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ABSTRACT 

 

Concrete-filled stainless steel tubular (CFSST) slender columns are increasingly used in 

composite structures owing to their distinguished features, such as aesthetic appearance, high 

corrosion resistance, high durability and ease of maintenance. Currently, however, there is a 

lack of an accurate and efficient numerical model that can be utilized to determine the 

performance of circular CFSST slender columns. This paper describes a nonlinear fiber-based 

model proposed for computing the deflection and axial load-moment strength interaction 

responses of eccentrically loaded circular high-strength CFSST slender columns. The fiber-

based model incorporates the accurate three-stage stress-strain relations of stainless steels, 

accounting for different strain hardening characteristics in tension and compression. The 

material and geometric nonlinearities as well as concrete confinement are included in the 

computational procedures. Existing experimental results on axially loaded CFSST slender 

columns are utilized to verify the proposed fiber-based model. A parametric study is 

conducted to examine the performance of high-strength slender CFSST beam-columns with 

various geometric and material parameters. It is shown that the fiber-based analysis technique 
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developed can accurately capture the experimentally observed performance of circular high-

strength CFSST slender columns. The results obtained indicate that increasing the eccentricity 

ratio, column slenderness ratio and diameter-to-thickness ratio remarkably decreases the 

initial flexural stiffness and ultimate axial strength of CFSST columns, but considerably 

increases their displacement ductility. Moreover, an increase in concrete compressive strength 

increases the flexural stiffness and ultimate axial strength of CFSST columns; however, it 

decreases their ductility. Furthermore, the ultimate axial strength of CFST slender columns is 

found to increase by using stainless steel tubes with higher proof stresses. 

 

Keywords: Concrete-filled stainless steel tubes; High strength; Nonlinear analysis; Slender 

composite columns. 

 

1. Introduction  

 

Concrete-filled steel tubular (CFST) slender columns made of carbon steel tubes have been 

widely used in composite buildings, arch bridges, offshore structures and electricity pylons 

[1]. Despite the initial high cost of stainless steel, CFSST columns are increasingly used in 

modern engineering structures in recent years. The reason for this is that CFSST columns not 

only have the structural advantages of conventional CFST columns, but also possess aesthetic 

appearance, high corrosion resistance, high durability and ease of maintenance. To reduce the 

cost of CFSST columns, high-strength concrete can be utilized to construct CFSST columns. 

However, the performance of eccentrically loaded circular high-strength CFSST slender 

columns has not been investigated experimentally and numerically. Moreover, design rules 

for this type of columns have not been provided in international standards, such as Eurocode 4 

[2], LRFD [3], ACI 318-11 [4] and AS 5100.6 [5]. Therefore, there is a need for developing 
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an accurate and efficient numerical model that can be employed to simulate the responses of 

circular CFSST slender columns under eccentric loading.  

 

Experiments on high-strength CFST slender columns have been undertaken by researchers in 

the past [6-22]. However, experimental studies of circular high-strength CFSST columns are 

very limited [23]. Young and Ellobody [24] carried out experiments on high-strength square 

and rectangular stainless steel tubular short columns made of concrete with strengths ranging 

from 40 to 80 MPa. Circular and square CFSST short columns subjected to axial loading were 

tested to failure by Lam and Gardner [25]. These CFSST columns were fabricated using 

normal strength stainless steel tubes and concrete with strengths varying from 30 to 100 MPa. 

Uy et al. [26] described experimental procedures and observations on short circular and 

rectangular CFSST columns, which were constructed by low strength concrete and normal 

strength stainless steel tubes and slender columns made of normal strength stainless steel 

tubes and normal or high strength concrete. Ellobody and Ghazy [27] tested circular plain 

CFSST short columns and fiber reinforced CFSST slender beam-columns. Experimental 

studies on rectangular CFSST slender columns under biaxial loads were reported by Tokgoz 

[28]. It was found that short CFSST columns had typical failure modes of the outward local 

buckling of stainless steel tubes and concrete crushing while CFSST slender columns 

generally failed by global column buckling.  

 

Computational models have been presented for the inelastic analysis of eccentrically loaded 

CFST slender columns fabricated by high-strength materials [29-38]. However, the strength 

and behavior of eccentrically loaded circular high-strength CFSST slender columns have not 

been investigated by inelastic analysis procedures. Ellobody and Young [39], Tao et al. [40] 

and Hassanein et al. [41] utilized commercial finite element analysis software ABAQUS to 
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simulate short circular and square CFSST columns under axial compression. The structural 

responses of slender circular stainless steel tubular beam-columns filled with fiber reinforced 

concrete were investigated by Ellobody [42] using ABAQUS. In these studies, either the 

measured stress-strain curves or the two-stage stress-strain relations given by Rasmussen [43] 

were used to simulate the material behavior of stainless steels. Quach et al. [44] reported that 

stainless steel has different strain hardening characteristics in compression and tension [45] 

and the two-stage stress-strain laws given by Rasmussen [43] were based on the tension 

coupon test results, which underestimates the ultimate compressive strength of stainless 

steels. Patel et al. [46] incorporated the accurate three-stage stress-strain relations given by 

Quach et al. [44] and Abdella et al. [47] for stainless steels in the fiber element modeling of 

short circular CFSST columns. The numerical solutions obtained were shown to agree well 

with experimental results. 

