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ABSTRACT 

Early-life Origins of Breast Development and the Implications for Breast Cancer Risk 

Mandy Goldberg 

 

 Breast cancer incidence, particularly late-stage disease, is increasing in U.S. women under 40 

years of age, pointing to the importance of exposures acting early in the life course to increase breast 

cancer risk. Earlier onset of breast development has recently been identified as an independent risk factor 

for breast cancer. Thus, identifying modifiable factors that can delay the onset of breast development may 

provide an opportunity for breast cancer primary prevention starting early in life. This dissertation examined 

the influence of the early-life environment on the age at onset of breast development through: 1) a 

systematic review of the literature relating maternal pre-pregnancy body size, gestational weight gain 

(GWG), birth size, and infant growth to the timing of breast development and menarche; 2) analyses 

assessing the associations between these factors and the onset of breast development in a pubertal cohort 

enriched for breast cancer family history (BCFH); and 3) a pilot study assessing whether these factors are 

associated with serum levels of insulin-like growth factor(IGF)-1 and insulin-like growth factor binding 

protein(IGFBP)-3 during puberty. 

 Our systematic review identified 96 studies, the majority of which examined the association 

between birthweight and age at menarche. Although low birthweight is often cited as a risk factor for early 

menarche, the majority of studies (40/73 total) that examined this association did not observe a statistically 

significant association. Differences in exposure assessment, inadequate control for confounders, and 

differences in postnatal growth across studies may drive inconsistencies in the birthweight literature. In 

contrast, higher maternal body mass index (BMI) prior to pregnancy, GWG in excess of recommended 

guidelines and faster rates of weight gain between birth and 2 years of age were consistently associated 

with earlier age at breast development and menarche. 

 We used data from the LEGACY Girls Study, a prospective cohort of girls primarily ages 6-13 years 

at baseline in which approximately 50% of girls had a family history of breast cancer, to examine the 

relations between maternal factors, birth size and infant growth and the onset of breast development, 



 

defined as a maternal report of breast Tanner stage 2 or greater. Daughters of women with a pre-pregnancy 

BMI of 25 or greater and who gained 30lbs or more during pregnancy experienced breast development at 

an earlier age than daughters of women with a pre-pregnancy BMI less than 25 and who gained less than 

30lbs. This association was similar in girls with and without a BCFH. Birthweight and birthlength were not 

associated with the timing of breast development.  

 In a subset of LEGACY girls with height and weight data during infancy available from medical 

records, we examined the associations between changes in weight-for-age and length-for-age Z-scores 

from birth to 1 year of age and the onset of breast development. We observed a modest association 

between faster rates of weight gain from 0-12 months and earlier age at breast development. When we 

examined smaller age intervals within infancy, faster weight gain from 2-4 months and 6-9 months were 

each associated with an earlier age at breast development. A similar pattern was observed for growth in 

length, and these associations did not vary by BCFH. 

 In our pilot study including 109 girls with available serum samples between 6-17 years of age at 

the LEGACY New York site, rapid weight gain from 0-12 months was associated with higher mean levels 

of IGF-1 relative to IGFBP-3. Although not statistically significant, girls with a maternal pre-pregnancy 

BMI≥25 and GWG≥30lbs also had higher mean levels of the IGF-1/IGFBP-3 ratio. Since serum IGF-1 and 

IGFBP-3 are objective measures that are known to increase rapidly during puberty, the results of our pilot 

study support that the maternal BMI, GWG and rapid infant weight gain are associated with biological 

changes in the girls. Our findings suggest that measurement error in outcome assessment or confounding 

did not drive the associations that we observed between these factors and earlier onset of breast 

development. 

In conclusion, we identified higher maternal pre-pregnancy BMI, excess GWG and rapid growth 

during infancy as modifiable factors associated with earlier onset of breast development in girls across the 

spectrum of familial risk for breast cancer. While this suggests that modifying these factors may decrease 

breast cancer risk later in life, further research should consider additional and potentially opposing 

pathways, such as childhood body size, through which the early-life environment affects breast cancer risk. 
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Chapter 1.  Introduction 

 

1.1 Background 

 

Breast cancer is the most common cancer in women worldwide and one-third of global breast 

cancers are diagnosed in women under the age of 50,1 indicating the importance of modifying exposures 

prior to mid-life to decrease risk. Exposures across the life course, including body size (weight, height, and 

weight for height, often assessed by body mass index (BMI)), have long been recognized as affecting breast 

cancer risk.2–4 Weight, specifically, is of interest as it is often cited as a potentially modifiable risk factor for 

breast cancer.4,5 The direction of the association between weight and breast cancer risk, however, changes 

over the life course. Weight in adulthood is positively associated with post-menopausal breast cancer risk, 

as is weight gain after age 18-25 years.6–10 In contrast, adult weight is inversely associated with pre-

menopausal breast cancer risk,6,7and most studies have not observed an association between long-term 

weight gain and risk of pre-menopausal breast cancer.8,11–13 Weight during adolescence is inversely 

associated with both pre- and post-menopausal breast cancer risk.14–17 Birthweight is positively associated 

with the risk of pre-menopausal breast cancer and may be modestly positively associated with post-

menopausal cancer risk as well,18 suggesting that breast cancer susceptibility may be altered by intrauterine 

factors that affect birthweight and early-life weight gain.19 The associations in opposing directions between 

body weight at birth and in adolescence highlight the importance of examining associations between 

different trajectories of early-life growth, and factors that influence growth trajectories, and breast cancer 

risk. Maternal pre-pregnancy BMI and gestational weight gain influence fetal and postnatal growth,20–22 but 

the few studies that have examined these factors and breast cancer risk have not consistently observed an 

association.23,24 Birthweight also influences weight gain during infancy, a dynamic period of change when 

most infants triple their birthweight by 12 months of age.25 However, no studies have assessed whether 

patterns of weight gain during multiple windows within infancy are associated with breast cancer risk. 

Intrauterine factors that may explain the positive association between birthweight and breast cancer 

risk: Under the early-life etiologic model for breast cancer, intrauterine factors can affect offspring breast 

cancer risk both through an effect on the number of mammary tissue-specific stem cells and the replication 

rate of these cells in utero, which is affected by levels of growth-enhancing hormones.19 While the 
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association between birthweight and breast cancer risk supports this hypothesis, birthweight is a measure 

of size, and only a crude indicator of fetal growth and the intrauterine environment in general.26 The data 

connecting other characteristics that influence the intrauterine environment to breast cancer risk are limited. 

Maternal pre-pregnancy BMI and gestational weight gain are associated with birthweight20 and maternal 

hormone levels during pregnancy,27–29 but studies have not consistently supported an association with 

breast cancer risk.23,24 Given the long induction time between the intrauterine environment and breast 

cancer diagnosis, most studies in the literature are from pregnancies over 50 years ago, when the 

prevalence of obesity and excess gestational weight gain was much lower than today.30 Considering the 

increasing prevalence of these pregnancy conditions over time, it is important to examine the association 

between the intrauterine environment and breast cancer risk. Through this research, we can understand 

whether these factors drive the positive association between birthweight and breast cancer and identify 

modifiable factors, such as gestational weight gain and physical activity during pregnancy, to target during 

pregnancy for primary prevention.  

Infancy is the missing link in the body size and breast cancer literature: Under the early-life etiologic 

model, postnatal growth could operate via the same mechanisms as intrauterine factors to affect breast 

cancer risk,19 but few studies have examined the early postnatal period. In the 1946 British birth cohort, 

BMI velocity from 2-4 years was inversely associated with breast cancer risk, though there was no 

association with BMI at 2 years.31 This study did not have measures of body size between birth and 2 years 

and could not examine growth rates within this window. In the Hertfordshire cohort born between 1911 and 

1939, women in the lowest and highest third of the weight gain distribution from birth to one year both had 

increased risks of breast cancer mortality compared to those of average weight gain.32 A Swedish study 

examining neonatal growth in 405 BC cases and 1081 controls found that neonates who gained ≥25 grams 

per day until hospital discharge after an initial weight loss of <200 grams after birth had a 50% increased 

risk of breast cancer later in life compared to those that gained <25 grams per day; the increased risk was 

twofold in women less than 50 years at diagnosis.33 These studies suggest that infancy may be a key 

transition point when the positive association between birthweight and breast cancer risk changes direction 

to the inverse association observed between adolescent body size and breast cancer risk. Trajectories of 

weight and height growth may be more important than size at any given time point in relation to later breast 
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cancer risk. Evidence from pubertal cohorts suggest that rapid infant weight gain is a predictor of earlier 

pubertal onset, a breast cancer risk factor.34,35 Recently, using prospective data from a 1960s U.S. birth 

cohort, we observed a two-fold increased risk of benign breast disease, a well-established breast cancer 

risk factor,36 in women with rapid weight gain in infancy.37 Previous studies have been unable to assess the 

association between size or growth during infancy and early childhood and breast cancer risk directly due 

to a lack of prospective anthropometric measures within the first year of life.14 Since growth during these 

time periods cannot be assessed retrospectively, data on early-life growth has been largely limited to birth 

cohorts that collect these measures prospectively at specific time points, or data abstracted from medical 

records. With the recent widespread adoption of electronic medical records,38 children born in the past 10-

15 years will be the first generation where growth data will be available across the life course and can be 

linked to later health outcomes.  

Puberty is a critical window for breast cancer risk: Although contemporary cohorts with prospective 

infant growth measures have yet to reach the age when incident breast cancer can be directly studied as 

an outcome, studies can examine associations between early-life growth and breast cancer risk factors that 

can be measured earlier in the life course. Early age at menarche is a well-established risk factor for breast 

cancer.39,40 Recently, the Breakthrough Generations Study of 104,931 women found that earlier age at 

breast development and longer time period between breast development and menarche, also known as 

slower tempo, were both independently associated with a 20-30% increased risk of breast cancer.41 While 

age at menarche has been fairly stable over the past 50 years, age at breast development has decreased 

rapidly over this same time period, suggesting that the pubertal tempo in girls today is likely slower than in 

the past.42 Puberty is a period of rapid growth and development for the breast, when ductal branching 

occurs and the terminal ductal lobular units (TDLUs) form, though they do not fully differentiate until 

pregnancy.43,44 TDLUs are the milk-producing structure of the breast and the structure within the breast 

where most breast cancers originate.45,46 The breast is more susceptible to carcinogenic effects from 

environmental exposures during these periods of rapid growth and development, termed windows of 

susceptibility for breast cancer risk.43 Factors that accelerate the onset of breast development and slow the 

tempo of breast growth may elongate this pubertal window of susceptibility and increase the risk of breast 

cancer later in life.  
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Drivers of normal breast development are unknown: Although puberty is recognized as a critical 

period for breast development, few studies have examined trajectories of normal breast development in 

childhood and adolescence. While mammography is assessed on a population level in adult women of 

screening age, there is no imaging method that is used clinically in adolescents. Mammography is not used 

in adolescents due to the radiation exposure. Some studies are currently using alternate methods to assess 

breast tissue composition in adolescents, including dual energy X-ray absorptiometry (DXA),47,48 magnetic 

resonance imaging (MRI)49 and optical spectroscopy (OS).50 Longitudinal studies using these technologies 

will provide novel insights into the variability of normal breast development and factors that influence breast 

development. However, these methods are not yet available on a widespread basis. Age at onset of breast 

development, age at menarche and the tempo between these two events are markers of breast 

development that can be measured non-invasively through parent or self-reports. Studies that identify 

drivers of normal breast development are needed both to understand the secular trends in pubertal timing, 

but also to identify early-life factors that may affect how the breast develops during this critical window of 

susceptibility, increasing vulnerability to carcinogenesis in adulthood. In addition, investigating the 

associations between early-life factors and repeated measures of blood biomarkers, such as insulin-like 

growth factor (IGF)-1 and insulin-like growth factor-binding protein 3 (IGFBP-3), which are associated with 

stages of breast development,51,52 can implicate specific pathways through which early-life factors affect 

normal breast development and breast cancer risk. 

 Gene-environment interactions matter for etiology and prevention: Examining whether 

associations between early-life environmental factors vary across the spectrum of underlying susceptibility 

for breast cancer is critical for breast cancer etiology and primary prevention efforts. Women with a family 

history of breast cancer are at an increased risk of being diagnosed themselves, and this risk increases 

with the number of relatives affected and the younger those relatives were diagnosed.53 Recently, we 

observed that girls at an increased risk of breast cancer due to their family history experience earlier breast 

development than girls without a family history.54 If there is no heterogeneity by susceptibility based on 

absolute risk estimated by family history, then risk factors will still have a greater effect on an absolute scale 

in those with greater underlying risk,55,56 and girls and women at high risk need to know that the environment 
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matters and that their risk can be modified. If there is heterogeneity, then identifying the context in which 

the early-life environment affects risk will allow for targeted prevention to those groups that will benefit most. 

 

1.2 Dissertation overview 
 

In this dissertation, we examine the contribution of maternal factors, body size at birth and infant 

growth to the timing of breast development and consider the implications of these findings in light of breast 

cancer risk on an individual level and future trends in breast cancer incidence on a population level. We 

hypothesize that maternal factors, including higher maternal pre-pregnancy BMI, excess gestational weight 

gain and physical inactivity during pregnancy, and rapid weight gain during infancy are associated with 

earlier breast development, independent of birthweight, and that these associations may be modified by 

underlying susceptibility. We examine these hypotheses in the following chapters: 

In Chapter 2, we systematically review and synthesize the epidemiologic literature on the 

associations between maternal body size, birth size, and infant growth and the timing of breast 

development and menarche. In this chapter, we examine sources of heterogeneity in the literature and 

identify gaps that future research should address. The findings from Chapter 2 inform the background and 

methodology of the analytic chapters that follow, which seek to address some of the identified gaps in the 

literature.  

In the analytic chapters, we utilize data from the LEGACY (Lessons in Epidemiology and Genetics 

of Adult Cancer from Youth) Girls Study, a prospective cohort of 1040 girls primarily ages 6-13 years at 

baseline that is enriched for breast cancer family history (BCFH),57 in order to examine the associations 

between early-life factors and the onset of breast development overall and by BCFH. The LEGACY girls 

have been followed prospectively since 2011 with biospecimen, anthropometric and questionnaire data 

collected every 6 months and a 92% retention rate at the end of the first five years. Weight and height data 

prior to recruitment has been abstracted for 82% of the cohort from medical records.  

In Chapter 3, we examine the association between maternal factors (including maternal pre-

pregnancy BMI, gestational weight gain, and maternal physical activity during pregnancy), birth size 
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(weight and length at birth, adjusted for gestational age) and the onset of breast development in the 

LEGACY Girls Study. We also examine whether these associations are independent of childhood BMI and 

if they are modified by BCFH. The goal of this chapter is to identify modifiable factors during pregnancy 

that affect pubertal timing in order to inform primary prevention efforts. 

In Chapter 4, we examine measures of infant size (weight and length prior to 12 months) and infant 

growth (rates of change in weight and length) and the onset of breast development in LEGACY girls. This 

chapter focusing on postnatal growth is a natural follow-up to Chapter 3, which focuses on factors that 

affect fetal growth. We also explore mediation by childhood body size and effect measure modification by 

BCFH. Few studies have examined the association between infant growth and breast cancer risk directly. 

By examining infant growth in relation to pubertal timing in girls with an increased risk of breast cancer 

due to their family history, the findings from this chapter may shed light on how infant growth may be 

associated with breast cancer risk. 

In Chapter 5, we examine the association between the early-life exposures and serum levels of 

IGF-1 and IGFBP-3 during puberty in the New York site of LEGACY. The aim of this pilot study is to 

complement Chapters 3 and 4, which examined the maternal report of breast development as the 

outcome, by assessing whether maternal pregnancy factors, birth size and infant growth are associated 

with objectively measured biomarkers that are correlated with pubertal development.  

In Chapter 6, we synthesize the findings of this dissertation and their contribution to our 

understanding of the pre- and postnatal periods as windows of susceptibility for breast development.  We 

conclude with the implications of these findings for breast cancer risk, considering avenues for primary 

prevention. We also suggest areas for future research based on hypotheses generated from these findings.
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Chapter 2.  Size and growth during early life and pubertal timing in girls: a systematic review 

 

ABSTRACT 

Background: Earlier age at menarche is a well-established risk factor for breast cancer, and early age at 

breast development (thelarche) has recently been associated with breast cancer risk as well. Body size and 

growth in early life may be associated with pubertal timing, suggesting that these factors may also affect 

breast cancer risk. The majority of the literature examining early-life body size and pubertal timing focuses 

on birthweight and menarche, and findings have been inconsistent. Fewer studies have examined the 

associations between maternal body size and/or body size in infancy, in addition to birthweight, and age at 

menarche. More recently, this literature has expanded to include age at breast development and the time 

interval between breast development and menarche (pubertal tempo). The objective of this chapter is to 

systematically review studies that examine the association between at least one exposure of interest 

(maternal pre-pregnancy body mass index (BMI) or weight, gestational weight gain (GWG), birth weight or 

length and/or size or growth in weight or height during infancy) and at least one pubertal outcome (thelarche, 

menarche and/or tempo) in girls, and identify sources of heterogeneity in study-specific estimates that 

contribute to inconsistencies in the literature. 

Methods: We conducted a systematic search of peer-reviewed studies in PubMed from 1970 through March 

30, 2018 for original research articles published in English. We excluded studies if the study population 

included males and did not present sex-stratified results, the outcome was central or peripheral precocious 

puberty, the outcome was a pubertal event other than breast development, menarche or tempo between 

these two events, the exposure was body size or growth measured after 2 years of age, or the study 

population was comprised of children with conditions that would affect either pubertal development (such 

as endocrine disorders or precocious puberty) or early-life growth (such as pediatric cancers or autoimmune 

disorders). Multiple articles using data from the same study population were eligible for inclusion. Six 

studies of maternal pre-pregnancy weight or BMI, 1 study of GWG, 17 studies of birth size (weight or length), 

and 8 studies of size and/or growth during infancy were included in relation to age at breast development 

or pubertal tempo. For menarche, 14 studies of maternal size, 8 studies of GWG, 74 studies of birth size, 

and 18 studies of infant size and/or growth were included in the review. 
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Results: Higher maternal pre-pregnancy BMI was associated with earlier age at breast development in 4 of 

5 studies, though 3 of these analyses were conducted within the same cohort, and higher pre-pregnancy 

weight was associated with earlier breast development in one study. Higher maternal pre-pregnancy BMI 

was associated with earlier age at menarche in 7 of 12 studies, as was higher maternal weight in 2 of 3 

studies. Higher GWG was associated with earlier age at breast development in the one study that examined 

this association. Higher GWG was associated with earlier age at menarche in 3 studies that used 

multivariable-adjusted models, but not in 5 studies examining unadjusted associations. GWG in excess of 

the 2009 Institute of Medicine guidelines was also associated with age at menarche in two studies that used 

this categorization. The majority of studies examining birthweight or birthlength in relation to age at breast 

development were null, though 4 studies reported an association between lower birthweight and earlier 

breast development and 3 found the opposite. The results for birthweight and menarche were similar: 40 

studies did not observe an association, 28 observed earlier menarche in girls with lower birthweight, and 5 

observed earlier menarche in girls with higher birthweight. Most (11) studies of birthlength and menarche 

were also null, with 6 studies reporting contradictory results. Faster weight gain in infancy was associated 

with earlier age at breast development and menarche in 3 of 5 and 10 of 12 studies, respectively. Higher 

weight in infancy was also associated with earlier age at these pubertal events. Very few studies examined 

pubertal tempo as an outcome. 

Conclusions: Studies suggest that higher maternal pre-pregnancy BMI, greater GWG and rapid postnatal 

weight gain are associated with earlier age at breast development and menarche with girls. There is 

insufficient data to determine if these exposures also affect pubertal tempo. The literature does not support 

an independent effect of birthweight on pubertal timing. Modifying weight gain prior to and throughout 

pregnancy in mothers and through infancy in their daughters may delay pubertal timing and potentially 

lower breast cancer risk in adulthood. 

2.1 Background 

 

Early age at menarche is a well-established risk factor for breast cancer.39,40 Recently, the 

Breakthrough Generations Study of 104,931 women found that earlier age at breast development and a 

longer time period between breast development and menarche (slower tempo) were both independently 
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associated with a 20-30% increased risk of breast cancer.41 Since women recalled age at breast 

development in adulthood and breast cancer was then assessed prospectively, non-differential 

misclassification likely biased the results towards the null, suggesting that the true association may be even 

larger. While age at menarche has been relatively stable over the past 50 years,58,59 age at breast 

development has continued to decline rapidly.60,61 The correlation between age at menarche and age at 

breast development has also decreased over time,62 suggesting that girls with an earlier age at breast 

development progress through puberty at a slower rate.42 These secular trends, when considered in light 

of the associations observed in the Breakthrough Generations Study,41 suggest future increases in breast 

cancer incidence. The identification of modifiable factors that affect pubertal timing, defined as age at breast 

development and/or age at menarche, may have important implications for altering breast cancer risk. 

The secular decrease in age at breast development parallels the increase in childhood obesity, and 

overweight girls have an earlier age at breast development and menarche than girls who are not overweight 

prior to puberty.42 Larger body size starting at birth and rapid postnatal growth patterns both track to larger 

body size prior to puberty.63–66 Earlier age at breast development has also been observed, however, in 

populations with a lower prevalence of childhood obesity, such as Hong Kong,67 suggesting that early-life 

growth may affect breast development independent of childhood body size. In addition, there have been 

secular changes in the early-life environment, including maternal body size and infant growth patterns,30,68 

which parallel the decrease in the age at breast development. The pre- and postnatal periods may be an 

effective period for intervention on modifiable factors such as physical activity during pregnancy, gestational 

weight gain (GWG) and weight gain during infancy, as pregnant women and new parents are regularly 

engaged with clinicians who are already monitoring maternal body size and behaviors and infant growth.69 

However, although many studies have examined the association between birthweight, a proxy for fetal 

growth,26 and age at menarche, the direction of the association is not clear. While some have observed that 

girls with lower birthweight have an earlier age at menarche,70–72 many did not observe an association73–75 

and a few observed the opposite – earlier age at menarche in girls with high birthweight.76,77 Studies of 

birthweight and the onset of breast development are similarly inconsistent.73,75,78–80 Fewer studies have 

examined maternal body size and GWG or infant growth patterns in relation to pubertal timing, but these 
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studies suggest that higher maternal pre-pregnancy BMI,73,81,82 increased GWG82,83 and rapid postnatal 

weight gain72,73,75,77 are associated with earlier age at breast development and menarche.  

Since maternal body size and GWG are associated with size at birth,20 which is correlated with 

infant growth,84 it is extremely difficult to separate out the independent effects of these factors. Maternal 

body size may confound associations between birthweight and pubertal timing, while infant growth patterns 

could mediate or modify a birthweight effect. To illustrate the complexity of these relationships, Figure 2.1 

shows a directed acyclic graph (DAG) for a hypothesized causal structure between early-life body size and 

age at breast development. A comprehensive review that considers the evidence examining body size 

measures during early life (including pre-pregnancy weight or BMI, GWG and birth size, indicators of the 

intrauterine environment, and size and growth during infancy) and pubertal timing in girls, can explore 

whether patterns of early-life growth are consistently associated with pubertal timing and may identify 

methodological differences across studies that explain the heterogeneity in study findings. 

Although previous reviews have been published regarding early-life factors and puberty,85–89 most 

have not been systematic in nature.86–88 These reviews focused predominantly on menarche as a measure 

of pubertal development, even though menarche occurs on average two years after the onset of pubertal 

development in girls.90 More studies examined age at menarche since timing of menarche can be reliably 

recalled into adulthood.91 Recently, as birth cohorts have aged into adolescence and pubertal cohorts have 

been established, studies have begun to examine prospective measures of breast and pubic hair 

development as markers of pubertal onset.79,92,93 Previously, data on early-life growth has been largely 

limited to birth cohorts that collect these measures prospectively at specific time points, or data abstracted 

from medical records. With the recent widespread adoption of electronic medical records, there is an 

increasing number of studies with early-life growth data that can be examined in relation to later health 

outcomes, such as pubertal timing.  

This review will address these limitations of previous reviews by following the Preferred Reporting 

Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines94 to systematically identify studies 

that examine at least one of the exposures of interest (maternal pre-pregnancy weight or BMI, gestational 

weight gain (GWG), birth weight or length and/or size or growth in weight or height during infancy) and at 
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least one pubertal outcome (thelarche, menarche and/or tempo) in girls and examine sources of 

heterogeneity in study-specific estimates that contribute to inconsistencies in the literature. Given the 

importance of early puberty to the risk of breast cancer41,95 and other chronic diseases,96,97 in addition to 

the psychological and behavioral consequences of early puberty in girls,98,99 identifying modifiable factors 

that can delay pubertal onset is crucial to women’s health. 

2.2 Methods 

 

2.2.1. Search strategy 

 

We conducted a systematic search following the PRISMA guidelines94 to identify studies that 

examined the association(s) between maternal pre-pregnancy weight or BMI, GWG, birth size and/or size 

or growth during infancy (from birth to age 2 years) and the timing of puberty in girls. Appendix A details 

the protocol for this systematic review. We included normal breast development, age at menarche, and the 

tempo between these two events as our pubertal outcomes of interest. We identified studies by a systematic 

search of peer-reviewed studies in PubMed through March 30, 2018. We used both MeSH terms and key 

words identified from the literature as search terms. We combined terms related to the pubertal outcomes 

(i.e. ‘breast development’ OR ‘thelarche’ OR ‘menarche’) with terms related to body size and growth 

(‘weight’ OR ‘height’ OR ‘length’ OR ‘ponderal index’ or ‘body mass index’ OR ‘BMI’ OR ‘obese’ OR ‘obesity’ 

OR ‘overweight’ OR ‘adiposity’ OR ‘growth’ OR  ‘weight gain’ OR ‘height gain’) and time period of exposure 

(‘mother’ OR ‘birth’ OR ‘maternal’ OR ‘prenatal’ OR ‘pregnancy’ OR “in utero” OR ‘fetal’ OR ‘infant’ OR 

‘infancy’ OR ‘postnatal’ OR ‘early life’ OR ‘early-life’ OR ‘childhood’) using Boolean operators (see 

Appendix A for full list of search terms). We did not use any limits when conducting the search in PubMed 

to ensure that we would capture recent articles that had yet to be classified within PubMed.  

2.2.2. Study selection 

 

 Original research articles published in English between January 1, 1970 and March 30, 2018 were 

eligible for inclusion. We chose 1970 as the lower limit for the review because the seminal paper by Marshall 

and Tanner describing the stages of pubertal development in girls was published in 1969.100 I downloaded 
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the search results into a reference management software (Endnote X7) and removed duplicates. I screened 

titles and abstracts and identified articles that examined the association between at least one exposure of 

interest in relation to either normal breast development, menarche or tempo between these two events in 

girls for full-text review. We excluded studies published prior to 1970, reviews, editorials, letters or 

conference abstracts, animal studies, and case studies (defined as studies with a study population of 10 

girls or less). We also excluded studies if: 1) the study population included males and did not present sex-

stratified results; 2) the outcome was central or peripheral precocious puberty (puberty before age 8 years 

in females); 3) the outcome was a pubertal event other than breast development, menarche or tempo (i.e. 

adrenarche, pubarche, pubertal growth spurt); 4) the exposure was body size or growth measured after 2 

years of age; or 5) the study population was comprised of children with conditions that would affect either 

pubertal development (such as endocrine disorders or precocious puberty) or early-life growth (such as 

pediatric cancers, autoimmune disorders). We excluded studies of size or growth after 2 years of age 

because childhood body size has been consistently associated with age at breast development and 

menarche, and has been the subject of multiple review articles.89,101–104 A second reviewer screened 10% 

of identified articles using the same inclusion and exclusion criteria to assess the reliability of the single 

reviewer. The agreement between the two reviewers was 98.5% (18 discrepancies/1241 screened 

titles/abstracts), and all discrepancies were resolved after discussion. Given this high-level of agreement, I 

independently reviewed the full-text articles for inclusion in the review.  I also reviewed the reference list of 

included articles and relevant review articles published in the last 10 years to identify additional articles for 

inclusion. We did not exclude studies based on design or the type of results presented (i.e. inclusion was 

not limited to studies that presented multivariable-adjusted effect estimates) in order to present a 

comprehensive review of the literature and avoid bias towards the inclusion of articles that present non-null 

findings. 

2.2.3. Data extraction 

 

I extracted the following information for each exposure and outcome of interest from all studies that 

met the inclusion criteria: author(s), publication year, study design, study setting and time frame, sample 

size, age range of participants, exposure assessment (definition and source), outcome assessment 
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(definition and source), covariate information, statistical methods, and results (differences in means or 

proportions or effect estimates and confidence intervals). I extracted results from multivariable-adjusted 

models with and without adjustment for childhood body size when available; if multivariable-adjusted results 

were not available, I extracted differences in means or proportions or crude associations. I assessed the 

quality of included studies by using the NIH Quality Assessment Tool for Observational and Cohort 

Studies105 and the Newcastle-Ottawa Scale (NOS) for cohort or case control studies.106 I assessed cross-

sectional studies using a modified NOS for cohort studies, considering adequacy of response rate instead 

of follow-up rate. The quality scores did not affect the inclusion of the articles in the review, but we 

considered them when interpreting the results of the review. Given the heterogeneity in exposure and 

outcome assessment, as well as the statistical methods used, we present a qualitative synthesis of the 

included articles and did not quantitatively combine the study results in a meta-analysis. 

2.3 Results 

 

2.3.1. Search results 

 

This systematic search resulted in 12,413 articles, with an additional 5 articles identified by a 

manual search of the reference lists of included articles and recent review articles (see Figure 2.2 for flow 

chart of study selection). After removing 6 duplicates, I identified 12,412 articles for screening. I excluded 

12,227 articles after title and abstract review, leaving 185 articles for full-text review. After full-text review, I 

excluded an additional 89 articles, leaving 96 articles that met the inclusion criteria to be included in the 

qualitative synthesis. Figure 2.2 lists the reasons for exclusion of articles after full-text review. The most 

common reason for exclusion was the lack of at least one of the early-life body size exposures of interest 

(i.e. body size was measured after 2 years of age only) or the use of a pubertal outcome other than breast 

development, menarche or tempo (i.e. pubarche or peak height velocity). Many of the 96 included articles 

examined more than one exposure and/or outcome of interest.  Some of the articles were also conducted 

within the same study population (i.e. three articles used the (Avon Longitudinal Study of Parent and 

Children (ALSPAC)) cohort to examine maternal pre-pregnancy BMI and the age at breast 

development73,82,107). We included multiple articles from the same cohort since the articles differed in the 
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analytic techniques used or in the subset of the population included, which is informative in considering 

how these differences contribute to heterogeneity in the literature. In addition, there was significant 

heterogeneity in terms of the results presented. Null results were sometimes presented in the text only 

(data not shown), and some studies provided descriptive statistics only, particularly older studies. Table 

2.1 details the number of included studies per exposure-outcome association and includes a breakdown of 

the type of results included for each exposure and outcome assessed (text only, descriptive statistics, crude 

models, and adjusted models). We did not include tempo as a separate outcome category in Table 2.1 

since few studies examined this outcome; tempo results are included in the tables for breast development 

when presented. I extracted data from all studies, regardless of the type of results presented, and present 

this information in the supplemental tables. However, we will focus more on the papers that present 

multivariable-adjusted models in the text. We have organized the summary of the results by exposure, with 

the results for breast development presented first, followed by the results for menarche.  

2.3.2. Maternal pre-pregnancy body size, gestational weight gain and breast development 

 

Maternal pre-pregnancy weight or BMI  

Six articles from four unique studies examined the association between maternal pre-pregnancy 

body size and the timing of breast development in their daughters (Supplemental Table 2.1).73,81,82,107–109 

Higher maternal pre-pregnancy BMI was associated with earlier breast development in daughters in four of 

the five articles.73,81,82,107 Three of these analyses were conducted within the ALSPAC birth cohort,73,82,107 

which contributes to the consistency in this literature. Four of the five studies examining maternal pre-

pregnancy BMI assessed the exposure as a categorical variable, defining maternal overweight and obese 

using BMI cut-offs of 25 and 30, respectively,73,81,107,109 while one analysis assessed BMI continuously.82 

One study examined maternal pre-pregnancy weight as a continuous variable and also observed an 

association between higher weight and earlier breast development.108 All studies assessed breast 

development using Tanner staging,100 which was assessed repeatedly via parent- and self-report in the 

ALSPAC study73,82,107 and via trained research staff109 or physician81 in two U.S. studies.  
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A cross-sectional study of Belgian girls in secondary school found that higher maternal pre-

pregnancy weight was associated with earlier age of onset of breast development in unadjusted models 

(RR=1.013, 95% CI=1.006, 1.021).108 In the ALSPAC cohort, daughters of overweight and obese mothers, 

as assessed by a pre-pregnancy BMI 25, had an earlier age at transition to breast Tanner stage (TS) 2 

or 3 after adjusting for other maternal characteristics (Difference in age at transition to TS2= -0.4, 95% 

CI= -0.62, -0.25 for maternal overweight and -0.7, 95% CI=-1.00, -0.40 for maternal obesity compared with 

maternal BMI in the normal range).73 An additional study in ALSPAC that considered breast TS as an ordinal 

outcome also found an increased probability of being in a higher breast TS for daughters of overweight and 

obese mothers.107 A more recent analysis of ALSPAC with follow-up extended through age 17 years also 

found an association between higher maternal pre-pregnancy BMI assessed continuously and earlier age 

at breast development in daughters in adjusted models.  In addition, this study decomposed the total effect 

of pre-pregnancy BMI and found both a significant direct effect and an indirect effect through daughters’ 

body size, while there was not an indirect effect via daughters’ birthweight.82 Using a retrospective cohort 

design using medical record data from Kaiser Permanente, Kubo et al also found that maternal overweight 

and obesity was associated with earlier age at breast TS2 in adjusted models, with partial mediation by 

daughters’ pre-pubertal BMI (HR=1.39, 95% CI=1.30, 1.49 without daughters’ BMI and HR=1.22, 95% CI 

1.13, 1.31 with daughters’ BMI in the model).81 An earlier study by Kubo et al observed earlier breast 

development in daughters of mothers with a pregravid BMI 30 in unadjusted analyses, but the association 

was attenuated and no longer statistically significant after adjustment for race/ethnicity, household income 

and maternal age at menarche.109 This study included only 386 girls and was likely underpowered in 

adjusted models.  

Gestational weight gain  

Only one study in the ALSPAC cohort examined the association between GWG and daughters’ 

age at breast development.82 After adjusting for maternal pre-pregnancy BMI and other maternal 

characteristics, this study found that higher GWG was associated with earlier age at breast development 

(β for 1 kilogram increase in GWG=-0.28, 95% CI= -0.42, -0.14).82 Similar to the models examining pre-

pregnancy BMI, the association was partially mediated by pre-pubertal BMI, but there was no evidence of 
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mediation by birthweight. Analyses that examined the period of GWG were consistent with an inverse 

association in both early (18 weeks) and late (28 weeks) of pregnancy, while no association was 

observed with weight gain in mid-pregnancy. 

Summary 

 Overall, these studies consistently support an association between larger maternal pre-pregnancy 

body size and earlier breast development in their daughters. While daughters of underweight mothers did 

not have significantly different age at breast development compared with average-weight mothers in studies 

that examined this group separately,73,81,107 the evidence suggests a linear trend overall between maternal 

pre-pregnancy body size and timing of breast development.73,81,82 More studies are needed to replicate 

these findings, however, since five of the six articles are from the same two study populations. In addition, 

studies are needed that assess both maternal pre-pregnancy BMI and GWG separately and jointly in 

relation to age at breast development. For example, studies that examine GWG as inadequate, adequate 

or excessive based on pre-pregnancy BMI, such as using the classification of the 2009 Institute of Medicine 

(IOM) guidelines,110 are directly relevant to clinicians and may inform the guidance that they give pregnant 

women regarding lifestyle modification and guideline adherence. 

2.3.3. Maternal pre-pregnancy body size, gestational weight gain and menarche 

 

Maternal pre-pregnancy weight or BMI 

Fourteen articles examined the association between maternal pre-pregnancy body size and 

daughters’ age at menarche, with 11 articles examining BMI,71,73,82,111–118 two articles examining weight,75,108 

and one looking at both77 (Supplemental Table 2.2). Three of these studies used data from the ALSPAC 

cohort,73,82,114 four used data from various sites of the Collaborative Perinatal Project (CPP) 

cohort,77,113,115,116 and two used data from the California Child Health and Development Studies (CHDS) 

cohort.77,112 Age at menarche was reported during adolescence (age <18 years) in half of the included 

studies71,73,75,82,108,112,114,118 and recalled in adulthood (age ≥18 years) in the other studies.77,111,113,115–117 

Most studies used pre-pregnancy weight measures reported by the mother during pregnancy. Higher 

maternal pre-pregnancy BMI or weight was associated with earlier age at menarche in daughters in nine of 
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the ten studies that used regression analyses.73,75,77,82,108,111,114,115,117,118 Of the five studies that did not 

observe an association between maternal pre-pregnancy BMI and age at menarche, four were either based 

on descriptive statistics or stated the null results in the text only.71,77,112,116 Windham et al observed a crude 

association between tertiles of maternal pre-pregnancy BMI and age at menarche, but the association was 

not statistically significant after adjustment for confounders including prenatal smoke exposure, maternal 

age at pregnancy, maternal age at menarche, maternal race, and other socioeconomic factors (β=-0.09, 

95% CI=-0.34, 0.16 for BMI>26 compared with 20-26).113  

Two studies observed a modest linear association between higher maternal pre-pregnancy weight 

and earlier age at menarche in unadjusted models.75,108 Studies that assessed maternal BMI continuously 

also observed an inverse association with age at menarche. A follow-up of a Danish pregnancy cohort 

(recruited 1984-1987 in two Danish cities) observed a very modest association between age at menarche, 

reported to the nearest year only in approximately 50% of girls, and maternal pre-pregnancy BMI, equivalent 

to  a decrease in age at  menarche of 7.6 days for every one-unit increase in maternal pre-pregnancy 

BMI.117 This association was attenuated after adjustment for daughters’ BMI measured between 14-18 

years of age (difference in days = 2.9, 95% CI=-4.3, 10.1), though BMI during this age range was likely 

measured after menarche for most girls. In the ALSPAC cohort of girls born 1991-1992, menarche occurred 

3.4 months earlier for each one-unit increase in maternal pre-pregnancy BMI.82 This study also found that 

the association was mediated by daughters’ body size. Studies that examined maternal pre-pregnancy BMI 

as a categorical outcome were consistent with earlier menarche in daughters of overweight and obese 

mothers, though the categories used varied by study.73,111,114,115,118 In contrast to the studies looking at 

continuous exposures, adjustment for daughters’ pre-pubertal BMI did not attenuate the association 

between maternal overweight (BMI>25) or maternal obesity (BMI≥30) and earlier menarche in two U.S. 

populations.115,118 Daughters of underweight mothers did not have significantly later menarche than 

daughters of average-weight mothers in analyses that examined this category separately.73,82,111,119  

Gestational weight gain 

Seven of the fourteen studies that examined maternal pre-pregnancy BMI also assessed the 

association between GWG and age at menarche (Supplemental Table 2.2).71,75,77,82,113,116,118 One 
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additional study examined GWG and age at menarche in the Nurse’s Health Study (NHS) II cohort, but did 

not present results for maternal pre-pregnancy weight.83 Five of these studies reported no association 

between GWG and age at menarche, but none of these null studies used multivariable-adjusted models to 

estimate the association.71,75,77,113,116 Three studies that did present multivariable-adjusted estimates, 

including adjustment for maternal pre-pregnancy weight or BMI, all observed an association between higher 

GWG and earlier age at menarche.82,83,118 In NHSII women whose mothers participated in the Nurses’ 

Mothers’ Cohort and recalled their GWG, GWG≥40 lbs, compared with the referent group of 20-29lbs, was 

associated with early menarche (<11 years) but not late menarche (>15 years).83 The association was U-

shaped – daughters of mothers who gained <10lbs were also more likely to have early menarche. 

Adjustment for daughters’ childhood body size did not attenuate the associations between low or high GWG 

and age at menarche. Similar findings were observed in the National Longitudinal Survey of Youth (HR for 

menarche=1.12, 95% CI 1.00, 1.25 for >40lbs and HR=1.19, 95% CI 0.96, 1.47 for <10lbs compared with 

10-40lbs).118 In the ALSPAC cohort, GWG assessed continuously had an inverse linear relationship with 

age at menarche, with partial mediation by daughters’ pre-pubertal BMI.82 There was not strong evidence 

of heterogeneity by period of gestation, though the inverse association was statistically significant only for 

GWG in late pregnancy in analyses that examined multiple time periods of gestation.  

Two studies also examined GWG in relation to the 2009 IOM guidelines, which defines inadequate, 

adequate and excessive GWG differently based on pre-pregnancy BMI. For example, women with a pre-

pregnant BMI≥30 are recommended to gain 11-20lbs, while women with a pre-pregnant BMI of 18.5-24.9 

are recommended to gain 25-35lbs.110 In the National Longitudinal Survey of Youth, GWG adequacy was 

calculated as the ratio of GWG divided by the expected amount based on pre-pregnancy BMI and 

gestational age at delivery and categorized as inadequate (<88%), adequate  (88-123%) or excessive 

(>123%) based on the percent of the expected weight gain based on 2009 IOM guidelines. In models 

examining these categories with relation to age at menarche, excessive GWG was significantly associated 

with earlier menarche compared with adequate GWG. The point estimate for the inadequate GWG group 

also suggested earlier menarche in this group, but the association was not statistically significant.118 In the 

ALSPAC cohort, GWG in excess of the 2009 IOM guidelines was associated with a 24% decrease in the 

odds of late menarche (defined as >1 SD above the sample mean, or age >13.8 years, compared to 
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menarche within 1 SD of the sample mean), but was not significantly associated with early menarche 

(defined as >1 SD below the sample mean, or age <11.5 years).  Inadequate GWG was associated with a 

22% decrease in the odds of early menarche compared with daughters of mothers with adequate weight 

gain, but was not significantly associated with late menarche.82 

Summary 

 Although there is slightly more heterogeneity in the literature examining maternal pre-pregnancy 

BMI and menarche compared to the breast development literature, this is likely due to differences in 

adjustment for confounders. Most studies that controlled for maternal confounders in multivariable-adjusted 

models consistently observed an inverse association between maternal pre-pregnancy BMI and age at 

menarche. Studies of GWG consistently observed an association between high GWG, or GWG in excess 

of guidelines, and earlier age at menarche. While some studies observed earlier menarche in daughters of 

women with low GWG, this could be due to residual confounding by maternal pre-pregnancy BMI. Additional 

studies examining the interaction between maternal BMI and GWG and categorizations based on guidelines 

are needed to disentangle these two effects. In addition, since high maternal BMI and GWG are associated 

with both breast development and age at menarche, studies are warranted to examine if these factors have 

independent effects on pubertal tempo. 

2.3.4. Birth size and breast development 

 

Birthweight 

Seventeen articles from sixteen unique studies assessed the association between birthweight and 

the timing of breast development (Supplemental Table 2.3).73,75,78–80,107,120–130 Most studies used records 

of weight measured at birth, while three were based on parent recall of birthweight.80,123,126 Breast 

development was assessed using TS, with 12 studies reporting breast TS as assessed by a clinician or 

trained research staff, 4 using parent or self-reports, and 1 study using the self-reported age at breast 

development as the outcome. Since studies differed in the assessment of breast development, I will 

consider studies of breast onset (TS≥2), later breast development (TS3-5) and pubertal tempo separately.  
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Onset of breast development 

In the nine studies that examined the onset of breast development (TS≥2), six reported no 

association,73,80,123,124,126,128 two observed earlier breast development in girls that were smaller at birth,78,127 

and one observed later breast development in girls that were smaller at birth.75 In a study of 216 Indian girls 

born 1968-1971, Bhargava et al observed a median age at breast TS2 of 10.7 years in term girls with a 

birthweight <2000g who were small for date compared with 11.1 years in control girls with a birthweight 

≥2500g.127 Another study of 38 full-term girls in Italy also observed earlier age at breast development in 

girls with a birthweight below the third percentile for gestational age compared with girls with a birthweight 

between the 25th and 75th percentiles (9.9 vs 10.4 years, respectively).78 However, neither study reported 

a test of statistical significance for this difference. A UK study of 69 girls with very low birthweight (defined 

as <1251g or <1501g and gestation<31 weeks) did not observe a difference in the number of girls with 

TS≥2 or median TS in adolescence compared with 81 normal birthweight controls, though the low 

birthweight girls in this study were all preterm.128 In full-term girls in ALSPAC, neither birthweight measured 

continuously nor small for gestational age (SGA), defined as birthweight<10th percentile of gestational age, 

were significantly associated with age at breast development, though the point estimate for SGA was in the 

direction of earlier breast development (Diff= -0.23, 95% CI= -0.55, 0.09). Two studies in the U.S., a crude 

model in the BCERP pubertal cohort and a model adjusted for childhood body size in NHANES, did not 

observe an association between birthweight<2500g and age at breast development.80,126 The only study 

that observed an inverse linear association between birthweight and breast development (earlier age in 

term girls of higher birthweight) presented results that were adjusted for weight gain in infancy and 

childhood.75  

Later stages of breast development 

In the eight studies that examined later stages of breast development, four were null,79,107,120,130 two 

observed more advanced breast TS for age in smaller girls,121,122 one observed more advanced breast TS 

at 14 years of age in higher birthweight girls,129 and one observed a U-shape association between 

birthweight and breast TS.80 Two studies of 35 and 29 girls, respectively, in the Netherlands observed a 

trend of lower chronological age adjusted for mean pubertal age in girls with lower birthweight, suggesting 
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a more advanced breast TS at a given age.122,131 Given the small sample size in these studies, the 

associations observed could be due to chance. Two additional small studies of extremely low birthweight 

infants also did not observe a difference in the proportion of girls at higher TS compared with normal weight 

infants.120,130 In a study of 130 Cuban adolescents that weighed at least 1500g at birth, a positive correlation 

was observed between birthweight and breast TS at 14 years of age, suggesting earlier maturation in higher 

birthweight girls.129 A study of 956 girls age 8-11 years using NHANES, which did not observe an 

association with birthweight when comparing breast TS2 with TS1, observed a U-shape association 

between birthweight and being in TS3-5 compared with TS1. Compared with the referent group of 3000-

3499g, girls with a birthweight of 2500-2999g were more likely to be in TS3-5 (OR=3.28, 95% CI=0.99, 

7.32), as were girls with a birthweight ≥4000g (OR=3.18, 95% CI 1.39-8.25), in models adjusted for age, 

race/ethnicity, and childhood height and BMI. The U-shape suggests that postnatal growth patterns may 

modify the association between birthweight and breast development. In the ALSPAC cohort, the probability 

of being in a higher breast TS did not differ between girls with a birthweight <2500g, 2500-3999g or ≥4000g  

in models with and without adjustment for childhood BMI.107 Birthweight, assessed continuously, was also 

not associated with breast TS in the Vulnerable Windows Cohort Study.79 

Pubertal tempo 

Two studies examined whether pubertal tempo differed in girls born SGA or with very low 

birthweight compared with appropriate for gestational age (AGA) or normal birthweight girls. There was no 

difference in the time interval between breast development and menarche in 116 girls born <2000g in New 

Delhi compared with 100 full-term girls with birthweight ≥2500g.127 However, a study of 16 SGA and 25 

AGA girls in Chile observed slightly faster progression through breast TS during two years of follow-up in 

the girls born SGA.125  

Birthlength 

Three studies examined the association between birthlength and the timing of breast 

development.73,79,124 Birthlength was either measured at birth by study personnel or abstracted from medical 

records and assessed continuously in each study. Birthlength was not associated with timing of breast 
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development in any of the studies, with the outcome defined as breast TS at 11 years of age,79 age at 

transition to breast TS 2 or 3,73 or breast development between 8 and 9 years of age compared with greater 

than 9 years.124 

Summary 

Overall, there was no consistent pattern between birthweight and the timing of breast development.  

The studies that observed earlier breast development in low birthweight girls could be due to chance, given 

the small size of these studies (<150 girls).78,127 However, these studies also compared girls that weighed 

either <2000g at birth or had a birthweight below the 3rd percentile for gestational age, representing the 

extreme low of the distribution, compared with normal birthweight or AGA girls. It may be that girls that are 

extremely low birthweight and/or preterm experience earlier breast development. However, studies with 

increased statistical power to study intrauterine growth restriction are needed to assess whether there is a 

threshold effect in the tail of the distribution. In general, studies that were not selected for low birthweight 

do not support an association between birthweight and age at breast development. The few studies that 

assessed birthlength in addition to birthweight also do not support an association with age at breast 

development. 

2.3.5. Birth size and menarche 

 

Birthweight 

Seventy-three articles examined the association between birthweight and age at menarche, though 

several studies resulted in multiple included publications (i.e. three papers used the ALSPAC cohort, two 

papers used NHANES data, etc) (Supplemental Table 2.4). The majority of the studies assessing the 

association between birthweight and age at menarche were conducted in prospective cohorts (N=49), but 

we also identified 17 cross-sectional studies, 2 retrospective cohorts, 1 nested case-control study and 3 

twin studies. Birthweight was measured prospectively or abstracted from records in 62% of studies, while 

the remainder relied predominately on parent recall. The majority of studies used self-reports of age at 

menarche from adolescent girls, while 14 studies used recalled age at menarche from adult participants.  

Overall, the results of these studies were not consistent. More than 50% of studies did not observe a 
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statistically significant association between birthweight and age at menarche. Of the studies that did 

observe an association, most observed earlier age at menarche in girls with lower birthweight, but a few 

observed an association in the opposite direction. Given the heterogeneity of this literature, particularly in 

terms of birthweight measures and analytical approaches used, I will briefly review studies presenting 

descriptive or crude analyses only and focus more on studies that presented multivariable-adjusted 

estimates of the effect of birthweight on age at menarche, particularly studies that reported results with and 

without adjustment for postnatal size or growth. 

Descriptive statistics 

In the twenty-five studies that presented descriptive statistics only (predominantly mean age at 

menarche by birthweight category), fifteen did not observe a significant association between birthweight 

and age at menarche.112,115,128,132–143 Seven studies observed an earlier age at menarche in girls with lower 

birthweight,35,78,118,120,144–146 though five of these studies did not present a test of statistical significance for 

the observed difference. The lowest mean birthweight was observed in girls with menarche before 12 years 

of age in a subset of women born in 1947 in the Thousand Families in Newcastle upon Tyne study.144 

Similar patterns were also observed in the ALSPAC cohort and the National Longitudinal Study of Youth 

Children and Young Adult survey of girls born in the late 1980s and 1990s.35,118 Studies in Canada, the 

U.S. and Italy observed an earlier mean age at menarche in low birthweight or SGA girls compared with 

normal birthweight or AGA girls;78,120,145 the observed differences were approximately 6 months or less. A 

study in monozygotic twins who suffered from twin-to-twin transfusion syndrome (TTTS) in utero, leading 

to large birthweight differences in co-twins, found that the twin with lower birthweight experienced menarche 

at an earlier age than her co-twin in 77% of pairs (10/13), with almost a year difference in median age 

between the lower and higher birthweight twin.146 Although twin studies control for genetics and shared 

environment by design, twins exposed to TTTS are not representative of the general population. Three 

studies reported a later age at menarche in girls with lower birthweight. In a small Danish study, average 

age at menarche was 6 months later in 34 girls with birthweight <2000g compared with 31 girls born full-

term with a birthweight between 3000-4000g.147 In a follow-up study of 39 very low birthweight (<1000g), 

42 low birthweight (1000-1499g) and 16 normal birthweight (≥2499g) infants in Australia at 14 years of age, 
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Ford et al observed that 15% of girls born<1000g were still pre-menarcheal at 14 years of age, compared 

with 6% of normal birthweight girls.130 However, a p-value was not provided for this difference and all low 

birthweight girls were post-menarche, so the difference is likely due to chance.130 A cross-sectional study 

of Greek adolescents reported a significant association between birthweight and age at menarche, with a 

later age at menarche in girls with a birthweight below 2500g;148 however, this was limited to one of two 

regions, neither of which had a consistent pattern. Six studies reported no association between birthweight 

and age at menarche in the text only (data not shown).123,149–153 

Unadjusted or age-adjusted models only 

 Nine studies presented crude or age-adjusted analyses only examining birthweight and menarche; 

of these, six were null,79,114,154–158 two observed an earlier age at menarche in lower birthweight girls,127,159 

and one observed a later age at menarche in lower birthweight girls.160 Bhargava et al found that the median 

age at menarche was earlier in Indian girls with a birthweight <2000g compared with girls with a birthweight 

≥2500g; the difference was 6 months earlier in girls <2000g born pre-term and 12 months earlier in girls 

born full-term.127 Median age at menarche was approximately 8 months earlier in girls in the lowest tertile 

of birthweight (<3200g) compared with the highest tertile (≥3700g) in a Norwegian cohort. In contrast, girls 

born at <2500g had later age at menarche than girls with a birthweight ≥2500g in a cross-sectional study 

in Poland.160 In this same study, there was not a significant difference in age at menarche when size for 

gestational age (SGA, AGA and large for gestational age (LGA)) were examined instead of birthweight. 

Among the null studies, three did not observe a significant correlation between birthweight and age at 

menarche,79,156,158 and two observed no difference in mean birthweight between pre-menarcheal and 

menarcheal girls, controlling for age.155,157 There was also no association between continuous birthweight 

and odds of menarche by age 11 years in the ALSPAC cohort.114 

Multivariable models without adjustment for postnatal size 

Twelve studies examined the association between birthweight and age at menarche in study 

populations born in the 1950s through 2000s using multivariable models that did not adjust for postnatal 

body size. Six studies observed earlier age at menarche in girls with lower birthweight70,71,161–164 and six did 
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not observe a significant association.73,74,125,165–167 No studies observed a later age at menarche in low 

birthweight girls in confounder-adjusted models. Studies that did not observe an association between 

continuous measures of birthweight and menarche include analyses in larger cohorts such as ALSPAC in 

the U.K.73 and the Young Lives cohort in India, Peru and Vietnam,167 along with analyses of several hundred 

girls in NHANES74 and Kaiser Permanente Hawaii165 in the U.S.  Small studies examining SGA girls in 

Chile125 and very low birthweight girls in Finland166 also did not find significant differences in age at 

menarche, adjusting for gestational age. In full-term, singleton girls in the Young-HUNT Study in Norway, 

girls in the highest quintile of birthweight had a later age at menarche than girls in the lowest quintile (p for 

trend=0.03).70 This pattern was similar in models adjusting for gestational length, maternal age at menarche 

and parental height and weight. Birthweight below 2500g was associated with increased odds of menarche 

before age 11 years, controlling for early-life factors including prematurity, in women in the Sister Study, a 

cohort of women with a sister affected with breast cancer.161 The Millennium Cohort Study in the U.K. also 

found, using a continuous measure of birthweight, that girls with lower birthweight had increased odds of 

menarche by age 11 years, controlling for income and ethnicity.164 A small study of 58 South Asian women 

in central London also found lower birthweight to be associated with earlier age at menarche, adjusting for 

gestational age and first-generation migrant status.163 In the Raine cohort in Western Australia, girls with 

an expected birthweight ratio (EBW), a measure of birthweight adjusted for maternal age, height, parity, 

sex and gestational age, below the median had a significantly earlier menarche than girls with an EBW 

above the median.71 Sorensen et al examined the association between birthweight standardized for 

gestational age and age at menarche using both marginal models to measure population-level effects and 

paired analyses to measure within-family effects in Danish twins.162 Interestingly, lower birthweight for 

gestational age was associated with earlier age at menarche in marginal models, but being the smaller twin 

was not associated with earlier age at menarche in within-twin comparisons. The within-pair associations 

were also null when limited to monozygotic twins and twins with a large birthweight difference (>1 or >2 

SDS), which differs from the study of 13 twin sets with a large birthweight difference due to TTTS discussed 

above.146 The authors suggest, given the differences between the marginal and paired analyses, that the 

association between low birthweight and early menarche is driven by factors shared by twins, which could 

be genetic or environmental, and is not by non-shared factors such as intrauterine nutritional factors.162  
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Multivariable models with adjustment for postnatal size 

Twenty-four articles examined the association between birthweight and age at menarche while 

controlling for at least one measure of postnatal size or growth, which may mediate or moderate an 

association between birthweight and menarche. Fourteen articles observed a significant association 

between lower birthweight and earlier age at menarche while controlling for later growth,34,71,72,164,167–176 four 

reported later age at menarche in girls with lower birthweight,75–77,177 and six did not observe a significant 

birthweight association.116,165,178–181 The studies that observed earlier age at menarche in girls with lower 

birthweight generally controlled for measures of body size in childhood or adolescence. In a cross-sectional 

study of Polish adolescents, girls born SGA were 2.5 times more likely to have reached menarche by age 

14 years than AGA girls, adjusting for body size at 8 years.173 The Millennium Cohort Study in the UK also 

observed increased odds of menarche by age 11 years in girls with lower birthweight, controlling for BMI at 

7 years.164 Birthweight was modestly associated with age at menarche in three studies, one in an Australian 

cohort,171 one in the Philippines,72 and one in a cohort of girls from Vietnam, Peru and India,167 using Cox 

proportional hazard models, which controlled for BMI at age 8-9 years, BMI at 8 years and change in BMI 

and height Z-scores from 1-8 years, respectively.  

In studies that used linear regression models to examine associations between continuous 

measures of birthweight and age at menarche, a one kilogram increase in birthweight was associated with 

a delay in age at menarche of 2-6 months, controlling for body size in childhood or adolescence.168,170,174,176 

The pattern was similar in studies that assessed birthweight in categories. In the DONALD study in 

Germany, girls with a birthweight between 2500-3000g experienced menarche 8 months earlier than girls 

with a birthweight >3000g after controlling for pre-pubertal BMI. In French women in the E3N cohort, girls 

with a birthweight >4000g had menarche 1.5 months later, on average, than girls with a birthweight <2500g, 

controlling for body silhouette at menarche, physical activity in adolescence and many early-life 

confounders.169 Several studies also suggested that the earliest age at menarche occurred in girls who 

were light at birth, but heavier than their peers by childhood.71,176 However, in the Newcastle Thousand 

Families study, girls who were youngest at menarche were born heavy for their gestational age and were 
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heavy at age 9 years, and the group with the latest age at menarche were also heavy for their gestational 

age and were light for their age at 9 years.177 

However, six studies controlling for later growth did not observe a significant association between 

birthweight and menarche, though the point estimates were consistent with earlier menarche in lower 

birthweight girls in four of these studies.165,178–180 In NHANES, point estimates suggested that both girls with 

birthweight <2500g and those with birthweight >4000g had earlier age at menarche than girls with normal 

birthweight (β=-0.24, 95% CI=-0.60, 0.12 and β=-0.32, 95% CI=-0.68, 0.03 for low and high birthweight, 

respectively) controlling for BMI-for-age percentile at age 8-15 years. Higher birthweight was also 

associated with earlier age at menarche in the New York site of the CPP controlling for changes in height 

and weight from birth to 7 years, though this association was limited to girls with a BMI below the median 

at age 7 years.116 Higher birthweight was associated with earlier age at menarche in the North Carolina 

Infant Feeding Study as well, but only after controlling for changes in BMI Z-score from birth to 5 years of 

age.75 

Studies that reported contradictory findings depending on the adjustment factors are particularly 

useful in understanding heterogeneity in the literature. For example, Cooper et al found a positive 

relationship between birthweight and age at menarche using adolescent follow-up data from the 1946 

British Birth Cohort. Adjusting for height and weight at age 7 years, the girls with the lowest birthweight who 

became heavy by 7 years had the earliest age at menarche.172 In another analysis of the same cohort, 

followed up to age 48 years, dos Santos Silva et al did not observe a significant crude association between 

birthweight and age at menarche, though the point estimate was consistent with earlier age in girls with 

lower birthweight (HR=0.96, 95% CI 0.87, 1.05).76 After controlling for height growth in infancy, the 

association between birthweight and menarche reversed direction (HR=1.17, 95% CI=1.06, 1.36), leading 

the authors to conclude that menarche occurred earlier in girls with a higher birthweight for a given rate of 

postnatal growth. Similarly, birthweight was not associated with age at menarche in crude models in an 

adult follow-up of women born in the 1960s in the CHDS and CPP.77 After controlling for postnatal changes 

in percentile rank change in weight from birth-4 years, birthweight was positively associated with age at 

menarche (HR=1.78, 95% CI 1.11, 2.85). However, when the authors controlled for conditional measures 
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of postnatal weight gain, which are not correlated with birthweight, the birthweight association was again 

null (see Table 2.2 for an overview of different methods for modeling infant growth). Overall, the lack of 

consistency in the association between birthweight and menarche suggests that the association could 

actually be driven by postnatal growth patterns. Disentangling pre- and postnatal growth effects are 

challenging since they are naturally correlated, though the degree of statistical correlation depends on how 

these exposures are measured and modeled.   

Birthlength 

While more than 70 studies examined the association between birthweight and age at menarche, 

only 17 of these studies also assessed birthlength. Of these, 11 reported no 

association,35,70,73,77,79,116,140,154,158,162,178 3 observed earlier age at menarche in girls who were shorter at 

birth108,159,170, and 3 observed later age at menarche in girls who were shorter at birth.72,169,175 In birth cohorts 

from Switzerland,158 New Zealand140 and the U.K.,35 mean birthlength did not differ by age at menarche. 

There was no correlation between birthlength and menarche in a Jamaican birth cohort79 or in a Danish 

twin study.162 Quintiles of birthlength were not associated with age at menarche in a Norwegian birth 

cohort.70 Continuous measures of birthlength were also not associated with age at menarche in confounder-

adjusted models in the ALSPAC cohort73 or in models adjusted for birthweight and measures of postnatal 

growth in height and weight in analyses in adult follow-ups of two U.S. birth cohorts.77,116 Age at menarche 

was not significantly different in girls born short or tall for gestational age, adjusted for maternal factors and 

postnatal growth in a Swedish study.178 This was consistent with a study in Bangladesh which assessed 

relative size as an exposure and did not find a significant difference in babies classified as small compared 

with those born normal or tall.154 

Birthlength was positively associated with age at menarche in a cross-sectional Belgian study when 

unadjusted for confounders.108 A positive association was also observed in a Norwegian cohort of girls born 

in the 1980s, where the median age at menarche was 13.33 years for girls with a birthlength 51cm and 

12.50 years for girls with a birthlength <49cm.159 Although the medians were unadjusted, the authors noted 

that adjustment for potential confounders did not substantially affect the results. In European adolescents, 

birthlength was also positively associated with age at menarche, but only after controlling for BMI Z-score 
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in adolescence.170 In contrast, three studies observed negative associations between birthlength and age 

at menarche in models that also controlled for birthweight. In the E3N cohort of more than 96,000 French 

women, girls with a birthlength >51cm experienced menarche 1.8 months earlier than girls with a birthlength 

<48cm, controlling for birthweight and other pre- and postnatal exposures.169 Higher birthlength was also 

associated with earlier age at menarche, adjusting for birthweight, gestational age and maternal 

characteristics, in a birth cohort in the Philippines (HR per 1 cm increase=1.08, p<0.01).72 However, there 

was an interaction between birthweight and birthlength, both dichotomized at the median. Compared to 

girls who were short and heavy at birth, the earliest age at menarche was observed in girls who were long 

and light (adjusted HR=1.54). A similar pattern was observed in an Australian cohort. Although neither 

weight nor length at birth were individually correlated with age at menarche, girls who were long and light 

experienced menarche one year earlier, on average, than girls who were short and heavy, adjusted for BMI 

Z-score in childhood.175 

Summary 

 Overall, neither birthweight nor birthlength were consistently associated with age at menarche. 

Comparisons across studies is limited by differences in exposure assessment, including whether or not 

size at birth is adjusted for gestational age, and differences in adjustment factors and analytic techniques. 

Although there was heterogeneity in birthweight findings across each analytic group considered (descriptive 

statistics only, unadjusted associations, and multivariable associations with and without adjustment for 

postnatal growth), the majority of studies that controlled for measures of body size in childhood or 

adolescence observed associations between lower birthweight and earlier age at menarche. This suggests 

that growth patterns between these two time periods may contribute to the observed association, but 

studies that controlled for infant or early childhood growth patterns did not observe a consistent birthweight 

finding. Studies that examine the interaction between birthweight and postnatal growth patterns can 

determine whether different trajectories of growth in early life are associated with differences in age at 

menarche. 

2.3.6. Size and growth during infancy and breast development 
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 Eight prospective cohort studies examined the association between measures of either size or 

growth between birth and 2 years of age and the timing of breast development (Supplemental Table 

2.5).73,75,79,92,182–185 All studies assessed the exposure using prospectively collected anthropometric 

measures, either by trained study personnel or via a link to medical records. Four studies examined the 

age at breast development as the outcome,73,75,92,184 while the other 4 studies examined breast TS at a 

specific age or study visit.79,182,185,186 One study examined the tempo of breast development in addition to 

age at onset.184 Breast TS was assessed by a physician or trained staff in most studies, while two used 

parent- and/or self-reports of breast TS.73,75 Given the heterogeneity in exposure assessment, we will briefly 

summarize the results of each study. 

Measures of size (weight, BMI or height) at specific time points 

 Four studies examined the association between measures of size (height, weight or BMI) at specific 

time points during infancy and timing of breast development. BMI at 1 year of age was positively correlated 

with breast TS (r=0.43) in high school students in Cuba, all of whom had a birthweight 2500g at birth and 

were TS 3, 4, or 5 at the study visit, suggesting that girls with a larger body size at 1 year reached advanced 

TS at an earlier age than girls who were smaller in infancy.182 Using a mixed measures model of repeated 

measures of Z-scores in weight, height, or BMI from birth to 5 years of age in Turkish girls, Aydin et al 

observed that girls with breast development at age 6-9 years of age had a higher weight and BMI Z-score 

than girls without breast development starting at 9 months, but this difference was only statistically 

significant at 18 months of age and at the study visit. In contrast, height Z-score was only significantly 

different in girls with and without breast development at the study visit.185 In a U.S. cohort, German et al 

observed inverse correlations between height and BMI Z-scores and age at breast development at 15 

months of age, but the correlation for BMI Z-score did not reach statistical significance until 36 months of 

age.184 This study also examined the progression of breast development, and did not observe an 

association with either height or BMI at any age. One study in Senegal compared breast TS in adolescence 

by stunting status in infancy, with stunting defined as at least one length measure <2 Z-scores based on 

World Health Organization (WHO) reference data between 6-18 months of age. This study did not observe 

a significant difference in the distribution of breast TS by stunting status,183 though the growth patterns and 
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pubertal timing are likely different in this Sengalese population than in the other study populations 

examined, which were less likely to be malnourished. 

Measures of growth (Change in weight, height or BMI) 

 Four studies examined the association between measures of growth (change in height, weight or 

BMI between two time points) in multiple time windows and the timing of breast development. In Jamaican 

girls, Boyne et al looked at the correlations between growth in height, weight and BMI from 0-6 months and 

6 months-2 years and breast TS at 11 years of age. For each exposure, growth was defined as the amount 

that the size at the end of the time interval exceeded the size that would have been predicted by linear 

regression using the size at the beginning of the interval. The correlation coefficient was positive, 

suggesting earlier maturation, for weight, BMI and height gain and breast TS in each interval (range 0.02-

0.15), but none of these correlations were statistically significant.79 Maisonet et al examined the association 

between growth in weight and BMI, defined by changes in weight or BMI Z-scores, from 0-2 months, 2-9 

months and 9-20 months in the ALSPAC cohort. Although the point estimates differed slightly depending 

on whether the analysis also controlled for birthweight and growth in other time periods or whether the 

outcome was breast TS 2 or TS 3, the inference was consistent with earlier age at breast development 

in girls with faster gain in weight or BMI in infancy.73 These results were consistent with those in the North 

Carolina Infant Feeding Study, which found that faster weight gain from 0-6 months, 6-12 months and 1-2 

years was also associated with earlier age at breast development,75 and the Turkish cohort, which found 

that girls with breast development at ages 6-9 years of age were more likely to have experienced rapid 

weight gain from 6-15 months of age than girls without breast development.185  

In the “Children of 1997” birth cohort in Hong Kong, the authors used latent class analyses to 

classify girls into 5 growth trajectories based on their birthweight and weight gain in the first year of life. 

Compared with girls with an average birthweight and stable weight gain in the first year, girls with below 

average birthweight and slow infant weight gain had later age at breast development (Time ratio (TR)=1.02, 

95% CI=1.01, 1.03). The association was attenuated after adjusting for BMI in childhood and reversed 

direction with additional adjustment for height in childhood (TR=0.98, 95% CI=0.97, 0.99), which the authors 

attribute to the tendency of girls in this trajectory to be shorter and thinner throughout childhood.92 While 
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this article supports an overall association between infant growth and breast development, the association 

from the mediator model is difficult to interpret. If there is interaction between infant growth and BMI or 

height in childhood, then the controlled direct effect differs depending on the level of the mediator.187 In the 

case of infant growth and childhood BMI or height, the association between slow weight gain and age at 

breast development may differ for girls that catch up in height or BMI after infancy compared with those that 

remain shorter and thinner, and studies should examine this potential interaction. 

Summary 

 Overall, these studies support that the rate of growth in weight or BMI during infancy is associated 

with the timing of breast development. Girls with rapid gain in weight or BMI at any point during the first two 

years of life experience earlier breast development than girls with stable or slow growth. These findings are 

also consistent with the studies of size, which suggest that girls with a higher BMI by late infancy mature 

earlier than girls with a lower BMI, and suggest a similar association with height in infancy. In comparison 

with the birthweight literature, rapid weight gain during infancy is a more consistent predictor of earlier 

breast development than small size at birth. 

2.3.7. Size and growth during infancy and menarche 

 

 Eighteen studies examined the association between measures of size or growth during infancy and 

age at menarche (Supplemental Table 2.6);34,35,71–73,75–77,79,116,158,167,183,184,188–191 two of these studies were 

both conducted within the ALSPAC cohort.35,73 Fourteen of these studies collected age at menarche 

information in adolescence, while three used self-reports of age at menarche from adult participants and a 

one study used a mixture of reports in adolescence and in adulthood. The majority of studies looked at 

measures of both height and either weight or BMI in infancy.  Six studies reported measures of size only, 

while 12 studies looked at measures of growth, sometimes in addition to size. Generally, most studies 

examined size measures using descriptive statistics, while growth measures were examined more often 

using multivariable-adjusted models.  

Weight or BMI at specific time points 
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 Twelve studies compared measures of weight or BMI during infancy in relation to age at menarche. 

BMI at 1-2 years of age and BMI Z-score at 15 months were not significantly correlated with age at 

menarche in two studies, respectively; however, the correlation coefficients were both inverse and similar 

to each other in magnitude.184,188 In the Young Lives cohort, menarcheal girls had a significantly higher 

average BMI Z-score at 1 year of age than pre-menarcheal girls.167 However, several other studies did not 

observe an association between BMI at 1 year71,158 or 2 years76,189 and age at menarche.  

Studies that looked at multiple measures of weight in infancy tell a more consistent story. In the 

ALSPAC cohort, there was no difference in weight by age at menarche at 2 months of age, but by 9 months 

of age girls with menarche before age 12 had significantly higher weight, and this difference was even 

larger for weight at 19 months (similar results were also observed for BMI).35 A similar pattern was observed 

in the North Carolina Feeding study and the Birth to Twenty cohort in South Africa, where differences in 

weight-for-age by age at menarche began to emerge by 1 year of age,75,191 though in the South African 

cohort these trajectories converged again by 4 years of age.191 Higher weight-for-age Z score (and weight-

for-height Z-score) at 19.4 months was also associated with an increased risk of menarche before 12 years 

of age in the Pelotas birth cohort, adjusting for early-life confounders.190 Finally, two studies examined the 

mean weight at 4 months and 12 months of age by menarche status at 12 years of age. In the New York 

site of CPP, there was no significant difference in weight at either age by age at menarche.116 In an analysis 

of the New England CPP and the CHDS studies, girls with menarche before age 12 had a higher mean 

weight at both time points, but a test of statistical significance was not provided.77 These studies are not 

consistent in identifying specific time points when higher weight is associated with age at menarche, but 

they suggest that girls with higher weight or BMI by late infancy may have an earlier age at menarche. 

 Growth (change in weight or BMI) 

 Twelve studies assessed the association between weight or BMI gain during infancy and age at 

menarche.34,35,72,73,75–77,79,116,158,190,191 Ten of the twelve studies observed that faster growth in weight or BMI 

during at least one time period in infancy was associated with earlier age at menarche in girls. Fast growth 

from birth to 1 year, defined as a weight or length increment above the sample median, was associated 

with earlier age at menarche in the Cebu birth cohort in the Philippines in multivariable-adjusted models.72 
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Although the earliest age at menarche was observed in girls who were long and light at birth and 

experienced fast growth in infancy, girls with fast growth had an earlier age at menarche than girls with slow 

growth within each birth size category. The exception was girls who were short and heavy at birth -  the 

group with the latest age at menarche overall. In the Birth to Twenty cohort, girls with rapid weight gain from 

birth to 1 year, defined as gain in weight Z-score >0.67, also had an earlier age at menarche compared with 

girls with slow growth, defined as a change in weight Z-score <-0.67 (12.5 vs. 13.1 years, respectively), 

which persisted after adjustment for early-life confounders.191 Three studies that assessed growth from 

between birth and 2 years had similar inference. Girls in the highest tertile of BMI change from 0-2 years 

had an earlier age at menarche compared with girls in the lowest tertile in the 1946 British birth cohort, 

controlling for birthweight, infant and childhood growth in height and BMI rate in childhood; there was no 

evidence of effect modification by birthweight.76  Rapid weight gain from 0-2 years, defined as >0.67 change 

in weight Z-score, was associated with earlier age at menarche compared with a change of 0.67 in girls 

from the DONALD cohort.34 In this study, there was a significant interaction with birthweight, and girls with 

a birthweight between 2500-3000g who also experienced rapid infant weight gain experienced the earliest 

age at menarche. Rapid weight gain from 0-19.4 months was also associated with earlier age at menarche 

in the Pelotas Birth cohort; while the association was observed across birthweight tertiles, the risk of early 

menarche was highest in girls who were small at birth and experienced rapid weight gain in infancy.190  

For studies that examined multiple windows of growth between birth and 2 years, associations were 

generally inverse, with some differences depending on the window of exposure. In an analysis of the 

ALSPAC cohort which examined age at menarche (<12, 12-13, and >13 years) as a continuous outcome, 

rate of weight gain from 0-2 months and 2-9 months were significantly associated with earlier menarche, 

controlling for maternal smoking during pregnancy, birth order and infant feeding, but not weight gain from 

9-19 months.35 In another analysis of a smaller subset of the ALSPAC cohort using survival methods, faster 

weight gain from 0-2 months, 2-9 months and 9-20 months, assessed using change in weight Z-score, were 

inversely associated with age at menarche, though the statistical significance of each time period differed 

slightly depending on the other growth measures in the model.73 For example, the weight gain from 9-20 

months was not a significant predictor of age at menarche until weight gain from 0-2 months and 2-9 months 

was also included in the model, which suggests that weight gain in late infancy was associated with 
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menarche only after conditioning for the weight gain trajectory up until that point. In contrast, the negative 

coefficient for weight gain from 0-2 months was not statically significant (p=0.15) after controlling for 

birthweight and birthlength though the precision of this estimate could be affected by the moderate 

correlation between weight gain from 0-2 months and birthweight (r=-0.41). The inference was similar, 

though the point estimates were lower in magnitude, in model examining the change in BMI Z-score instead 

of weight.  

