, sampling frequencies greater than 10 kHz at 2 MSa/s in a sweep
sampling mode. By sweep sampling, the authors mean that signals were
only sampled by a brief duration throughout a certain period. In the tests,
the sampling period was 1 second, and the sweeps had 20 ms of duration
(one power cycle at 50 Hz). As a noticeable example, such sampling duration
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is enough to comprise at least 200 full cycles in a single sweep at the lowest
frequency in the HF channel’s bandwidth (10 kHz).

2.3.1 Fault observations

The fault testing program reported 1038 different staged faults. The present
analysis, however, could not make use of all reported recordings. Tests that
had missing, invalid or corrupted data, high intermittency or no current
conduction, for example, were excluded. Such cleansing led to a final number
of 768 distinct experiments wherein each test had only one sweep extracted
for analysis. The procedure of extracting the analyzed sweep was one of the
pre-processing practices made on the dataset. It basically selected the first
sweep to be sampled after the RMS current value met a chosen threshold.
In this paper, in order to clearly illustrate the powerful information content
of the HF signals, a pessimistic threshold was used, being the value of 0.1
A.

The discussed types of faults were present in the extracted sweeps (ob-
servations) with phase-to-earth faults attesting for 68.75% of the fault type
labels, while phase-to-phase represented the remaining 31.25%. This can
be highlighted as of additional value since the results soon to be presented
were consistent with both types of faults. The main perceived difference was
that phase-to-phase faults had higher RMS voltage values which resulted in
higher currents, making them easier to discriminate than phase-to-earth
faults. Yet, despite frequent, such observation could not be used as a re-
liable fault predictor since it did not present relevant discriminative power
between classes.

2.3.2 Non-fault observations

As discussed, constraints in the experiment design made it impossible to ob-
tain pre-fault data. However, the project’s team decided to make recordings
of the network’s electric signals operating at a steady state throughout the
tests days. The goal was to gather data to help characterize the standard
background noise of the studied feeder. Indeed, a useful idea that resulted
in a large number of sweeps from both channels which were then used as
Non-fault observations.

Regarding the present investigation as a comparative analysis, a decision
was made to have the same number of observations of both signal states.
These sweeps were sampled at random between all tests days that had such
recordings, adding up the number of total observations to 1536 examples,
768 from each Non-fault and Fault states.
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Figure 1: Two example of sampled sweeps. LF recordings from a) Non-fault
sweep and b) Faulty sweep. HF recordings from c) Non-fault sweep and d)
Faulty sweep.

2.4 Fault signals

The choice made to use sweep sampling mode was probably related to the
high sampling rate necessary to characterize the signals in a wide band.
The intention to analyze frequencies up to 1 MHz led to a sampling rate of
2 MSa/s, which can generate large amounts of data by the second sampled.
Nonetheless, when the trigger signals came to turn on the high sampling
recording, both channels (high and low-pass filter) had their signals sampled.
This means that despite already being sampled continuously in the 100
kSa/s, the LF signals also had sweeps sampled in the 2 MSa/s sampling
rate. That gave the HF sweeps an LF counterpart sampled at the same
time, with the same amount of samples. Fig. 1 shows an example of two
signals (faulty and not), from sweeps (40 k samples per power cycle) of both
channels.

One clear observation from the aforementioned figure is that the fault
and non-fault signals are basically indistinguishable. Such illustration is a
clear example of the point that such HIFs, with fault currents of single-digit
amperes, are much challenging to detect. The main difference between the
shown tests is the maximum amplitude of the faulty voltage signal from
the HF channel. HF fault signals indeed tend to have higher energy and
amplitudes than non-fault ones, but although true, such measure did not
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show to be consistent enough to be used as a strong predictor. This is mainly
because the signals’ energy was considerably irregular, not only throughout
the test days but also between periods of the day when they were staged.

Although not clearly visible, consistent differences between the two sam-
ple stages can be identified. Further investigations showed that the infor-
mation to distinguish between these two states, however, are probably only
to be found in the HF signals.

Beforehand, it is worth to clearly distinguish the difference between LF
and HF channels. The characteristic bandwidth of channel connected to
the low-pass filter was approximately 5 to 50 kHz, while the high-pass filter
connected channel had a 10 kHz to 1 MHz frequency range. The latter is the
reason why the amplitude of LF and HF signals on Fig. 1 changes drastically
in scale. Therefore, by using the Nyquist-Shannon sampling theorem, it can
be concluded that sampling the LF channel at 2 MSa/s was much more than
necessary to characterize its related bandwidth. Such conclusion led to the
decision to downsample such signals to 100 kSa/s (20 fold) so it could be
more numerically efficient.