 

The axial load-moment strength interaction behavior of circular high-strength CFSST slender 

columns under eccentric loads has not been studied by inelastic analysis techniques. In this 

paper, an efficient nonlinear fiber-based model is formulated for modeling the load-deflection 

responses of circular high-strength CFSST slender columns as well as their axial load-

moment strength interaction curves. The accurate three-stage stress-strain relations of 

stainless steels with different strain hardening behaviors in tension and compression given by 

Quach et al. [44] and Abdella et al. [47] are implemented in the fiber-based model for the first 

time. The nonlinear fiber-based analysis technique is validated by existing experimental data. 

The verified fiber-based model is employed to determine the effects of important geometric 

and material parameters on the performance of eccentrically loaded circular CFSST slender 

columns of made of high-strength materials. 
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2. Nonlinear fiber-based model 

 

2.1. Cross-sectional analysis 

 

The fiber element analysis method [34, 48] is used in the present study to discretize the cross-

section of a circular CFSST column as illustrated in Fig. 1. The method assumes that: (a) 

there is a perfect bond at the interface between the stainless steel tube and concrete; (b) plane 

section remains plane after deformation; (c) the local buckling of the stainless steel tube is not 

included; (d) concrete confinement is taken into account; (e) the effect of concrete creep and 

shrinkage is ignored.  

 

The ultimate axial load of a composite cross-section in compression is obtained from its axial 

load-strain curve simulated by the fiber-based model [48]. The moment-curvature relations of 

the cross-section are required in the nonlinear analysis of CFSST slender columns under 

eccentric loading. For a given axial load level, the neutral axis depth )( nd  of the composite 

section is initialized and the strain )( tε  at the extreme compressive fiber illustrated in Fig. 1 is 

computed from the given curvature (φ ) as nt dφε = . The material uniaxial stress-strain 

relations are used to calculate fiber stresses from fiber strains. The axial force in the cross-

section is computed as the stress resultant. The neutral axis depth is iteratively adjusted using 

the secant method [34, 48] or Müller’s Method [49, 50] until the internal force is in 

equilibrium with the external axial load. The internal bending moment is then computed as the 

stress resultant. The above process is repeated until the complete moment-curvature curve is 

obtained or the stopping criteria are satisfied [34, 48]. Fig. 2 presents typical moment-

curvature curves for the cross-section of a CFSST beam-column. 
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2.2. Load-deflection analysis 

 

The present study deals with pin-ended slender beam-columns of length L subjected to axial 

load ( )P  with an eccentricity (e) at both column ends as shown in Fig. 3. The slender column 

has an initial out-of-plane deflection ( ou ) at its mid-length. The deflections of the slender 

column are expressed by the part-sine displacement function.  

 

The displacement control method is employed in the load-deflection analysis of CFSST 

slender columns. By using this method, the column mid-length deflection ( mu ) is 

incrementally increased and the corresponding axial load P is calculated [34, 35]. The column 

must satisfy the equilibrium condition at its mid-length. The external bending moment at the 

column mid-length accounting for second order effects and geometric imperfections is 

computed by 

 

( )mome uuePM ++=                                                                                                                (1) 

 

The curvature at the column mid-length can be computed from the displacement by 

 

mm u
L

2







=
πφ                                                                                                                             (2) 

 

For each curvature increment caused by the displacement increment, the corresponding 

internal axial force and moment can be computed by the axial load-moment-curvature 

analysis procedures. The internal axial force that satisfies the moment equilibrium at the 
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column mid-length is determined as the applied axial load P. The moment equilibrium 

condition is expressed in the mathematical form as follows: 

 

( ) 0=−++ MuueP mo                                                                                                              (3) 

 

where M  is the internal section moment at the column mid-length. 

 

An iterative numerical procedure is needed to compute the true depth of the natural axis of the 

composite cross-section as depicted in Fig. 1 until the equilibrium condition at the column 

mid-length is satisfied. Computational procedures have been proposed by Liang [34, 35] 

based on the secant method and by Patel et al. [49] and Liang et al. [50] based on Müller’s 

numerical schemes.  

 

2.3. Interaction strength analysis 

 

The axial load-moment strength interaction diagram of a CFSST slender column, which is 

known as the strength envelope, is used in the design and can also be utilized as a yield 

surface in the inelastic frame analysis. For the pin-ended slender column under the prescribed 

axial load )( nP  acting at a varying eccentricity e as illustrated in Fig. 3, the analysis method is 

to determine the maximum moment )( max.eM  that could be applied to the column ends. The 

maximum moment max.eM is taken as the ultimate moment capacity )( nM  of the slender 

column. At the column mid-length, the external moment )( meM  is written as 

 

( )moneme uuPMM ++=                                                                                                            (4)                                   
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The analysis procedure for computing the strength envelopes of slender CFSST beam-

columns is summarized as follows [34]. 

 

1. The ultimate axial load )( oaP of the CFSST slender column without bending moments is 

computed by using the load-deflection analysis procedure described in Section 2.2. 

2. Ten load increments are used in the analysis to generate the strength envelope. The load 

increment is gradually increased from 0.0 to oaP9.0  with a load step of oaP1.0 . This is 

expressed by nnn PPP ∆+= , where the load increment nP∆  is set to oaP1.0 . 