In the North Carolina Feeding Study, faster weight gain from 0-6 months, 6-12 months and 1-2 

years were all associated with earlier age at menarche in models that included birth weight, weight gain in 

all three time periods, weight gain from 2-5 years, maternal pre-pregnancy weight and race.75 This was 

consistent with the findings from two 1960s U.S. birth cohorts (CHDS and two sites of the CPP), which 

found that rapid weight gain, defined as the within-cohort percentile rank change, from 0-4 months and 4-

12 months were associated with earlier age at menarche in the overall cohort and within sibling subsets,77 

which controls for many early-life confounders by design.192 These results were consistent after adjusting 

for height gain in these same time periods. The results were also generally consistent when conditional 

growth methods were used instead of percentile rank change (see Table 2.2 for a comparison of different 

methods for assessing infant growth, informed by 193–196). Infants who grow rapidly in one time period are 

less likely to experience rapid growth in the adjacent time period, often referred to as the regression-to-the-

mean effect.193 The results from the conditional growth methods, which remove the correlation between the 

growth measures at different time points, were generally closer to the null than the effect estimates from 

the percentile rank change models. An analysis of the New York site of the CPP also found that girls with 

faster weight gain from 4-12 months had an earlier age at menarche, but not weight gain from 0-4 months.116 

The two studies that did not detect a significant infant weight gain association both had small sample sizes.  

In 96 Swiss girls, change in BMI Z-score from birth to 1 year of age was not associated with age at menarche 

in an unadjusted linear regression model.158 There was also no association between gains in weight or BMI 

from 0-6 months and 6 months-2 years in 140 Jamaican girls – correlation coefficients were inverse, but 

not statistically significant.79 

Measures of height 
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Thirteen studies provided some data on height between birth and 2 years and age at menarche, 

though many of the results shown were descriptive. Height at 1 year was not correlated with age at 

menarche in the Raine birth cohort.71 Height at 1-2 years, however, was inversely correlated with age at 

menarche (r=-0.35, p<0.05) in data from women born in the 1930s and 1940s from the Harvard Longitudinal 

Studies of Child Health and Development.188 The correlation coefficient between height at 15 months and 

age at menarche was also inverse in a study of U.S. girls born in 1990, but the correlation was not 

statistically significant until 54 months of age.184 This was consistent with U.S. data from the Children of the 

National Longitudinal Study of Youth, which found statistically significant height differences by age at 

menarche starting at age 5 years, though the pattern was observed earlier.189 In the Pelotas Birth cohort in 

Brazil, girls with menarche before 12 years had higher height-for-age Z-scores at 19.4 months than girls 

who experienced menarche at age 12 years or later, adjusting for maternal confounders (p for 

trend=0.01).190 Higher height-for-age Z-scores at 1 year and 1-2 years were also observed in girls with 

earlier menarche in study populations in India, Peru and Vietnam167 and South Africa,191 respectively. In 

the ALSPAC cohort, height at 2 months did not differ by age at menarche. By 9 months, however, girls with 

menarche before 12 years were taller, on average, though the difference in height was not statistically 

significant until 19 months of age.35 In the remaining studies that presented mean height by age at 

menarche, there was no association in two studies,116,158 while an additional two studies suggested that 

girls with earlier menarche had taller mean height at 1 or 2 years of age without providing statistical tests 

of this difference.76,77 Stunting was not associated with menarche status in a Sengalese cohort.183 Overall, 

these studies suggest that girls who are taller by late infancy are more likely to experience menarche at an 

earlier age, though none of these studies controlled for weight. 

Measures of height growth 

 Six studies examined the association between rate of height gain in infancy and age at menarche. 

In a Swiss cohort, mean height gain between birth and 1 year was similar in girls with early vs late 

menarche.158 Using conditional measures to assess changes in height, neither height gain from 0-6 months 

nor 6 months-2 years were associated with menarche at age 11 years in the Vulnerable Windows Cohort 

Study in Jamaica.79 In contrast, 3 studies did observe significant associations between height gain in infancy 
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and age at menarche. In the ALSPAC cohort, height gain from 2-9 months and 9-19 months, but not 0-2 

months, was associated with earlier age at menarche; however, the associations were no longer statistically 

significant after adjustment for infancy weight gain.35 A similar pattern was observed in an adult follow-up 

of the CHDS and CPP cohorts. Height gain from 0-4 months and 4-12 months were associated with earlier 

age at menarche in models that did not control for weight gain during those periods; however, when weight 

gain measures were also included, the effect estimates for height gain were attenuated.77 Height gain during 

these same two periods was also not associated with age at menarche in the New York site of the CPP in 

models controlling for weight gain.116 In the 1946 British Birth Cohort, girls in the highest tertile of height 

gain from 0-2 years had an earlier age at menarche compared with girls in the lowest tertile in models that 

did not adjust for changes in BMI.76 This association was attenuated in models that adjusted for rate of 

height growth in childhood, and was null in models that additionally adjusted for gains in BMI in infancy and 

childhood. Together, these studies suggest that rates of weight gain may drive associations between rapid 

height gain and earlier age at menarche. 

Summary 

Similar to the studies of breast development, studies of infant growth and age at menarche 

consistently observed earlier age at menarche in girls with rapid gain in weight or BMI during the first two 

years of life. Studies of size found that higher weight or BMI by late infancy was also associated with earlier 

age at menarche, which again points to the importance of postnatal weight gain trajectories and their role 

in pubertal timing. Although fewer studies have examined infant weight gain compared with the birthweight 

literature, the consistency of these studies suggests that differences in postnatal growth could contribute to 

the heterogeneity in the birthweight literature. There is not clear evidence for a role of height gain during 

infancy and age at menarche, and more studies should consider weight, height and weight-for-height 

measures to determine whether these growth measures have independent effects on age at menarche. 

2.3.8. Study quality 

 

 The quality assessment of the included studies is presented in Supplemental Table 2.7 (NIH 

Quality Assessment Tool for Observational and Cohort Studies105) and Supplemental Table 2.8  (NOS for 
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cohort or case control studies106). The NOS considers three domains of quality, Selection (4 possible 

points), Comparability (2 possible points) and either Outcome Assessment for cohort studies or Exposure 

Assessment for case-control studies (3 possible points), for a total possible quality score of 9. The scores 

ranged from 2-9, with a mean value of 5.1. Although the NOS does not provide a categorized assessment 

of bias based on the continuous scale, previous studies have used cut-offs of 0-3, 4-6 and 7-9 to indicate 

low, intermediate and high quality. Using this cut-off, the majority of studies (63.5%) were categorized as 

intermediate quality, and 19.8% and 16.7% of studies were categorized as low and high quality, 

respectively. Given the nature of the outcomes, particularly menarche, almost all studies relied on self-

reports of age at menarche, or parent reports in some cases, which affected the quality scores. Self-

reported outcomes may introduce some misclassification bias, which affects the quality score on the 

assessment scale. However, age at menarche has been shown to be reliably recalled into adulthood.91 

Many studies also lacked control for key early-life confounding variables or controlled inappropriately for 

variables that may be in the causal pathway as confounders. This is reflected in the comparability scores 

from the NOS, in that only 13 studies (13.5%) received two points for comparability, meaning that they 

adequately controlled for confounders and did not inappropriately control for potential mediators. In the 

birthweight literature, which had the most heterogeneity in terms of study findings, there were no obvious 

differences in quality scores between studies with conflicting results. 

2.4 Discussion 

 

Higher maternal pre-pregnancy BMI is associated with earlier breast development and earlier age 

at menarche. Although fewer studies examined GWG in relation to breast development and age at 

menarche, studies using multivariable-adjusted models suggest that breast development and menarche 

occur earlier in girls whose mothers gained more weight during pregnancy. Rapid weight gain in infancy is 

also consistently associated with earlier breast development and earlier age at menarche in girls. In 

contrast, birthweight is not consistently associated with timing of breast development or age at menarche.  

There were also no consistent patterns relating birthlength or height during infancy to age at breast 

development or menarche, particularly after controlling for weight. The associations observed between 

maternal and infant weight gain patterns and earlier age at breast development and menarche suggest that 
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these exposures may affect the timing of these milestones but not the time interval between them; however, 

more studies that examine this pubertal tempo directly as an outcome are needed to explore this 

hypothesis. 

Heterogeneity in the birthweight literature may result from the lack of adjustment for confounders 

(such as maternal BMI and GWG) or adjustment for weight and/or weight gain measures later in the life 

course. After adjusting for at least one measure of size or growth later in the life course, 14 of 24 studies 

observed an earlier age at menarche in girls with low birthweight. Differences in the modeling strategies 

and time period of postnatal measurements across studies could also contribute to the heterogeneity of 

study findings. Studies that found an association between low birthweight and earlier pubertal development 

may be driven by infant weight gain patterns, as lower birthweight infants are more likely to experience 

rapid postnatal weight gain. As was noted in a recent review of prospective studies of birthweight and 

menarche,89 differences in exposure assessment, particularly in the assessment of birthweight in relation 

to gestational age, across studies limits the comparability of study results and makes it difficult to 

disentangle prenatal size from growth.  

In contrast to the birthweight literature, studies consistently observed earlier breast development 

and earlier age at menarche in daughters of overweight and obese mothers. Maternal pre-pregnancy body 

size may affect pubertal timing through an indirect pathway, where daughters of overweight or obese 

mothers are more likely to be overweight themselves, which could be due to shared genetic or lifestyle 

factors,197 leading to earlier breast development and menarche. The lack of full mediation by daughters’ 

body size suggests that there may also be a direct effect of maternal body size. A similar pattern was 

observed with GWG.82 The developmental origins of health and disease (DOHAD) hypothesis posits that 

early-life exposures affect health throughout the life course, either through a direct effect on the developing 

organs during the critical period of fetal development or through a developmental programming 

mechanism.198 The breast undergoes multiple periods of rapid development throughout the life course, 

including in utero, during puberty and pregnancy, post-partum and during menopause.43,199 The rapidly 

developing breast is more susceptible to carcinogenic effects from the environment, leading these periods 

of rapid proliferation to be considered windows of susceptibility in terms of breast cancer risk.43 The prenatal 



40 
 

period has been identified as a window of susceptibility since the ductal system of the breast develops 

rapidly in utero,43,199,200 and exposures that affect this ductal development in utero could alter later breast 

development and cancer risk.43,201,202   

Maternal overnutrition could also affect pubertal timing, and thus breast cancer risk indirectly, 

through a programming mechanism. Women who are overweight or obese during pregnancy have higher 

levels of hormones that are involved in energy regulation, such as leptin.203 Exposure to high levels of these 

hormones in utero may program higher levels of these hormones in their daughters. Higher levels of leptin, 

an adipokine which plays a role in appetite regulation and may stimulate the hypothalamic-pituitary-gonadal 

(HPG) axis and allow for pubertal progression,204 have been observed in girls with premature breast 

development205 and has been associated with earlier age at menarche.206 Maternal obesity is also 

associated with insulin resistance during pregnancy, which may predispose the offspring to the 

development of insulin resistance and compensatory hyperinsulemia.207 Hyperinsulinemia is associated 

with decreased levels of sex hormone-binding globulin,87 which in turn increases sex steroid bioavailability 

and may promote puberty.208 Finally, maternal obesity may affect daughters’ health later in life via an 

epigenetic mechanism, altering gene expression.207,209 Patterns of DNA methylation are established in early 

life and persist into adulthood, and evidence from animal studies suggest that maternal overnutrition can 

induce epigenetic changes in the offspring.210  

Studies also consistently observed associations between rapid weight gain during the first two 

years of life and earlier age at breast development and menarche, although the time period within infancy 

when rapid weight gain had the strongest association with pubertal timing varied by study. Some studies 

suggested that the earliest age at menarche occurred in girls who were small at birth and experienced rapid 

weight gain during infancy, though generally faster weight gain was associated with earlier puberty across 

the spectrum of birthweight. Although infancy has not been identified as a window of susceptibility for breast 

cancer,43 the rapid growth that the breast undergoes in utero may continue in early postnatal life. Infancy is 

also associated with an activation of the HPG axis, termed “mini-puberty”, when breast tissue is present 

along with increased levels of reproductive hormones.211,212 In girls, follicle stimulating hormone (FSH) and 

luteinizing hormone (LH) both increase in early infancy and peak at 1-3 months. LH then decreases by 6-9 
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months, while elevated FSH levels are present until age 3-4 years. Estradiol levels in girls fluctuate during 

the first year of life, and then decrease until puberty.213 While both male and female infants have breast 

tissue present at birth that regresses during infancy, breast tissue size is larger and persists for a longer 

time period in female infants.211 Estradiol levels have been found to be positively associated with breast 

tissue size in 3-month old female infants, but not in males.214 Together, this suggests that breast tissue in 

female infants is stimulated by endogenous hormones, which may affect breast development and later 

breast cancer risk.214  

Rapid infant growth could also be associated with pubertal timing via a hormonal or epigenetic 

pathway, similar to maternal overnutrition in utero. Rapid infant growth is associated with hormonal changes 

such as increased levels of leptin, IGF-1 and insulin which affects growth throughout childhood and may 

lead to earlier initiation of puberty.87 A recent study found that rapid weight gain in the first year of life was 

associated with increased Alu methylation, a measure of global DNA methylation, at age 20.215 Changes in 

DNA methylation of imprinted genes are known to be associated with infant growth,216 and are also 

associated with genomic instability and chronic disease in adulthood.217 In addition, early-life environmental 

stimuli are associated with changes in promoter methylation of non-imprinted genes,218 which could affect 

gene expression in insulin-signaling pathways219 or changes in genes related to body size or pubertal 

timing.220,221 Studies that incorporate biomarkers assessed prior to puberty are needed to examine whether 

these hormonal and epigenetic pathways mediate associations between early-life growth and early puberty. 

Earlier maternal age at menarche has also been associated with rapid growth in infancy,222 suggesting that 

early-life growth and pubertal timing could have a shared genetic origin.  

This review of the literature has informed the analytic approaches that we will use to examine the 

associations between maternal pre-pregnancy BMI, GWG and birth size (Chapter 3) and rates of change 

in weight and length during infancy (Chapter 4) of this dissertation. We will use a DAG (Figure 2.1) to 

inform our modeling strategy by considering common causes of the exposure and outcome as confounders 

and only controlling for mediators when interested in estimating direct, as opposed to total, effects. For 

example, we will control for maternal pre-pregnancy BMI as a confounder in models examining GWG as 

the exposure, but will not control for GWG in models examining the total effect of maternal BMI. We will 
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also use DAGs to prevent collider bias. Collider bias is a well-recognized problem in perinatal epidemiology, 

and can result when associations between intrauterine factors, such as intrauterine smoke exposure, and 

postnatal outcomes are adjusted for partial mediators like birthweight or gestational age,223 as is often done 

in practice. However, since we will be examining multiple exposures of interest, we will indirectly be able to 

compare the point estimates from models that include potential mediators to my primary models. For 

example, since we will control for maternal pre-pregnancy BMI as a confounder in models examining 

birthweight as an exposure, we can assess how this adjustment influences the association between 

maternal pre-pregnancy BMI and pubertal timing and how our results compare with previous studies that 

have presented adjusted analyses. 

Similarly, we will employ multiple analytic approaches to model birth size and infant growth, in order 

to examine how robust findings are to model specification and in order to compare the results from these 

chapters with previous studies. We will consider birthweight and birthlength with and without adjustment for 

gestational age as both continuous and categorical variables. We will also conduct sensitivity analyses 

excluding girls born preterm or low birthweight as the association with pubertal timing may differ in the 

extremes of the distribution. While our primary analyses will mutually adjust for weight and height measures, 

we will also examine these exposures independently, in addition to considering weight-for-height as an 

overall measure of body size as an exposure. Prior to modeling infant growth, we will examine the variability 

in height and weight at each time point, as well as the correlation between measures at different time points 

and the correlation with birthweight. Although we will employ progressive modeling techniques as a primary 

approach, which adjust only for measures earlier in the life course, we will also consider models mutually 

adjusted for growth in all time periods, as several prior studies have done.  

We will also categorize exposures based on relevant guidelines so that the results from these 

analyses can inform clinical practice. For example, we will consider a joint categorization of maternal pre-

pregnancy BMI and GWG based on the 2009 IOM guidelines in order to assess if the categories of 

inadequate, adequate and excessive GWG are associated with differences in pubertal timing in the 

daughters. We will also categorize infant weight gain based on crossing growth chart percentiles, a cut-off 

used clinically to assess catch-up or catch-down growth. Finally, we will examine interactions between 
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these measures, including maternal pre-pregnancy BMI and GWG, and birthweight and infant growth 

patterns.  

In summary, a growing literature supports that higher maternal pre-pregnancy body size, excess 

GWG and rapid infant growth are risk factors for early puberty in girls. However, there are still gaps within 

this literature that future studies can address: 

1. Most studies were conducted in developed countries and may not be generalizable to other 

settings. Studies conducted in low and middle income populations, where the prevalence of 

early-life growth patterns differs from high-income countries and the prevalence of childhood 

obesity is lower but increasing,224,225 may help to clarify the direct role of early-life growth and 

pubertal timing by reducing the indirect pathway via childhood body size. Pubertal timing also 

differs by race/ethnicity,60,62,226 but few studies have examined early-life exposures and 

pubertal timing in non-white populations. 

2. From a methodological perspective, future analyses should be more explicit in how early-life 

factors are conceptualized in relation to the exposure and outcome of interest and modeled 

appropriately. For example, analyses of birthweight and infant weight gain should control for 

maternal confounders such as pre-pregnancy body size and GWG. However, analyses 

examining these maternal factors as exposures of interest should not control for postnatal 

factors as confounders in adjusted models. Instead, postnatal factors should be modeled as 

mediators or modifiers of the association, depending on the hypothesized causal structure (see 

Figure 2.1).  

3. Additional studies of birthlength and height gain will help to clarify whether associations 

between rapid weight gain and pubertal timing are reflective of linear growth, particularly catch-

up growth to expected body size based on genetic potential, or adiposity resulting from 

overnutrition.227 Separating adiposity from linear growth may also clarify why some studies 

observed earlier puberty in girls who were small at birth, who are more likely to experience 

catch-up growth in infancy.228 
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4. Additional studies should examine pubertal tempo directly as an outcome. The recent secular 

decline in age at breast development suggests that the time period between onset of breast 

development and menarche is increasing.42 Since puberty is a period of rapid growth for the 

breast, a slower pubertal tempo implies that the pubertal window, when the breast is more 

susceptible to environmental carcinogens, is widening.43 In addition to examining associations 

between early-life growth and breast development and menarche independently, it’s important 

to determine whether early-life growth has an effect on pubertal tempo, which also affects 

breast cancer risk.41 

5. Studies that examine the full trajectory of early-life growth by modeling maternal body size, 

GWG, birth size and infant growth can explore whether pre- and postnatal growth have 

independent effects, or if particularly trajectories of early-life growth have synergistic effects. In 

addition, studies that examine multiple time points within infancy can help to clarify whether 

there are specific windows within the first two years of life that are a sensitive or critical period 

in influencing pubertal timing.229 Although some studies have examined multiple windows within 

infancy,73,75,77,79,116,222 time periods have differed by study, making comparisons difficult. 

6. Twin and familial studies estimate that 50-80% of the variation in pubertal timing in girls is 

heritable (for review, see 42). However, the rapid decline in age at puberty cannot be explained 

by genetics alone and supports the importance of environmental influences, which may act 

independently or interact with genetic susceptibility to influence pubertal timing. Since earlier 

ages at breast development and menarche are associated with increased breast cancer risk,41 

it is important to determine whether early-life factors that affect pubertal timing are modified by 

underlying susceptibility for breast cancer. Two studies have found that girls with a family 

history of breast cancer had an earlier age at breast development54 and menarche,165 

respectively. If there is no heterogeneity in the associations between early-life growth and 

pubertal timing by underlying genetic susceptibility, then early-life growth will still have a greater 

effect on an absolute scale in those with greater underlying risk,55,56 and girls and women at 

high risk need to know that the environment matters and that their risk can be modified. If there 
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is heterogeneity, then identifying the context in which the early-life environment affects risk will 

allow for targeted prevention to those groups that will benefit most. 

 

2.5 Conclusions 

 

A small but consistent literature suggests that higher maternal pre-pregnancy BMI, greater GWG 

and rapid postnatal weight gain are associated with earlier age at breast development and menarche in 

girls. The role of birthweight, however, is still not clear. The pre- and postnatal periods may be an effective 

period for intervention as pregnant women and new parents are regularly engaged with clinicians who are 

already monitoring maternal body size and behaviors and infant growth.69 Empirical evidence from 

randomized trials show that interventions can successfully reduce gestational weight gain230,231 and modify 

infant growth patterns.232 Modifying weight gain prior to and throughout pregnancy in mothers and through 

infancy in their daughters may delay pubertal timing and potentially lower breast cancer risk in adulthood. 
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2.6 Tables and figures 
 
Figure 2.1. Directed acyclic graph (DAG) of hypothesized causal structure linking maternal pre-
pregnancy BMI, gestational weight gain, birthweight and infant weight gain to age at breast 
development 
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Figure 2.2. Flow diagram of study selection based on PRISMA 2009 guidelines 
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Table 2.1. Number of included studies for each exposure-outcome association (N=96 articles) 

 Breast Development Menarche 

 

Maternal pre-

pregnancy 

body size1 

Gestational 

weight gain 

Birth 

size2 

Size or 

growth in 

infancy3 

Maternal 

pre-

pregnancy 

body size1 

Gestational 

weight gain 

Birth 

size2 

Size or 

growth in 

infancy3 

Text only 0 0 2 0 2 2 6 1 

Descriptive 

statistics only 0 0 7* 1 2 2 25 2 

Crude models 1 0 4 2 2 1 9 3 

Adjusted 

models 5 1 4 5 8 3 34 12 

Total 6 1 17 8 14 8 74 18 

*Includes one study where outcome is tempo of breast development 
1Body size refers to either maternal pre-pregnancy weight or BMI 
2Includes studies of weight, length and/or BMI at birth 
3Includes studies of size (weight, length and/or BMI between birth and 2 years) and/or growth (change in weight, length and/or BMI 

between birth and 2 years) 
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Table 2.2. Comparison of methods to assess infant growth 

Method Advantages Disadvantages 

Change in absolute value Straightforward to implement 

and interpret 

Absolute measures are more 

highly correlated than 

transformed values 

Differences in variability of 

measures at different time 

points makes comparisons 

difficult 

Change in Z-score Easy to interpret 

Change in Z-score is less 

correlated than absolute 

measures 

Measures at different time 

points likely correlated, with 

stronger correlation the closer in 

time the measurements are 

taken 

Change in percentile rank Easy to interpret 

Clinically relevant (crossing of 

percentiles) 

Change in percentile rank is less 

correlated than absolute 

measures 

Measures at different time 

points likely correlated, with 

stronger correlation the closer in 

time the measurements are 

taken 

Conditional (difference between 

observed size and predicted 

based on size at beginning of 

interval) 

Measures at different time 

points are statistically 

independent 

Not influenced by regression-to-

the-mean effect – those that 

start at the extremes of size are 

more likely to experience larger 

rates of change 

More difficult to interpret 

Latent class analysis Can identify non-linear 

trajectories 

Parsimonious way to examine 

patterns 

Compare absolute instead of 

conditional trajectories 

Data driven and somewhat 

subjective in choosing the 

number of classes 

Cannot look at different windows 

within the trajectory 
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Chapter 3.  Maternal pre-pregnancy BMI, gestational weight gain, and birth size in relation to age 

at breast development in the LEGACY Girls Study cohort 

 

ABSTRACT 

Background: Earlier onset of breast development (thelarche) is a known risk factor for breast cancer and 

may be influenced by maternal pre-pregnancy body mass index (BMI), maternal gestational weight gain 

(GWG) and infant body size. To date, the epidemiologic evidence is from cohorts of girls that were not 

enriched for breast cancer family history (BCFH). We investigated whether maternal BMI, GWG and size 

at birth were associated with age at breast development, and whether these associations varied by BCFH, 

using a prospective cohort of girls in which approximately half are at an increased risk of breast cancer due 

to their family history. 

 Methods: Using longitudinal Weibull models with left, right and interval censoring, we assessed whether 

maternal pre-pregnancy BMI, maternal physical activity during pregnancy, GWG, and daughters’ weight 

and length at birth, reported by the mother at baseline, were associated with the age at breast development, 

defined as maternal report of Tanner stage≥2, in LEGACY girls participating with their biological mother 

(N=1031). We examined modification by BCFH and mediation by daughters’ childhood BMI in adjusted 

models. LEGACY girls were primarily between 6-13 years of age when they entered the cohort, and 43% 

of girls experienced the onset of breast development prior to cohort entry (left censored). We conducted 

sensitivity analyses limited to girls age less than 8 years at baseline (n=259) to examine how sensitive 

results in the overall cohort were to the inclusion of older girls. 

Results: Higher maternal pre-pregnancy BMI was associated with earlier breast development in daughters 

(Hazard ratio (HR)=1.03, 95% CI 1.01-1.05). This association was consistent in the subset of girls with 

clinical breast Tanner staging available and mediated by daughters’ pre-pubertal body size. Higher 

gestational weight gain was also associated with earlier thelarche. Compared to daughters whose mothers 

had a pre-pregnancy BMI of <25 kg/m2 and gained <30 lbs, girls whose mothers had a pre-pregnancy BMI 

≥25 kg/m2 and gained ≥30 lbs experienced the onset of breast development at a 60% faster rate (HR=1.57, 

95% CI 1.17-2.12). This association was similar in girls with and without a BCFH, but was only statistically 

significant in the latter (HR in girls with a BCFH: 1.43, 95% CI 0.89, 2.29; HR in girls without a BCFH: 1.62, 
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95% CI 1.10, 2.39; RERI=0.13, 95% CI -0.95, 1.21). In the subset of girls <8 years at baseline, daughters 

were approximately two times more likely to experience earlier thelarche if their mothers had a pre-

pregnancy BMI <25 kg/m2 and gained ≥30 lbs or a pre-pregnancy BMI ≥25 kg/m2, regardless of their GWG, 

compared with daughters of women with a BMI <25 kg/m2 who gained <30 lbs. In younger girls, daughters 

of women who reported no recreational physical activity during pregnancy experienced earlier breast 

development than daughters of active women (HR=1.70, 95% CI 1.02, 2.83). This association was 

independent of maternal pre-pregnancy BMI and was not mediated by GWG or modified by BCFH. 

Daughters’ weight and length at birth were not associated with the timing of thelarche. 

Conclusions: Earlier thelarche was associated with three potentially modifiable risk factors – maternal pre-

pregnancy BMI, maternal physical activity during pregnancy and GWG - in a cohort of girls enriched for 

BCFH. These associations were partially mediated by the daughters’ pre-pubertal body size. Our results 

suggest that maintaining a healthy pre-pregnancy BMI, engaging in recreational physical activity during 

pregnancy, and moderate weight gain during pregnancy (<30lbs) may delay breast development in 

daughters. 

3.1 Background 
 

Breast cancer incidence, particularly advanced disease, is increasing in U.S. women under 40 

years of age,233 pointing to the importance of exposures acting early in the life course to increase breast 

cancer risk. Earlier age at menarche is a well-established risk factor for breast cancer.95 Age at menarche 

has decreased over time, but this decline has stabilized over the last 50 years.42 In contrast, age at breast 

development, or thelarche, has continued to decline rapidly.42 In a recent prospective cohort study of over 

100,000 women, earlier thelarche and longer time period between thelarche and menarche (tempo) were 

independently associated with a 20-30% increased risk of breast cancer.41 Given the secular trends in 

pubertal timing, this suggests a future increase in breast cancer incidence. 

Modifiable factors that are associated with pubertal timing could be a target for breast cancer 

primary prevention efforts starting early in life. Since breast cancer risk accumulates over the life course, 

modifying early-life exposures may have a greater impact in decreasing breast cancer risk later in life 
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compared with modifying exposures in adulthood.4,5  Studies have found that higher birthweight is 

consistently associated with an increased risk of pre-menopausal breast cancer, and may be modestly 

associated with post-menopausal breast cancer risk as well (for review, see 18,234), suggesting that factors 

that influence the intrauterine environment may affect breast cancer risk. Birthweight is a crude indicator of 

fetal growth and the intrauterine environment in general,26 and is difficult to modify directly. However, the 

data connecting other prenatal characteristics to breast cancer risk is limited. Maternal pre-pregnancy body 

mass index (BMI) and gestational weight gain (GWG) are associated with birthweight20 and maternal 

hormone levels during pregnancy,27–29 but studies have not consistently supported an association with 

breast cancer risk.23,24 However, most studies in the literature were from pregnancies over 50 years ago, 

when the prevalence of obesity and excess GWG was much lower than today.30 

Maternal obesity and excessive GWG have increased in prevalence in parallel to the secular trends 

in pubertal timing. Higher maternal pre-pregnancy BMI and increased GWG are both associated with earlier 

age at menarche.82,83,115,118 Increased maternal physical activity during pregnancy, which is associated with 

pre-pregnancy BMI and GWG,235 was associated with later age at menarche in the Nurses’ Health Study II 

cohort, independent of maternal BMI.236 Few studies have examined these exposures in relation to age at 

thelarche, which occurs on average two years before menarche.90 In the ALSPAC cohort, maternal pre-

pregnancy BMI and GWG during pregnancy were both inversely associated with age at thelarche in 

daughters.73,82 In studies conducted using electronic health record data from Kaiser Permanente Northern 

California (KPNC), maternal pre-pregnancy obesity81 and GWG in excess of the 2009 Institute of Medicine 

(IOM) guidelines, in addition to inadequate GWG,237 were all associated with earlier age at breast 

development in daughters. The associations with excess or inadequate GWG and breast development were 

stronger if mothers had a BMI≥30 before or at the beginning of pregnancy.237  A prior study of 421 girls from 

the Cohort Study of Young Girls’ Nutrition, Environment and Transitions (CYGNET), which also used KPNC 

data, found that girls whose mothers were overweight and had gestational diabetes experienced earlier 

pubic hair development, but there was no statistically significant association with thelarche in adjusted 

models.109 Studies suggest that the association between maternal body size and earlier pubertal timing is 

partially mediated by daughters’ BMI.81,82,117  
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To date, previous studies examining maternal body size, GWG and age at breast development 

were conducted in cohorts of girls at average-risk of breast cancer. We recently observed within the 

LEGACY Girls Study, a prospective pubertal cohort enriched for breast cancer family history (BCFH),57 that 

non-overweight girls at an increased risk of breast cancer due to their BCFH experience earlier breast 

development than girls without a BCFH.54 Since maternal pre-pregnancy BMI, physical activity during 

pregnancy and GWG are potentially modifiable, we investigated whether these exposures, in addition to 

size at birth, were associated with age at breast development in LEGACY. As secondary aims, we also 

examined whether associations were modified by BCFH and mediated by daughters’ pre-pubertal body 

size. 

3.2 Methods 

 

3.2.1. Study population 

 

The LEGACY (Lessons in Epidemiology and Genetics of Adult Cancer from Youth) Girls Study is 

a prospective cohort study of 1040 girls recruited at five study sites in the U.S. (New York City, NY; 

Philadelphia, PA; Salt Lake City, Utah; San Francisco Bay Area, CA) and Canada (Toronto, ON) between 

2011 and 2013 (for more details, see 57). The girls were primarily between the ages of 6 and 13 years at 

recruitment, and half had a BCFH, defined as a report of breast cancer in a first- or second-degree relative 

by the participating mother/guardian at baseline. Younger siblings of cohort members can also join when 

they reach 6 years of age. The participating guardian at baseline was the biological mother for 97% of 

LEGACY girls.57 We excluded girls whose participating guardian was not the biological mother from the 

analyses (N=37) because some exposures, such as maternal pre-pregnancy weight, were collected only 

from biological mothers, and other pregnancy exposures may be reported with error when completed by 

others. For this analysis, prospective follow-up data through August 2016 was included for 1031 girls 

participating with their biological mother, including 589 families with 1 participating daughter, 370 with 2 

participating daughters and 24 with 3 participating daughters. Mothers provided written informed consent 

for themselves and for their daughters, and daughters provided written informed assent according to 
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institutional standards. The study was approved by the institutional review boards of the collaborating 

institutions. 

3.2.2. Data collection 

 

Maternal and pregnancy exposures. Mothers completed an early-life questionnaire at their 

daughters’ baseline visit that included detailed information about their pregnancy, including pre-pregnancy 

weight (continuous), GWG (in categories) and physical activity. These questions were developed and used 

previously in the Nurses’ Health Study cohort.24 We calculated maternal pre-pregnancy BMI from mothers’ 

self-reported height and pre-pregnancy weight. GWG was recorded as <10 lbs, 10-14 lbs, 15-19 lbs, 20-29 

lbs, 30-39 lbs, 40-49 lbs, and 50 or more lbs (see Appendix C.1 for more information about pregnancy 

exposures, including definitions of each category). Since guidelines for weight gain during pregnancy vary 

by BMI,110 we created a categorical variable for GWG based on the 2009 IOM guidelines to categorize 

GWG as inadequate (below guidelines), adequate (within recommended range) and excessive (above 

guidelines). We modified the cutpoints used to define adequate GWG for LEGACY since GWG was 

collected in categories that did not directly correspond to the categories used in the 2009 IOM guidelines 

(see Appendix C.2 for the 2009 IOM recommended ranges based on maternal pre-pregnancy BMI and 

type of gestation and the modified ranges used for this analysis).110 We also considered maternal pre-

pregnancy BMI and GWG jointly by creating a cross-classified variable with maternal pre-pregnancy BMI, 

using a cut-off of 25kg/m2, and GWG, using a cut-off of either 30lbs or exceeding vs. not exceeding the 

guidelines. 

Mothers reported their recreational physical activity level during pregnancy in five categories, from 

inactive (no walking or regular exercise) to highly active (equivalent to walking 3 miles or more per day). 

Mothers also reported their physical activity at home (mostly sitting, active housework most of the time, or 

heavy manual work) and at work (not working outside the home, mostly sitting and standing, mostly walking, 

or mostly heavy labor). We considered additional pregnancy characteristics as potential confounders in the 

analyses. Mothers reported whether they experienced diabetes or high blood sugar, toxemia or pre-

eclampsia, and hypertension or high blood pressure during their pregnancy with the LEGACY daughter. 

Mothers provided information about all pregnancies lasting 6 months or longer, including the pregnancy 



55 
 

outcome and date that the pregnancy ended. We used this information to determine the birth order of the 

LEGACY daughter and the type of gestation (singleton or multiple). We calculated gestational age in weeks 

from the length that the pregnancy lasted, in weeks, months, or days before/after the due date, as reported 

by mothers. We considered a reported gestational age of less than 37 weeks as preterm. Mothers also 

reported if they smoked during their pregnancy with the LEGACY daughter; however, we did not include 

this variable in the analyses since only 1.2% of daughters were exposed to maternal smoke during 

pregnancy. 

Mothers reported their daughters’ weight (in grams or pounds/ounces) and length at birth (in 

centimeters or inches), and the source of this information (i.e. memory, medical records, baby book). We 

converted birthweight to kilograms and birthlength to centimeters for analysis. We created four body size 

groups based on the median birthweight and birthlength in the cohort (long/light, long/heavy, short/light and 

short/heavy) based on the schema by Adair, who observed differences in age at menarche by these 

categorizations.72 We also calculated ponderal index at birth as weight in kilograms divided by height in 

meters cubed. We asked mothers to sign a medical release form at the baseline LEGACY visit to collect 

growth records prior to baseline from their daughters’ pediatricians. We obtained growth charts and/or 

medical records for 82% of the cohort. For the subset of girls whose medical record data included 

measurements at birth, we examined the correlation between recalled birthweight and birthlength and the 

measures abstracted from the medical record.  

Pubertal outcomes. We assessed pubertal development through the Growth and Development 

Questionnaire completed every 6 months by mothers. Mothers assessed their daughters’ stage of breast 

development with the picture-based Sexual Maturation Scale (SMS)238 showing the five Tanner stages.100 

Tanner stage (TS) 2 indicates the onset of breast development.100 We previously found maternal reports of 

breast onset using TS to be highly reliable (kappa=0.73) and valid (sensitivity=77%, specificity=94%) in a 

subset of LEGACY girls that also had clinical TS data.239 In addition, mothers reported whether their 

daughters’ breast development had started using the non-picture-based Pubertal Development Scale 

(PDS),240 in which a response of “breast development has barely started” was used to indicate the onset of 

breast development. Mothers that reported that breast development had started based on the PDS also 



56 
 

reported the age that they first noticed their daughters’ breast development. Mothers reported their 

daughters’ age at breast development in years and months at baseline, and in half-year intervals at 

subsequent visits. We used the first maternal report of TS≥2 as the primary outcome to be comparable with 

previous studies, including analyses in the ALSPAC cohort, of maternal body size and breast 

development.73,82,108    

Covariates. In addition to the early-life variables described above, we also considered 

race/ethnicity, socioeconomic status (SES) and maternal age at menarche as potential confounders in 

adjusted models. Mothers reported the race/ethnicity of their daughters at baseline, which we categorized 

as non-Hispanic white, non-Hispanic black, Hispanic, Asian/Pacific Islander, or other/mixed race/ethnicity 

for analyses. We assessed SES using maternal education, paternal education and family income; however, 

since 17.9% did not report family income and maternal and paternal education were correlated, we used 

maternal education to assess confounding by SES in the analyses. Mothers recalled their age at menarche 

to the nearest half-year at baseline, which we categorized as early (<12 years), average (12-13 years) and 

late (≥14 years). We considered BCFH as a modifier of the associations between early-life exposures and 

age at breast development.  

At each study visit, trained research staff measured the height and weight of the girls at least twice 

using standardized instruments and we averaged these measures for the analysis.  We also abstracted 

height and weight prior to baseline from medical records and growth charts obtained from girls’ 

pediatricians. We calculated age-specific height, weight, and BMI percentiles based on the 2000 Centers 

for Disease Control and Prevention (CDC) growth charts.241 Since we considered pre-pubertal body size 

as a potential mediator, we used body measurements at age 5-7 years when available from the medical 

record or measurements from the first clinic visit for girls age 5-7 years at baseline. We used <8 years as 

the cut-off to define pre-puberty since less than 5% of LEGACY girls had experienced the onset of breast 

development, defined as breast TS≥2, by 8 years of age. Of the 1031 girls included in the analysis, 619 

(60.0%) had a BMI measure between 5-7 years and were included in this mediation analysis. We classified 

girls with a BMI-for-age percentile ≥85 as overweight and those less than the 85th percentile as average 

weight. 
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3.2.3. Statistical analysis 

 

We examined the distribution of early-life exposures and baseline covariates in the overall cohort 

(N=1068) and in the three subsets used in these analyses: 1) girls participating with their biological mother 

(N=1031); 2) girls participating with their biological mother with BMI measured between 5-7 years (N=619); 

and 3) girls participating with their biological mother who were less than 8 years of age at baseline (N=259). 

We also examined whether the distributions of these variables differed by BCFH and by categories of 

maternal pre-pregnancy BMI based on the CDC classifications of underweight, normal or healthy weight, 

overweight and obesity.  

We assessed associations between maternal pregnancy characteristics and the timing of breast 

development using longitudinal parametric Weibull models with age as the time scale to allow for left, 

interval and right censoring. In the primary analyses, girls whose mother reported that they had already 

experienced the onset of breast development, defined as TS≥2, at baseline were left-censored at their 

baseline age. Girls whose mothers reported breast TS≥2 at subsequent visits were interval-censored, with 

the daughters’ age at the last visit where the mother reported TS1 as the beginning of the interval and the 

daughters’ age at the first visit where the mother reported TS≥2 as the end of the interval. Girls who had 

yet to experience thelarche were right-censored at the age at the last study visit where mom reported TS1. 

Since some families had more than one participating daughter, we used cluster-robust standard errors to 

account for correlation within families. 

We estimated time ratios (TR) and hazard ratios (HR), along with their respective 95% confidence 

intervals (CI)s for each exposure of interest in unadjusted models. We examined maternal pre-pregnancy 

BMI, birthweight and birthlength continuously and in categories. The TR is interpreted as the ratio of the 

median age or time at event for a given exposure level compared with the referent group, while the HR is 

interpreted as the ratio of the rate of transition to the pubertal event. A TR below 1 indicates that the 

exposure is associated with earlier onset of breast development, and a TR above 1 indicates that the 

exposure is associated with later breast development. For example, if the median age at breast 

development is 10 years in the referent group and the estimated TR for the exposure is 0.95, this 
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corresponds to a median age of 9.5 years for the exposed group, or a 6-month acceleration in the age at 

breast development.242 

In multivariable models, we adjusted for confounders that were antecedent to the exposure. For 

example, we did not adjust for GWG, maternal physical activity during pregnancy and birth characteristics 

in models examining maternal pre-pregnancy BMI as the exposure of interest. In contrast, we adjusted 

models examining pregnancy physical activity or GWG as the exposure of interest for maternal pre-

pregnancy BMI, and we adjusted models examining weight and length at birth for both maternal BMI and 

GWG. We mutually adjusted birth size models for weight and length, and also adjusted for gestational age 

in weeks.  

We adjusted for race/ethnicity and maternal education in models for the full cohort since these 

variables were associated with maternal pregnancy characteristics and age at breast development. In the 

subset of girls <8 years at baseline, we present models adjusted for maternal education only due to small 

cell counts for several of the race/ethnicity groups. However, associations were similar in models 

additionally adjusted for race/ethnicity in this subset (data not shown). Associations were also similar, 

though slightly attenuated, when additionally adjusted for maternal age at menarche (data not shown). We 

did not adjust for other early-life characteristics such as birth order, multiple gestation, gestational diabetes, 

gestational hypertension and toxemia/pre-eclampsia since these factors were not associated with breast 

development. However, we ran sensitivity analyses restricting the analytic sample to singleton pregnancies 

since GWG and fetal growth patterns may differ in multiple gestation pregnancies. 

In the subset of girls that had pre-pubertal body size measures, we examined the presence of 

mediation by daughters’ pre-pubertal body size by adding BMI-for-age percentile and an interaction for 

BMI-for-age percentile and age at BMI measurement, centered at the mean, to parsimonious adjusted 

models. We also conducted sensitivity analyses excluding girls that were overweight prior to puberty (BMI-

for-age percentile ≥85) as an alternate method to examine the influence of pre-pubertal body size. 

We formally tested for effect measure modification by BCFH by adding a cross-product term 

between the exposure of interest and BCFH to adjusted models and assessed statistical significance using 
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the Wald test. If the cross-product term was statistically significant at p<0.05, we further examined effect 

modification through stratification by BCFH. We also calculated the relative excess risk due to interaction 

(RERI) to assess effect modification on the additive scale.243  

We conducted several sets of additional analyses to examine how sensitive the results were to 

different modeling assumptions, the use of recalled data, and the method of assessing breast development 

(Appendix C.3 and C.4). We imputed the recalled age at breast development from the PDS as though it 

were observed for left-censored girls (43% of girls experienced the onset of breast development prior to 

cohort entry based on mom’s report of TS≥2 at first growth and development questionnaire). We also used 

the midpoint of the interval as the age at breast development for interval censored-girls. We then assessed 

associations using semi-parametric Cox proportional hazards models, in addition to parametric Weibull 

models, in analyses using these imputed values since these models included right-censored data only. We 

also used the PDS to define breast onset instead of TS. In the subset of girls at the New York and Utah 

LEGACY sites that had clinical TS data (N=311), we used clinical reports of breast TS≥2 to define the onset 

of breast development instead of maternal report. We limited the analyses to prospective data by excluding 

girls who were 8 years of age or older at baseline in order to examine how sensitive findings were to the 

inclusion of older girls and the use of recalled data using both SMS and PDS. We also ran sensitivity 

analyses excluding girls with inconsistent Tanner staging by maternal report (mothers reported a regression 

to TS1 at the visit after the first report of TS≥2; approximately 5% of girls in the full cohort and 10% of girls 

<8 years at baseline) to examine whether these inconsistent girls were driving the observed results. We 

conducted these analyses using SAS 9.4 and STATA 15.1. 

3.3 Results 

 

3.3.1. Participant characteristics 

 

 The distribution of baseline and early-life characteristics were similar across the three subsets used 

in this analysis compared with the full LEGACY cohort (Table 3.1). The average age at baseline was 10.0 

years in all eligible girls participating their biological mother (N=1031), 9.2 years in girls with pre-pubertal 

BMI measures available (N=619) and 6.9 years in girls <8 years at baseline (N=259). The majority of the 
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cohort (63%) identified as non-Hispanic white, and 18% of girls had a BMI-for-age percentile ≥85th at 

baseline. Most mothers (71%) had a Bachelor’s or graduate degree. The prevalence of pregnancy 

conditions including gestational diabetes and toxemia or pre-eclampsia were low at approximately 7%. 

Compared to the full cohort, fewer girls <8 years at baseline were overweight at baseline (14.5%) or were 

firstborn (37.5%). 

 The majority of mothers had a BMI in the normal range prior to pregnancy (18.5-24.9), while 4.7% 

were classified as underweight (<18.5), 17.9% as overweight (25-29.9) and 9.6% as obese (≥30). 

Approximately 30% of LEGACY mothers reported GWG in excess of the guidelines and 12% reported no 

recreational physical activity. Women that were obese prior to pregnancy were more likely to gain weight 

in excess of the guidelines, reported less recreational physical activity during pregnancy, and had a higher 

prevalence of pregnancy conditions (Supplemental Table 3.1). Daughters’ birthweight was also higher in 

women with a higher pre-pregnancy BMI. The mean pre-pregnancy BMI was similar by BCFH, though 

women with a BCFH were slightly more likely to have inadequate GWG and report no recreational physical 

activity during pregnancy (Supplemental Table 3.2).  

3.3.2. Association between maternal pre-pregnancy BMI, gestational weight gain and age at breast 

development 

 

 Maternal pre-pregnancy BMI was associated with earlier age at breast development in daughters 

(HR=1.03, 95% CI 1.01-1.05, adjusted for race/ethnicity and maternal education) (Table 3.2). Although 

point estimates from the categorical BMI model were not statistically significant, they supported a linear 

relationship between maternal BMI and age at breast development. Compared with daughters of women 

who gained 20-29lbs, daughters of women who gained 30lbs or more had an earlier age at breast 

development, though the association was only statistically significant in daughters of women who gained 

more than 50lbs during their pregnancy (HR=1.37, 95% CI 1.01-1.85, controlling for maternal pre-

pregnancy BMI, maternal education and race/ethnicity). The TR corresponds to approximately 4.9 months 

earlier onset of breast development in girls whose mother gained 50 or more pounds compared with girls 

who mother gained 20-29 pounds, with all covariates at the reference level. The pattern for GWG was 
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slightly J-shaped, with daughters of women who gained less than 20lbs also experiencing slightly earlier 

development than the referent group (HR 1.15, 95% CI 0.86, 1.54). However, this pattern was not observed 

when GWG was categorized according to the modified 2009 IOM guidelines (Supplemental Table 3.3). 

These models supported earlier development in daughters of women who gained in excess of the 

guidelines, but no difference in age at breast development in girls whose mothers gained below the 

guidelines compared with girls whose mothers’ GWG was within the recommended range. 

 When considering maternal pre-pregnancy BMI and GWG jointly, daughters of women with a pre-

pregnancy BMI ≥25 and GWG ≥30lbs experienced breast development at a rate 1.6 times faster than 

daughters of women with a pre-pregnancy BMI <25 and GWG <30lbs (HR 1.57, 95% CI 1.17-2.12) (Table 

3.2), a difference of approximately 7 months. In contrast, age at breast development was not earlier in 

daughters of women who gained ≥30lbs but had a pre-pregnancy BMI <25 or gained <30lbs, but were 

overweight prior to pregnancy. Results were similar when we considered GWG in excess of the guidelines 

jointly with maternal BMI instead of using a cut-off of 30lbs (Supplemental Table 3.3). 

 Associations between maternal pre-pregnancy BMI and GWG were in the same direction in the 

subset of girls <8 years at baseline. GWG of 30 lbs or more was associated with an 80-90% increased rate 

of breast development in girls <8 years of age (Table 3.2). In younger girls, the pattern of age at breast 

development by categories of maternal BMI and GWG was slightly different than the pattern observed in 

the full cohort. Daughters had approximately a two-fold increased rate of earlier thelarche if their mothers 

had a pre-pregnancy BMI <25 kg/m2 and gained ≥30 lbs or a pre-pregnancy BMI ≥25 kg/m2, regardless of 

their GWG, compared with daughters of women with a BMI <25 kg/m2 who gained <30 lbs. The TRs 

correspond to approximately 12-12.5 months earlier onset of development in these girls. 

3.3.3. Association between maternal physical activity during pregnancy and age at breast development 

 

 Daughters of women who reported no recreational physical activity during pregnancy experienced 

earlier onset of breast development than daughters of physically active women in unadjusted models, but 

the association was attenuated after adjustment for maternal pre-pregnancy BMI, race/ethnicity and 

maternal education in the full cohort (Table 3.3). There was no association between maternal physical 
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activity at home and age at breast development. In adjusted models, daughters of women who did not work 

outside the home experienced later onset of breast development than daughters of women who reported 

mostly sitting and standing at work during pregnancy (HR=0.77, 0.61-0.98).  

 In girls <8 years at baseline, daughters of women who reported no recreational physical activity 

experienced breast development at a rate 1.7 times faster than daughters of physical active women, a 

difference of approximately 8 months (HR 1.70, 95% CI 1.02, 2.83 adjusting for maternal pre-pregnancy 

BMI and maternal education). This association was independent of GWG (Supplemental Table 3.4). Age 

at breast development was not statistically different in daughters of women who reported mostly inactive or 

somewhat active physical activity levels during pregnancy compared with active women. Results for 

physical activity at home and at work were similar in younger girls compared with the full cohort.  

3.3.4. Association between birth size and age at breast development 

 

 In girls with birthweight or birthlength available from both medical records/growth charts and 

maternal report (N=69 for birthweight and 44 for birthlength), the correlation between these measures was 

0.91 for birthweight and 0.59 for birthlength. Neither birthweight, birthlength nor ponderal index were 

associated with age at breast development in the full cohort or the subset of girls <8 years at baseline 

(Supplemental Table 3.5). The inference was unchanged when models were restricted to singleton 

pregnancies only (data not shown). There were no statistically significant differences in the timing of breast 

development between girls classified as long/light, long/heavy, short/light or short/heavy at birth based on 

the median birthweight and birthlength (Supplemental Table 3.6). 

3.3.5. Mediation by pre-pubertal body size 

 

 The inverse association between maternal pre-pregnancy BMI and age at thelarche was mediated 

by daughters’ body size prior to puberty (HR 1.01, 95% CI 0.99-1.04 after adding daughters’ BMI-for-age 

percentile and the interaction between BMI-for-age percentile and centered age at BMI measure to adjusted 

model in all girls with available BMI measures from 5-7 years of age) (Table 3.4). In contrast, effect 

estimates for GWG were only slightly attenuated after adjustment for daughters’ body size and there was 

no evidence of mediation of the association between maternal physical inactivity during pregnancy and 
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earlier breast development. These patterns of mediation were the same in girls <8 years of age at baseline. 

The patterns of earlier breast development in daughters of women that reported no recreational physical 

activity during pregnancy, high pre-pregnancy BMI, and high GWG were also observed when we excluded 

girls that were overweight prior to puberty from adjusted models, suggesting that these associations hold 

across the range of daughters’ pre-pubertal body size (Supplemental Table 3.7). 

3.3.6. Modification by breast cancer family history 

 

 In the full cohort, the pattern of the associations between maternal pre-pregnancy BMI, GWG and 

timing of breast development differed by BCFH (Table 3.5). When considering maternal BMI and GWG as 

a composite variable, the overall interaction with BCFH was statistically significant (p from Wald test <0.01), 

which was driven by differences in the association for girls whose mothers had a pre-pregnancy BMI≥25 

and gained <30lbs compared with the referent group. In girls without a BCFH, the daughters of women who 

were overweight or obese prior to pregnancy and gained <30 lbs were almost two times more likely to 

develop early (HR=1.98, 95% CI 1.29-3.05) compared with daughters of women with a pre-pregnancy 

BMI<25 who gained <30lbs. In girls with a BCFH, girls whose mothers had a pre-pregnancy BMI≥25 and 

gained <30lbs did not have an increased likelihood of early development compared with the referent group 

(HR=0.68, 95% CI 0.43-1.09). The negative multiplicative interaction between maternal BMI≥25, GWG 

<30lbs and BCFH was also statistically significant on the additive scale (RERI: -1.46, 95% CI -2.47, -0.44), 

suggesting that the joint effect of BCFH and maternal overweight and obesity with moderate GWG (<30lbs) 

is less than the sum of the effects of each of these exposures when considered individually. There was no 

interaction on the additive scale for the other two levels of the composite variable (RERI for maternal 

BMI<25, GWG≥30lbs and BCFH: -0.29, 95% CI -0.82, 0.25 and RERI for maternal BMI≥25, GWG≥30lbs 

and BCFH: 0.13, 95% CI -0.95, 1.21). This suggests that maintaining a healthy BMI prior to pregnancy and 

preventing excessive GWG (≥30lbs) could delay breast development in daughters with and without a BCFH. 

These patterns were similar in models stratified by BCFH in girls <8 years at baseline.  

3.3.7. Sensitivity analyses for the association between maternal pre-pregnancy BMI, GWG and onset of 

breast development 
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 Associations were similar when analyses were restricted to singleton pregnancies only and when 

girls with inconsistent maternal reports of the onset of breast development (TS≥2) were excluded from 

adjusted models (data not shown). In the full cohort, the inference was similar when the recalled age at 

breast development from the PDS was imputed as though it were observed in left-censored girls and/or the 

midpoint of the interval was imputed as the age of breast development for interval-censored girls 

(Supplemental Table 3.8). Hazard ratios from semi-parametric Cox proportional hazard models were also 

similar to the hazard ratios from the parametric Weibull models. The patterns of the associations were 

similar in models where we used PDS to define the onset of breast development instead of SMS, but effect 

estimates, particularly for maternal pre-pregnancy BMI, were slightly attenuated in both the overall cohort 

(Supplemental Table 3.9) and the subset of girls < 8 years at baseline (Supplemental Table 3.10). In the 

subset of girls with clinical breast TS, the association between maternal pre-pregnancy BMI and onset of 

breast development as assessed by trained personnel239 was the same as the estimate using maternal 

reports of breast TS (HR 1.03, 95% CI 0.99-1.07, adjusted for maternal education and maternal pre-

pregnancy BMI), while the estimate using maternal reports of PDS was closer to the null (Supplemental 

Table 3.11). 

3.4 Discussion 

 

In this prospective cohort enriched for BCFH, we found that three potentially modifiable risk factors 

– higher maternal pre-pregnancy BMI, lack of recreational physical activity during pregnancy and higher 

GWG, were associated with earlier breast development in daughters. The inverse linear relationship 

between maternal pre-pregnancy BMI and age at breast development was partially mediated by daughters’ 

pre-pubertal body size. When we considered maternal BMI and GWG together, maternal overweight or 

obesity and high GWG (≥30lbs) was associated with earlier breast development compared with daughters 

of women with a pre-pregnancy BMI <25 who gained <30lbs during pregnancy, and this association was 

similar in girls with and without a BCFH. Thus, maintaining a healthy BMI prior to pregnancy and preventing 

excessive weight gain during pregnancy (≥30lbs) may delay breast development in girls across the 

spectrum of familial risk for breast cancer. 

Comparison with previous studies 
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Our findings extend the previous literature conducted in study populations of girls predominantly at 

average-risk of breast cancer due to their family history. The inverse linear relationship between maternal 

pre-pregnancy BMI and age at breast development that we observed in girls without a BCFH is consistent 

with previous studies in the prospective ALSPAC birth cohort ( for age at menarche: -0.77, 95% CI -0.93, 

-0.60 per 1 BMI-unit increase) ,73,82 and a retrospective pubertal cohort nested in KPNC (HR: 1.39, 95% CI 

1.30, 1.49 for maternal BMI≥30 compared with 18.5-24.9, p for trend<0.0001).81 Higher maternal pre-

pregnancy BMI has also been consistently associated with earlier age at menarche.73,82,111,115,117,118 Similar 

to our results, previous studies have also observed earlier age at breast development and menarche in 

daughters of women with greater absolute GWG or GWG in excess of guidelines.82,83,118,237 However, the 

shape of this association at the extreme of low or inadequate GWG has not been consistent in the literature. 

In ALSPAC, GWG had an inverse linear relationship with age at thelarche and age at menarche, and 

inadequate GWG based on the 2009 IOM guidelines was associated with a decreased risk of early 

menarche compared with adequate GWG.82 In contrast, inadequate GWG was associated with earlier age 

at breast development in KPNC.237 A U-shaped association was also observed between GWG and early 

menarche in the Nurses’ Health Study II cohort.83 We did not observe a statistically significant difference in 

age at breast development in girls whose mothers gained <20lbs compared with 20-29lbs, but point 

estimates were in the direction of earlier breast development in this group. The inconsistent association 

between low GWG and pubertal timing could be due to heterogeneity within the group of women who do 

not gain much weight during pregnancy, particularly in terms of pre-pregnancy BMI. In girls <8 years at 

baseline, the HR for breast development for GWG<20lbs when adjusted for maternal pre-pregnancy BMI 

as a confounder was 1.64 (95% CI 0.91-2.94). However, when we considered GWG together with maternal 

pre-pregnancy BMI, we observed earlier breast development in girls with low GWG only if their mothers 

were overweight or obese prior to pregnancy. Although previous studies adjusted for pre-pregnancy BMI, 

the estimated association between low GWG and breast development without considering an interaction 

between GWG and maternal BMI would be an average effect over the distribution of maternal BMI. 

Differences in the distribution of maternal BMI in previous studies could explain inconsistencies in the 

associations between low GWG and pubertal timing in the literature. In the ALSPAC cohort, which did not 

observe earlier pubertal timing in daughters of inadequate GWG, only 21.7% of mothers had a BMI≥25 
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prior to pregnancy.82 In KPNC, which did observe a statistically significant association between inadequate 

GWG and earlier breast development, more than 50% of mothers had a BMI≥25 at the beginning of 

pregnancy. The HR was elevated, but not statistically significant, comparing girls whose mother had a pre-

pregnancy BMI<25 and inadequate GWG with girls whose mothers also had a pre-pregnancy BMI<25 and 

adequate GWG (HR=1.26, 95% CI 0.90-1.75). 237  

We observed earlier age at breast development in daughters of women that were physically inactive 

during pregnancy. The association between maternal physical activity and breast development was not 

linear and was limited to women that reported no walking or regular exercise, suggesting that even a small 

amount of physical activity during pregnancy may reduce the risk of early breast development in daughters. 

While we also observed later age at breast development in daughters of women who did not work outside 

the home, no difference was observed between daughters of women with more sedentary compared with 

more physically active jobs among women who worked outside the home. It seems unlikely that the 

observed association in daughters of women who do not work outside the home is due to physical activity, 

and may reflect an influence of socioeconomic status or other differences in the home environment in 

families where the mother does not work outside the home. Only one prior study has examined maternal 

physical activity levels during pregnancy in relation to pubertal timing. In the Nurses’ Health Study II cohort, 

there was a modest linear relationship between maternal leisure-time physical activity and daughters’ age 

at menarche, with a 1 month difference in age at menarche between daughters of highly active compared 

with inactive women.236 The magnitude of this association is much smaller than what we observed for breast 

development, but age at menarche was recalled to the nearest year by participants in adulthood and 

measurement error on the outcome may have biased effect estimates towards the null.  

While our results support that maternal factors that affect the intrauterine environment are 

associated with age at breast development, they do not support an independent role for birthweight or 

birthlength in regards to the onset of breast development. Mothers recalled birthweight and birthlength when 

girls were primarily 6-13 years of age and these measures are likely subject to some measurement error. 

We mailed the questionnaire for parents to complete at home, and 41% of mothers reported that the source 

of the birthweight information was a written record (birth certificate, baby book, birth announcement, etc.). 
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The correlation between maternal report of birthweight and birthweight abstracted from medical record data 

was also high (0.9) in our validation subset, and previous studies have found parental recall of birthweight 

to be reliable.244,245 Birth cohorts using prospective measures of birthweight have also not observed an 

association between birthweight and onset of breast development,73,79 which supports that our results are 

less likely to be driven by measurement error. Earlier age at breast development was observed in higher 

birthweight infants in the North Carolina Infant Feeding Study, but the association was adjusted for weight 

gain in infancy and early childhood and may reflect the influence of postnatal growth patterns.75 The 

correlation for birthlength in our validation subset was modest at 0.6, and 13% of mothers did not report 

length at birth. However, assessments of length before standing height can be measured are more prone 

to measurement error and have been found to have poor reliability, even when measured by nurses.246,247 

Three previous studies using prospective measures of birthlength also did not observe an association with 

the timing of breast development.73,79,124 

Potential mechanisms 

 Several potential mechanisms may link maternal pre-pregnancy BMI, GWG and maternal physical 

activity during pregnancy to the timing of breast development. Previous studies have found that the 

combination of excess GWG and higher maternal pre-pregnancy BMI is associated with rapid infant weight 

gain,248,249 a risk factor for earlier age at breast development73,75 and menarche.34,72,76,77,190 The increased 

risk of early breast development that we observed in daughters of women that were overweight or obese 

prior to pregnancy and gained more than 30lbs may be mediated by rapid infant weight gain, a hypothesis 

that we will explore in Chapter 4. Overweight girls have earlier onset of breast development than girls of 

average weight,54,60 and maternal pre-pregnancy BMI and GWG are both positively associated with 

daughters’ BMI in childhood.250 Our results suggest that the association between maternal pre-pregnancy 

BMI and earlier age at breast development is partially mediated by daughters’ BMI, which could be due to 

shared genetic or lifestyle factors.197 However, when we limited our analyses to girls with a pre-pubertal 

BMI <85th percentile, we still observed an inverse association between maternal BMI and age at breast 

development. Associations between higher GWG and maternal physical inactivity and earlier age at breast 

development were only slightly attenuated after adjusting for daughters’ BMI.  
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Overall, the lack of full mediation by daughters’ body size suggests that maternal pregnancy factors 

may have a direct effect on the developing breast. The developmental origins of health and disease 

(DOHAD) hypothesis posits that intrauterine exposures affect health throughout the life course, either 

through a direct effect on the developing organs during the critical period of fetal development or through a 

developmental programming mechanism.198 The breast undergoes multiple periods of rapid development 

throughout the life course when it is more susceptible to carcinogenetic effects from the environment.43,199 

The prenatal period has been identified as a critical window of susceptibility since the ductal system of the 

breast develops rapidly in utero,43,199,200 and exposures that affect this ductal development could alter later 

breast development and breast cancer risk.43,201,202 In rats, maternal high fat diet during pregnancy has 

been associated with increased estrogen levels in mothers and earlier pubertal development and increased 

incidence of mammary tumors in offspring.251 In humans, however, high-fat diet, maternal obesity and GWG 

have not been consistently associated with estrogen levels during pregnancy.27,28,252,253 

Maternal overnutrition could also affect breast development via the programming of hormones 

related to glucose and insulin regulation. Women with higher pre-pregnancy BMI and greater GWG have 

higher levels of leptin.203,254,255 Exposure to high leptin levels in utero may program higher levels of these 

hormones in their daughters. Higher levels of leptin, an adipokine which plays a role in appetite and energy 

regulation, may stimulate the hypothalamic-pituitary-gonadal (HPG) axis, leading to earlier onset of breast 

development.204 Higher leptin levels have been observed in girls with premature breast development205 and 

is associated with earlier age at menarche.206 Maternal obesity is also associated with insulin resistance 

during pregnancy, which may predispose the offspring to the development of insulin resistance and 

compensatory hyperinsulemia.207 Hyperinsulinemia is associated with decreased levels of sex hormone-

binding globulin,87 which in turn increases sex steroid bioavailability and may promote puberty.208 Some 

studies have shown that physical activity during pregnancy is associated with reduced maternal leptin levels 

and increased insulin sensitivity (for review, see 256), suggesting that physical activity during pregnancy 

could also affect pubertal timing through a hormonal mechanism. Maternal overnutrition may affect 

daughters’ health later in life via an epigenetic mechanism.207,209 Patterns of DNA methylation are 

established in early life and persist into adulthood, and evidence from animal studies suggest that maternal 

overnutrition can induce epigenetic changes in the offspring.210  
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Differences by breast cancer family history 

We previously observed that girls with a BCFH experience earlier onset of breast development than 

girls without a BCFH.54 Identifying risk factors for earlier puberty that are modifiable could therefore have a 

greater effect on an absolute scale in girls with a BCFH. We found that the association between maternal 

overweight or obesity, high GWG (≥30lbs) and earlier age at breast development did not differ by BCFH on 

the additive scale, as assessed by the RERI. This suggests that the absolute risk of early breast 

development can be modified, even in girls at increased risk due to their family history, by changing the 

early-life environment. Maintaining a healthy weight prior to pregnancy, preventing excessive GWG and 

engaging in physical activity during pregnancy has many additional health benefits for both the mother and 

the child. Raising awareness that these behaviors, which are in line with current clinical and public health 

recommendations, may delay the onset of breast development in daughters is an important public health 

message. This message may resonate in particular with mothers of girls with a BCFH, who have a greater 

level of breast-cancer specific distress.257  

Methodological considerations in the assessment of breast development 

One of the methodological challenges in studying pubertal timing is accurately capturing the onset 

of breast development. We ran multiple sensitivity analyses to examine how robust the association that we 

observed between maternal pre-pregnancy BMI, GWG and the onset of breast development was across 

different assessments of breast development and modeling strategies. In our sample, 43% of girls 

experienced the onset of breast development prior to study entry. Excluding girls based on their attainment 

of the outcome is recognized to bias studies of pubertal timing.58 In particular, girls with earlier onset of 

breast development would be more likely to be excluded; if the exposure is associated with earlier 

development, this exclusion could lead to a bias towards the null in the observed measure of association. 

In our primary analysis, we included these girls in the model as left-censored without making additional 

assumptions about the timing of their breast development. We also ran sensitivity analyses imputing their 

age at breast development using recalled data. The imputation of an observed event time is more precise 

than left censored data, but is more prone to measurement error. Since we administered the growth and 

development questionnaire every 6 months, we had multiple reports of mothers’ recalled age at onset of 
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breast development for a subset of the cohort. As daughters mature and mothers are recalling the age of 

onset further from the actual time of transition, the age at onset recalled by the mother became 

progressively later on average (data not shown). The estimated median age at breast development was 

later when we used recalled data for left-censored girls, but the estimated associations for our exposures 

of interest were largely unchanged. Our inference was also similar when we imputed the midpoint of the 

interval as though it were observed for interval-censored girls.  

While we used maternal reports of breast TS as our main outcome since it was available for all 

LEGACY sites, we conducted sensitivity analyses in the subset of girls with clinical breast TS. While 

estimates in this subset lack precision, the patterns of association were similar to what we observed in the 

full cohort using maternal reports. We also ran sensitivity analyses assessing the onset of breast 

development using PDS. Compared with clinical TS as the gold standard, we’ve previously found that 

breast onset as measured by maternal report using PDS has higher sensitivity compared with maternal 

report of SMS, but slightly lower specificity (Sensitivity 86.6% vs 77.0% for PDS and SMS; Specificity 89.6% 

vs 94.3% for PDS and SMS).239,258 Since mothers are more likely to report breast onset using PDS 

compared with SMS, a higher percentage of girls were left-censored when using PDS as the outcome, 

which could explain why the point estimates from the PDS models are slightly closer to the null than the 

SMS models. Girls with inconsistent development by either measure (a report of TS1 or PDS1 after a report 

of TS or PDS≥2, which may reflect inaccurate reporting by the mother of the initial onset) were more likely 

to be discordant across these two measures. Our results were similar when we excluded inconsistent girls 

based on TS from the analyses, which suggests that our findings are less likely to be driven by 

measurement error. Finally, the validity of breast TS when based on visual assessment is different in 

average-weight compared with overweight girls, even when assessed by clinicians, as fat tissue in 

overweight girls can be mistaken for breast tissue.58 In LEGACY, we found that the sensitivity of maternal 

reports of breast onset, when assessed by SMS and PDS, is higher, but the specificity is lower, in 

overweight compared with average-weight girls.239,258 Since maternal pre-pregnancy BMI and GWG are 

associated with daughters’ body size, this differential outcome assessment could bias the results away from 

the null. We examined this potential bias by restricting our analyses to non-overweight girls, and the 

inference was the same in this subset. Overall, the associations between higher maternal pre-pregnancy 
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BMI, greater GWG and earlier breast development were robust to these different modeling strategies. The 

consistency across our sensitivity analyses reduces the likelihood that our findings are due to bias, but is 

also informative for the comparison of previous studies that use these different methodologies and the 

design of future studies of breast development. While biannual assessments of clinical TS with palpation 

has been recommended as a “wish list” for longitudinal studies,58 our results suggest that, in the case of 

exposures with a strong signal, the bias from the use of maternal reports and recalled data is minimal and 

leads to similar inference.   

Strengths and limitations 

The utilization of the LEGACY cohort is a major strength of this research. LEGACY is the only 

pubertal cohort worldwide enriched for BCFH, which allowed us to examine whether the associations 

between these early-life factors and breast development varies by underlying breast cancer susceptibility. 

LEGACY girls have been followed for up to five years with visits at six-month intervals, and thus have breast 

development data collected at frequent intervals to assess breast onset. Previous studies have primarily 

assessed development on an annual basis,82,109 decreasing precision. The collection of multiple measures 

of breast development is also a strength, and allowed us to compare findings across mother-reported breast 

TS, mother-reported PDS, and clinician-reported breast TS. The consistency of the finding that daughters 

of mothers who were overweight or obese prior to pregnancy and gained more than 30lbs during pregnancy 

across these measures support that this finding is less likely to be driven by measurement error in outcome 

assessment. 

Limitations of this study include the use of self-reported exposure data and censoring of the breast 

development outcome. Maternal recall of prenatal exposures, including maternal body size and daughters' 

birth characteristics, could be subject to measurement error, though the use of categorical variables likely 

limited the amount of misclassification. GWG was not collected in a way to be able to create categories of 

inadequate, adequate, and excessive weight gain based on the exact recommendations of the 2009 IOM 

guidelines.110 Since girls were predominantly between the ages of 6 and 13 years at baseline, some of the 

girls had already experienced breast development prior to cohort entry. We included these girls in the 

analyses by using both left censoring and recalled age at development in sensitivity analyses, but the lack 
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of prospective data on these girls could have biased our results towards the null. We also conducted 

analyses in the subset of girls <8 years at baseline, in which <5% of girls were left-censored for the outcome, 

limiting the potential for bias due to the use of retrospective data. However, the sample size of this subset 

affected precision and limited the number of confounders that we included in adjusted models. Overall, the 

consistency of the main study findings across the analytic subsets, which are susceptible to different 

sources of bias, support that bias is unlikely to explain the results that we observed. 