3 Methodology

This section describes the methodology adopted in the following investi-
gations, which represents a comparative approach between the predictor
potential of LF and HF measurements made in the tests signals. This will
further presents itself as evidence of the importance of sampling signals at
higher rates if accurate detection of these discussed type of faults is to be
achieved.

3.1 Measurements

Prior to the brief description of the performed measurements, it is worth
stating that the goal of this investigation is not to make inferences regarding
the measurements effectiveness at detecting these faults, neither if they are
optimal to classify them. This is a comparative analysis that utilizes popular
and renowned signal processing techniques to judge the relative information
content of LF and HF signals regarding normal and faulty states.

3.1.1 Fourier measurements

Fourier transform is vastly used in signal processing applications, including
HIF detection [18, 19]. The technique is used in the present paper to perform
Power Spectral Density (PSD) estimation. As shown in Eq (1), the result is
basically the squared of the absolute values given by the Fourier transform
of the signal. Where, x[t] is the original signal, and F{x[t]} represents its
Fourier transform.
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PSD = F{x[t] ∗ x[−t]} = X[w] ·X∗[w] = |X[w]|2 (1)

When applying the Fourier transform to a signal, the outcome will have
the same amount of samples as the original signal. Getting the PSD in a
useful way means reducing that to half of the samples of the original signal
plus one. This results in a feature set with high dimensionality and potential
problem in terms of overfitting. Fortunately, as the inferences made here do
not rely on the whole set of features, but only the ones that presented the
highest separability potential (further explained), having a large number of
PSD coefficients will not translate to a severe problem for the comparative
analysis. The LF channel, after being down-sampled, resulted in 1k + 1
features, while the HF channel produced 20k + 1.

If feature dimension was a problem, however, the strategy would be to
derive new features or correlations from the power spectrum components.
One of those, the Spectral Flatness (SF) of the signal, was chosen to be
compared together with the PSD values. It is also known by tonality coef-
ficient, Wiener entropy or whiteness of a given signal. As described in Eq.
(2), where X[n] is the power density spectrum with N number of bins, such
measure can characterize the noise-like property of a signal in a zero to one
range. It describes how the power spectrum coefficients are distributed in a
given bandwidth. For example, perfect sinusoids having no distortion would
result in 1, while white noise signals would approach zero.

SF =

N

√∏N
n=1X[n]

1
N

∑N
n=1X[n]

(2)

As explicitly depicted, the SF is basically the geometric mean of the
PSD values over a giving range (N), divided by its algebraic mean. It
is a simple, direct, scale-independent measurement chosen after observing
that HIFs tend to create a wide-band noise over the voltages’ signals. An
interesting note is that it does not necessarily need to be applied to the
whole calculated spectrum, but also to arbitrarily different subbands. In
the present analysis, the size of these was chosen to be a twentieth of the
number of bins of the power spectral density, resulting in 20 features.

3.1.2 Wavelet measurements

Another widely used tool for spectral estimation and signal processing is the
Wavelet transform. The Discrete Wavelet Transform (DWT) has a simple,
relatively fast, and non-redundant application as shown in Eq. (3).

DWT [x,m, n] =
1√
amo

∑
l

x[k]ψ[
n− lamo
amo

] (3)
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Where, x[k] is the sampled signal, ψ[n] represents the mother wavelet,
amo is the dilation coefficient, and lamo is the translation coefficient.

Such approach becomes more numerically efficient when Multi-Resolution
Analysis (MRA) is used. In this process, the decomposition is given by the
iterative application of a series of low-pass and high-pass filters [20]. The
result is time scaled versions of the original signal which have most of its
energy in a well-defined bandwidth. Each time a couple of filters is applied,
the signal is downsampled in a dyadic manner, resulting in fewer samples,
thus giving its numeric advantage. The MRA algorithm is performed as
shown in Eq. (4) and (5) by using the h[t] and g[t] as the low-pass and
high-pass impulse response functions, respectively.

yid[n] =
∞∑

k=−∞
yi−1a [k]× h[2n− k] (4)

yia[n] =
∞∑

k=−∞
yi−1a [k]× g[2n− k] (5)

The low-pass and high-pass impulse response functions are heavily de-
pendent on the mother wavelet used in the decomposition. A choice for using
the same mother wavelet for both signals was made, given the comparative
character of the present analysis. The db4, a popular mother wavelet from
the Daubechies family, with applications in fault detection [21], HIF detec-
tion [11, 22], and partial discharge detection [23] was used.