3. The curvature at the column mid-length ( mφ ) is incrementally increased by mmm φφφ ∆+= , 

where mφ∆ is the curvature increment. 

4. The column mid-length deflection ( mu ) is calculated from the curvature mφ  by 

( ) mm Lu φπ 2/= . 

5. The internal moment ( M ) of the cross-section at the column mid-length under the axial 

load level nP  is computed by using the moment-curvature analysis procedure.  

6. The column end curvatures ( eφ ) are initialized and adjusted using Müller’s numerical 

technique [49, 50].  

7. The column end moment eM  is determined from the curvature eφ  by using the moment-

curvature analysis procedure.  

8. The column end curvatures )( eφ  are iteratively adjusted until the moment equilibrium 

condition at the column mid-length is maintained. This equilibrium condition is expressed 

by ( ) 0=−++= MuuPMr monepm . However, in the numerical analysis, this condition is 

satisfied if kpmr ε< , where 410−=kε is the tolerance of convergence. 
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9. The process of analysis is repeated from Steps 3 to 8 until the column end moment eM is 

maximized. This condition is achieved when the external moment )( meM at the column 

mid-length attains the ultimate section moment capacity of the column under the given 

axial load. 

10. The next load increment is proceeded until the predefined load increment is reached. The 

process produces a set of ultimate axial loads and moments, which define the strength 

envelope of the CFSST slender beam-column. 

 

3. Material stress-strain relationships 

 

3.1. Stainless steels 

 

The accurate three-stage stress-strain relations of stainless steels were proposed by Quach et 

al. [44] that recognize different strain hardening characteristics in tension and compression. 

Patel et al. [46] reported that there are significant differences between assuming the same and 

different strain hardening characteristics in tension and compression of stainless steel 

materials. Their study indicated that the average ultimate axial load of CFSST short columns 

was underestimated by about 16.9% by using the model that assumes the same strain-

hardening behavior in tension and compression when compared to that computed by the 

model assuming different strain hardening characteristics in tension and compression. Abdella 

et al. [47] presented an inversion of the three-stage stress-strain model of stainless steels, in 

which the stress is expressed as a function of the strain. The full-range stress-strain curve for 

stainless steels is divided into three stages. The first stage is in the strain range of 2.0εε <s ; 

the second stage covers the strain range 0.22.0 εεε ≤< s ; and when 0.2εε >s , the stress-strain 

curve is in the third stage. In the first stage, stainless steel in compression and tension follows 
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the same material law. However, in the second and third stages, the stress-strain 

characteristics in compression are significantly different from those in tension [44] as shown 

in Fig. 4. The three-stage stress-strain model given by Abdella et al. [47] and Quach et al. [44] 

is incorporated in the fiber-based technique to simulate the responses of stainless steel 

materials. 

 

In the first stage ( )2.00 εε ≤≤ s  of the stainless steel stress-strain model, the stresses are 

calculated from the strains by the following equation [47]: 

 

24
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in which ss  represents the stainless steel stress, sε denotes the stainless steel strain and 0E  

represents the modulus of elasticity of stainless steel material, 2.0ε  denotes the strain at 2.0σ  

and 2.0σ  is the 0.2% proof stress of the stainless steel. The proof strain 2.0ε  is given by 

Ramberg and Osgood [51] as follows: 

 

002.0
0

2.0
2.0 +=

E
σε                                                                                                                     (6) 

 

The material parameters 1C , 2C , 3C  and 4C  given in Eq. (5) are calculated by  

 

12
1 −

∆
=

C
C                                                                                                                                (7) 
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∆
+= 1

2 1 BC                                                                                                                                (8) 

( )103 1 CGC +=                                                                                                                          (9) 

14 GC +∆=                                                                                                                              (10) 

 

where 

 

2
411 1B++

=∆                                                                                                                     (11) 

( )
0

02.01
1 E

GnEGB +
=                                                                                                                 (12) 

2.0

0
0

002.0
σ

EG =                                                                                                                         (13) 

( )
2.0

2.02.0
1

1
σ

ε −
=

nEG                                                                                                                   (14) 









+

=

2.0

0

0
2.0

002.01
σ
nE

EE                                                                                                             (15) 

( )
( )01.02.0ln

20ln
σσ

=n                                                                                                                     (16) 

 

in which 2.0E denotes the tangent modulus corresponding to the 0.2% proof strain, and 

n represents the knee factor determining the sharpness of the knee in the stress-strain curve 

[51]. 

 

In the second stage )( 0.22.0 εεε ≤< s , the stresses in stainless steel are calculated from strains 

using the Eq. (17) given by Abdella et al. [47]:  
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in which 0.1σ  denotes the 1.0% proof stress and 0.1ε  represents the strain at 0.1σ . 

 

Quach et al. [44] suggested that the following equations can be used to compute the 1.0% 

proof stress 0.1σ for stainless steels in tension and compression: 

 
















 +







 +

=
tensionfor072.1542.0

ncompressiofor085.1662.0

2.0

2.0

0.1

n

n

s

s
s                                                                     (18) 

 

The strain 0.1ε is calculated from 0.1σ  by the following expression [44]:  

 

( ) 















−−++

−
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2.0
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The material parameters 5C , 6C , 7C  and 8C  in Eq. (17) are expressed by  
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( )507 1 CHC +=                                                                                                                      (22) 

18 1 HC +=                                                                                                                              (23) 

 

in which 
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The expression for 2n  in Eq. (24) is given by Quach et al. [44] as 
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In Eq. (27), 0.2σ  is the 2.0% proof stress and 0.2ε  represents the strain at 0.2σ .  