3.5 Conclusions 

 

Earlier thelarche was associated with three potentially modifiable risk factors – maternal pre-

pregnancy BMI, maternal physical activity during pregnancy and gestational weight gain - in a cohort of 

girls enriched for BCFH. Health promotion campaigns should educate both women who are planning 

pregnancies and their clinicians that maintaining a healthy pre-pregnancy BMI, engaging in recreational 

physical activity during pregnancy, and moderate weight gain during pregnancy (<30lbs) may delay breast 

development in daughters, in addition to other health benefits to the mother and child. 
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3.6 Tables and figures 

 

Table 3.1. Descriptive characteristics of the LEGACY Girls Study cohort overall and by analytic 
subset 

  
All of 

LEGACY 
(N=1068) 

Participating 
guardian is 
biological 

mother 
(N=1031) 

Subset with 
BMI measured 

at <8 years 
(N=619) 

Subset age <8 
years at 
baseline 
(N=259) 

Early-life characteristics     

Maternal age at birth (Mean±SD) 32.3 ± 5.5 32.1 ± 5.4 32.5 ± 5.2 32.1 ± 5.5 

Maternal height, m (Mean±SD) 1.6 ± 0.1 1.6 ± 0.1 1.6 ± 0.1 1.6 ± 0.1 

Maternal pre-pregnancy weight, kg (Mean±SD) 64.0 ± 13.3 64.0 ± 13.3 64.0 ± 13.0 65.8 ± 14.5 

Maternal pre-pregnancy BMI (Mean±SD) 23.8 ± 4.9 23.8 ± 4.9 23.7 ± 4.8 24.5 ± 5.6 

Maternal pre-pregnancy BMI, categorized (N, 
%) 

    

 <18.5 47 (4.4) 47 (4.6) 28 (4.5) 8 (3.1) 

18.5 to <25 677 (63.4) 676 (65.6) 415 (67.0) 162 (62.6) 

25 to <30 180 (16.9) 179 (17.4) 94 (15.2) 46 (17.8) 

≥30 96 (9.0) 96 (9.3) 59 (9.5) 31 (12.0) 

Missing 68 (6.4) 33 (3.2) 23 (3.7) 12 (4.6) 

Gestational weight gain (n, %)     

<10 lbs 27 (2.5) 27 (2.6) 20 (3.2) 7 (2.7) 

10-14 lbs 42 (3.9) 42 (4.1) 25 (4.0) 10 (3.9) 

15-19 lbs 86 (8.1) 86 (8.3) 54 (8.7) 17 (6.6) 

20-29 lbs 317 (29.7) 316 (30.7) 169 (27.3) 78 (30.1) 

30-39 lbs 266 (24.9) 264 (25.6) 161 (26.0) 68 (26.3) 

40-49 lbs 145 (13.6) 145 (14.1) 87 (14.1) 34 (13.1) 

≥50 lbs 113 (10.6) 113 (11.0) 69 (11.2) 31 (12.0) 

Missing 72 (6.7) 38 (3.7) 34 (5.5) 14 (5.4) 

Gestational weight gain adequacy based on 
the 2009 IOM guidelines (n, %) 

    

Inadequate (below guidelines) 132 (12.4) 132 (12.8) 87 (14.1) 27 (10.4) 

Adequate (within guidelines) 519 (48.6) 519 (50.3) 300 (48.5) 134 (51.7) 

Excessive (above guidelines) 317 (29.7) 317 (30.8) 187 (30.2) 81 (31.3) 

Missing 100 (9.4) 63 (6.1) 45 (7.3) 17 (6.6) 

Maternal recreational physical activity during 
pregnancy (N, %) 

    

Inactive, no walking or other regular exercise 129 (12.1) 128 (12.4) 71 (11.5) 30 (11.6) 

Mostly inactive, equivalent to walking about half a 
mile or less every day 

241 (22.6) 235 (22.8) 156 (25.2) 71 (27.4) 

Somewhat active, equivalent to walking about 1 
mile every day 

226 (21.2) 222 (21.5) 136 (22.0) 57 (22.0) 

Active, equivalent to walking about 2 miles every 
day 

384 (36.0) 379 (36.8) 215 (34.7) 85 (32.8) 
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Highly active, equivalent to walking about 3 or 
more miles every day 

58 (5.4) 57 (5.5) 33 (5.3) 11 (4.3) 

Missing 30 (2.8) 10 (1.0) 8 (1.3) 5 (1.9) 

Maternal physical activity at home during 
pregnancy (N, %) 

    

Mostly sitting 212 (19.9) 209 (20.3) 123 (19.9) 51 (19.7) 

Mostly walking and standing, with some sitting 412 (38.6) 403 (39.1) 246 (39.7) 108 (41.7) 

Active housework most of the time with little sitting 405 (37.9) 400 (38.8) 236 (38.1) 90 (34.8) 

Heavy manual work at home 5 (0.5) 5 (0.5) 2 (0.3) 2 (0.8) 

Missing 34 (3.2) 14 (1.4) 12 (1.9) 8 (3.1) 

Maternal physical activity at work during 
pregnancy (N, %) 

    

Not working 214 (20.0) 211 (20.5) 112 (18.1) 54 (20.9) 

Mostly sitting and standing 422 (39.5) 413 (40.1) 258 (41.7) 103 (39.8) 

Mostly walking with some sitting and standing 362 (33.9) 357 (34.6) 224 (36.2) 92 (35.5) 

Mostly heavy labor with some walking and 
standing and little sitting 

39 (3.7) 39 (3.8) 17 (2.8) 5 (1.9) 

Missing 31 (2.9) 11 (3.8) 8 (1.3) 5 (1.9) 

Maternal physical activity during pregnancy, 
2nd trimester (N, %) 

    

Stayed the same 751 (70.3) 737 (71.5) 446 (72.1) 189 (73.0) 

Substantially increased 54 (5.1) 54 (5.2) 29 (4.7) 8 (3.1) 

Substantially decreased 233 (21.8) 231 (22.4) 136 (22.0) 57 (22.0) 

Missing 30 (2.8) 9 (0.9) 8 (1.3) 5 (1.9) 

Gestational diabetes during pregnancy with 
LEGACY daughter (N, %) 

    

Yes 80 (7.5) 78 (7.6) 50 (8.1) 24 (9.3) 

No 944 (88.4) 930 (90.2) 555 (89.7) 225 (86.9) 

Missing 44 (4.1) 23 (2.2) 14 (2.3) 10 (3.9) 

Gestational hypertension, toxemia or pre-
eclampsia during pregnancy with LEGACY 
daughter (N, %) 

    

Yes 76 (7.1) 74 (7.2) 42 (6.8) 20 (7.7) 

No 947 (88.7) 932 (90.4) 557 (90.0) 227 (87.6) 

Missing 45 (4.2) 25 (2.4) 20 (3.2) 12 (4.6) 

Type of gestation (N, %)     

Multiple 45 (4.2) 45 (4.4) 34 (5.5) 13 (5.0) 

Singleton 970 (90.8) 970 (94.1) 576 (93.1) 241 (93.1) 

Missing 53 (5.0) 16 (1.6) 9 (1.5) 5 (1.9) 

Birth order (Mean±SD) 1.8 ± 0.9 1.8 ± 0.9 1.7 ± 0.9 1.9 ± 0.9 

Birth order, dichotomized (N, %)     

First-born 470 (44.0) 470 (45.6) 281 (45.4) 97 (37.5) 

Not first-born 545 (51.0) 545 (52.9) 329 (53.2) 157 (60.6) 

Missing 53 (5.0) 16 (1.6) 9 (1.5) 5 (1.9) 

Gestational age in weeks (Mean±SD) 39.0 ± 2.1 39.0 ± 2.1 38.9 ± 2.2 38.8 ± 2.2 
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Gestational age, categorized (N, %)     

<37 weeks 121 (11.3) 120 (11.6) 80 (12.9) 32 (12.4) 

≥37 weeks 909 (85.1) 893 (86.6) 525 (84.8) 218 (84.2) 

Missing 38 (3.6) 18 (1.8) 14 (2.3) 9 (3.5) 

Intrauterine smoke exposure (N, %)     

Yes 19 (1.8) 12 (1.2) 10 (1.6) 4 (1.5) 

No 1017 (95.2) 1000 (97.0) 598 (96.6) 247 (95.4) 

Missing 32 (3.0) 12 (1.2) 11 (1.6) 8 (3.1) 

Birthweight, g (Mean±SD) 
3293.7 ± 

582.9 
3298.3 ± 583.3 3297.8 ± 574.6 3287.2 ± 574.6 

Birthweight, categorized (N, %)     

<2500g 81 (7.6) 78 (7.6) 43 (7.0) 19 (7.3) 

2500-2999g 186 (17.4) 179 (17.4) 111 (17.9) 42 (16.2) 

3000-3499g 397 (37.2) 388 (37.6) 233 (37.6) 104 (40.2) 

3500-3999g 287 (26.9) 279 (27.1) 165 (26.7) 66 (25.5) 

≥4000g 94 (8.8) 94 (9.1) 59 (9.5) 24 (9.3) 

Missing 23 (2.2) 13 (1.3) 8 (1.3) 4 (1.5) 

Birthlength, cm (Mean±SD) 50.5 ± 3.7 50.5 ± 3.6 50.4 ± 3.7 50.4 ± 3.8 

Birthlength, categorized (N, %)     

<48.25 113 (10.6) 106 (10.3) 65 (10.5) 30 (11.6) 

48.25-50.74 283 (26.5) 277 (26.9) 167 (27.0) 65 (25.1) 

50.75-53.24 222 (20.8) 215 (20.9) 138 (22.3) 58 (22.4) 

≥53.25 303 (28.4) 300 (29.1) 176 (28.4) 76 (29.3) 

Missing 147 (13.8) 133 (12.9) 73 (11.8) 30 (11.6) 

Ponderal index at birth, kg/m3 (Mean±SD) 26.0 ± 6.3 25.8 ± 5.8 25.8 ± 5.2 25.7 ± 5.3 

Ponderal index at birth, categorized (N, %)     

<22.98 241 (22.6) 238 (23.1) 146 (23.6) 59 (22.8) 

22.98-25.21 222 (20.8) 217 (21.1) 122 (19.7) 57 (22.0) 

25.22-28.11 230 (21.5) 225 (21.8) 152 (24.6) 64 (24.7) 

≥28.12 228 (21.4) 218 (21.1) 126 (20.4) 49 (18.9) 

Missing 147 (13.8) 133 (12.9) 73 (11.8) 30 (11.6) 

Baseline characteristics     

Age at baseline, (Mean±SD)a 10.0 ± 2.4 10.0 ± 2.4 9.2 ± 2.3 6.9 ± 0.6 

BMI-for-age percentile at baseline, (Mean±SD)a  50.5 ± 30.6 50.8 ± 30.5 50.2 ± 30.5 49.9 ± 30.6 

BMI-for-age percentile at baseline, categorized 
(N, %)a  

    

≥85th BMI-for-age percentile 180 (16.9) 174 (16.9) 100 (16.2) 36 (13.9) 

<85th BMI-for-age percentile 836 (78.3) 806 (78.2) 503 (81.3) 212 (81.9) 

Missing 52 (4.9) 51 (5.0) 16 (2.6) 11 (4.3) 

History of breast cancer in a first- or second-
degree relative (N, %) 

    

BCFH+ 543 (50.8) 530 (51.4) 310 (50.1) 134 (51.7) 

BCFH- 525 (49.2) 501 (48.6) 309 (49.9) 125 (48.3) 
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BOADICEA lifetime risk score (Mean±SD) 14.6 ± 4.8 14.6 ± 4.8 14.4 ± 4.7 14.7 ± 5.0 

Study site     

Philadelphia 159 (14.9) 153 (14.8) 112 (18.1) 24 (9.3) 

New York 177 (16.6) 175 (17.0) 116 (18.7) 56 (21.6) 

Utah 178 (16.7) 173 (16.8) 103 (16.6) 60 (23.2) 

Ontario 192 (18.0) 179 (17.4) 106 (17.1) 46 (17.8) 

Northern California 362 (33.9) 351 (34.0) 182 (29.4) 73 (28.2) 

Race/ethnicity     

Non-Hispanic white 669 (62.6) 650 (63.1) 406 (65.6) 167 (64.5) 

Non-Hispanic black 79 (7.4) 78 (7.6) 49 (7.9) 20 (7.7) 

Hispanic 196 (18.4) 184 (17.9) 96 (15.5) 48 (18.5) 

Asian/Pacific Islander 93 (8.7) 88 (8.5) 52 (8.4) 20 (7.7) 

Other or mixed race/ethnicity 31 (2.9) 31 (3.0) 16 (2.6) 4 (1.5) 

Maternal education     

Some college, vocational or technical school or 
less 

296 (27.7) 287 (27.8) 147 (23.8) 75 (29.0) 

Bachelor's degree 385 (36.1) 373 (36.2) 226 (36.5) 93 (35.9) 

Graduate degree 361 (33.8) 346 (33.6) 232 (37.5) 85 (32.8) 

Missing 26 (2.4) 25 (2.4) 14 (2.3) 6 (2.3) 

Paternal education     

Some college, vocational or technical school or 
less 

345 (32.3) 339 (32.9) 177 (28.6) 76 (29.3) 

Bachelor's degree 306 (28.7) 298 (28.9) 189 (30.5) 83 (32.1) 

Graduate degree 348 (32.6) 333 (32.3) 219 (35.4) 79 (30.5) 

Missing 69 (6.5) 61 (5.9) 34 (5.5) 21 (8.1) 

Maternal age at menarche  (Mean±SD) 12.7 ± 1.5 12.7 ± 1.5 12.8 ± 1.6 12.8 ± 1.6 

Maternal age at menarche, categorized     

<12 years 205 (19.2) 200 (19.4) 115 (18.6) 52 (20.1) 

12-13 years 575 (53.8) 558 (54.1) 338 (54.6) 135 (52.1) 

≥14 years 253 (23.7) 247 (24.0) 152 (24.6) 66 (25.5) 

Missing 35 (3.3) 26 (2.5) 14 (2.3) 6 (2.3) 

aAge at pilot baseline visit for girls with pilot data (N=21) 
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Table 3.2. Time ratios (TR), hazard ratios (HR) and 95% confidence intervals (CIs) for associations between maternal pre-pregnancy BMI 
and  GWG and the onset of breast development for the overall cohort and girls age <8 years at baseline 
 

 Overall cohort Girls <8 years at baseline 
  Unadjusted Adjusteda  Unadjusted Adjustedb 

  N TR (95% CI) HR (95% CI) TR (95% CI) HR (95% CI) N TR (95% CI) HR (95% CI) TR (95% CI) 
HR (95% 

CI) 

Maternal pre-pregnancy 
BMI 

                  

 <18.5 47 1.038 
(0.999, 1.079) 

0.75 
(0.55, 1.01) 

1.055 
(1.011, 1.101) 

0.65 
(0.46, 0.92) 

 
*Those with BMI<18.5 are in referent group due to small 

numbers 
18.5 to <25 667 Reference Reference Reference Reference 165 Reference Reference Reference Reference 

25 to <30 178 0.979 
(0.942, 1.017) 

1.18 
(0.87, 1.60) 

0.993 
(0.955, 1.031) 

1.06 
(0.78, 1.44) 

46 0.959 
(0.905, 1.016) 

1.36 
(0.89, 2.07) 

0.977 
(0.921, 1.037) 

1.19 
(0.76, 1.86) 

≥30 96 0.948 
(0.912, 0.985) 

1.51 
(1.12, 2.04) 

0.967 
(0.930, 1.006) 

1.31 
(0.95, 1.79) 

31 0.923 
(0.858, 0.993) 

1.80 
(1.07, 3.01) 

0.927 
(0.853, 1.008) 

1.77 
(0.96, 3.26)            

Continuous (per kg/m2) 988 0.995 
(0.993, 0.997) 

1.04 
(1.02, 1.06) 

0.997 
(0.994, 0.999) 

1.03 
(1.01, 1.05) 

242 0.994 
(0.991, 0.998) 

1.04 
(1.02, 1.07) 

0.996 
(0.992, 0.999) 

1.04 
(1.01, 1.07)            

Gestational weight gain 
          

<20lbs 155 0.975 
(0.941, 1.010) 

1.21 
(0.92, 1.60) 

0.983 
(0.958, 1.019) 

1.15 
(0.86, 1.54) 

34 0.919 
(0.846, 0.999) 

1.85 
(1.02, 3.37) 

0.938 
(0.869, 1.013) 

1.64 
(0.91, 2.94) 

20-29 lbs 315 Reference Reference Reference Reference 77 Reference Reference Reference Reference 

30-39 lbs 261 0.988 
(0.960, 1.020) 

1.10 
(0.88, 1.38) 

0.975 
(0.947, 1.004) 

1.23 
(0.97, 1.55) 

67 0.952 
(0.893, 1.015) 

1.43 
(0.91, 2.27) 

0.928 
(0.872, 0.986) 

1.78 
(1.12, 2.86) 

40-49 lbs 143 0.979 
(0.947, 1.013) 

1.18 
(0.91, 1.52) 

0.974 
(0.942, 1.007) 

1.24 
(0.95, 1.62) 

33 0.929 
(0.862, 1.001) 

1.71 
(0.99, 2.97) 

0.919 
(0.854, 0.988) 

1.92 
(1.08, 3.40) 

≥50 lbs 109 0.969 
(0.932, 1.010) 

1.28 
(0.95, 1.72) 

0.962 
(0.926, 0.999) 

1.37 
(1.01, 1.85) 

29 0.917 
(0.833, 1.009) 

1.88 
(0.94, 3.78) 

0.923 
(0.844, 1.009) 

1.85 
(0.93, 3.67)            

Maternal pre-pregnancy 
BMI and GWG 

          

BMI<25 and <30 lbs 312 Reference Reference Reference Reference 67 Reference Reference Reference Reference 

BMI<25 and ≥30 lbs 389 0.995 
(0.971, 1.020) 

1.04 
(0.86, 1.25) 

0.985 
(0.960, 1.009) 

1.13 
(0.93, 1.38) 

95 0.915 
(0.853, 0.982) 

1.91 
(1.15, 3.16) 

0.907 
(0.848, 0.970) 

2.11 
(1.28, 3.48) 

BMI≥25 and <30lbs 149 0.980 
(0.937, 1.025) 

1.17 
(0.82, 1.66) 

0.987 
(0.944, 1.031) 

1.11 
(0.78, 1.59) 

43 0.887 
(0.820, 0.960) 

2.40 
(1.39, 4.16) 

0.910 
(0.839, 0.987) 

2.05 
(1.13, 3.72) 

BMI≥25 and ≥30 lbs 118 0.935 
(0.901, 0.970) 

1.69 
(1.27, 2.26) 

0.945 
(0.911, 0.981) 

1.57 
(1.17, 2.12) 

32 0.912 
(0.831, 1.000) 

1.97 
(1.01, 3.84) 

0.907 
(0.826, 0.996) 

2.11 
(1.04, 4.28) 

aAdjusted for race (Non-Hispanic white Non-Hispanic black, Hispanic, Asian, Other) and maternal education (some college or less, Bachelor's degree, graduate degree). Model for 
GWG also adjusted for maternal pre-pregnancy BMI (continuous). 
bAdjusted for maternal education (some college or less, Bachelor's degree, graduate degree). Model for GWG also adjusted for maternal pre-pregnancy BMI (continuous). 
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Table 3.3. Time ratios (TR), hazard ratios (HR) and 95% confidence intervals (CIs) for associations between maternal physical activity 
during pregnancy and the onset of breast development for the overall cohort and girls age <8 years at baseline 
 

 Overall cohort Girls <8 years at baseline 
  Unadjusted Adjusteda  Unadjusted Adjustedb 

  N TR (95% CI) HR (95% CI) TR (95% CI) HR (95% CI) N TR (95% CI) HR (95% CI) TR (95% CI) 
HR (95% 

CI) 

Recreational physical 
activity 

        
  

Inactive, no walking or other 
regular exercise 

127 0.946 
(0.909, 0.985) 

1.54 
(1.12, 2.11) 

0.977 
(0.941, 1.015) 

1.20 
(0.89, 1.63) 

30 0.914 
(0.853, 0.980) 

1.95 
(1.17, 3.25) 

0.933 
(0.873, 0.998) 

1.70 
(1.02, 2.83) 

Mostly inactive, equivalent to 
walking about half  a mile or 
less every day 

232 0.993 
(0.958, 1.028) 

1.06 
(0.81, 1.39) 

1.006 
(0.976, 1.038) 

0.95 
(0.74, 1.22) 

70 1.003 
(0.947, 1.063) 

0.98 
(0.63, 1.51) 

1.012 
(0.951, 1.077) 

0.91 
(0.56, 1.47) 

Somewhat active, equivalent 
to walking about 1 mile every 
day 

220 0.990 
(0.964, 1.017) 

1.08 
(0.88, 1.33) 

1.010 
(0.983, 1.038) 

0.93 
(0.75, 1.15) 

56 1.022 
(0.959, 1.088) 

0.85 
(0.54, 1.36) 

1.008 
(0.949, 1.071) 

0.94 
(0.59, 1.51) 

Active or highly active, 
equivalent to walking 2 miles 
or more every day 

433 Reference Reference Reference Reference 93 Reference Reference Reference Reference 

           

Physical activity at home 
          

Mostly sitting 208 1.003 
(0.972, 1.036) 

0.97 
(0.76, 1.25) 

1.013 
(0.981, 1.046) 

0.90 
(0.70, 1.17) 

51 0.948 
(0.889, 1.012) 

1.48 
(0.92, 2.37) 

0.974 
(0.912, 1.041) 

1.22 
(0.74, 2.02) 

Mostly walking and standing, 
with some sitting 

398 Reference Reference Reference Reference 105 Reference Reference Reference Reference 

Active housework most of the 
time with little sitting or heavy 
manual labor 

402 1.011 
(0.986, 1.036) 

0.92 
(0.76, 1.12) 

1.019 
(0.995, 1.044) 

0.86 
(0.70, 1.04) 

90 0.976 
(0.925, 1.029) 

1.20 
(0.81, 1.76) 

0.994 
(0.942, 1.048) 

1.05 
(0.70, 1.57) 

           

Physical activity at work 
          

Not working outside the home 208 1.013 
(0.986, 1.042) 

0.90 
(0.73, 1.12) 

1.033 
(1.003, 1.063) 

0.77 
(0.61, 0.98) 

53 1.050 
(0.986, 1.118) 

0.70 
(0.45, 1.11) 

1.089 
(1.021, 1.163) 

0.52 
(0.31, 0.86) 

Mostly sitting and standing 408 Reference Reference Reference Reference 99 Reference Reference Reference Reference 

Mostly walking or heavy labor 395 0.996 
(0.972, 1.020) 

1.03 
(0.86, 1.24) 

1.004 
(0.980, 1.028) 

0.97 
(0.80, 1.18) 

97 1.000 
(0.945, 1.058) 

1.00 
(0.67, 1.51) 

1.016 
(0.964, 1.070) 

0.89 
(0.59, 1.33) 

aAdjusted for race (Non-Hispanic white Non-Hispanic black, Hispanic, Asian, Other) and maternal education (some college or less, Bachelor's degree, graduate degree) and maternal 
pre-pregnancy BMI (continuous). 
bAdjusted for maternal education (some college or less, Bachelor's degree, graduate degree) and maternal pre-pregnancy BMI (continuous). 
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Table 3.4. Time ratios (TR), hazard ratios (HR) and 95% confidence intervals (CIs) for associations between maternal pre-pregnancy BMI, 
recreational physical activity during pregnancy and GWG with adjustment for daughter’s pre-pubertal body size 
 

 Subset of cohort with pre-pubertal BMI measures Girls <8 years at baseline 

  Multivariable-adjusteda 
Additional adjustment for 

daughter’s body sizeb 
 Multivariable-adjustedc 

Additional adjustment for 
daughter’s body sized 

  N TR (95% CI) HR (95% CI) TR (95% CI) HR (95% CI) N TR (95% CI) HR (95% CI) TR (95% CI) 
HR (95% 

CI) 

Maternal pre-pregnancy 
BMI 

        
  

 <18.5 28 1.027 
(0.977, 1.079) 

0.81 
(0.55, 1.20) 

1.018 
(0.969, 1.069) 

0.87 
(0.59, 1.29) 

 
*Those with BMI<18.5 are in referent group due to small 

numbers 
18.5 to <25 402 Reference Reference Reference Reference 157 Reference Reference Reference Reference 

25 to <30 92 0.960 
(0.919, 1.004) 

1.38 
(0.97, 1.97) 

0.970 
(0.929, 1.013) 

1.27 
(0.90, 1.81) 

42 0.970 
(0.912, 1.031) 

1.26 
(0.80, 1.99) 

1.009 
(0.952, 1.069) 

0.93 
(0.59, 1.47) 

≥30 55 0.967 
(0.919, 1.018) 

1.30 
(0.87, 1.94) 

1.006 
(0.956, 1.061) 

0.95 
(0.63, 1.45) 

27 0.914 
(0.838, 0.996) 

1.95 
(1.05, 3.63) 

0.983 
(0.901, 1.071) 

1.15 
(0.58, 2.27)            

Continuous (per kg/m2) 577 0.996 
(0.992, 0.999) 

1.04 
(1.01, 1.06) 

0.999 
(0.995, 1.002) 

1.01 
(0.99, 1.04) 

226 0.993 
(0.989, 0.998) 

1.05 
(1.02, 1.09) 

0.998 
(0.993, 1.004) 

1.01 
(0.97, 1.06)            

Recreational physical 
activityb 

          

Inactive, no walking or other 
regular exercise 

70 0.972 
(0.923, 1.023) 

1.25 
(0.83, 1.89) 

0.967 
(0.921, 1.016) 

1.31 
(0.88, 1.95) 

28 0.941 
(0.879, 1.007) 

1.59 
(0.95, 2.67) 

0.924 
(0.866, 0.985) 

1.90 
(1.13, 3.20) 

Mostly inactive, equivalent 
to walking about half  a mile 
or less every day 

138 0.984 
(0.951, 1.018) 

1.14 
(0.87, 1.49) 

0.978 
(0.945, 1.012) 

1.20 
(0.91, 1.58) 

59 0.996 
(0.934, 1.062) 

1.03 
(0.63, 1.68) 

0.991 
(0.928, 1.058) 

1.08 
(0.64, 1.84) 

Somewhat active, 
equivalent to walking about 
1 mile every day 

133 1.011 
(0.978, 1.046) 

0.91 
(0.70, 1.19) 

1.004 
(0.969, 1.041) 

0.97 
(0.73, 1.29) 

53 1.003 
(0.942, 1.068) 

0.98 
(0.60, 1.58) 

0.999 
(0.939, 1.064) 

1.01 
(0.61, 1.67) 

Active or highly active, 
equivalent to walking 2 
miles or more every day 

236 Reference Reference Reference Reference 86 Reference Reference Reference Reference 

           

Gestational weight gainb 
          

<20lbs 95 0.975 
(0.934, 1.017) 

1.23 
(0.87, 1.73) 

0.979 
(0.937, 1.023) 

1.19 
(0.83, 1.69) 

32 0.940 
(0.869, 1.018) 

1.60 
(0.88, 2.90) 

0.941 
(0.872, 1.016) 

1.63 
(0.88, 3.01) 

20-29 lbs 160 Reference Reference Reference Reference 72 Reference Reference Reference Reference 

30-39 lbs 153 0.980 
(0.946, 1.015) 

1.18 
(0.89, 1.56) 

0.980 
(0.946, 1.016) 

1.17 
(0.88, 1.57) 

58 0.930 
(0.871, 0.993) 

1.74 
(1.06, 2.86) 

0.939 
(0.879, 1.004) 

1.66 
(0.97, 2.83) 

40-49 lbs 85 0.963 
(0.925, 1.001) 

1.36 
(0.99, 1.87) 

0.968 
(0.928, 1.009) 

1.31 
(0.93, 1.83) 

31 0.929 
(0.863, 0.999) 

1.76 
(0.99, 3.11) 

0.930 
(0.863, 1.002) 

1.80 
(0.97, 3.31) 

≥50 lbs 67 0.943 
(0.901, 0.987) 

1.61 
(1.11, 2.32) 

0.950 
(0.906, 0.995) 

1.52 
(1.04, 2.22) 

28 0.911 
(0.832, 0.997) 

2.04 
(1.02, 4.08) 

0.921 
(0.846, 1.002) 

1.95 
(0.98, 3.89)            
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Maternal pre-pregnancy 
BMI and GWGa 

          

BMI<25 and <30 lbs 180 Reference Reference Reference Reference 65 Reference Reference Reference Reference 

BMI<25 and ≥30 lbs 240 0.977 
(0.947, 1.007) 

1.21 
(0.95, 1.54) 

0.979 
(0.948, 1.011) 

1.19 
(0.92, 1.54) 

89 0.908 
(0.847, 0.972) 

2.07 
(1.24, 3.45) 

0.922 
(0.861, 0.989) 

1.91 
(1.10, 3.31) 

BMI≥25 and <30lbs 75 0.954 
(0.907, 1.004) 

1.46 
(0.97, 2.19) 

0.975 
(0.925, 1.029) 

1.22 
(0.79, 1.89) 

39 0.898 
(0.826, 0.977) 

2.24 
(1.23, 4.07) 

0.949 
(0.877, 1.028) 

1.52 
(0.81, 2.84) 

BMI≥25 and ≥30 lbs 65 0.935 
(0.892, 0.980) 

1.71 
(1.17, 2.50) 

0.955 
(0.912, 1.001) 

1.45 
(0.99, 2.12) 

28 0.904 
(0.820, 0.998) 

2.13 
(1.02, 4.44) 

0.961 
(0.871, 1.061) 

1.37 
(0.62, 3.01) 

aAdjusted for race (Non-Hispanic white Non-Hispanic black, Hispanic, Asian, Other) and maternal education (some college or less, Bachelor's degree, graduate degree). Model for 
GWG also adjusted for maternal pre-pregnancy BMI (continuous). 
bAdjusted for everything in a plus daughter’s BMI-for-age percentile between age 5-7 years and interaction between BMI-for-age percentile and centered age at BMI measure. 
cAdjusted for maternal education (some college or less, Bachelor's degree, graduate degree). Model for GWG also adjusted for maternal pre-pregnancy BMI (continuous). 
dAdjusted for everything in b plus daughter’s BMI-for-age percentile between age 5-7 years and interaction between BMI-for-age percentile and centered age at BMI measure 
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Table 3.5. Time ratios (TR), hazard ratios (HR) and 95% confidence intervals (CIs) for associations between maternal pre-pregnancy BMI, 
recreational physical activity during pregnancy and GWG stratified by breast cancer family history 
 

 Overall cohort Girls <8 years at baseline 
  BCFH+  BCFH-  BCFH+ N BCFH- 

  N 
TR  

(95% CI) 
HR  

(95% CI) 
N TR 

(95% CI) 
HR 

(95% CI) 
N 

TR  
(95% CI) 

HR 
(95% CI) 

 TR 
(95% CI) 

HR 
(95% CI) 

Maternal pre-
pregnancy BMIa 

   
 

     
   

 <18.5 22 1.021 
(0.950, 1.098) 

0.85 
(0.48, 1.51) 

24 1.076 
(1.025,1.129) 

0.54 
(0.36, 0.82) 

 
*Those with BMI<18.5 are in referent group due to small numbers 

18.5 to <25 340 Reference Reference 312 Reference Reference 87 Reference Reference 76 Reference Reference 

25 to <30 90 1.042 
(0.987, 1.101) 

0.72 
(0.47, 1.10) 

84 0.946 
(0.907, 0.986) 

1.59 
(1.12, 2.27) 

23 1.003 
(0.938,1.072) 

0.98 
(0.54, 1.76) 

21 0.953 
(0.853, 1.065) 

1.37 
(0.66, 2.83) 

≥30 41 0.977 
(0.920, 1.037) 

1.21 
(0.75, 1.95) 

50 0.960 
(0.912, 1.011) 

1.41 
(0.92, 2.15) 

13 0.957 
(0.881,1.040) 

1.47 
(0.72, 3.02) 

16 0.893 
(0.764, 1.045) 

2.08 
(0.77, 5.59)     

 
     

 
  

Continuous (per kg/m2) 493 1.000 
(0.996, 1.003) 

1.00 
(0.98, 1.03) 

470 0.994 
(0.991, 0.998) 

1.05 
(1.02, 1.08) 

123 0.997 
(0.994,1.001) 

1.02 
(0.99, 1.05) 

113 0.991 
(0.981, 1.001) 

1.06 
(1.00, 1.13)     

 
     

 
  

Recreational physical 
activityb 

            

Inactive, no walking or 
other regular exercise 

68 0.984 
(0.936, 1.034) 

1.14 
(0.77, 1.69) 

53 0.964 
(0.911, 1.020) 

1.37 
(0.84, 2.21) 

19 0.934 
(0.866,1.006) 

1.86 
(0.96, 3.61) 

11 0.896 
(0.784, 1.025) 

2.06 
(0.85, 4.96) 

Mostly inactive, 
equivalent to walking 
about half  a mile or 
less every day 

111 1.001 
(0.955, 1.050) 

0.99 
(0.68, 1.44) 

98 1.005 
(0.970, 1.041) 

0.96 
(0.71, 1.30) 

30 1.002 
(0.936,1.073) 

0.98 
(0.53, 1.82) 

33 1.023 
(0.899, 1.163) 

0.86 
(0.37, 2.01) 

Somewhat active, 
equivalent to walking 
about 1 mile every day 

102 0.970 
(0.937, 1.004) 

1.27 
(0.96, 1.68) 

114 1.040 
(1.004, 1.077) 

0.72 
(0.53, 0.97) 

27 1.001 
(0.938,1.067) 

1.00 
(0.55, 1.79) 

27 1.001 
(0.890, 1.125) 

1.00 
(0.46, 2.16) 

Active or highly active, 
equivalent to walking 
≥2 miles every day 

212 Reference Reference 205 Reference Reference 47 Reference Reference 42 Reference Reference 

             

Gestational weight 
gainb 

   
 

     
 

  

<20lbs 79 1.004 
(0.957, 1.054) 

0.97 
(0.65, 1.43) 

70 0.966 
(0.920, 1.015) 

1.34 
(0.89, 2.01) 

19 0.985 
(0.908,1.070) 

1.14 
(0.54, 2.42) 

15 0.872 
(0.750, 1.013) 

2.50 
(0.93, 6.73) 

20-29 lbs 163 Reference Reference 140 Reference Reference 38 Reference Reference 36 Reference Reference 

30-39 lbs 123 0.980 
(0.940, 1.021) 

1.18 
(0.85, 1.64) 

124 0.974 
(0.938, 1.011) 

1.25 
(0.92, 1.71) 

30 0.969 
(0.900,1.023) 

1.46 
(0.81, 2.65) 

32 0.884 
(0.785, 0.996) 

2.28 
(1.03, 5.05) 

40-49 lbs 67 0.938 
(0.893, 0.985) 

1.67 
(1.13, 2.48) 

72 0.994 
(0.955, 1.035) 

1.05 
(0.75, 1.48) 

21 0.909 
(0.849,0.973) 

2.39 
(1.24, 4.63) 

11 1.040 
(0.831, 1.302) 

0.77 
(0.17, 3.42) 

≥50 lbs 50 0.988 
(0.938, 1.040) 

1.10 
(0.73, 1.67) 

57 0.939 
(0.891, 0.990) 

1.69 
(1.10, 2.61) 

12 0.998 
(0.903,1.103) 

1.02 
(0.41, 2.55) 

17 0.823 
(0.713, 0.950) 

3.66 
(1.36, 9.87)     
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Maternal pre-
pregnancy BMI and 
GWGa 

   
 

     
 

  

BMI<25 and <30 lbs 165 Reference Reference 143 Reference Reference 38 Reference Reference 29 Reference Reference 

BMI<25 and ≥30 lbs 189 0.997 
(0.966, 1.029) 

1.02 
(0.79, 1.32) 

190 0.975 
(0.941, 1.009) 

1.24 
(0.93, 1.65) 

47 0.963 
(0.898,1.031) 

1.41 
(0.76, 2.59) 

46 0.826 
(0.722, 0.944) 

3.74 
(1.50, 9.33) 

BMI≥25 and <30lbs 77 1.049 
(0.989, 1.113) 

0.68 
(0.43, 1.09) 

67 0.921 
(0.873, 0.971) 

1.98 
(1.29, 3.05) 

19 0.996 
(0.920,1.078) 

1.04 
(0.51, 2.10) 

22 0.792 
(0.675, 0.928) 

5.00 
(1.75,14.30) 

BMI≥25 and ≥30 lbs 51 0.957 
(0.903, 1.013) 

1.43 
(0.89, 2.29) 

63 0.944 
(0.900, 0.989) 

1.62 
(1.10, 2.39) 

16 0.914 
(0.838,1.008) 

2.23 
(0.93, 5.33) 

14 0.908 
(0.746, 1.105) 

1.94 
(0.51, 7.42) 

aAdjusted for race (Non-Hispanic white Non-Hispanic black, Hispanic, Asian, Other) and maternal education (some college or less, Bachelor's degree, graduate degree) in full cohort. 
In girls <8 years, adjusted for maternal education only. 
bAdjusted for race (Non-Hispanic white Non-Hispanic black, Hispanic, Asian, Other), maternal education (some college or less, Bachelor's degree, graduate degree) and maternal pre-
pregnancy BMI (continuous) in full cohort. In girls <8 years, adjusted for maternal education (some college or less, Bachelor's degree, graduate degree) and maternal pre-pregnancy 
BMI (continuous). 
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Chapter 4.  Infant growth and the onset of breast development in the LEGACY Girls Study cohort 

 

ABSTRACT 

Background: Rapid weight gain during infancy is associated with earlier onset of breast development. To 

date, the epidemiologic evidence has come from cohorts of girls that are not enriched for breast cancer 

family history (BCFH). Since earlier onset of puberty is associated with increased breast cancer risk, we 

examined the associations between size and growth during infancy and age at breast development, and 

whether these associations varied by BCFH, using a prospective cohort of girls in which approximately half 

are at increased risk of breast cancer due to their family history. 

 Methods: We abstracted weight and length data from medical records for 255 girls that had at least two 

anthropometric measures between 2 weeks and 16 months of age. Including birth size from either the 

medical record or maternal report, we then used individual constrained quadratic splines to interpolate 

weight and length at 2, 4, 6, 9 and 12 months of age for each girl, ages that correspond to recommended 

postnatal physician visits (mean number of measures for interpolation, including birth data=7.3, range = 3-

22). We examined growth velocity, defined as the change in weight-for-age (WAZ) and length-for-age (LAZ) 

Z-scores between two time points, calculated in reference to the 2000 CDC growth charts, as exposures of 

interest. Using longitudinal Weibull models, we assessed the associations between rates of growth in weight 

and length during multiple windows from birth to one year and age at breast development, defined as 

maternal report of Tanner stage ≥2. We examined modification by BCFH and mediation by daughters’ 

childhood BMI in adjusted models. 

Results: Faster growth in weight and length between birth and one year were associated with earlier age 

at breast development in models adjusted for gestational age, race/ethnicity, maternal pre-pregnancy BMI 

and gestational weight gain (HR=1.20, 95% CI 1.02-1.41 for 1 SD increase in WAZ from 0-12 months and 

HR=1.15, 95% CI 1.00-1.33 for 1 SD increase in LAZ from 0-12 months). When we examined smaller age 

intervals within infancy, faster growth in weight and length between 2-4 months of age were associated with 

approximately a 50% increased rate of breast development, respectively  (HR=1.54, 95% CI 1.13-2.12 for 

a 1 SD increase in WAZ from 2-4 months and HR=1.56, 95% CI 1.16-2.08 for 1 SD increase in LAZ from 
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2-4 months). Similar patterns of associations for growth in weight and length were observed from 6-9 

months of age, but not in the other infancy time periods. Associations were similar when we excluded 

preterm, low birthweight and non-singleton infants, suggesting that the associations are not driven by catch-

up growth in infants that are small at birth. Associations were similar after adjustment for pre-pubertal BMI 

in the subset of girls with available data and did not vary by BCFH. 

Conclusions: We observed that faster rates of growth in both weight and length during infancy are 

associated with earlier onset of breast development in a prospective cohort of girls enriched for BCFH. 

Associations between rate of weight gain and rate of change in length were specific to two time periods 

within infancy, 2-4 months and 6-9 months, suggesting that these may be sensitive periods for exposures 

in the early-life environment to affect breast development. Our findings suggest that slow growth in weight 

and length during infancy may delay breast development, even in girls at an increased risk of breast cancer 

due to their family history. 

4.1 Background 
 

Modifiable factors that are associated with pubertal timing could be a target for breast cancer 

primary prevention efforts starting early in life, when maximum impact is possible.4,5 Girls who are 

overweight in childhood have an earlier age at breast development and menarche.60,76,140,175,259 High 

birthweight tracks to larger body size in childhood, as does rapid postnatal growth.63–66 This may explain 

why both high76,77  and low birthweight,70–72 which is associated with rapid postnatal weight gain,228 have 

both been associated with earlier age at menarche in previous studies. Some studies found that the 

association between birthweight and pubertal timing is modified by postnatal growth,71,76,176 suggesting that 

growth trajectories across critical periods may be more important than body size at specific time points in 

programming pubertal timing. Studies that have examined weight gain between birth and two years have 

consistently observed earlier age at breast development73,75 and menarche34,72,76,77,190 in girls with rapid 

infant weight gain. However, studies vary in terms of the time period within this two-year window that is the 

most important to pubertal timing.35,73,75,77,116 
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Infancy is a dynamic period of growth. Most babies triple their birthweight by their first birthday.25 

Given the large degree of variability in growth patterns during this time period, the first 12 months after birth 

may be a vital time period for setting growth trajectories and programming pubertal timing. There have also 

been secular trends in infant weight and weight gain over time, which parallel the secular decrease in 

pubertal onset in girls. Infants from more recent birth cohorts experience a more rapid rate of weight gain 

and are larger throughout infancy than those in birth cohorts from earlier in the 20th century.68 Infancy may 

also be a critical period of development for the breast. Infants experience an activation of the hypothalamic-

pituitary-gonadal (HPG) axis that is termed mini-puberty.213 Endogenous hormone levels peak in female 

infants the first 2-4 months after birth, some of which reach pubertal levels, and they remain elevated for 

much of the first year before decreasing until the next peak during puberty.212,213 Both male and female 

infants are born with breast tissue, which later regresses. In females, breast tissue is present for longer 

than in males and is associated with estradiol levels,214 suggesting that infancy may be a biologically 

important time period for the breast in females.  

To date, previous studies examining infant growth and age at breast development were conducted 

in cohorts of girls at average-risk of breast cancer. We previously observed earlier breast development in 

girls with a breast cancer family history (BCFH).54 Since earlier onset of breast development is associated 

with increased breast cancer risk,41 it is important to determine whether early-life factors that affect timing 

of breast development are modified by underlying susceptibility for breast cancer. We investigated whether 

rates of weight and height gain during multiple time periods within infancy were associated with the timing 

of breast development in the LEGACY Girls Study, a prospective cohort of girls in which approximately half 

are at increased risk of breast cancer due to their family history,57 and whether these associations varied 

by BCFH. 

4.2 Methods 

 

4.2.1. Study population 

 

The LEGACY (Lessons in Epidemiology and Genetics of Adult Cancer from Youth) Girls Study is 

a prospective cohort study of 1040 girls recruited at five study sites in the U.S. (New York City, NY; 
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Philadelphia, PA; Salt Lake City, Utah; San Francisco Bay Area, CA) and Canada (Toronto, ON) between 

2011 and 2013 (for more details, see 57). The girls were primarily between the ages of 6 and 13 years at 

recruitment, and half had a BCFH, defined as a report of breast cancer in a first- or second-degree relative 

by the participating mother/guardian at baseline. Younger siblings of cohort members can also join when 

they reach 6 years of age.  The participating guardian at baseline was the biological mother for 97% of 

LEGACY girls,57 so we will refer to participating guardians as mothers moving forward. Mothers provided 

written informed consent for themselves and for their daughters, and daughters provided written informed 

assent according to institutional standards. The study was approved by the institutional review boards of 

the collaborating institutions. 

Willing LEGACY mothers signed an authorization form at baseline to allow the release of medical 

record information from the pediatrician’s office of their child to the LEGACY Girls Study. We obtained 

medical record data for 82% of the cohort; however, the records included measurements prior to 16 months 

of age for 283 girls (33% of those with medical record data). For this analysis, we abstracted height and 

weight data from medical records between two weeks and 16 months of age and used measures of 

birthweight and birthlength from either the medical record or maternal report at baseline, since not all 

medical records include birth measurements. For girls with at least three measures of height or weight 

between birth and 16 months, we interpolated height and weight at specific time points. The final analytic 

sample included 255 girls with infancy data and prospective follow-up data through August 2016 from 216 

families.  

4.2.2. Data collection 

 

Infant Growth Assessment. A LEGACY staff member at the New York site abstracted age at 

measurement, height and weight information from medical record data. We abstracted measurements 

directly from growth charts if the medical record was not available. We converted height and weight data 

from growth charts to centimeters and kilograms, respectively. Since girls had varying numbers of 

measurements assessed at different time points, we used individual quadratic constrained smoothing 

splines to interpolate measures for each girl at 2 months, 4 months, 6 months, 9 months and 1 year of age 

as these time points correspond with recommended postnatal clinician visits (see Supplemental Figure 



 

87 

 

4.1 for example smoothing splines for two individuals).250 We included birthweight and birthlength, as 

reported by the mother at baseline or abstracted from the medical record, in the interpolation, along with all 

measures of length and/or weight available from the medical records between 2 weeks and 16 months of 

age. We used data measured within 100 days of the target time point in the interpolation. Weight and height 

data were interpolated separately, and girls with less than 3 measures between birth and 16 months were 

not included in the interpolation. A small subset of girls was missing data on birthlength (N=37) and 

birthweight (N=4), but had ≥3 infancy measures available from medical records. For these girls, we used 

the interpolated measures of weight and length at birth. For all other girls, we used the maternal report of 

birthweight and birthlength, and not the interpolated data. 

We calculated Z-scores and percentiles for weight-for-age, length-for-age and weight-for-length 

measures based on both the 2000 Centers for Disease Control and Prevention (CDC) growth charts and 

the World Health Organization (WHO) growth charts for female infants from birth to 24 months using SAS 

macros available from the CDC.260,261 The WHO growth charts, which reflect optimal infant growth and are 

based on longitudinal data from breastfed infants in six countries,262 are recommended for use by U.S. 

pediatricians by the CDC.260 The CDC growth charts are based on birth certificate and cross-sectional 

NHANES data from the 1980s and 1990s, and include both breastfed and formula-fed infants.262 We used 

the 2000 CDC growth charts as the reference in the primary analyses, since this reference was used in a 

prior study of infant growth and pubertal timing in the North Carolina Infant Feeding Study75 and our study 

population included both breastfed and formula-fed infants. We used the 2006 WHO growth charts in 

sensitivity analyses to examine how the choice of reference data affected the main study findings. Extreme 

values based on Z-scores are automatically flagged by the SAS programs that calculate the standardized 

measures as biologically implausible (see 260,261 for the cut-offs used to identify the extreme values by 

measure and reference). The interpolated weights were within the expected range, but 1.2% of the 

interpolated height values were flagged as extreme, including 11 of the interpolated birthlength values. We 

examined the individual interpolation splines for these observations, which had sparse data to contribute to 

the interpolation at the time points that yielded extreme values. We excluded these observations from the 

analyses, leading to a final sample size of 255 girls with infancy data. Of these girls, 5.9% had 3 measures 
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only, 5.1% had 4 measures, 7.5% had 5 measures, and the remaining 81.5% had 6 or more measures that 

were used in the interpolation (Supplemental Figure 4.2). 

Pubertal outcomes. We assessed breast development through the Growth and Development 

Questionnaire completed every 6 months by mothers. Mothers assessed breast development using the 

picture-based Sexual Maturation Scale (SMS)238 showing the five Tanner stages100 in addition to the non-

picture-based Pubertal Development Scale (PDS),240 which also asked the mother to report the age that 

they first noticed their daughters’ breast development for girls whose development had already started. 

Recalled age was reported as age in years and months at baseline, and in half-year intervals at subsequent 

visits. Tanner stage (TS) 2 indicates the onset of breast development.100 We previously found maternal 

reports of breast onset using TS to be highly reliable (kappa=0.73) and valid (sensitivity=77%, 

specificity=94%) in a subset of LEGACY girls that also had clinical TS data.239 We used the first maternal 

report of TS≥2 as the primary outcome and the first maternal report of development based on PDS in 

sensitivity analyses.   

Covariates. Mothers completed an early-life questionnaire at their daughters’ baseline visit that 

included detailed information about their pregnancy. These questions were developed and used previously 

in the Nurses’ Health Study cohort.24 We calculated maternal pre-pregnancy BMI from mothers’ self-

reported height and pre-pregnancy weight. Gestational weight gain (GWG) was recorded as <10 lbs, 10-

14 lbs, 15-19 lbs, 20-29 lbs, 30-39 lbs, 40-49 lbs, and 50 or more lbs (Appendix C.1 for more information 

on the early-life variables). Since we observed in Chapter 3 that daughters of women with a pre-pregnancy 

BMI ≥25 and who gained ≥30 lbs during pregnancy had the highest risk of early breast development 

compared with daughters of women with a BMI<25 and GWG<30lbs, we controlled for this four-category 

composite variable of maternal pre-pregnancy BMI and GWG as a confounder in the adjusted analyses. 

Mothers provided information about all pregnancies lasting 6 months or longer, including the pregnancy 

outcome and date of that the pregnancy ended. We used this information to determine the birth order of 

the LEGACY daughter and the type of gestation (singleton or multiple). We calculated gestational age in 

weeks from the length that the pregnancy lasted, in weeks, months, or days before/after due date, as 

reported by mothers. Mothers reported whether they fed their daughter breastmilk and if so, for how long. 
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Mothers also reported whether they ever fed their daughter formula for one month or longer, and if so, for 

how long. We used this information to derive a variable for type of feeding (breastfed only, mixed feeding, 

formula fed only). If the participating guardian was not the biological mother, we collected pregnancy 

information from the participating relative when possible (i.e. from participating fathers). In the 255 girls in 

this analysis, only 4 girls participated with a guardian other than her biological mother; these girls were 

included in the analyses if they had available covariate data. 

In addition to the early-life factors above, we considered race/ethnicity and maternal education as 

potential confounders. Mothers reported the race/ethnicity of the LEGACY daughter at baseline, and 

categorized as non-Hispanic white, non-Hispanic black, Hispanic, Asian/Pacific Islander, or other 

(predominantly mixed race/ethnicity). For this analysis, we combined the non-Hispanic black and mixed 

race/ethnicity groups due to small cell counts and similar associations with the timing of breast 

development. Mothers reported their highest level of education achieved at baseline, which we categorized 

as some college, vocational or technical school or less, Bachelor’s degree, and graduate degree. We 

considered BCFH (history of breast cancer in a first-or second-degree relative) as a modifier of the 

associations between early-life exposures and age at breast development. 

At each study visit, trained research staff measured the height and weight of the girls at least twice 

using standardized instruments; we averaged these measures for the analysis.  We also abstracted height 

and weight prior to baseline from the medical records and growth charts obtained from girls’ pediatricians. 

We calculated age-specific height, weight, and BMI percentiles based on the 2000 CDC growth charts.241 

Since we considered pre-pubertal body size as a potential mediator, we used body measurements at age 

5-7 years when available from the medical record or measurements from the first clinic visit for girls age 5-

7 years at baseline. We used <8 years as the cut-off to define pre-puberty since less than 5% of LEGACY 

girls had experienced the onset of breast development, defined as breast TS≥2, by 8 years of age. Of the 

255 girls included in the analysis, 185 (72.5%) had a BMI measure between 5-7 years and were included 

in this mediation analysis. We classified girls with a BMI-for-age percentile ≥85 as overweight and those 

less than the 85th percentile as average weight. 
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4.2.3. Statistical analysis 

 

We examined the distribution of early-life characteristics and baseline covariates in girls with infant 

growth data and examined differences with the subset of the girls without infancy data. We then used 

histograms to examine the variability in size measures (weight-for-age, length-for-age, and weight-for-

length Z-scores at birth, 2 months, 4 months, 6 months, 9 months and 12 months) and growth measures 

(change in Z-scores between subsequent time periods) calculated using both the CDC and WHO 

references. We plotted the mean weight-for-age, length-for-age and weight-for-length Z-scores using both 

references in order to visually examine the average growth patterns within the cohort. We also plotted the 

mean weight-for-age and length-for-age Z-scores by maternal pre-pregnancy BMI and GWG group in order 

to examine whether infant growth patterns differed by maternal weight patterns. We then examined the 

Pearson correlation matrices between weight-for-age Z-score at birth and changes in Z-score during each 

time interval, and did the same for length-for-age. We assessed the correlations between changes in 

weight-for-age Z-scores and changes in length-for-age Z-scores at each time period.   

We first examined the associations between size at each time point, assessed by the weight-for-

age and length-for-age Z-score, and the timing of breast development in order to identify whether the 

inverse association between pre-pubertal weight and height and age at breast development extends into 

infancy. We then examined rates of weight and length gain throughout the infancy period as the main 

exposures of interest. For these growth models, we defined the exposure of interest as the change in Z-

score in the size measure of interest between two time periods (i.e. Weight-for-age Z-score at 4 months – 

weight-for-age Z-score at 2 months) as a continuous measure. In addition, we categorized the continuous 

change in Z-score measures into patterns of rapid, stable and slow growth. We defined rapid growth as an 

increase in Z-score of greater than 0.67, slow growth as a decrease in Z-score of greater than 0.67, and 

stable growth as a change of less than 0.67 (the referent group). A change of 0.67 standard deviations 

corresponds to an increase of a major percentile on standard growth charts (i.e. a change from the 25 th to 

the 50th percentile), and this cut-off is commonly used in the infant growth literature.191,263  

 We assessed associations between infant growth and the age at breast development and 

menarche using longitudinal parametric Weibull models with age as the time scale to allow for left, interval 
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and right censoring. In the primary analyses, girls whose mother reported that they had already experienced 

the onset of breast development (TS≥2) at the first completed Growth and Development questionnaire were 

left-censored at age at questionnaire completion. Girls whose mothers reported TS≥2 at subsequent visits 

were interval-censored, with the daughters’ age at the last visit where the mother reported TS1 as the 

beginning of the interval and the daughters’ age at the first visit where the mother reported TS≥2 as the end 

of the interval. Girls who had yet to experience the onset of breast development during follow-up were right-

censored at last study visit where mom reported TS1. Since some families had more than one participating 

daughter, we used cluster-robust standard errors to account for correlation within families. 

We ran a series of unadjusted models regressing the age at breast development on rates of growth 

in weight and length during infancy, starting with wide intervals examined in previous studies and adding 

additional time points in subsequent models. First, we examined the full infancy period as the change in Z-

score between birth and 12 months. Second, we considered growth from 0-6 months and 6-12 months. 

Third, we examined all available intervals (0-2 months, 2-4 months, 4-6 months, 6-9 months and 9-12 

months). We adjusted all models for weight-for-age and length-for age Z-scores at birth and changes in 

prior intervals. For example, we adjusted models examining change in weight-for-age Z-scores from 2-4 

months for weight-for-age Z-score at birth and change in Z-score from birth to 2 months. We examined 

weight-for-age and length-for-age models independently, and also ran models that included both weight 

and length measures. In multivariable models, we adjusted for gestational age in weeks, maternal pre-

pregnancy BMI and GWG group, and race/ethnicity. We did not adjust for other early-life characteristics 

such as birth order, multiple gestation, gestational diabetes, gestational hypertension and toxemia/pre-

eclampsia since these factors were not independently associated with breast development. For parsimony, 

we did not adjust for maternal education since it was not associated with age at breast development in this 

subset. Since growth rates differ in infants that are exclusively fed breastmilk compared with formula-fed 

infants,68,264,265 we also considered adjustment for infant-feeding. While type of feeding could be a 

confounder of the association between growth and pubertal timing, it could also be a mediator if mothers 

change the type of feeding based on how their child is growing.266 For this reason, we present models 

unadjusted for infant feeding; however, associations between rates of weight and length gain were similar 
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when adjusted for infant-feeding type, categorized as breastfed only compared with some formula (data not 

shown). We did not examine exclusively formula-fed separately due to small numbers in this group. 

We examined the potential interaction between weight-for-age and length-for-age Z-scores at birth 

and growth measures through cross-product terms. Since infants that are growth-restricted in utero are 

more likely to experience rapid weight gain in infancy, we ran sensitivity analyses excluding low birth weight 

(<2.5 kilograms), preterm (<37 weeks) and non-singleton girls to examine the extent to which the infant 

growth results were driven by the extremes of the birthweight distribution, which may reflect a regression-

to-the-mean effect.227  

We examined the presence of mediation by daughters’ pre-pubertal body size by adding the  BMI-

for-age percentile and an interaction for BMI-for-age percentile and  age at BMI measurement, centered at 

the mean, to adjusted models in the subset of girls with pre-pubertal BMI measures (N=185). We also 

conducted sensitivity analyses excluding girls who were overweight at baseline (BMI-for-age percentile 

≥85) to examine whether findings in the overall cohort were driven by earlier puberty in overweight girls 

(N=177). We used baseline anthropometric data instead of pre-pubertal data to define this subset in order 

to preserve sample size since studies have shown that BMI tracks during childhood.267,268 

We formally tested for effect measure modification by BCFH by adding a cross-product term 

between the exposure of interest and BCFH to adjusted models and assessed statistical significance using 

the Wald test.  

We conducted several sets of additional analyses to examine the potential impact of selection bias 

and information bias in the assessment of the exposure and outcome on the main study findings. We re-

ran the primary analyses using inverse probability weighting to adjust for potential bias relating to the subset 

selection of the girls with infancy data.269 In these analyses, we first regressed an indicator variable for 

being in the infancy subset (N=255) on early-life and baseline variables to predict the probability of having 

infant growth data. We then weighted the survival analyses by the inverse of the probability of being 

sampled and compared these results with the unweighted findings. In order to examine the influence of the 

choice of growth chart reference data to calculate the rates of weight and length change, we ran sensitivity 
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analyses using the 2006 WHO growth charts as the reference and compared these results with the primary 

analyses using the 2000 CDC growth charts as the reference. Similar to Chapter 3, we then ran several 

sensitivity analyses to examine how robust the results were to differences in outcome assessment. We 

imputed the  recalled age at breast development from the PDS as though it were observed for left-censored 

girls (37% of girls in this subset experienced the onset of breast development prior to cohort entry based 

on mom’s report of TS≥2 at first growth and development questionnaire). We also used the PDS to define 

breast onset instead of TS. Finally, we excluded girls with inconsistent Tanner staging by maternal report 

(mothers reported a regression to TS1 at the visit after the first report of TS≥2; approximately 8.6% of girls). 

We conducted the analyses using SAS 9.4 and STATA 15.1. 

4.3 Results 

 

4.3.1. Participant characteristics 

 

Table 4.1 describes the baseline and early-life characteristics of the LEGACY cohort by the 

availability of infant growth measures. Compared with girls without infancy data (N=813), girls included in 

the infancy analyses (N=255) were younger at cohort entry (mean age 8.9 vs 9.7 years, respectively) and 

a smaller proportion were overweight at baseline. Girls from the New York and Ontario sites were over-

represented in the infancy subset, while Hispanic girls were under-represented. The mean maternal pre-

pregnancy BMI was also lower in girls with infancy data, with a smaller proportion of girls whose mothers 

were obese prior to pregnancy compared with girls without infancy data. The mean birthweight was slightly 

higher in girls with infancy data (3370g vs 3270g), and a smaller proportion of girls were born preterm. 

4.3.2. Descriptive analyses of weight and height gain during infancy 

 

 The mean weight-for-age Z-score (WAZ) at birth was -0.01 when using the 2000 CDC growth charts 

as the reference population (Table 4.2). The mean WAZ increased until 4 months of age and then declined, 

with a mean WAZ of -0.10 at 12 months. While the overall change in WAZ from 0-12 month was negative 

with a mean of -0.06, there was substantial variation when weight gain was broken up into smaller age 

intervals. Compared with the reference population, the LEGACY girls had a faster rate of weight gain in 
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early infancy, particularly from 0-2 months, and then a slower rate of weight gain from 4 months onward. 

However, this pattern reversed when the 2006 WHO growth charts were used as the reference population 

(Supplemental Figure 4.3). LEGACY girls weighed more at birth (mean WAZ=0.24) but had a similar 

weight at 2 months (WAZ=-0.04) compared with the WHO reference, reflecting relatively slower weight gain 

in early infancy. The mean WAZ then increased from 2 months onward, so at 12 months the LEGACY girls 

weighed more on average than the WHO reference (mean WAZ=0.41) due to relatively faster rates of 

weight gain. Although the mean change in WAZ differed depending on the growth reference standard used, 

the variance of the change in WAZ for each interval was similar. The distribution of the change in WAZ in 

early infancy was shifted to the right when standardized to the 2000 CDC growth charts as opposed to the 

WHO growth charts (relatively faster weight gain), while distribution in later infancy using the CDC charts 

was shifted to the left (relatively slower weight gain) (Supplemental Figure 4.4). The shift in the distribution 

affected the percent of girls that were characterized as having “rapid” and “slow” weight gain patterns, using 

a cut-off of >0.67 or <-0.67 change in WAZ, based on each reference standard. For example, using the 

CDC growth charts, 38.4% of girls were categorized as having rapid weight gain, 53.3% as stable and 8.2% 

as slow weight gain from 0-2 months. Using the WHO growth charts, 12.9% were categorized as rapid, 

53.7% as stable and 33.3% as slow weight gain. For this reason, we used continuous measures of change 

in Z-scores in the analyses unless there was evidence of non-linear associations based on sensitivity 

analyses using the categorical pattern variables. 

 The mean length-for-age Z-score (LAZ) at birth using the CDC reference was 0.45 and increased 

to 0.63 by 12 months of age (Table 4.2). Relative to the CDC reference, the LEGACY girls had a faster rate 

of length gain from 2-4 months of age, while the average rate of length gain in the other age intervals were 

similar to the reference population. Similar to the weight-for-age data, there were some differences in the 

pattern of mean LAZ depending on the reference standard used. Relative to the WHO growth charts, 

LEGACY girls were longer at birth (mean LAZ=0.9) and grew more slowly in length from 0-2 months 

(Supplemental Figure 4.5). From 2 months onward, the mean LAZ using the WHO reference increased. 

By 12 months, the LEGACY girls were taller on average compared with both the CDC and WHO reference 

populations. 
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 The mean weight-for-length Z-scores (WFL) were similar using the CDC and WHO reference data 

from birth to 4 months and then diverged in late infancy (Supplemental Figure 4.6). Generally, the 

LEGACY girls had a lower weight-for-length in early infancy compared with both reference populations. 

From 4-12 months of age, the mean WFL was stable when compared with the CDC reference population, 

while the mean WFL continued to increase in comparison with the WHO reference population. 

4.3.3. Correlations between change in WAZ and LAZ measures at different ages 

 

 WAZ at birth was negatively correlated with change in WAZ at each time interval, but the strength 

of the correlation decreased over time (Table 4.3). We observed the same pattern for LAZ at birth and 

change in subsequent intervals (Table 4.4). Change in WAZ between intervals were not highly correlated 

with each other, and there were no statistically significant correlations in change in LAZ between intervals. 

Change in WAZ was positively correlated with change in LAZ within the same interval (Pearson correlation 

coefficients of 0.24-0.27), with the exception of growth from 9-12 months (Table 4.5). Measures of size at 

each interval were more strongly correlated with each other than growth measures, with correlations for 

WAZ in subsequent intervals between 2-12 months ranging from 0.63-0.93 and correlations for LAZ ranging 

from 0.50-0.86 (data not shown). 

4.3.4. Association between infant size and the onset of breast development 

 

 When we considered WAZ without adjustment for LAZ, higher WAZ at each time point was 

associated with earlier onset of breast development, adjusted for gestational age, maternal pre-pregnancy 

BMI, GWG and race/ethnicity (Supplemental Table 4.1). We observed similar associations between higher 

LAZ at each time point and earlier onset of breast development in models unadjusted for WAZ. When we 

mutually adjusted for WAZ and LAZ, associations were slightly attenuated but still supported earlier breast 

development in girls that were taller and heavier by late infancy.  

4.3.5. Association between infant growth and the onset of breast development 

 

 Faster weight gain from 0-12 months was associated with earlier age at breast development 

(HR=1.32, 95% CI 1.05, 1.65 adjusted for WAZ at birth only; Supplemental Table 4.2). After adjusting for 
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gestational age at birth, race/ethnicity, maternal pre-pregnancy BMI and GWG, a one-unit increase in WAZ 

between birth and 1 year of age was associated with a 20% increased risk of earlier breast development 

(HR=1.20, 95% CI 1.02, 1.41; Table 4.6). When early and late infancy were considered separately, faster 

weight gain from 0-6 months (adjusted HR=1.15, 95% CI 0.99, 1.34) and 6-12 months (adjusted HR=1.25, 

95% CI 0.98, 1.60) were both associated with earlier age at breast development. However, when we 

considered smaller age intervals, the association between rate of weight gain and onset of breast 

development was limited to change in WAZ between 2-4 months and 6-9 months (HR=1.54, 95% CI 1.13, 

2.12 for one-unit increase in change in WAZ from 2-4 months and HR=1.63, 95% CI 1.09, 2.42 for one-unit 

increase in change in WAZ from 6-9 months, respectively). No associations were observed between rate 

of weight gain during the other time periods and timing of breast development. 

 Faster gain in length from 0-12 months was also associated with earlier age at breast development 

(adjusted HR=1.15, 95% CI 1.00, 1.33), and this association was driven by gain in length in the first 0-6 

months (adjusted HR=1.21, 95% CI 1.03, 1.41) (Table 4.6). When we considered smaller age intervals, 2-

4 months was the only time period when change in LAZ had a statistically significant association with age 

at breast development (adjusted HR=1.56, 95% CI 1.16, 2.08).  

 In models mutually adjusted for weight and length, effect estimates were attenuated but still 

suggested earlier development in girls with faster growth in weight and length from birth to 12 months (Table 

4.6). Both rate of weight gain and rate of length gain from 2-4 months were associated with the timing of 

breast development in mutually adjusted models (HR=1.40, 95% CI 1.00, 1.96 for change in WAZ and 

HR=1.50, 95% CI 1.10, 2.04 for change in LAZ, respectively). The association between rate of weight gain 

from 6-9 months and timing of breast development was similar after adjustment for growth in length. The 

inference was the same when we used the 2006 WHO growth charts to calculate Z-scores instead of the 

2000 CDC growth charts (Supplemental Table 4.3). 

When we examined patterns of growth in weight and length from 2-4 months and 6-9 months, we 

observed similar associations in both time periods (Figure 4.1). Girls with slow weight gain had a decreased 

risk of early breast development compared to girls with stable weight gain (HR=0.53, 95% CI 0.32-0.90 for 

2-4 months and HR=0.44, 95% CI 0.28-0.70 for 6-9 months), while girls with rapid gain in length had an 
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increased risk of early breast development compared to girls with stable length gain (HR=1.71, 95% CI 

1.08-2.69 for 2-4 months and HR=1.96, 95% CI 1.08-3.56 for 6-9 months). Change in weight-for-length Z-

scores were negative on average over the interval both for girls with slow weight gain and for girls with rapid 

length gain, which may explain why rates of change in weight-for-length Z-score in these intervals were not 

associated with age at breast development (Supplemental Table 4.4).  

 The inference regarding infant weight and length gain and onset of breast development were similar 

when we excluded preterm, low birthweight (<2500g) and non-singletons (Supplemental Table 4.5), 

suggesting that these associations hold in the majority of births and are not driven by the extremes of birth 

size. WAZ at birth did not modify the associations between rates of infant weight gain and timing of breast 

development (p>0.05 for all interaction terms). LAZ at birth did not modify the associations between growth 

in length after 2 months and onset of breast development. However, there was a statistically significant 

interaction between LAZ at birth and change in LAZ from 0-2 months (p=0.04), suggesting that faster rates 

of length gain from 0-2 months may be associated with earlier breast development in girls that were long 

at birth (data not shown).  

4.3.6. Mediation by pre-pubertal body size 

 

Similar patterns of association between weight and length gain during infancy and timing of breast 

development were observed when we restricted the analyses to girls with a BMI-for-age <85th percentile at 

baseline (Supplemental Table 4.6). In models mutually adjusted for weight and length, effect estimates for 

rate of length gain were similar to models without adjustment for weight gain, but rates of weight gain were 

slightly attenuated. In the subset of girls with pre-pubertal BMI data available, associations between rates 

of weight and length gain from 2-4 months and 6-9 months were attenuated and no longer statistically 

significant compared with all girls with infancy data (Supplemental Table 4.7). However, patterns were 

similar in this subset and adjustment for BMI-for-age percentile and the interaction between BMI-for-age 

percentile and age at BMI measurement had a negligible effect on the measures of association. Overall, 

these analyses suggest that the associations between infant growth and onset of breast development are 

not fully mediated by childhood body size. 
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4.3.7. Modification by breast cancer family history 

 

 BCFH did not modify the associations between rates of change in weight and length during infancy 

and timing of breast development (p for interaction>0.05 for all cross-product terms). 

4.3.8. Maternal pre-pregnancy BMI, GWG and patterns of infant growth 

 

 Since we found that patterns of maternal pre-pregnancy BMI and GWG were associated with the 

timing of breast development in Chapter 3, we examined whether the mean weight-for-age and length-for-

age Z-scores during infancy differed by maternal body size and GWG. Daughters of women who gained 

≥30lbs during pregnancy weighed more at birth than daughters of women who gained <30lbs 

(Supplemental Figure 4.7). Daughters of women who were overweight prior to pregnancy and gained 

≥30lbs weighed more throughout infancy than the other 3 groups, but their pattern of weight gain was similar 

to daughters of women who were not overweight prior to pregnancy. Daughters of women who were 

overweight prior to pregnancy but gained <30lbs had a slightly different weight gain trajectory. While all 

groups experienced an increase in WAZ from 0-2 months, daughters of women who were overweight prior 

to pregnancy but gained <30lbs were the only group that continued to experience an increase in average 

WAZ from 2-4 months as well. This group also had the smallest decline in average WAZ from 6-12 months, 

so that by 12 months of age their average WAZ was similar to daughters of women who were overweight 

prior to pregnancy and gained ≥30lbs, which may reflect catch-up growth after intrauterine growth restriction 

in this group. Patterns of LAZ were also different in this group, which had the highest LAZ at birth, compared 

with the other three groups (Supplemental Figure 4.8). Infant growth did not mediate the association 

between maternal pre-pregnancy BMI, GWG and the timing of breast development (data not shown). 

Daughters of women who were overweight prior to pregnancy and gained more than 30lbs experienced 

breast development at a faster rate than daughters of women with a BMI<25 who gained <30lbs after 

adjustment for rate of growth in weight and height from 0-12 months (HR=1.66, 95% CI 0.97, 2.85). 

4.3.9. Sensitivity analyses for the association between infant growth and the onset of breast development 
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 Although there were differences in the baseline and early-life characteristics between girls included 

in the infancy analyses and those that did not have infancy data (Table 4.1), the associations between rates 

of weight and length gain during infancy and timing of breast development were similar in models that 

accounted for these differences using inverse probability weighting (Supplemental Table 4.8). In addition, 

the association between faster gain in length from 6-9 months and earlier onset of breast development was 

statistically significant in the weighted analysis (adjusted HR=1.49, 95% CI 1.12, 1.98).  

 The associations between infant growth and timing of breast development were sensitive to 

differences in outcome assessment. The associations between rates of weight gain and onset of breast 

development were no longer statistically significant when girls with inconsistent Tanner staging were 

excluded from the models, but the point estimates were only slightly attenuated (Supplemental Table 4.9). 

When we imputed the recalled age at breast development for left-censored girls, rates of weight gain during 

infancy were not associated with the onset of breast development. In both of these sensitivity analyses, 

growth in length from 2-4 months still had a statistically significant association with age at breast 

development. When we used maternal report of breast onset based on the PDS instead of TS, there were 

no statistically significant associations between growth in weight or length during infancy and age at breast 

development. Although not statistically significant, the direction of the association between rates of growth 

in weight and length from 2-4 months were consistent with the primary models based on maternal report of 

TS (Supplemental Table 4.9).  

4.4 Discussion 

 

Rates of growth in both weight and length during infancy are associated with the timing of breast 

development in a prospective cohort of girls enriched for breast cancer family history. Our finding that faster 

weight gain between birth and one year is associated with earlier breast development is consistent with 

previous studies linking rapid weight gain between birth and two years with earlier onset of breast 

development73,75,185 and earlier age at menarche.34,35,72,73,75–77,116,190,191 Our study adds to the prior literature 

by examining changes in both weight and length during multiple time intervals within the first year and by 

formally testing the interaction between infant growth and BCFH. While we observed a modest association 

between rate of weight gain from 0-12 months and onset of breast development, stronger associations 
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between rate of weight gain from 2-4 months and 6-9 months were masked when looking only at the 

relatively wide one-year window. We observed a similar pattern for growth in length. Few studies have 

weight and length measures at multiple time points within infancy to examine smaller windows of growth.  

Comparison with previous studies 

Comparisons across studies is difficult since studies assess growth over different age intervals, 

which may be due more to data availability than by a priori hypotheses.73 In the North Carolina Infant 

Feeding Study, increases in weight-for-age Z-scores from 0-6 months and 6-12 months were both 

associated with earlier age at breast TS>2 and earlier age at menarche, and point estimates were similar 

for each age interval.75 However, weight gain during both time periods were included in the same model 

and were negatively correlated with each other, which may have resulted in a stronger parameter estimate 

for weight gain in early infancy due to the inclusion of weight gain in late infancy in the model. When we 

examined weight gain in these same intervals without adjustment for change in length, our inference for 

onset of breast development was similar, though the point estimate was slightly higher for 6-12 months 

than 0-6 months. In the ALSPAC cohort, increase in weight-for-age Z-scores from 0-2 months and 9-20 

months was associated with earlier age at breast development; the point estimate for 2-9 months was also 

negative, but closer to the null and not statistically significant. For age at menarche, weight gain from 0-2 

months was not associated with age at menarche in models adjusted for birth size, but weight gain from 2-

9 and 9-20 months were both associated with earlier age at menarche.73 When we considered change in 

WAZ over these same age intervals of 0-2 months and 2-9 months and the onset of breast development, 

there was no association with weight gain from 0-2 months, but rate of weight gain from 2-9 months was 

inversely associated with age at breast development (data not shown). However, the point estimate for 

weight gain from 2-9 months was closer to the null compared with the effect estimates for weight gain from 

2-4 months and 6-9 months when these intervals were modeled separately. In two studies that examined 

rate of weight gain from 0-4 months and 4-12 months and age at menarche in U.S. birth cohorts, one found 

inverse associations between weight gain in both time periods and age at menarche,77 while the other study 

only observed a statistically significant association with weight gain in late infancy.116 When we considered 

these same intervals, we observed inverse associations between rate of weight gain in both time periods 
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and age at breast development in models unadjusted for growth in length (data not shown). While our 

results are therefore generally consistent with previous work, we were able to further refine the infancy 

window and identify two specific periods of time, 2-4 months and 6-9 months, during which patterns of 

growth had a particularly strong influence on age at breast development.  

When we examined rate of growth in length during infancy, these same time periods of 2-4 months 

and 6-9 months were also identified as sensitive windows when rates of length gain were associated with 

the onset of breast development. In comparison with weight gain, fewer studies have examined change in 

length as an independent predictor of pubertal timing. Conditional measures of change in length from 0-6 

months and 6-24 months were not correlated with breast TS at 11 years of age in the Vulnerable Windows 

Birth Cohort Study in Jamaica (p>0.05), though the correlation coefficient for 0-6 months was in the direction 

of faster gain in length being associated with earlier development.79 Gains in weight and BMI during these 

time periods were also not associated with breast development in this study. Three studies did observe an 

association between faster growth in length during the first two years and earlier age at menarche.35,76,77 In 

the 1946 British Birth Cohort, faster growth in length from 0-2 years was associated with increased risk of 

earlier menarche when examined independently, but the association was attenuated towards the null after 

adjustment for rate of growth in BMI from 0-2 years and childhood height growth.76 Girls with menarche 

before 12 years of age also had faster rates of growth in length from 2-9 months and 9-19 months, but not 

0-2 months, in the ALSPAC cohort, though the association was no longer statistically significant after 

controlling for weight gain during the same time periods.35 A similar pattern was observed in two U.S. birth 

cohorts, where gain in length from 0-4 months and 4-12 months was associated with earlier age at 

menarche when examined independently, but these associations were attenuated after adjustment for 

weight gain.77 While we also observed a modest attenuation of the effect estimates for weight and length 

when mutually adjusted, changes in weight and length from 2-4 months were both independently associated 

with the age at onset of breast development and we observed similar patterns of association from 6-9 

months. Together, the associations between both rates of weight and length gain during the same two age 

intervals, when considered separately and when mutually adjusted, underscores the importance of growth 

during these specific windows to the timing of breast development.  
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Influence of maternal BMI, GWG and size at birth 

The associations between rates of growth in weight and length and timing of breast development 

were observed across the spectrum of size at birth, suggesting that the associations observed were not 

driven by a regression-to-the-mean effect of catch-up growth in infants born small or catch-down growth in 

infants that were large at birth.227 Birthweight and birthlength were not associated with the timing of breast 

development in confounder-adjusted models in the full cohort (see Chapter 3). After adjusting for rates of 

growth in weight and length during infancy, which were negatively correlated with birth size, the point 

estimates for both birthweight and birthlength were further from the null (data not shown). The statistical 

significance of the estimates differed depending on the infant growth measures included in the model. In 

the 1946 British Birth Cohort, an inverse association between birthweight and age at menarche was 

reversed after adjustment for growth in height and BMI from 0-2 years, suggesting that girls with a higher 

birthweight had an earlier age at menarche for a given rate of postnatal growth.76 The dependence of the 

birthweight association on adjustment for postnatal growth supports the hypothesis that birthweight does 

not have an independent role in influencing pubertal timing. In contrast, the increased risk of early breast 

development in daughters of women who were overweight prior to pregnancy and gained more than 30lbs 

remained after controlling for infant growth, suggesting that these factors have independent effects on age 

at breast development. 

Early-life nutrition and other potential mechanisms 

Feeding practices are associated with patterns of weight and length gain during infancy and may 

be associated with the timing of breast development. Some studies have observed earlier onset of breast 

development126 and earlier age at menarche35,270 in formula-fed compared with breastfed infants, while 

others have not observed an association between infant feeding and pubertal timing.34,271 On average, 

formula-fed infants have faster rates of weight gain than exclusively breastfed infants and are heavier by 

one year of age. However, breastfed infants gain weight faster than formula-fed infants in early infancy, 

then have slower rates of weight gain in later infancy.272 While observational studies have observed lower 

risks of obesity in children that were breastfed,273  the protective effect of breastfeeding on obesity is 

controversial since infant feeding is closely linked with socioeconomic status.274 In addition, the clinical trial 
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of a breastfeeding promotion intervention in Belarus (PROBIT) succeeded in increasing breastfeeding 

rates, but did not observe any differences in childhood body size in children who received the 

intervention.275 Associations between infant feeding and growth patterns are also difficult to disentangle – 

while form of feeding does influence rates of weight gain, parents may also modify their child’s feeding 

practice in response to their growth trajectory.266 Our results of earlier breast development in girls with faster 

rates of growth in weight and length in specific infant time periods were similar in models that also controlled 

for type of infant feeding, suggesting that infant feeding did not confound or mediate the effect of infant 

growth on onset of breast development. The introduction of solid foods could also influence growth patterns, 

though the evidence linking the timing of solid food introduction and childhood obesity is inconclusive.276 

The American Academy of Pediatrics and the WHO recommend introducing solid foods at 6 months of 

age.277 It is possible that the associations that we observed between rates of weight and length gain, 

particularly from 6-9 months of age, and earlier breast development reflect changes in nutrient intake due 

to the addition of solid foods; however, we did not have data on the timing of solid food introduction to 

explore this hypothesis. Overall, more research is needed in study populations with detailed infant feeding 

data in order to examine the temporal associations between feeding and infant growth patterns and whether 

these factors interact to influence pubertal timing. Migrant and animal studies support that an energy-rich 

diet in early life affects mammary gland development and breast cancer risk.251,278–280 Thus, early-life 

nutrition, which influences growth patterns in infancy, may also affect breast development. 