Regarding the measurements, it is important to remember that the out-
puts of the DWT are still time scaled versions of the original signal that
cannot be used directly as features. In this manner, a set of measures was
chosen to characterize the outputs of the transformation. They can be listed
as: energy percentage (EP), Interquartile range (IQR), L1, and L2 norms.
The EP is the ratio between the energies of the coefficients and the original
signal. The IQR is given by the difference between the upper quartile and
lower quartile from signal’s distribution, and the L1 and L2 norms are the
absolute value and Euclidean norm, respectively.

The decision regarding the number of levels used in the decomposition
was made by analyzing the lowest (last) frequency band given by the DWT.
By applying the MRA algorithm, the upper bound of the bandwidth of a
certain level approaches Fs

2n , and the lowest Fs
2n+1 , where Fs is the sampling

frequency and n the decomposition level. This means that a 7-level decom-
position would result in an approximation coefficient bandwidth from 0 to
390 Hz, and last detail from 390 to 780 Hz. The authors propose this, by em-
pirical analysis, to be a fair distinction between the low-medium harmonics
and other frequency ranges. The same decomposition level was also chosen
for the HF signals, which had its last detail bandwidth from 7.8 to 15.6 kHz.
This was given as sufficient because this channel had a high-pass filter with
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Table 1: Set of measurements’ dimensions

LF HF

Fourier PSD 1001 20001
SF 20 20

Wavelet EP 8 8
IQR 8 8
L1 8 8
L2 8 8

10 kHz corner frequency, meaning that investigating lower frequency would
not be a useful pursuit.

With all the set of measures described, Table 1 briefly illustrates the
dimensionality of the working features. The described scheme resulted in a
set of six measurements, two from Fourier domain, and four from the DWT.
It might seem a small number of measurements but each one represents a set
of multidimensional features. The PSD of the LF signal, for example, results
in a feature set of 1001 dimensions. There is an argument for averaging these
energy bins as to reduce the number of dimensions, but doing so would result
in a loss in frequency resolution. In this configuration, they are separated
by values of 50 Hz which are all multiples of the fundamental in the LF
channel.

3.1.3 Ranking

In the classic CART (Classification And Regression Tree) algorithm, a mea-
sure called Gini Impurity (GI) is used to decide where to split the features
dimensions in node creation [24]. In a classification problem, for example,
the GI can describe the chance of incorrectly labeling an item in case they
were randomly assigned. In CART, one can configure the algorithm to con-
sider every data point of a particular feature as a potential split. When
doing so, the GI is used to evaluate each of these splits to find the one that
has the highest information gain. The procedure is simple and can be listed
as:

1. Select a data point in a particular dimension;

2. Calculate the GI of data pre-split (parent node);

3. Calculate the weighted sum of the GI of both sides of the considered
split; and

4. Calculate the GI difference between the pre-split and post-split sce-
nario.
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The data point that has the highest GI difference is called the split with the
highest information gain. In practice, this will result in a decision boundary
that can best distinguish the classification classes when the possibilities of
splits are bounded to the data points.

The GI can be calculated by following Eq. (6). Where, J is the number
of classes, i ∈ {1, 2, 3, ..., J}, pi is the probability of an observation being
corrected labelled in i, and pk is the probability of mistakenly labelling an
observation as in i.

GI =
J∑

i=1

pi
∑
k 6=i

pk = 1−
J∑

i=1

p2i (6)

Given that a split is a one-dimensional decision boundary, it becomes
possible to find the feature with the higher separability between classes in
the measurement set. These can then be ranked and compared between the
two types of signals from the LF and HF channels. The ranking of the best
splits was performed by their post-split GI (weighted sum), referred to as
Impurity Index (I.I.). Therefore, the smaller this index is, more pure is the
classification zones given by the decision boundary, representing a better
discrimination of the data points.

Moreover, in order to add to this comparison, the three best splits in the
whole feature set is then used to train a simple decision tree validated by
cross-validation. It is noteworthy that the procedure of learning this classi-
fier has only a validation purpose. In this case, it is a way to demonstrate
the potential of these features at classifying the signals since the dataset is
going to be split into test and training sets, representing the generalization
on ‘out of sample data’. Considerations regarding overfitting are soon to be
discussed.

4 Results

With the aforementioned measurements taken, the single best split (highest
information gain) of each set of features is depicted in Table 2 for the LF
channel, and in Table 3 for the HF channel. The splits are referred not by
their number but by their frequency range or center frequency (PSD) in their
respective braces. In the tables, “I.I.” stands for Impurity Index (previously
discussed) and “Sep.” represent the separability potential of the split as a
decision boundary. In other words, the separability indicates the percentage
of observations that the decision boundary can correctly separate. Such
calculation is simply given by the ratio of correct classifications by the total
amount of observations. It is similar to the accuracy in case of using such
split to classify the whole dataset between the two classes (faulty or not) of
sweeps.
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Table 2: Split ranking from the LF channel

Split I.I. Sep.