 

Quach et al. [44] provide the following equation to compute the 2.0% proof stress: 
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in which 
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The strain 0.2ε  is expressed by [44]:  

 

( )
2

2.00.1

2.00.2

2.00
2.00.1

2.0

2.00.2
2.00.2

11008.0
n

EEE 







−
−

















−−++

−
+=

σσ
σσσσσσεε                             (32) 

 

In the third stage )( 0.2 sus εεε ≤< , the equation given by Abdella et al. [47] is used to 

calculate the stresses from the strains as follows:  
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in which the positive and negative signs indicate the fiber element in tension and 

compression, respectively.  

 

In Eq. (33), 3A  and 3B  are material constants, which are computed by 

 

( ) 0.230.20.23 1 εεσ BA −+=                                                                                                        (34) 
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in which the ultimate strain suε and stress sus  can be determined by the following equations 

presented by Quach et al. [44]: 

 

ut
uc ε
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+
−=

1
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( ) ututuc σεσ 21+=                                                                                                                    (37) 

 

in which utσ  is ultimate tensile strength and utε  is the ultimate tensile strain, and can be 

written as 
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ut σ
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In Eq. (38), ne  is the nondimensional proof stress which is expressed [43] as  
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3.2. Confined concrete 

 

Under applied axial loads, the concrete in a circular CFSST column is subjected to 

confinement exerted by the circular stainless steel tube. The strength of the concrete in 

compression as well as its ductility is shown to increase due to the confinement effect [34]. 

The idealized stress-strain model presented by Liang and Fragomeni [52] for confined 

concrete in circular CFST columns illustrated in Fig. 5 is utilized for concrete in CFSST 

columns. The stress-strain relations for confined concrete provided by Mander et al. [53] are 

adopted in the fiber-based model to describe the parabolic curve from O to A as follows: 
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where cσ  and cε are the stress and strain of the confined concrete in compression, '
ccf  stands 

for the strength of the confined concrete, '
cf  presents the strength of the concrete cylinder, '

ccε  

is the strain corresponding to '
ccf , and cE is the concrete modulus of elasticity given by ACI 

318-11 [4] as 

 

( )MPa69003320 ' += ccc fE γ                                                                                          (43) 
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in which ( )0.185.0 85.1 135.0 <≤= −
ccc D γγ , the reduction factor applied to the strength of the 

concrete cylinder in compression given by Liang [48], used to consider the column section 

size effect, and cD  denotes the concrete core diameter. 

 

Mander et al. [53] proposed formulas for computing the strength and strain of the confined 

concrete in compression, modified by Liang and Fragomeni [52] using cγ  as follows: 

 

rpcccc fff 1.4'' += γ                                                                                                                   (44) 
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in which rpf  stands for the lateral confining pressure on the concrete, and '
cε represents the 

unconfined concrete strain in compression at the effective compressive strength '
cc fγ .  

 

The lateral confining pressure on the concrete core in circular CFSST columns can be 

computed using the following formulas suggested by Liang and Fragomeni [52] on the basic 

of the confinement models presented by Tang et al. [54] and Hu et al. [55].  
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in which ev and sv  are Poisson’s ratios of the stainless steel tube filled with concrete and of the 

hollow stainless steel tube [48, 54], respectively. Eq. (46) can be used for both normal and   
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high strength materials of stainless steel and concrete [52]. 

 

The strain '
cε  is between 0.002 and 0.003, which is a function of the effective strength of the 

unconfined concrete in compression. When MPa 28' ≤cc fγ , '
cε  is taken as 0.002. When 

MPa 82' >cc fγ , '
cε  is 0.003. When MPa 8228 ' ≤< cc fγ , '

cε can be determined by the linear 

interpolation between 0.002 and 0.003 as suggested by Liang [48].  

 

The straight line AB of the stress-strain model illustrated in Fig. 5 is defined by 
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in which cuε  is determined to be 0.02 in accordance with experimental evidence [52], and cβ  

denotes a strength degradation factor applied to the confined concrete in the post-peak range. 

Hu et al. [55] suggested that when 40/ ≤tD , cβ is taken as 1.0 and when 150/40 ≤< tD , 

cβ can be computed by 
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For concrete in tension, an idealized stress-strain model is assumed as illustrated in Fig. 5. 

The model states that the stress of concrete in tension is a linear function of strain before 

concrete cracking. After concrete cracking, the stress decreases linearly to zero, where the 
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ultimate strain of concrete in tension is equal to 10 times of the cracking strain. The ultimate 

strength of concrete in tension is determined as '6.0 cc fγ .  