Additional mechanisms that may link infant growth, onset of breast development and breast cancer 

risk include childhood body size, hormonal programming, genetic or epigenetic influences. Rates of growth 

in weight and length during infancy may set trajectories of height and weight gain in childhood. Infants who 

gain weight rapidly are at an increased risk of obesity starting in childhood,64 and higher pre-pubertal weight 

is a well-recognized risk factor for earlier pubertal onset.54,60 Our results from models adjusted for pre-

pubertal BMI suggest that the association between rapid growth and earlier breast development is not fully 

mediated by childhood body size. Faster infant growth in length and weight is also associated with faster 

height growth and earlier age at peak height velocity,34,35,87 an independent risk factor for breast cancer.41 

Rapid infant growth is associated with hormonal changes such as increased levels of leptin, insulin-like 

growth factor (IGF)-1 and insulin which affects growth throughout childhood and may lead to earlier initiation 
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of puberty.87,204 Early-life growth and pubertal timing could also have a shared genetic origin. GWAS studies 

have identified multiple loci, including variants near LIN28B, that are associated with pubertal timing, linear 

growth and body size.220,281,282 An epigenetic mechanism could also link infant growth, pubertal timing and 

chronic disease risk. Changes in DNA methylation of imprinted genes are known to be associated with 

infant growth,216 and are also associated with genomic instability and chronic disease in adulthood.217 Early-

life environmental stimuli are associated with changes in promoter methylation of non-imprinted genes,218 

which could affect gene expression in insulin-signaling pathways219 or changes in genes related to body 

size or pubertal timing.220,221 

Potential importance of mini-puberty 

Our identification of 2-4 months as a sensitive window when growth velocity is associated with 

timing of breast development coincides with mini-puberty, the transient activation of the HPG in 

infancy.211,212 In girls, follicle stimulating hormone (FSH) and luteinizing hormone (LH) both increase in early 

infancy and peak at 1-3 months. LH then decreases by 6-9 months, while elevated FSH levels are present 

until age 3-4 years. Estradiol levels in girls fluctuate during the first year after birth, and then decrease until 

puberty.213 While both male and female infants have breast tissue present at birth that regresses during 

infancy, breast tissue size is larger and persists for a longer time period in female infants.211,283 Serum 

estradiol levels have been found to be positively associated with breast tissue size in 3-month old female 

infants, but not in males.214 In girls who are born preterm and have a smaller amount of breast tissue at 

birth than full-term infants, breast tissue size was found to increase from 1-6 months of age and was 

associated with increased levels of urinary estradiol.283 Together, this suggests that breast tissue in female 

infants is stimulated by endogenous hormones,214,283 which may affect breast development and later breast 

cancer risk. Daughters exposed to pre-eclampsia in utero, which is associated with decreased maternal 

levels of estrogen and IGF-1 but higher levels of androgens and progesterone, have a decreased risk of 

breast cancer in adulthood.284 A case-control study comparing the timing of pubertal development between 

203 daughters of normotensive pregnancies and 120 daughters of pre-eclamptic pregnancies found that 

daughters exposed to moderate or severe pre-eclampsia in utero were more likely to experience the onset 

of pubic hair development as the first sign of puberty, implying later age at breast development in these 
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girls.285 However, little is known about whether endogenous hormone levels in infancy are associated 

directly with the timing of breast development and breast cancer risk. 

The long-term effects of mini-puberty are not well understood.286 Increases in height and faster 

peak height velocity during adolescent puberty, a critical period for breast development when growth and 

reproductive hormone levels are rapidly increasing,199 are associated with breast cancer risk.14,287 Growth 

hormone (GH) and IGF-1 are two key hormones that regulate linear growth.204,288 During puberty, rising 

estrogen levels in girls are thought to promote the pubertal growth spurt by stimulating the GH-IGF-1 

axis.204,289 Rising estrogen levels in girls during mini-puberty could have a similar stimulatory effect on infant 

growth,288,290 in which case faster rate of gain in length from 2-4 months of age could reflect higher 

endogenous hormone levels. A recent study that examined the role of sex steroids during mini-puberty in 

regulating growth in length from birth to 6 months of age did not observe an association between urinary 

estradiol levels and growth velocity in females, though estradiol levels did peak between 1-4 months of 

age.290 However, the authors noted that urinary estradiol levels likely did not reflect estradiol concentrations 

in the growth plate, which may explain why no association was observed between estradiol levels and linear 

growth velocity. Serum IGF-1 levels at 3 months were associated with faster linear growth in both male and 

female infants in the study, as were testosterone levels from 0-5 months of age, supporting the hypothesis 

overall that sex steroid levels during mini-puberty have a role in regulating linear growth.288,290  

Strengths and limitations 

The prospective assessment of weight and length across multiple time points in infancy due to the 

linkage to medical record data is a major strength of this study. We were able to replicate the results that 

others observed by examining the same age intervals.73,75 In addition, we were able to examine smaller 

age intervals, which identified growth during two specific age intervals as driving the overall trends that we 

observed. Since LEGACY is enriched for breast cancer family history, we were also able to formally test 

whether the associations between infant growth and onset of breast development differed in girls at 

increased risk of breast cancer due to their family history. The lack of modification by BCFH suggests that 

the risk of earlier breast development, which is associated with increased breast cancer risk later in life,41 

can be modified by altering early-life growth patterns in girls across the spectrum of familial risk. However, 
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it is also possible that we did not have sufficient power to detect differences by BCFH since we lacked infant 

growth data for the majority of the cohort. 

Although we had multiple measures of weight and length throughout infancy for the subset of girls 

with medical record data, our study was limited by the sample size of this subset. Small cell counts limited 

our ability to control for a large number of confounders in the analyses and also limited statistical power, 

particularly for interactions. For example, we lacked power to examine whether associations between infant 

growth and pubertal timing differed by infant feeding practices or in girls born preterm, questions that are 

worthwhile to consider in larger cohorts. Our results could also be affected by selection bias, as there were 

differences between the subset of girls with infancy data and those that were not included in the analysis. 

However, the inference was the same when we used IPW to adjust for these differences, supporting that 

selection bias did not drive the main results observed. We also relied on maternal reports of birthweight 

and birthlength, though the correlation with medical record data was high in our validation subset (see 

Chapter 3). There is also a potential for measurement error in the weight and length measurements from 

the medical record, since measures could vary between physician practices and were not assessed using 

a standardized protocol. Measures of length before standing height can be measured are more prone to 

measurement error and have been found to have poor reliability, even when measured by nurses.246,247 

While it is possible that measurement error may have influenced our findings regarding growth in length 

and onset of breast development, these errors would likely be random and we would expect a larger effect 

on the precision rather than the validity of study estimates.  

4.5 Conclusions 

 

We observed that faster rates of growth in both weight and length during infancy were associated 

with earlier onset of breast development in a prospective cohort of girls enriched for BCFH. Girls that were 

taller and heavier than their peers by late infancy experienced earlier onset of breast development. 

Associations between rate of weight gain and rate of change in length were specific to two time periods 

within infancy, 2-4 months and 6-9 months, suggesting that these may be sensitive periods for exposures 

in the early-life environment to affect breast development. These associations were not modified by BCFH, 
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suggesting that slow growth in weight and length during infancy may delay breast development, even in 

girls at an increased risk of breast cancer due to their family history.  
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4.6 Tables and figures 

 

Table 4.1. Descriptive characteristics of the LEGACY Girls Study by availability of infant growth 
measures (N=1068) 
 

  
Girls with 

infancy data 
(N=255) 

Girls without 
infancy data 

(N=813) 

Early-life characteristics   

Maternal age at birth (Mean±SD) 33.3 ± 4.8 32.0 ± 5.7 

Maternal height, m (Mean±SD) 1.6 ± 0.1 1.6 ± 0.1 

Maternal pre-pregnancy weight, kg (Mean±SD) 63.0 ± 10.9 64.4 ± 14.0 

Maternal pre-pregnancy BMI (Mean±SD) 23.4 ± 4.0 23.9 ± 5.1 

Maternal pre-pregnancy BMI, categorized (N, %)   

 <18.5 11 (4.3) 36 (4.4) 

18.5 to <25 169 (66.3) 508 (62.5) 

25 to <30 43 (16.9) 137 (16.9) 

≥30 15 (5.9) 81 (10.0) 

Missing 17 (6.7) 51 (6.3) 

Gestational weight gain (n, %)   

<10 lbs 3 (1.2) 24 (3.0) 

10-14 lbs 14 (5.5) 28 (3.4) 

15-19 lbs 24 (9.4) 62 (7.6) 

20-29 lbs 68 (26.7) 249 (30.6) 

30-39 lbs 69 (27.1) 197 (24.2) 

40-49 lbs 35 (13.7) 110 (13.5) 

≥50 lbs 22 (8.6) 91 (11.2) 

Missing 20 (7.8) 52 (6.4) 

Maternal recreational physical activity during pregnancy (N, %)   

Inactive, no walking or other regular exercise 20 (7.8) 109 (13.4) 

Mostly inactive, equivalent to walking about half  a mile or less 
every day 

64 (25.1) 177 (21.8) 

Somewhat active, equivalent to walking about 1 mile every day 58 (22.8) 168 (20.7) 

Active, equivalent to walking about 2 miles every day 98 (38.4) 286 (35.2) 

Highly active, equivalent to walking about 3 or more miles every 
day 

11 (4.3) 47 (5.8) 

Missing 4 (1.6) 26 (3.2) 

Type of gestation (N, %)   

Multiple 13 (5.1) 32 (3.9) 

Singleton 235 (92.2) 735 (90.4) 

Missing 7 (2.8) 46 (5.7) 

Birth order (Mean±SD) 1.7 ± 0.8 1.8 ± 1.0 
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Birth order, dichotomized (N, %)   

First-born 118 (46.3) 352 (43.3) 

Not first-born 130 (51.0) 415 (51.1) 

Missing 7 (2.8) 46 (5.7) 

Gestational age in weeks (Mean±SD) 39.3 ± 2.0 38.9 ± 2.2 

Gestational age, categorized (N, %)   

<37 weeks 21 (8.2) 100 (12.3) 

≥37 weeks 226 (88.6) 683 (84.0) 

Missing 8 (3.1) 30 (3.7) 

Birthweight, g (Mean±SD) 
3370.2 ± 

539.7 
3270.2 ± 

594.6 

Birthlength, cm (Mean±SD) 50.8 ± 3.8 50.4 ± 3.7 

Type of feeding during infancy (N, %)   

Exclusively breastfed 90 (35.3) 273 (33.6) 

Mix of breastfeeding and formula 144 (56.5) 432 (53.1) 

Exclusively formula-fed 14 (5.5) 77 (9.5) 

Missing 7 (2.8) 31 (3.8) 

Baseline characteristics   

Age at baseline (Mean±SD)a 8.9 ± 2.5 9.7 ± 2.3 

BMI-for-age percentile at baseline, (Mean±SD)a 50.1 ± 28.9 50.6 ± 31.2 

BMI-for-age percentile at baseline, categorized (N, %)a   

≥85th BMI-for-age percentile 32 (12.6) 148 (18.2) 

<85th BMI-for-age percentile 208 (81.6) 628 (77.2) 

Missing 15 (5.9) 37 (4.6) 

Breast cancer family history in a first- or second-degree 
relative (N, %) 

  

BCFH+ 138 (54.1) 405 (49.8) 

BCFH- 117 (45.9) 408 (50.2) 

BOADICEA lifetime risk score (Mean±SD) 14.6 ± 4.9 14.6 ± 4.7 

Study site (N, %)   

Philadelphia 10 (3.9) 149 (18.3) 

New York 59 (23.1) 118 (14.5) 

Utah 23 (9.0) 155 (19.1) 

Ontario 87 (34.1) 105 (12.9) 

Northern California 76 (29.8) 286 (35.2) 

Race/ethnicity (N, %)   

Non-Hispanic white 172 (67.5) 497 (61.1) 

Non-Hispanic black 16 (6.3) 63 (7.8) 

Hispanic 30 (11.8) 166 (20.4) 

Asian/Pacific Islander 28 (11.0) 65 (8.0) 

Other or mixed race/ethnicity 9 (3.5) 22 (2.7) 

Maternal education (N, %)   
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Some college, vocational or technical school or less 48 (18.8) 248 (30.5) 

Bachelor's degree 111 (43.5) 274 (33.7) 

Graduate degree 88 (34.5) 273 (33.6) 

Missing 8 (3.1) 18 (2.2) 

Maternal age at menarche  (Mean±SD) 12.7 ± 1.4 12.7 ± 1.6 
aPilot baseline for girls with pilot data (N=21) 
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Table 4.2. Summary measures of height and weight by age and age interval (N=255) 

  Birth 2 months 4 months 6 months 9 months 12 months 

Variable 
Mean 
(SD) IQR 

Mean 
(SD) IQR 

Mean 
(SD) IQR 

Mean 
(SD) IQR 

Mean 
(SD) IQR 

Mean 
(SD) IQR 

Weight, kg 
3.37 

(0.54) 3.09, 3.71 
5.15 

(0.70) 4.71, 5.60 
6.51 

(0.81) 5.95, 7.03 
7.48 

(0.92) 6.89, 8.05 
8.62 

(1.03) 8.00, 9.25 
9.49 

(1.11) 8.80, 10.21 
Weight-for-
age Z-score 

-0.01 
(1.07) -0.62, 0.67 

0.42 
(1.10) -0.27, 1.13 

0.45 
(1.07) -0.26, 1.15 

0.28 
(1.09) -0.39, 0.97 

0.06 
(1.11) -0.56, 0.76 

-0.10 
(1.14) -0.73, 0.65 

Length, cm 
50.82 
(3.80) 48.26, 53.34 

57.97 
(2.59) 56.13, 60.00 

63.19 
(2.70) 61.50, 65.00 

67.13 
(2.75) 65.55, 69.00 

71.67 
(3.03) 69.85, 73.72 

75.56 
(3.14) 73.66, 77.54 

Length-for-
age Z-score 

0.45 
(1.79) -0.43, 1.50 

0.50 
(1.06) -0.23, 1.34 

0.68 
(1.09) 0.00, 1.41 

0.74 
(1.07) 0.11, 1.46 

0.67 
(1.11) -0.02, 1.41 

0.63 
(1.09) -0.04, 1.31 

 0-2 months 2-4 months 4-6 months 6-9 months 9-12 months 0-12 months 
Change in 
WAZ 

0.43 
(0.93) -0.20, 1.03 

0.03 
(0.54) -0.32, 0.31 

-0.16 
(0.52) -0.43, 0.10 

-0.21 
(0.44) -0.46. 0.01 

-0.12 
(0.42) -0.41, 0.12 

-0.06 
(1.35) -0.87, 0.68 

Change in 
LAZ 

0.02 
(1.59) -0.83, 0.63 

0.19 
(0.63) -0.18, 0.52 

0.06 
(0.63) -0.33, 0.40 

-0.08 
(0.77) -0.44, 0.31 

-0.03 
(0.55) -0.38, 0.30 

0.19 
(1.90) -0.78, 0.89 

*Z-scores calculated using the 2000 CDC growth charts 
 
 
 
 
Table 4.3. Correlation matrix for birthweight Z-score and change in weight-for-age Z-score (WAZ) by age interval (N=255) 

Parameter 
Birthweight 
Z-score 

Change in 
WAZ, 0-2 m 

Change in 
WAZ, 2-4 m 

Change in 
WAZ, 4-6 m 

Change in 
WAZ, 6-9 m 

Change in 
WAZ, 0-12 m -0.58**     

Change in 
WAZ, 0-2 m -0.40**     

Change in 
WAZ, 2-4 m -0.32** 0.04    

Change in 
WAZ, 4-6 m -0.21* -0.03 0.10   

Change in 
WAZ, 6-9 m -0.16* -0.05 0.17* 0.25**  

Change in 
WAZ, 9-12 m -0.08 -0.01 -0.00 -0.10 0.16* 

Pearson correlation coefficients: *p<.05, **p<.0001 
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Table 4.4. Correlation matrix for birthlength Z-score and change in length-for-age Z-score (LAZ) by age interval (N=255) 

Parameter 
Birthlength 
Z-score 

Change in 
LAZ, 0-2 m 

Change in 
LAZ, 2-4 m 

Change in 
LAZ, 4-6 m 

Change in 
LAZ, 6-9 m 

Change in 
LAZ, 0-12 m -0.83**     

Change in 
LAZ, 0-2 m -0.80**     

Change in 
LAZ, 2-4 m -0.15* -0.05    

Change in 
LAZ, 4-6 m -0.17* -0.06 0.04   

Change in 
LAZ, 6-9 m -0.09 -0.03 -0.12 -0.10  

Change in 
LAZ, 9-12 m -0.04 -0.01 -0.10 -0.09 0.09 

Pearson correlation coefficients: *p<.05, **p<.0001 
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Table 4.5. Correlations between changes in weight-for-age and length-for-age Z-scores by age interval (N=255) 

Parameter 
Birthweight 
Z-score 

Change in 
WAZ, 0-12 m 

Change in 
WAZ, 0-2 m 

Change in 
WAZ, 2-4 m 

Change in 
WAZ, 4-6 m 

Change in 
WAZ, 6-9m 

Change in 
WAZ,9-12m 

Birthlength Z-
score 0.51** -0.27** -0.19* -0.16* -0.10 -0.01 -0.09 

Change in LAZ, 
0-12 m -0.34** 0.38** 0.25* 0.28** 0.13 0.09 0.09 

Change in LAZ, 
0-2 m -0.14* 0.19* 0.27** 0.04 0.03 -0.10 0.07 

Change in LAZ, 
2-4 m -0.17* 0.24* 0.12 0.26** -0.08 0.06 -0.01 

Change in LAZ, 
4-6 m -0.25** 0.26** 0.09 0.21* 0.25* 0.05 0.03 

Change in LAZ, 
6-9 m -0.17* 0.22* 0.03 0.09 0.13* 0.24* 0.02 

Change in LAZ, 
9-12 m -0.03 -0.002 -0.14* 0.14* 0.03 0.06 0.03 

Pearson correlation coefficients: *p<.05, **p<.0001     
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Table 4.6. Adjusted time ratios (TR), hazard ratios (HR) and 95% confidence intervals (CIs) for associations between rates of weight and 
length gain during infancy and the onset of breast development in the LEGACY Girls Study 
 

 Model 1a - Weight only Model 2a - Length only Model 3a - Weight and Length 

  TR (95% CI) HR (95% CI) TR (95% CI) HR (95% CI) TR (95% CI) HR (95% CI) 

Change in weight Z-score, 
0-12 months 0.978 (0.960, 0.997) 1.20 (1.02, 1.41) − − 0.986 (0.971, 1.001) 1.12 (0.99, 1.28) 
Change in length Z-score, 
0-12 months − − 0.983 (0.966, 1.000) 1.15 (1.00, 1.33) 0.988 (0.972, 1.005) 1.10 (0.96, 1.27) 

       
Change in weight Z-score, 
0-6 months 0.983 (0.966, 1.001) 1.15 (0.99, 1.34) − − 0.991 (0.971, 1.010) 1.08 (0.92, 1.28) 
Change in weight Z-score, 
6-12 months 0.973 (0.946, 1.001) 1.25 (0.98, 1.60) − − 0.982 (0.954, 1.010) 1.17 (0.92, 1.49) 

       
Change in length Z-score, 
0-6 months − − 0.978 (0.960, 0.996) 1.21 (1.03, 1.41) 0.981 (0.962, 1.001) 1.17 (0.99, 1.38) 
Change in length Z-score, 
6-12 months − − 0.994 (0.969, 1.020) 1.05 (0.85, 1.30) 0.995 (0.969, 1.020) 1.05 (0.84, 1.30) 

       
Change in weight Z-score, 
0-2 months 0.991 (0.971, 1.011) 1.08 (0.92, 1.27) − − 1.006 (0.986, 1.026) 0.96 (0.81, 1.12) 
Change in weight Z-score, 
2-4 months 0.949 (0.915, 0.985) 1.54 (1.13, 2.12) − − 0.962 (0.926, 0.999) 1.40 (1.00, 1.96) 
Change in weight Z-score, 
4-6 months 0.989 (0.940, 1.040) 1.10 (0.72, 1.69) − − 0.991 (0.940, 1.045) 1.08 (0.68, 1.72) 
Change in weight Z-score, 
6-9 months 0.946 (0.904, 0.989) 1.63 (1.09, 2.42) − − 0.953 (0.910, 0.997) 1.55 (1.01, 2.36) 
Change in weight Z-score, 
9-12 months 1.008 (0.968, 1.050) 0.93 (0.66, 1.32) − − 0.997 (0.955, 1.041) 1.03 (0.70, 1.51) 

       
Change in length Z-score, 
0-2 months − − 0.990 (0.968, 1.013) 1.09 (0.90, 1.31) 0.988 (0.966, 1.010) 1.11 (0.92, 1.33) 
Change in length Z-score, 
2-4 months − − 0.949 (0.918, 0.982) 1.56 (1.16, 2.08) 0.955 (0.922, 0.989) 1.50 (1.10, 2.04) 
Change in length Z-score, 
4-6 months − − 1.012 (0.974, 1.052) 0.90 (0.65, 1.25) 1.017 (0.979, 1.056) 0.87 (0.62, 1.21) 
Change in length Z-score, 
6-9 months − − 0.974 (0.944, 1.005) 1.25 (0.95, 1.65) 0.983 (0.953, 1.014) 1.17 (0.88, 1.54) 
Change in length Z-score, 
9-12 months − − 1.005 (0.969, 1.042) 0.96 (0.70, 1.31) 1.021 (0.982, 1.061) 0.83 (0.58, 1.18) 

*Z-scores calculated using 2000 CDC growth charts as reference     
aEstimates adjusted for weight and length Z-scores at birth, change in previous intervals, gestational age in weeks, maternal pre-pregnancy BMI and gestational 
weight gain (BMI<25 and GWG<30lbs, BMI<25 and GWG≥30 lbs, BMI≥25 and GWG<30 lbs, BMI≥25 and GWG≥30), and race/ethnicity (Hispanic, Non-Hispanic 
Black or Mixed race/ethnicity, Non-Hispanic White, Asian) 
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Figure 4.1. Associations between growth patterns from 2-4 months and 6-9 months and onset of 
breast development in the LEGACY Girls Study. Z-scores are calculated using the 2000 CDC growth 
charts. Estimates are adjusted for  weight and length Z-score at birth, change in previous intervals, 
gestational age in weeks, maternal pre-pregnancy BMI, gestational weight gain and race/ethnicity. 

Time period and 
growth pattern  

 
  HR (95% CI) 

   

2-4 months   
Weight gain pattern   

Rapid (≥0.67 WAZ)  1.03 (0.50, 2.11) 

Stable  1.00 (Referent) 

Slow (≤ -0.67 WAZ)  0.53 (0.32, 0.90) 

   

Length gain pattern   

Rapid (≥0.67 LAZ)  1.71 (1.08, 2.69) 

Stable  1.00 (Referent) 

Slow (≤ -0.67 LAZ) 
 

0.98 (0.58, 1.65) 

   

6-9 months   

Weight gain pattern   

Rapid (≥0.67 WAZ)  0.91 (0.36, 2.30) 

Stable  1.00 (Referent) 

Slow (≤ -0.67 WAZ) 
 

0.44 (0.28, 0.70) 

   

Length gain pattern   

Rapid (≥0.67 LAZ)  1.96 (1.08, 3.56) 

Stable 
 

1.00 (Referent) 

Slow (≤ -0.67 LAZ) 
 

0.77 (0.42, 1.40) 

Hazard Ratio (95% CI) 
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Chapter 5.  Maternal pregnancy factors, birth size and infant growth in relation to IGF-1 and 

IGFBP-3 levels during puberty in the LEGACY Girls Study cohort 

 

ABSTRACT 

Background: Serum levels of insulin-like growth factor (IGF)-1 and insulin-like growth factor binding protein 

(IGFBP-3) increase rapidly during puberty. In this pilot study, we examined whether maternal pregnancy 

factors and rates of growth during infancy, which were associated with earlier onset of breast development 

in prior chapters, influenced serum levels of IGF-1 and IGFBP-3 in girls during puberty, and if so, whether 

these associations differ in girls with and without a breast cancer family history (BCFH).    

Methods: We used linear mixed models to estimate the mean difference in serum levels of IGF-1(ng/ml), 

IGFBP-3(ng/ml) and the IGF-1/IGFBP-3 molar ratio by maternal pre-pregnancy body mass index (BMI), 

gestational weight gain (GWG), maternal physical activity during pregnancy and size at birth in 109 girls 

from the New York site of the LEGACY Girls Study, a pubertal cohort enriched for BCFH (ages 6-17 years 

at sample collection). We included all available serum samples for each girl (range 1-5, median 3) in the 

analyses, which were clustered on the individual and the family. In the subset of 33 girls with infant growth 

data available from medical records, we also examined differences in serum biomarker levels by growth 

patterns from birth to 12 months of age. We adjusted for age, breast Tanner stage and BMI-for-age 

percentile at sample collection and assessed effect modification by BCFH for each exposure of interest 

through cross-product terms. 

Results: The mean age at the first available serum sample was 10.2 years. Forty percent of girls had a 

BCFH, and 46% were breast Tanner stage 1 at their first sample. Serum IGF-1 levels increased from Tanner 

stage 1-3, were at a peak in stages 3 and 4, and were lower in Tanner stage 5. A similar pattern was 

observed for the IGF-1/IGFBP-3 molar ratio. Faster rates of weight gain in infancy were associated with a 

higher molar ratio of IGF-1/IGFBP-3, which reflect higher levels of bioactive IGF-1 (β=0.03, 95% CI 0.01, 

0.06 for one-unit increase in weight-for-age Z-score from birth to 12 months). Higher birthweight was 

associated with decreased levels of IGF-1, which was attenuated after adjustment for infant growth (β= -

4.5 ng/ml, 95% CI -35.6, 26.6 per 500g increase in birthweight with adjustment for infant weight gain). These 
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patterns did not differ by BCFH, which was not associated with serum biomarker levels after adjustment for 

age and breast Tanner stage. 

Conclusions: Rapid infant weight gain was associated with higher levels of the IGF-1/IGFBP-3 molar ratio, 

a serum biomarker that maps to pubertal development. This supports that the association that we observed 

between faster infant growth and earlier onset of breast development is less likely to be driven by error in 

outcome assessment or confounding.  

5.1 Background 
 

Serum IGF-1 levels increase slowly during early childhood with a more rapid rate of increase during 

puberty.51 After a peak during puberty, IGF-1 levels decrease in adolescence and adulthood.52 Insulin-like 

growth factor binding protein (IGFBP)-3, which binds 75-90% of circulating IGF-1 and regulates its 

bioactivity,291 follows a similar pattern in childhood and adolescence.52 While breast Tanner stage is a 

somewhat subjective assessment, even among trained professionals,58 serum levels of IGF-1 and IGFBP-

3 are objective measures that are correlated with pubertal stage.51,52 In this pilot study, we examine whether 

maternal pregnancy factors and rates of growth during infancy, which were associated with earlier onset of 

breast development in prior chapters, influence serum levels of IGF-1 and IGFBP-3 in girls during puberty, 

and if so, whether these associations differ in girls with and without a breast cancer family history (BCFH). 

Associations between these factors and higher serum levels of IGF-1, IGFBP-3 or the IGF-1/IGFBP-3 molar 

ratio would indicate biological changes that map to pubertal development in the girls, and support that bias 

is less likely to drive the associations that we observed with pubertal timing.  

5.2 Methods 

 

5.2.1. Study population 

 

The participants in this study were from the New York site of the LEGACY (Lessons in 

Epidemiology and Genetics of Adult Cancer from Youth) Girls Study, a prospective pubertal cohort in which 

approximately 50% of girls have a breast cancer family history (BCFH) (for more information on the 

LEGACY cohort, see 57). Girls were between the ages of 6 and 13 years when recruited into LEGACY 



 

118 

 

between 2011 and 2013 along with a participating guardian and have been prospectively followed every 

six months since baseline. Baseline data collected from mothers included family history of breast cancer in 

daughters’ first- and second-degree relatives and detailed information about the pregnancy with the 

LEGACY daughter. At baseline and subsequent follow-up visits, mothers completed questionnaires 

assessing their daughters’ pubertal development and trained staff members collected anthropometric 

measurements. Daughters were asked to provide a blood sample at baseline, the six-month follow-up visit, 

and annually thereafter. For this analysis, the study population was comprised of 109 girls from the New 

York LEGACY site who provided at least one blood sample over the course of the study. The participating 

guardian was the biological mother for 98% of these girls. The analysis included all available serum samples 

(N=289), along with prospective follow-up data on Tanner Stage, through August 2016. Mothers provided 

written informed consent for themselves and for their daughters, and daughters provided written informed 

assent according to institutional standards. The study was approved by the institutional review board at 

Columbia University Irving Medical Center. 

5.2.2. Data collection 

 

Maternal and infant exposures. Mothers completed an early-life questionnaire at their daughters’ 

baseline visit that included detailed information about their pregnancy, including pre-pregnancy weight 

(continuous), gestational weight gain (GWG) (in categories) and physical activity. These questions were 

developed and used previously in the Nurses’ Health Study cohort.24 Mothers also reported the length of 

their pregnancy, which we used to calculated gestational age, along with their daughters’ weight and length 

at birth. Weight and length through one year of age was available for a subset of the girls from medical 

records and growth charts obtained from pediatricians’ offices. As described in Chapter 4, we interpolated 

weight and height at 2 months, 4 months, 6 months, 9 months and 12 months for each girl using individual 

quadratic smoothing splines as these time points correspond with recommended postnatal clinician visits.250 

We calculated weight-for-age (WAZ) and length-for-age (LAZ) Z-scores at each time point standardized to 

the 2000 Centers for Disease Control and Prevention (CDC) growth charts.261 Rate of growth in weight and 

length was calculated as the change in WAZ and LAZ between two time points. We defined rapid growth 

as an increase in Z-score of greater than 0.67, slow growth as a decrease in Z-score of greater than 0.67, 
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and stable growth as a change of less than 0.67 between time points. A change of 0.67 standard deviations 

corresponds to an increase of a major percentile on standard growth charts (i.e. a change from the 25 th to 

the 50th percentile), and is commonly used in the literature.191,263  

Covariates. We considered history of breast cancer in a first or second-degree relative, as reported 

by the mother at baseline, as a potential modifier. At each study visit, trained research staff measured the 

height and weight of the girls at least twice using standardized instruments. We averaged these measures 

and calculated body mass index (BMI) at the visit. We also calculated BMI-for-age percentiles based on 

the 2000 CDC growth charts.241 Mothers also reported their daughters’ stage of breast development at the 

visit using was the picture-based Sexual Maturation Scale (SMS)238 showing the five Tanner stages (TS).100 

Mothers reported their highest level of education attained at baseline, which was used as a measure of 

socioeconomic status (SES). 

Biomarker assessment. We measured IGF-1 and IGFBP-3 concentrations in ng/ml in serum at the 

Irving Institute for Clinical and Translational Research Core Biomarkers Lab at Columbia University. IGF-1 

was measured using a chemiluminescent immunoassay (CLIA) on the Immulite 1000 automated platform 

(Siemens Healthcare Diagnostics). Serum samples for the same girl were run on the same day, and the 

inter-day precision of the assay calculated from a pooled sample was 6.5%.  IGFBP-3 was measured using 

a quantikine enzyme-linked immunosorbent assay (ELISA) kit (R&D Systems), and all samples for the same 

girl were included on the same plate. The inter-assay precision calculated from a pooled sample was 11.4% 

and the intra-assay precision, calculated from samples run in duplicate, was 3.5%. All samples were above 

the limit of detection for IGF-1 and IGFBP-3. We calculated the molar ratio of IGF-1 to IGFBP-3 (IGF-1 in 

ng/ml times 0.1307 divided by IGFBP-3 in ng/ml times 0.03478, as in 292) in order to examine the 

concentration of IGF-1 relative to its primary binding factor. The ratio is a reflection of the amount of 

bioactive IGF-1,52,292 as opposed to total circulating IGF-1. 

5.2.3. Statistical analysis 

 

We examined the distribution of early-life characteristics and baseline covariates in girls with 

biomarker data and examined differences with the subset of the girls at the New York site without biomarker 
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data. We examined the distribution of IGF-1, IGFBP-3 and the molar ratio of IGF-1/IGFBP-3 by age and 

breast Tanner stage for all serum assessments (N=289 samples) and for the first serum assessment in 

each girl (N=109 samples).  We then examined the distribution of the first IGF measures for each girl by 

SES and exposures of interest using boxplots. We also examined the correlation between continuous body 

size measures and the first available serum biomarker measures. 

We used multivariable linear mixed models to assess associations between early-life exposures 

and the mean levels of IGF-1/IGFBP-3 and the IGF-1/IGFBP-3 molar ratio during puberty with a random 

intercept term for the individual and the family to allow for the clustering of repeated measures within girls 

and girls within families. The use of mixed models allows for a different number of measures per girl, so 

girls with only one biomarker measure and those with repeated measures can both contribute to the 

analysis. We adjusted all models for centered age at blood draw and the quadratic term for age to account 

for the decline in IGF-1 and IGFBP-3 after the peak during puberty.  

Our exposures of interest for this analysis were maternal pre-pregnancy BMI, gestational weight 

gain, maternal recreational physical activity during pregnancy, birthweight and birthlength. We examined 

exposures as continuous variables if assumptions of linearity were not violated to avoid small cell counts. 

We adjusted models examining GWG and maternal physical activity for maternal pre-pregnancy BMI, and 

we adjusted birth size models for maternal pre-pregnancy BMI and prematurity (gestational age <37 

weeks). Birth size models were run with and without mutual adjustment for weight and length. We 

additionally adjusted for breast TS and BMI-for-age percentile at visit. We tested for effect measure 

modification on the additive scale by adding a cross-product term between the exposure of interest and 

BCFH to adjusted models. 

For the subset of girls with infancy data (N=33), we also examined rates of growth in weight and 

length between birth and one year. Due to the small sample size and few sets of siblings, infancy analyses 

were clustered on the individual only and adjusted for maternal pre-pregnancy BMI and size at birth. We 

ran models with and without mutual adjustment for growth in weight and length. We additionally adjusted 

for breast TS (TS≥2 vs TS1, due to small cell counts) and BMI-for-age percentile at visit and tested for 

interaction by BCFH. 
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We present our main models without transforming the outcome for interpretability, as the β 

estimates can be interpreted as the difference in the mean biomarker level between groups for a categorical 

exposure or for a one-unit increase in a continuous exposure. However, the distributions of IGF-1 and the 

IGF-1/IGFBP-3 molar ratio were slightly skewed, and normality was improved by using a square root 

transformation. We ran sensitivity analyses for our adjusted models using the square-root transformed IGF-

1 and IGF-1/IGFBP-3 molar ratio measures. We also present the median and interquartile range using the 

first available biomarker measure across our exposures of interest (Table 5.1) and by age for all available 

measures (Table 5.2). Analyses were conducted using SAS 9.4. 

5.3 Results 

 

 The analytic sample includes 109 girls with at least one serum sample available (median=3 

samples per girl, range 1-5). The mean age at the first available serum sample was 10.2 years, and 46% 

of girls were breast Tanner stage 1 at their first sample (Table 5.1). Approximately 30% of mothers were 

overweight or obese prior to pregnancy, and 28% of girls were overweight at their first visit with serum 

available. Compared with girls from the New York site that did not provide a serum sample, girls that 

provided serum were slightly older at baseline and a greater percentage of girls were Hispanic 

(Supplemental Table 5.1). Forty percent of girls with serum had a first- or second-degree history of breast 

cancer, which was a lower percentage than in the overall cohort. Several families with a BCFH participated 

in LEGACY remotely and did not attend in-person clinic visits when serum samples were collected. 

 Girls were between the ages of 6-17 years at blood collection, and the range of IGF-1, IGFBP-3 

and the IGF-1/IGFBP-3 molar ratio overall and by age are shown in Table 5.2. The median levels of IGF-1 

increased until 12 years of age and started to decline by late adolescence, though we had a relatively small 

number of samples collected at 16 and 17 years of age. The largest increases in median IGF-1 were 

between 9 and 11 years of age, which corresponds to the onset of puberty for many girls. IGFBP-3 levels 

also increased with age and appeared to plateau in adolescence. Similar patterns were observed when we 

considered the first serum sample available for each girl by breast Tanner stage at the visit (Supplemental 

Figure 5.1). IGF-1 levels increased from Tanner stage 1-3, were at a peak in stages 3 and 4, and were 

lower in Tanner stage 5. A similar pattern was observed for the IGF-1/IGFBP-3 molar ratio. Trends in 
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IGFBP-3 by Tanner stage were more subtle – the median increased as girls entered breast development 

and then remained elevated in the later Tanner stages. The distribution of IGF-1, IGFBP-3 and the IGF-

1/IGFBP-3 ratio were similar by maternal education (Supplemental Figure 5.2), suggesting that these 

biomarkers are independent of SES.  

 There was significant tracking of IGF-1, IGFBP-3 and their molar ratio within girls during puberty, 

with intraclass correlation coefficients (ICCs) ranging from 0.60-0.70 when only within- and between-

individual levels were considered.  When we also considered familial clustering, 36.3% of the variance in 

IGF-1 was due to within-individual differences, 47.2% to between-individual differences and 16.5% to 

between-family differences. Similar patterns were observed for IGFBP-3 and the IGF-1/IGFBP-3 molar 

ratio, where the majority of the variance was due to between-individual and between-family differences.  

BMI-for-age percentile at the visit had a modest positive correlation with serum levels of IGF-1 

(r=0.20) and the IGF-1/IGFBP-3 molar ratio (r=0.23), while birthweight was inversely correlated with IGF-1 

(r= -0.14) and the molar ratio (r= -0.17). The correlation between maternal pre-pregnancy BMI and serum 

IGF-1 was extremely weak (r=0.07). Infant weight gain had the strongest correlation with serum levels of 

IGF-1 and the IGF-1/IGFBP-3 ratio (r=0.36 for IGF-1 and r=0.41 for IGF-1/IGFBP-3 molar ratio) – double 

the magnitude compared with current BMI. None of the body size exposures were strongly correlated with 

IGFBP-3. In multivariable models controlling for age and breast Tanner stage, the association between 

current BMI and serum levels of IGF-1 and the molar ratio was attenuated and not statistically significant. 

Although the associations were not statistically significant, serum IGF-1 and IGFBP-3 levels 

increased with increasing maternal pre-pregnancy BMI after controlling for age, current BMI and Tanner 

stage (Table 5.3). There was no association between maternal pre-pregnancy BMI and the IGF-1/IGFBP-

3 molar ratio after controlling for daughters’ BMI-for-age percentile and breast TS. There was a suggestion 

of a slight U-shape in the association between GWG and IGF-1, IGFBP-3 and their molar ratio. When 

maternal pre-pregnancy BMI and GWG were considered as a joint categorical variable, daughters of 

women who had a pre-pregnancy BMI≥25 and gained ≥30 lbs during pregnancy had higher serum IGF-1 

levels than daughters of women who were not overweight prior to pregnancy and gained less than 30 lbs 

(β adjusted for age, breast TS and BMI-for-age percentile at visit=51.1 ng/ml, 95% CI 1.1, 101.1). Serum 
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IGF-1 levels in daughters of women with a pre-pregnancy BMI ≥25 and gained less than 30lbs or women 

with a BMI<25 and gained 30lbs or more were also elevated, but these differences were not statistically 

significant. There were no statistically significant differences in the IGF-1/IGFBP-3 molar ratio. However, 

the point estimates suggested that daughters of women who gained 30lbs or more during pregnancy had 

a greater ratio of IGF-1 to IGFBP-3 than daughters of women who gained less than 30 lbs in both average-

weight and overweight women (β for BMI<25 and GWG≥30 lbs=0.02, 95% CI -0.01, 0.08; β for BMI≥25 and 

GWG≥30lbs=0.04, 95% CI=-0.01, 0.08, increases of 8% and 15%, respectively, in the mean molar ratio 

compared with the referent group of BMI<25 and GWG<30). There were no statistically significant 

differences in biomarker levels by maternal recreational physical activity during pregnancy. Point estimates 

were in the direction of lower levels of IGF-1, IGFBP-3 and their ratio in daughters of inactive women. 

Although levels of IGF-1, IGFBP-3 and their molar ratio were higher in girls with a BCFH in descriptive 

analyses (Table 5.1), there were no differences by BCFH after adjustment for breast Tanner stage and 

BMI-for-age percentile in addition to age (data not shown). The associations between maternal pregnancy 

factors, birth size and biomarker levels did not vary by BCFH (p>0.05 for all interaction terms). 

 Higher birthweight was associated with lower levels of serum IGF-1 and the IGF-1/IGFBP-3 molar 

ratio (β for IGF-1= -13.6 ng/ml, 95% CI -26.7, -0.5 per 500g increase in birthweight and β for IGF-1/IGFBP-

3 molar ratio= -0.01, 95% CI -0.02, 0.00) (Table 5.4). BCFH did not modify the observed association. 

Birthlength was not associated with IGF levels. In the subset of girls with infancy data, boxplots suggested 

a dose-response relationship in levels of serum IGF-1 and the IGF-1/IGFBP-3 molar ratio by the pattern of 

weight gain in infancy, with the highest levels observed in girls with rapid weight gain (Figure 5.1). Effect 

estimates from multivariable-adjusted models examining the continuous change in weight-for-age Z-score 

from 0-12 months were consistent with this pattern (Table 5.5). A one-unit increase in weight-for-age Z-

score between birth and 12 months of age was associated with approximately a 14% increase in the mean 

IGF-1/IGFBP-3 molar ratio after controlling for age, current BMI, Tanner stage, birthweight and maternal 

BMI. In this subset, we examined whether the negative association between birthweight and IGF-1 was 

mediated by infant weight gain. The estimated mean difference in IGF-1 per 500g increase in birthweight 

was similar, but not statistically significant in this subset (β= -12.6, 95% CI -38.4, 13.2), and was attenuated 

towards the null after adjustment for weight gain from 0-12 months (β= -4.5, 95% CI -35.6, 26.6) 
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(Supplemental Table 5.2). While we observed a similar pattern for change-in-length Z-score from 0-12 

months in age-adjusted models, the difference was attenuated after adjustment for breast Tanner stage 

and BMI. When we considered growth from 0-6 months and 6-12 months separately, rate of weight gain in 

late infancy was associated with a larger increase in IGF-1 and the IGF1/IGFBP-3 molar ratio. Although 

infant growth measures were not associated with IGFBP-3 levels, there was a statistically significant 

interaction between change in weight Z-score from 0-12 months and 0-6 months and BCFH, which 

suggested lower levels of IGFBP-3 in girls with a BCFH that experienced faster weight gain. There was no 

evidence of interaction by BCFH for IGF-1 or the IGF-1/IGFBP-3 molar ratio (p>0.05). The interaction 

observed for IGFBP-3 could be due to chance, particularly given the small sample size for the infancy 

analyses.  

 The inference was the same for each exposure of interest when we modelled the square root of 

IGF-1 and the IGF-1/IGFBP-3 molar ratio as the outcome instead of the untransformed values 

(Supplemental Table 5.3). 

5.4 Discussion 

 

Similar to previous studies, we observed increases in serum levels of IGF-1, IGFBP-3 and the IGF-

1/IGFBP-3 molar ratio with age and breast Tanner stage with a peak in late puberty in a pubertal cohort 

enriched for BCFH. Although the associations were not statistically significant, serum levels of IGF-1 and 

the IGF-1/IGFBP-3 molar ratio were higher in girls whose mothers were overweight or obese prior to 

pregnancy and gained more than 30lbs. Higher birthweight was associated with lower serum IGF-1 levels. 

In the subset of girls with infant growth data, adjustment for weight gain from 0-12 months attenuated the 

negative association between birthweight and IGF-1, suggesting that the birthweight association is 

mediated by postnatal growth. We also observed an independent association between faster rates of weight 

gain during infancy and higher levels of the IGF-1/IGFBP-3 molar ratio in girls during puberty. The 

magnitude of the association for infant weight gain and the molar ratio was double that of current BMI, 

which was not associated with IGF levels after adjustment for Tanner stage. These findings support that 

rapid growth during infancy, and potentially maternal pre-pregnancy body size and GWG, are associated 

with biological differences in IGF levels that are consistent with pubertal development. 
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In Chapters 3 and 4, we found that higher maternal pre-pregnancy BMI, excess GWG, maternal 

physical inactivity during pregnancy and rapid growth during infancy were associated with earlier onset of 

breast development. Ruling out information bias and confounding as an explanation for these findings is a 

challenge, particularly since breast development was based on maternal report and maternal pregnancy 

factors, infant growth and pubertal timing are socially patterned.242,293 This pilot study can help to assess 

the likelihood that the associations between these factors and the timing of breast development were driven 

by these potential biases. Lab personnel that conducted the serum assays were blinded to exposure and 

pubertal status, limiting the potential for systematic bias in biomarker assessment, and the reliability of the 

assays suggest a minimal amount of random error. Although our sample size was small, serum biomarkers 

of IGF-1 and IGFBP-3 increased with age and breast Tanner stage in our sample and can be considered a 

physiological indicator of pubertal onset. Therefore, the association between rapid infant weight gain and 

higher levels of IGF-1 relative to IGFBP-3 in this analysis reduces the likelihood that the association that 

we observed between infant growth and earlier onset of breast development is driven by error in maternal 

report of breast onset. Higher IGF-1 levels in girls with high maternal pre-pregnancy BMI and GWG are 

also consistent with our finding of earlier breast development in this group. In addition, IGF measures did 

not vary by maternal education, which supports that confounding by SES is also not a likely explanation for 

these associations. In contrast, maternal physical inactivity during pregnancy was associated with lower, 

albeit not statistically significant, levels of IGF-1, IGFBP-3 and their molar ratio, which is not consistent with 

our finding of earlier breast development in these girls.  

BCFH did not modify the associations that we observed between maternal pregnancy and infant 

factors and serum measures of IGF-1 and the IGF-1/IGFBP-3 ratio. However, we would not rule out the 

possibility of interaction by BCFH based on these analyses as we may have lacked power to detect 

statistically significant differences by BCFH. We did not observe an association between BCFH and mean 

IGF-1 and IGFBP-3 levels after adjustment for age and breast Tanner stage. Studies of differences in IGF-

1 by BCFH in adulthood have not consistently observed an association. A pooled study of over 9000 women 

(mean age varied from 35.5-71.8 by study included in the pooled analysis) did not find a difference in IGF-

1 levels in adulthood in women with or without a first-degree family history of breast cancer.294 However, a 

study of 400 women (mean age 56.6±7.1) did observe higher mean IGF-1 levels in women with a first-



 

126 

 

degree family history of breast cancer.295 Since BCFH may be associated with earlier age at menarche,165 

changes in IGF-1 and IGFBP-3 levels across puberty may differ in girls with a BCFH, a hypothesis that we 

will explore in future studies. 

The relations between body size, growth and levels of IGF-1 across the life course is complex. 

Higher birthweight has generally been found to be associated with higher levels of IGF-1 in cord blood296–

298 and in blood samples measured shortly after birth.299 However, previous studies have found negative 

correlations between birthweight and circulating IGF-1 levels as early as 3 months of age300 and into 

childhood,301–304 which is consistent with the negative association that we observed in girls during puberty. 

In childhood, the highest levels of IGF-1 have been observed in taller and heavier children that weighed 

less at birth.302–304 Barker and colleagues have suggested that this negative association between birth 

weight and IGF levels is due to the re-programming of the IGF-1 axis in response to undernutrition in utero, 

either due to higher levels of postnatal nutrition than anticipated based on the intrauterine environment or 

to IGF-1 resistance developed in response to prenatal undernutrition.303 An alternative hypothesis is that 

rapid postnatal weight gain, which is more common in low birthweight infants, programs higher IGF-1 levels 

into childhood. Our finding that faster infant weight gain is associated with higher levels of IGF-1 during 

puberty, and that infant weight gain may mediate the association between birthweight and lower levels of 

IGF-1, supports this alternative hypothesis. Rapid weight gain between birth and 2 years was also 

associated with higher levels of IGF-1 at 5 years of age in the ALSPAC cohort.302 In a study of twins and 

their non-twin siblings, lower birthweight was associated with higher levels of IGF-1 at 18 years of age only 

in adolescents that experienced catch-up growth, defined as an increase of >0.67 SD from birth to 2 years 

of age.305 These studies point to the importance of postnatal growth in setting IGF-1 trajectories in childhood 

and adolescence. Since higher IGF-1 levels during childhood have been associated with earlier age at 

menarche306 and faster progression through the pubertal growth spurt,307 rapid infant weight gain may affect 

pubertal tempo through programming pathways involving the IGF system. We will explore this hypothesis 

in future analyses. 

Strengths of this study include the repeated assessment of IGF-1 and IGFBP-3 during puberty in 

girls with and without a BCFH and the prospective assessment of infant growth through medical record 
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data. Although our analysis was limited to 109 girls, the patterns of IGF-1, IGFBP-3 and the IGF-1/IGFBP-

3 molar ratio by age and breast Tanner stage in our sample were similar to the trends observed in large, 

cross-sectional studies.51,52,289,292,308 The sample size did limit our power to detect significant differences in 

mean biomarker levels, particularly for categorical exposures, and limited the number of confounders that 

could be included in multivariable models. Since only a small subset of girls had both infancy and serum 

biomarker data, we could not examine smaller windows of growth during infancy in relation to IGF levels. 

Girls with a BCFH were relatively under-represented in the subset with IGF measurements, which could 

have reduced our power to detect a significant effect of BCFH on mean IGF measures or an interaction 

effect. Given our small sample size, replication of our results in larger studies is warranted.  

5.5 Conclusions 

 

Higher maternal pre-pregnancy BMI, increased GWG and rapid weight gain during infancy were 

associated with higher mean levels of serum IGF-1 and the IGF-1/IGFBP-3 molar ratio, a measure of 

bioactive IGF-1, in girls during puberty. These biological changes are consistent with pubertal development, 

which supports that the associations that we observed between these maternal pregnancy factors, infant 

growth and the timing of breast development are less likely to be driven by error in outcome assessment or 

confounding. Future analyses will examine whether early-life growth and BCFH are associated with 

trajectories of IGF-1 across puberty and the timing of later pubertal markers, including age at peak height 

velocity and age at menarche, which are associated with increased breast cancer risk.41,287  
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5.6 Tables and figures 

 

Table 5.1. Biomarker concentrations from first available sample by early-life and adolescence characteristics (N=109 girls from the 
LEGACY Girls Study, New York site) 

  Biomarker concentrations, Median (Interquartile Range) 

Early-life characteristics 
Participants, 

N (%) 
IGF-1 (ng/ml) IGFBP-3 (ng/ml) 

IGF-1/IGFBP-3 
molar ratio* 

Maternal pre-pregnancy BMI and gestational weight 
gain 

    

BMI <25 and GWG<30lbs 29 (27.6) 245 (131, 324) 3219.6 (2845.6, 3460.6) 0.28 (0.19, 0.35) 

BMI <25 and GWG≥30lbs 44 (41.9) 189 (149, 290.5) 3060.9 (2711.2, 3393.6) 0.24 (0.20, 0.32) 

BMI ≥25 and GWG<30 lbs 20 (19.1) 230 (146.5, 285.5) 3016.4 (2735.1, 3537.4) 0.31 (0.20, 0.35) 

BMI≥25 and GWG≥30 lbs 12 (11.4) 277 (175, 323.5) 3590.9 (3062.9, 3765.6) 0.29 (0.18, 0.34) 

Maternal recreational physical activity during 
pregnancy  

    

Inactive, no walking or other regular exercise 19 (17.8) 226 (134, 284) 3096.7 (2860.3, 3460.7) 0.26 (0.18, 0.33) 

Mostly inactive, equivalent to walking about half  a mile 
or less every day 

26 (24.3) 209 (132, 315) 3112.6 (2657.7, 3562.8) 0.27 (0.19, 0.37) 

Somewhat active, equivalent to walking about 1 mile 
every day 

19 (17.8) 227 (146, 304) 3139.2 (2817.5, 3566.5) 0.26 (0.20, 0.30) 

Active or highly active, equivalent to walking about ≥2 
miles every day 

36 (40.2) 217 (147, 332) 3259.3 (2742.5, 3688.7) 0.28 (0.19, 0.34) 

Birthweight     

<2500g 13 (12.0) 226 (151, 340) 3155.1 (2701.2, 3374.6) 0.29 (0.20, 0.33) 

2500-2999g 17 (15.7) 210 (167, 318) 3151.9 (2843.2, 3326.3) 0.26 (0.20, 0.35) 

3000-3499g 35 (32.4) 245 (149, 315) 3308.9 (2858.3, 3713.7) 0.30 (0.19, 0.37) 

3500-3999g 34 (31.5) 192.5 (137, 300) 3118.0 (2670.1. 3653.9) 0.24 (0.20, 0.32) 

≥4000g 9 (8.3) 142 (102, 227) 2855.6 (2529.5, 2890.6) 0.20 (0.15, 0.29) 

Birthlength     

<48.25 8 (9.8) 170.5 (112.6, 255) 3114.2 (2344.6, 3282.4) 0.21 (0.15, 0.32) 

48.25-50.74 20 (24.4) 263 (167.5, 329) 3340.2 (2999.4, 3701.2) 0.31 (0.23, 0.34) 

50.75-53.24 22 (26.8) 196 (159, 332) 3060.9 (3845.6, 3423.0) 0.25 (0.21, 0.34) 

≥53.25 32 (39.0) 174 (141.5, 285) 2886.0 (2711.3, 3385.8) 0.24 (0.19, 0.32) 
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Weight gain pattern from 0-12 months     

Rapid 16 (44.4) 213.5 (146, 324.5) 3044.5 (3824.4, 3393.5) 0.24 (0.19, 0.38) 

Stable 14 (38.9) 166.5 (142, 282) 3002.1 (2656.4, 3542.7) 0.23 (0.18, 0.33) 

Slow 6 (16.7) 139 (112, 171) 3101.4 (2817.5, 3299.1) 0.20 (0.17, 0.20) 

Height gain pattern from 0-12 months     

Rapid 9 (28.1) 282 (247, 325) 2939.3 (3845.6, 3262.4) 0.36 (0.29, 0.43) 

Stable 15 (46.9) 146 (128, 210) 2864.9 (2642.7, 3212.0) 0.20 (0.18, 0.26) 

Slow 8 (25.0) 172 (153, 238) 3261.4 (2978.4, 3657.2) 0.21 (0.19, 0.28) 

Adolescent characteristics     

BMI-for-age percentile at first serum sample     

≥85th BMI-for-age percentile 30 (27.8) 226.5 (152, 299) 2917.6 (2775.9, 3446.7) 0.29 (0.21, 0.35) 

<85th BMI-for-age percentile 78 (72.2) 205 (135, 313) 3215.8 (2742.5, 3584.5) 0.25 (0.18, 0.33) 

Breast Tanner stage at first serum sample ,     

1 45 (46.4) 151 (126, 199) 2890.6 (2612.0, 3262.4) 0.20 (0.16, 0.25) 

≥2 52 (53.6) 307 (248.5, 342.5) 3424.3 (2941.3, 3756.6) 0.33 (0.29, 0.37) 

Breast cancer family history in a first- or second-
degree relative 

    

BCFH+ 44 (40.4) 263 (165, 314) 3257.6 (2850.6, 3663.9) 0.31 (0.21, 0.35) 

BCFH- 65 (59.6) 186 (131, 292) 3073.2 (2680.0, 3401.8) 0.24 (0.17, 0.31) 

Race/ethnicity     

Hispanic 43 (39.5) 227 (134, 304) 3219.6 (2775.9, 3713.7) 0.27 (0.18, 0.33) 

Non-Hispanic black 14 (12.8) 249.5 (175, 343) 3103.1 (2803.1, 3271.8) 0.31 (0.24, 0.38) 

Non-Hispanic white 43 (39.5) 171 (137, 282) 3096.7 (2656.4, 3423.0) 0.22 (0.19, 0.33) 

Asian/Pacific Islander 4 (3.7) 298 (204.5, 318) 3232.8 (2909.6, 3648.8) 0.33 (0.22, 0.38) 

Other or mixed race/ethnicity 5 (4.6) 299 (168, 383) 3210.3 (3017.6, 3729.8) 0.35 (0.23, 0.38) 

Maternal education     

Some college, vocational or technical school or less 37 (33.9) 227 (139, 340) 3374.6 (2890.6, 3678.9) 0.28 (0.18, 0.34) 

Bachelor's degree 30 (27.5) 226.5 (147, 299) 3072.4 (2803.1, 3401.8) 0.28 (0.20, 0.33) 

Graduate degree 42 (38.5) 188 (131, 284) 3060.9 (2656.4, 3326.3) 0.23 (0.19, 0.32) 

*Molar ratio = IGF-1(ng/ml)*0.1307 divided by IGFBP-3 (ng/ml)*0.03478 

 



 

 

 

1
3
0

 

 
Table 5.2. Range of biomarker data by age (N=289 samples from 109 girls) 

 
N of 
sam
ples 

IGF-1 (ng/ml) IGFBP-3 (ng/ml) IGF-1/IGFBP-3 molar ratioa 

  Min Q1 Med Q3 Max Min Q1 Med Q3 Max Min Q1 Med Q3 Max 

All 289 70.7 160 248 314 547 1549.5 2845.6 3210.3 3584.5 5203.4 0.121554 0.202596 0.288455 0.350003 0.570691 

By 
age                      

6 13 70.7 112 129 173 227 2018.5 2495.5 2881.3 3155.1 3614.1 0.127576 0.153264 0.172047 0.19694 0.29511 

7 23 82.2 124 133 146 218 1960.3 2652.4 2855.6 3151.9 3826.3 0.12765 0.154843 0.175801 0.200882 0.281942 

8 30 95.8 121 146 195 340 2010.9 2477.2 3183.8 3423 4066.2 0.121554 0.161206 0.190258 0.233524 0.428065 

9 35 83.1 142 170 206 383 1549.5 2728.6 3050.3 3505 4173.7 0.128089 0.189028 0.21339 0.24702 0.476961 

10 38 87.4 172 239 336 547 1709.2 2701.2 3057.2 3633.4 4768.4 0.122475 0.234879 0.306161 0.374165 0.570691 

11 33 112 267 297 340 502 1981.5 3015.9 3401.8 3688.3 5203.4 0.127859 0.295235 0.337014 0.381115 0.491935 

12 32 157 272 316 349 419 1918 3047.25 3236.1 3579.75 4487 0.165868 0.317843 0.351271 0.395075 0.52254 

13 37 134 256 307 340 448 2108.7 3085.6 3271.8 3713.7 4281.6 0.176051 0.299655 0.326492 0.371517 0.50664 

14 19 242 254 301 334 388 2303.9 3308.9 3518.3 3836.7 4680.9 0.270399 0.285803 0.334051 0.356746 0.450186 

15 17 147 228 274 290 352 2438.8 2929.8 3408.1 3750 4285.3 0.196929 0.276324 0.296837 0.325793 0.46997 

16 8 168 237 302 328 356 2301.3 3192.4 3561.9 3851.25 4526.8 0.183297 0.275556 0.304786 0.363522 0.387009 

17 4 223 224 251 313 349 2854.7 2979.15 3655.9 4242.45 4276.8 0.247366 0.25869 0.283101 0.301423 0.306657 

*Some age groups contain two samples from the same girl, as samples were sometimes taken 6 months apart.     

aMolar ratio = IGF-1(ng/ml)*0.1307 divided by IGFBP-3 (ng/ml)*0.03478        
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Table 5.3. Difference in mean levels of IGF-1, IGFBP-3 and the IGF-1/IGFBP-3 molar ratio by maternal factors 

  IGF-1 (ng/ml)   IGFBP-3 (ng/ml)   IGF-1/IGFBP-3 molar ratio*  
 Model 1a Model 2b p for 

intx with 
BCFHc 

Model 1a Model 2b p for 
intx with 
BCFHc 

Model 1a Model 2b p for 
intx with 
BCFHc   β (95% CI) β (95% CI) β (95% CI) β (95% CI) β (95% CI) β (95% CI) 

Maternal pre-pregnancy 
BMI (per 1 kg/m2) 

3.18 
(-0.06, 6.43) 

1.77 
(-1.72, 5.26) 

0.39 
17.76 

(-5.97, 41.50) 
22.72 

(-3.35, 48.80) 
0.12 

0.002 
(-0.001, 0.005) 

0.000 
(-0.003, 0.003) 

0.07 

         
 

Maternal recreational 
physical activity during 
pregnancyd 

  0.89   0.82   0.16 

Inactive, no walking or 
other regular exercise 

-29.24 
(-68.40, 9.93) 

-37.09 
(-79.00, 4.82) 

 -139.37 
(-426.05, 147.32) 

-154.29 
(-466.52, 157.94) 

 -0.02 
(-0.06, 0.02) 

-0.03 
(-0.07, 0.01) 

 

Mostly inactive, equivalent 
to walking about half  a 
mile or less every day 

-10.07 
(-41.83, 21.70) 

-13.94 
(-48.08, 20.19) 

 -125.64 
(-377.45, 126.18) 

-147.57 
(-415.85, 120.70) 

 0.02 
(-0.02, 0.05) 

0.01 
(-0.02, 0.04) 

 

Somewhat active, 
equivalent to walking 
about 1 mile every day 

-8.05 
(-41.48, 25.38) 

-2.77 
(-38.85, 33.30) 

 17.51 
(-253.57, 288.59) 

21.30 
(-267.72, 310.32) 

 -0.01 
(-0.05, 0.02) 

0.00 
(-0.03, 0.04) 

 

Active or highly active, 
equivalent to walking 
about ≥2 miles every day 

Reference Reference  Reference Reference  Reference Reference 

 

 
        

 
         

 
Gestational weight gaind   0.27   0.73   0.56 

<20 lbs 
17.21 

(-23.30, 57.72) 
1.22 

(-42.15, 44.59) 
 99.10 

(-260.64, 458.84) 
94.26 

(-239.84, 428.36) 
 0.02 

(-0.02, 0.06) 
0.01 

(-0.03, 0.05)  

20-29 lbs Reference Reference  Reference Reference  Reference Reference 
 

30-39lbs 
26.90 

(-4.33, 58.13) 
26.15 

(-8.29, 60.59) 
 21.02 

(-250.33, 292.37) 
-9.94 

(-293.75, 273.86) 
 0.03 

(0.00, 0.06) 
0.04 

(0.01, 0.07)  

40-49lbs 
6.72 

(-29.44, 42.88) 
11.54 

(-29.07, 52.16) 
 -18.00 

(-324.53, 288.52) 
-25.57 

(-352.18, 301.04) 
 0.01 

(-0.03, 0.04) 
0.02 

(-0.02, 0.06)  

≥50 lbs 
22.82 

(-17.06, 62.70) 
17.95 

(-27.22, 63.11) 
 79.90 

(-231.00, 390.80) 
104.44 

(-241.74, 449.96) 
 0.02 

(-0.03, 0.05) 
0.01 

(-0.03, 0.06)  
         

 
Maternal pre-pregnancy 
BMI and GWG 

  0.10   0.10   0.16 

BMI<25 and <30 lbs Reference Reference  Reference Reference  Reference Reference 
 

BMI<25 and ≥30 lbs 
11.09 

(-22.43, 44.60) 
15.58 

(-19.24, 50.40) 
 -37.01 

(-286.87, 212.86) 
-59.15 

(-325.46, 207.16) 
 0.02 

(-0.02, 0.05) 
0.02 

(-0.01, 0.08)  
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BMI≥25 and <30lbs 
20.08 

(-20.28, 60.44) 
15.70 

(-26.25, 57.65) 
 73.46 

(-226.27, 373.19) 
85.78 

(-234.76, 406.31) 
 0.01 

(-0.03, 0.05) 
0.00 

(-0.04, 0.04)  

BMI≥25 and ≥30 lbs 
48.46 

(1.75, 95.18) 
51.08 

(1.10, 101.05) 
  

140.90 
(-222.02, 503.82) 

169.31 
(-221.00, 559.63) 

  
0.03 

(-0.02, 0.07) 
0.04 

(-0.01, 0.08)   

*Molar ratio = IGF-1(ng/ml)*0.1307 divided by IGFBP-3 (ng/ml)*0.03478 

aAdjusted for age at blood draw (centered) and quadratic of age at blood draw (centered) 

bAdjusted for age at blood draw (centered) and quadratic of age at blood draw (centered), breast Tanner stage at visit and BMI-for-age percentile at visit (centered) 
cP for interaction from F test from Model 2 

dModels also adjusted for maternal pre-pregnancy BMI (continuous) 
 
 
 
 
 
 
Table 5.4. Difference in mean levels of IGF-1, IGFBP-3 and the IGF-1/IGFBP-3 molar ratio by size at birth 

  IGF-1 (ng/ml)   IGFBP-3 (ng/ml)   IGF-1/IGFBP-3 molar ratio*  
 Model 1a Model 2b Model 3c p for 

intx 
with 

BCFH
d 

Model 1a Model 2b Model 3c p for 
intx 
with 

BCFH
d 

Model 1a Model 2b Model 3c p for 
intx 
with 

BCFH
d 

  β (95% CI) β (95% CI) β (95% CI) β (95% CI) β (95% CI) β (95% CI) β (95% CI) β (95% CI) β (95% CI) 

Birthweight 
(per 500g 
increase) 

-12.53 
(-25.27,0.20) 

-13.61 
(-26.72,-0.50) 

-15.80 
(-33.04,1.44) 

0.09 
-45.75 

(-137.46,45.97) 
-38.32 

(-136.69,60.04) 
-33.00 

(-163.35,97.35) 
0.26 

-0.01 
(-0.02,0.00) 

-0.01 
(-0.02,0.00) 

-0.01 
(-0.03,0.01) 

0.41 

             

Birthlength 
(per 1cm 
increase) 

-1.02 
(-6.00,3.97) 

-0.17 
(-5.11,4.78) 

1.05 
(-3.99,6.09) 

0.18 
4.49 

(-31.09,40.06) 
7.03 

(-31.18,45.23) 
9.68 

(-30.13,49.50) 
0.10 

-0.001 
(-0.006,0.004) 

-0.001 
(-0.006,0.004) 

0.000 
(-0.005,0.005) 

0.53 

*Molar ratio = IGF-1(ng/ml)*0.1307 divided by IGFBP-3 (ng/ml)*0.03478 
aAdjusted for maternal pre-pregnancy BMI (continuous), preterm, age at blood draw (centered) and quadratic of age at blood draw (centered) 
bAdjusted for maternal pre-pregnancy BMI (continuous), preterm, age at blood draw (centered) and quadratic of age at blood draw (centered), breast Tanner stage at visit and BMI-for-
age percentile at visit (centered) 
cModel 2 mutually adjusted for birthweight and birthlength 
dP for interaction from F test from Model 2 
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Table 5.5. Difference in mean levels of IGF-1, IGFBP-3 and the IGF-1/IGFBP-3 molar ratio by growth during infancy 

  IGF-1 (ng/ml)   IGFBP-3 (ng/ml)   IGF-1/IGFBP-3 molar ratio*  
 Model 1a Model 2b Model 3c p for intx 

with 
BCFHd 

Model 1a Model 2b Model 3c p for intx 
with 

BCFHd 

Model 1a Model 2b Model 3c p for intx 
with 

BCFHd   β (95% CI) β (95% CI) β (95% CI) β (95% CI) β (95% CI) β (95% CI) β (95% CI) β (95% CI) β (95% CI) 

Growth from 0-12 months 
Change in 
weight-for-
age Z-score 

20.28 
(-5.68,46.24) 

14.49 
(-13.29,42.27) 

16.87 
(-17.03,50.76) 

0.40 
-115.77 

(-324.12,92.57) 
-145.13 

(-377.58,87.32) 
-104.80 

(-383.40,173.81) 
0.02 

0.04 
(0.01,0.06) 

0.03 
(0.01,0.06) 

0.03 
(-0.00,0.06) 

0.42 

Change in 
length-for-
age Z-score 

20.03 
(-8.33,48.40) 

2.45 
(-28.26,33.17) 

-4.31 
(-40.16,31.54) 

0.78 
-111.22 

(-333.29,110.86) 
-148.26 

(-391.45,94.93) 
-94.23 

(-388.10,199.64) 
0.18 

0.04 
(0.01,0.06) 

0.02 
(-0.01,0.05) 

0.01 
(-0.03,0.04) 

0.18 

Growth from 0-6 months 
Change in 
weight-for-
age Z-score 

12.07 
(-17.29,41.43) 

-1.50 
(-34.50,31.50) 

0.86 
(-38.07,39.79) 

0.43 
-73.69 

(-305.39,158.01) 
-116.88 

(-387.14,153.37) 
-184.73 

(-497.36,127.91) 
0.01 

0.02 
(-0.01,0.05) 

0.01 
(-0.03 0.05) 

0.02 
(-0.02,0.06) 

0.35 

Change in 
length-for-
age Z-score 

11.03 
(-14.03,36.09) 

-4.71 
(-30.93,21.51) 

-1.31 
(-32.70,30.08) 

0.69 
41.78 

(-152.04,235.61) 
26.27 

(-184.32,236.86) 
95.27 

(-153.42,343.96) 
0.60 

0.01 
(-0.02,0.03) 

-0.01 
(-0.04,0.02) 

-0.01 
(-0.04,0.02) 

0.51 

Growth from 6-12 monthse 
Change in 
weight-for-
age Z-score 

37.52 
(-9.96,84.99) 

42.33 
(-3.19,87.85) 

58.04 
(-4.91,120.99) 

0.40 
-198.56 

(-587.84,190.72) 
-179.62 

(-77.83,218.58) 
31.30 

(-496.45,559.06) 
0.50 

0.07 
(0.02,0.11) 

0.07 
(0.03,0.12) 

0.07 
(0.01,0.13) 

0.59 

Change in 
length-for-
age Z-score 

18.17 
(-14.90,51.24) 

6.31 
(-28.75,41.36) 

-18.29 
(-62.04,30.18) 

0.99 
-178.30 

(-434.40,77.80) 
-210.41 

(-488.83,68.00) 
-211.40 

(-577.00,154.19) 
0.05 

0.04 
(0.01,0.07) 

0.03 
(-0.01,0.07) 

-0.00 
(-0.04,0.04) 

0.07 

*Molar ratio = IGF-1(ng/ml)*0.1307 divided by IGFBP-3 (ng/ml)*0.03478 
aAdjusted for maternal pre-pregnancy BMI (continuous), weight-for-age or length-for-age Z-score at birth, age at blood draw (centered) and quadratic of age at blood draw (centered) 
bAdjusted for maternal pre-pregnancy BMI (continuous),  weight-for-age or length-for-age Z-score at birth, age at blood draw (centered) and quadratic of age at blood draw (centered), 
breast Tanner stage at visit (TS1 vs. TS2+) and BMI-for-age percentile at visit (centered) 
cModel 2 mutually adjusted for change in weight and length 
dP for interaction from F test from Model 2 

eAdditionally adjusted for change in WAZ or LAZ from 0-6 months 
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Figure 5.1. Boxplots of first a) IGF-1 (ng/ml) and b)IGF-1/IGFBP-3 molar ratio measure by rapid, 
stable, and slow weight gain patterns from birth-12 months. These plots include 36 girls, 6 with slow 
weight gain, defined as a change in weight-for-age Z-score from 0-12 months of less than -0.67, 14 girls 
with stable weight gain, defined as a change in weight-for-age Z-score from 0-12 months between -0.67 
and 0.67, and 16 girls with rapid weight gain, defined as a change in weight-for-age Z-score from 0-12 
months of greater than 0.67. 

 

Slow Stable Rapid 

Slow Rapid Stable 
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Chapter 6. Conclusions 

 

 The age at onset of breast development has declined dramatically in the past 50 years.42,60,61 The 

obesity epidemic contributes to earlier onset of breast development, but does not fully explain this secular 

trend.61 Since earlier age at breast development is associated with higher breast cancer risk,41 identifying 

modifiable factors that can delay the onset of breast development may provide an opportunity for breast 

cancer primary prevention starting early in life.4,5 Thus, the overall goal of this dissertation was to identify 

modifiable factors that are associated with earlier age at breast development, and examine if these 

associations vary by underlying breast cancer susceptibility based on family history. First, we reviewed the 

literature connecting maternal body size, gestational weight gain (GWG), size at birth and growth during 

infancy and age at breast development and menarche to identify inconsistencies and gaps in the evidence 

base. Second, we examined associations between modifiable maternal factors, including pre-pregnancy 

BMI, GWG and physical activity during pregnancy, and birth size and the onset of breast development in 

girls with and without a breast cancer family history (BCFH). Third, we examined associations between 

rates of growth in weight and length during multiple age intervals from birth to one year and the onset of 

breast development and whether these associations varied by BCFH. Fourth, we conducted a pilot study 

assessing whether the modifiable maternal and infancy exposures associated with timing of breast 

development also influenced serum levels of IGF-1 and IGFBP-3, biomarkers that are known to increase 

during puberty. This chapter summarizes the results of this dissertation, the contribution of these findings 

for the design and interpretation of studies of breast development, and their public health implications. 

6.1 Main findings  

 

 In Chapter 2, we identified 96 articles that examined at least one of our exposures of interest 

(maternal pre-pregnancy weight or BMI, GWG, size at birth, or measures of size and/or growth between 

birth and 2 years) in relation to the timing of breast development, menarche or the time period between 

these two events (pubertal tempo). There were three main findings of this systematic review. First, although 

low birthweight is often cited as a risk factor for early menarche, the majority of studies (40/73 total) that 

examined birthweight in relation to age at menarche did not observe a statistically significant association. 
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Differences in exposure assessment, such as whether or not gestational age was taken into consideration, 

and control for confounders contributed to this heterogeneity and made it difficult to compare results across 

studies. However, examining disparate findings within the same study population suggested that 

associations observed between birthweight and menarche may be driven by postnatal growth patterns, and 

that differences across studies may be related to differences in postnatal growth. The majority of studies 

examining birthweight and breast development also did not observe a statistically significant association. 

Second, although comparatively fewer studies examined maternal pre-pregnancy BMI, GWG and/or infant 

growth and pubertal timing compared with the birthweight literature, higher maternal BMI prior to pregnancy, 

GWG in excess of recommended guidelines and faster rates of weight gain between birth and 2 years were 

consistently associated with earlier age at breast development and menarche. A general limitation of this 

literature, which likely contributes to the consistency of associations, is that much of the evidence comes 

from the same cohorts. For example, three separate publications examined maternal obesity and pubertal 

timing in the ALSPAC cohort,73,82,114 while two publications examined infant growth and menarche.35,73 In 

addition, studies that examined growth during infancy considered different age intervals, which complicates 

comparisons across studies, and were not consistent in identifying smaller windows within infancy in which 

growth had a stronger influence on pubertal timing. Third, many studies inappropriately controlled for 

variables on the causal pathway between the early-life exposures and pubertal outcomes as confounders 

and did not interpret these associations as mediated effects. Studies should explicate their assumed causal 

framework and use a directed acyclic graph (DAG) to guide modeling decisions, as well as consider 

potential effect measure modifiers. In addition, few studies considered whether associations differed by 

factors associated with rapid weight gain, such as birthweight or infant feeding, and/or earlier pubertal 

timing, such as race/ethnicity, socioeconomic status or BCFH. Overall, this review of the literature highlights 

the methodological limitations that future studies can overcome in the analysis or design phase to 

strengthen the existing evidence and identifies gaps in the literature that future studies can address. 

 In Chapter 3, we addressed some of the limitations and gaps in the literature by examining 

associations between maternal pre-pregnancy BMI, GWG, and size at birth and the onset of breast 

development in the LEGACY Girls Study, a prospective pubertal cohort in which approximately 50% of girls 

had a BCFH. We used a DAG (Figure 2.2) to inform our strategy for modeling multiple exposures that have 
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an inherent temporal order and to avoid adjusting for variables on the causal pathway. We observed that 

while higher maternal pre-pregnancy BMI and higher GWG were each associated with earlier onset of 

breast development in daughters, daughters of women who were overweight or obese prior to pregnancy 

and gained more than 30lbs were at the highest risk of early breast development. Our findings were 

consistent with previous studies conducted in girls predominantly at average-risk for breast cancer, 

including the ALSPAC birth cohort73,82 and a retrospective cohort nested in Kaiser Permanente Northern 

California (KPNC).81,237 In addition, we found that girls experienced earlier breast development if their 

mothers did not engage in recreational physical activity during pregnancy. We extended the prior literature 

by formally testing whether these associations varied by BCFH. While we observed some differences by 

BCFH, our results suggested that among girls with a BCFH, girls still experienced earlier onset of breast 

development if their mothers were overweight or obese prior to pregnancy and gained more than 30lbs, or 

were not physically active during pregnancy. Consistent with the results of our systematic review, we did 

not observe associations between either birthweight or birthlength and the age at breast development. 

Altogether, our findings support that maternal body size prior to pregnancy, GWG and maternal physical 

activity during pregnancy, modifiable factors that are associated with the intrauterine environment, are 

associated with the timing of breast development in their daughters, but do not support an independent role 

for birth size.  