PSD PSD{11.55 kHz} > 3.61 · 10−6 0.47 0.58
SF SF{15 ∼ 17.5 kHz} > 0.43 0.45 0.59
EP EP{25 ∼ 50 kHz} < 3.24 · 10−7 0.48 0.59
IQR IQR{12.25 ∼ 25 kHz} > 2.26 0.43 0.64
L1 L1{12.5 ∼ 25 kHz} > 985.85 0.44 0.63
L2 L2{25 ∼ 50 kHz} > 22.98 0.45 0.62

Table 3: Split ranking from the HF channel

Split I.I. Sep.

PSD PSD{34.5 kHz} > 5.12 · 10−6 0.4 0.68
SF SF{1 ∼ 50 kHz} > 0.02 0.42 0.66
EP EP{31.25 ∼ 62.5 kHz} > 1.21 0.39 0.69
IQR IQR{62.5 ∼ 125 kHz} > 0.05 0.15 0.91
L1 L1{62.5 ∼ 125 kHz} > 250.02 0.22 0.87
L2 L2{15.62 ∼ 31.25 kHz} > 16.67 0.32 0.77

It may be worth noting that the tables do not discriminate between
faulty or non-faulty observations. The I.I. and Sep. need to be calculated
considering the whole data set to make sense.

Such results can demonstrate the difference between the information
content regarding vegetation HIF discrimination in both signals in a com-
parative manner. The impurity index shows that the HF measurements
overperform the LF features, although close in some splits, at every compar-
ison. In the same manner, the separability showed that such measurements
in the LF channel, when used as predictors to classify such faults, is not
much reliable than a coin toss at labelling the observations.

It is important to notice that better feature extraction methods can,
and probably would, result in higher discrimination values for both chan-
nels. Also, that only two features extracted at the HF channel indicated
reasonable decision boundaries for fault occurrences separability, namely
one IQR and one L1 measure. Nevertheless, it does not necessarily take the
value of the comparative analysis away. Such improvement, gained by better
feature extraction and hypothesis set for classifying the faults, was attested
in previous work by the authors in [6]. The paper demonstrates how a com-
bination of Wavelet measurements used in an ensemble of decision trees can
result in accuracy values greater than 98%, with 99% of overall security.

Regarding the best predictor from the performed experiments, the Inter-
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Figure 2: Confusion matrixes from the best three splits in both LF and HF
channels.

quantile Range from the HF channel showed the lowest impurity and higher
significance. With an impurity index of 0.15 and separability of 0.91, it
represented a promising feature from the studied type of faults. Another
worth mentioning observation is the superiority of DWT features over the
Fourier measurements for both channels. This has been a consensus in the
literature [22, 25, 26], which confirms the Wavelet transform ability to better
represent fast transients in the fault signals.

Having separability of 0.91 means that if used as a stand-alone predictor,
such feature would correctly separate 91% of the dataset samples. However,
separating a whole dataset is not evidence for generalization, i.e., correctly
predicting new data (out of sample observations). To address such issue,
inspired by previous results shown in [6], a further comparative experiment
was made. The three best splits over the whole set of features of each
channel were select to fit a simple decision tree, validated in 2-fold cross-
validation. This means dividing the dataset in two, using half 1 to learn the
tree, and half 2 to test it. Also, doing it the other way around (fitting with
2 and testing with 1), and reporting the average out of sample error. In this
experiment, to illustrate the effect of choosing a different current threshold,
a 0.5 A value was used rather than the 0.1 A previously chosen.

The confusion matrix, a well-known performance illustrator of machine
learning algorithms resulted from classifiers learned from both channels, is
given in Fig. 2. Note the reducing of observations numbers used in each
class from 768 to 583. This is due to the fact that a good portion of the
tests did not reached 0.5 A.

In the confusion matrix representation, the green squares attest for ac-
curate classification, while the red for misclassified observations. The lines
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represent the output classification, while the columns attest to the target
(actual) class. For example, an element in line 2 and column 1 represents
the number of observation classified as faults (output), that was actually a
Non-fault observation (misclassification).

When considered by overall accuracy, the simple tree fitted with three
HF features correctly classified 94.2% of the observations, while the tree
with LF features only labeled 65.5% of observations correctly.