 

4. Verifications  

 

4.1. Axially loaded circular CFSST slender columns  

 

The experimental performance of eccentrically loaded circular CFSST slender columns has 

not been investigated and reported in the published literature. Therefore, experimental results 

on axially loaded circular CFSST slender columns provided by Uy et al. [26] are used to 

validate the fiber-based model developed. Uy et al. [26] tested twelve circular CFSST 

columns with column slenderness ratios ranging from 17.1 to 103.5 and D/t ratios of 41 and 

68. Tested columns were fabricated by using normal or high strength concrete combined with 

normal strength stainless steel tubes. The geometric and material properties of tested 

specimens are listed in Table 1. The measurements of initial out-of-plane straightness of 

tested columns were not undertaken so that they were not included in the inelastic analyses.  

 

The ultimate axial loads ( fib.uP ) of CFSST columns predicted by the fiber-based model are 

compared with the measured ultimate axial loads ( exp.uP ) in Table 1. Good agreement between 

the fiber element analysis and experimental observation is obtained. The maximum difference 

between the measured and computed ultimate axial loads is 10% on the safe side, which is 

acceptable. The mean ratio of fib.uP / exp.uP is 0.96. Both the standard deviation and coefficient 

of variation are calculated as 0.06. The computed and measured deflections of columns C1-

1a, C1-2a, C1-2b and C2-2b under axial compression are presented in Figs 6-9. It is shown 
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that the load-deflection curves of these specimens are accurately captured by the proposed 

nonlinear fiber-based analysis technique. The post-peak load-deflection characteristics are 

well predicted.  

 

4.2. Eccentrically loaded circular CFST slender beam-columns  

 

The proposed fiber-based model is further validated by comparisons of numerical results with 

test data on circular high-strength CFST slender beam-columns presented by Portolés et al. 

[16] in Tables 2 and 3, where yf  represents the yield strength of carbon steel tubes. The 

tensile strength of carbon steel tubes was assumed to be 430 MPa. The Young’s modulus of 

carbon steel tubes was taken as 210 GPa. An initial out-of-plane straightness was taken as 

600L  in the analyses as suggested by Portolés et al. [36]. It is observed that ultimate axial 

strengths of the beam-columns are reasonably predicted by the fiber-based model. However, 

the ultimate axial strengths of Specimens C100-3-2-30-20-1 and C100-3-2-30-50-1 are 

slightly overestimated due to the uncertainty of the actual concrete compressive strength. The 

mean value of the model-to-experiment ratios is 1.03 and both standard deviation and 

coefficient of variation are 0.07. The ultimate bending strength exp.nM  in Table 3 was 

computed as ePM nn ×= exp.exp. . The fiber-based model predicts well the bending strength of 

tested beam-columns. The mean predicted-to-tested ratio of ultimate bending strengths is 

1.01, and the corresponding standard deviation and coefficient of variation are 0.08. 

 

The predicted load-deflection responses of eccentrically loaded CFST slender beam-columns 

tested by Portolés et al. [16] are compared with the test results as depicted in Fig. 10. Good 

agreement between the predicted and experimental load-deflection curves is obtained. It is 
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seen that in the post-peak range, the experimental response slightly departs from the predicted 

one. This discrepancy is attributed to the uncertainty of the actual concrete strength.  

 

5. Parametric study 

 

The fiber-based model presented was utilized to analyze eccentrically loaded circular high-

strength CFSST slender columns to investigate their structural performance. Important 

parameters examined were the loading eccentricity ratio (e/D), column slenderness ratio (L/r), 

diameter-to-thickness ratio (D/t), '
cf  and 2.0σ . The initial out-of-plane deflection at the 

column mid-length was taken as L/1000 in the following parametric study.  

 

5.1. Effects of loading eccentricity ratio  

 

The influences of the e/D ratio on the structural responses of CFSST slender columns were 

investigated by undertaking fiber element analyses on columns C1, C2, C3 and C4 given in 

Table 4. These columns had loading eccentricity ratios varied from 0.1 to 0.6 and 100 MPa 

high-strength concrete. The computed deflection responses of columns C1, C2, C3 and C4 

under eccentric loading are presented in Fig. 11. It is seen that increasing the e/D ratio 

significantly decreases the initial flexural stiffness of the columns. The initial flexural 

stiffness of the columns with e/D ratios of 0.1, 0.2, 0.4 and 0.6 is calculated as 2.033 kN/mm, 

1.161 kN/mm, 0.577 kN/mm and 0.394 kN/mm, respectively. However, increasing the e/D 

ratio increases the column mid-length deflection under the ultimate load as well as its 

displacement-based ductility. Furthermore, the column ultimate axial load is significantly 

decreased by applying a larger e/D ratio as shown in Fig. 12, where oP  is the ultimate axial 

load of composite cross-section without moments. This is mainly due to the fact that the 
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column end moments are increased because of the increase in the e/D ratio but it reduces the 

confining pressures on the concrete.  

 

5.2. Effects of column slenderness ratio 

 

The fiber-based analysis technique was utilized to analyze CFSST slender beam-columns C5, 

C6, C7 and C8 with column slenderness ratios varying from 22 to 100, D/t ratio of 50 and 

MPa 60' =cf  as provided in Table 4. The purpose is to quantify the effects of L/r ratio on the 

performance of CFSST slender beam-columns. Fig. 13 shows the deflection curves for these 

columns under eccentric loading. The figure demonstrates that increasing the L/r ratio results 

in significant reductions in the initial flexural stiffness and ultimate axial load of CFSST 

slender columns, but increases the displacement-based ductility of the columns. It is seen 

from Fig. 13 that under the ultimate axial load, the larger the column slenderness ratio, the 

larger the column mid-length deflection that can be obtained. This implies that the second 

order effect is more significant for more slender columns. The dimensionless strength 

envelopes of columns having L/r ratios of 0, 22 and 30 are illustrated in Fig. 14. It appears 

that increasing the L/r ratio reduces the moment capacity of the column under the same axial 

load level. However, the pure ultimate axial strength and pure moment capacity are not 

affected by the column slenderness.  