 It is possible that our findings could be due to chance given our modest sample size of just over 

1,000 girls. However, the consistency of the observed association between earlier breast development in 

girls exposed to higher maternal pre-pregnancy BMI and higher GWG with studies conducted in cohorts 

like ALSPAC and KPNC, which included more than twice as many girls, suggest that our results are less 

likely to be spurious. In addition, the ALSPAC cohort also did not observe associations between birthweight 

or birthlength and timing of breast development.73 LEGACY is the only pubertal cohort enriched for BCFH 

and therefore has greater statistical power to formally test interactions by BCFH than an average-risk 

cohort. That being said, it is possible that the interaction that we observed is due to chance, and our models 

stratified for BCFH are less precise than analyses using the full cohort. 
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In a similar vein, we can use a triangulation of evidence approach to consider the likelihood that 

our findings are due to selection bias, information bias or confounding by comparing our results to other 

studies that were susceptible to different types of biases. Selection bias can arise generally in a cohort 

study due to differential loss to follow-up. In addition, analyses that are limited to a subset of the overall 

cohort can also be vulnerable to bias resulting from subset selection. For our overall approach, we included 

all LEGACY girls participating with their biological mother (97% of the full cohort). The retention rate in 

LEGACY was 92% at the end of the first five years of follow-up, which limits the likelihood that bias related 

to loss to follow-up explains our study findings. However, since girls were primarily between the ages of 6-

13 years at recruitment, approximately 40% of the cohort had already experienced the onset of breast 

development at cohort entry. We were concerned that we may induce selection bias if we excluded girls 

that had already experienced the onset of breast development prior to cohort entry. If the exposure was 

associated with earlier onset of breast development, excluding girls with early development would likely 

bias the results towards the null. We therefore included these girls by using left censoring in our primary 

analyses, and by using a recalled age at breast development in sensitivity analyses. We also limited our 

analyses to girls less than 8 years of age at baseline only, in which less than 5% experienced breast onset 

prior to cohort entry, and the inference was the same. Our findings were also consistent with the ALSPAC 

cohort, a birth cohort that collected pubertal development information starting at 8 years of age on all 

participants. Overall, this supports that selection bias is unlikely to explain the associations that we 

observed. 

A limitation of the Chapter 3 analyses is that the maternal and pregnancy exposures were recalled 

by mothers at the LEGACY baseline visit and may be reported with error. Validity studies of maternal recall 

of pregnancy exposures compared with either medical records or prospective maternal reports suggest that 

social desirability bias affects maternal recall of pregnancy-related events, particularly in the report of 

maternal behaviors, such as alcohol consumption during pregnancy.309–311 In LEGACY, the prevalence of 

maternal smoking during pregnancy was less than 2%, which limited us from examining maternal smoke 

exposure on its own or as a confounder in the analyses due to small cell counts. Approximately 7% of 

women who gave birth in 2016 smoked during pregnancy based on data from the National Vital Statistics 

System,312 suggesting that maternal smoking during pregnancy may be under-reported by LEGACY 
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mothers. While there likely is some under-reporting of smoking due to stigma, the prevalence of smoking 

in LEGACY may also be lower than the national average since the LEGACY cohort is skewed towards a 

higher socioeconomic status. Other pregnancy conditions such as pre-eclampsia and gestational diabetes 

may also be reported with error. While there is likely some misclassification of the maternal body size and 

birth size exposures as well, studies have observed fairly good agreement for factors such as birthweight, 

pre-pregnancy weight and duration of pregnancy.309–311  

In cohort studies, it is commonly assumed that information bias related to the exposure is likely to 

be non-differential with respect to the outcome. If that were the case, maternal under-reporting of exposures 

including maternal pre-pregnancy BMI and GWG and over-reporting of recreational physical activity during 

pregnancy, which could result from social desirability bias, would likely bias our findings towards the null. 

However, since mothers recalled their pre-pregnancy weight, GWG and other pregnancy factors at the 

baseline interview when daughters were primarily 6-13 years old, this data could be susceptible to 

differential recall bias for the mothers whose daughters have already gone through breast development. 

While it seems unlikely that maternal recall of pregnancy characteristics would depend on her daughters’ 

stage of breast development, it is possible that measurement error in maternal recall of pregnancy exposure 

data could differ by daughters’ body size, which is associated with pubertal timing. For example, mothers 

of overweight daughters may be more or less likely to report that they were overweight prior to pregnancy, 

gained more weight during pregnancy, or exercised less. The bias in estimating associations between these 

factors and the onset of breast development, which is also reported by the mother, may be towards or away 

from the null. However, the similarity of our results with those of the ALSPAC and KPNC cohorts, which 

calculated GWG based on medical record data and, in the case of ALSPAC, validated self-reported pre-

pregnancy BMI with medical records based in early pregnancy,82 suggests that recall bias does not explain 

these associations.  

In addition to exposure misclassification, error in assessing the onset of breast development may 

also bias study findings. As detailed in Chapter 3, we conducted multiple sensitivity analyses to consider 

how robust our findings were to different methods of assessing breast development, including the use of 

clinical breast Tanner staging in the subset of girls with clinical data, the use of the Pubertal Development 



 

140 

 

Scale to assess breast development, and the exclusion of girls with inconsistent Tanner staging. The 

inference was the same across these sensitivity analyses, which supports that errors in outcome 

assessment are less likely to explain our findings. When considering the literature as a whole, the 

consistency of the associations between maternal pre-pregnancy BMI and GWG and earlier onset of breast 

development across cohorts that used different sources of breast development information (i.e. medical 

records, parent assessments, and self-assessments) and assessed development at different age intervals 

(i.e. biannually, annually, or based on physician visits) supports that measurement error in assessing the 

onset of breast development is unlikely to drive the observed associations. 

Finally, our findings could be due to confounding. Maternal body size, GWG and physical activity 

levels during pregnancy vary by race/ethnicity and socioeconomic status (SES), which are also associated 

with pubertal timing. While we controlled for race/ethnicity and maternal education in our primary analyses, 

there may be residual confounding by socioeconomic status. We were also concerned with sparse data 

due to small cell counts and violations of the positivity assumption, particularly in the subset of girls less 

than 8 years at baseline, which limited the amount of variables that we included in adjusted models. Again, 

the consistency of our findings with larger cohorts that were able to control for more confounding variables 

suggests that confounding is not completely driving the observed associations. As the cohort ages into 

adolescence and all girls experience the onset of breast development, future analyses within LEGACY will 

be able to take advantage of the many siblings sets within the cohort to conduct within-family analyses, 

which control for shared family characteristics such as SES by design.313 In addition to confounding, future 

studies need to consider exposures that may modify the associations between maternal pregnancy factors 

and the onset of breast development, such as race/ethnicity, SES and birth order. Since interaction requires 

increased statistical power, these analyses will require either very large cohorts, such as a KPNC study of 

over 15,000 girls which found that race/ethnicity did not modify the association between maternal pre-

pregnancy BMI and the onset of breast development,81 or studies enriched for a modifier for interest, like 

LEGACY is enriched for BCFH. These studies will provide a valuable contribution to the literature and will 

also aid in the interpretation of smaller studies that are not powered to examine these interactions.  
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Although we cannot completely rule out bias as an explanation for our study findings, the 

consistency of our results with previous studies in which selection bias, information bias, and confounding 

would likely operate in different ways support that these types of biases are not driving our findings. Given 

the rich pubertal outcome data collected in LEGACY, we were also able to conduct multiple sensitivity 

analyses to examine how differences in the assessment of breast development affects the estimated age 

at onset of breast development and estimates of exposure-outcome associations. These analyses suggest 

that our findings are robust to differences in outcome assessment, and may be informative in the 

interpretation of future studies that use different methods to assess breast development. 

Our primary goal in these analyses was to estimate the total effect of the maternal and pregnancy 

exposures on the age at breast development. As a secondary aim, we also considered whether these 

associations were mediated by daughters’ body size prior to puberty. We considered a BMI measure 

between 5-7 years of age as pre-puberty, since less than 5% of girls had experienced the onset of breast 

development by 8 years of age. Since girls were mostly age 6-13 years at baseline, our mediation analyses 

were limited to the approximately 60% of the cohort that had a BMI measure available between 5-7 years 

of age, either from the baseline LEGACY visit for younger girls or from available medical record data. Within 

this subset, we used the Baron and Kenny approach314 to examine the presence of mediation by comparing 

the results of models with and without adjustment for pre-pubertal BMI. Limitations of this approach is that 

the total effect does not decompose when using regression methods other than linear regression or in the 

presence of exposure-mediator interaction.315 However, even when these assumptions are not met, this 

approach still provides a qualitative assessment of the presence or absence of mediation. Given these 

limitations, we do not interpret the results from models adjusting for pre-pubertal BMI as a quantitative 

estimate of the direct effect of the early-life exposure on the age at breast development. Instead, we 

interpret these models as supporting that a portion of the association between these early-life factors and 

the age at breast development works through the pathway of childhood body size. Since these models do 

not suggest full mediation by childhood body size, our findings also support that alternate pathways other 

than daughters’ body size explain a portion of the association between early-life factors and breast 

development, and these additional pathways should be examined in future research. Since modifying these 

early-life factors would likely affect childhood body size in addition to these alternate pathways, the total 
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effect of these early-life exposures on the timing of breast development is of interest when considering 

primary prevention.   

In Chapter 4, we used a subset of the LEGACY Girls Study with infant growth data available from 

medical record and growth chart data collected from pediatricians to address several gaps in the literature 

relating infant growth and the onset of breast development. We found that faster weight gain between birth 

and one year of age was related to earlier onset of breast development in girls, which was consistent with 

prior studies assessing infancy weight gain in relation to age at breast development and age at menarche. 

Since we had measures of height and weight across infancy from the linked medical records, we were able 

to replicate previous analyses by considering growth during the same age intervals. In addition, we 

identified stronger associations between rate of weight and length gain from 2-4 months and 6-9 months 

that were masked when looking only at wider age intervals. The specificity of these associations generated 

hypotheses that can be tested in future studies regarding the potential importance of mini-puberty, which 

corresponds approximately to the 2-4 months window, and nutrition during infancy and the timing of solid 

food introduction to breast development. We also formally tested the interaction between BCFH and infant 

growth and did not observe heterogeneity by BCFH in these associations. 

As we did for Chapter 3, it is important to critically examine whether the associations that we 

observed between rates of change in weight and length and the timing of breast development arose from 

random or systematic error. While we obtained medical record data for 82% of LEGACY girls, multiple 

records of weight and length during infancy were only available for 24% of the full cohort, which limited the 

sample size for these analyses to 255 girls. If the infancy data were missing completely at random, random 

error could still lead to spurious findings in this subset. We also may not have had sufficient power in this 

subset to detect differences in the association by BCFH. A greater concern for the main effect of infant 

growth, however, is that the data is not missing completely at random and that selection bias affects the 

validity of our findings. We compared the distribution of baseline and early-life characteristics in girls by the 

availability of infancy data and observed differences by race/ethnicity and study site. Girls with infancy data 

also had a lower mean maternal pre-pregnancy BMI and a higher mean birthweight than girls without 

infancy data, suggesting that they may have had a lower prevalence of rapid weight gain during infancy. 
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We used inverse probability weighting (IPW) in sensitivity analyses to adjust for the differences between 

this subset and the full cohort under the assumption that the data were missing at random after conditioning 

on the variables included in the prediction model. IPW would not remove bias if data were not missing at 

random, but this missing data structure is less likely given the variables that were available to include in our 

prediction model. The inference was the same across the complete case and IPW analyses, suggesting 

that our findings are less likely to be caused by selection bias. In addition, our main findings were consistent 

with the analyses including more than 1,000 girls in the ALSPAC cohort, which are less likely to be driven 

by random error. 

Information bias for the exposure is less of a concern for our infancy analyses since we used 

measures of weight and length from the medical record. While there may be some errors in measurement, 

errors are more likely to be random than systematic in nature. We did rely on parent recall of birthweight 

and birthlength, and also used imputed birthlength values for girls that were missing parent report. It is 

possible that parent recall of birth size could differ by daughters’ body size. However, recalled birthweight 

was highly correlated with medical record data (r=0.9) in our validation subset, and birthlength had a 

moderate correlation (0.6). To minimize error due to the use of imputed birthlength data, we excluded girls 

whose imputed values were identified as outliers based on the Z-score values standardized to the CDC 

growth charts. While we imputed weight and length data at common time points, most girls had at least five 

different time points of measurements to include in the interpolation analysis. Therefore, we do not think 

that measurement error is a likely explanation for our study results. We assessed infant growth by using 

the change in weight-for-age and length-for-age Z-scores, standardized using the 2000 CDC growth charts. 

Our inference was similar when we used the 2006 WHO growth charts to calculate Z-scores, which supports 

that our choice of reference data did not drive our findings. Change in weight and length Z-scores across 

infancy were moderately correlated with birthweight and birthlength, respectively, and collinearity may have 

affected estimates from the mutually adjusted model. However, change in Z-scores between the smaller 

age intervals that we examined in our analyses were mostly uncorrelated with each other, which reduced 

concerns about collinearity.  
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Our infancy analyses were less robust to differences in outcome assessment than the associations 

that we observed between maternal factors and the onset of breast development. The sensitivity of these 

analyses to the use of recalled data for left censored girls or the use of the PDS to define breast onset may 

be due to the reduced sample size of this subset. It is also possible that higher sensitivity and lower 

specificity of maternal report of Tanner stage in overweight girls, who are more likely to have experienced 

faster infant weight gain, are driving the observed findings based on maternal report of Tanner stage. When 

we excluded overweight girls from the models, there was an attenuation of the effect estimates for weight 

gain, but only in models that also included growth in length. Analyses of infant weight gain in the ALSPAC 

and North Carolina Infant Feeding Study, which also used changes in Z-scores to assess growth, were 

based on parent and/or self-reports of breast Tanner stage and may have also been subject to information 

bias. Two studies of infant growth and breast development used clinical assessments of breast Tanner 

stage. In the ‘Children of 1997’ birth cohort, girls born light with slow growth during infancy, as assessed 

using latent class analysis, experienced later onset of breast development than girls with stable weight gain 

using biannual assessments of breast Tanner stage starting at 7 years of age from school health records.92 

In 140 girls from the Vulnerable Windows Cohort study in Jamaica, conditional measures of weight gain 

from 0-6 months and 6 month-2 years were not associated with breast Tanner stage assessed by research 

nurses at age 11 years.79 However, this outcome likely did not capture onset of breast development, as the 

median breast Tanner stage of the girls was 2.8. Additional studies with repeated clinical assessments of 

breast Tanner stage will be helpful to rule out that associations between rapid weight gain and earlier breast 

development are the result of bias in outcome assessment. 

The associations that we observed could be due to residual confounding by SES or maternal 

factors, as we controlled for a limited number of confounders in our infancy analyses due to the reduced 

sample size of this subset. We adjusted for the categorical maternal pre-pregnancy BMI and GWG variable 

that was associated with the timing of breast development in the full cohort and race/ethnicity, and our 

infant growth findings were independent of these effects. Our overall inference was also similar to the 

ALSPAC cohort, which adjusted for additional maternal characteristics including parity, smoking during 

pregnancy, maternal age at birth and at menarche, and maternal education.73 In addition, the Children of 

1997 cohort did not observe a significant confounding effect by variables including birth order, maternal 
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smoking during pregnancy, parent education and type of infant feeding in their analyses.92 While these 

analyses reduce concerns about confounding, gaps in the literature that remain include the use of 

alternative design methods, such as sibling or twin studies, to control for confounding and the examination 

of modifiers, such as detailed infant feeding and nutrition data. 

While we cannot eliminate the possibility that the associations that we observed are due to bias or 

chance, our study adds to a consistent literature that has identified rapid infant growth as a risk factor for 

earlier onset of breast development. Our study is the first to examine effect modification by BCFH, and we 

identified two narrow age intervals, 2-4 months and 6-9 months, where growth during infancy had a stronger 

influence on pubertal timing. While the specificity of these associations could be due to chance, the 2-4 

month period corresponds with our hypothesis that growth during mini-puberty may be biologically relevant 

for breast development and suggests an avenue for future research.  

In Chapter 5, we conducted a pilot study in 109 girls with available serum samples between 6-17 

years of age at the LEGACY New York site to assess whether maternal pre-pregnancy BMI, GWG, maternal 

physical activity during pregnancy and growth during infancy were associated with levels of IGF-1 and 

IGFBP-3 during puberty. While breast Tanner stage is somewhat subjective even among trained 

professionals and may be reported with error by mothers,58 serum IGF-1 and IGFBP-3 can be measured 

objectively and are known to increase rapidly during puberty.51,52 Associations between the maternal and 

infant factors that were associated with earlier onset of breast development in Chapters 3 and 4 and higher 

serum levels of IGF-1, IGFBP-3 or the IGF-1/IGFBP-3 molar ratio support that these factors are associated 

with biological changes that map to puberty in the girls.  

Table 6.1 summarizes the direction of the association between each exposure of interest, age at 

breast development, and serum levels of IGF-1 and the IGF1/IGFBP-3 molar ratio. We observed higher 

mean levels of the IGF-1/IGFBP-3 molar ratio in girls with faster weight gain between birth and one year of 

age. We also observed higher ratio levels in girls with a maternal pre-pregnancy BMI≥25 and GWG≥30lbs 

compared with girls with a maternal pre-pregnancy BMI<25 and GWG<30lbs, though this difference was 

not statistically significant. While serum IGF-1 levels decreased with higher birthweight, this association 

was attenuated in models adjusting for weight gain in infancy. While recreational physical activity during 



 

146 

 

pregnancy was not significantly associated with IGF-1 levels at p<0.05, the point estimates suggested lower 

IGF-1 levels in girls whose mothers reported no recreational physical activity, which is in the opposite 

direction of our finding for breast development. The associations that we observed could be due to chance 

given our small sample size and should be replicated in larger samples. However, the patterns that we 

observed in IGF-1 and IGFBP-3 by age and Tanner stage are consistent with previous, larger 

studies,51,52,289,292,308  which reduces concern about selection bias driving the results. 

This pilot study therefore supports that our finding of earlier breast development in girls whose 

mothers had a pre-pregnancy BMI ≥25 and gained 30 or more lbs during pregnancy and in girls with rapid 

weight gain during infancy is not driven by measurement error in the assessment of breast development. 

IGF levels also did not vary by SES, as assessed by maternal education. Confounding by SES is therefore 

not a likely explanation for the associations between maternal BMI, GWG and infant growth and higher 

serum IGF levels, which supports that the associations between these factors and earlier onset of breast 

development is not driven by social patterning.  

We summarized the major strengths and limitations overall and by analytic aim in Table 6.2. The 

main limitations of this dissertation relate to a lack of data prior to puberty for a subset of the cohort. Since 

girls were recruited from 6-13 years of age, some girls experienced the onset of breast development prior 

to cohort entry. Since we did not observe the outcome for these girls during the study period, we were 

limited to analytic methods that could incorporate left-censored data. We also did not have measures of 

pre-pubertal BMI on all girls, which limited the mediation analyses. However, there are a number of 

strengths of these dissertation analyses, including the utilization of multiple measures of breast 

development collected every 6 months using a standard protocol in LEGACY, the high retention rate in the 

cohort, and the enrichment of the LEGACY study population for BCFH.  We had sufficient power to formally 

test the interactions between early-life exposures and BCFH in relation to the onset of breast development. 

Although we used maternal reports of breast Tanner stage as our primary outcome, we conducted 

sensitivity analyses using alternate reports of breast onset, including clinical breast Tanner staging data in 

at two LEGACY sites. We also took advantage of the multiple assessments of breast development available 

in LEGACY, including recalled age at development for left-censored girls, to examine the influence of 
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different analytic assumptions when modeling pubertal outcome data on the estimation of exposure-

outcome associations. 

6.2 Methodological considerations for studies of pubertal timing 

 

One of the methodological challenges both in studying secular trends in the onset of breast 

development and in identifying risk factors for early puberty is accurately capturing the onset of breast 

development. While age at menarche is a well-defined event that can be reliably recalled into adulthood,91 

the transition from no breast development to breast budding is a gradual process as opposed to a single 

event and is less likely to be accurately recalled. The onset of breast development would ideally be studied 

by collecting repeated prospective assessments of breast Tanner stage by a trained rater starting at ages 

prior to the onset of puberty,58 which requires large commitments of time and resources that many studies 

do not have available. Even if breast Tanner staging is assessed by clinicians at well-child visits and can 

be collected from medical records, as was done in KPNC,81,237 most families do not visit a clinician every 

six months and would not have regular assessments of breast development. Due to these limitations, most 

studies that examine drivers of earlier development will need to rely on imperfect measures of breast 

development, leaving their results susceptible to information bias.  

This dissertation contributes to this field by examining the influence of different assessments of 

breast development and modeling strategies on exposure-outcome associations. The associations 

between higher maternal pre-pregnancy BMI, greater GWG and earlier breast development were robust to 

different modeling strategies and different sources of assessment. These results suggest that, in the case 

of exposures with a strong signal, the bias from the use of maternal reports and recalled data is minimal 

and leads to similar inference. However, our infancy analyses, conducted in a smaller subset of the cohort 

that was more susceptible to random error, were more sensitive to differences in outcome assessment. In 

this case, the use of an objectively measured biomarker that is correlated with pubertal timing provided an 

additional method to minimize information bias in outcome assessment. These results can inform the design 

of future studies of breast development. While studies may not be able to collect repeated clinical Tanner 

assessments or biomarker measures on everyone in a large study populations, the collection of additional 

measures in a subset of the cohort can be used to conduct sensitivity analyses that aid in the interpretation 
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of the overall study findings.239 Differences in the assessment of the onset of breast development will also 

affect the measurement of pubertal tempo,258 which future studies examining drivers of pubertal tempo will 

need to take into account.  

6.3 Implications and future directions 

 

Earlier puberty in girls is associated with psychological and behavioral consequences, such as 

higher incidence of anxiety and depression, earlier sexual activity, earlier initiation of risk behaviors such 

as smoking and drinking (for review, see 316), as well as increased risks of cardiovascular disease96,97 and 

breast cancer.41,95 Given this significant burden of earlier puberty on both the individual and population 

level, it is imperative to think about how we can apply what we know now about risk factors for early puberty 

to primary prevention. The importance of maintaining a healthy body weight in adult women, including prior 

to pregnancy, is an established public health recommendation. During pregnancy, clinicians are already 

advised based on the current Institute of Medicine guidelines to encourage women to avoid excessive 

weight gain during pregnancy and engage in physical activity during pregnancy.110 In addition, pediatricians 

and parents monitor growth during infancy, and avoiding rapid weight gain during infancy is important for 

reducing the risk of childhood obesity.64 Our findings support that maintaining a healthy pre-pregnancy 

weight, engaging in some degree of physical activity during pregnancy, and avoiding excess GWG and 

rapid growth during infancy may, in addition to other health benefits to the mother and child, delay the onset 

of breast development in daughters, even in girls with a BCFH. Raising awareness that these behaviors 

may delay the onset of breast development complements the existing recommendations by providing an 

additional benefit that can be gained by adhering to recommendations. This message may resonate with 

women that are worried about the timing of puberty and breast cancer risk, including women with a family 

history of breast cancer. 

Our findings support that maternal pre-pregnancy BMI, GWG and infant growth patterns may be 

associated with increased breast cancer risk later in life through earlier onset of breast development. Since 

breast cancer risk accumulates early in the life course, modifying factors that act early in the life course to 

increase breast cancer risk may lead to a greater overall reduction in risk.4,5 Colditz and Bohlke estimate 

up to a 22% decrease in breast cancer risk with behavior change starting in midlife. However, the potential 
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reduction in risk is up to 64% with prevention efforts starting in young adulthood.5 We hypothesize that there 

can be an even greater reduction in risk when prevention starts even earlier in the life course. That being 

said, more research is needed to understand the total effect that modifying the early-life environment may 

have on breast cancer risk. For example, maternal obesity, higher GWG and rapid infant weight gain are 

also associated with increased adiposity in children.317 Even though overweight girls go through puberty 

earlier, higher BMI in childhood and adolescence is associated with decreased risks of pre- and post-

menopausal breast cancer.14–17 It is also possible that associations between maternal BMI, GWG and 

breast cancer risk vary by childhood body size, a hypothesis that can be explored in future research. Future 

studies need to consider both of these pathways to understand how secular increases in obesity, GWG and 

rapid infant growth may affect future breast cancer incidence.  

 This dissertation has generated additional hypotheses that can be examined in future research. 

First, is the association that we observed between rapid growth in early infancy and earlier breast 

development related to the transient activation of the HPG axis in infancy, or mini-puberty? It is not clear 

whether the variations in hormone levels during this period have a long-term effect on either breast tissue 

or on hormone levels later in life, but this question has relevance to pubertal timing and breast cancer risk. 

Second, are maternal BMI, GWG and infant growth independently associated with pubertal tempo? Girls 

with earlier age at breast development have a longer pubertal tempo.318 The elongation of this time period, 

when the breast is rapidly developing and vulnerable to environmental carcinogens,43 is also associated 

with increased breast cancer risk.41 Future research should examine whether maternal pre-pregnancy BMI, 

GWG and infant weight gain have independent effects on tempo, given their associations with both age at 

breast development and age at menarche. In addition, we observed a strong correlation between rapid 

weight gain during infancy and IGF-1 in our pilot study. In future studies, we will examine within-person 

patterns of IGF-1 and IGFBP-3 across puberty, and whether rapid infant growth, in addition to maternal 

pre-pregnancy BMI and GWG, are associated with these trajectories. While higher IGF-1 and IGFBP-3 

levels in adulthood are associated with breast cancer risk,294 more research is needed to understand 

whether higher levels of these biomarkers track across the life course and, if so, whether this can be 

modified.  
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 In conclusion, we identified higher maternal pre-pregnancy BMI, excess GWG and rapid growth 

during infancy as modifiable risk factors associated with earlier onset of breast development in girls at 

average-risk for breast cancer and girls at increased risk due to their family history. This supports that breast 

cancer risk has origins in early life and that modifying these factors may reduce breast cancer risk. Future 

studies should also consider alternate pathways through which the early-life environment may affect risk. 

In addition, early puberty is associated with multiple adverse health outcomes in girls, and delaying the 

onset of breast development may benefit physical and mental health in adolescence and adulthood. We 

therefore recommend that clinicians consider incorporating into their conversations with expectant and new 

parents the message that adherence to existing recommendations regarding healthy maternal and infant 

weight gain, in addition to other health benefits for both the mother and child, may delay breast development 

in girls. 
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6.4 Tables and figures 

 

Table 6.1. Summary of the direction of associations between maternal, birth and infant exposures 

with the timing of breast development and levels of serum biomarkers during puberty. The green 

symbol indicates no association. Blue arrows indicate the direction of the association. Factors that are 

associated with earlier age at breast development and higher IGF-1 levels are consistent with earlier 

puberty. 

 Age at breast 
developmenta 

Serum levels of 
IGF-1 and IGF-
1/IGFBP-3 ratiob 

Maternal BMI≥25 
and GWG ≥30lbs 
 

  

Maternal physical 
inactivity during 
pregnancy 

  

Birthweight 
 
 

  

Birthlength 
 
 

  

Rate of weight 
gain during 
infancy 

  

 

 aAn arrow facing down indicates earlier age at breast development for an increase in the exposure 

bAn arrow facing up indicates higher levels of IGF-1 and/or IGF-1/IGFBP-3 molar ratio. Associations may 

not be statistically significant at p<0.05 for this exploratory analysis 
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Table 6.2. Summary of the strengths and limitations of this dissertation.  

 

Strengths Limitations 

Aim 1 

(Systematic 

Review) 

Comprehensive Data too heterogeneous to 

combine 

Aim 2 

(Maternal 

and 

pregnancy 

analyses) 

Examine differences by BCFH 

Sensitivity analyses using 

multiple reports of breast 

development, including clinical 

reports 

Self-reported maternal and 

pregnancy exposures 

Maternal report of breast 

development 

Aim 3 

(Infancy 

analyses) 

Exposure assessed through 

medical record data 

Limited to subset of cohort 

with available infancy data 

Maternal report of breast 

development 

Aim 4 

(Biomarker 

analyses) 

Objective biomarker 

measurement 

Pilot study limited to girls at 

the NY site that provided a 

blood sample 

Overall Data collection every 6 months 

using standard protocol with 

high retention rate 

Enrichment for BCFH 

Some girls experienced breast 

development prior to cohort 

entry 

Lack of pre-pubertal BMI 

measures on all girls 
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Appendices 

 

Appendix A Protocol for systematic review on early-life body size and pubertal timing in girls 
 

Updated 11/27/2018 

Title: Size and growth during early life and pubertal timing in girls: a systematic review 

Review team: Mandy Goldberg (primary reviewer) and Sabine Oskar (secondary reviewer) 

Objective: To systematically review the published literature in order to summarize the literature regarding 

size and growth during early life and pubertal timing and its implications for breast cancer risk. 

a. Identify studies that have examined the association(s) between maternal body size 

characteristics, including maternal pre-pregnancy BMI and gestational weight gain, birth size 

and/or size or growth during infancy (from birth to age 2 years) and the timing of pubertal 

development in girls 

b. Identify sources of heterogeneity in study-specific estimates 

Search strategy:  

Identify and review all published peer-reviewed studies that meet the criteria below: 

Eligibility criteria 

- Date: Article published between January 1, 1970 and present 

- Language: English 

- Main outcome is normal breast development, menarche or tempo between these two events 

Exclusion criteria 

- Non-humans 

- Males only or both sexes without sex-stratified results   

- Study population comprised of children with diseases that would affect pubertal development, 

such as endocrine disorders, or selected for precocious puberty  

- Study population comprised of children with diseases that affect growth, such as pediatric 

cancers, CF, etc.  

- Outcome is central or peripheral precocious puberty (puberty before age 8 years in females) 

- Outcome is a pubertal event other than breast development or menarche: adrenarche, pubarche, 

pubertal growth spurt, etc. 

- Body size and/or growth measured after age 2 years only  

- Case study/series (N<10, descriptive)  

I will also exclude studies if reviews, editorials, discussion papers, or conference abstracts.  

 

Search databases 

- PubMed 

Search terms 
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I will conduct the database searches using search terms relating to the outcome, exposure and time 

period of interest: 

PubMed: 

"puberty"[MeSH Terms] OR "puberty"[All Fields] OR pubertal[All Fields] OR "pubertal onset"[All Fields] 

OR "pubertal development"[All Fields] OR "sexual maturation"[All Fields] OR "pubertal timing"[All Fields] 

OR “pubertal tempo” [All Fields] OR ("menarche"[MeSH Terms] OR "menarche"[All Fields]) OR 

("menstruation"[MeSH Terms] OR "menstruation"[All Fields] OR "menses"[All Fields]) OR "menses 

onset"[All Fields] OR thelarche[All Fields] OR "Breast/growth and development"[Mesh] OR "breast 

development"[All Fields] OR "breast bud"[All Fields] OR “Tanner staging” 

AND 

Weight OR height OR length OR “ponderal index” or “body mass index” OR BMI OR obese OR obesity 

OR overweight OR adiposity OR growth OR “weight gain” OR “height gain” 

AND 

mother OR birth OR maternal OR prenatal OR pregnancy OR “in utero” OR fetal OR infant OR infancy 

OR postnatal OR “early life” OR early-life OR childhood 

 

Title and abstract screening: 

I will conduct the literature searches in PubMed and Google Scholar and download the results into 

Endnote in order to remove duplicates. 

After duplicate removal, I will export the list of studies to Excel.  I will screen the titles and abstracts of the 

identified articles and classify the articles into 3 categories: 

- May be eligible; read full paper 

- Unclear if eligible; read full paper 

- Not eligible 

Reasons for exclusion will be documented. A second reviewer (SO) will independently screen the titles 

and abstracts of a random 10% of the retrieved articles.    

Full paper screening: 

One reviewer (MG) will read the full papers for abstracts categorized as “may be eligible” or “unclear if 

eligible” to determine final eligibility for inclusion based on eligibility and exclusion criteria listed above. 

Reasons for exclusion will be documented.  

Data Extraction: 

One reviewer (MG) will extract the following information for exposures and outcomes of interest from all 

studies that meet the inclusion criteria: author(s), publication year, study design, sample size, study 

setting and time frame, age range of participants, exposure assessment, outcome assessment, covariate 

information, statistical methods, results (effect estimates and confidence intervals), conclusions and 

sources of bias.  
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One reviewer (MG) will also search reference lists of included articles and relevant systematic reviews for 

additional relevant articles. 

Data Quality: 

One reviewer (MG) will assess the quality of included studies by using the NIH Quality Assessment Tool 

for Observational and Cohort Studies and the Newcastle-Ottawa Quality Assessment Scales for Cohort 

and Case Control Studies. 

Copies of these quality assessment tools are available at: 

NIH NHLBI Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies: 

https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools  

Newcastle-Ottawa Quality Assessment Scale: 

http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp

https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools
http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp
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Appendix B Supplemental tables for Chapter 2 

 

Supplemental Table 2.1. Studies of maternal pre-pregnancy BMI, weight and gestational weight gain and the timing of breast 

development 

Author, 
Location, 
Year 

Study 
Design 

Study 
Population (N, 
Age range, 
Name) Exposure 

Exposure 
source Outcome 

Outcome 
source Statistical method Results Covariates 

Vandeloo, 
2007, 
Belgium 

Cross-
sectional 

1146 girls 
 
Mean age=12.8 
years 
 
Girls recruited in 
second year of 
secondary 
school from 10 
centres of 
Medical School 
Supervision 
(MSS) in Belgian 
Limburg in 1999-
2000 school year 

Weight of the 
mother at the 
beginning of 
pregnancy, 
continuous 
(units not 
stated) Not stated 

Age at breast 
development 
(Tanner 
stage 2 or 
more) Not stated 

Cox regression 
model for age at 
onset of breast 
development 
(RR>1 indicates 
earlier breast 
development) 

RR = 1.013, 95% 
CI=1.006, 1.021 

None 
 
*Results for 
maternal pre-
pregnancy 
weight were not 
shown for 
multivariable 
model 

Maisonet, 
2010, 
United 
Kingdom 

Prospective 
cohort 

2661 singleton 
girls with 
consistent 
pubertal staging 
and prenatal 
data 
 
Age 8-14 years 
at follow-up 
 
Avon 
Longitudinal 
Study of Parent 
and Children, 
born April 1991-
December 1992 

Maternal 
pre-
pregnancy 
BMI, 
categorized: 
Underweight: 
<18.5 
Normal: 
18.5-24.9 
Overweight: 
25-29.9 
Obese: ≥30 

Self-
reported 
pre-
pregnancy 
BMI from 
mother 
during 
pregnancy 

Age at 
transition to 
Breast 
Tanner stage 
≥2 or ≥3 

Breast 
Tanner 
stage 
reported by 
girls or 
mothers at 
repeated 
pubertal 
self-
assessment
s between 
8-14 years 
of age  
 
*Girls with 
inconsistent 
responses 
were 
excluded 
from 
analyses 

Interval-censored 
parametric survival 
model for age at 
transition to breast 
Tanner stage  ≥2 
or ≥3 assuming a 
normal distribution 
(Diff <0 indicates 
earlier breast 
development) 

Adjusted difference in 
median age at 
transition to breast 
Tanner stage ≥2: 
Underweight: Diff=0.14, 
95% CI= -0.16, 0.43 
Normal: referent 
Overweight: Diff= -0.4, 
95% CI= -0.62, -0.25 
Obese: Diff =  -0.70, 
95% CI= -1.00, -0.40 
 
Breast Tanner stage 
≥3: 
Underweight: Diff= -
0.05, 95% CI -0.30, 
0.20 
Normal: referent 
Overweight: Diff= -
0.41, 95% CI= -0.56, -
0.25 
Obese: Diff= -0.50, 
95% CI= -0.75, -0.25 

Maternal age at 
menarche, 
previous live 
births, smoking 
during 
pregnancy, 
maternal age at 
delivery, 
maternal 
education 
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Christense
n, 2010, 
United 
Kingdom 

Prospective 
cohort 

3938 singleton 
girls with 
consistent 
pubertal staging 
and prenatal 
data 
 
Age 8-14 years 
at follow-up 
 
Avon 
Longitudinal 
Study of Parent 
and Children, 
born April 1991-
December 1992 

Maternal 
pre-
pregnancy 
BMI, 
categorized: 
<18.5 
18.5-24.9 
25-29.9 
≥30 

Self-
reported 
pre-
pregnancy 
BMI from 
mother 
during 
pregnancy 

Breast 
Tanner stage 

Breast 
Tanner 
stage 
reported by 
girls or 
mothers at 
repeated 
pubertal 
self-
assessment
s between 
8-14 years 
of age  
 
*Girls with 
inconsistent 
responses 
were 
excluded 
from 
analyses 

Ordinal probit 
models for 
progression 
through Tanner 
stages of breast 
development, using 
repeated breast 
Tanner 
assessments (β>0 
indicates increased 
probability of being 
in higher Tanner 
stage - earlier 
development) 

Coefficients from 
ordinal probit model for 
progression through 
breast stages: 
<18.5: β= -0.03, 
SE=0.09, p=0.65 
18.5-24.9: referent 
25.0-29.9: β=0 .11, 
SE=0.06, p=0.05 
≥30: β= 0.26 SE=0.09, 
p=0.004 
 
Without adjusting for 
girl's BMI, there was an 
interaction between 
girl's age and maternal 
BMI - "increasing age 
dampened the effect of 
overweight maternal 
BMI" (data not shown) 

Age, daughter's 
BMI, mother's 
age at 
menarche, child 
ethnic 
background, 
birth order, 
interaction 
between age 
and daughter's 
BMI 

Kubo, 
2016, 
United 
States 

Prospective 
cohort 

386 girls with 
maternal BMI 
data 
 
Age 12-14 years 
at follow-up 
 
Cohort Study of 
Young Girls' 
Nutrition, 
Environment and 
Transitions 
(CYGNET), girls 
enrolled in 2005-
2006 from Kaiser 
Permanente 
Northern 
California at 
ages 6-8 years 

Maternal 
pregravid 
BMI, 
categorized: 
<25 
25-<30 
≥30 

Self-
reported 
pre-
pregnancy 
weight and 
height data 
from 
CYGNET 
baseline 
questionnair
e 

Onset of 
breast 
development
, defined as 
Tanner stage 
2 or above, 
vs. no onset 
(Tanner 
stage 1) 

Assessed 
by trained 
research 
personnel 
at annual 
follow-up 
visit 

Weibull parametric 
survival model for 
age at transition to 
breast Tanner 
stage  ≥2, 
accommodating 
left, right and 
interval censoring 
(TR <1 and HR>1 
indicates earlier 
breast 
development) 

Time ratios and hazard 
ratios for transition to 
breast Tanner stage 
≥2: 
<25: Referent 
25-<30: TR=0.99, 95% 
CI= 0.96, 1.02; 
HR=1.15, 95% CI= 
0.85, 1.56 
≥30: TR=1.00, 95% 
CI=0.97, 1.04; 
HR=0.96 (0.6, 1.39) 
P for trend = 0.57 for 
TR; 0.78 for HR 

Race/ethnicity, 
household 
income and 
maternal age at 
menarche 
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Lawn, 
2018, 
United 
Kingdom 

Prospective 
cohort 

2942 singleton 
girls with age at 
thelarche and 
data on either 
maternal 
prepregnancy 
BMI or GWG 
 
Age 17 years at 
follow-up 
 
Avon 
Longitudinal 
Study of Parent 
and Children, 
born April 1991-
December 1992 

Maternal 
pre-
pregnancy 
BMI, 
continuous 
 
Gestational 
weight gain 
in kg  

Self-
reported 
pre-
pregnancy 
weight and 
height by 
mother on 
questionnair
e in early 
pregnancy 
 
GWG 
calculated 
from last 
weight 
measured 
by midwives 
from 
obstetric 
measures 
and first 
measured 
weight for 
all women 
with at least 
1 weight 
measure 
prior to 18 
weeks 
gestation 
and 1 after 
28 weeks 
gestation 

Age at 
thelarche 
(Tanner 
stage ≥2), 
calculated as 
midpoint 
between last 
questionnair
e with TS1 
and first 
questionnair
e where 
TS2+ 

Breast 
Tanner 
stage 
reported by 
parents 
and/or 
daughters 
in a series 
of annual 
questionnai
res from 8-
17 years or 
during clinic 
visits at 
12.5 or 13.5 
years.   

Linear regression 
models for age at 
thelarche with  
multiple imputation 
for missing data 
(β<0 indicates 
earlier breast 
development - 
difference in 
months) 

Pre-pregnancy BMI, 
continuous: 
Total effect from linear 
regression for age at 
thelarche: 
β=-0.77, 95% CI= -
0.93, -0.60 
 
Direct effect from linear 
regression for age at 
thelarche, controlling 
for pre-pubertal BMI as 
a mediator: 
β=-0.37, 95% CI= -
0.54, -0.21 
 
Gestational weight gain 
in kg, continuous: 
Total effect from linear 
regression for age at 
thelarche: 
β=-0.28, 95% CI= -
0.42, -0.14 
 
Direct effect from linear 
regression for age at 
thelarche, controlling 
for pre-pubertal BMI as 
a mediator: 
β=-0.16, 95% CI=-0.30, 
-0.02 

Maternal age at 
delivery, 
daughter's 
ethnicity, parity, 
maternal 
smoking during 
pregnancy, 
socioeconomic 
status and 
maternal age at 
menarche. 
 
GWG models 
adjusted for 
covariates 
above, plus 
maternal 
prepregnancy 
BMI and 
gestational age. 
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Kubo, 
2018, 
United 
States 

Retrospecti
ve cohort 

14,760 girls with 
at least one 
breast Tanner 
stage 
assessment at 6 
years or more, at 
least 1 pre-
pubertal BMI 
measure and 
information on 
maternal BMI 
during 
pregnancy 
 
6-11 years at 
breast Tanner 
assessment 
 
Girls born in 
Kaiser 
Permanente 
Northern 
California in 
2003-2006 with 
continuous 
KPNC 
membership 
through March 
2017 

Maternal 
BMI during 
pregnancy, 
categorized 
as: 
Underweight: 
<18.5 
Normal 
weight: 18.5-
24.9 
Overweight: 
25-29.9 
Obese: ≥30 

Maternal 
weight 
measured 
at time of 
the a-
fetoprotein 
test (16-18 
weeks 
gestation, 
95%) from 
medical 
record. If 
not 
available, 
first weight 
measured 
after 
conception 
(range 0-16 
weeks, 5%). 
BMI 
calculated 
using height 
recorded in 
medical 
record. 

Thelarche, 
defined as 
transition 
from breast 
Tanner stage 
1 to 2+. Age 
at thelarche 
defined as 
the interval 
between age 
at last clinic 
record with 
TS1 and age 
at first clinic 
record with 
TS2+ 

Medical 
record, 
assessed 
by 
physician 
using 
palpation 
and visual 
inspection 
as part of 
the routine 
pediatric 
appointmen
ts 

Weibull parametric 
survival model for 
age at transition to 
breast Tanner 
stage  ≥2, 
accommodating 
left, right and 
interval censoring 
(TR <1 and HR>1 
indicates earlier 
breast 
development) 

Time ratios and hazard 
ratios for transition to 
breast Tanner stage 
≥2: 
Underweight: TR=1.03, 
95% CI=1.00, 1.06;     
HR=0.75, 95% CI= 
0.58, 0.97 
Normal weight:Referent 
Overweight:TR=0.98, 
95% CI=0.97, 0.99;  
HR=1.21 (1.13, 1.29) 
Obese:TR=0.97, 95% 
CI= 0.96, 0.97;   
HR=1.39, 95% CI= 
1.30, 1.49 
P for trend <0.0001 
 
HR for maternal 
obesity, adjusting for 
pre-pubertal BMI = 
1.22, 95% CI=1.13, 
1.31 (other categories 
not shown) 

Race/ethnicity, 
maternal age at 
delivery, 
education, parity 
and maternal 
smoking during 
pregnancy 
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Supplemental Table 2.2. Studies of maternal pre-pregnancy BMI, weight and gestational weight gain and the timing of menarche 

Author, 
Location, 
Year 

Study 
Design 

Study 
Population (N, 
Age range, 
Name) Exposure 

Exposure 
source Outcome 

Outcome 
source 

Statistical 
method Results Covariates 

Windham, 
2004, 
United 
States 

Prospectiv
e cohort 

994 girls with 
menarche data 
 
15-17 years 
 
Follow-up of 
subset of 
California Child 
Health and 
Development 
Studies 
(pregnancies 
1959-1966) 

Maternal pre-
pregnancy 
BMI 

Pre-
pregnancy 
weight and 
height 
obtained 
from 
interview 
during 
pregnancy 

Age at 
menarche, 
examined 
continuousl
y and in 
categories: 
Early: <12y 
Average: 
12-13 years 
Late: >13 y 

Recalled by 
girl at 15-17 
years 
(years and 
months - 
though 45% 
of girls only 
gave year) 

Mean age at 
menarche by 
category of 
independent 
variables using 
the F test and 
distribution of 
early and late 
menarche 
using chi-
square test.   

Stated in text that 
mother's prepregnancy 
body mass index was 
not related to age at 
menarche (data not 
shown) 

None (data not 
shown) 

Sloboda, 
2007, 
Australia 

Prospectiv
e cohort 

776 girls with 
menarche data 
 
Age 12-14 years 
at follow-up 
 
Western 
Australian 
Pregnancy 
(Raine) Cohort, 
women enrolled 
during 
pregnancy in 
1989-1990 

Pre-
pregnancy 
BMI and 
weight gain 
during 
pregnancy, 
unclear how 
assessed 

Maternal 
clinic visits 
(women 
enrolled at 
18 weeks of 
pregnancy) 

Age at 
menarche 

Self-report 
on puberty 
questionnai
re or 
censored at 
age at last 
follow-up if 
no 
menarche 
reported 

Continuous 
data 
summarized 
using medians, 
IQ ranges and 
ranges 
 
Kaplan-Meier 
survival 
probabilities to 
estimate 
probability of 
reaching 
menarche 
 
Multivariable 
Cox regression 
models to 
evaluate 
association 
between fetal 
and postnatal 
growth and age 
at menarche 

Stated in text that 
maternal pre-pregnancy 
BMI and weight gain 
during pregnancy were 
not associated with age 
at menarche (data not 
shown) Not stated 



 

 

 

1
8
1

 

Vandeloo, 
2007, 
Belgium 

Cross-
sectional 

1146 girls 
 
Mean age=12.8 
years 
 
Girls recruited in 
second year of 
secondary 
school from 10 
centres of 
Medical School 
Supervision 
(MSS) in Belgian 
Limburg in 1999-
2000 school year 

Weight of the 
mother at the 
beginning of 
pregnancy, 
continuous 
(units not 
stated) 

Questionnai
re, partially 
completed 
by medical 
team with 
the 
remainder 
completed 
by girls and 
one parent 

Age at 
menarche 

Self-report 
with 
parent's 
help via 
questionnai
re 

Cox regression 
model for age 
at onset of 
breast 
development 
(RR>1 
indicates earlier 
menarche) 

RR = 1.015, 95% CI 
1.006-1.025 

None 
 
*Results for maternal 
pre-pregnancy 
weight were not 
shown for 
multivariable model 



 

 

 

1
8
2

 

Windham, 
2008, 
United 
States 

Prospectiv
e cohort 

1556 women 
with age at 
menarche data 
 
22-33 years at 
follow-up 
 
Adult follow-up 
of 3 
Collaborative 
Perinatal Project 
sites (pregnant 
women enrolled 
1959-1966): 
Pathways to 
Adulthood Study 
(PAS), follow-up 
of Baltimore site 
when subjects 
were 27-33 
years and 
Intergenerational 
Pregnancy 
Outcome Study 
(IPOS), follow-up 
of Philadelphia 
and Providence 
sites when 
subjects were 
22-32 years 

Maternal pre-
pregnancy 
BMI, 
categorized: 
<20 
20-26 
>26 
 
Maternal 
weight gain 
during 
pregnancy 
(data not 
shown) 

Maternal 
report of 
pre-
pregnancy 
weight 
during 
pregnancy 
and 
measured 
height 

Age at 
menarche, 
continuous 

Self-report 
(in whole 
years) by 
adult 
participants 

Linear 
regression 
models for 
AAM examining 
prenatal factors 
childhood 
factors, and 
then prenatal + 
childhood 
combined (β<0 
indicates earlier 
age at 
menarche 

 
β (95% CI) from linear 
regression models with 
prenatal factors only for 
age at menarche: 
 <20: β=0.13, 95% CI=-
0.10, 0.36 
20-26: Referent 
>26: β=-0.09, 95% CI--
0.34, 0.16 
 
β (95% CI) from linear 
regression models with 
prenatal and childhood 
for age at menarche: 
 <20: β=0.10, 95% CI=-
0.14, 0.33 
20-26: Referent 
>26: β= 0.03, 95% CI=-
0.22, 0.29 
 
*Maternal weight gain 
during pregnancy was 
not crudely associated 
with age at menarche 
(data not shown) 

Prenatal only model 
adjusted for prenatal 
smoke exposure, 
maternal race, 
maternal age at 
baseline, maternal 
age at menarche, 
maternal marital 
status, maternal 
education, maternal 
parity, gestational 
age, family income, 
maternal 
employment and 
study site. 
 
Prenatal + childhood 
model adjusted for 
prenatal smoke 
exposure, maternal 
race, maternal age 
at baseline, maternal 
age at menarche, 
maternal marital 
status, maternal 
education, study 
site, total siblings at 
age 7, family income 
at age 7, 
rooms/person in 
home, BMI at age 7, 
height at age 7 



 

 

 

1
8
3

 

Rubin, 
2009, 
United 
Kingdom 

Prospectiv
e cohort 

4212 singleton 
girls with 
consistent 
menarche data 
 
Age 8-13 years 
at follow-up 
 
Avon 
Longitudinal 
Study of Parent 
and Children, 
born April 1991-
December 1992 

Maternal pre-
pregnancy 
BMI, 
categorized 
into tertiles: 
<21.1 
21.1-23.4 
>23.4 

Self-
reported by 
mother 
during 
pregnancy 

Presence of 
menarche 
at 11 year 
old 
questionnai
re 

Reported at 
11-year 
questionnai
re by 
daughter, 
mother or 
both 

Multivariable 
logistic 
regression for 
menarche by 
age 11 years 
(OR>1 
indicates earlier 
menarche) 

Adjusted ORs for 
menarche by age 11: 
<21.1 : Referent 
21.1-23.4: OR=1.26, 
95% CI=0.85, 1.87 
>23.4: OR=1.77, 95% 
CI=1.22, 2.56 
 
Adjusted ORs for 
menarche by age 11, 
mediation model 
adjusted for BMI at 8 
years: 
<21.1 : Referent 
21.1-23.4: OR=1.11 , 
95% CI=0.75, 1.66 
>23.4: OR=1.31, 95% 
CI=0.89, 1.93 

Maternal age at 
menarche, previous 
livebirths , maternal 
smoking in third 
trimester, girls' race 
 
Mediation model 
additionally adjusts 
for BMI at 8 years 
(tertiles) 

Keim, 
2009, 
United 
States 

Prospectiv
e cohort 

597 women with 
complete 
menarche and 
maternal data 
available 
 
22-32 years at 
follow-up 
 
Follow-up in 
1987-1991 of 
subset of women 
from Providence 
and Philadelphia 
sites of the CPP 
cohort (pregnant 
women enrolled 
in 1959-1966) 

Maternal pre-
pregnancy 
BMI,  
categorized 
as: 
Underweight 
or normal 
weight 
(BMI<25) 
Overweight 
(BMI 25.0-
29.9) 
Obese (BMI 
≥30) 

Pre-
pregnancy 
weight self-
reported by 
mother 
during 
pregnancy; 
height 
measured 
at first visit 

Age at 
menarche, 
categorized 
as: ≤11 
years 
12 years 
13 years 
14+ years 

Self-report 
during adult 
interview  

Polytomous 
logistic 
regression to 
examine the 
relationship 
between 
daughter's age 
at menarche 
and maternal 
pre-pregnancy 
BMI 

Adjusted ORs for 
daughter's age at 
menarche from 
polytomous logistic 
regression models with 
14+ as reference group: 
≤11 years: 
  ≥30: OR = 3.3, 95% 
CI=1.1, 10.0 
  25-29.9:  OR=1.1, 95% 
CI=0.6, 2.1 
  <25:  Referent 
12 years: 
  ≥30: OR = 2.7, 95% 
CI=0.9, 8.3 
  25-29.9:  OR=0.8, 95% 
CI=0.4, 1.5 
  <25: Referent 
13 years: 
  ≥30: OR = 1.8, 95% 
CI=0.5, 5.8 
  25-29.9: OR=0.9, 95% 
CI=0.5, 1.6 
  <25: Referent 
 
OR for ≤11 years 
adjusted for childhood 
BMI as a mediator= 3.2, 
95% CI=1.0, 9.8 (data 
not shown for other 
categories) 

Study site, SES, 
maternal parity, 
maternal age at 
menarche and 
daughter's race 
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Terry, 
2009, 
United 
States 

Prospectiv
e cohort 

262 women 
 
38-46 years at 
follow-up 
 
Follow-up in 
2001-2006 of 
subset of women 
from New York 
site of the CPP 
birth cohort (born 
1959-1963)  

Maternal pre-
pregnancy 
BMI 
 
Maternal 
weight gain 
(weight 
measured just 
prior to birth - 
reported 
weight prior to 
pregnancy) 

Prepregnan
cy weight 
was self-
reported 
during 
pregnancy, 
height and 
weight at 
the end of 
pregnancy 
were 
measured 

Age at 
menarche, 
continuous 
and 
dichotomize
d as: ≤12 
years 
>12 years 

Self-
reported by 
adult 
participant 

Univariate 
associations 
using 
correlation 
coefficients for 
continuous 
variables, chi-
square tests 
and analysis of 
variance to 
compare 
averages 
across 
subgroups. 

Mean maternal pre-
pregnancy BMI by 
menarche status 
(p=0.80): 
 ≤12 years: 22.57, 
SE=3.68 
>12 years: 22.44, 
SE=3.44 
 
Mean gestational weight 
gain (kg) by menarche 
status (p=0.80): 
 ≤12 years: 10.54, 
SE=4.99 
>12 years: 10.71, 
SE=4.94 

None (multivariable 
results not shown) 

Maisonet, 
2010, 
United 
Kingdom 

Prospectiv
e cohort 

2661 singleton 
girls with 
consistent 
pubertal data 
and prenatal 
data 
 
Age 8-14 years 
at follow-up 
 
Avon 
Longitudinal 
Study of Parent 
and Children, 
born April 1991-
December 1992 

Maternal pre-
pregnancy 
BMI, 
categorized: 
  Underweight: 
<18.5 
  Normal: 
18.5-24.9 
  Overweight: 
25-29.9 
  Obese: ≥30 

Self-
reported 
pre-
pregnancy 
weight from 
mother 
during 
pregnancy 

Age at 
menarche 

Month and 
year of 
menarche, 
reported 
girls at 
pubertal 
self-
assessment
s between 
8-14 years 
of age. Girls 
with 
inconsistent 
responses 
were 
excluded 
from 
analyses 

Interval-
censored 
parametric 
survival model 
for age at 
menarche 
assuming a 
normal 
distribution (Diff 
<0 indicates 
earlier 
menarche) 

Adjusted difference for 
median age at 
menarche: 
Underweight: Diff= 0.02, 
95% CI=-0.19, 0.24 
Normal: Referent 
Overweight: Diff=-0.25, 
95% CI=-0.39, -0.12 
Obese: Diff=-0.13, 95% 
CI=-0.34, 0.09 

Maternal age at 
menarche, previous 
live births, smoking 
during pregnancy, 
maternal age at 
delivery, maternal 
education 
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Shrestha, 
2011, 
Denmark 

Prospectiv
e cohort 

3169 girls 
(sample size 
varied by 
analysis) 
 
Age 17-21 years 
at follow-up 
 
2005 follow-up of 
a subset of a 
pregnancy 
cohort in two 
Danish cities, 
Aalborg and 
Odense, 
recruited 
between April 
1984-April 1987 
as part of the 
"Health Habits 
for Two" 
campaign. 

Maternal pre-
pregnancy 
BMI, 
continuous 

Mom 
reported 
pre-
pregnancy 
height and 
weight to 
doctor at 
first routine 
antenatal 
visit 

Age at 
menarche, 
continuous 

Reported 
by girls in 
2005 at 17-
21 years.  
~50% 
reported 
year and 
month and 
the other 
reported 
year only. 

Multiple linear 
regression 
analyses were 
conducted to 
examine the 
association 
between 
maternal 
prepregnancy 
BMI and AOM, 
with results 
shown as the 
difference in 
age at 
menarche in 
days (d<0 
indicates earlier 
menarche) 

Results from linear 
regression models for 
sample with AOM in at 
least years: 
 
Maternal BMI: -7.6, 95% 
CI=-13.3, -1.8 
 
Maternal BMI, adjusted 
for offspring BMI 
reported by mother at 
ages 14-18 years in 
mediation model: 2.9, 
95% CI=-4.3, 10.1 
 
Maternal BMI in subset 
of offspring with BMI<25 
at 14-18 years: -8.2, 
95% CI=-16.1, -0.2 

Maternal education, 
marital status, 
maternal age at 
childbirth, maternal 
smoking during 
pregnancy. 
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Boynton-
Jarrett, 
2011, 
United 
States 

Retrospect
ive cohort 

32,218 women 
from singleton 
births with 
information on 
GWG and age at 
menarche  
 
Average age at 
report of 
menarche=34 
years 
 
Women in the 
NHSII  cohort 
(started in 1989, 
women born 
between 1946-
1965) whose 
mothers are in 
the Nurses' 
Mothers' Cohort 
(started in 2001) 

Gestational 
weight gain: 
  <10lbs 
  10-14 lbs 
  15-19 lbs 
  20-29 lbs 
  30-39 lbs 
  ≥40 lbs 

Reported 
by mother 
in 
categories 
on 
questionnai
re 

Age at 
menarche, 
categorized 
as: 
  <11 years 
  11-15 
years 
  >15 years 

Reported 
by daughter 
on baseline 
survey in 
1989 in 
categories: 
≤9, 10, 11, 
12, 13, 14, 
15, 16, 17+ 

Compared 
early menarche 
(<11 years) and 
late menarche 
(>15 years) to 
average (11-15 
years) in 
separate 
logistic 
regression 
models. 
Covariates 
associated with 
age at 
menarche at 
p<0.10 were 
included in 
adjusted 
models.  
Tested 
nonlinear 
relations 
between 
maternal GWG 
and early and 
late menarche 
using cubic 
splines.  For 
models with 
evidence of a 
nonlinear 
association, 
categorical 
indicator 
variables were 
used in 
regression 
models. Tested 
for interaction 
between 
maternal GWG 
and age at 
baseline. 

Adjusted OR for early 
menarche (<11 years) 
vs. average (11-15 
years): 
<10: OR=1.35, 95% 
CI=1.09, 1.67 
10-14: OR=1.13, 95% 
CI=0.98, 1.30 
15-19: OR=0.98, 95% 
CI=0.87, 1.11 
20-29: Referent 
30-39: OR=1.10, 95% 
CI=0.98, 1.25 
≥40: OR=1.30, 95% 
CI=1.08, 1.56 
p=0.0015 
 
Adjusted OR for late 
menarche (>15 years) 
vs. average (11-15 
years): 
<10: OR=1.23, 95% 
CI=0.86, 1.68 
 10-14: OR=1.09, 95% 
CI=0.88, 1.33 
15-19: OR=1.16, 95% 
CI=0.99, 1.36 
20-29: Referent 
30-39: OR=0.97, 95% 
CI=0.81, 1.17 
≥40: OR=0.96, 95% 
CI=0.71, 1.29 
p for trend=0.04 
 
Adjusted OR for early 
menarche (<11 years) 
vs. average (11-15 
years), mediation model: 
<10: OR=1.31, 95% 
CI=1.05, 1.62 
10-14: OR=1.08, 95% 
CI=0.94, 1.25 
15-19: OR=0.97, 95% 
CI=0.86, 1.10 
 20-29: Referent 
30-39: OR=1.10, 95% 
CI=0.97, 1.25 
≥40: OR=1.27, 95% 
CI=1.06, 1.54 
p=0.0059 

Age at baseline in 
1989 (years), 
daughter's 
race/ethnicity, birth 
weight, gestational 
age, maternal 
prepregnancy 
weight, maternal 
height, paternal 
height, maternal age 
at daughter's birth, 
parental education 
 
Mediation model 
additionally includes 
maternal activity in 
pregnancy, child 
body size at age 5 
years, childhood 
physical activity, 
childhood television 
viewing. 
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Adjusted OR for late 
menarche (>15 years) 
vs. average (11-15 
years), mediation model: 
<10: OR=1.21, 95% 
CI=0.86, 1.67 
10-14: OR=1.08, 95% 
CI=0.88, 1.33 
15-19: OR=1.16, 95% 
CI=0.98, 1.36 
20-29: Referent 
30-39: OR=0.98, 95% 
CI=0.81, 1.17 
≥40: OR=0.98, 95% 
CI=0.72, 1.33 
p for trend=0.07 
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Wang, 
2012, 
United 
States 

Prospectiv
e cohort 

305 term girls  
 
Age 10-15 years 
at first report of 
pubertal status, 
followed 
annually until 
TS5 or max of 5 
years 
 
Adolescent 
follow-up of 
subset of the 
North Carolina 
Infant Feeding 
Study, infants 
born 1978-1982 

Maternal pre-
pregnancy 
weight in kg, 
continuous 
 
Weight gain 
during 
pregnancy in 
kg, continuous 

Self-report 
by mom 
during 
pregnancy 
and review 
of medical 
records 

Age at 
menarche, 
continuous 

Date of 
menarche 
reported by 
daughter on 
annual 
surveys 
(started in 
1992 at age 
10-15, 
followed for 
max of 5 
years) 

Univariable 
linear 
regression 
models to 
examine 
association 
between 
maternal 
factors and age 
at menarche 
(β<0 indicates 
earlier 
menarche) 

Univariable linear 
regression for age at 
menarche: 
Pre-pregnancy weight, 
kg, β = -0.02,  SE=0.01 
(p<.05) 
 
Weight gain during 
pregnancy, kg, 
β = -0.00,  SE=0.02 
(p≥.05) 

None 
 
*Maternal pre-
pregnancy weight 
was included in 
multivariable model 
but results not 
shown 
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Deardorff, 
2013, 
United 
States 

Prospectiv
e cohort 

2497 girls with 
complete data 
for maternal pre-
pregnancy BMI, 
GWG, 
daughters' 
menarche and 
covariates. 
Excluded girls 
with menarche 
before 9 or after 
16. 
 
Age 9-16 years 
at follow-up 
 
Daughters of 
women in 1979 
National 
Longitudinal 
Survey of Youth, 
prospective 
study of 
nationally 
representative 
samples born 
1957-1964. 
Offspring were 
surveyed 
biennially from 
1986-2010 as 
part of the 
NLSBY Children 
and Young Adult 
Survey. 

Maternal pre-
pregnancy 
BMI, 
categorized 
as:   
Underweight 
(<18.5) 
  Normal 
weight (18.5-
24.9) 
Overweight/ob
ese (≥25) 
 
Categorized 
mother's 
GWG as 
inadequate 
(<88%), 
adequate (88-
123%) or 
excessive 
(>123%) 
based on her 
percent of the 
expected 
2009 IOM 
weight gain 
recommendati
ons for GA 
and BMI 

Self-report 
by moms in 
1985 of pre-
pregnancy 
weight and 
height. Self-
reported 
weight gain 
at delivery 
and pre-
pregnancy 
weight was 
used to 
calculated 
gestational 
weight gain 

Age at 
menarche, 
continuous 

Year and 
months of 
menstruatio
n, reported 
by mothers 
for girls <14 
years and 
girls age 14 
and over on 
biennial 
surveys 

 
Cox 
proportional 
hazard models 
to estimate 
associations 
adjusting for 
covariates in 
order to include 
right censored 
girls (HR>1 
indicates earlier 
menarche). 
All analyses 
weighted for 
complex 
sampling 
design 

Adjusted hazard ratios 
for menarche: 
 
Maternal BMI: 
<18.5: HR=1.00, 95% 
CI=0.86-1.16 
18.5-25: Referent 
>25: HR=1.20, 95% 
CI=1.06, 1.36 
 
Gestational weight gain: 
Excessive: HR=1.13, 
95% CI=1.01-1.27 
Adequate: Referent 
Inadequate: HR=1.09, 
95% CI=0.96, 1.22 
 
Alternative 
categorization of GWG: 
>40 lbs: HR=1.12, 95% 
CI=1.00, 1.25 
10-40 lbs: Referent 
<10 lbs: HR=1.19, 95% 
CI=0.96, 1.47 
 
Including GWG, 
daughter's birthweight or 
pre-pubertal BMI did not 
change HR for maternal 
BMI (results not shown). 

Maternal BMI 
models adjusted for 
maternal age at 
menarche, race, log 
parental income, 
maternal education, 
maternal smoking 
during pregnancy, 
daughter breastfed 
and parity 
 
GWG models 
adjusted for all 
confounders above 
+ maternal pre-
pregnancy BMI 
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Mariansda
tter, 2016, 
Denmark 

Prospectiv
e cohort 

340 girls with 
menarche data 
 
Age 19-21 years 
at follow-up 
 
2008 follow-up of 
daughters of 
Danish 
pregnancy 
cohort, which 
enrolled women 
at 30-week 
prenatal visit in 
Aarhus, 
Denmark in 
1988-1989 

Maternal pre-
pregnancy 
BMI, 
categorized 
into tertiles: 
Low (15.8-20) 
Middle (20-
21.9) 
High (22.0-
37.0) 

Pre-
pregnancy 
weight and 
height self-
reported by 
mother 
during 30th 
week of 
pregnancy 

Age at 
menarche 

Self-
reported by 
daughters 
at age 19-
21 years. 
47% 
reported 
year and 
month; 53% 
reported 
year only. 
Month was 
imputed for 
girls that 
reported 
year only. 

Multiple linear 
regression for 
age at 
menarche with 
maternal BMI 
tertile as main 
predictor 
(Diff<0 
indicates earlier 
menarche) 

Adjusted difference 
(95% CI) in age at 
menarche in months 
from linear regression: 
BMI ≤20: Diff= 1.6, 95% 
CI=-2.3, 5.5 
 BMI 20-21.9: Referent 
 BMI≥22: Diff= -4.1, 95% 
CI=-8.0, -0.3 
 
In sensitivity analysis, 
daughters of overweight 
mothers (BMI≥25) had 
menarche adjusted 5.1 
(-0.8, 11.0) months 
earlier than daughter of 
normal-weight (18.5-
24.99) mothers. No 
difference for 
underweight daughters. 

Maternal smoking 
during pregnancy, 
maternal SES based 
on family annual 
income in 1988-
1989, maternal age, 
maternal parity 

Flom, 
2017, 
United 
States 

Prospectiv
e cohort 

1126 women 
with age at 
menarche data 
 
Age 39-49 years 
at follow-up 
 
The Early 
Determinants of 
Mammographic 
Density Study, 
2008 adult 
follow-up of 
female 
participants in 
the CHDS and 
Boston and 
Providence sites 
of NCPP birth 
cohorts 
(pregnancies 
1959-1966) 

Maternal pre-
pregnancy 
weight and 
BMI, 
continuous 
 
Gestational 
weight gain 
(kg) 

Maternal 
pre-
pregnancy 
weight and 
height 
reported by 
mom at first 
antenatal 
visit. 
 
Gestational 
weight gain 
calculated 
from self-
reported 
pre-
pregnancy 
weight and 
measured 
weight at 
delivery 

Age at 
menarche,  
categorized 
as: 
<12 years 
≥12 years 

Self-report 
by woman 
in 
adulthood 

Mean maternal 
characteristics 
by menarche at 
12 years 

 
Maternal pre-pregnancy 
weight, kg (mean, SD) 
<12y: 61.39 (10.72) 
≥12y: 61.17 (10.67) 
Maternal pre-pregnancy 
BMI (mean, SD) 
<12y: 23.62 (3.96) 
 ≥12y: 23.10 (3.68) 
Gestational weight gain, 
kg (mean, SD) 
<12y: 9.41 (3.74) 
 ≥12y: 9.37 (3.98) None 
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Lawn, 
2018, 
United 
Kingdom 

Prospectiv
e cohort 

3935 singleton 
girls with age at 
menarche and 
data on either 
maternal 
prepregnancy 
BMI or GWG 
 
Age 17 years at 
follow-up 
 
Avon 
Longitudinal 
Study of Parent 
and Children, 
born April 1991-
December 1992 

Maternal pre-
pregnancy 
BMI, 
continuous 
 
Gestational 
weight gain in 
kg, continuous  

Self-
reported 
pre-
pregnancy 
weight and 
height by 
mother on 
questionnai
re in early 
pregnancy 
 
GWG 
calculated 
from last 
weight 
measured 
by 
midwives 
from 
obstetric 
measures 
and first 
measured 
weight for 
all women 
with at least 
1 weight 
measure 
prior to 18 
weeks 
gestation 
and 1 after 
28 weeks 
gestation 

Age at 
menarche, 
continuous 

First report 
of age at 
menarche, 
reported by 
parents 
and/or 
daughters 
in a series 
of annual 
questionnai
res from 8-
17 years or 
during clinic 
visits at 
12.5 or 13.5 
years.  
Used age 
reported by 
participant 
or, if age 
missing, 
midpoint 
between 
last 
questionnai
re with pre-
menarche 
report and 
first 
questionnai
re where 
menarche 
reported 

Linear 
regression 
models for age 
at menarche 
with  multiple 
imputation for 
missing data 
(β<0 indicates 
earlier breast 
development - 
difference in 
months) 

Pre-pregnancy BMI, 
continuous: 
Total effect from linear 
regression for age at 
menarche: 
β=-0.34, 95% CI= -0.45, 
-0.62 
 
Direct effect from linear 
regression for age at 
menarche, controlling for 
pre-pubertal BMI as a 
mediator: 
β=-0.09, 95% CI= -0.20, 
0.03 
 
Gestational weight gain 
in kg, continuous: 
Total effect from linear 
regression for age at 
menarche: 
β=-0.17, 95% CI= -0.26, 
-0.07 
 
Direct effect from linear 
regression for age at 
menarche, controlling for 
pre-pubertal BMI as a 
mediator: 
β=-0.09, 95% CI=-0.20, 
0.03 
 
Inference is similar in 
categorical models. 

Maternal age at 
delivery, daughter's 
ethnicity, parity, 
maternal smoking 
during pregnancy, 
socioeconomic 
status and maternal 
age at menarche. 
 
GWG models 
adjusted for 
covariates above, 
plus maternal 
prepregnancy BMI 
and gestational age. 
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Supplemental Table 2.3. Studies of birth size and the timing of breast development 

Author, 
Location, 
Year 

Study 
Design 

Study 
Population (N, 
Age range, 
Name) Exposure 

Exposure 
source Outcome 

Outcome 
source Statistical method Results Covariates 

Bhargava, 
1995, 
India 

Prospective 
cohort 

116 girls with 
birthweight<200
0g and 100 
control girls with 
birthweight 
≥2500g and 37-
41 weeks 
gestation. 
Controls were 
matched by 
parental height, 
parental 
education and 
SES 
 
Age 14 years at 
follow-up 
 
Children born at 
Safdarjung 
Hospital, New 
Delhi, between 
1968-1971 

LBW: 
<2000g 
Controls: 
≥2500g  
 
LBW group 
was further 
divided into: 
Preterm: 
weight 
appropriate 
for date 
SFD: term 
but small for 
date  

Medical 
records 

Breast 
Development 
(Breast 
Tanner stage 
2) 

Assessed 
by study 
staff at 
visits 

Comparison of 
means using t-tests 
or ANOVA for more 
than two groups 
Sexual maturation 
data evaluated by 
probit analyses 

"Almost half of LBW 
girls were B2 at 9.5 
years compared to 
28% amongst controls" 
 
Median age at B2: 
Controls: 11.1 years 
SFD girls: 10.7 years 
 
Puberty onset to 
menarche length 
similar among all 
groups (data not 
shown) None 

Powls, 
1996, 
United 
Kingdom 

Prospective 
cohort 

69 VLBW and 81 
control girls 
 
Age 11-13.5 
years at follow-
up 
 
Hospital-based 
cohort of VLBW 
children treated 
at Mersey 
regional 
neonatal unit, 
recruited while in 
primary school 
for two previous 
studies: 
1. birthweight 
<1251g and born 
between Jan. 
1980 and June 

VLBW: 
<1251g or 
<1501g and 
<31 weeks 
Controls: 
normal 
birthweight 

Hospital 
records for 
VLBW, not 
stated for 
controls 

Breast 
Tanner stage 
at adolescent 
visit (Breast 
development 
> Stage 1) 

Assessed 
by study 
staff at 
adolescent 
visit 

Mann-Whitney U 
test for stages of 
puberty 

Number of girls who 
reached breast Tanner 
>1: 
VLBW: 50/69 (72%) 
Control: 56/81 (68%) 
 
Median breast Tanner 
stage (IQR): 
VLBW: 2 (1-4) 
Control: 2 (1-4) 
(p=0.73) None 
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1981 
2. birthweight 
<1501g and 
gestation <31 
weeks and born 
between Jan. 
1982 and Nov. 
1983 
Normal 
birthweight 
controls matched 
to age and sex, 
classmates of 
cases 

Bacallao, 
1996, 
Cuba 

Prospective 
cohort 

130 girls (girls 
with missing 
length and those 
with birthweight 
<2500g were 
excluded) 
 
Age 13.6-14.5 
years at follow-
up 
 
Students in two 
high schools at 
the municipality 
of Boyeros in 
Havana in 
September 
1986, subset of 
longitudinal 
study on height 
and weight that 
was initiated in 
Havana in 1972 
when children 
aged 12 mo.  

Birthweight 
in grams 

Obstetric 
card 

Breast 
Tanner stage 
at entry to 
high school 

Assessed 
by study 
staff 

Pearson correlation 
coefficients relating 
birthweight to stage 
of sexual 
development 
(Breast Tanner 
stage) 
 
Mean birthweight 
by breast Tanner 
stage 
 
Path analysis 
model relating 
birthweight, height 
at 14 years and 
breast Tanner 
stage 

Mean and SD of 
birthweight in g in girls 
by their breast Tanner 
stage at 14 years 
TS3: Mean=2930g, 
SD=286 
TS4: Mean= 3300g, 
SD=331 
TS5: Mean= 3316g, 
SD=395 
 
Actual and estimated 
correlations among 
birthweight and stage 
of sexual development 
in girls from path 
analysis model: 
Actual=0.18 
Estimated=0.18 

Path model 
included height 
at 14 years 



 

 

 

1
9
4

 

Ford, 
2000, 
Australia 

Prospective 
cohort 

39 VLBW, 42 
LBW and 16 
NBW girls with 
pubertal data 
 
Age 14 years at 
follow-up 
 
Infants born at 
Royal Women's 
Hospital in 
Melbourne and 
survived to age 
14y: 
VLBW: Infants 
<1000g born 
between 
1/1/1977 and 
3/31/1982 
LBW: Infants of 
1000-1499g born 
in last 18 months 
of study 
NBW: infants 
>2499g 
randomly 
selected from 
births in last 18 
months of study 

VLBW:<1000
g 
LBW: 1000-
1499g 
NBW: 
>2499g 

Hospital 
records 

Breast 
Tanner stage 
at visit, 
dichotomized 
as >3 

Clinician 
rating at 14 
year old 
visit 

Comparison of N 
and % of girls with 
breast Tanner 
stage >3 at age 
14y 

N and % of girls with 
breast TS >3 at 14y: 
VLBW: 29/39 (74%) 
LBW: 29/42 (69%) 
NBW: 12/15 (75%) None 

Peralta-
Carcelen, 
2000, 
United 
States 

Cross-
sectional 
analysis of 
prospective 
cohort 

31 ELBW and 31 
NBW girls 
 
Age 12-17.9 
years at visit 
 
ELBW infants 
(birthweight 
≤1000g) born 
between 1978-
1984 who had 
been monitored 
at least once 
through 
Newborn Follow-
up Program at 
the University of 
Alabama at 
Birmingham and 
controls born 
between 1978 

ELBW:≤1000
g NBW: 
≥2500g 

ELBW from 
medical 
records 
(Newborn 
Follow-Up 
Program 
Database), 
NBW from 
parent 
report in 
adolescenc
e 

Breast 
Tanner stage 
at visit, 
dichotomized 
as >3 

Clinician 
rating at 
visit, 
blinded to 
birthweight 
status 

Comparison of N 
and % of girls with 
breast Tanner 
stage >3 at visit 

Number of girls with 
breast Tanner stage 4 
or 5: 
ELBW: 27/31 (87%) 
NBW: 30/31 (97%) None 
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and 1984 at term 
(>37 weeks) and 
birthweight 
≥2500g, 
matched to 
cases by age, 
race, sex and 
SES by 
Hollingshead 
scale 

Ghirri, 
2001, Italy 

Prospective 
cohort 

19 full-term SGA 
girls and 19 
normal weight 
controls girls 
matched by date 
of birth 
 
Age 17.5-18.5 
years at follow-
up 
 
Adolescent 
follow-up in Italy. 
Inclusion criteria:  
1) GA between 
37-41 weeks;  3) 
not multiple 
pregnancy; 4) no 
intrauterine 
infections, 
congenital 
anomalies, 
chromosomal 
alterations; no 
asphyxia at birth; 
age at evaluation 
of final height 
≥14.5 years; no 
pubertal 
retardation; last 
12 months 
growth velocity 
≤0.5 cm; Italian 
origin.  