To illustrate the promising results of such approach, Fig. 3 depicts the
voltage, current, and classifier output of test #504. This experiment is part
of an exceptional group of tests, composed by a few recordings that had
‘pre-fault’ recordings. The voltage starts moments before the 5th second but
current conduction starts close to the 8th second. Current reaches the 0.1 A
threshold value between the 10th and 11th second, and never exceeds 2 A in
amplitude. The verticals lines in the output bounds the period where sweeps
are considered to be ‘in fault’. In case this test was used for training, only
the 11th sweep would be selected (first after threshold reached). However,
correct classification starts in a prior sweep, recorded at the 10th second.
When the fault was interrupted after the 16th second, the classifier was able
to reset itself.

To avoid any confusion, it may be worth mentioning that although the
signals illustrated in Fig. 3 came from the LF channel, the classification was
made based on the HF features. HF signals were not illustrated because they
are small sweeps per second that do not properly represent the test when
concatenated in a timeline. LF signals, sampled in the continuous method,
clearly illustrate the evolution of the fault current and its inception.

5 Discussions

The fact that high accuracy was achieved by such simple decision bound-
aries is noteworthy. As commonly known in the machine learning field, the
chances of the results not generalizing in out of samples observations increase
with the complexity of the utilized hypothesis set (Vapnik–Chervonenkis
dimension). This is avoided by the use of small number of features and
cross-validation. The results not only showed to be promising to practi-
cal applications but also that there is much to be investigated in terms of
phenomena understanding when it comes to vegetation HIFs. Equally im-
portant, the fact the promising results were achieved by using ‘weak’ features
(predictors), far away from being the optimal ones, only compounds on this
observation.

One may be skeptical regarding the need for this level of current sensi-
tivity or the fact that such sampling is ever going to be practical. Regarding
its need, however, one can find strong supporting evidence in the current
literature. A recent paper [10] that deliveries an analysis of the fires dataset
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Figure 3: Example of classification potential. a) Recording of the voltage
test by the LF channel, b) Current signal, and c) Classifier output.

in the state of Victoria and their causes can be cited as an example. The
presented results point out that although the number of fire events caused
by electric distribution assets is over-represented, they are responsible for
creating the greatest amount of damage. The findings of [9] also support
such need by stating that vegetation HIFs can ignite fires even when they
result in single-digit current amplitudes. And finally, the lack of evidence in
recent literature for limited current vegetation HIFs detection also strength-
ens such need if fire risk is to be reduced. Regarding practicability, there
are relevant arguments that point this to be a technology worth investing.
The more important, however, may be that such high sampling technology
will probably not be related to existing hardware, such as substation volt-
age transformers, due to economic costs. Rather, the solution will come
from distance measures made by novel sensor technologies. In fact, recent
patents publications [27, 28] show the increasing interest in the application
of such solutions and its possible more affordable commercialization. Docu-
ment [28] disclosures a solid-state electric-field sensor that can sample signals
for a target located at distance (powerlines) by the change in the electric
field in a voltage-controlled capacitor. In the same manner, [27] discloses
an early fault detection system that samples signals with antenna sensors,
also without the need for physical connection (at distance). The increasing
interest in these sensor technologies is the reason why the voltage signals
were previously claimed as the domain of interest to tackle the vegetation
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HIFs, rather than current signals. Yet, further reasonable points could also
be cited to highlight the interest for the similar technologies. For instance,
the fact that it is highly probable that more distributed and sophisticated
sampling methods are going to be needed once distribution systems evolve
towards a smart grid scenario. The possibility to aid other problems and
disturbances diagnostics that could benefit from such measurements. For
example, the standing problem of accurate fault location and power quality
estimation, which increases in complexity with the growing penetration of
distributed renewable generation.

6 Conclusions

This paper presents a case for the need of a more comprehensive data sam-
pling to address the vegetation HIF detection problem. The arguments are
mainly inspired by the lack of consensus regarding a practical solution in
the related literature, despite its lasting history, and the complexity of the
problem itself. The case was presented by a set of experiments performed in
a dataset of real staged faults regarding the signals’ information content to
reliably discriminate fault occurrences. Results indicated that the informa-
tion to differentiate between a normal and faulty state is probably only to be
reliably found in the signals’ high-frequency components. This was demon-
strated by the calculation of the Impurity Index and Separability for both
sampling methods presented. The outcomes add to aforementioned cited
arguments that such faults should receive special attention due to their spe-
cific fault signatures and fault currents. The fact that Fourier and Wavelet
measurements were used in the analysis also endorsed, as additional value,
the consensus of Wavelet transform being advantageous in HIF disturbances
representations. And finally, reasons to regard the importance and feasibil-
ity of using such technology were discussed, corroborating its need for the
mitigation of fire risk created by powerlines.
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