 

5.3. Effects of diameter-to-thickness ratio 

 

The concrete confinement and ductility of a circular CFSST column are a function of its D/t 

ratio. The inelastic analyses were undertaken on columns C9, C10 and C11 with tD  ratios of 

40, 70 and 100 detailed in Table 4 to investigate the influences of tD  ratios on their 
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deflection and strength interaction responses. It is noted that these CFSST columns were 

constructed by 80 MPa concrete. Fig. 15 shows the computed deflection responses of these 

columns. It is observed that increasing the tD  ratio considerably reduces the flexural 

stiffness, significantly decreases the ultimate axial strength, but markedly increases the 

displacement ductility. The reason for this is that the use of a larger D/t ratio of a steel cross-

section reduces both its cross-sectional area and confinement effects. When the tD  ratio is 

increased from 40 to 70 and 100, the increase in the ultimate axial load is computed as 27% 

and 35%, respectively. The strength envelopes of CFSST columns with different tD  ratios 

are given in Fig. 16.  It appears that the normalized strength interaction diagram tends to 

enlarge by increasing the tD  ratio. When the tD  ratio of the column is increased from 40 

to 70 and 100, the increases in the maximum moment capacity are 38% and 51%, 

respectively.  

 

5.4. Effects of concrete compressive strengths  

 

As given in Table 4, high-strength concrete with strengths of 60, 90 and 120 MPa was used to 

construct CFSST slender columns C12, C13 and C14. Nonlinear fiber element analyses were 

carried out on these high-strength CFSST columns to evaluate the concrete strength effects on 

their performance. Fig. 17 gives the deflection responses of these CFSST columns under 

eccentric loading. The numerical results demonstrate that increasing '
cf considerably increases 

the column flexural stiffness, significantly increases the ultimate axial load but markedly 

decreases the displacement ductility. The ultimate axial load of the column filled with 90 MPa 

concrete is 31% higher than the one with 60 MPa concrete. Fig. 18 gives the strength 

interaction diagrams. The figure illustrates that the strength interaction diagram is enlarged 

and the maximum moment capacity in the diagram is increased by increasing '
cf . When '

cf is 
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increased from 60 MPa to 120 MPa, an increase of 37% in the maximum moment capacity is 

expected.  

 

5.5. Effects of stainless steel proof stress 

 

The influence of the stainless steel proof stress on the structural performance of circular high-

strength CFSST slender columns was studied by the fiber-based model developed. The 

CFSST slender columns C15 and C16 listed in Table 4 were analyzed. These two columns 

were fabricated by stainless steel tubes with proof stresses of 320 and 530 MPa, respectively 

and filled with 70 MPa high-strength concrete. The predicted deflection of these CFSST 

slender columns are provided in Fig. 19. It can be seen from the figure that the initial flexural 

stiffness of the columns is not affected by the proof stress. However, the ultimate axial 

strength of CFSST columns is shown to increase significantly with increasing the proof stress, 

and it could increase by 23% if 2.0σ  is increased from 320 to 530 MPa. Fig. 20 illustrates the 

normalized strength interaction curves. The fiber analysis results indicate that increasing the 

proof stress significantly increases the pure bending strength. When increasing 2.0σ  from 320 

to 530 MPa, the ultimate pure bending moment increases by 46%. Moreover, the maximum 

ultimate moment capacity of the CFFST columns could be increased considerably by using a 

stainless steel tube with a higher proof stress.   

 

6. Conclusions 

 

The economical designs of CFSST slender columns can be achieved by utilizing high-strength 

concrete as infill material. However, experimental and numerical studies on the structural 

behavior of circular CFSST slender columns of high-strength materials under eccentric 
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loading have not been conducted previously. An efficient nonlinear fiber-based model has 

been developed in this paper for calculating the deflection and strength interaction responses 

of eccentrically loaded circular high-strength CFSST slender columns. The accurate three-

stage stress-strain relations of stainless steels that recognize different strain hardening 

characteristics in tension and compression as well as concrete confinement models have been 

included in the fiber-based inelastic analysis procedures. The effects of important geometric 

and material parameters on the responses of circular high-strength CFSST slender columns 

have been investigated and discussed. It has been demonstrated that the fiber-based inelastic 

analysis technique developed accurately determines the responses of circular CFSST slender 

columns. The fiber analysis results obtained from the parametric study have provided a better 

understanding of the characteristics of circular CFSST slender columns made of high-strength 

materials.  
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Figures and Tables  

 

Table 1 Predicted and experimental ultimate axial strengths of axially loaded circular CFSST 
slender columns. 