SGA: birth 
weight below 
the third 
percentile for 
gestational 
age 
NBW:  
birthweight 
between 
25th and 
75th 
percentile 

Medical 
records 

Age at breast 
development 

Self-
reported by 
girl when 
17.5-18.5 
years 

Comparison of 
means using t-tests 

Age at breast 
development: 
SGA: 9.9 years 
NBW: 10.4 years None 
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Delemarre
-van de 
Waal, 
2002, 
Netherlan
ds 

Cross-
sectional 
analysis of 
prospective 
cohort 

35 girls 
 
Age 12.3 +/- 1.5 
years at first visit 
(both sexes) 
 
"Healthy" girls 
were seen twice 
in 1 year for 
longitudinal 
study of growth 
and 
development 

Birthweight 
SDS, 
standardized 
on 
birthweight 
references 
for 
gestational 
age 
published by 
Campbell et 
al, and 
categorized 
into tertiles  

Birthweight 
and 
birthlength 
obtained 
from 
obstetric 
records 

Tanner 
breast stage 
at visit 
 
Chronologica
l age 
adjusted for 
mean 
pubertal age, 
the age at 
which a 
certain 
breast stage 
is normally 
reached 

Tanner 
breast 
stage 
assessed 
by study 
staff 

Independent 
sample t tests for 
differences in 
sexual maturation 
of pubertal children 
with the tertiles with 
highest and lowest 
birth weight 
 
Pearson 
correlations 
between birth 
weight and breast 
stage adjusted for 
chronological age 
(lower CA/pubertal 
age indicates 
earlier breast 
development) 

Correlation between 
birthweight and breast 
stage adjusted for CA: 
First measure: r=0.41, 
p=0.02 
Second measure: 
r=0.31, p=0.10 
 
Trend towards lower 
breast stage in girls 
with highest birthweight 
(p for highest vs lowest 
birthweight SDS 
tertile): 
First measure: p=0.15 
Second measure: 
p=0.07 
 
Trend towards higher 
CA/pubertal age X100 
in girls with highest 
birthweight   (p for 
highest vs lowest 
birthweight SDS 
tertile): 
First measure: p=0.08 
Second measure: 
p=0.01 

Age at visit when 
outcome is 
chronological 
age/pubertal age 

Veening, 
2004, 
Netherlan
ds 

Prospective 
cohort 

12 AGA and 17 
SGA term infants 
 
Mean age 9 
years at first visit 
and 11.6 years 
at second visit 
 
Follow-up of 
SGA and AGA 
children traced 
from the 
database of all 
pregnancies, 
deliveries and 
perinatal events 
of children born 
in the VU 
University 
Medical Center 
(registered since 
1980) 

SGA: 
birthweight 
below the 
10th 
percentile 
corrected for 
gestational 
age (GA), 
gender and 
parity using 
Dutch 
reference 
data 
 
AGA: 
birthweight 
>10th 
percentile 
using Dutch 
reference 
data 

Birthweight 
and 
gestational 
age from 
register  

Tanner 
breast stage 
at visit 
 
For girls in 
B2 or above, 
chronological 
age adjusted 
for mean 
pubertal age, 
the age at 
which a 
certain 
breast stage 
is normally 
reached 
according to 
reference 
data of the 
Dutch 
nationwide 
study 

Tanner 
breast 
stage 
assessed 
by study 
staff 

Chi-square test for 
qualitative 
variables and 
Student's t-test for 
quantitative 
variables for 
differences 
between SGA and 
AGA groups 
((lower CA/pubertal 
age indicates 
earlier breast 
development) 

Mean (SD) 
CA/PA*100% in 
pubertal girls only at 
second visit (13 girls 
still B1): 
SGA (N=13): 
Mean=94.4, SD=7.1 
AGA (N=9): 
Mean=106.4, SD=10.4 
p=0.004 

Age at visit when 
outcome is 
chronological 
age/pubertal age 
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Semiz, 
2009, 
Turkey 

Cross-
sectional 

1562 girls  (659 
with breast 
Tanner stage) 
 
Age 6-16.5 years 
 
Cross-sectional 
school-based 
study of 
schoolchildren in 
grades 1-8 in 
primary schools 
in the Denizli 
province 
between March-
May 2005  Birth weight 

Reported 
by parents 

Breast 
Tanner stage 
at visit, 
categorized 
into early, 
average or 
delayed 
based on 
age at B2: 
Early: Age at 
B2 <10th 
percentile 
(7.19 years)  
Delayed: 
Age at B2 > 
90th 
percentile 
(11.10 years) 

Assessed 
by 
pediatrician 

 Comparison of 
possible factors 
affecting pubertal 
onset to pubertal 
timing and birth 
weight using Chi-
square test. 

The relation between 
birth weight and onset 
of puberty in girls was 
not significant (p>.05, 
data not shown) None 

Boyne, 
2010, 
Jamaica 

Prospective 
cohort 

140 girls who 
were seen at all 
scheduled visits 
between birth 
and 11 years 
 
Age 11 years at 
follow-up 
 
Vulnerable 
Windows Cohort 
Study, pregnant 
women were 
recruited in 
1992-1993 at 
University 
Hospital of the 
West Indies, 
Kingston,Jamaic
a for birth cohort.  

Birth weight, 
standardized 
 
BMI at birth, 
standardized 
 
Crown heel 
length at 
birth, 
standardized 

Weight and 
crown heel 
length 
measured 
within 24 
hours of 
delivery 

Breast 
Tanner stage 
at 11 year 
visit 

Breast 
Tanner 
stage 
assessed 
every 6 
months 
starting at 
age 8 years 
by trained 
nurses 
(visual only, 
no 
palpation) 

Multiple regression 
analyses  to 
examine the rela- 
tionships among 
child’s growth and 
body composition 
and the stage of 
puberty with 
outcomes and 
predictors in 
standardized form, 
so that the 
regression 
coefficients were 
effectively 
correlation 
coefficients. 

Correlations between 
the size at birth and 
growth of Afro-
Caribbean girls and 
their stage of breast 
development at age 11 
years: 
Birthweight: -0.07 
BMI at birth: 0.02 
Birthlength: -0.10 
P≥.05 for all 
correlations Age at clinic visit 
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Christense
n, 2010, 
United 
Kingdom 

Prospective 
cohort 

3938 singleton 
girls with 
consistent 
pubertal staging 
and prenatal 
data 
 
Age 8-14 years 
at follow-up 
 
Avon 
Longitudinal 
Study of Parent 
and Children, 
born April 1991-
December 1992 

Birthweight, 
categorized 
as: 
<2500g 
2500-3999g 
≥4000g 

Medical 
records 

Breast 
Tanner stage 

Breast 
Tanner 
stage 
reported by 
girls or 
mothers at 
repeated 
pubertal 
self-
assessment
s between 
8-14 years 
of age  
 
*Girls with 
inconsistent 
responses 
were 
excluded 
from 
analyses 

Ordinal probit 
models for 
progression 
through Tanner 
stages of breast 
development, using 
repeated breast 
Tanner 
assessments (β>0 
indicates increased 
probability of being 
in higher Tanner 
stage - earlier 
development) 

Birthweight must not 
have been associated 
with breast 
development at P<.05 
because it was not 
included in final model 
(data not shown) 
 
Without adjusting for 
girl's BMI, birthweight 
still was not a 
significant predictor of 
breast development 
(data not shown) 

Age at 
assessment 

Maisonet, 
2010, 
United 
Kingdom 

Prospective 
cohort 

1316 singleton, 
term girls (37-42 
weeks gestation) 
with consistent 
pubertal staging 
and birth size 
data 
 
Age 8-14 years 
at follow-up 
 
Avon 
Longitudinal 
Study of Parent 
and Children, 
born April 1991-
December 1992 

Birthweight,  
continuous 
 
Birthlength, 
continuous 
 
SGA: birth 
weight <10th 
percentile of 
weight for 
gestational 
age. 
Referent 
weight 
percentiles 
estimated by 
weight and 
gestational 
age data of 
singleton 
girls from the 
full ALSPAC 
cohort 

Medical 
records 

Age at 
transition to 
Breast 
Tanner stage 
≥2 or ≥3 

Breast 
Tanner 
stage 
reported by 
girls or 
mothers at 
repeated 
pubertal 
self-
assessment
s between 
8-14 years 
of age  
 
*Girls with 
inconsistent 
responses 
were 
excluded 
from 
analyses 

Interval-censored 
parametric survival 
model for age at 
transition to breast 
Tanner stage  ≥2 or 
≥3 assuming a 
normal distribution 
(Diff <0 indicates 
earlier breast 
development) 

Adjusted difference in 
median age at 
transition to breast 
Tanner stage ≥2: 
Birthweight: Diff=0.00, 
95% CI=-0.00, 0.00 
Birthlength: Diff= -0.02, 
95% CI=-0.06, 0.03) 
SGA: Diff=-0.23, 95% 
CI=-0.55, 0.09 
 
Adjusted difference in 
median age at 
transition to breast 
Tanner stage ≥3: 
Birthweight: Diff=0.00, 
95% CI=-0.00, 0.00) 
Birthlength: Diff=-0.02, 
95% CI=-0.06, 0.01 
SGA: Diff=-0.17, 95% 
CI=-0.45, 0.10 

Maternal age at 
menarche, 
previous live 
birth, maternal 
race or ethnicity, 
smoking during 
pregnancy, 
maternal 
prepregnancy 
BMI, maternal 
age at delivery, 
maternal 
education 
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Olivo-
Marston, 
2010, 
United 
States 

Cross-
sectional 

956 girls with 
birthweight and 
Tanner stage 
data available 
 
Age 8-11 years 
 
Cross-sectional 
data from 1988-
1994 NHANES 
III survey of girls 
age 8-11 years 

Birthweight, 
treated as a 
continuous 
variable (per 
100g) 
increase and 
categorized: 
<2500g 
2500-2999g 
3000-3499g 
3500-3999g 
≥4000 

Reported 
by mother 
at home 
interview 

Breast 
Tanner 
stage, 
categorized 
as B3-5, B2 
and B1 

Assessed 
by 
NHANES 
physician at 
clinic visit 
by 
observation 
(no 
palpation) 

Multinomial logistic 
regression was 
used to estimate 
adjusted and 
unadjusted ORs of 
being Tanner 
Stage 2+ for 
asynchronous 
maturation vs. 
Stage 1 for the 
pubertal pathway.   
 
All analyses were 
weighted by the 
NHANES sample 
weights and the 
stratification and 
multistage cluster 
design used in the 
complex sampling 
was accounted 
for in the 
computation of 
standard errors, 
confidence 
interval (CI) and P-
values. 

Adjusted OR for 
asynchronous breast 
development, 
continuous birthweight 
(per 100g): 
OR for B2 vs. B1=1.01, 
95% CI=0.96, 1.07 
 
OR for B3-5 vs. 
B1=1.09, 95% CI=1.02-
1.27 
 
Adjusted OR for 
asynchronous breast 
development, 
categorized 
birthweight: 
OR for B2 vs. B1: 
<2500g: OR=0.87, 
95% CI=0.27, 2.79 
2500-2999g: OR=0.88, 
95% CI=0.41, 1.89 
3000-3499g: Referent 
3500-3999g: OR=1.11, 
95% CI=0.36, 3.40 
≥4000g: OR=1.25, 
95% CI=0.62, 2.55 
 
OR for B3-5 vs. B1: 
<2500g: OR=2.26, 
95% CI=0.22, 13.13 
2500-2999g: OR=3.28, 
95% CI=0.99, 7.32 
3000-3499g: Referent 
3500-3999g: OR=1.53, 
95% CI=0.49, 4.80 
≥4000g: OR=3.18, 
95%CI=1.39, 8.25 

Age, 
race/ethnicity, 
height and BMI 
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Papadimitr
iou, 2011, 
Greece 

Case-
control 

61 girls with 
early puberty, 
defined as 
breast 
development 
before the age of 
9 years but after 
the age of 8 
years 
100 control girls 
with onset of 
puberty after the 
age of 9 years  
40 with IPP, 
defined as 
breast 
development 
before 8 years of 
age (not eligible 
for this review) 
 
Mean age (SD): 
 Controls: 10.2 
(1.6) 
 Early puberty: 
9.2 (0.8) 
 IPP: 7.2 (1.1) 
 
Girls evaluated 
at the Pediatric 
Endocrinology 
unit of the Third 
Department of 
Pediatrics of the 
University of 
Athens, at 
"Attikon" 
University 
Hospital, Athens, 
Greece 

Birth weight, 
kg 
 
Birthlength, 
cm 

Abstracted 
from 
personal 
health book 
of the 
patient 
(usually 
made by 
private 
pediatrician
) 

3 groups 
based on 
timing of 
breast 
development
: 
Controls: 
healthy girls 
with onset of 
puberty after 
the age of 9 
years 
Early 
puberty: girls 
with breast 
development 
before the 
age of 9 
years but 
after the age 
of 8 years, 
as reported 
by parents 
IPP: girls 
with breast 
development 
before 8 
years of age 
(not eligible 
for this 
review) 

Onset of 
breast 
developme
nt was 
reported by 
parents and 
verified by 
palpation by 
a physician 

Comparison of 
birthweight and 
birthlength across 3 
groups using 
ANOVA 

Mean (SD) birthweight 
in kg by group: 
IPP: Mean=3.11kg, 
SD=0.53 
Early puberty: 
Mean=3.06kg, 
SD=0.41 
Controls: Mean=3.11, 
SD=0.53 
P ≥0.05 
 
Mean (SD) of 
birthlength in cm by 
group: 
IPP: Mean=51.18cm, 
SD=2.29 
Early puberty: 
Mean=49.94cm, 
SD=2.26 
Controls: 
Mean=50.02cm, 
SD=2.42 
P ≥0.05 None 
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Wang, 
2012, 
United 
States 

Prospective 
cohort 

305 term girls  
 
Age 10-15 years 
at first report of 
pubertal status, 
followed 
annually until 
TS5 or max of 5 
years 
 
Adolescent 
follow-up of 
subset of the 
North Carolina 
Infant Feeding 
Study, infants 
born 1978-1982 

Birthweight 
in kg 

Recorded 
at birth by 
nurse 

Breast 
Tanner stage 
at first 
adolescent 
report, 
categorized 
for analysis 
as >2 or >3 

Daughter 
self-report 
at first 
adolescent 
survey 
when 
available 

Parametric survival 
analyses with log 
normal distribution 
for age at report of 
breast Tanner 
stage >2 or >3 
(girls were either 
left or right 
censored at age of 
TS report) (β<0 
indicates earlier 
age at attainment 
of breast stage) 

Regression coefficient  
in adjusted log-normal 
survival analyses of 
time to Breast Stage 
>2 
Birthweight: β=-0.06, 
95% CI=-0.11, -0.01 
 
Regression coefficients 
(95% CI) in adjusted 
log-normal survival 
analyses of time to 
Breast Stage >3 
Birthweight: β=-0.05, 
95%CI = -0.10, 0.01 

Weight gain 
(change in Z-
score) from 0-6 
months, 6-12 
months, 1-2 
years, 2-5 years, 
maternal pre-
pregnancy 
weight, maternal 
age at delivery 
and race (race 
for TS>3 model 
only due to small 
cell counts). 
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Hernande
z, 2013, 
Chile 

Prospective 
cohort 

16 LBW and 25 
AGA girls, TS2 
at enrollment 
and BMI 
between 10th 
and 95th 
percentile and 
followed for 3 
years 
 
7-12 years at 
enrollment 
 
Age-matched 
LBW and AGA 
girls 7-12 years 
recruited from 
public schools in 
Santiago and 
Concepcion, 
Chile 

AGA - birth 
weight 
between the 
10th and 
90th 
percentile for 
gestational 
age 
 
LBW - birth 
weight below 
the 10th 
percentile for 
gestational 
age 

Birth 
weight, birth 
length and 
gestational 
age 
reported by 
parents and 
confirm in 
child's 
health 
control card 

Breast 
Tanner stage 
progression 

Breast 
Tanner 
stage 
assessed 
by 
researchers 
at biannual 
follow-up 
visits 

Dichotomous 
variables were 
created for Tanner 
stage progression 
and for the 
Ferriman and 
Gallway scoring 
and evaluated by 
means of a logistic 
regression model 
using as a 
measurement of 
association the 
change in monthly 
odds ratios 
adjusted by the 
condition of AGA or 
LBW 
 
Differences in 
breast Tanner 
stage of the two 
groups assessed 
by Kaplan Meier 
survival analyses 
(log rank test) 

LBW girls showed 
slightly faster breast 
development at first 2 
years.  
- At 6 months of follow-
up 55% of AGA and 
23% of LBW were TS2. 
-After 1 year of follow-
up (p<0.05) 
   -59.3% of AGA and 
34.6% of LBW girls 
were TS2 
   -40.7% and 57.7% 
were TS3 
   -7.7% of LBW and 
none of the AGA girls 
were in Tanner stage 
IV 
-At 2 years of follow-up 
(p<0.05) 
  -48.3% of AGA and 
35% of LBW girls were 
TS4 
- 27.5% of AGA and 55 
% of SGA were TS5  None 
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Kale, 
2014, 
United 
States 

Prospective 
cohort 

1237 girls 
 
Age 6-8 years at 
enrollment, 
followed for 6 
years 
 
BCERP Puberty 
Study, girls age 
6-8 years at 
enrollment in 
2004-2007 in 3 
sites (New York, 
Cincinnati, Bay 
Area) 

Birthweight, 
categorized 
as: 
<2500g 
≥2500g 

Reported 
by primary 
caregiver at 
baseline 

Breast 
Tanner stage 
≥2 

Breast 
Tanner 
stage at 
study visit 
assessed 
by clinical 
staff 
(biannual 
visits for 
Cincinnati, 
annual 
visits for CA 
and NY 
sites) 

Weibull survival 
models for age at 
onset of breast 
development, using 
interval and right 
censoring. 5 years 
was used as lower 
interval bound for 
girls with breast 
development at 
baseline (HR>1 
indicates earlier 
breast onset) 

HR for breast onset: 
<2500g: HR=0.9, 95% 
CI=0.7, 1.1 
≥2500g: referent 

None (age as 
time scale) 
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Supplemental Table 2.4. Studies of birth size and the timing of menarche 

Author, 
Location, 
Year 

Study 
Design 

Study 
Population (N, 
Age range, 
Name) Exposure 

Exposure 
source Outcome 

Outcome 
source Statistical method Results Covariates 

Miller, 
1972, 
United 
Kingdom 

Prospective 
cohort 

230 women with 
menarche data 
 
Age 22 years at 
follow-up 
 
Subset of the 
Thousand 
Families in 
Newcastle upon 
Tyne study of 
babies born in 
May and June 
1947 and seen 
regularly until 
1962 (15 years 
of age).  

Birthweight 
(kg) 

Domiciliary 
midwifery 
service or 
maternity 
hospital 
records 

Age at 
menarche 

Recorded 
during 
adolescent 
visits 

Mean birthweight 
by age at 
menarche 

Mean birthweight (kg) 
by age at menarche: 
<12  years: 3.07 
12 years: 3.25 
13 years: 3.35 
14: 3.27 
15+: 3.33 None 

Zacharias, 
1976, 
United 
States 

Prospective 
cohort 

633 girls with 
menarche data 
 
Followed for 10 
years 
 
Girls age 8-10 
identified in 
September 1965 
in Newton, MA 
via school 
records and 
followed for 10 
years 

"Girls born 
prematurely 
(birthweight<
2500g) and 
girls born at 
full term" 

Source of 
birthweight 
data not 
stated 

Age at 
menarche 

Date of 
menarche 
recorded to 
the day 

Mean age at 
menarche by 
birthweight 
category 

Mean (SD) age at 
menarche by 
birthweight: 
<2500g: 12.7 years 
(SD=1.15) 
≥2500g: 12.83 
(SD=1.21) 
*Not statistically 
different from each 
other None 

Billewicz, 
1981, 
United 
Kingdom 

Prospective 
cohort 

699 girls with 
menarche data 
 
Age 9-17 years 
 
Subset of White 
Newcastle-upon-
Tyne subset of 
birth cohort, girls 
born in 1962 
followed up 
every 6 months 
from 9-17 years 

Birth weight, 
continuous 

Birth cohort 
records 

Age at 
menarche 

Assume 
provided by 
girls at 
biannual 
follow-up 
visits 

Correlation, 
comparison of 
means 

Correlation between 
birthweight and age at 
menarche: r=0.007 
 
Mean age at menarche 
in girls with birthweight 
≤2.5kg: 13.46 years, 
SD 1.14 
Mean age at menarche 
overall: 13.37 years None 
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Fledelius, 
1982, 
Denmark 

Prospective 
cohort 

34 LBW and 31 
full-term girls 
 
Age 18 years at 
follow-up 
 
Follow-up of 
subset of 
'University 
Hospital of 
Copenhagen 
Study 1959-1961 
on the 
Significance of 
Gestation and 
Delivery for the 
Health and 
Development of 
the Child' 

LBW: 
<2000g 
FT: 3-4000g 

Hospital 
records 

Age at 
menarche 

Assumed 
reported by 
girls at 18 
year follow-
up 

Comparison of 
mean 

Mean age at menarche 
(years): 
LBW: 13.5 years 
FT: 13.0 years None 

Westwood
, 1983, 
Canada 

Prospective 
cohort 

26 SGA infants 
and 26 controls. 
Controls must be 
singleton with 
GA between 38-
42 weeks and 
birthweight 
between 25th 
and 75th 
percentiles, 
matched by sex, 
race, ethnic 
origin and SES 
to SGA infants. 
 
Age 13-19 years 
at follow-up 
 
SGA infants born 
at Royal Victoria 
Hospital, 
Montreal, 
between 1960-
1966, and 
matched controls 

SGA, defined 
as 
birthweight at 
least 30% 
less than 
expected 
weight by 
Streeter 
tables, which 
is more than 
2 SD below 
the mean 
weight for 
the nursery 
of hospital 
where they 
were born. 
Control 
babies had 
birthweight 
between 
25th and 
75th 
percentiles 

Hospital 
records 

Age at 
menarche Self-report 

Comparison of 
means 

Mean age at 
menarche: 12.4 years 
in SGA girls, 12.7 
years in controls 

None - matched 
for age (within 3 
months), sex, 
race, ethnic 
origin and SES 
at birth (mother 
was a private or 
public patient 
and marital 
status) 



 

 

 

2
0
6

 

Roberts, 
1986, 
United 
Kingdom 

Cross-
sectional 

1217 girls with 
birthweight and 
menarche data 
 
School age, 
range not 
provided 
 
15 schools 
(junior, 
secondary 
grammar, 
Church of 
England, 
Catholic) in 
Cumbria region, 
visited in Oct-
Nov 1976 

1217 girls 
with 
birthweight 
and 
menarche 
data 

School age, 
range not 
provided Birth weight 

Parent 
report in 
adolescenc
e 

Logistic regression, 
contribution of each 
variable was 
measured by the 
increase in 
deviance resulting 
from deleting that 
variable from the 
model. Significance 
assessed by chi-
square test 

No association 
between birthweight 
and age at menarche 
after controlling for 
family size and position 
(data not shown) 

Age, family size, 
position 

Stark, 
1989, 
United 
Kingdom 

Prospective 
cohort 

3018 girls with 
data on 
birthweight, 
menarche and 
weight at age 7 
(girls with 
gestational age 
<30 and >44 
weeks were 
excluded) 
 
Age 16 years at 
follow-up 
 
Follow-up of 
subset of 1958 
National Child 
Development 
Study (NCDS) 
(birth cohort of 
all children born 
in England, 
Scotland and 
Wales in one 
week in March 
1958) Birth weight 

Medical 
records 
(assumed) 

Age at 
menarche 

Self-report 
by girl at 16 
year old 
visit 

Relative weight 
distribution by age 
at menarche 

Birth weight and 
menarche were not 
related (data not 
shown) None 
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Prapas, 
1989, 
Greece 

Cross-
sectional 

2336 
 
Age 15-18 years 
 
Students from 
Crete and 
Thrace, March-
May 1988 

Birth weight, 
categorized 
(≤2500g, 
2500-2900g, 
3000-3400g, 
3500-3900g, 
≥4000g 

Self-report 
in 
adolescenc
e 

Age at 
menarche Self-report 

Comparison of 
means by 
birthweight and 
residence (F test) 

Mean menarcheal age 
by birthweight group: 
Crete: 
   ≤2500g: 12.73 
   2500-2900g: 12.16 
   3000-3400g: 12.31 
   3500-3900g: 12.59 
   ≥4000g: 12.49 
Thrace: 
   ≤2500g: 12.53 
   2500-2900g: 12.48 
   3000-3400g: 12.34 
   3500-3900g: 12.42 
   ≥4000g: 12.38 
 
Significant correlation 
(F4, 709=4.860, 
p<.0001 for Crete and 
F2, 49=4.183, p<.05) 
for Thrace 

Region 
(stratified) 

Moisan, 
1990, 
Canada 

Nested 
case-
control 

333 cases (girls 
whose mom 
reported 
menarche 
between 1986 
baseline visit 
and 1987 follow-
up contact) and 
333 pre-
menarcheal 
controls, 
matched to 
birthdate 
 
Girls age 9.5-
12.5 years an 
enrollment 
 
Fifth-grade 
classes from 122 
schools in 
Quebec City, 
Canada in 1986 

Birth weight, 
categorized 
into quartiles 
for analysis 

Parent 
report in 
adolescenc
e 

Early 
menarche 

Parent 
report of 
menarche 
at follow-up 
questionnai
re 

Logistic regression 
for early menarche, 
with exposures in 
quartiles 

No association 
between birthweight 
and menarche (data 
not shown) Not shown 
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Frisancho, 
1994,  

Prospective 
cohort 

756 girls 
 
Followed up to 
17 years 
 
White 
participants in 
the Child Health 
and 
Development 
Studies, 
evaluated at 
birth and at 15, 
16 and 17 years 
of age 

SGA: 
birthweight<1
0th 
percentile of 
gestational 
age 
AGA: 
birthweight 
between 
11th and 
99th 
percentiles of 
gestational 
age 

Gestational 
age 
(calculated 
from 
information 
on LMP) 
and 
birthweight 
measured 
at birth 

Age at 
menarche 

Not stated, 
assumed 
reported by 
adolescents 
at 15-17 
years of 
age 

Mean age at 
menarche in SGA 
vs. AGA (text only) 

Mean (SD) of age at 
menarche: 
 SGA: 12.68y (1.21) 
 AGA: 12.78y (1.19) None 

St. 
George, 
1994, New  
Zealand 

Prospective 
cohort 

415 girls with 
menarche data 
 
Followed up to 
18 years of age 
 
Follow-up of 
Dunedin birth 
cohort, born April 
1972-March 
1973 

Birth weight 
(kg), 
continuous 
BMI at birth, 
continuous 
Birthlength 
(cm), 
continuous 

Study 
records 

Age at 
menarche, 
categorized 
as:   
  <12 years 
  12-13 years 
  13-14 years 
  >14 years 

Self-report 
when girls 
were 11, 13 
and 15 
years of 
age 

Mean birthweight 
by age at 
menarche category 

Mean birth weight in kg 
by age at menarche 
(p=0.91) 
<12 years: 3.35 
12-13 years: 3.31 
13-14 years:3.30 
>14 years: 3.33 
 
Mean BMI at birth by 
age at 
menarche(p=0.69) 
<12 years: 12.6 
12-13 years: 12.4 
13-14 years: 12.4 
>14 years: 12.5 
 
Birth length in cm 
(p=0.99) 
<12 years: 51.4 
12-13 years: 51.4 
13-14 years: 51.4 
>14 years: 51.5 None 
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Bhargava, 
1995, 
India 

Prospective 
cohort 

116 girls with 
birthweight<2000
g and 100 
control girls with 
birthweight 
≥2500g and 37-
41 weeks 
gestation. 
Controls were 
matched by 
parental height, 
parental 
education and 
SES 
 
Age 14 years at 
follow-up 
 
Children born at 
Safdarjung 
Hospital, New 
Delhi, between 
1968-1971 

LBW: 
<2000g 
Controls: 
≥2500g  
 
LBW group 
was further 
divided into: 
Preterm: 
weight 
appropriate 
for date 
SFD: term 
but small for 
date  

Medical 
records 

Age at 
menarche 

Not 
specified, 
assume 
self-report 
of 
menarche 
at follow-up 
visits 

Comparison of 
means using t-tests 
or ANOVA for more 
than two groups 
Sexual maturation 
data evaluated by 
probit analyses 

Median age at 
menarche from probit 
analyses: 
Controls: 13.6 years 
6 months earlier in 
preterms and 12 
months earlier in SFD 
girls (estimates not 
given) None stated 

Cooper, 
1996, 
United 
Kingdom 

Prospective 
cohort 

1471 girls with 
birthweight, body 
size at age 7 and 
menarche data 
 
Age 14-15 years 
at follow-up 
 
Follow-up of 
MRC National 
Survey of Health 
and 
Development 
studies, birth 
cohort born first 
week of March 
1946 

Birth weight, 
categorized 
into quintiles 
for analysis 

Health visit 
and midwife 
records 

Age at 
menarche 

Month and 
year of 
menarche 
reported by 
mom when 
girls were 
14-15 years 

 
Mean age at 
menarche by 
birthweight quintile, 
tests for trend 
Weibull survival 
model for age at 
menarche with right 
censoring 

Mean age at menarche 
by birthweight quintile 
(F-value for linear trend 
3.27, p=0.07): 
Lowest: 12.85y 
2: 12.81y 
3:12.93y 
4:12.84y 
Highest:13.03y 
 
Weibull model: 
birthweight significantly 
positively associated 
with menarche (Chi-
sq=18.0, df=4, 
p<.00001), weight at 
seven years was 
inversely associated 
with age at menarche 
 
Earliest age at 
menarche in those with 
low birthweight who 
became heavy at 7 
years 

Weibull model 
included weight 
and height at 7 
years 
 
Results similar 
after adjusting 
for birth order, 
birth interval, 
social class and 
general 
educational 
ability (not 
shown) 
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Powls, 
1996, 
United 
Kingdom 

Prospective 
cohort 

69 VLBW and 81 
control girls 
 
Age 11-13.5 
years at follow-
up 
 
Hospital-based 
cohort of VLBW 
children treated 
at Mersey 
regional 
neonatal unit, 
recruited while in 
primary school 
for two previous 
studies: 
1. birthweight 
<1251g and born 
between Jan. 
1980 and June 
1981 
2. birthweight 
<1501g and 
gestation <31 
weeks and born 
between Jan. 
1982 and Nov. 
1983 
Normal 
birthweight 
controls matched 
to age and sex, 
classmates of 
cases 

VLBW: 
<1251g or 
<1501g and 
<31 weeks 
Controls: 
normal 
birthweight 

Hospital 
records for 
VLBW, not 
stated for 
controls 

Age at 
menarche 

Assume 
self-report 
of 
menarche 
by girl at 
adolescent 
visit 

Chi-square for 
number of girls 
having reached 
menarche by group 
and median age at 
menarche by group 

Number of girls who 
reached menarche 
(p=0.7): 
VLBW: 15/69 (22%) 
Control: 20/81 (24%) 
 
Median age at 
menarche: 
VLBW: 12.0 y (11.2-
12.3) 
Control: 12.0 y (11.2-
12.3) None 
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Leger, 
1997, 
France 

Prospective 
cohort 

133 SGA cases 
and 152 AGA 
controls, first 
person with 
normal 
birthweight for 
GA (25-75th 
percentile) born 
immediately after 
an SGA subject 
(not matched for 
sex or GA) 
 
Age 16.6-24.5 
years at follow-
up 
 
All singleton 
subjects born 
SGA and at term 
during 1971-8 
were identified 
from the 
population-
based registry in 
Haguenau, 
France 

SGA: defined 
as having a 
birth weight 
or length (or 
both) below 
the third 
centile of the 
local 
standard 
values. 
Controls: 
birthweight 
for 
gestational 
age between 
25th and 
75th centile 

Birth 
registry 

Age at 
menarche 

Assume 
self-report 
at follow-up 

Difference between 
groups assessed 
by Chi-square test, 
Fisher's exact test 
and t test as 
appropriate 

No significant 
difference in mean 
(SD) age at menarche 
between the two 
groups: 
SGA: 12.6 (1.6) 
AGA: 12.9 (1.7) None 
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Persson, 
1999, 
Sweden 

Retrospecti
ve cohort 

263 "normal 
"girls with follow-
up data and 229 
"exposed" girls 
with menarche 
data. 
 
Record linkage 
through 18 years 
 
Cohorts selected 
from all 
singletons born 
alive at 
University 
Hospital of 
Uppsala from 
1973-1977 
whose parents 
had been born in 
Sweden and 
were residing in 
the city of 
Uppsala at that 
time using 
Medical Birth 
Registry  

Groups 
defined using 
ICD-7 codes 
from Medical 
Birth 
Registry and 
Inpatient 
Registry and 
through 
Naegel’s 
formula 
standardized 
for GA: 
Normal 
children: No 
registered 
abnormality 
in pregnancy 
or at 
delivery; 
Apgar score 
at 5 minutes; 
no postnatal 
abnormality  
SGA: 
Diagnosis of 
birth from 
Medical Birth 
Registry, or 
weight ≤2SD 
LGA: 
diagnosis of 
LGA from 
birth from 
Medical Birth 
Registry or 
weight ≥2 SD 
Short for GA: 
Diagnosis of 
short for GA 
birth or 
height ≤2SD 
Tall for GA: 
Diagnosis of 
tall for GA 
birth from 
Medical Birth 
Registry or 
height ≥2 SD 

Medical 
records 

Age at 
menarche 

Medical 
records 
(routine 
visits to 
postnatal 
child health 
centers and 
regular 
medical 
check-ups 
during 
school from 
7-18 years) 

T-tests and 
analysis of 
covariance for age 
at menarche 

Mean age at menarche 
(SD), p for difference, p 
for covariance 
comparing exposed to 
normal children: 
Normal: 13.1 y (1.0) 
SGA: 12.7y (1.1), 
pdiff=0.032, pcov = 
0.33 
LGA: 13.0y (1.1) 
pdiff=0.42, pcov=0.39 
Short GA: 12.8y (1.0), 
pdiff=0.148, pcov = 
0.71 
Tall GA: 13.1y (1.5) 
pdiff=0.9, pcov=0.50 

Analysis of 
covariance 
included 
maternal age, 
parity, and 
parameters from 
growth curve 
function from 0-6 
years (using 
repeated-
measure model 
with random 
coefficients for 
early childhood 
growth) 
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Tenhola, 
2000, 
Finland 

Prospective 
cohort 

35 SGA girls and 
35 AGA control 
girls matched for 
age and sex 
 
Mean age at 
follow-up: 
12.2±0.2 years 
 
SGA cases and 
selected controls 
from all children 
born at Kuopio 
University 
Hospital 
between April 1, 
1984 and March 
31, 1986 
(excluding July) 

SGA: birth 
weight 
and/or length 
and/or 
ponderal 
index >2 SD 
score below 
the mean for 
gestational 
age. (N=20 
defined by 
weight, 4 by 
length, 30 for 
both and 1 
by PI) 
AGA: 
birthweight, 
birth length 
and ponderal 
index ≥-2 SD 
score and ≤2 
SD score of 
the mean for 
gestational 
age. 

Birthweight, 
birth length 
and 
gestational 
age from 
hospital 
records 

Menarche 
status at 12 y 
visit 

Assume 
reported by 
girl at clinic 
visit 

Means compared 
by Wilcoxon 
matched-pair 
signed rank test 

Prevalence of 
menarche at visit: 9/35 
(25.7%) in both SGA 
and AGA girls  None 

Ford, 
2000, 
Australia 

Prospective 
cohort 

39 VLBW, 42 
LBW and 16 
NBW girls with 
pubertal data 
 
Age 14 years at 
follow-up 
 
Infants born at 
Royal Women's 
Hospital in 
Melbourne: 
VLBW: <1000g 
born between 
1/1/1977 and 
3/31/1982 
LBW: 1000-
1499g born in 
last 18 months of 
study 
-NBW: >2499g 
randomly 
selected from 
births in last 18 
months of study 

VLBW:<1000
g 
LBW: 1000-
1499g 
NBW: 
>2499g 

Hospital 
records 

Menarche 
status at 14 
year visit 

Self-report 
by girl 

Comparison of N 
and % of girls with 
no menarche at 
age 14y 

N and % of girls 
without menarche at 
14y: 
VLBW: 6/39 (15%) 
LBW: 0/42 
NBW: 1/16 (6%) None 
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Peralta-
Carcelen, 
2000, 
United 
States 

Cross-
sectional 
analysis of 
prospective 
cohort 

31 ELBW and 31 
NBW girls 
 
Age 12-17.9 
years at visit 
 
ELBW infants 
(birthweight 
≤1000g) born 
between 1978-
1984 who had 
been monitored 
at least once 
through 
Newborn Follow-
up Program at 
the University of 
Alabama at 
Birmingham and 
controls born 
between 1978 
and 1984 at term 
(>37 weeks) and 
birthweight 
≥2500g, 
matched to 
cases by age, 
race, sex and 
SES by 
Hollingshead 
scale 

ELBW:≤1000
g NBW: 
≥2500g 

ELBW from 
medical 
records 
(Newborn 
Follow-Up 
Program 
Database), 
NBW from 
parent 
report in 
adolescenc
e 

Age at 
menarche 

Assume 
self-report 
at visit 

Comparison of 
means 

Mean age at menarche 
by birthweight group: 
ELBW: 11.15 years 
NBW: 11.45 years None 

Saigal, 
2001, 
Canada 

Prospective 
cohort 

53 ELBW girls 
and 55 control 
girls, matched 
for gender, age 
and SES to each 
individual child 
 
Age 12-16 years 
at follow-up 
 
Adolescent 
follow-up of 
ELBW (501-
1000g) born 
between 1977-
1982 to 
residence of a 
geographically 
defined region in 

ELBW: 501-
1000g at 
birth (22% 
were SGA) 
Controls: 
term infants 

Medical 
records for 
ELBW, not 
stated for 
controls 

Menarche 
status at 
adolescent 
visit and age 
at menarche 

Recorded 
at 
adolescent 
visit, source 
not 
specified 

ELBW and control 
participants 
compared using 
Student's t test to 
determine 
differences in 
means 

No difference in 
proportion of girls who 
achieved menarche: 
 ELBW: 90% 
 Control: 91% 
 
No difference in mean 
age at onset of 
menarche: 
 ELBW: 12 years 
(SD=1.1) 
 Control: 12.2 years 
(SD=1.1) None 
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central-west 
Ontario and term 
controls were 
recruited at 8 
years of age 
from a random 
list through 
school boards 
(1977-1981 
births) 
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Adair, 
2001, 
Philippine
s 

Prospective 
cohort 

966 girls with 
complete 
information on 
birth 
characteristics 
and 
anthropometry at 
8 years 
 
Age 14-15 years 
at follow-up 
 
Cebu 
Longitudinal 
Health and 
Nutrition Survey, 
infants born in 
1984-1984 from 
women in 
randomly 
selected urban 
and rural 
barangays in 
Metro Cebu, 
Philippines.  

Birthweight, 
continuous 
 
Birth length, 
continuous 
 
4 groups 
characterize
d by birth 
weight (cut at 
median, 3kg) 
and birth 
length (cut at 
median, 
49cm): 
Long/light 
Long/heavy 
Short/light 
Short/heavy 

Infant 
weight and 
length 
measured 
by project 
staff as 
soon as 
births were 
reported. 
Length 
measured 
using 
custom-
made 
length 
boards. 

Age at 
menarche, 
continuous  

Girl's self-
report of 
month and 
year of first 
menses 
from 
interview at 
10-11 and 
14-15 years 

 
Parametric Weibull 
models to estimate 
associations 
between birth 
characteristics and 
age at menarche, 
with premenarcheal 
girls treated as 
right censored 
(~5%) (HR>1 
indicates earlier 
menarche) 

Adjusted HR, t-statistic 
and P-value from 
Weibull models for age 
at menarche with 
continuous exposure: 
Birthweight: HR=0.77, 
t=-2.48, p<0.05 
Birth length: HR=1.08, 
t=3.54, p<0.01 
 
Adjusted HR, t-statistic 
and P-value from 
Weibull mediation 
models for age at 
menarche with 
continuous exposure: 
Birthweight: HR=0.75, 
t=-2.71, p<0.01 
Birth length: HR=1.06, 
t=3.02, p<0.01 
 
Adjusted HR, t-statistic 
and P-value from 
Weibull models for age 
at menarche with 
categorical exposure: 
Long/light: HR=1.61, 
t=3.91, p<0.01 
Long/heavy: HR=1.37, 
t=2.77, p<0.01 
Short/light: HR=1.17, 
t=1.42, p≥0.10 
Short/heavy: Referent 
 
Adjusted HR, t-statistic 
and P-value from 
Weibull mediation 
models for age at 
menarche with 
categorical exposure: 
Long/light: HR=1.54, 
t=3.51, p<0.01 
Long/heavy: HR=1.29, 
t=2.22, p<0.05 
Short/light: HR=1.29, 
t=2.26, p>0.05 
Short/heavy: Referent 

Adjusted 
continuous 
model: Maternal 
age at 
menarche, 
maternal age at 
pregnancy, 
maternal height, 
maternal BMI 
after birth, 
maternal triceps 
skinfold 
thickness during 
pregnancy, 
maternal diet 
score, first 
pregnancy, SES, 
gestational age, 
birthweight and 
birth length 
 
Mediation model 
additionally 
includes BMI 
and sum of 
skinfolds at age 
8 years 
 
Adjusted 
categorical 
model: 
Gestational age 
 
Mediation 
categorical 
model: 
Gestational age, 
BMI and 
skinfolds at 8 
years, maternal 
height, maternal 
age at 
menarche, total 
energy intake, 
low fat, SES 
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Ghirri, 
2001, Italy 

Prospective 
cohort 

19 full-term SGA 
girls and 19 
normal weight 
controls girls 
matched to date 
of birth of SGA 
subject 
 
Age 17.5-18.5 
years at follow-
up 
 
Adolescent 
follow-up of 19 
full-term SGA 
girls and 19 
matched controls 
in Italy. Inclusion 
criteria:  1) GA 
between 37-41 
weeks;  3) not 
multiple 
pregnancy; 4) no 
intrauterine 
infections, 
congenital 
anomalies, 
chromosomal 
alterations; no 
asphyxia at birth; 
age at evaluation 
of final height 
≥14.5 years; no 
pubertal 
retardation; last 
12 months 
growth velocity 
≤0.5 cm; Italian 
origin.  

SGA: birth 
weight below 
the third 
percentile for 
gestational 
age 
NBW:  
birthweight 
between 
25th and 
75th 
percentile 

Medical 
records 

Age at 
menarche 

Self-
reported by 
girl when 
17.5-18.5 
years 

Comparison of 
means using t-tests 

Age at menarche: 
 SGA: 11.9 years 
 NBW: 12.3 years None 
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Koziel, 
2002, 
Poland 

Cross-
sectional 

1060 singleton 
girls 
 
Age 13.5-14.5 
years 
 
Girls attending 
7th grace of 
randomly 
selected primary 
schools in 
Wroclaw, 
Poland, 
examined 
medically during 
1996-1997 

SGA: 
birthweight 
below the 
10th 
percentile for 
gestational 
age 
AGA: 
birthweight 
≥10th 
percentile for 
gestational 
age 

Birth weight 
recorded to 
nearest 10g 
and 
gestational 
age 
measured 
in weeks 
from last 
menstruatio
n from 
booklet of 
Child 
Health, 
routinely 
filled out by 
neonatologi
st in 
maternity 
ward and 
provided by 
parents 

Menarche 
status at visit 
(~14 years of 
age) 

Self-report 
by girl at 
13.5-14.5 
years 

Logistic regression 
with outcome pre- 
or post-menarche 
status (OR>1 
indicates greater 
likelihood of 
menarche by 14 
years) 

Adjusted OR for 
menarche: 
SGA vs. AGA: 
OR=2.54, 95% 
CI=1.22, 5.28 

Logistic 
regression 
adjusted for SES 
using PC score 
and BMI at 8 
years 
(overweight, 
normal, lean) 

dos 
Santos 
Silva, 
2002, 
United 
Kingdom 

Prospective 
cohort 

2008 girls with 
menarche and 
early life data 
 
Followed up to 
48 years 
 
MRC National 
Survey of Health 
and 
Development 
studies, birth 
cohort born first 
week of March 
1946  

Birthweight 
in kg, 
continuous 

Hospital 
record 

Age at 
menarche 

Reported 
by mother 
when 
daughter 
was 15 or 
recalled by 
participant 
at 48 year-
old follow-
up visit if 
not 
available at 
15 years 
(17%) 

Mean difference in 
birthweight by 
menarche group 
(early: <11.75 
years, average: 
11.75-14.25, late: 
>14.25 years) 
 
Multivariable 
Weibull models for 
age at menarche 

Mean birth weight in kg 
(SD) by menarche: 
Early: 3.3 (0.47) 
Average: 3.3 (0.48) 
Late: 3.4 (0.52) 
 
HR for age at 
menarche with 
birthweight in kg as 
continuous exposure 
from Weibull models: 
Univariate model for 
birthweight, kg: 
HR=0.96, 95%CI=0.87, 
1.05 
Adjusted for growth in 
infancy: HR=1.17, 95% 
CI=1.06, 1.36 
Adjusted for growth in 
infancy and childhood 
and BMI profile: 
HR=1.09, 95% CI-0.87, 
1.30 

Growth in 
infancy model 
adjusted for rank 
changes in 
height from 0-2 
years 
 
Growth in 
infancy and 
childhood and 
BMI profile 
adjusted for rank 
changes in 
height from 0-2 
years, height 
rate from 2-4 
and 4-7 years, 
rank changes in 
BMII from 0-2 
years, BMI rate 
from 2-6 years 
 
*Note: random 
coefficients 
model for height 
includes 
mother's height, 
mother's age at 
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birth, birth order, 
father's manual 
occupation and 
no. of younger 
siblings. Model 
for BMI includes 
father's manual 
occupation. 

Hack, 
2003, 
United 
States 

Prospective 
cohort 

92 VLBW 
females and 107 
controls with 
non-missing 
growth 
measures and 
no neurosensory 
impairments 
 
Age 20 years at 
follow-up 
 
20-year follow-
up of VLBW 
(<1500g) infants 
admitted to 
Rainbow Babies 
and Children's 
Hospital in 
Cleveland, Ohio 
between 1977-
1979, controls 
were NBW 
children born in 
1977-1979, 
selected at age 8 
years by a 
population 
sampling 
procedure 

VLBW: 
<1500g 
NBW: born 
>37 weeks 

Hospital 
records for 
VLBW, not 
stated for 
controls 

Age at 
menarche 

Assume 
reported by 
girl at 20 
year visit 

Difference in mean 
age at menarche 
using 2 sample t-
tests 

Mean age at menarche 
by group (p=0.55): 
VLBW: 12.4 years 
NBW: 12.3 years None 
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Romundst
ad, 2003, 
Norway 

Retrospecti
ve cohort 

3,343 girls with 
information on 
age at 
menarche. Girls 
born preterm or 
whose mothers 
were diagnosed 
with 
preeclampsia, 
gestational 
hypertension, or 
gestational 
diabetes, with 
insufficient 
perinatal 
information, 
congenital 
malformations 
and twins were 
excluded. 
 
Age 13-19 years 
at questionnaire  
 
Young-HUNT 
Study, girls 13-
19 years who 
were residents in 
Nord Trondelag 
County in 
Norway and 
completed a 
questionnaire in 
1996-1997 

Birth weight 
in g, in 
quintiles 
 
Ponderal 
index (kg/m 
cubed), in 
quintiles 
 
Birth length 
in cm,  in 
quintiles 

Birthweight 
and birth 
length from 
Medical 
Birth 
Registry 

Age at 
menarche, 
continuous  

Self-
reported in 
years and 
months at 
13-19 
years. If 
month not 
given, used 
year plus 6 
months as 
estimate. 

Cox proportional 
hazards model for 
age at menarche 
(RR>1 indicates 
earlier menarche). 
Exposures were in 
quintiles, p-values 
also presented for 
test for trend using 
continuous  values. 

RR from Cox model for 
age at menarche with 
birthweight as 
exposure: 
 Q1 (1840-3120g): 
Referent 
Q2 (3130-3390g): 
RR=0.98, 95% 
CI=0.87, 1.09 
Q3 (3400-3620g): 
RR=0.93, 95% 
CI=0.83, 1.05 
Q4 (3630-3980g): 
RR=0.91, 95% 
CI=0.81, 1.02 
Q5 (3900-5330g): 
RR=0.88, 95% 
CI=0.79, 0.99 
 p for trend=0.03 
 
RR from Cox model for 
age at menarche with 
ponderal index as 
exposure: 
Q1 (18.09-25.49): 
Referent 
Q2 (25.50-26.74): 
RR=0.90, 95% 
CI=0.81, 1.01 
Q3 (26.76-27.92): 
RR=0.87, 95% 
CI=0.78, 0.97 
Q4 (27.93-29.32): 
RR=0.90, 95% 
CI=0.81,1.01 
Q5 (29.33-39.51): 
RR=0.93, 95% 
CI=0.83, 1.04 
p for trend=0.28 
 1st quintile of PI vs. 
others, p=0.02 
   (data not shown) 
 
RR from Cox model for 
age at menarche with 
birth length as 
exposure: 
Q1 (43-48cm): 
Referent 
Q2 (49cm): RR=1.06, 

None 
 
Stated that 
adjustment for 
length of 
gestation and 
age at 
attendance did 
not substantially 
influence 
association (data 
not shown) 
 
In subset with 
parental data, 
adjustment for 
maternal age at 
menarche and 
parental height 
and weight did 
not substantially 
alter results 
(data not shown) 
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95% CI=0.93, 1.21 
Q3 (50cm): RR=1.02, 
95% CI=0.90, 1.14 
Q4 (51cm): RR=0.96, 
95% CI=0.85,1.09 
Q5 (52-58cm): 
RR=0.96, 95% 
CI=0.86, 1.08 
p for trend=0.03 

Windham, 
2004, 
United 
States 

Prospective 
cohort 

994 girls with 
menarche data 
 
15-17 years 
 
Follow-up of 
subset of 
California Child 
Health and 
Development 
Studies 
(pregnancies 
1959-1966) 

Birthweight, 
categorized: 
<2500g 
≥2500g 

Weight 
measured 
at birth 

Age at 
menarche, 
examined 
continuously 
and in 
categories: 
- Early: <12y 
- Average: 
12-13 years 
- Late: >13 y 

Recalled by 
girl at 15-17 
years 
(years and 
months - 
though 45% 
of girls only 
gave year) 

Mean age at 
menarche by 
category of 
independent 
variables using the 
F test and 
distribution of early 
and late menarche 
using chi-square 
test.   

Frequency of early and 
late menarche by 
birthweight: 
 <2500g: Early 
menarche = 14.9% 
 Late menarche = 
27.7% 
 ≥2500g: Early 
menarche = 15.6% 
Late menarche = 
23.6% 
 p=0.81 
 
Mean age at menarche 
by birthweight: None 
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<2500g: Mean=13.08 
years 
 ≥2500g: Mean=12.95 
years 
  p=0.49 

Trentham-
Dietz, 
2005, 
United 
States 

Cross-
sectional 

59 girls with 
menarche data 
 
Age 10-13 years 
 
Cross-sectional 
study of sixth-
grade female 
students in 
Reedsburg, WI 
area school 
district in 1999 

Birthweight 
in kg 

Reported 
by parents 

Menarche 
status at 
survey 

Self-report 
by girl at 
10-13 years 

Analysis of 
variance models 
comparing least-
squares means 
adjusted for age 

Mean (SD) birthweight 
in kg by menstrual 
status (p=0.17): 
Menstruating: 3.4 (0.1) 
Not Menstruating: 3.6 
(0.1) Age at survey 
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Tam, 
2006, 
Australia 

Prospective 
cohort 

149 term girls 
with birth, 
anthropometry 
and menarche 
data 
 
Age 15 years at 
follow-up 
 
2004 follow-up of 
subset of birth 
cohort (infants 
born at term (37-
42 weeks) at 
Nepean 
Hospital, Penrith, 
in western 
Sydney between 
August 1989 and 
April 1990  

Birthweight 
in kg 
Ponderal 
index (weight 
in g/height in 
cm cubed) 
Birthlength in 
cm 
 
Birth size 
groups 
defined by 
birth weight 
cut at 
median 
(3325g) and 
birth length 
cut at 
median 
(49.3cm): 
Long/light  
Long/heavy  
Short/Light  
Short/heavy  

Weight and 
length at 
birth from 
hospital 
records 

Age at 
menarche, 
categorized 
into 3 groups 
based on 
SD: 
  Early: <11.5 
years 
  Average: 
11.5-13.7 
years 
  Late: >13.7 
years 

Self-report 
by girls at 
15 years 
(attained 
menarche, 
month and 
year of first 
period) 

ANOVA and 
Kruskal Wallis to 
compare 
characteristics by 
menstrual group 
 
Pearson's 
correlation and 
Spearman's rho 
test to assess 
correlations 
between birth size 
and age at 
menarche 
 
Comparison of 
menarche in birth 
size group using 
analysis of 
covariance with 
BMI z score at 8 
years as a 
covariate 

Mean (SD) of  
birthweight by 
menarche group 
(p=0.27 from ANOVA): 
Early: 3.3kg (0.37) 
Average: 3.42kg (0.54) 
Late: 3.31kg (0.46) 
 
Median (range) of  PI 
(g/cm3) by menarche 
group (p=0.43 from 
Kruskal-Wallis): 
Early: 2.75 (2.07-3.29) 
Average: 2.79 (1.93-
3.84) 
Late: 2.80 (2.36-3.39) 
 
Median (range) of  birth 
length in cm by 
menarche group 
(p=0.047 from Kruskal-
Wallis): 
Early: 49.0 (45.5-54.0) 
Average: 49.5 (44.0-
57.5) 
Late: 48.0 (43.0-53.0) 
 
No correlation between 
birth length or 
birthweight and age at 
menarche (data not 
shown) 
 
Average age at 
menarche by birth size 
group, adjusted for BMI 
Z-score at 8 years: 
 Long/Light: 12.0 y, 
SD=0.3 
 Long/Heavy: 12.5 y, 
SD=0.1 
 Short/Light: 12.6y, 
SD=0.1 
 Short/Heavy: 13.0, 
SD=0.3 
 
Girls who were long 
and light at birth and 
with a BMI z-score >0 
at 8 years had earliest 

BMI Z-score at 8 
years 
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menarche. Among all 
birth size groups, 
higher BMI at age 8 
was associated with 
earlier menarche. 
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van 
Weissenbr
uch et al, 
2006, 
Netherlan
ds 

Prospective 
cohort 

17 term SGA 
and 12 term 
AGA girls 
 
Latest visit:  
- SGA mean 
14.6 +/-1.2 
- AGA mean 
14.7 +/-1.2 
 
Follow-up of 
SGA and AGA 
children traced 
from the 
database of all 
pregnancies, 
deliveries and 
perinatal events 
of children born 
in the VU 
University 
Medical Center 
(registered since 
1980) 

SGA: 
birthweight 
below the 
10th 
percentile 
corrected for 
gestational 
age (GA), 
gender and 
parity 
 
AGA: 
birthweight 
>10th 
percentile 
using Dutch 
reference 
data 

Birthweight, 
gestational 
age 
abstracted 
from 
register 

Age at 
menarche, 
continuous  

Not stated, 
assumed 
reported by 
parents or 
adolescents 
at follow-up 
visits 

Differences 
between SGA and 
AGA groups were 
tested by chi-
square test for 
qualitative 
variables and 
Student's t-test for 
quantitative 
variables 

 
By second follow-up, 
8/9 girls born AGA 
reached menarche with 
mean age of 12.7 (1.5 
years).  10/10 SGA 
girls reached menarche 
at mean age of 12.6 
(1.5) years. Age at 
menarche was not 
statistically different 
between the two 
groups. None 

Sloboda, 
2007, 
Australia 

Prospective 
cohort 

776 girls with 
menarche data 
 
Age 12-14 years 
at follow-up 
 
Western 
Australian 
Pregnancy 
(Raine) Cohort, 
women enrolled 
during 
pregnancy in 
1989-1990 

Expected 
birthweight 
ratio (EBW): 
ratio of 
observed 
birth weight 
appropriate 
for maternal 
height, sex, 
nulliparity, 
and 
gestational 
age 
 
IUGR 
defined as 
EBW<10th 
percentile 

EBW 
calculated 
using data 
from study 
visit/medica
l record 

Age at 
menarche 

Self-report 
on puberty 
questionnai
re or 
censored at 
age at last 
follow-up if 
no 
menarche 
reported 

Continuous data 
summarized using 
medians, IQ ranges 
and ranges 
 
Multivariable Cox 
regression models 
to evaluate 
association 
between fetal and 
postnatal growth 
and age at 
menarche 

EBW predicted age at 
menarche (p=.02) and 
girls with an EBW 
below the median had 
a significantly earlier 
menarche compared 
with girls with an EBW 
above the median 
(HR=1.29, 95% CI 
1.04, 1.59) 
 
Age at menarche 
stratified by EBW and 
BMI at 8 years: 
EBW<1 & BMI≥16.3: 
Median age at 
menarche = 12.5yrs, 
IQ range 12.1-13.2, 
Range 9.4-14.4 
EBW≥1 & BMI≥16.3: 
Median age at 
menarche = 12.8yrs, 
IQ range 12.2-13.6, 
Range 9.8-14.6 
EBW<1 & BMI<16.3: 
Median age at 

Cox model 
adjustment not 
stated. 
 
By using EBW 
as a measure, 
adjusted 
birthweight for 
maternal age, 
height, parity, 
infant sex and 
gestational age 
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menarche = 13.0yrs, 
IQ range 12.6-14.2, 
Range 10.6-14.6 
EBW≥1 & BMI<16.3: 
Median age at 
menarche = 13.2yrs, 
IQ range 12.8-14.4, 
Range 11.0-14.2 

Vandeloo, 
2007, 
Belgium 

Cross-
sectional 

1146 girls 
 
Mean age=12.8 
years 
 
Girls recruited in 
second year of 
secondary 
school from 10 
centres of 
Medical School 
Supervision 
(MSS) in Belgian 
Limburg in 1999-
2000 school year 

Length at 
birth 

Questionnai
re, partially 
completed 
by medical 
team with 
the 
remainder 
completed 
by girls and 
one parent 

Age at 
menarche 

Self-report 
with 
parent's 
help via 
questionnai
re 

Cox regression 
model for age at 
onset of breast 
development 
(RR>1 indicates 
earlier menarche) 

RR = 0.974, 95% CI 
0.945,1.004 

None 
 
*Results for birth 
length were not 
shown for 
multivariable 
model 

Bosch, 
2008, 
Banglades
h 

Prospective 
cohort 

255 girls 
 
Age 12-16 years 
at follow-up 
 
2001 follow-up of 
320 girls in three 
villages in rural 
Bangladesh, 
originally 
enrolled in a 
study of infection 
disease at <5 
years in 1988-
1989 

Baby's 
relative size 
at birth, 
dichotomized 
as:  
  small 
  normal or 
tall 

Recalled by 
mother 
during 
adolescent 
visit 
(relatively 
small, 
normal or 
relatively 
tall) 

Age at 
menarche, 
continuous  

Reported 
by girl at 
adolescent 
visit 

Univariate Cox 
proportional 
hazards models 
with age at 
menarche as 
outcome (β>0 
indicates earlier 
menarche) 

β from Cox model: 
  Small: β = -0.323, SE 
= 0.240, p≥0.05 
  Normal or Tall: 
Referent None 
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Blell, 
2008, 
United 
Kingdom 

Prospective 
cohort 

276 women with 
menarche data 
 
Age 49-51 years 
at follow-up 
 
1997 follow-up of 
subset of 
Newcastle 
Thousand 
Families birth 
cohort, 
prospective 
study of all 1142 
children born in 
May and June 
1947 to mothers 
resident in 
Newcastle-upon-
Tyne, UK 

Birthweight 
in kg  
Birthweight 
standardized 
for 
gestational 
age and sex 

Midwife 
records 

Age at 
menarche 
categorized 
into 3 groups 
based on 
SD: 
  Early: <11.4 
years 
  Average: 
11.41-14.49 
years 
 Late: >14.49 
years 

Age at 
menarche 
in years 
and months 
recalled by 
women at 
age 49-51 
years 

Multivariable 
ordinal logistic 
regression with a 
probit link was 
used to investigate 
relations between 
explanatory 
variables and 
categorical age at 
menarche (Oprobit 
coeff<0 indicates 
earlier menarche) 

Mean (SD) birthweight 
in kg by menarche 
group: 
Early: 3.35 (0.57) 
Average: 3.39 (0.52) 
Late: 3.43 (0.43) 
Oprobit coeff = 0.094, 
95% CI= -0.17, 0.36 
 
Mean (SD) birth weight 
standardized for 
gestational age by 
menarche group: 
Early: 0.11 (1.27) 
Average: 0.02 (1.07) 
Late : 0.05 (1.00) 
Oprobit coeff = -0.02, 
95% CI= -0.14, 0.10 
 
p=0.03 for interaction 
between standardized 
weight at age 9 and 
standardized birth 
weight. Girls who were 
youngest at menarche 
were born heavy for 
their gestational age 
and were heavy at age 
9. Those with latest 
menarche were also 
born heavy for their 
gestational age but 
were light for their age 
at 9. None 
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Chaudhari
, 2008, 
India 

Prospective 
cohort 

113 girls (34 
PTSGA, 15 
FTSGA, 29 
PTAGA, 35 
controls) 
 
Age 12 years a 
follow-up 
 
Prospective 
cohort of all 
infants weighing 
<2000g 
discharged from 
a neonatal 
special care unit 
from October 
1987-April 1989 
and followed up 
until age 12 
years.  Full-term 
neonates born in 
the same 
hospital during 
the same period 
with birthweight 
>2500 g were 
enrolled as 
controls 

4 groups 
based on 
gestational 
age and 
birthweight 
(Singh 
criteria): 
  PTSGA: 
Preterm 
small for 
gestational 
age 
  FTSGA: 
Full term 
small for 
gestational 
age PTAGA: 
Preterm 
appropriate 
for 
gestational 
age 
 FTAGA: Full 
term 
appropriate 
for 
gestational 
age 

Birthweight 
and 
gestational 
age from 
hospital 
records 

Age at 
menarche 

Date of 
menarche 
reported by 
mothers 
when girls 
were 12 
years old 

Descriptive 
analysis only 

Mean age at menarche 
(range) by group: 
PTSGA: 12.5 (10.4-
13.8) 
FTSGA: 12.7 (8.8-14.3) 
PTAGA: 12.5 (10.4-
14.0) 
FTAGA: 12.8 (10.8-
14.5) None 
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Opdahl, 
2008, 
Norway 

Prospective 
cohort 

262 singleton, 
term girls 
 
Age 12.7-15.5 
years at follow-
up 
 
2001-2002 
follow-up of 
subset of 
Norwegian birth 
cohort (1985-
1986). 10% of 
random sample 
of all women 
were followed 
along with 
another group of 
women at risk for 
giving birth to an 
SGA child 
(previous LBW 
child or perinatal 
death, cigarette 
smoking at 
conception, pre-
pregnancy 
weight<50kg, 
chronic renal 
disorder or 
hypertension) 

Birthweight 
in tertiles: 
<3200g 
3200-3700g 
≥3700g 
 
Ponderal 
index (g/cm 
cubed) in 
tertiles: 
<2.63 
2.63-2.85 
≥2.85 
 
Birth length 
in tertiles: 
<49cm 
49-51cm 
≥51 cm 

Birthweight 
(g) and 
birthlength 
(crown to 
heel, to 
nearest half 
cm) 
measured 
at birth 

Age at 
menarche 

Reported 
by girl at 
adolescent 
visit 
(assumed) 

Median age at 
menarche for each 
birth size group 
estimated by 
Kaplan-Meier 
analyses and 
multivariable 
analysis performed 
using Cox 
regression 

Median (95% CI) age 
at menarche from 
Kaplan-Meier by tertile 
of exposure: 
Birth weight (p=0.001): 
 <3200g: 12.58, 95% 
CI=12.32, 12.84 
 3200-3700g: 13.25, 
95% CI=12.94, 13.56 
 ≥3700g: 13.33, 95% 
CI=12.97, 13.70 
 
Ponderal index 
(p=0.099) 
 <2.63: 12.83, 95% 
CI=12.53, 13.14 
 2.63-2.85: 13.08, 95% 
CI=12.82, 13.35 
 ≥2.85: 13.17, 95% 
CI=12.68, 13.65 
 
Birth length(p<0.0001): 
  <49cm: 12.50, 95% 
CI=12.26, 12.74 
  49-51cm: 13.08, 95% 
CI=12.94, 13.22 
  ≥51cm: 13.33, 95% 
CI=12.95, 13.72 

None 
 
Stated in results 
that adjusted for 
potentially 
confounding 
factors (BMI, 
gestational age, 
age in 
adolescence, 
maternal age at 
menarche, 
residential area) 
did not alter 
results (data not 
shown) 

Rubin, 
2009, 
United 
Kingdom 

Prospective 
cohort 

4212 singleton 
girls with 
consistent 
menarche data 
 
Age 8-13 years 
at follow-up 
 
Avon 
Longitudinal 
Study of Parent 
and Children, 
born April 1991-
December 1992 

Birth weight 
in kg 

Medical 
records 

Presence of 
menarche at 
11 year old 
questionnair
e 

Reported at 
11-year 
questionnai
re by 
daughter, 
mother or 
both 

Multivariable 
logistic regression 
for menarche by 
age 11 years 
(OR>1 indicates 
earlier menarche) 

Birth weight in kg was 
not associated with 
menarche in univariate 
analyses at p≤0.20 
(data not shown) None 
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Labayen, 
2009, 
Spain 

Cross-
sectional 

788 girls with 
complete data 
 
Age 13-18.5 
years 
 
2002 survey of 
Spanish 
adolescents 
(AVENA study). 
Individuals from 
public and 
private 
secondary 
schools and 
technical 
colleges were 
included in the 
nationally 
representative 
sample (multi-
staged, random, 
stratified by town 
of origin, SES, 
sex and age) 

Birthweight 
Z-score, 
continuous, 
calculated 
with use of 
sex- and 
gestational 
age-specific 
percentiles 
for this 
population 
 
 SGA: BW < 
10th 
percentile for 
gestational 
age (6.7%) 
 AGA: BW 
between 
10th and 
90th 
percentile 
(54.3%) 
LGA: BW > 
90th 
percentile for 
gestational 
age (36.8%) 

Birth weight 
and 
gestational 
age from 
health 
booklets 
(Issued at 
birth where 
pediatrician
s record 
infant's 
growth) 

Age at 
menarche, 
continuous 
and 
categorized 
as:     
<12 years  
≥12 years 

Self-report 
by 
adolescent 
of age at 
menarche, 
calculated 
from year of 
first period 

Linear regression 
analysis was used 
to assess 
associations 
between BW Z-
score and age of 
menarche (β<0 
indicates earlier 
menarche) 

Multivariable models 
for association 
between BW Z-score 
and age at menarche: 
Unadjusted: β=0.228 , 
95% CI=0.087, 0.368 
 Adjusted: β=0.45, 95% 
CI=0.287, 0.623 
 
Low risk for early 
menarche (<12 years) 
in girls born LGA from 
logistic regression 
model (OR=0.63, 95% 
CI 0.45-0.89, p=.009, 
other results not 
shown) 

Age, SES, 
physical activity, 
body fat 
percentage 

Semiz, 
2009, 
Turkey 

Cross-
sectional 

1562 girls, 306 
with menarche 
 
Age 6-16.5 years 
 
Cross-sectional 
school-based 
study of 
schoolchildren in 
grades 1-8 in 
primary schools 
in the Denizli 
province 
between March-
May 2005  Birth weight 

Reported 
by parents 

Age at 
menarche, 
continuous 

Reported 
by girl at 
visit 

Comparison of 
menarcheal age to 
gestational age and 
birth weight using 
Chi-square test. 

No statistically 
significant difference 
was found between 
gestational age, birth 
weight and menarcheal 
age (p>0.05, data not 
shown) None 
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Keim, 
2009, 
United 
States 

Prospective 
cohort 

597 women with 
complete 
menarche and 
maternal data 
available 
 
22-32 years at 
follow-up 
 
Follow-up in 
1987-1991 of 
subset of women 
from Providence 
and Philadelphia 
sites of the CPP 
cohort (pregnant 
women enrolled 
in 1959-1966) 

SGA vs. not, 
unclear how 
defined 

Birthweight 
and 
gestational 
age 
measured 
at birth 

Age at 
menarche, 
categorized 
as: ≤11 
years 
12 years 
13 years 
14+ years 

Self-report 
during adult 
interview  

Polytomous logistic 
regression to 
examine the 
relationship 
between daughter's 
age at menarche 
and maternal pre-
pregnancy BMI, 
SGA examined as 
a mediator 

SGA status (N, %) by 
menarche group: 
≤11 years: SGA=35 
(29%); Not SGA=86 
(71%) 
12 years: SGA=42 
(27%); Not SGA=116 
(73%) 
13 years: SGA=36 
(24%); Not SGA=111 
(76%) 
14+ years: SGA 39 
(23%); Not SGA=132 
(77%) 
 
SGA did not mediate 
association between 
maternal obesity and 
age at menarche, 
although stated in text 
that SGA status was 
associated with 
daughter's age at 
menarche in models 
that included maternal 
BMI and other 
covariates (ORs 
ranged from 0.8-1.2) None 

Ong, 
2009, 
United 
Kingdom 

Prospective 
cohort 

2715 singleton 
girls with age at 
menarche data 
 
Mean age at 
follow-up: 12.9 
years (IQR 12.8-
13.0) 
 
Avon 
Longitudinal 
Study of Parent 
and Children, 
born April 1991-
December 1992 

Birthweight 
in kg, 
continuous 
 
BMI at birth 
 
Birthlength in 
cm, 
continuous 

Birth weight 
as recorded 
in delivery 
room, birth 
length 
measured 
by staff 
within 24 
hours of 
birth 

Age at 
menarche, 
categorized 
as: 
  <12 
  12-13 
  >13 

Reported 
by girl at 
adolescent 
visit (~13 
years of 
age). Some 
missing 
data on age 
at first 
menstruatio
n were 
imputed 
from similar 
data 
collected at 
11 year 
visit.  

Means (SD) of 
early-life measures 
by age at 
menarche group 

Size at birth (Mean, 
SD) by girls' age at 
menarche: 
Birthweight (kg) (P for 
trend=0.04): 
<12: 3.38 (0.02) 
12-13: 3.36 (0.02) 
>13: 3.42 (0.01) 
Birthlength (cm) (P for 
trend=0.2): 
<12: 50.4 (0.1) 
12-13: 50.3(0.1) 
>13: 50.5 (0.1) 
BMI at birth (P for 
trend=0.2): 
<12: 13.3 (0.1) 
12-13: 13.3(0.1) 
>13: 13.4 (0.1) Age 
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Terry, 
2009, 
United 
States 

Prospective 
cohort 

262 women 
 
38-46 years at 
follow-up 
 
Follow-up in 
2001-2006 of 
subset of women 
from New York 
site of the CPP 
birth cohort (born 
1959-1963)  

Birthweight 
in kg 
 
Birth length 
in cm 

Measured 
by study 
staff 

Age at 
menarche, 
continuous 
and 
dichotomized 
as: ≤12 
years 
>12 years 

Self-
reported by 
adult 
participant 

Univariate 
associations using 
correlation 
coefficients for 
continuous 
variables, chi-
square tests and 
analysis of 
variance to 
compare averages 
across subgroups 
 
Multivariable linear 
regression models 
using age for age 
at menarche (β<0 
indicates earlier 
menarche). 

β for birthweight in kg 
from linear regression 
model: 
Univariable: β=-0.34, 
95% CI= -0.80, 0.12 
Adjusted β=-0.68, 95% 
CI=-1.59, 0.22 
 
Average age at 
menarche was lower 
for higher-birthweight 
babies only among 
girls of lower weight at 
age 7 years 
 
β for birth length in cm 
from linear regression 
model:  
Adjusted β=0.02, 95% 
CI -0.18, 0.22 

 
Fully adjusted 
parsimonious 
model includes 
birth weight, 
percentile 
change in weight 
from 0-4 months, 
4-12 months, 1-7 
years, birth 
length, percentile 
change in height 
from 0-4 months, 
4-12 months and 
1-7 years, family 
SES at age 7, 
maternal age at 
menarche  

Karaolis-
Danckert, 
2009, 
Germany 

Prospective 
cohort 

87 term 
singleton girls 
with 
birthweight>2500
g, height at 6 
and 13 years of 
age and at least 
5 measures 
between these 
ages, 
anthropometrics 
at 24 months, 
complete data 
on maternal 
characteristics 
and age at 
menarche 
 
At least 13 years 
of age 
 
Subset of the 
DONALD 
(Dortmund 
National and 
Anthropometric 
Longitudinally 
Designed) Study 
started in 1985  

Birthweight,  
categorized 
as:  
≥2500-3000g 
>3000g 

Standardize
d document 
given to all 
pregnant 
women in 
Germany 

 
 
Age at 
menarche, 
continuous 

Girls or 
their 
parents are 
asked if 
menarche 
occurred 
since 
previous 
visit, and if 
so, which 
month and 
year 

Linear mixed-
effects regression 
models (PROC 
MIXED) were used 
to construct 
longitudinal models 
of age at menarche 
(β<0 indicates 
earlier age at 
menarche). 

Adjusted β from linear 
regression model: 
 2500-3000g: β=-0.49, 
SE=0.29, p=0.1 
 ≥3000g: Referent 
 
Adjusted β from 
pathway linear 
regression model: 
 2500-3000g: β=-0.68, 
SE=0.29, p=0.02 
 ≥3000g: Referent. 

Rapid weight 
gain from 0-4 
months, 
maternal 
overweight & 
BMI SDS score 
1 year before 
ATO in pathway 
model 
 
Noted that 
adjustment for 
gestational age 
did not change 
results (data not 
shown) 
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Espetvedt 
Finstad, 
2009, 
Norway 

Cross-
sectional 

204 women 
 
Age 25-35 years 
 
Norwegian 
EBBA-I study, 
2000-2002. 
Eligibility criteria 
included self-
reported regular 
menstruation, 
not taking 
hormonal 
contraceptives, 
no pregnancy or 
lactation over 
previous 6 
months and no 
history of 
endocrinological 
(eg diabetes, 
hypo/hyperthyroi
dism), 
gynecological or 
chronic disorders 

Birthweight, 
categorized 
into tertiles: 
<3220g  
≥3220 and 
<3530g  
≥3530g  

Personal 
health 
records 

Age at 
menarche, 
continuous 

Self-report 
by 
participant 
in 
adulthood 

Mean age at 
menarche by 
birthweight tertile 
with p value from 
one-way ANOVA 

Mean (SD) age at 
menarche by 
birthweight tertile 
(p=0.06): 
<3200g: 12.96y (1.3) 
≥3200g to <3530g: 
12.98 (1.3) 
≥3530g: 13.40 (1.5) None 

Boyne, 
2010, 
Jamaica 

Prospective 
cohort 

140 girls who 
were seen at all 
scheduled visits 
between birth 
and 11 years 
 
At least 11 years 
at follow-up 
 
Vulnerable 
Windows Cohort 
Study, pregnant 
women were 
recruited in 
1992-1993 at 
University 
Hospital of the 
West Indies, 
Kingston,Jamaic
a for birth cohort.  

Birthweight, 
g, continuous 
 
Birth length, 
cm, 
continuous 
 
BMI at birth 

Weight and 
crown heel 
length 
measured 
within 24 
hours of 
delivery 

Age at 
menarche 

Menstrual 
history was 
taken at 
each visit 
(biannual) 

Multiple regression 
analyses  to 
examine the rela- 
tionships among 
child’s growth and 
body composition 
and the stage of 
puberty with 
outcomes and 
predictors in 
standardized form, 
so that the 
regression 
coefficients were 
effectively 
correlation 
coefficients. 

Correlations between 
the size at birth and 
growth of Afro-
Caribbean girls  and 
age at menarche at 
age 11 years: 
Birth weight: 0.05 
BMI at birth: 0.02 
Birth length: 0.05 
p≥0.05 for all 
correlations Age at clinic visit 
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Epplein, 
2010, 
United 
States 

Cross-
sectional 

348 girls with 
birthweight data 
whose 
race/ethnicity 
was White, 
Asian or 
Polynesian 
 
Age 9-18 years 
at visit 
 
First visit for the 
Female 
Adolescent 
Maturation 
(FAM) Study, 
cohort of girls 
age 9-14 in 
2000-2001 
enrolled from KP 
Hawaii followed 
up in 2002-2003 
and 2004-2005 
and new 
participants aged 
12-18 in 2005-
2007 

Birthweight, 
continuous 
and in 
categories: 
 Low: 
≤2500g 
 Normal: 
2500-4000g 
 High: 
≥4000g 

Hawaii 
State 
Department 
of Health 
birth record 
database 
on birth 
weight 
(75% of 
participants
), parent 
recall for 
those 
without 
record data 

Age at 
menarche 

Self-
reported by 
daughters 
through 
August 
2008. If pre-
menarche, 
censored at 
age at last 
contact 

Cox proportional 
hazards model for 
age at menarche 
with age as the 
time scale (HR>1 
indicates earlier 
menarche) 

Adjusted HR for 
menarche: 
<2500g: HR=1.28, 95% 
CI=0.75, 2.18 
2500-4000g: Referent 
≥4000g): HR= 1.08, 
95% CI=0.53, 2.20 
 
Continuous: HR=1.00 
(1.00, 1.00) 
 
Adjusted HR for 
menarche, mediation 
model: 
<2500g: HR=1.17, 95% 
CI=0.69, 2.00 
2500-4000g: Referent 
≥4000g: HR= 1.01, 
95% CI=0.49, 2.07 
 
Continuous: HR=1.00 
(1.00, 1.00) 

Age, 
race/ethnicity 
and gestational 
age 
 
Mediation model 
also includes 
waist 
circumference 

Maisonet, 
2010, 
United 
Kingdom 

Prospective 
cohort 

1316 singleton, 
term girls (37-42 
weeks gestation) 
with consistent 
pubertal staging 
and birth size 
data 
 
Age 8-14 years 
at follow-up 
 
Avon 
Longitudinal 
Study of Parent 
and Children, 
born April 1991-
December 1992 

Birth weight 
(kg), 
Gestational 
age, birth 
length (cm) 
 
SGA = birth 
weight <10th 
percentile of 
weight for 
gestational 
age. 
Referent 
weight 
percentiles 
estimated by 
weight and 
gestational 
age data of 
singleton 
girls from the 
full ALSPAC 
cohort 

Medical 
records 

Age at 
menarche 

Month and 
year of 
menarche, 
reported 
girls at 
pubertal 
self-
assessment
s between 
8-14 years 
of age. Girls 
with 
inconsistent 
responses 
were 
excluded 
from 
analyses 

Interval-censored 
parametric survival 
model for age at 
menarche 
assuming a normal 
distribution (Diff <0 
indicates earlier 
menarche) 

Adjusted difference for 
menarche: 
Birthweight: Diff = 0.00, 
95% CI= -0.00,0.00 
Birth length: Diff = 
0.00, 95% CI= -0.03, 
0.04 
SGA vs. non-SGA: Diff 
= -0.05, 95% CI= -0.29, 
0.19 

Maternal age at 
menarche, 
previous live 
birth, maternal 
race or ethnicity, 
smoking during 
pregnancy, 
maternal 
prepregnancy 
BMI, maternal 
age at delivery, 
maternal 
education 
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Morris, 
2010, 
United 
Kingdom 

Cross-
sectional 
analysis of 
prospective 
cohort 

81,606 women 
with age at 
menarche 
information 
(excluded those 
with history of 
BC, menarche 
>20 years, 
menarche at 3-4 
years, and older 
siblings - only 1 
woman per 
family included) 
 
16-98 years at 
baseline (median 
46) 
 
Breakthrough 
Generations 
Study Cohort 
(women >16 and 
above in the UK) 

Birth weight, 
continuous 

Birth weight 
in grams or 
lbs and oz 
self-
reported on 
baseline 
questionnai
re 

Age at 
menarche 

Self-report 
on baseline 
questionnai
re, reported 
in whole 
years 

Linear regression 
to assess 
differences in age 
at menarche in 
months (β<0 
indicates earlier 
menarche. 

β from linear 
regression for age at 
menarche in months 
for birthweight: 
Univariable (per 500g 
increase): β = 0.31, 
95% CI=0.19, 0.43 
Multivariable (per 500g 
increase): β = 1.24, 
95% CI=1.10, 1.37 
 
Mean age at menarche 
in years by childhood 
weight at 7 years: 
A little or much thinner 
than peers: 
<3099g: 13.01y 
3100-3399g: 13.15y 
≥3400g: 13.17y 
p for trend: <.0001 
About the same as 
peers: 
<3099g: 12.52y 
3100-3399g: 12.61y 
≥3400g: 12.68y 
p for trend: <.0001 
A little or much heavier 
than peers: 
<3099g: 11.99y 
3100-3399g: 12.05y 
≥3400g: 12.17y 
p for trend: <.0001 
 
In subgroup analyses, 
birthweight had a 
positive association 
with menarcheal age in 
first- and second-born 
women (p for trend 
<.001) but not for 
women of a higher birth 
order 

Stated that 
univariable 
results were 
similar after 
adjustment for 
SES and birth 
year (not shown) 
 
Also stated that 
effect of 
birthweight 
remained 
significant after 
adjustment for 
gestation length 
 
Multivariable 
model adjusted 
for maternal age 
at birth, ethnicity, 
weight at 7 
years, height at 
7 years, 
childhood 
exercise, 
number of 
siblings and birth 
order. 
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Ruder, 
2010, 
United 
States 

Prospective 
cohort 

278 girls with 
birth and 
menarche data 
 
Age 25-29 years 
at follow-up 
 
Data from 
female 
participants in 
the original DISC 
study (1988-
1997) with data 
supplemented by 
the DISC Follow-
Up Study 
(conducted in 
2006-2008, 
when women 
were 25-29 
years of age) 

Birth weight, 
birth length 
and 
gestational 
age as 
continuous 
variables and 
as quartiles 

Self-report 
at adult 
follow-up of 
birthweight 
(pounds, 
oz), 
birthlength 
(nearest 
tenth of 
inch) and 
gestational 
age (in 
weeks, plus 
term or 
preterm) 
with 
birthweight 
data 
supplement
ed by 
maternal 
questionnai
re report in 
3rd year of 
original 
study 
(maternal 
report of 
birthweight 
used for 23 
women who 
did not 
report 
birthweight 
at adult 
follow-up).  

Age at 
menarche, 
continuous 
and  
categorized 
as:   Early: 
≤11.75 years 
Average: 
11.76–13.74 
years 
Late: ≥13.75 
years 

Age at 
menarche 
reported to 
nearest day 
(imputed to 
15th if 
month only) 
and 
ascertained 
annually in 
original 
DISC study.  
Also self-
reported in 
whole years 
at adult 
follow-up.  
In analysis, 
adolescent 
data was 
used for 
250 girls 
and adult 
recalled 
data for 34 
girls that 
were 
missing 
data from 
original 
data 
collection. 

One-way ANOVA 
analyses were 
used to compare 
differences in mean 
birth weight, birth 
length, and 
gestational age, 
between menarche 
groups. 
 
Birth characteristics 
were treated as 
predictor variables 
(continuous and 
quartiles) with age 
at menarche in 
years as the 
dependent variable 
in linear regression 
models.  

Mean birthweight in g 
(SD) by menarche 
group: 
Early: 3298.47 (496.89) 
Average: 3411.39 
(479.61) 
Late: 3497.90 (545.38) 
Overall p-value 0.16 
 
Mean birthlength in cm 
(SD) by menarche 
group: 
Early: 50.76 (3.0) 
Average: 51.06 (2.68) 
Late: 51.59 (3.01) 
Overall p-value 0.36 
 
β from unadjusted 
linear regression 
results in subset with 
maternal age at 
menarche (N=161): 
Birth weight in 
quartiles: 
Q1: β=-0.52, 95% CI= -
1.07, 0.03 
Q2: β=-0.44, 95% CI=-
0.97, 0.08 
Q3: β=-0.59, 95% CI= -
1.16, 0.02 
Q4: Referent 
Trend test: p=0.12 
Continuous (per 500g): 
β=0.20, 95% CI=-0.01, 
0.40 
 
β from adjusted linear 
regression results in 
subset with maternal 
age at menarche 
(N=161): 
Birth weight in 
quartiles: 
Q1: β=-0.38, 95% CI= -
0.87, 0.11 
Q2: β=-0.35, 95% CI= -
0.82, 0.12 
Q3: β=-0.55, 95% CI= -
1.07, -0.04 
Q4: Referent 

Intervention 
group, race, 
BMI-for-age-
percentile, 
mother's age at 
menarche 
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Trend test: p=0.24 
Continuous (per 500g): 
β=0.14, 95% CI=-0.04, 
0.32 
 
Birthweight in quartiles 
and as continuous 
variable was positively 
associated with age at 
menarche (p<.01). 
With covariate 
adjustment, women in 
the lowest quartile of 
birthweight 
experienced menarche 
0.51 years earlier 
compared to women in 
the highest quartile of 
birth weight (95% CI: -
0.88, -0.14; p<0.01, p-
trend<0.01).  Modeling 
birthweight as a 
continuous variable 
with covariate 
adjustment also 
indicated that the 
adjusted birth weight 
effect was statistically 
significant (p<0.01) 
with each 500 g 
increase in birth weight 
associated with a 0.21 
year delay in age at 
menarche. 
 
Birthlength was not 
associated with age at 
menarche when 
modeled in quartiles or 
as a continuous 
variable (data not 
shown) 
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Cho, 
2010, 
South 
Korea 

Cross-
sectional 

620 girls with 
menarche data 
 
Age 10-19 years 
 
Girls born 
between 1986 
and 1995 
participating in 
the 2005 Korean 
National Health 
and Nutrition 
Survey 
(KHANES) 

Birthweight 
in kg 

Reported 
by mothers 
on self-
administere
d 
questionnai
re 

Menarche 
status at visit 

Self-report 
by girls 

Exposures 
compared between 
premenarcheal and 
menarcheal girls 
using ANCOVA, 
controlling for age 
and chi-square test 
when variables 
were continuous 
and categorical 

Mean birthweight by 
menarche status from 
ANCOVA (p = 0.328): 
Premenarcheal girls: 
3.25kg (SD=0.39) 
Menarcheal girls: 3.20 
kg (SD=0.24) Age 

Chevalley, 
2011, 
Switzerlan
d 

Prospective 
cohort 

115 women with 
body size data at 
birth (96 at 1 
year) 
 
Mean age 20.4 
at follow-up 
 
Follow-up of pre-
pubertal girls 
participating in 
an RCT of 
calcium-enriched 
foods and bone 
mass growth 
(enrolled at 
mean 7.9 years, 
followed up to 
20.4 years. 
Exclusion criteria 
at enrollment 
were ratio of 
weight/height 
<3rd or >97th 
percentile, 
physical signs of 
puberty, chronic 
disease, 
malabsorption, 
bone disease 
and regular use 
of medication) 

Body weight, 
standing 
height and 
BMI at birth 
(converted to 
Z-scores) 

Obtained 
retrospectiv
ely at 
baseline 
from 
questionnai
res sent to 
parents and 
pediatrician
s 

Age at 
menarche, 
continuous 
and 
dichotomized 
at the 
median (12.9 
years) 

Self-
reported by 
daughter at 
interview at 
visits (8.9 
years, 10 
years, 12.4 
years, 16.4 
years) 

Univariate linear 
regression analysis 
examining 
association 
between BMI Z-
score at birth and 1 
year or change in 
BMI Z-score from 
birth to 1 year and 
age at menarche Z-
score.  Differences 
in anthropometric 
characteristics 
between earlier 
and later menarche 
(dichotomized at 
the median) 
assessed by 
unpaired t-tests or 
by Wilcoxon signed 
rank test. 

Mean (SD) of birth 
characteristics by 
median age at 
menarche: 
Weight (kg), p=0.995: 
Earlier: 3.2 (0.4) 
Later: 3.2 (0.4) 
Standing height (cm), 
p=0.680 
Earlier: 49.4 (2.2) 
Later: 49.2 (1.9) 
BMI, p=0.706 
Earlier: 13.0 (1.2) 
Later: 13.1 (1.3) 
 
β for age at menarche 
Z-score predicted by 
BMI at birth Z-score): 
β = -0.07, 95% CI= -
0.259, 0.120), R-
squared = 0.01 None 
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Orden, 
2011, 
Argentina 

Cross-
sectional 

1221 girls 
 
Age 9-15 years 
 
Cross-sectional 
study of 1221 
school girls in 
Santa Rosa, 
Argentina, 
carried out in 
Sept-Nov 2009 
(public and 
private schools 
selected from 
neighborhoods) Birth weight 

Parent 
report in 
adolescenc
e 

Menarche at 
study visit 
(status quo 
method).  
Girls were 
grouped at 
age at visit: 
9-11, 12, 13 
and 14-15 
years 

Self-report 
by girl (Girls 
reported 
age at 
menarche, 
but most 
specified 
age in 
years so 
status quo 
method was 
used) 

Anthropometric 
differences 
between pre- and 
post-menarcheal 
girls were 
compared by the 
Mann-Whitney test. 
Logistic binary 
regression was 
used to model the 
association 
between menarche 
and independent 
variables. 

Mean difference in 
birthweight between 
pre- and 
postmenarcheal girls 
according to age 
groups (prem-postm): 
9-11: Birth weight diff = 
-17.8, p=0.858 
12 : Birth weight diff = -
38.3, p=0.624 
13: Birth weight diff = 
0.1, p=0.999 
14-15: Birth weight diff 
= -4.6, p=0.963 
 
Birth weight included in 
initial logistic 
regression model with 
anthropometric 
measures, p>.05 
(results not shown, not 
included in final model) 

None for 
differences, 
logistic 
regression 
adjusted for age, 
subscapular/trici
pital index (STI) 
and 
anthropometric 
Z-scores at visit 

Wehkalam
pi, 2011, 
Finland 

Prospective 
cohort 

21 VLBW SGA 
girls, 44 VLBW 
AGA girls and 92 
control girls 
(matched to 
VLBW by age, 
sex and birth 
hospital) 
 
Mean age 22.5 
years at follow-
up 
 
Helsinki Study of 
Very Low 
Birthweight 
Adults, 
longitudinal 
follow-up of 
subjects born 
preterm at 
VLBW (<1500g) 
between 1978-
1985 and treated 
in the Neonatal 
ICU of Children's 
Hospital of 
Helsinki 

VLBW SGA: 
Infants 
weighing 
<1500g at 
birth and 
birthweight 
<-2SD based 
on Finnish 
standards 
 
VLBW AGA: 
Infants 
weighing 
<1500g at 
birth and 
birthweight 
≥-2SD based 
on Finnish 
standards 
 
Controls: 
Term infants 
with 
birthweight 
≥-2SD based 
on Finnish 
standards 

Hospital 
records 

Age at 
menarche 

Self-
reported by 
women 

Age at menarche, 
corrected for 
gestational age at 
birth, were 
compared between 
VLBW and control 
subjects 

Mean (SD) age at 
menarche by group: 
VLBW SGA (N=21): 
12.6 (1.8) 
VLBW AGA (N=44): 
12.2 (1.2) 
Controls (N=92): 12.5 
(1.3) 
Not statistically 
different from each 
other 

Gestational age 
at birth 
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University 
Hospital and 
controls who 
were not SGA 
(birthweight>-2 
SD) 

Szwed, 
2012, 
Poland 

Cross-
sectional 

273 girls with 
menarche data 
 
Age 17-21 years 
 
Outpatient clinic 
cards of 
"Vitamed" 
general 
outpatient clinic 
in the city of 
Poznan and 
cross-sectional 
research on girls 
from the 
province of 
Wielkopolska in 
Poland 

Birthweight, 
continuous, 
and 
categorized 
as: 
Low:<2500g 
Appropriate: 
2500-4000g 
High:>4000g 
Also 
birthweight 
for GA: 
SGA: 
birthweight 
<10th 
percentile for 
gestational 
age 
AGA: 
birthweight 
10-90 
percentile 
LGA 
birthweight 
>90th 
percentile for 
gestational 
age 

Outpatient 
clinic cards 

Age at 
menarche 

Self-report 
by girl at 
visit. Only 
girls 17 and 
above 
included 
since latest 
age at 
menarche 
was 17 
(excluded 
younger 
girls) 

 Kaplan–Meier 
method  log-rank 
test for differences 
in age at menarche 
by exposure 

Birthweight 
(categorized as low, 
appropriate, high) was 
associated with age at 
menarche (log rank 
test, p<.000001). Girls 
with low birthweight 
had latest age at 
menarche. 
 
No variation in age at 
menarche by SGA, 
AGA and LGA groups 
(log rank p value >.05) None 
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Reagan, 
2012, 
United 
States 

Prospective 
cohort 

2337 girls born 
between 1978-
1998 with 
menarche data 
(pre-menarche 
girls excluded) 
 
Age 12-32 in 
2010 
 
Subset of U.S. 
National 
Longitudinal 
Surveys of Youth 
Child-Mother file 
(1979-2010 
waves). 78% of 
eligible sample 
included  

Birthweight 
in kg 

Reported 
by mother 
during first 
interview 
after child's 
birth. 
Reported in 
lbs and oz 
and 
converted 
to kg. 

Age at 
menarche 

Reported 
by mothers 
when girls 
were 8-14 y 
or by girls 
at 14y and 
above.  
Reported 
year and 
month of 
menarche, 
used to 
calculate 
age 

OLS regression 
with age at 
menarche as 
outcome and 2-
stage IV analysis 
for age at 
menarche with 
maternal smoking 
during pregnancy, 
maternal pre-
pregnancy BMI and 
GWG used as IVs 

β for age at menarche 
for birthweight (kg): 
OLS model: β=1.80, 
95% CI=0.63, 2.97 
2-stage least squares 
model: β=3.00, 95% 
CI= 1.53, 4.48 

Childhood BMI 
Z-score, percent 
poverty (0-5 
years)*White, 
Percent 
poverty*African 
American, 
Maternal age at 
menarche, 
African-
American. 
 
2-stage results 
used pre-
pregnancy BMI, 
high GWG and 
maternal 
smoking as IV 

Wang, 
2012, 
United 
States 

Prospective 
cohort 

305 term girls  
 
Age 10-15 years 
at first report of 
pubertal status, 
followed 
annually until 
TS5 or max of 5 
years 
 
Adolescent 
follow-up of 
subset of the 
North Carolina 
Infant Feeding 
Study, infants 
born 1978-1982 

Birthweight 
in kg 

Recorded 
at birth by 
nurse 

Age at 
menarche, 
continuous 

Date of 
menarche 
reported by 
daughter on 
annual 
surveys 
(started in 
1992 at age 
10-15, 
followed for 
max of 5 
years) 

Univariate linear 
model for age at 
menarche. 
Multivariable-
adjusted 
parametric survival 
analyses with log 
normal distribution 
for age at 
menarche (β<0 
indicates earlier 
menarche) 

Univariable linear 
regression model for 
birthweight, kg: β= -
0.04, SE=0.15, p>.05 
 
Regression coefficient  
in adjusted log-normal 
survival analyses of 
time to menarche 
Birthweight : β=-0.06, 
95% CI= -0.10, -0.03 
 
Early menarche group 
had highest weight Z-
score starting at birth, 
but lines really start to 
diverge after age 1 

Birthweight, 
weight gain 
(change in Z-
score) from 0-6 
months, 6-12 
months, 1-2 
years, 2-5 years, 
maternal pre-
pregnancy 
weight and race. 
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Oh, 2012, 
South 
Korea 

Cross-
sectional 

144 girls with 
menarche data 
 
Average age 
12.8 years (SD 
0.4) for early 
menarche group 
and 12.7 (SD 
0.5) for late 
menarche group 
 
Survey 
conducted 
among grade 4 
students from 
one middle 
school in Seoul 
in Nov-Dec 2008 

Birthweight 
in kg and 
categorized 
into quartiles 
for analysis: 
Q1:<2.98 
Q2:2.98-3.18 
Q3:3.18-3.38 
Q4: ≥3.38 

Mother 
report on 
questionnai
re when 
child in 7th 
grade 

Age at 
menarche, 
dichotomized 
as: 
 Early: ≤12 
years 
Average or 
late: >12 

Age at 
menarche 
reported by 
girl or mom 

T-test to compare 
mean birthweight 
between early and 
average/late 
menarche group 
 
Multiple logistic 
regression for early 
menarche with 
Wald test for trend. 
Main exposure was 
BMI (or change in 
BMI) at ages 7, 8 , 
and 9 years. 
Birthweight was an 
adjustment factor. 

Mean (SD) for 
birthweight in kg and t-
test by menarche 
group: 
Early: 3.1 (0.4) 
Avg/late: 3.2 (0.4) 
 p=0.29 
 
OR for early menarche 
for birthweight (results 
from model with main 
exposure of BMI 
quartile at age 7): 
Q1: Referent 
Q2: OR=0.65, 95% 
CI=0.17, 2.60 
Q3: OR=0.44, 95% 
CI=0.13, 1.47 
Q4: OR=0.79, 95% 
CI=0.25, 2.55 
P for trend: 0.55 
*Results were similar 
when models adjusted 
for BMI or change in 
BMI in other childhood 
periods 

BMI quartile at 7 
years, ever 
breastfed, 
maternal age at 
menarche  

Dossus, 
2012, 
France 

Prospective 
cohort 
(cross-
sectional 
analysis) 

96,493 women 
with data on age 
at menarche 
from 8-19 years 
(23.7% missing 
birthweight data 
and 29.3% 
missing 
birthlength data) 
 
40-65 years at 
baseline 
 
E3N cohort, 
French women 
ages 40-65 
years at 
baseline, insured 
with the Mutuelle 
Generale de 
l'Education 
Nationale, a 
national health 
insurance plan 

Birthweight 
was 
categorized 
for full-term 
women: 
 Low:<2500g 
Medium: 
2500-4000g 
High: >4000g 
 
Birthlength 
was 
categorized: 
Low: <48cm 
Medium: 48-
51cm 
High: >51cm 

Birthweight 
self-
reported by 
participant 
in 
adulthood, 
recorded in 
grams or 
using 
categories 
"low", 
"medium", 
"high" 
 
Birthlength 
self-
reported by 
participant 
in 
adulthood, 
recorded in 
cm or using 
categories 
"low", 

Age at 
menarche, 
continuous 

Self-
reported in 
first two 
questionnai
res, with 
age from 8-
19 in full 
years and 
additional 
categories 
for never 
menstruate
d or 
menstruate
d at  ≤7 or  
≥20 years 
(excluded) 

Association 
between pre- and 
postnatal factors 
and age at 
menarche was 
assessed by 
multivariable-
adjusted linear 
regression (β<0 
indicates earlier 
menarche) 

β (95% CI) for age at 
menarche in months 
from adjusted model: 
Birthweight (p for trend 
<.0001): 
Low: Referent 
Medium: β=0.61, 95% 
CI=0.09, 1.13  
High: β=1.51, 95% 
CI=0.87, 2.16 
 
Birthlength (p for trend 
<.0001): 
Low: Referent 
Medium:β= -1.05, 95% 
CI= -1.50, -0.59 
High: β= -1.84, 95% 
CI= -2.45, -1.24 

Birth cohort, 
Father's income 
index, 
Population of 
birth place, fetal 
number, number 
of siblings, 
maternal 
smoking during 
pregnancy, 
breastfeeding 
exposure, 
suffered from 
food deprivation 
during WWII,  
premature birth, 
birthweight, birth 
length, body 
silhouette at 
menarche, 
passive smoking 
during childhood, 
frequency of 
indoor exposure 
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covering mostly 
teachers and 
recruited June 
1990-Nov 1991 

"medium", 
"high" 

to passive 
smoking during 
childhood, extra-
school physical 
activity at 8-15 
years, walking 
activity at 8-15 
years 

D'Aloisio, 
2013, 
United 
States 

Cross-
sectional 

33,501 women 
with age at 
menarche, early-
life and race 
information 
 
Age 35-59 years 
at baseline 
 
Sister Study 
participants, age 
35-59 years at 
baseline (2003-
2009) 

Birthweight, 
categorized 
as: 
<2500 
≥2500g 

Self-report 
by 
participant 
at baseline 
in lbs/ozs 
(age 35-59 
years). 
Women 
were given 
a prepaid 
phone card 
and 
encouraged 
to call their 
mother/relat
ives for 
assistance. 

 
 
Categorized 
as: 
 ≤10 years 
 11 years 
 12-13 years 
 14 years 
 ≥15 years 

Age at 
menarche, 
recalled in 
years by 
participant 
during CATI 
interview at 
baseline. 
For women 
who did not 
know age, it 
was 
estimated 
from grade 
in school 
(n=77) or 
timing 
relatives to 
others 
(n=63) 

Polytomous logistic 
regression to 
estimate rela- 
tive risk ratios 
(RRRs) with 95% 
confidence 
intervals (cis) for 
each early-life 
exposure in 
association with 
very early (≤10 
years), early (11 
years), late (14 
years), and very 
late (≥15 years) 
menarche relative 
to typical ages at 
menarche (12–13 
years) 

Polytomous logistic 
regression results for 
<2500g vs ≥2500g as 
referent, rRR (95% CI): 
≤10y: OR=1.28, 95% 
CI=1.09, 1.50 
11y: OR=1.09, 95% 
CI= 0.96, 1.24 
12-13y: Referent 
14y: OR=1.02, 95% 
CI=0.90, 1.16 
≥15y: OR=1.08, 95% 
CI= 0.94, 1.25 
 
Additional adjusted 
model result for low 
birth weight and very 
early menarche, 
rRR=1.33, 95% 
CI=1.08-1.63 

Race/ethnicity, 
participant's birth 
decade, 
childhood family 
income, and 
interaction 
between race 
and birth 
decade.  
 
Additional model 
(full results not 
shown) also 
adjusted for 
preterm birth, 
multiple birth, 
and maternal 
factors during 
pregnancy 
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Sorensen, 
2013, 
Denmark Twin study 

2505 twin pairs 
were included 
(733 female MZ, 
625 female 
dizygotic and 
1147 opposite-
sex dizygotic) 
 
Age 12-22 years 
at survey 
 
Subset of 1994 
survey sent to all 
known twins 
born in Denmark 
from 1973-1982 
(Danish Twin 
Register) 

Sex-specific 
BW standard 
deviation 
scores (BW-
SDS) 
adjusted for 
gestational 
age were 
calculated 
according to 
the twin BW 
reference by 
Glinianaia et 
al, 2000 

Danish 
Medical 
Birth 
Registry 
(sex, birth 
order, birth 
length, birth 
weight, 
gestational 
age) 

Age at 
menarche, 
continuous 

Age at 
menarche 
in months 
and years, 
self-
reported on 
1994 
survey 

Marginal Cox 
proportional hazard 
survival models 
with cluster-
corrected estimates 
of the SEs for 
estimates of effect 
on population level 
 
Random effects 
survival models for 
correlation within 
twins (timereg 
package, based on 
standard frailty 
modeling) 

Adjusted HR from 
population Cox model 
in 3466 twin girls: 
BW-SDS: HR=0.962, 
95% CI=0.928-0.998 
 
Birthweight, birth length 
and GA were not 
individually associated 
with age at menarche 
(P≥0.15, data not 
shown) 
 
Paired analysis: 
Overall: BW-SDS 
HR=1.01, 95% 
CI=0.91, 1.12 
MZ twins: BW-SDS 
HR=0.94, 95% 
CI=0.81, 1.10 
DZ twins: BW-SDS 
HR=1.07, 95% 
CI=0.93, 1.24 
 
Girls discordant by 
more than 1 BW-SDS: 
HR=1.05, 95% 
CI=0.93, 1.19 
 
Girls discordant by 
more than 2 BW-SDS: 
HR=1.04, 95% CI= 
0.87, 1.23 

Population 
model Cox 
model adjusted 
for birth cohort 
and zygosity 
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Deardorff, 
2013, 
United 
States 

Prospective 
cohort 

2497 girls with 
complete data 
for maternal pre-
pregnancy BMI, 
GWG, 
daughters' 
menarche and 
covariates. 
Excluded girls 
with menarche 
before 9 or after 
16. 
 
Age 9-16 years 
at follow-up 
 
Daughters of 
women in 1979 
National 
Longitudinal 
Survey of Youth, 
prospective 
study of 
nationally 
representative 
samples born 
1957-1964. 
Offspring were 
surveyed 
biennially from 
1986-2010 as 
part of the 
NLSBY Children 
and Young Adult 
Survey. 

Birthweight 
in kg 

Reported 
by mother 
during first 
interview 
after child's 
birth. 
Reported in 
lbs and oz 
and 
converted 
to kg. 

Age at 
menarche, 
continuous 

Year and 
months of 
menstruatio
n, reported 
by mothers 
for girls <14 
years and 
girls age 14 
and over on 
biennial 
surveys 

Distribution of 
covariates by 4 
menarche groups 
(9-11 years, 12 
years, 13 years, 
14-16 years, right 
censored as 
separate category) 
 
Cox proportional 
hazard models to 
estimate 
associations 
adjusting for 
covariates in order 
to include right 
censored girls. 

Birthweight described 
only as difference in 
means by age at 
menarche; was 
included as a mediator 
for maternal BMI and 
GWG models. 
 
Mean birthweight in g 
by age at menarche: 
9-11y: 3240.9g 
12y: 3295.3 
13y: 3378.9g 
14-16y: 3273.2g 
P=0.04 
Right censored girls: 
3294.3g None 

Hernande
z, 2013, 
Chile 

Prospective 
cohort 

16 LBW and 25 
AGA girls, TS2 
at enrollment 
and BMI 
between 10th 
and 95th 
percentile and 
followed for 3 
years 
 
7-12 years at 
enrollment 
 
Age-matched 
LBW and AGA 

AGA - birth 
weight 
between the 
10th and 
90th 
percentile for 
gestational 
age 
 
LBW - birth 
weight below 
the 10th 
percentile for 
gestational 
age 

Birth 
weight, birth 
length and 
gestational 
age 
reported by 
parents and 
confirm in 
child's 
health 
control card 

Age at 
menarche 

Assume 
reported by 
girls at 
biannual 
follow-up 
visits 

Differences in 
menarche of the 
two groups 
assessed by 
Kaplan Meier 
survival analyses 
(log rank test) 

“The mean age at 
menarche was 12.1 ± 
0.8 years (AGA) vs. 
12.4 ± 0.1.1 years 
(LBW). Log-rank test 
for equality of survivor 
functions (p = 0.2).  
AGA and LBW girls 
had similar age at 
menarche even after 
adjustment for 
maternal age at 
menarche (p = 0.067) 
and rate of progression 
from B2 to menarche.” 

Menarche 
results adjusted 
for maternal age 
at menarche and 
rate of 
progression from 
B2 to menarche. 
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girls 7-12 years 
recruited from 
public schools in 
Santiago and 
Concepcion, 
Chile 

Jahanfar, 
2013, Iran 
and 
Malaysia Twin study 

193 girls (54 MZ 
pairs, 34 DZ 
pairs, 17 females 
from opposite-
sex twin pairs 
 
Age 16-63 years 
(mean 31.52) 
 
Twins born 
between 1945 
and 1988 
identified 
through the Iran 
Twin Registry in 
2000 and twins 
born between 
1951 and 1993 
drawn from the 
Malaysian Twin 
Registry 
database Birthweight 

Not 
specified 
(assume 
self or 
parent 
report to 
zygosity 
questionnai
re) 

Age at 
menarche 

Self-report 
in 
adulthood 
in years 

Descriptive 
analysis and 
computation of 
variance and co-
variance; genetic 
analysis using 
Falconer's formula 
for estimation of 
heritability and 
MLA analysis of 
twin data 

Birthweight was not 
associated with age at 
menarche (p=0.830) 
(data not shown) 
 
Birthweight was not 
associated specifically 
with early or late 
menarche (p=0.925) 
(data not shown) Not specified 
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Zhang, 
2014, 
United 
States 

Cross-
sectional 

652, 
nonpregnant 
girls age 8-15 
years with 
complete data. 
Pre-menarcheal 
girls were 
excluded, as 
were races other 
than Mexican 
American, non-
Hispanic black 
and non-
Hispanic white 
 
Age 8-15 years 
 
NHANES 2003-
2006 

Birthweight, 
continuous 
and 
categorized 
as: 
 Low: 
<2500g 
 Normal: 
2500-4000g 
 High: 
>4000g 

Birthweight 
reported to 
nearest 
ounce by 
parent/guar
dian in 
adolescenc
e 

Age at 
menarche, 
continuous 

Self-report 
by girl in 
adolescenc
e; pre-
menarcheal 
girls 
excluded 

 
Multiple linear 
regression models 
(PROC 
SURVEYREG) 
were used to 
evaluate the 
associations 
between age at 
menarche and birth 
weight as both 
continuous and 
categorical 
predictor variables 
(β<0 indicates 
earlier menarche) 

Adjusted β for age at 
menarche in months: 
Per 500g increase in 
birthweight: β=-0.005, 
95% CI= -0.061, 0.052 
 
Low: β=-0.24, 95% CI= 
-0.60, 0.12 
Normal: Referent 
High: β=-0.32, 95% 
CI=-0.68, 0.03 

Survey cycle, 
race, maternal 
smoking status 
when pregnant 
and BMI-for-age 
percentile 

Gavela-
Perez, 
2015, 
Spain 

Prospective 
cohort 

195 girls 
 
Age 13-16 years 
at follow-up 
 
Randomly 
selected 6-8 
year-old 
Caucasian girls  
in the Four 
Provinces Study 
(random cluster 
sampling in 
schools). Girls 
with chronic 
diseases 
including 
precocious 
puberty were 
excluded. 

Weight at 
birth z-score 
by 
gestational 
age 

Birthweight 
and 
gestational 
age 
reported on 
questionnai
re 
(assuming 
by parents) 

Age at 
menarche 

Self-report 
at ages 13-
16 years 

Spearman 
correlation 
analyses between 
weight at birth Z-
score and age at 
menarche 

Correlation between 
weight at birth Z-score 
and age at menarche = 
-0.010 (P≥0.05) None 
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Meulenijze
r, 2015, 
multiple 
countries 
in Europe 

Cross-
sectional 

1069 girls with 
valid data on 
early-life factors 
and menarche 
 
Age 12.5-17.5 
years 
 
HELENA-CSS 
(Healthy 
Lifestyle in 
Europe by 
Nutrition in 
Adolescence 
cross-sectional 
study) 

Birthweight 
in kg, 
continuous 
 
Ponderal 
index (g/m3), 
continous 
and in 
quintiles 
 
Birthlength in 
cm, 
continuous 

Birthweight, 
birth length, 
gestational 
age and 
duration of 
breastfeedi
ng reported 
on parental 
questionnai
re. 

Age at 
menarche, 
dichotomized 
for analysis 
as below 
median (≤12) 
or above 
median (>12) 

Menarche 
status and 
year of 
onset self-
reported by 
girls 

Multivariable linear 
regression for age 
at menarche (β<0 
indicates earlier 
menarche) 

β from adjusted linear 
model for age at 
menarche: 
Birthweight (kg), log-
transformed: β=1.28, 
SE=0.44, p=0.01 
 
Ponderal index (g/m3), 
log-transformed : 
β=0.17, SE=0.51, 
p=0.75 
 
Ponderal index, 
quintiles: 
Q1: β=-0.15, SE=0.11, 
p=0.19 
Q2: β=-0.08, SE=0.11, 
p=0.49 
Q3: β=-0.10, SE=0.11, 
p=0.37 
Q4: β=-0.11, SE=0.11, 
p=0.31 
Q5: referent 
 
Birthlength (cm), log-
transformed: β=3.09, 
SE=1.26, p=0.01 

Center, BMI Z-
score and age of 
adolescent 

Behie & 
O'Donnell, 
2015, 
Australia 

Longitudina
l 

1493 girls with 
complete data 
 
Age 12-13 years 
at follow-up 
 
K-cohort from 
Growing Up in 
Australia, the 
Longitudinal 
Study of 
Australian 
Children (LSAC) 

Birthweight 
in grams, 
continuous 

Birthweight 
reported by 
parents at 
initial data 
collection 
point, when 
girls were 
3-4 years 
old 

Age at 
menarche 

Reported 
by parents 
(year and 
month) 

Cox proportional 
hazard models, 
with age at 
menarche or last 
follow-up for right 
censored girls as 
the outcome (HR>1 
indicates earlier 
menarche) 

HR (95% CI) for age at 
menarche: 
Birthweight: HR=0.86, 
95% CI= 0.75-0.97 

Maternal age at 
menarche, BMI 
at 8-9 years, 
maternal 
smoking 
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Wells, 
2016, 
United 
Kingdom 

Cross-
sectional 

58 women 
 
Age 18-30 years 
(mean=22.6) 
 
South Asian 
women in central 
London, UK, 
recruited near 
universities. 
Inclusion criteria 
= age 18-30 
years, 
gestational age 
37+ weeks, and 
four South Asian 
grandparents. 
Excluded twins, 
smokers, 
pregnant/lactatin
g women, weight 
instability (>3kg 
change in 3 
months), and 
medical 
conditions 
known to impact 
body 
composition or 
metabolism 

Birthweight 
SDS, 
adjusted for 
gender and 
gestational 
age, using 
UK 1990 
reference 
data 

Birthweight 
and 
gestational 
age self-
reported by 
participants 
(asked to 
contact 
their 
mothers) 

Age at 
menarche, 
continuous 

Self-report 
in 
adulthood 

Linear regression 
model to 
investigate 
association 
between BW SDS 
and age at 
menarche (β<0 
indicates earlier 
menarche) 

Linear regression 
model of age at 
menarche, including 
birthweight SDS and 
gestational age: 
Birthweight SDS: 
β=0.49, 95% CI 0.14, 
0.84 

First-generation 
migrant status 
and gestational 
age 

Krzyzano
wska, 
2016, 
United 
Kingtdom Prospective 

4483 girls with 
menarche data, 
excluded 
minorities 
 
Age 16 years at 
follow-up 
 
16-year follow-
up of girls in the 
1958 British 
National Child 
Development 
Study (NCDS), 
birth cohort of all 
children born in 
England, Wales 
and Scotland the 
week of March 
3-9, 1958 

Birthweight 
in grams 

Medical 
records 

Age at 
menarche, 
continuous 

Recalled in 
years by 
girls at age 
16 years 

Univariable and 
multivariable 
Interval censored 
Cox models, using 
Icens function in 
Epi package in R 

Birthweight was not 
associated with age at 
menarche (p>0.10) in 
univariable analysis 
(data not shown) None 
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Schulte, 
2016, 
Germany Twin study 

13 female MZ 
twin pairs 
 
Age 13.2-15.8 
years at follow-
up 
 
Adolescent 
follow-up of 30 
pairs (13 female) 
of MZ twins that 
underwent 
selective 
fetoscopic laser 
coagulation for 
TTTS (twin-to-
twin transfusion 
syndrome) 
during 
pregnancy and 
had an intra-twin 
birthweight 
difference 

Smaller vs. 
larger co-
twin at birth, 
based on 
birthweight 
- Concordant 
birthweight 
pairs defined 
as 
birthweight 
difference 
<1SDS 
- Discordant 
birthweight 
pairs defined 
as 
birthweight 
difference > 
1 SDS 
* In 
discordant 
pairs, the 
smaller twin 
met the 
criterion for 
SGA 
(birthweight 
<2 SD for 
GA) 

Medical 
records 

Age at 
menarche, 
continuous 

Reported 
by parents 
and 
participants 
at follow-up 

Intra-twin 
differences 
calculated as the 
data of the initially 
larger twin 
subtracted from the 
data of initially 
smaller co-twin 
 
Sign test used to 
compare intra-pair 
values for 
measurements on 
ordinal scale (i.e. 
Tanner stage 
 
Paired t-test or 
Wilcoxon test for 
ratio scales 
 
Intra-twin 
correlations using 
Pearson's r, 
Spearman's rho 
and Kendall's tau-b 

In 77% of girls (10/13), 
the initially smaller twin 
experienced menarche 
before the co-twin 
(median age at 
menarche 12.1 vs 
13.0) 
 
In 7/8 discordant 
female pairs, the 
initially smaller twin 
experienced menarche 
first (median 12.4 vs 13 
years) 
 
Note: sign test showed 
that progression 
through tanner stages 
was different for initially 
smaller and larger twin 
(P=.021, 9 positive 
differences, 1 negative 
difference, 4 ties - not 
stratified by sex.  The 
initially smaller twin 
also started pubertal 
maturation first in 63% 
(19/30 pairs) -- also not 
stratified by sex None 
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Aurino, 
2017, 
India, 
Peru, 
Vietnam 

Prospective 
cohort 

2001 girls with 
birthweight data 
 
12 years at 
follow-up 
 
Young Lives 
cohort of Indian, 
Peruvian and 
Vietnamese girls 
born in 2001-
2002, recruited 
at ~1 year and 
followed up to 12 
years 

Birthweight 
Z-score 
calculated 
using WHO 
international 
reference 
standards 

Birthweight 
assessed 
from birth 
certificate if 
available. If 
not, 
information 
from other 
health 
records was 
used as 
long as it 
was 
recorded 
within 1 
week of 
birth. If 
none, 
mother's 
report of 
birthweight 
was used.  
Birthweight 
from 
medical 
record 
(source 1 or 
2) for 44% 
of sample 
(52% India, 
66% Peru, 
18% 
Vietnam) 

Age at 
menarche, 
continuous 

Self-
reported in 
years by 
girls in 
2013, when 
~12 year of 
age 

Weibull survival 
models estimated 
rate of menarche 
by ~12 years; pre-
menarche girls 
were censored 
(HR>1 indicates 
earlier menarche)  

 
HR (95% CI) for 
birthweight Z-score 
from Weibull models: 
 
Adjusted for country 
only: HR=1.05, 95% 
CI=0.97,1.13 
 
Fully adjusted model: 
HR=0.88, 95% 
CI=0.81-0.95 

 
Fully adjusted: 
Country, HAZ at 
8 years, BMIZ at 
8 years, First 
child, maternal 
height, maternal 
age at girl's birth, 
maternal 
education, urban 
location at 1 
year, SES at 8 
years, binary 
indicators of 
girls' previous 
day consumption 
of fruits and 
vegetables, meat 
and fish, eggs, 
legumes, and 
milk and dairy at 
8 years, 
difference in 
BMIZ between 1 
and 8 years, 
difference in 
HAZ between 1 
and 8 years 
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Flom, 
2017, 
United 
States 

Prospective 
cohort 

1126 women 
with age at 
menarche data 
 
Age 39-49 years 
at follow-up 
 
The Early 
Determinants of 
Mammographic 
Density Study, 
2008 adult 
follow-up of 
female 
participants in 
the CHDS and 
Boston and 
Providence sites 
of NCPP birth 
cohorts 
(pregnancies 
1959-1966) 

Birthweight 
in kilograms 
 
Birthlength in 
cm 

Measured 
at birth 

Age at 
menarche, 
continuous 
and  
categorized 
as: 
<12 years 
≥12 years 

Self-report 
by woman 
in 
adulthood 

Multivariable 
logistic regression 
for early menarche 
(<12 y), GEE 
models and linear 
random effect 
models for age at 
menarche 
(continuous) using 
percentile rank 
change, conditional 
growth and pattern 
models (β<0 or 
OR>1 indicates 
earlier menarche). 

Birthweight not 
associated with 
menarche in 
univariable models 
(data not shown) 
 
Logistic regression, OR 
for early menarche 
(<12y): 
Adjusted for percentile 
rank change in weight 
and length: 
Birthweight (kg) 
OR=1.30, 95% 
CI=0.74, 2.31 
Birthlength(cm): 
OR=1.07, 95% 
CI=0.95, 1.21) 
 
Adjusted for birthlength 
and conditional growth 
in weight and length: 
Birthweight (kg) 
OR=0.80, 95% 
CI=0.52, 1.24 
Birthlength(cm): 
OR=1.00, 95% 
CI=0.92, 1.08) 
 
Linear regression, β for 
menarche: 
Adjusted for percentile 
rank change in weight 
and length: 
Birthweight (kg) β=-
0.23, 95% CI= -0.59, 
0.12 
Birthlength(cm): β=-
0.06, 95% CI= -0.13, 
0.01 
 
Adjusted for birthlength 
and conditional growth 
in weight and length: 
Birthweight (kg) 
β=0.19, 95% CI= -0.13, 
0.51 
Birthlength(cm): β=-
0.04 (-0.10, 0.02) 

Adjusted for 
birthweight, 
birthlength, 
maternal age at 
menarche and 
either percentile 
rank change or 
conditional 
growth in height 
and weight from 
0-4 months, 4-12 
months, and 1-4 
years 
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Workman 
& Kelly, 
2017, 
United 
States 

Cross-
sectional 

342 girls with 
complete data 
on height, 
birthweight and 
menarche 
 
Age 14-16 years 
 
Subset of 
NHANES 2007-
2012 (born 
1991-1998) 

Birthweight 
in kilograms 

Birth weight 
to near 
ounce 
reported by 
parent 
during 
home 
interview 

Age at 
menarche, 
continuous 

Self-report 
by girls in 
years 
during 
health 
history 
interview 

Two-way 
correlation between 
age-adjusted 
height, birthweight, 
age at menarche 
and indicators of 
family SES.  Linear 
regression model 
for age at 
menarche. 

Linear regression for 
birthweight and 
menarche: 
Birthweight (kg): 
Coeff=-.03 year, β=-
.01, p=0.838 
 
No association within 
each birthweight 
quartile or when SES 
was included as a 
covariate (data not 
shown) 

Family SES (not 
shown) 

Kelly, 
2017, 
United 
Kingdom 

Prospective 
cohort 

5839 singleton 
girls with 
menarche status 
at 11 years 
 
Age 11 years at 
follow-up 
 
Girls followed up 
to 11 years from 
the Millennium 
Cohort Study, 
UK nationally  
representative 
prospective 
cohort study of 
children born in 
19,244 families 
between 
September 2000 
and January 
2002 

Birthweight 
in kilograms 

Reported 
by mother 
when 
daughter 
was 9 
months old 

Menarche at 
11 year visit 
(Yes/No) 

Mother 
reported 
using 
question 
adapted 
question 
from the 
Petersen 
Pubertal 
Developme
nt Scale at 
11 year 
visit: "Has 
she begun 
to 
menstruate 
(we mean 
started to 
have her 
period)?" 
(Yes/No/Do
n't know).  
Don't know 
(N=89) 
were 
excluded 

Logistic regression 
was used to 
estimate 
associations 
between predictors 
and menarche 
status at 11 years 
with sample 
weights (OR>1 
indicates earlier 
menarche) 

OR for menarche at 
age 11 years (95% CI): 
Partially adjusted 
model: 
Birthweight(kg): 
OR=0.78, 95% CI=0.6, 
0.9 
 
Adjusted model 
(mediation): 
Birthweight(kg): 
OR=0.71, 95% CI=0.6-
0.9 

Partially 
adjusted: 
centered age, 
income, ethnicity 
 
Adjusted 
(mediation): 
centered age, 
income, 
ethnicity, 
birthweight, BMI 
at 7 years, 
mother's 
psychological 
distress, racism 
in area is 
fairly/very 
common, lone 
parent family, 
total difficulties 
score 
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Supplemental Table 2.5. Studies of infant size or growth and timing of breast development 

Author, 
Location, 
Year 

Study 
Design 

Study 
Population (N, 
Age range, 
Name) Exposure 

Exposure 
source Outcome 

Outcome 
source Statistical method Results Covariates 

Amador, 
1996, 
Cuba 

Prospective 
cohort 

173 girls with 
birthweight≥2500
g 
 
Age 13.6-14.5 
years 
 
Students in two 
high schools at 
the municipality 
of Boyeros in 
Havana in 
September 
1986, subset of 
longitudinal 
study on height 
and weight that 
was initiated in 
Havana in 1972 
when children 
aged 12 mo.  BMI at 1 year 

Calculated 
from weight 
and height 
measured 
at study 
enrollment 
at 1 year of 
age 

Breast 
Tanner stage 
at entry to 
high school 

Assessed 
by 
researchers 

Pearson correlation 
coefficients relating 
birthweight to stage 
of sexual 
development 
(Breast Tanner 
stage) 
 
Mean birthweight 
by breast Tanner 
stage 
 
Path analysis 
model relating 
birthweight, height 
at 14 years and 
breast Tanner 
stage 

Mean (SD) of BMI at 1 
year in girls by their 
breast Tanner stage at 
14 years 
TS3: 17.18 (1.72) 
TS4: 17.85 (2.13) 
TS5: 20.18 (2.62) 
p = 0.000 
 
Actual and estimated 
correlations among 
BMI at 1 year and 
stage of sexual 
development in girls: 
 Actual=0.43 
Estimated = 0.39 

Path model 
included BMI at 
1, 4, 6, 12 and 
14 years and 
height at 14 
years 



 

 

 

2
5
5

 

Benefice, 
2001, 
Senegal 

Prospective 
cohort 

406 girls 
measured from 
1995-1999 
 
Mean age 
11.4±0.5 years 
in 1995 and 
15.4±0.5 years 
in 1999 
 
Adolescent 
follow-up of girls 
that were part of 
the district health 
and nutrition 
examination 
from 0-4 years of 
age in 1983-
1984 in Niakhar 
district of 
Senegal 

Stunted vs. 
Not Stunted: 
Stunting 
defined as at 
least one 
length 
measuremen
t done in 
1983-1984 
(between 6-
18 months of 
age) below -
2 Z-scores of 
the 
NCHS/WHO 
reference 
(1983) 

Height for 
age from 
health and 
nutrition 
examination 
study 
records 

Breast 
Tanner stage 
at visit 

Assessed 
by 
researchers 
at visits 
every 6 
months 

Distribution of 
breast Tanner 
stage at each 
adolescent visit by 
stunting status, P-
value from ANOVA 

Percent distribution of 
breast Tanner stage by 
year (p value): 
1996 (NS):  
Stunted: B1 64.5%, B2 
32.3%, B3 3.2%, B4 
0%, B5 0% 
Non-Stunted: B1 
54.4%, B2 35.6%, B 
9.4%, B4 0%, B5 0% 
 
1997 (NS): 
Stunted: B1 27.6%, B2 
25.0%, B3 32.9%, B4 
14.5%, B5 0% 
Not Stunted: B1 32.7%, 
B2 27.4%, B3 28.6%, 
B4 10.2%, B5 1.1% 
 
1998 (NS, p=0.07) 
Stunted: B1 12.3%, B2 
23.1%, B3 29.2%, B4 
33.8%, B5 1.5% 
Not Stunted: B1 12.5%, 
B2 24.6%, B3 32.4%, 
B4 20.7%, B5 9.8% 
 
1999 (NS): 
Stunted: B1 2.9%, B2 
7.4%, B3 10.3%, B4 
39.7%, B5 39.7% 
Not Stunted: B1 5.7%, 
B2 5.3%, B3 16.7%, B4 
30.8%, B5 41.4% None 
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Boyne, 
2010, 
Jamaica 

Prospective 
cohort 

140 girls who 
were seen at all 
scheduled visits 
between birth 
and 11 years 
 
Age 11 years at 
follow-up 
 
Vulnerable 
Windows Cohort 
Study, pregnant 
women were 
recruited in 
1992-1993 at 
University 
Hospital of the 
West Indies, 
Kingston,Jamaic
a for birth cohort.  

Gain in 
weight, 
height and 
BMI 
measured 
from 0-6 
months, 6-24 
months and 
2-8 years.  
 
Growth was 
defined as 
the amount 
by which the 
size at the 
end of the 
time interval 
exceeded 
that which 
would have 
been 
predicted by 
linear 
regression 
using the 
measuremen
ts available 
at the 
beginning of 
the interval 
(conditional 
measures, 
uncorrelated) 

Weight and 
crown heel 
length 
measured 
within 24 
hours of 
delivery; 
height and 
weight 
measured 
by trained 
study staff 
at visits 

Breast 
Tanner stage 
at 11 year 
visit 

Breast 
Tanner 
stage 
assessed 
every 6 
months 
starting at 
age 8 years 
by trained 
nurses 
(visual only, 
no 
palpation) 

Multiple regression 
analyses to 
examine the rela- 
tionships among 
child’s growth and 
body composition 
and the stage of 
puberty with 
outcomes and 
predictors in 
standardized form, 
so that the 
regression 
coefficients were 
effectively 
correlation 
coefficients. 

Correlations between 
the size at birth and 
growth of Afro-
Caribbean girls  their 
stage of breast 
development at age 11 
years: 
Weight: 
0-6 months: 0.15 
6m-2y: 0.12 
BMI: 
0-6 months: 0.13 
6m-2y: 0.15 
Height: 
0-6 months: 0.11 
6m-2y: 0.02 
P≥.05 for all 
correlations Age at clinic visit 
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Maisonet, 
2010, 
United 
Kingdom 

Prospective 
cohort 

1316 singleton, 
term girls (37-42 
weeks gestation) 
with consistent 
pubertal staging 
and birth size 
data 
 
Age 8-14 years 
at follow-up 
 
Avon 
Longitudinal 
Study of Parent 
and Children, 
born April 1991-
December 1992 

Weight-for-
age SD 
scores and 
BMI SDS 
calculated 
using girls' 
1990 British 
growth 
reference.   
 
Assessed 
change in 
weight and 
BMI SDS for 
each interval 
of interest (0-
2 months, 2-
9 months, 9-
20 months 
and 0-20 
months) 

Health 
records 
(weight and 
length 
measured 
at 2,9, and 
20 months 
by health 
professional
s as part of 
routine 
infant 
health 
surveillance 
program)  

Age at 
transition to 
Breast 
Tanner stage 
≥2 or ≥3 

Breast 
Tanner 
stage 
reported by 
girls or 
mothers at 
repeated 
pubertal 
self-
assessment
s between 
8-14 years 
of age  
 
*Girls with 
inconsistent 
responses 
were 
excluded 
from 
analyses 

Interval-censored 
parametric survival 
model for age at 
transition to breast 
Tanner stage  ≥2 or 
≥3 assuming a 
normal distribution 
(Diff <0 indicates 
earlier breast 
development) 

 
Adjusted difference for 
age at entry to breast 
Tanner stage ≥2: 
Weight SDS change 0-
2 mo: Diff = -0.22, 95% 
CI=-0.35,-0.09 
Weight SDS change 2-
9 mo: Diff = -0.05, 95% 
CI=-0.16,0.05 
Weight SDS change 9-
20 mo: Diff = -0.25, 
95% CI=-0.39,-0.11 
Weight SDS change 0-
20 mo: Diff = -0.19 (-
0.29,-0.10), p = 0.00 
 
Adjusted difference for 
age at entry to breast 
Tanner stage ≥3: 
Weight SDS change 0-
2 mo: Diff = -0.13, 95% 
CI=-0.24,-0.02 
Weight SDS change 2-
9 mo: Diff = -0.13, 95% 
CI=-0.22,-0.04) 
Weight SDS change 9-
20 mo: Diff = -0.18, 
95%CI=-0.30,-0.06 
Weight SDS change 0-
20 months: Diff=-0.19, 
95% CI=-0.27, -0.11 
 
 
Adjusted difference for 
age at entry to breast 
Tanner stage ≥2: 
BMI SDS change 0-2 
mo: Diff = -0.09, 95% 
CI=-0.18,-0.00 
BMI SDS change 2-9 
mo: Diff = -0.02, 95% 
CI= -0.10,0.07 
BMI SDS change 9-20 
mo: Diff = -0.10, 95% 
CI=-0.19,-0.00  
BMI SDS change 0-20 
months: Diff=-0.10, 
95% CI=-0.18, -0.02 
 

Maternal age at 
menarche, 
previous live 
birth, maternal 
race or ethnicity, 
smoking during 
pregnancy, 
maternal 
prepregnancy 
BMI, maternal 
age at delivery, 
maternal 
education, 
birthweight, birth 
length and 
weight or BMI 
SDS change in 
prior previous 
interval 
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Adjusted difference for 
age at entry to breast 
Tanner stage ≥3: 
BMI SDS change 0-2 
mo: Diff = -0.04, 95% 
CI=-0.11,0.04 
BMI SDS change 2-9 
mo: Diff = -0.07, 95% 
CI=-0.14,0.01 
BMI SDS change 9-20 
mo: Diff = -0.08, 95% 
CI=-0.17,-0.00 
BMI SDS change 0-20 
months: Diff=-0.10, 
95% CI=-0.17, -0.03 
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Wang, 
2012, 
United 
States 

Prospective 
cohort 

305 term girls  
 
Age 10-15 years 
at first report of 
pubertal status, 
followed 
annually until 
TS5 or max of 5 
years 
 
Adolescent 
follow-up of 
subset of the 
North Carolina 
Infant Feeding 
Study, infants 
born 1978-1982 

Change in 
weight gain 
Z-score 
(age- and 
sex-specific 
weight z-
scores 
calculated at 
each 
observation 
time using 
LMSGrowth 
software and 
data from the 
CDC 2000 
growth 
charts) in 
time intervals 
- 0-6 months 
- 6-12 
months 
- 1-2 years 

Weight 
recorded by 
nurse at 
birth. 
 
Nurse 
measured 
weight of 
child at 
follow-up 
visits at 6 
weeks, 3 
months, 6 
months, 1 
year, 1.5 
years, 2 
years, 3 
years, 4 
years and 5 
years of 
age.   

Breast 
Tanner stage 
at first 
adolescent 
report, 
categorized 
for analysis 
as >2 or >3 

Daughter 
self-report 
at first 
adolescent 
survey 
when 
available 

Parametric survival 
analyses with log 
normal distribution 
for age at report of 
breast Tanner 
stage >2 or >3 
(girls were either 
left or right 
censored at age of 
TS report) (β<0 
indicates earlier 
age at attainment 
of breast stage) 

Regression coefficient  
in adjusted log-normal 
survival analyses of 
time to Breast Stage 
>2 
Weight gain 0-6 
months: β=-0.05, 95% 
CI=-0.07, -0.02 
Weight gain 6-12 
months: β= -0.05, 95% 
CI=-0.09, -0.01 
Weight gain 1-2 years: 
β= -0.05, 95% CI=-
0.09, -0.02 
 
Regression coefficient  
in adjusted log-normal 
survival analyses of 
time to Breast Stage 
>3 
Weight gain 0-6 
months: β=-0.02, 95% 
CI=-0.05, 0.01 
Weight gain 6-12 
months: β= -0.05, 95% 
CI=-0.09, -0.01 
Weight gain 1-2 years: 
β= -0.03, 95% CI=-
0.07, 0.00 

Birthweight, 
weight gain 
(change in Z-
score) from 0-6 
months, 6-12 
months, 1-2 
years, 2-5 years, 
maternal pre-
pregnancy 
weight, maternal 
age at delivery 
and race (race 
for TS>3 model 
only due to small 
cell counts). 
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Hui, 2012, 
Hong 
Kong 

Prospective 
cohort 

3208 term girls 
with feasible 
pubertal staging 
 
Followed up to 
age 13 years 
 
Children of 1997, 
population 
representative 
Hong Kong 
Chinese birth 
cohort 

Sex-specific 
growth 
trajectories 
for weight 
from birth to 
12 months 
from latent 
class 
analyses: 
 TI: below 
average 
birthweight, 
slow weight 
gain in first 
year 
TII: below 
average 
birthweight, 
stable weight 
gain in first 
year 
TIII: average 
birth weight, 
fast weight 
gain in first 
year 
TIV: average 
birthweight, 
stable weight 
gain in first 
year 
TV: high 
birthweight, 
fast weight 
gain in first 
year 

Weight 
measureme
nts from 
medical 
record 
linkage to 
well-baby 
checks. 
Used 
measure 
closest to 1 
month, 3 
months, 9 
months and 
12 months 
to 
interpolate 
weight at 
these exact 
ages. Used 
latent class 
analysis to 
construct 
sex-specific 
weight 
growth 
trajectories 
from birth to 
12 months. 

Age at 
pubertal 
onset, 
defined as 
the earliest 
age when 
breast 
Tanner stage 
2 was 
recorded 

Link to the 
Student 
Health 
Service 
record, 
where 
Tanner 
stage was 
assessed 
by a doctor 
visually on 
a biannual 
basis from 
age 7 years 

Multivariable 
interval-censored 
survival analysis to 
examine 
association 
between infant 
growth 
(trajectories) and 
age at pubertal 
onset (TR<0 
indicates earlier 
development)  

Time ratio (95% CI) for 
age at pubertal onset, 
unadjusted model: 
TI: TR=1.020, 95% 
CI=1.006, 1.034 
TII: TR=1.005, 95% 
CI=0.992,1.018 
TIII: TR=1.001, 95% 
CI=0.987,1.015 
TIV: Referent 
TV: TR=0.992, 95% 
CI=0.977-1.006 
 
Time ratio (95% CI) for 
age at pubertal onset, 
mediation model 
including height and 
BMI in childhood: 
TI: TR=0.982, 95% 
CI=0.969-0.996 
TII: TR=0.991, 95% 
CI=0.979-1.004 
TIII: TR=1.011, 95% 
CI=0.998-1.025 
TIV: Referent 
TV: TR=1.020, 95% 
CI=1.006-1.035 
Sobel test for 
mediation p<0.001 

None (none 
changed effect 
estimates by 
5%) 
 
Mediation 
models adjusted 
for body size in 
childhood 
(closest to age 
7) 
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German, 
2015, 
United 
States 

Prospective 
cohort 

659 girls with 
complete data 
 
Followed up to 
age 15.5 years 
 
National 
Institutes of 
Health Study of 
Early Child Care 
and Young 
Development 
(SECCYD), 
children enrolled 
at 1 year of age 
in 1991 and 
followed 
prospectively 
until 15.5 years 
of age 

Height and 
BMI SDS at 
15 months 

Measured 
by 
researchers 
at study 
visits 

Age at breast 
Tanner stage 
2 

Breast 
Tanner 
assessed 
by 
researchers 
annually 

Pearson's product-
moment correlation 
coefficients used to 
determine the 
linear association 
between 
auxological 
parameters and 
age at stages of 
pubertal 
development 

Height SDS 
significantly inversely 
associated with age at 
thelarche started at 
age 15 months (r=-0.2, 
p=0.0001).  The 
correlation strength 
increased with age. 
 
BMI SDS was 
significantly correlated 
with thelarche age 
starting at 36 months 
(r=-0.27, p=0.001).  At 
15 months, correlation 
coefficient is inverse 
but not significant. 
 
Pubertal progression 
through the Tanner 
stages did not correlate 
with height or BMI at 
any age. None 
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Aydin, 
2017, 
Turkey 

Retrospecti
ve cohort 

84 girls 
 
6-9 years 
 
Children 
approaching 
pubertal age with 
medical records 
at the Well Child 
Clinic of Istanbul 
University 
Faculty of 
Medicine from 
birth to 5 years 
of age 

Height, 
weight and 
BMI SDS 
according to 
national 
standards for 
each visit 
between 1 
and 60 
months of 
age 
 
Change in 
BMI SDS for 
each 3-6 
month 
interval 
between 0 
and 36 
months 
 
Accelerated 
weight gain 
(AWG) = 
gain in 
weight ≥0.67 
SDS 
Accelerated 
height gain 
(AHG): gain 
in height 
≥0.67 SDS 

Height and 
weight 
measured 
by trained 
nurses at 
child visits 
at ages 1, 
2, 3, 4, 5, 6, 
9, 12, 15 
and 18 
months and 
every 6 
months until 
4 years of 
age, with a 
final visit at 
age 5 
years. 

Breast 
Tanner stage 
at visit, 
assessed by 
visual 
inspection 
and 
palpation.   

Physician 
assessment 

Repeated mixed 
measures model 
used to examine 
longitudinal 
anthropometric 
data between 
prepubertal and 
pubertal children. 
 
Multivariable 
logistic regression 
models to examine 
associations 
between pubertal 
signs and 
accelerated early 
growth, adjusted 
for BW SDS< 
gestational age, 
current age, height, 
weight and BMI 
SDS 

"Girls with breast 
development had 
higher weight and BMI 
SDS values than the 
girls without breast 
development starting at 
9 months of age, but 
differences only 
reached statistical 
significance at 18 
months of age for 
weight SDS and BMI 
SDS (P=0.05 and 
P=0.05) and at the 
study visit for weight, 
height and BMI SDS 
(P=0.001, P=0.01, and 
P=0.002). Additionally, 
girls with breast 
development were 
more likely to have 
AWG between 6 and 
15 months of age 
(p=0.05)" 
 
Note: most analyses 
used "first pubertal 
sign" as the outcome, 
which was a mixture of 
breast and pubic hair 
development (not 
included here) 

Mixed models 
included 
anthropometric 
measures at all 
visits. 
 
Logistic model 
for AWG 
adjusted for BW 
SDS gestational 
age, current age, 
height, weight 
and BMI SDSs.  
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Supplemental Table 2.6. Studies of infant size or growth and timing of menarche 

Author, 
Location, 
Year 

Study 
Design 

Study 
Population (N, 
Age range, 
Name) Exposure 

Exposure 
source Outcome 

Outcome 
source Statistical method Results Covariates 

Berkey, 
2000, 
United 
States 

Prospective 
cohort 

67 girls 
 
Followed up to 
18 years 
 
Harvard 
Longitudinal 
Studies of Child 
Health and 
Development, 
females born in 
the 1930s and 
1940s to women 
who were 
enrolled during 
their first 
trimester of 
pregnancy while 
obtaining 
prenatal care at 
the Boston 
Lying-In Hospital 

BMI at 1-2 
years 
 
Height at 1-2 
years 

Calculated 
from 
measured 
height and 
weight at 
semi-
annual 
visits 

Age at 
menarche, 
continuous 

Not 
specified, 
assume 
self-
reported by 
girl at 
annual 
follow-up 
visit 
(reported to 
nearest 
month) 

Pearson correlation 
between age at 
menarche with 
BMI, height and 
diet measures in 
childhood. 

Correlation for BMI 
from 1-2 years and age 
at menarche = -0.08 
(p>.05) 
 
Correlation for height 
from 1-2 years and age 
at menarche: -0.35 
(p<0.05) 

None 
 
*Results for 
height at 1-2 
year and BMI 1-
2 years in 
multivariable 
linear regression 
model are not 
shown 
(assuming these 
variables were 
removed during 
stepwise 
algorithm) 
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Adair, 
2001, 
Philippine
s 

Prospective 
cohort 

966 girls with 
complete 
information on 
birth 
characteristics 
and 
anthropometry at 
8 years 
 
Age 14-15 years 
at follow-up 
 
Cebu 
Longitudinal 
Health and 
Nutrition Survey, 
infants born in 
1984-1984 from 
women in 
randomly 
selected urban 
and rural 
barangays in 
Metro Cebu, 
Philippines.  

7 groups 
characterize
d by birth 
weight (cut at 
median, 
3kg), birth 
length (cut at 
median, 
49cm) and 
postnatal 
growth to 6 
months (fast 
vs. slow, 
defined as a 
weight 
and/or length 
increment 
above/below 
the sample 
median, 
respectively): 
Long/light/slo
w 
Long/light/fas
t 
Long/heavy/s
low 
Long/heavy/f
ast 
Short/light/sl
ow 
Short/light/fa
st 
Short/heavy 

Measured 
by project 
staff soon 
after birth 
and at 6 
month visit 

Age at 
menarche, 
continuous  

Girl's self-
report of 
month and 
year of first 
menses 
from 
interview at 
10-11 and 
14-15 years 

 
Parametric Weibull 
models to estimate 
associations 
between birth 
characteristics and 
age at menarche, 
with premenarcheal 
girls treated as 
right censored 
(~5%) (HR>1 
indicates earlier 
menarche) 

Multivariable results 
(HR and t-statistic from 
Weibull) from 7-group 
model with 
Short/Heavy at birth as 
reference group: 
Long/Light/Slow: 1.33 
(1.61), p≥.10 
Long/Light/Fast: 1.78 
(4.16), p<.01 
Long/Heavy/Slow: 1.28 
(1.68), p<.10 
Long/Heavy/Fast: 1.46 
(2.87), p<.01 
Short/Light/Slow: 1.24 
(1.40), p≥.10 
Short/Light/Fast: 1.40 
(2.80), p<.01) 

Gestational age, 
BMI at 8 years, 
Skinfold 
thickness at 8 
years, Mother's 
height, Mother's 
age at 
menarche, Total 
energy intake at 
8 years, Low fat 
(<10%) 
consumption at 8 
years, SES 



 

 

 

2
6
5

 

Benefice, 
2001, 
Senegal 

Prospective 
cohort 

406 girls 
measured from 
1995-1999 
 
Mean age 
11.4±0.5 years in 
1995 and 
15.4±0.5 years in 
1999 
 
Adolescent 
follow-up of girls 
that were part of 
the district health 
and nutrition 
examination from 
0-4 years of age 
in 1983-1984 in 
Niakhar district 
of Senegal 

Stunted vs. 
Not Stunted: 
Stunting 
defined as at 
least one 
length 
measuremen
t done in 
1983-1984 
(between 6-
18 months of 
age) below -
2 Z-scores of 
the 
NCHS/WHO 
reference 
(1983) 

Height for 
age from 
health and 
nutrition 
examination 
study 
records 

Presence of 
menarche at 
each visit 

Self-
reported by 
girls every 6 
months 
over 4-year 
follow-up. If 
girls did not 
understand, 
their mother 
was asked. 

Distribution of 
menarche status at 
each adolescent 
visit by stunting 
status, P-value 
from t-test 

Percent distribution of 
menarche status by 
year (p value): 
1996 (NS):  
Stunted: 100% pre-
menarche 
Non-Stunted: 98.8% 
pre, 1.3% post 
 
1997 (NS): 
Stunted: 97.4% pre, 
2.6% post 
Not Stunted: 97.4% 
pre, 2.6% post 
 
1998 (NS, p=0.08) 
 Stunted: 93.8% pre, 
6.2% post 
Not Stunted: 85.9% 
pre, 14.1% post 
 
1999 (NS): 
Stunted: 61.2% pre, 
38.8% post 
Not Stunted: 63.3% 
pre, 36.1% post None 
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dos 
Santos 
Silva, 
2002, 
United 
Kingdom 

Prospective 
cohort 

2008 girls with 
menarche and 
early life data 
 
Followed up to 
48 years 
 
MRC National 
Survey of Health 
and 
Development 
studies, birth 
cohort born first 
week of March 
1946  

Growth in 
infancy, 
defined as 
the 
difference in 
ranks 
between the 
height at 2 
years 
estimated by 
the random 
coefficients 
model and 
birthweight 
and grouped 
into tertiles 
for analysis 
 
Growth in 
body 
composition, 
defined as 
the 
difference in 
ranks 
between the 
BMI at 2 
years 
estimated by 
the random 
coefficients 
model and 
birthweight 
and grouped 
into tertiles 
for analysis 

Hospital 
record for 
birthweight 
or height 
and weight 
measured 
by study 
staff at 
follow-up 
(2,4,6,7, 
years) 

Age at 
menarche 

Reported 
by mother 
when 
daughter 
was 15 or 
recalled by 
participant 
at 48 year-
old follow-
up visit if 
not 
available at 
15 years 
(17%) 

Mean difference in 
rank change or 
absolute measure 
by menarche group 
(early: <11.75 
years, average: 
11.75-14.25, late: 
>14.25 years) 
 
Multivariable 
Weibull models for 
age at menarche, 
using standardized 
rank change in 
height or BMI from 
random coefficient 
model in tertiles as 
predictor (HR>1 
indicates earlier 
menarche) 

Mean height at age 2 in 
cm (SD) by menarche: 
Early: 85.7 (4.5) 
Average: 84.8 (4.8) 
Late: 83.7 (4.7) 
 
Mean BMI at age 2  
(SD) by menarche: 
Early: 17.5 (2.1) 
Average: 17.7 (2.5) 
Late: 17.6 (2.3) 
 
HR for age at 
menarche from Weibull 
models (first tertile is 
the reference for all): 
Rank change in length 
0-2 years, model 1: 
Second: HR=1.23, 95% 
CI 1.02, 1.42 
Third: HR=1.60, 95% 
CI 1.28, 1.87 
p for trend<0.001 
 
Rank change in length 
0-2 years, mediation 
model   
Second: HR=1.01, 95% 
CI 0.86, 1.24 
Third: HR=1.04, 95% 
CI 0.74, 1.36 
 p for trend=0.74 
 
Rank change in BMI 0-
2 years, model 1: 
Second: HR=1.21, 95% 
CI 0.97, 1.44 
Third: HR=1.34, 95% 
CI 1.07, 1.57 
p for trend=0.01 
 
Rank change in BMI 0-
2 years, mediation 
model: 
Second: HR=1.21, 95% 
CI 1.03, 1.52 
 Third: HR=1.41, 95% 
CI 1.16, 1.74 
  p for trend<0.001 

Length model 1: 
Birthweight 
Length 
mediation model: 
Birthweight, 
height rate from 
2-4 years,height 
rate from 4-7 
years, BMI rank 
changes from 0-
2 years, BMI rate 
from 2-6 years 
 
BMI model 1: 
Birthweight, rank 
changes in 
height from 0-2 
years, height 
rate from 2-4 
years, height 
rate from 4-7 
years 
BMI mediation 
model: 
Birthweight, 
length rank 
changes from 0-
2 years, height 
rate from 2-4 
years, height 
rate from 4-7 
years, BMI rate 
from 2-6 years 
 
*Note: random 
coefficients 
model for height 
includes 
mother's height, 
mother's age at 
birth, birth order, 
father's manual 
occupation and 
no. of younger 
siblings. Model 
for BMI includes 
father's manual 
occupation. 
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Sloboda, 
2007, 
Australia 

Prospective 
cohort 

776 girls with 
menarche data 
 
Age 12-14 years 
at follow-up 
 
Western 
Australian 
Pregnancy 
(Raine) Cohort, 
women enrolled 
during 
pregnancy in 
1989-1990 

BMI at 1 year 
Height at 1 
and 2 years 

Measured 
at study 
visits 

Age at 
menarche 

Self-report 
on puberty 
questionnai
re or 
censored at 
age at last 
follow-up if 
no 
menarche 
reported 

Continuous data 
summarized using 
medians, IQ ranges 
and ranges 
 
Kaplan-Meier 
survival 
probabilities to 
estimate probability 
of reaching 
menarche 
 
Multivariable Cox 
regression models 
to evaluate 
association 
between fetal and 
postnatal growth 
and age at 
menarche 

Stated in text that BMI 
at 1 year and height at 
1 and 2 years were not 
associated with age at 
menarche (data not 
shown) Not stated 
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Ong, 
2009, 
United 
Kingdom 

Prospective 
cohort 

2715 singleton 
girls with age at 
menarche data 
 
Mean age at 
follow-up: 12.9 
years (IQR 12.8-
13.0) 
 
Avon 
Longitudinal 
Study of Parent 
and Children, 
born April 1991-
December 1992 

Weight, 
length and 
BMI Z-scores 
at birth, 2, 9 
and 19 
months were 
calculated 
using British 
1990 growth 
reference 
and actual 
age at 
measuremen
t 
 
Infancy 
weight gain 
and length 
gain were 
calculated as 
the 
difference in 
weight or 
length Z-
score 
between 
those ages. 