 

Specimens D  
(mm) 

t 
(mm) 

 
D/t 

L 
(mm) 

2.0σ  

(MPa) 
0E  

(GPa) 
n  

'
cf  

(MPa) 
exp.uP  

(kN) 

fib.uP  

(kN) exp.

fib.

u

u

P
P  Ref.  

C1-1a 113.6 2.8 41 485 288.6 173.9 7.6 36.3 738.0 760.24 1.04 

[26] 

C1-1b 113.6 2.8 41 485 288.6 173.9 7.6 75.4 1137.1 1126.97 0.99 
C1-2a 113.6 2.8 41 1540 288.6 173.9 7.6 36.3 578.9 595.73 1.03 
C1-2b 113.6 2.8 41 1540 288.6 173.9 7.6 75.4 851.1 827.97 0.97 
C1-3a 113.6 2.8 41 2940 288.6 173.9 7.6 36.3 357.6 374.37 1.05 
C2-1a 101 1.48 68 440 320.6 184.2 7.2 36.3 501.3 456.77 0.91 
C2-1b 101 1.48 68 440 320.6 184.2 7.2 75.4 819.0 748.85 0.91 
C2-2a 101 1.48 68 1340 320.6 184.2 7.2 36.3 446.0 403.02 0.90 
C2-2b 101 1.48 68 1340 320.6 184.2 7.2 75.4 692.9 634.20 0.92 
C2-3b 101 1.48 68 2540 320.6 184.2 7.2 75.4 389.7 355.39 0.92 

Mean 0.96  

Standard deviation (SD) 0.06 
Coefficient of variation (COV) 0.06 
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Table 2 Predicted and experimental ultimate axial strengths of eccentrically loaded circular 
CFST slender beam-columns. 

 

Specimens D  
(mm) 

t 
(mm) 

L 
(mm) 

e 
(mm) 

yf  

(MPa) 

'
cf  

(MPa) 
exp.uP  

(kN) 

fib.uP  

(kN) exp.

fib.

u

u

P
P  Ref.  

C100-3-2-30-20-1 100 3 2135 20 322 32.70 181.56 210.70 1.16 

[16] 

C100-3-2-30-50-1 100 3 2135 50 322 34.50 117.49 135.06 1.15 
C100-3-2-70-20-1 100 3 2135 20 322 65.79 248.58 247.52 1.00 
C100-3-2-70-50-1 100 3 2135 50 322 71.64 151.59 150.87 1.00 
C100-3-2-90-20-1 100 3 2135 20 322 95.63 271.04 272.89 1.01 
C100-3-2-90-50-1 100 3 2135 50 322 93.01 154.24 157.57 1.02 
C100-3-3-30-20-1 100 3 3135 20 322 39.43 140.32 150.28 1.07 
C100-3-3-30-50-1 100 3 3135 50 322 36.68 93.75 101.83 1.09 
C100-3-3-70-20-1 100 3 3135 20 322 71.74 159.55 166.26 1.04 
C100-3-3-70-50-1 100 3 3135 50 322 79.55 102.75 112.10 1.09 
C100-3-3-90-20-1 100 3 3135 20 322 94.56 160.33 175.34 1.09 
C100-3-3-90-50-1 100 3 3135 50 322 90.40 106.8 114.16 1.07 
C100-5-2-30-20-1 100 5 2135 20 322 35.39 270.02 288.72 1.07 
C100-5-2-70-50-1 100 5 2135 50 322 30.54 161.26 187.44 1.16 
C100-5-2-70-20-1 100 5 2135 20 322 70.16 313.55 324.80 1.04 
C100-5-2-70-50-1 100 5 2135 50 322 61.00 183.81 203.51 1.11 
C100-5-2-90-20-1 101.6 5 2135 20 320 95.43 330.4 363.55 1.10 
C100-5-2-90-50-1 101.6 5 2135 50 320 81.66 212.17 219.67 1.04 
C100-5-3-30-20-1 101.6 5 3135 20 320 38.67 212.48 215.24 1.01 
C100-5-3-30-50-1 101.6 5 3135 50 320 39.56 144.83 151.70 1.05 
C100-5-3-70-20-1 101.6 5 3135 20 320 71.89 231.35 232.31 1.00 
C100-5-3-70-50-1 101.6 5 3135 50 320 72.49 153.16 161.11 1.05 
C100-5-3-90-20-1 101.6 5 3135 20 320 86.39 246.82 239.03 0.97 
C100-5-3-90-50-1 101.6 5 3135 50 320 96.74 164.95 167.19 1.01 
C125-5-3-90-20-1 125 5 3135 20 322 87.98 474.17 435.06 0.92 
C125-5-3-90-50-1 125 5 3135 50 322 96.97 317.9 300.09 0.94 
C125-5-3-90-20-2a 125 5 3135 20 322 107.33 489.47 459.50 0.94 
C125-5-3-90-50-2a 125 5 3135 50 322 97.92 322.97 300.65 0.93 
C160-6-3-90-20-1 160.1 5.7 3135 20 322 87.38 1012.5 923.13 0.91 
C160-6-3-70-50-1 160.1 5.7 3135 50 322 74.75 642.16 613.01 0.95 
C160-6-3-90-20-2a 160.1 5.7 3135 20 322 83.08 1011.5 910.11 0.90 
Mean 1.03  

Standard deviation (SD) 0.07 
Coefficient of variation (COV) 0.07 
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Table 3 Predicted and experimental ultimate bending strengths of eccentrically loaded 
circular CFST slender beam-columns. 

 

Specimens D  
(mm) 

t 
(mm) 

L 
(mm) 

e 
(mm) 

yf  

(MPa) 

'
cf  

(MPa) 
exp.nM  

(kNm) 

fib.nM  

(kNm) exp.

fib.

n

n

M
M  Ref.  

C100-3-2-70-20-1 100 3 2135 20 322 65.79 5.0 4.9 0.98 

[16] 

C100-3-2-70-50-1 100 3 2135 50 322 71.64 7.6 7.5 0.99 
C100-3-2-90-20-1 100 3 2135 20 322 95.63 5.4 5.5 1.02 
C100-3-2-90-50-1 100 3 2135 50 322 93.01 7.7 7.9 1.03 
C100-5-2-70-20-1 100 5 2135 20 322 70.16 6.3 6.9 1.10 
C100-5-2-90-50-1 101.6 5 2135 50 320 81.66 10.6 11.2 1.06 
C100-5-3-30-50-1 101.6 5 3135 50 320 39.56 7.2 7.9 1.10 
C100-5-3-70-50-1 101.6 5 3135 50 320 72.49 7.7 8.4 1.09 
C100-5-3-90-50-1 101.6 5 3135 50 320 96.74 8.2 8.4 1.02 
C125-5-3-90-50-1 125 5 3135 50 322 96.97 15.9 14.3 0.90 
C125-5-3-90-50-2a 125 5 3135 50 322 97.92 16.1 14.2 0.88 
C160-6-3-70-50-1 160.1 5.7 3135 50 322 74.75 32.1 29.4 0.92 
Mean 1.01  

Standard deviation (SD) 0.08 
Coefficient of variation (COV) 0.08 
 

 

Table 4 Material and geometric properties of eccentrically loaded circular high strength 
CFSST beam-columns for parametric study.  

 
Columns D  

(mm) 
 

D/t rL   De  
2.0σ  

(MPa) 
0E  

(GPa) 
n  

'
cf  

(MPa) 
fib.uP  

(kN) 

C1 700 70 30 0.1 320 200 7 100 26851 

C2 700 70 30 0.2 320 200 7 100 20804 

C3 700 70 30 0.4 320 200 7 100 13087 

C4 700 70 30 0.6 320 200 7 100 9063 

C5 500 50 22 0.1 320 200 7 60 11456 

C6 500 50 40 0.1 320 200 7 60 9907 

C7 500 50 70 0.1 320 200 7 60 7292 

C8 500 50 100 0.1 320 200 7 60 5104 

C9 600 40 30 0.1 530 200 5 80 26912 

C10 600 70 30 0.1 530 200 5 80 19727.5 

C11 600 100 30 0.1 530 200 5 80 17503 

C12 800 80 30 0.1 320 200 7 60 23829 

C13 800 80 30 0.1 320 200 7 90 31297 

C14 800 80 30 0.1 320 200 7 120 39651 

C15 550 55 30 0.1 320 200 7 70 13806 

C16 550 55 30 0.1 530 200 5 70 16980 
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Fig. 1. Typical fiber element discretization of circular cross-section. 
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Fig. 2. Moment-curvature curves for the cross-section of a CFSST column.  
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Fig. 3. Pin-ended slender beam-column under eccentric loading. 
 
 
 
 
 
 
 
 

 
 

Fig. 4. Three-stage stress-strain curves for stainless steels in tension and compression. 
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Fig. 5. Stress-strain curves for confined concrete in circular CFSST columns. 
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Fig. 6. Comparison of computed and measured load-deflection curves for Specimen C1-1a.  
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Fig. 7. Comparison of computed and measured load-deflection curves for Specimen C1-2a. 
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Fig. 8. Comparison of computed and measured load-deflection curves for Specimen C1-2b. 
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Fig. 9. Comparison of computed and measured load-deflection curves for Specimen C2-2b. 
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(a) Specimen C100-3-2-90-20-1 (b) Specimen C100-5-3-30-20-1 
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(c) Specimen C100-5-3-70-20-1 (d) Specimen C100-5-3-90-50-1 
Fig. 10. Comparison of computed and measured load-deflection curves reported by 

Portolés et al. [16] 
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Fig. 11. Load-deflection curves for CFSST slender columns with various e/D ratios. 
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Fig. 12. Normalized ultimate axial load as a function of the eccentricity ratio for CFSST 
slender columns. 
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Fig. 13. Load-deflection curves for CFSST slender columns with various L/r ratios.  
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Fig. 14. Strength envelopes of CFSST columns with various L/r ratios. 
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Fig. 15. Load-deflection curves for CFSST slender columns with various tD  ratios.  
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Fig. 16. Strength envelopes of CFSST slender columns with various tD  ratios.  
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Fig. 17. Load-deflection curves for CFSST slender columns with various concrete strengths.  
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Fig. 18. Strength envelopes of CFSST slender columns with various concrete strengths. 
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Fig. 19. Load-deflection curves for CFSST slender columns with various stainless steel proof 
stresses. 
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Fig. 20. Strength envelopes of CFSST slender columns with various stainless steel proof 
stresses. 
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