Birth weight 
as recoded 
in delivery 
room, birth 
length 
measured 
by staff, 
weight and 
length at 
ages 2, 9 
and 19 
months 
extracted 
from local 
child health 
database 
(collected 
as part of 
routine 
infant 
health 
surveillance 
program) 

Age at 
menarche, 
categorized 
as: 
  <12 
  12-13 
  >13 

Reported 
by girl at 
adolescent 
visit (~13 
years of 
age). Some 
missing 
data on age 
at first 
menstruatio
n were 
imputed 
from similar 
data 
collected at 
11 year 
visit.  

Means (SD) of 
early-life measures 
by age at 
menarche group; P 
for trend, adjusted 
for age. 
 
Multiple regression 
models were 
performed to test 
the linear 
associations 
between infant 
body size, infant 
weight gain and 
infant length gain 
with age at 
menarche (<12, 12-
13 or 13+) as a 
continuous 
variable. 
 
The effect of 
conditional infancy 
weight gain 
between birth-9 
months on 
menarche <12 
years were 
analyzed by logistic 
regression. 

Size at 2 months 
(Mean, SD) by girls' 
age at menarche (p 
trend): 
Weight (kg) (P for 
trend=0.9): 
<12: 4.81 (0.02) 
12-13: 4.78 (0.02) 
>13Y: 4.81 (0.02) 
 
Length (cm) (P for 
trend=0.6): 
<12: 56.9 (0.1) 
12-13: 56.7(0.1) 
>13Y: 56.9 (0.1) 
 
BMI  (P for trend=0.9): 
 <12: 14.8 (0.04) 
 12-13: 14.9(0.1) 
 >13Y: 14.9 (0.1) 
 
Size at 9 months: 
Weight (kg) (P for 
trend=<.001): 
<12 : 8.91 (0.04) 
12-13: 8.76 (0.04) 
>13: 8.73 (0.03) 
 
Length (cm) (P for 
trend=0.1): 
<12: 71.5(0.1) 
12-13: 71.2 (0.1) 
>13: 71.2 (0.1) 
 
BMI  (P for 
trend=0.007): 
<12 :17.5 (0.1) 
12-13: 17.3(0.1) 
 >13: 17.3 (0.1) 
 
Size at 19 months: 
Weight (kg) (P for 
trend=<.001): 
 <12: 11.58 (0.06) 
 12-13: 11.40 (0.06) 
 >13: 11.31 (0.04) 
 
Length (cm) (P for 
trend=<.001): 

Age and 
mother's 
education.   
 
Multivariable 
model adjusted 
for mother's 
education, 
smoking in 
pregnancy, birth 
order and 
breastfeeding 
 
Logistic 
regression 
model included 
birthweight SD 
score. 
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 <12: 83.0(0.2) 
 12-13: 83.0 (0.2) 
 >13: 82.5 (0.1) 
 
BMI  (P for trend=0.09): 
 <12:16.9 (0.1) 
12-13: 16.7 (0.1) 
 >13: 16.7 (0.1) 
 
Girls with earlier 
menarche showed 
faster rates of weight 
gain between ages 0-2 
months (p for 
trend=0.006) and 2-9 
months (p for 
trend<.0001), but not 
from 9-19 months 
(p>.05) (Figure 1A). 
 
Girls with earlier 
menarche had faster 
rate of length gain from 
2-9 months (P=0.006) 
and 9-19 months 
(P=0.004), but not from 
0-2 months (Figure 
1B). 
 
In multivariable 
models, weight gain 
from 0-2 months and 2-
9 months were still 
significantly associated 
with menarche group. 
 
Associations between 
infancy length gain and 
menarche were largely 
explained by infancy 
weight gain (p≥.05 
when adjusted for 
infancy weight gain). 
 
OR from logistic 
regression model for 
menarche <12 years: 
 Change in weight SDS 
0-9 months: OR=1.34, 
95% CI 1.21, 1.49 
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Terry, 
2009, 
United 
States 

Prospective 
cohort 

262 women 
 
38-46 years at 
follow-up 
 
Follow-up in 
2001-2006 of 
subset of women 
from New York 
site of the CPP 
birth cohort (born 
1959-1963)  

Weight and 
length at 4m 
and 12m 
 
Within-cohort 
percentile 
rank change 
in height and 
weight from 
0-4 months 
and 4-12 
months 

Measured 
by study 
staff at 
visits and 
interpolated 
at 4 
months, 12 
months and  
7 years 
using cubic 
splines 

Age at 
menarche, 
continuous 
and 
dichotomized 
as: ≤12 
years 
>12 years 

Self-
reported by 
adult 
participant 

Univariate 
associations using 
correlation 
coefficients for 
continuous 
variables, chi-
square tests and 
analysis of 
variance to 
compare averages 
across subgroups 
 
Multivariable linear 
regression models 
using age for age 
at menarche (β<0 
indicates earlier 
menarche). 

Mean weight at 4 
months in kg by 
menarche status 
(p=0.99): 
 ≤12 years: 6.13 (0.75) 
 >12 years: 6.13 (0.81) 
 
Mean weight at 12 
months in kg by 
menarche status 
(p=0.39): 
 ≤12 years: 9.67 (1.17) 
 >12 years: 9.55 (1.02) 
 
Mean length at 4 
months in cm by 
menarche status 
(p=0.80): 
≤12 years: 61.72 (3.0) 
>12 years: 61.63 (2.68) 
 
Mean length at 12 
months in cm by 
menarche status 
(p=0.89): 
 ≤12 years: 73.74 
(3.08) 
>12 years: 73.80 (3.13) 
 
β for 10-percentile 
change in weight from  
0-4 months from linear 
regression model: 
Partially adjusted 
β=0.04, 95% CI= -0.04, 
0.13 
 Fully adjusted 
parsimonious model: 
β=-0.01, 95% CI= -
0.13, 0.10 
 
 
β for 10-percentile 
change in weight from  
4-12 months from 
linear regression 
model: 
Partially adjusted β=-
0.09, 95% CI= -0.19, 
0.01 

Partially adjusted 
model for weight 
change, 0-4 
months: 
birthweight 
 
Partially adjusted 
model for weight 
change, 4-12 
months: 
birthweight and 
weight change 
from 0-4 months 
 
Fully adjusted 
parsimonious 
model: Birth 
weight, 
percentile 
change in 
weight, birth 
length, percentile 
change in height, 
family SES at 
age 7, maternal 
age at menarche  
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 Fully adjusted 
parsimonious model: 
β=-0.15, 95% CI= -
0.27, -0.02 
 
β for 10-percentile 
change in height from  
0-4 months from linear 
regression model: 
Fully adjusted 
parsimonious model: 
β=0.00, 95% CI= -0.12, 
0.13 
 
β for 10-percentile 
change in height from  
4-12 months from 
linear regression 
model: 
 Fully adjusted 
parsimonious model: 
β= 0.08, 95% CI= -
0.04, 0.20 
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Karaolis-
Danckert, 
2009, 
Germany 

Prospective 
cohort 

87 term, 
singleton girls 
with 
birthweight>2500
g, height 
measurements 
at 6 and 13 
years of age and 
at least 5 
measures 
between these 
ages, 
anthropometrics 
at 24 months, 
complete data on 
maternal 
characteristics 
and age at 
menarche 
 
At least 13 years 
of age 
 
Subset of the 
DONALD 
(Dortmund 
National and 
Anthropometric 
Longitudinally 
Designed) Study 
started in 1985 
(40-50 infants 
age 3-6 mos 
enrolled 
annually) 

Weight gain 
from 0-2 
years, 
defined by 
difference in 
SDS-score: 
- Rapid: SDS 
>0.67 
- Normal: 
SDS≤0.67 
 
Sex- and 
age- 
independent 
SDS scores 
were 
calculated by 
using the 
German 
reference 
surveys for 
weight and 
BMI and then 
internally 
standardized 
to this data 
by age and 
sex 

Birthweight 
abstracted 
from 
standardize
d document 
given to all 
pregnant 
women in 
Germany, 
weight at 
age 2 years 
measured 
to nearest 
0.1kg by 
study staff 
at visit 

 
 
Age at 
menarche, 
continuous 

Girls or 
their 
parents are 
asked if 
menarche 
occurred 
since 
previous 
visit, and if 
so, which 
month and 
year 

Linear mixed-
effects regression 
models (PROC 
MIXED) were used 
to construct 
longitudinal models 
of age at menarche 
(β<0 indicates 
earlier age at 
menarche). 

Adjusted β from linear 
regression model: 
Rapid weight gain from 
0-2 years    (>0.67SDS 
vs normal weight gain): 
β=-0.82, SE=0.25, 
p=0.002 
 
Adjusted β from 
pathway linear 
regression model: 
Rapid weight gain from 
0-2 years    (>0.67SDS 
vs normal weight gain): 
β=-0.60, SE=0.26, 
p=0.02 
 
Interaction between 
birthweight and rapid 
weight gain: 
Low birthweight and 
rapid weight gain 
experienced menarche 
1.68 years (SE=0.35) 
earlier than children 
with a bwt ≥3000g and 
normal weight gain 
(referent).  

Maternal 
overweight and 
birthweight 
 
Pathway model 
additionally 
adjusted for BMI 
SD score 1 year 
before ATO 
 
Noted that 
adjustment for 
gestational age 
did not change 
results (data not 
shown) 
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Salsberry, 
2009, 
United 
States 

Prospective 
cohort 

2,667 non-
Hispanic white 
(1448) and 
African-American 
girls (1219) born 
before 1998 who 
were at least 8 
years of age by 
2006 interview 
and had reported 
age of 
menarche. 
 
Followed up to 
20 years 
 
1986-2006 
waves of the 
Children of the 
NLSY79 
(National 
Longitudinal 
study of Youth, 
women born 
between 1957-
1964) 

Estimated 
BMI and 
height at 2 
years of age, 
calculated 
from 
longitudinal 
statistical 
techniques 
as 
polynomial 
functions of 
age for each 
race-timing 
group 

Height and 
weight at 
each follow-
up, 
measured 
by 
interviewer 
(75%) or 
reported by 
mom or girl 

Age at 
menarche in 
months, 
which was 
categorized 
into 3 groups 
based on 
<25th 
percentile, 
25--75th 
percentile 
and >75th 
percentile for 
race: 
 - Early: 
<141 months 
for White 
girls, <133 
months for 
African 
American 
girls 
 - Middle: 
141-157 
months for 
White girls, 
133-152 
months for 
African 
American 
girls 
- Late: >157 
months for 
White girls, 
>152 months 
for African 
American 
girls 

Year and 
month of 
menarche 
reported by 
mothers of 
girls 8-13 
years and 
daughters 
at 14 years 
and older at 
biennial 
interviews 

Estimates from 
random coefficient 
models were used 
to predict height 
and BMI by age 
and age relative to 
menarche for girls 
in each race-timing 
group. The 
standard errors of 
these estimates 
were used to 
construct 95% Cis 
around height and 
BMI for each age. 
These CIs were 
used to identify at 
which ages 
significant 
differences in 
predicted height 
and BMI occurred 
across race-timing 
groups. 

Predicted BMI (95% 
CI) as a function of 
chronological age by 
race-timing group: 
African American girls 
at 2 years 
Early: 17.4 (17.0, 17.7) 
Middle: 16.7 (16.5, 
17.0) 
 Late: 16.6 (16.3, 16.8) 
 
White girls at 2 years 
Early: 16.3 (16.0, 16.6) 
Middle: 16.3 (16.1, 
16.5) 
Late: 16.2 (16.0, 16.5) 
 
Predicted Height (in) 
(95% CI) as a function 
of chronological age by 
race-timing group: 
African American girls 
at 2 years 
Early: 32.6 (32.3, 32.9) 
Middle: 32.3 (32.2, 
32.5) 
Late: 32.3 (32.1, 32.6) 
 
White girls at 2 years 
Early: 32.5 (32.3, 32.7) 
Middle: 32.4 (32.3, 
32.6) 
Late: 32.6 (32.4, 32.8) 

Height or BMI at 
other time points 
(3, 4, 5, 6, 7, 8 
and 20 years) 
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Mesa, 
2010, 
Brazil 

Prospective 
cohort 

2083 women 
with menarche 
data 
 
Age 23-24 years 
at follow-up 
 
2004-2005 
follow-up of 
women from the 
1982 Pelotas 
Birth Cohort 
Study 

Weight and 
height Z-
scores from 
1984 at 
average 19.4 
months) 
calculated 
based on 
2006 WHO 
curves and 
categorized 
as ≤0, 0.01-
1, 1.01-2, 
and >2. 
 
Growth from 
0-19.4 
months was 
assessed as 
the change 
in Z-score 
between time 
periods, with 
the 
birthweight 
Z-score 
calculated 
using 
Williams 
curve.  
Change in  
Z-scores 
were defined 
as catch-
down 
(≤0.67), 
normal (-
0.669-0.669) 
and catch-up 
(≥0.67).   

Weight 
measured 
at birth, 
height and 
weight 
measured 
at follow-up 
visits.  

Age at 
menarche in 
years, 
categorized 
as <12 and 
≥12 years 

Self-report 
by 
participant 
in 
adulthood 

Multivariable-
adjusted  Poisson 
regression with a 
robust variance 
estimative to obtain 
prevalence ratios 
(PR>1 indicates 
early menarche) 

Adjusted PR for 
weight-for-age Z-score 
at 19.4 months: 
≤0: Referent 
0.01-1:  PR=1.43, 95% 
CI=1.16, 1.77 
1.01-2:  PR=1.54, 95% 
CI= 1.20, 1.98 
 ≥2: PR=1.53, 95% CI= 
0.97, 2.37 
 
Adjusted PR for height-
for-age Z-score at 19.4 
months: 
≤0: Referent 
0.01-1:  PR=1.24, 95% 
CI=1.02, 1.52 
1.01-2:  PR=1.35,  95% 
CI=0.98,1.86 
 ≥2:  PR=1.48, 95% 
CI=0.77, 2.84 
 
Adjusted PR for 
weight-for-height  Z-
score at 19.4 months: 
≤0: Referent 
0.01-1:  PR=1.39, 95% 
CI=1.09, 1.78 
1.01-2:  PR=1.53, 95% 
CI=1.18, 1.99 
 ≥2: PR=1.49, 95% 
CI=0.99, 2.07 
 
Adjusted PR for 
change in weight-for-
age Z-score from birth-
19.1 months: 
Catch-down: Referent 
Normal:  PR=1.27,  
95% CI=0.91, 1.78 
Rapid:  PR=1.75, 95% 
CI=1.27, 2.43 
 
Inference for change in 
weight Z-score is the 
same across 
birthweight tertiles. 

Family income, 
skin color, 
smoking during 
pregnancy, pre-
gestational 
maternal BMI 
and 
breastfeeding 
duration 



 

 

 

2
7
5

 

Boyne, 
2010, 
Jamaica 

Prospective 
cohort 

140 girls who 
were seen at all 
scheduled visits 
between birth 
and 11 years 
 
At least 11 years 
at follow-up 
 
Vulnerable 
Windows Cohort 
Study, pregnant 
women were 
recruited in 
1992-1993 at 
University 
Hospital of the 
West Indies, 
Kingston,Jamaic
a for birth cohort.  

Gain in 
weight, 
height and 
BMI 
measured 
from 0-6 
months, 6-24 
months and 
2-8 years.  
 
Growth was 
defined as 
the amount 
by which the 
size at the 
end of the 
time interval 
exceeded 
that which 
would have 
been 
predicted by 
linear 
regression 
using the 
measuremen
ts available 
at the 
beginning of 
the interval 
(conditional 
measures, 
uncorrelated) 

Weight and 
crown heel 
length 
measured 
within 24 
hours of 
delivery; 
height and 
weight 
measured 
by trained 
study staff 
at visits 

Age at 
menarche 

Menstrual 
history was 
taken at 
each visit 
(biannual) 

Multiple regression 
analyses  to 
examine the rela- 
tionships among 
child’s growth and 
body composition 
and the stage of 
puberty with 
outcomes and 
predictors in 
standardized form, 
so that the 
regression 
coefficients were 
effectively 
correlation 
coefficients. 

Correlations between 
the size at birth and 
growth of Afro-
Caribbean girls  and 
age at menarche at 
age 11 years: 
 
Height: 
0-6 months: 0.02 
6m-2y: -0.02 
 
Weight: 
0-6 months: -0.11 
6m-2y: -0.08 
 
BMI: 
0-6 months: -0.16 
6m-2y: -0.11 
 
P≥.05 for all 
correlations Age at clinic visit 
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Maisonet, 
2010, 
United 
Kingdom 

Prospective 
cohort 

1316 singleton, 
term girls (37-42 
weeks gestation) 
with consistent 
pubertal staging 
and birth size 
data 
 
Age 8-14 years 
at follow-up 
 
Avon 
Longitudinal 
Study of Parent 
and Children, 
born April 1991-
December 1992 

Weight-for-
age SD 
scores and 
BMI SDS 
calculated 
using girls' 
1990 British 
growth 
reference.   
 
Assessed 
change in 
weight and 
BMI SDS for 
each interval 
of interest (0-
2 months, 2-
9 months, 9-
20 months 
and 0-20 
months) 

Health 
records 
(weight and 
length 
measured 
at 2,9, and 
20 months 
by health 
professional
s as part of 
routine 
infant 
health 
surveillance 
program)  

Age at 
menarche 

Month and 
year of 
menarche, 
reported 
girls at 
pubertal 
self-
assessment
s between 
8-14 years 
of age. Girls 
with 
inconsistent 
responses 
were 
excluded 
from 
analyses 

Interval-censored 
parametric survival 
model for age at 
menarche 
assuming a normal 
distribution (Diff <0 
indicates earlier 
menarche) 

Adjusted difference for 
weight change models 
and age at menarche: 
Weight SDS change 0-
2 mo: Diff = -0.07 (-
0.17,0.03), p = 0.15 
Weight SDS change 2-
9 mo: Diff = -0.19 (-
0.27,-0.11), p = 0.00 
Weight SDS change 9-
20 mo: Diff = -0.14 (-
0.24,-0.03), p = 0.01 
Weight SDS change 0-
20 mo: Diff = -0.19 (-
0.26,-0.12), p = 0.00 
 
Adjusted difference for 
BMI change models 
and age at menarche: 
BMI SDS change 0-2 
mo: Diff = -0.04 (-
0.10,0.03), p = 0.26 
BMI SDS change 2-9 
mo: Diff = -0.09 (-0.15,-
0.03), p = 0.00 
BMI SDS change 9-20 
mo: Diff = 0.02 (-
0.09,0.05), p = 0.61 
BMI SDS change 0-20 
mo: Diff = -0.07 (-0.13,-
0.01), p = 0.03 

Maternal age at 
menarche, 
previous live 
birth, maternal 
race or ethnicity, 
smoking during 
pregnancy, 
maternal 
prepregnancy 
BMI, maternal 
age at delivery, 
maternal 
education, 
birthweight, birth 
length and 
weight or BMI 
SDS change in 
prior previous 
interval 
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Chevalley, 
2011, 
Switzerlan
d 

Prospective 
cohort 

115 women with 
body size data at 
birth (96 at 1 
year) 
 
Mean age 20.4 
at follow-up 
 
Follow-up of pre-
pubertal girls 
participating in 
an RCT of 
calcium-enriched 
foods and bone 
mass growth 
(enrolled at 
mean 7.9 years, 
followed up to 
20.4 years. 
Exclusion criteria 
at enrollment 
were ratio of 
weight/height 
<3rd or >97th 
percentile, 
physical signs of 
puberty, chronic 
disease, 
malabsorption, 
bone disease 
and regular use 
of medication) 

Body weight, 
standing 
height and 
BMI at birth 
and 1 year 
(converted to 
Z-scores) 
and change 
in Z-score or 
body size 
from birth to 
1 year 

Obtained 
retrospectiv
ely at 
baseline 
from 
questionnai
res sent to 
parents and 
pediatrician
s 

Age at 
menarche, 
continuous 
and 
dichotomized 
at the 
median (12.9 
years) 

Self-
reported by 
daughter at 
interview at 
visits (8.9 
years, 10 
years, 12.4 
years, 16.4 
years) 

Univariate linear 
regression analysis 
examining 
association 
between BMI Z-
score at birth and 1 
year or change in 
BMI Z-score from 
birth to 1 year and 
age at menarche Z-
score.  Differences 
in anthropometric 
characteristics 
between earlier 
and later menarche 
(dichotomized at 
the median) 
assessed by 
unpaired t-tests or 
by Wilcoxon signed 
rank test. 

Linear regression of 
BMI at 1 year Z-score 
predicting age at 
menarche Z-score: 
β = -0.026, 95% CI=-
0.237, 0.184, R-
squared = 0.01 
 
Linear regression of 
change in BMI Z-score 
from birth to 1 year 
predicting age at 
menarche Z-score: 
β = -0.048, 95% CI=-
0.328, 0.232, R-
squared = 0.01 
 
Mean (SD) of 
anthropometric 
characteristics at 1 
year by median age at 
menarche (12.9 years): 
Weight (kg), p=0.408: 
Earlier: 9.1 (0.9) 
Later: 9.3 (1.0) 
Standing height (cm), 
p=0.819 
Earlier: 73.9 (3.2) 
Later: 74.0 (3.6) 
BMI, p=0.317 
Earlier: 16.7 (1.1) 
Later: 17.0 (1.6) 
 
Mean (SD) of gain in 
anthropometric 
characteristics from 
birth-1 year by median 
age at menarche: 
Weight (kg), p=0.506: 
Earlier: 6.0 (0.8) 
Later: 6.1 (1.0) 
Standing height (cm), 
p=0.810 
Earlier: 24.7 (2.6) 
Later: 24.9 (3.9) 
BMI, p=0.907 
Earlier: 3.8 (1.6) 
Later: 3.9 (1.9) None 
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Wang, 
2012, 
United 
States 

Prospective 
cohort 

305 term girls  
 
Age 10-15 years 
at first report of 
pubertal status, 
followed annually 
until TS5 or max 
of 5 years 
 
Adolescent 
follow-up of 
subset of the 
North Carolina 
Infant Feeding 
Study, infants 
born 1978-1982 

Change in 
weight gain 
Z-score 
(age- and 
sex-specific 
weight z-
scores 
calculated at 
each 
observation 
time using 
LMSGrowth 
software and 
data from the 
CDC 2000 
growth 
charts) in 
time intervals 
0-6 months 
6-12 months 
1-2 years 

Weight 
recorded by 
nurse at 
birth. 
 
Nurse 
measured 
weight of 
child at 
follow-up 
visits at 6 
weeks, 3 
months, 6 
months, 1 
year, 1.5 
years, 2 
years, 3 
years, 4 
years and 5 
years of 
age.   

Age at 
menarche, 
continuous 

Date of 
menarche 
reported by 
daughter on 
annual 
surveys 
(started in 
1992 at age 
10-15, 
followed for 
max of 5 
years) 

Univariate linear 
model for age at 
menarche. 
Multivariable-
adjusted 
parametric survival 
analyses with log 
normal distribution 
for age at 
menarche (β<0 
indicates earlier 
menarche) 

Univariable linear 
regression results: 
Weight gain 0-6 
months:  β=-0.06, 
SE=0.07, p>0.05 
Weight gain 6-12 
months: β=-0.26, 
SE=0.12, p<0.05 
Weight gain 1-2 years: 
β=-0.28, SE=0.13, 
p<0.05 
 
Regression coefficient  
in adjusted log-normal 
survival analyses of 
time to menarche 
Weight gain 0-6 
months:  β=-0.03, 95% 
CI=-0.05, -0.02 
Weight gain 6-12 
months:  β= -0.05, 95% 
CI= -0.08, -0.03 
Weight gain 1-2 years:  
β= -0.04, 95% CI= -
0.06, -0.01 

Birthweight, 
weight gain 
(change in Z-
score) from 0-6 
months, 6-12 
months, 1-2 
years, 2-5 years, 
maternal pre-
pregnancy 
weight and race. 

German, 
2015, 
United 
States 

Prospective 
cohort 

659 girls with 
complete data 
 
Followed up to 
age 15.5 years 
 
National 
Institutes of 
Health Study of 
Early Child Care 
and Young 
Development 
(SECCYD), 
children enrolled 
at 1 year of age 
in 1991 and 
followed 
prospectively 
until 15.5 years 
of age 

Height and 
BMI SDS at 
15 months 

Measured 
by 
researchers 
at study 
visits 

Age at 
menarche 

Assuming 
reported by 
child at 
annual 
follow-up 
visits 

Pearson's product-
moment correlation 
coefficients used to 
determine the 
linear association 
between 
auxological 
parameters and 
age at menarche. 

Height SDS 
significantly inversely 
associated with age at 
menarche started at 
age 54 months (r=-
0.16, p=0.014). At 15 
months, correlation 
coefficient is inverse 
but not significant. The 
correlation strength 
increased with age. 
 
BMI SDS was 
significantly correlated 
with menarche age 
starting at 54 months 
(r=-0.16, p=0.016).  At 
15 months, correlation 
coefficient is inverse 
but not significant. None 
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Salgin, 
2015, 
South 
Africa 

Prospective 
cohort 

922 girls of black 
South African 
origin included in 
menarche 
analysis 
 
Followed up to 
age 18 years 
 
Birth to Twenty, 
prospective birth 
cohort of 
singleton births 
between late 
April 1990-early 
June 1990 in 
Johannesburg-
Soweto, South 
Africa 

Infancy 
weight gain 
calculated as 
change in 
weight SDS 
from birth to 
1 year.  
 
Catch-up 
growth 
defined as 
gain in 
weight SDS 
>0.67. 
Catch-down 
growth 
defined as 
weight 
SDS<-0.67. 
Others 
categorized 
as "no rapid 
change" 

Birthweight 
extracted 
from 
hospital 
record, 
weight and 
length 
measured 
by study 
staff at 
home visits 
at age 1 
and 2 years 

Age at 
menarche, 
continuous 

Reported in 
full years by 
female 
subjects 
and their 
parents 
annually 
from age 9 
years 

Data were 
analyzed for 
normality using the 
Kolmogorov-
Smirnov test and 
log-transformed to 
a normal 
distribution to allow 
use of analysis of 
variance to assess 
differences in age 
at menarche 
between girls with 
different patterns of 
weight gain during 
infancy.  Mean 
values for age at 
menarche were 
adjusted for 
covariates.   

Mean (SD) age at 
menarche by infancy 
weight gain pattern 
(p<0.001): 
Catch-up: 12.5 (0.1) 
No rapid change: 12.6 
(0.1) 
 Catch down: 13.1 (0.1) 
 
Association persisted 
after adjustment for 
smoking during 
pregnancy, birth order, 
gestational age, 
formula-milk feeding 
and household SES 
(p=0.005) 

Smoking during 
pregnancy, birth 
order, 
gestational age, 
formula-milk 
feeding and 
household SES  
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Aurino, 
2017, 
India, 
Peru, 
Vietnam 

Prospective 
cohort 

2001 girls with 
birthweight data 
 
12 years at 
follow-up 
 
Young Lives 
cohort of Indian, 
Peruvian and 
Vietnamese girls 
born in 2001-
2002, recruited 
at ~1 year and 
followed up to 12 
years 

BMI and 
height Z-
score at 1 
year 
calculated 
using WHO 
international 
reference 
standards  

Assumed 
height and 
weight 
measured 
at 
enrollment 

Age at 
menarche, 
continuous 

Self-
reported in 
years by 
girls in 
2013, when 
~12 year of 
age 

Difference in mean 
BMI and height Z-
scores at 1 year by 
menarche status 
using t-tests  

Mean (SD) of BMI Z-
score at 1 year by 
menarche status at 
visit: 
Full sample 
(p=<0.001): 
Pre-menarche: -0.08 
(1.28) 
Menarche: 0.13 (1.21) 
 
India (p=<0.001): 
Pre-menarche: -
0.99(1.07) 
Menarche: -0.64 (1.00) 
 
Peru (p=0.242): 
Pre-menarche: -
0.78(1.20) 
Menarche: 0.88 (1.13) 
 
Vietnam (p=0.031): 
Pre-menarche: -
0.47(0.88) 
Menarche: -0.33 (0.94) 
 
Mean (SD) of Height Z-
score at 1 year by 
menarche status at 
visit: 
Full sample 
(p=<0.001): 
Pre-menarche: -1.11 
(1.20) 
Menarche: -0.79 (1.19) 
 
India: 
Pre-menarche : -
1.06(1.32) 
Menarche: -0.72 (1.28) 
 
Peru (p=<0.001): 
Pre-menarche: -
1.18(1.18) 
Menarche: -0.92 (1.28) 
 
Vietnam (p=<0.001): 
 Pre-menarche: -
1.06(1.16) 
Menarche: -0.70 (1.04) None 
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Flom, 
2017, 
United 
States 

Prospective 
cohort 

1126 women 
with age at 
menarche data 
 
Age 39-49 years 
at follow-up 
 
The Early 
Determinants of 
Mammographic 
Density Study, 
2008 adult 
follow-up of 
female 
participants in 
the CHDS and 
Boston and 
Providence sites 
of NCPP birth 
cohorts 
(pregnancies 
1959-1966) 

Weight and 
length gain 
during 2 
infancy 
periods: 0-4 
months and 
4-12 months 
- Percentile 
rank change 
in weight or 
length 
- Conditional 
growth 
(standardize
d residuals 
from 
regressing 
current 
percentiles 
against 
previous 
percentiles) 
- Pattern: 
Rapid 
(increasing 
≥2 CDC 
percentiles; 
Rapid 
(staying 
within 2 CDC 
percentiles); 
Slow 
(decreasing  
≥2 CDC 
percentiles) 

Length and 
weight 
measured 
at clinic 
visits 
(NCPP) or 
extracted 
from 
medical 
records 
(CHDS). 
Interpolated 
weight and 
length at 4 
months 
(using 
measures 
from 3.1-5.4 
months); 12 
months 
(using 
measures 
from 10.1-
15 months) 
and 4 years 
(3.7-4.7 
years) 
using cubic 
splines. 

Age at 
menarche, 
continuous 
and  
categorized 
as: 
<12 years 
≥12 years 

Self-report 
by woman 
in 
adulthood 

Multivariable 
logistic regression 
for early menarche 
(<12 y), GEE 
models and linear 
random effect 
models for age at 
menarche 
(continuous) using 
percentile rank 
change, conditional 
growth and pattern 
models (β<0 or 
OR>1 indicates 
earlier menarche). 

Mean (SD) 
anthropometrics by 
menarche status: 
Weight (kg) 4 months: 
<12y: 6.54 (0.89), 
≥12y: 6.40 (0.79) 
Weight (kg) 12 months: 
<12y: 9.90  (1.24), 
≥12y: 9.61 (1.23) 
Height (cm) 4 months: 
<12y: 62.79 (3.27), 
≥12y: 62.26 (2.73) 
Height (cm) 12 months: 
<12y: 74.43  (3.11), 
≥12y: 73.70 (3.17) 
 
Adjusted percentile 
rank change logistic 
regression model, OR 
for early menarche 
(<12y): 
10-unit increase in 
percentile rank in 
change in weight, 0-4 
months: 
OR=1.06, 95% 
CI=0.97, 1.16 
 
10-unit increase in 
percentile rank change 
in weight, 4-12 months: 
OR=1.1, 95 % CI=1.01, 
2.27 
 
10-unit increase in 
percentile rank change 
in height, 0-4 months: 
OR=1.17, 95% 
CI=1.05, 1.29 
 
10-unit increase in 
percentile rank change 
in height, 4-12 months: 
OR=1.08, 95% 
CI=0.98, 1.19 
 
Adjusted percentile 
rank change linear 
regression model: 
 10-unit increase in 

Birthweight, 
birthlength, 
percentile rank 
change in weight 
and height from 
0-4 months, 4-12 
months and 1-4 
years, maternal 
age at menarche 
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percentile rank change 
in weight, 0-4 months:  
β=-0.09, 95% CI= -
0.15, -0.04 
 
10-unit increase in 
percentile rank change 
in weight 4-12 months: 
β=-0.09, 95% CI= -
0.15, -0.02 
 
10-unit increase in 
percentile rank change 
in height, 0-4 months:  
β=-0.04, 95% CI= -
0.10, 0.01 
 
10-unit increase in 
percentile rank change 
in height, 4-12 months: 
β=-0.05, 95% CI= -
0.11, 0.01 
 
Inference was  similar 
when conditional  
growth or growth 
pattern models were 
used and in sibling 
subset. 
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Supplemental Table 2.7. NIH quality assessment of included studies 

Article 

1. 
Rese
arch 
quest
ion 

2. 
Study 
popula
tion  

3. 
Partici
pation 
rate  

4. Subject 
selection 

5. 
Sam
ple 
size 

6. 
Temp
oralit
y 

7. 
Timefr
ame 

8. 
Levels 
of 
Exposur
e 

9. 
Exposure 
assessm
ent 

10. 
Repea
t 
expos
ure 
assess
ment 

11. Outcome 
assessment 

12. 
Outcome 
blinded 

13. Loss to 
follow-up 

14. 
Confoundin
g 

Miller et al, 
1972 Yes Yes Yes Yes No Yes Yes Yes Yes NA Unclear Unclear 

No, ~60% of 
original 
cohort was 
followed up 
at 22 years No 

Zacharias 
et al, 1976 Yes Yes 

Yes 
(62%) Yes No 

Uncle
ar Yes No Unclear NA Yes No 

Yes, 7% 
were lost No 

Billewicz 
et al, 1981 No Yes Yes Yes No Yes Yes Yes Yes NA 

Yes, self-
report but 
based on 
regular 
follow-up No Yes No 

Fledelius, 
1982 Yes No 

Not 
stated Not stated No Yes Yes No Yes NA Yes No Not stated No 

Westwood 
et al, 1983 Yes Yes No Yes No Yes Yes No Yes NA 

Yes, clearly 
defined but 
based on 
recall No No No 

Roberts et 
al, 1986 Yes Yes 

Unkno
wn - 
respon
se rate 
not 
given Yes No No 

Unclea
r - 
don't 
have 
age 
breakd
own of 
subjec
ts 

Not 
stated 

Yes, but 
based on 
parent 
recall NA 

No - mix of 
recall and 
status quo No NA No 

Stark, 
1989 Yes Yes 

Not 
provid
ed Yes No Yes Yes 

Not 
clear Yes NA 

Yes, self-
report No Not stated No 

Prapas et 
al, 1989 No No 

Unkno
wn - 
respon
se rate 
not 
given 

Unknown - 
details not 
given No No Yes Yes 

Yes, but 
based on 
recall NA 

Yes, but 
based on 
recall No NA No 

Moisan et 
al, 1990 Yes Yes Yes Yes No Yes Yes Yes 

Yes, but 
based on NA 

Yes, but 
based on 
recall No Yes No 
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parent 
recall 

Frisancho 
et al, 1994 Yes 

Not 
clear 

Not 
stated Not stated No Yes Yes No Yes NA Unclear Unclear Not stated No 

St. George 
et al, 1994 Yes Yes Yes Yes No Yes Yes Yes Yes NA 

Yes, but 
based on 
recall No Yes No 

Bhargava 
et al, 1995 Yes Yes 

Not 
stated Yes 

Yes - 
powe
r 
calcul
ation 
given 
for 
anthr
opom
etric 
analy
ses Yes 

Yes, 
though 
unclea
r if all 
girls 
had 
outco
me No Yes NA Yes 

Not 
stated Not stated No 

Cooper et 
al, 1996 Yes Yes Yes Yes No Yes Yes Yes Yes NA 

Yes, but 
based on 
maternal 
recall No 

No, response 
for menarche 
question 
71%. 
Compared 
responders 
and non-
responders 
for early-life 
characteristic
s 

Birth order 
adjusted 
for, not birth 
length. 
Mutually 
adjusted 
regression 
for 
birthweight 
and weight 
at 7 years 

Powls et 
al, 1996 Yes Yes 

Not 
stated 

Unknown 
where 60 
controls that 
were not part 
of original 
study came 
from No Yes 

Could 
have 
misse
d 
earlier 
pubert
al 
onset No Yes NA Yes 

Not 
stated Not stated No 

Bacallao 
et al, 1996 Yes Yes 

Not 
stated Not stated No Yes Yes Yes Yes NA Unclear Unclear Not stated No 

Amador et 
al, 1996 Yes Yes 

Not 
stated Not stated No Yes Yes Yes Yes NA Unclear Unclear Not stated No 

Leger et 
al, 1997 Yes Yes 

Yes 
(58%) Yes No Yes Yes No Yes NA Not stated No 

No (33 
lost%) No 

Persson et 
al, 1999 Yes Yes Yes Yes No Yes Yes Yes Yes NA 

No - no 
description of 
why so much 
missing from Yes No No 



 

 

 

2
8
5

 

medical 
record 

Tenhola et 
al, 2000 Yes Yes Yes Yes No Yes 

Yes if 
focus 
is 
early 
menar
che No 

Yes, but 
did not 
look at 
differenc
es based 
on 
weight/h
eight 
independ
ently NA Not stated 

Not 
stated 

Not stated 
how many 
participated 
in 5y and 12y 
follow-ups No 

Berkey et 
al, 2000 Yes Yes 

Not 
stated Yes No Yes Yes Yes Yes NA Yes 

Not 
stated 

Yes, loss to 
follow-up 
close to 50% 

No - no 
adjustment 
for size at 
birth; 
adjusted for 
later size 

Ford et al, 
2000 Yes Yes Yes Yes No Yes Yes No Yes NA Yes 

Not 
stated 

Depended 
on the group 
(30% loss in 
NBW, 8% in 
VLBW) No 

Peralta-
Carcelen, 
2000 Yes Yes Yes Yes No 

Only 
for 
case 
group 

Could 
have 
misse
d 
earlier 
pubert
al 
onset No 

Exposure 
measure
d 
different 
for cases 
and 
controls NA Yes 

Yes for 
breast 
Tanner 

NA (cross-
sectional) No 

Saigal, 
2001 Yes Yes 

Not 
provid
ed 

No (ELBW 
and controls 
recruited at 
different 
time) No Yes Yes No 

Unclear 
how 
exposure 
assessed 
in 
controls NA Unclear No 

Yes (86-91% 
follow-up) No 

Adair, 
2001 Yes Yes Yes Yes No Yes Yes Yes Yes NA Yes No 

No (69% of 
cohort were 
interviewed 
for 14-15 
year 
questionnair
e) Yes 

Ghirri, 
2001 Yes 

No - 
not 
enoug
h 

Not 
stated Yes No Yes Yes No Yes NA Yes No NA No 
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details 
given 
about 
selecti
on of 
study 
groups 

Benefice, 
2001 Yes Yes 

Yes, 
though 
not at 
all 
visits Yes No Yes 

Longer 
follow-
up 
neede
d for 
menar
che No Yes Yes Yes No 

~70% of 
initial cohort 
were found 
again in 
1995 No 

Koziel & 
Jankowsk
a et al, 
2002 Yes Yes 

Not 
stated Yes No Yes Yes No Yes NA Yes No NA No 

dos 
Santos 
Silva et al, 
2002 Yes Yes Yes Yes No Yes Yes 

Yes, 
though 
could 
have 
looked 
at infant 
growth 
as 
continu
ous 
exposur
e 

Yes, 
though 
some 
infants 
had more 
measure
s than 
others to 
contribut
e to 
random 
effects 
model Yes 

No - 17% of 
participants 
had 
menarche 
recalled in 
adulthood 
instead of in 
adolescence No 

Yes (84% 
followed) Yes 

Delemarre
-van de 
Waal, 
2002 Yes No 

Not 
stated Not stated No Yes 

Not 
clear Yes Yes NA Yes Not clear Not provided No 

Hack, 
2003 Yes Yes 

Not 
stated 

No, VLBW 
and controls 
recruited 
differently No Yes Yes No 

Unclear 
how 
assessed 
for 
controls NA 

Unclear how 
assessed No 

No, 64% of 
controls 
followed and 
78% of 
cases No 

Romundst
ad et al, 
2003 Yes Yes Yes 

Yes, though 
exclusion of 
perinatal 
conditions 
that may 
influence 
birth weight 
could affect 
results No Yes Yes Yes Yes NA 

Yes, though 
some 
misclassificat
ion could be 
introduced 
due to 
missing data 
on months No Yes (90%) 

No. 
Gestational 
age 
controlled 
for, and 
parental 
height in a 
subset. 



 

 

 

2
8
7

 

Windham 
et al, 2004 Yes Yes Yes 

Yes, though 
picked based 
on earlier 
inclusion No Yes Yes No Yes NA 

Yes - though 
digit 
preference No Not provided No 

Veening et 
al, 2004 Yes Yes 

Not 
provid
ed Yes No Yes Yes No Yes NA Yes Unclear Not provided No 

Trentham-
Dietz et al, 
2005 Yes Yes Yes Yes No No 

Limite
d 
numbe
r of 
girls 
with 
menar
che Yes 

No - 
parent 
recall NA Yes No NA No 

van 
Weissenbr
uch et al, 
2006 Yes Yes 

Not 
provid
ed Yes No Yes Yes No Yes NA Yes Unclear   

Tam et al, 
2006 Yes Yes Yes Yes No Yes Yes Yes Yes NA Yes No 

No; 156/215 
were 
interviewed 
at age 15 

No; only 
BMI Z-
score at 8 
years 
controlled 
for. 

Sloboda et 
al, 2007 Yes Yes 

Details 
not 
provid
ed in 
this 
public
ation Yes No Yes 

Yes, 
though 
more 
details 
about 
age at 
censor 
could 
have 
been 
provid
ed Yes Yes NA Yes No 

No; 55% of 
original 
cohort of 
girls included 
in analysis Yes 

Vandeloo 
et al, 2007 Yes Yes Yes Yes No Yes? 

Unclea
r  Yes Unclear NA Unclear Unclear NA 

No - all 
variables 
associated 
in univariate 
analyses 
thrown into 
same 
model 

Blell et al, 
2008 Yes Yes No Yes No Yes Yes Yes Yes NA 

Yes - but 
based on 
recall when 
50 years No Yes 

No - 
univariable 
models 
shown only 
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Bosch et 
al, 2008 Yes Yes Yes Yes No Yes Yes No 

No - 
parent 
recall 
(small, 
normal, 
tall) No Yes No 

Yes - LTFU 
right around 
20% No 

Chaudhari 
et al, 2008 Yes Yes 

Not 
stated Yes No Yes 

Unclea
r - % 
with 
menar
che 
not 
given No Yes NA 

Yes - based 
on parent 
report No Not stated No 

Opdahl et 
al, 2008 Yes Yes Yes Yes No Yes Yes Yes Yes NA Yes No No No 

Windham 
et al, 2008 Yes Yes 

Details 
not 
provid
ed in 
this 
public
ation 

No - selected 
for birth 
weight No Yes Yes Yes Yes NA 

Yes - adult 
recall No Not stated Yes 

Salsberry 
et al, 2009 Yes Yes 

Details 
not 
provid
ed in 
this 
public
ation Yes No Yes Yes Yes Yes NA 

Yes - mix of 
parent and 
self-recall No 

Yes (90% of 
eligible 
sample 
included) No 

Rubin et 
al, 2009 Yes Yes 

Yes, 
though 
eligilibi
lity 
criteria 
not 
clear Yes No Yes 

Yes - if 
early 
menar
che is 
focus Yes Yes NA 

Yes, but 
based on 
different 
percentage 
of 
questionnair
e completion 
at each age No 

Yes - ~80% 
of 
participants 
completed at 
least one 
puberty 
questionnair
e 

Only in pre-
pregnancy 
BMI 
analysis 

Labayen 
et al, 2009 Yes Yes 

Details 
not 
provid
ed in 
this 
public
ation Yes 

Yes - 
samp
le 
size 
need
ed 
given Yes Yes Yes Yes NA 

Yes, but 
reported to 
nearest year 
only No 

NA, but less 
than 80% 
included in 
analyses due 
to missing 
data No 

Semiz et 
al, 2009 Yes Yes 

Not 
stated Yes 

Yes - 
target 
samp
le 
size 
given No 

Age 
range 
sufficie
nt, but 
unclea
r how 

Not 
stated 

Not 
stated NA Unclear No 

NA, but 
unclear why 
degree of 
missing data 
so high No 
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analyz
ed 

Keim et al, 
2009 Yes Yes 

Details 
not 
provid
ed in 
this 
public
ation 

No - selected 
for birth 
weight No Yes Yes Yes Yes NA 

Yes, but 
recalled in 
adulthood No Not stated Yes 

Ong et al, 
2009 Yes Yes 

Not 
stated Yes No Yes 

Yes - 
though 
50% 
still 
pre-
menar
che Yes Yes NA 

Yes, but use 
of imputed 
data No Not stated 

No - 
unclear if 
infant 
growth 
association
s adjusted 
for birth 
weight 

Terry et al, 
2009 Yes Yes 

Yes, 
among 
those 
traced Yes Yes Yes Yes 

Not for 
materna
l 
measur
e, yes 
for birth 
and 
infancy 
measur
es Yes NA 

Yes, but 
based on 
adult recall No 

No, high loss 
to follow-up, 
but those lost 
didn't differ 
by most 
measures Yes 

Karaolis-
Danckert, 
2009 Yes Yes 

Not 
stated 

Yes, but 
excluded low 
birthweight 
babies No Yes Yes No Yes NA 

Yes, but pre-
menarche 
girls may 
have been 
excluded. 
Also mixture 
of parent and 
self-report No 

Not clearly 
stated, but 
appears to 
be>20% 
based on 
missing data 

No 
(maternal 
factors; 
birthweight 
always 
adjusted for 
later 
growth) 

Espetvedi 
Finstad, 
2009 Yes Yes 

Not 
stated Yes No Yes Yes Yes Yes NA 

Yes, but 
recalled in 
adulthood No 

NA (cross-
sectional) No 

Mesa, 
2010 Yes Yes 

Not 
stated Yes No Yes Yes Yes Yes NA 

Yes, but 
recalled in 
adulthood No No 

Yes, though 
no 
adjustment 
for birth 
size 

Boyne, 
2010 Yes 

No - 
age 
range 
not 
clear 

Not 
stated Yes No Yes 

Unclea
r - age 
of 
partici
pants Yes Yes NA 

Unclear how 
outcome was 
assessed 

Not 
stated 

No, high loss 
to follow-up, 
but those lost 
didn't differ No 
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not 
stated, 
unclea
r if any 
were 
censor
ed 

by most 
measures 

Epplein, 
2010 Yes Yes 

Not 
stated 

No - some 
girls were 
selected 5-7 
years after 
initial 
recruitment No 

Only 
for 
linke
d 
data Yes Yes 

Mixture 
of recall 
and 
record 
data NA Yes No 

NA (cross-
sectional) No 

Maisonet, 
2010 Yes Yes 

Depen
ds on 
analysi
s 

Yes, but 
excluded 
preterm 
babies and 
many without 
infancy 
measures No Yes 

Unclea
r - 
mean 
age of 
partici
pants 
not 
given Yes Yes NA 

Yes, but 
mixture of 
parent/daugh
ter report No Not provided Yes 

Christense
n, 2010 Yes Yes Yes Yes No Yes Yes Yes 

Yes, but 
self-
report NA 

Yes, but 
mixture of 
parent/daugh
ter report No Not provided Yes 

Morris, 
2010 Yes Yes 

Not 
stated Not stated No No Yes Yes 

Yes, but 
self-
report NA 

Yes, but self-
report No 

NA (cross-
sectional) 

Yes, though 
adjusted for 
later size in 
multivariabl
e model 

Ruder, 
2010 Yes Yes 

Not 
stated Not stated No No Yes Yes 

No, use 
of self-
report 
and 
maternal 
report NA 

No, mix of 
prospective 
and 
retrospective 
data No Not stated No 

Olivo-
Marston, 
2010 Yes Yes 

Not 
stated Yes No No Yes Yes 

Yes, but 
maternal 
report NA 

Yes, clinician 
assessment 
(though 
without 
palpation) Yes 

NA (cross-
sectional) 

No, didn't 
have 
information 
on 
gestational 
age or 
parent 
characteristi
cs.  
Adjusted for 
height and 
BMI at visit. 
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Cho, 2010 Yes Yes 
Not 
stated Yes No No Yes Yes 

Yes, but 
maternal 
report NA 

Yes, but self-
report No 

NA (cross-
sectional) No 

Shrestha, 
2011 Yes Yes Yes Yes No Yes Yes Yes Yes NA 

Self-report, 
~50% to 
nearest year 
only and 
50% with 
month and 
year No 

No, 72% of 
participants 
were asked 
follow-up 
information 
on age at 
menarche Yes 

Boynton-
Jarrett, 
2011 Yes Yes 

Not 
provid
ed Yes No No Yes Yes 

Yes, but 
maternal 
report NA 

Yes, but self-
report in 
categories No 

NA (cross-
sectional) 

Yes, though 
adjusted for 
variables 
later in life 
course 

Chevalley, 
2011 Yes Yes 

Not 
provid
ed Yes Mo Yes Yes Yes 

No, use 
of 
maternal/
pediatrici
an report NA 

Yes, but self-
report No Not provided No 

Orden, 
2011 Yes Yes 

Not 
provid
ed 

Unclear how 
schools were 
selected No No Yes Yes 

Yes, but 
maternal 
report NA 

Yes, but 
status quo No 

NA (cross-
sectional) No 

Papadimitr
iou, 2011 Yes No 

Not 
provid
ed 

Unclear how 
controls were 
selected No Yes Yes Yes Yes NA 

Unclear is 
physician 
palpation 
was 
assessed in 
all groups Unclear 

NA (cross-
sectional) No 

Wehkalam
pi, 2011 Yes Yes 

Not 
provid
ed Ye No Yes Yes No Yes NA 

Yes, but self-
report No 

Not stated, 
but less than 
80% of 
original 
cohort 
included in 
analyses No 

Szwed, 
2012 Yes No 

Not 
provid
ed Not stated No Yes Yes Yes Yes NA 

No, excluded 
girls <17 
years No 

NA (cross-
sectional) No 

Reagan, 
2012 Yes Yes 

Not 
provid
ed 

No (African-
American 
and white 
samples 
selected 
differently) No Yes Yes Yes 

Yes, 
maternal 
report 
but near 
time of 
birth NA 

No, mix of 
parent report 
and self-
report No 

Yes, though 
only 78% 
included in 
analyses due 
to missing 
data 

Yes, though 
also 
adjusted for 
pre-pubertal 
BMI 

Wang, 
2012 Yes Yes 

Not 
provid
ed 

Yes, but 
convenience 
sample No Yes Yes Yes 

Yes, but 
maternal 
exposure
s were NA 

No, mix of 
parent report 
and self-
report No 

No, 30% lost 
to follow-up 

Yes, though 
no 
adjustment 
for 
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self-
reported 

length/heig
ht 

Oh, 2012 Yes Yes Yes Yes No No Yes Yes 

Yes, but 
maternal 
report NA 

No, mix of 
parent report 
and self-
report No 

NA (cross-
sectional) No 

Hui, 2012 Yes Yes Yes Yes No Yes Yes Yes Yes NA Yes 

Unclear 
(doctors 
may 
have had 
access to 
earlier 
records) Yes Yes 

Dossus, 
2012 Yes Yes 

No 
(20%) Yes No No Yes Yes 

Yes, but 
self-
report. 
Excluded 
pre-term 
for 
birthweig
ht 
analysis NA 

Yes, but self-
report. 
Excluded 
early and 
late 
menarche No Not provided 

Yes, though 
could be 
over-
adjusted 

D'Aloisio, 
2013 Yes Yes 

Not 
provid
ed Yes No No Yes Yes 

Yes, but 
self-
report NA 

Yes, but self-
report No 

NA (cross-
sectional) Yes 

Sorensen, 
2013 Yes Yes Yes Yes No Yes Yes Yes Yes NA 

Yes, but self-
report No NA 

Yes by 
design 

Deardorff, 
2013 Yes Yes 

Not 
provid
ed Yes No Yes Yes Yes 

Yes, but 
self-
report NA 

Yes, but self-
report No 

Not reported, 
though only 
64% 
included in 
analyses due 
to missing 
data Yes 

Hernande
z, 2013 Yes Yes 

Not 
provid
ed Yes No Yes 

Neede
d 
longer 
follow-
up No Yes NA 

Unclear how 
outcome was 
assessed Unclear 

No, only 
41/71 
(57.8%) 
completed 3 
years of 
follow-up No 

Jahanfar, 
2013 Yes Yes 

Not 
provid
ed Yes No No Yes 

Not 
stated 

Not 
stated NA 

Yes, but self-
report No 

NA (cross-
sectional) No 

Kale, 2014 Yes Yes 

Not 
provid
ed 

No 
(differences 
by site) No Yes Yes No 

Yes, but 
maternal 
report in 
adolesce
nce NA Yes Unclear Not reported No 
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Zhang & 
Hartman, 
2014 Yes Yes 

Not 
provid
ed 

No - 
excluded all 
pre-
menarche 
girls No No Yes Yes 

Yes, but 
maternal 
report in 
adolesce
nce NA 

Yes, but self-
report No 

NA (cross-
sectional) 

No, 
adjusted for 
adolescent 
body size in 
all analyses 

Gavela-
Perez, 
2015 Yes Yes 

Not 
provid
ed Yes No Yes Yes Yes 

Yes, but 
maternal 
report in 
adolesce
nce NA 

Yes, but self-
report No Yes No 

Meulenijze
r, 2015 Yes No 

Not 
provid
ed Not provided No No Yes Yes 

Yes, but 
maternal 
report in 
adolesce
nce NA 

Yes, but self-
report No 

NA (cross-
sectional) No 

German, 
2015 Yes Yes 

Not 
provid
ed Not provided No Yes Yes Yes Yes NA Yes Unclear 

No (71% 
followed up 
through 15.5 
y) No 

Salgin, 
2015 Yes Yes 

Not 
provid
ed Yes No Yes Yes No Yes NA Yes No 

No (68% 
followed up 
through 18 
years) Yes 

Behie & 
O'Donnell, 
2015 Yes Yes 

Not 
provid
ed Not provided No Yes 

Yes, 
though 
a lot of 
censor
ing Yes 

Yes, but 
parent 
report NA 

Yes, but 
parent report No 

No (61% 
included in 
analysis) 

No, 
adjusted for 
adolescent 
body size in 
all analyses 

Wells, 
2016 Yes Yes 

No 
(30%) Yes No No Yes Yes 

Yes, but 
self-
report NA 

Yes, but self-
report No 

NA (cross-
sectional) No 

Mariansda
tter, 2016 Yes Yes Yes Yes No Yes Yes Yes 

Yes, but 
self-
report NA 

Yes, but self-
report No Yes (83%) No 

Krzyzano
wska, 
2016 Yes Yes Yes Yes No Yes Yes Yes Yes NA 

Yes, but self-
report No Not stated No 

Schulte, 
2016 Yes Yes 

Not 
provid
ed Yes No Yes Yes No Yes NA 

Yes, but mix 
of parent and 
self-report No Not stated By design 

Kubo, 
2016 Yes Yes 

Not 
provid
ed Yes No Yes Yes Yes 

Yes, but 
self-
report NA Yes Unclear Yes Yes 

Aydin, 
2017 Yes Yes 

No 
(31.4
%) Yes NO Yes 

Early 
breast 
develo
pment 
only Yes Yes NA Yes Unclear 

NA 
(retrospectiv
e) 

No 
(maternal 
factors; 
birthweight 
always 
adjusted for 
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later 
growth) 

Aurino, 
2017 Yes Yes 

Not 
provid
ed 

Yes (by 
country) No Yes 

Yes, 
early 
menar
che 
only Yes 

No, 
different 
sources 
of 
birthweig
ht 
informati
on NA 

Yes, but self-
report No Yes (5.2%) 

Yes, though 
no 
birthlength, 
gestational 
age or 
maternal 
body size 
data 

Flom, 
2017 Yes Yes Yes Yes No Yes Yes Yes Yes NA 

Yes, but self-
report No NA Yes 

Workman 
& Kelly, 
2017 Yes Yes 

Not 
provid
ed Yes No No Yes Yes 

Yes, but 
self-
report NA 

Yes, but self-
report No 

NA (cross-
sectional) No 

Kelly, 
2017 Yes Yes 

Not 
provid
ed Yes No Yes 

Yes, 
early 
menar
che 
only Yes 

Yes, but 
self-
report NA 

Yes, but 
mother 
report No Not provided No 

Lawn et al, 
2018 Yes Yes 

Not 
provid
ed Yes No Yes Yes Yes Yes NA 

Yes, but self-
report No 

No but no 
difference Yes 

Kubo et al, 
2018 Yes Yes Yes Yes No Yes Yes Yes Yes NA Yes Unclear 

NA 
(retrospectiv
e) Yes 
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Supplemental Table 2.8. Newcastle-Ottawa Scale quality assessment of included studies 

Cohort Studies (also used for cross-sectional studies, with follow-up replaced by response rate) 

Article 

1. 
Representativ
eness of the 
exposed 
cohort 

2. Selection of 
the non-
exposed cohort 

3. 
Ascertainment 
of exposure 

4. 
Demonstratio
n that 
outcome of 
interest was 
not present 
at start of 
study 

5. 
Comparability 
of cohorts on 
the basis of 
design or 
analysis 

6. 
Assessme
nt of 
outcome 

7. Follow-up 
long 
enough for 
outcomes to 
occur 

8. Adequacy 
of follow-up 
for cohorts 
(modified for 
adequacy of 
response rate 
for cross-
sectional 
studies) 

Total score 
(Max 9) 

Miller et al, 
1972 

Representativ
e (1) 

Same as 
exposed (1) 

Medical records 
(1) Yes (1) 

No analytic 
controls (0) 

Not clear 
(0) Yes (1) 

60% followed 
up, no 
comparison 
provided (0) 5 

Zacharias et 
al, 1976 Volunteers (0) 

Same as 
exposed (1) Unclear (0) Yes (1) 

No analytic 
controls (0) 

Self-report? 
(0) Yes (1) 

Subjects loss to 
follow-up less 
than 20% (1) 4 

Billewicz et al, 
1981 

Limited 
description 
provided (0) 

Same as 
exposed (1) Unclear (0) Yes (1) 

No analytic 
controls (0) 

Self-report 
(0) Yes (1) 

Subjects loss to 
follow-up less 
than 20% (1) 4 

Fledelius et 
al, 1982 

Details not 
provided (0) 

Details not 
provided (0) 

Hospital record 
(1) Yes (1) 

Not enough 
information to 
determine(0) 

Self-report 
(0) Yes(1) 

Not provided 
(0) 3 

Westwood et 
al, 1983 

Somewhat 
representative 
(1) 

Drawn from 
same community 
as exposed (1) 

Hospital record 
(1) Yes (1) 

Matched on 
factors like SES 
and race (1), 
but no 
statistical 
controls 

Self-report 
(0) Yes (1) 

Significant 
number of 
subjects lost 
(70%), 
comparison 
provided of 
those studied 
vs. not studied 
(1) 6 

Roberts et al, 
1986 

Somewhat 
representative 
(1) 

Drawn from 
same community 
as exposed (1) 

Parent self-
report (0) No (0) 

Controlled for 
birth order and 
family size (1), 
no control for 
birth length or 
parent size 

Self-report 
(0) 

Unclear (no 
age range, 
given, 0) 

No response 
rate given (0) 3 

Stark, 1989 
Representativ
e (1) 

Same as 
exposed (1) Records (1) Yes (1) 

Comparable on 
design, no 
analytic 
controls (1) 

Self-report 
(0) Yes (1) 

Loss to follow-
up rate not 
provided (0) 6 

Prapas et al, 
1989 

Students, not 
clearly defined 
who 
participated (0) 

Same as 
exposed (1) Self-report (0) No (0) 

Limited design 
or analytic 
controls (0) 

Self-report 
(0) Yes (1) 

No response 
rate given (0) 2 
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Frisancho et 
al, 1994 

Details not 
provided (0) 

Same as 
exposed (1) Records (1) Yes (1) 

No analytic 
controls (0) Unclear (0) Yes (1) 

Not provided 
(0) 4 

St. George et 
al, 1994 

Somewhat 
representative 
(1) 

Same as 
exposed (1) Records (1) Yes (1) 

No analytic 
controls (0) 

Self-report 
(0) Yes (1) 

Subjects loss to 
follow-up less 
than 20% (1) 6 

Bhargava et 
al, 1995 

No description; 
unclear if all 
LBW infants 
were selected 
(0) 

Same as 
exposed (1) 

Hospital record 
(1) Yes (1) 

Matched on 
parental height, 
education and 
SES (1), not 
analytic 
controls 

Self-report 
(0) 

Unclear (not 
clear how 
many were 
right 
censored 
and actually 
followed to 
age 14) (0) 

Loss to follow-
up not shown 
(0) 4 

Cooper et al, 
1996 

Representativ
e (1) 

Same as 
exposed (1) 

Health visitor or 
midwife record 
(1) Yes (1) 

Controlled for 
birth order and 
SES, not for 
birth length, 
other early-life 
variables (1) 

Maternal 
report (0) Yes(1) 

Response rate 
for this analysis 
(71%), did 
compare 
responders with 
non-responders 
(1) 7 

Powls et al, 
1996 

Details not 
provided (0) 

Some were 
same as 
exposed, details 
on other sources 
of controls not 
clear (0) 

Hospital record 
(1) Yes (1) 

Matched on 
age, sex and 
school (1), no 
analytic 
controls 

Clinical 
rating for 
breast 
developme
nt (1), self-
report for 
menarche 
(0) 

No(0) - for 
menarche 

Response rate 
not given (0) 3-4 

Bacallao et al, 
1996 

Details not 
provided, 
<2500g were 
excluded (0) 

Same as 
exposed (1) 

Obstetric card 
(1) Yes (1) 

No analytic 
controls (0) Unclear (0) Yes (1) 

Follow-up rate 
not provided (0) 4 

Bacallao et al, 
1996 

Details not 
provided, 
<2500g were 
excluded (0) 

Same as 
exposed (1) 

Obstetric card 
(1) Yes (1) 

No analytic 
controls (0) Unclear (0) Yes (1) 

Follow-up rate 
not provided (0) 4 

Leger et al, 
1997 

Representativ
e (1) 

Same as 
exposed (1) Birth registry (1) Yes (1) 

Design 
comparable, no 
analytic 
controls (1) Unclear (0) Yes (1) 

67% followed 
(0) 6 

Persson et al, 
1999 

Representativ
e (1) 

Same as 
exposed (1) 

Hospital record 
(1) Yes (1) 

Comparable 
based on 
design (1), 
limited analytic 
controls(0) 

Medical 
record (1) Yes(1) 

Menarche data 
missing for 
many 
participants, no 
description of 
differences 
between those 
with and 
without 
menarche data 7 
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in medical 
record (0) 

Tenhola et al, 
2000 

Representativ
e (1) 

Same as 
exposed (1) 

Hospital record 
(1) Yes (1) 

Comparable 
based on 
design (1), 
limited analytic 
controls(0) 

Self-report 
(0) 

No(0) - for 
menarche 

~25% of SGA 
subjects did not 
participate, did 
not differ from 
those that did 
based on birth 
measures(1) 6 

Berkey et al, 
2000 

Selected - 
"likely to 
maintain 
residence near 
Boston and 
committed to 
having their 
child in a long 
term study" (0) 

Same as 
exposed (1) 

Measured by 
doctor (1) Yes (1) 

Comparable on 
design, 
inappropriate 
analytic control 
for later growth, 
unclear 
averaging of 
measures(1) 

Self-report 
(0) Yes(1) 

Almost 50% 
loss to follow-
up; did not 
differ by birth 
size (0) 5 

Ford et al, 
2000 

Selected 
survivors (0) 

Same as 
exposed (1) 

Hospital record 
(1) Yes (1) 

VLBW group 
older than other 
groups, no 
analytic 
controls (0) 

Self-report 
(0) Yes(1) 

Loss to follow-
up differed by 
group, 30% in 
NBW (0) 4 

Peralta-
Carcelen et 
al, 2000 

Selected 
survivors (0) 

Drawn from a 
different source 
(0) 

Medical record 
for cases, recall 
for controls (0) No (0) 

Matched on 
age, sex, race 
and SES (1), 
no analytic 
controls 

Self-report 
for 
menarche 
(0), clinician 
assessment 
for breast 
TS(1) Yes(1) 

82.6% 
response rate 
for cases, not 
given for 
controls (0) 2-3 

Saigal et al, 
2001 

Selected 
survivors (0) 

Drawn from a 
different source 
(0) 

Medical records 
for cases, not 
stated for 
controls (0) Yes (1) 

Matched on 
age, sex and 
SES (1), no 
analytic 
controls 

Self-report 
(0) Yes (1) 

>80% follow-up 
rate for cases 
and controls (1) 4 

Adair, 2001 
Representativ
e (1) 

Same as 
exposed (1) 

Measured by 
study staff (1) Yes (1) 

Comparable on 
design and 
adjusted for 
appropriate 
confounders. 
Results shown 
with and 
without 
adjustment for 

Self-report 
(0) Yes (1) 

Response rate 
for 14-15 year 
follow-up 69%, 
did compare 
characteristics 
of those lost 
with 
participants (1) 8 
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characteristics 
at 8 years (2) 

Ghirri, 2001 

No description; 
unclear if all 
SGA infants 
were selected 
(0) 

Same as 
exposed (1) 

Hospital record 
(1) Yes (1) 

Comparable on 
design, no 
analytic 
controls (1) 

Self-
report(0) Yes(1) 

Response rates 
not given(0) 5 

Benefice, 
2001 

Representativ
e (1) 

Same as 
exposed (1) 

Measured by 
study staff (1) Yes (1) 

Comparable on 
design, no 
analytic 
controls (1) 

Self-report 
(0) 

No(0) - for 
menarche 

Yes, coverage 
at least 80% for 
most visits, 
differences 
examined (1) 6 

Koziel & 
Jankowska, 
2002 

Representativ
e (1) 

Same as 
exposed (1) Birth records (1) Yes (1) 

Comparable on 
design,  
controlled for 
SES only and 
BMI at 14 years 
(1) 

Self-
report(0) Yes(1) 

Response rate 
details not 
stated (0) 6 

dos Santos 
Silva, 2002 

Representativ
e (1) 

Same as 
exposed (1) Birth records (1) Yes (1) 

Comparable on 
design, control 
for maternal 
factors in 
random 
coefficient 
model, no 
information on 
birth length or 
gestational age 
(1) 

Self-
report(0) Yes(1) 

Yes, 84% 
follow-up, 
differences 
assessed(1) 7 

Hack, 2003 Selected (0) 

Drawn from a 
different source 
(0) 

Birth records for 
exposed, unclear 
for non-exposed 
(0) Yes (1) 

Ascertained 
and followed 
differently, no 
analytic 
controls (0) 

Assume 
self-report 
(0) Yes (1) 

Follow-up 78% 
of cases and 
64% for 
controls, did 
compare those 
that were and 
were not 
followed (0) 2 
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Romundstad, 
2003 

Representativ
e (1) 

Same as 
exposed (1) 

Medical records 
(1) Yes (1) 

Exclusion of 
prenatal 
conditions 
could bias low 
birthweight 
group. Did 
control for 
gestational age 
and maternal 
factors in a 
subset (1) 

Self-
report(0) Yes(1) 

Yes, 90% 
response (1) 7 

Delemarre-
van de Waal, 
2002 

No description 
(0) 

Same as 
exposed (1) 

Medical records 
(1) No (0) 

Details not 
provided, no 
analytic 
controls (0) 

Clinical 
report (1) No (0) 

Not provided 
(0) 3 

Windham, 
2004 

Representativ
e (1) 

Same as 
exposed (1) 

Measured at 
birth (1) Yes (1) 

Comparable on 
design, some 
analytic 
controls (1) 

Self-
report(0) Yes(1) 

Yes, 80% 
response, 
comparison of 
those that did 
and did not 
participate (1) 7 

Veening, 
2004 

Details not 
provided (0) 

Same as 
exposed (1) 

Medical records 
(1) Yes (1) 

Comparable on 
design, no 
analytic 
controls (1) 

Clinical 
report (1) Yes (1) 

Yes, 90% 
follow-up (1) 7 

Trentham-
Dietz, 2005 

Representativ
e (1) 

Same as 
exposed (1) 

Parent self-
report (0) No (0) 

Cross-sectional 
study, no 
analytic 
controls (0) 

Self-
report(0) No(0)  

Cross-sectional 
study, 60% 
response rate 
(0) 2 

van 
Weissenbruch
, 2004 

Details not 
provided (0) 

Same as 
exposed (1) 

Medical records 
(1) Yes (1) 

Comparable on 
design, no 
analytic 
controls (1) 

Not stated 
(0) Yes (1) Not stated (0) 5 

Tam, 2006 

Unclear is 
subset is 
representative(
0) 

Same as 
exposed (1) 

Medical records 
(1) Yes (1) 

Limited analytic 
control (1) 

Self-
report(0) Yes(1) 

No, 72.5% 
followed up at 
15 years, no 
description of 
whether those 
followed were 
different than 
those lost (0) 5 

Sloboda, 
2007 

Representativ
e (1) 

Same as 
exposed (1) 

Medical records 
(1) Yes (1) 

EBW controlled 
for several 
maternal 
factors, not 
clear what 
other factors 
were adjusted 
for in analyses 
(1) 

Self-
report(0) Yes (1) 

55% of original 
girls in this 
analysis, no 
description of 
differences 
between those 
lost and those 
participated (0) 6 
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Vandeloo, 
2007 

Representativ
e (1) 

Same as 
exposed (1) Unclear (0) No (0) 

Design and 
modeling 
strategy not 
clear (0) 

Not clear 
(0) Not clear (0) 

Participation 
rate 100% (1) 3 

Blell, 2008 
Representativ
e (1) 

Same as 
exposed (1) 

Medical records 
(1) Yes (1) 

Comparable on 
design, no 
analytic 
controls (1) 

Self-report 
(0) Yes (1) 

~50% 
participation, 
those who 
participated 
differed from 
those lost (0) 6 

Bosch, 2008 
Representativ
e (1) 

Same as 
exposed (1) 

Parent self-
report (0) Yes (1) 

Comparable on 
design, no 
analytic 
controls (1) 

Self-
report(0) Yes(1) 

20% LTFU, no 
comparison of 
those lost vs. 
those 
participated (0)   

Chaudhari, 
2008 

Representativ
e (1) 

Same as 
exposed (1) 

Medical records 
(1) Yes (1) 

Design 
comparable, no 
analytic 
controls (1) 

Parent-
report (0) Not clear (0) 

Not provided 
(0) 5 

Opdahl, 2008 
Representativ
e (1) 

Same as 
exposed (1) 

Measured at 
birth (1) Yes (1) 

Design 
comparable, 
limited analytic 
controls (1) 

Self-report 
(0) Yes (1) 

77.6% of girls 
attended 
adolescent 
follow-up; not 
comparison of 
those that did 
and did not 
participate (0) 6 

Windham, 
2008 

Representativ
e (1) 

Selection criteria 
for adult follow-
up different (0) 

Parent self-
report (0) Yes (1) 

Controlled for 
maternal 
factors in 
analysis (1) 

Self-
report(0) Yes(1) 

Not provided 
(0) 4 

Salsberry, 
2009 

Representativ
e (1) 

Same as 
exposed (1) 

Mix of parent 
report and study 
measurement (0) Yes (1) 

Design 
comparable, 
limited analytic 
controls (1) 

Self or 
parent 
report (0) Yes (1) 

90% of eligible 
girls included 
(1) 6 

Rubin, 2009 
Representativ
e (1) 

Same as 
exposed (1) 

Medical records 
for birth weight 
(1), self-report 
for pre-
pregnancy BMI 
(0) Yes (1) 

Design 
comparable, 
analytic 
controls only in 
logistic 
regression 
analysis (1) 

Self or 
parent 
report (0) 

Yes for early 
menarche, 
not for full 
range (1) 

~80% 
completed at 
least one 
puberty 
questionnaire; 
compared 
differences 
between non-
responders and 
respondents (1) 6 or 7 

Labayen, 
2009 

Representativ
e (1) 

Same as 
exposed (1) 

Health booklet 
(1) No (0) 

Design 
comparable, 
controlled for 
factors later in 
life (1) 

Self-report 
(0) Yes(1) 

<80% included 
due to large 
amount of 
missing data 
(0) 5 
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Semiz, 2009 
Representativ
e (1) 

Same as 
exposed (1) 

Parent self-
report (0) No (0) 

Not enough 
information to 
determine(0) 

Self-
report(0) for 
menarche, 
clinical 
assessment 
for breast 
Tanner but 
unclear how 
it was used 
in analysis 
(0) Yes(1) 

NA, but 
response rate 
not given (0) 3 

Keim, 2009 
Representativ
e (1) 

Selection criteria 
for adult follow-
up different (0) 

Parent self-
report (0) Yes (1) 

Controlled for 
maternal 
factors in 
analysis (1) 

Self-report 
in 
adulthood 
(1) Yes (1) 

Not provided 
(0) 5 

Ong, 2009 
Representativ
e (1) 

Same as 
exposed (1) 

Medical records 
(1) Yes (1) 

Design 
comparable, 
more analytic 
controls 
needed (1) 

Self-report 
(0) 

50% of girls 
still did not 
reach 
menarche; 
unclear how 
included if 
<13 years (0) 

Participation 
rate at visit not 
given.  
Examined 
differences 
between girls in 
analysis (70%) 
and singleton 
girls not 
included (0) 5 

Terry, 2009 
Representativ
e (1) 

Same as 
exposed (1) 

Parent report for 
maternal weight, 
medical records 
for others (1) Yes (1) 

Design 
comparable 
and adequate 
controls (1) 

Self-
report(0) Yes(1) 

Low follow-up, 
but differences 
examined (0) 5 or 6 

Karaolis-
Danckert, 
2009 

Representativ
e (1) 

Same as 
exposed (1) 

Medical records 
(1) Yes (1) 

Design 
comparable, 
more analytic 
controls 
needed (1) 

Self-
report(0) Yes(1) 

Not provided 
(0) 6 

Espetvedt 
Finstad, 2009 Selected (0) 

Same as 
exposed (1) 

Medical records 
(1) No (0) 

Exclusion 
criteria could be 
associated with 
birthweight, 
more analytic 
controls 
needed (0) 

Self-
report(0) Yes(1) 

Participation 
rate not 
provided (0) 3 

Mesa, 2010 
Representativ
e (1) 

Same as 
exposed (1) 

Measured by 
study staff (1) Yes (1) 

Design 
comparable, 
more analytic 
controls 
needed (1) 

Self-
report(0) Yes(1) 

22.6% lost to 
follow-up, some 
comparison 
provided (0) 6 
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Boyne, 2010 
Representativ
e (1) 

Same as 
exposed (1) 

Measured by 
study staff (1) Yes (1) 

Design 
comparable, 
more analytic 
controls 
needed (1) 

Self-report 
for 
menarche, 
measured 
for breast 
developme
nt but 
unclear how 
assessed 
(0) 

Unclear (0) - 
no mention 
of censored 
data 

Low follow-up, 
but differences 
examined (0) 5 

Epplein, 2010 
Representativ
e (1) 

Same as 
exposed (1) 

Recall and 
record linkage 
(0) No (0) 

Design 
comparable, 
more analytic 
controls 
needed (1) 

Self-report 
(0) Yes(1) 

Participation 
rate not 
provided (0) 4 

Maisonet, 
2010 

Representativ
e (1) 

Same as 
exposed (1) 

Medical records 
(1) Yes (1) 

Design 
comparable, 
appropriate 
controls (2) 

Self and 
parent-
report (0) Unclear (0) 

Detail not 
provided, but 
few girls with 
infancy 
measures (0) 6 

Christensen, 
2010 

Representativ
e (1) 

Same as 
exposed (1) 

Maternal report 
(0) Yes (1) 

Design 
comparable, 
appropriate 
controls (2) 

Self and 
parent-
report (0) Yes (1) 

Compared 
characteristics 
of respondents 
vs non-
respondents (1) 7 

Morris, 2010 Volunteers (0) 
Same as 
exposed (1) 

Recalled in 
adulthood (0) No (0) 

Potential 
survivorship 
bias in design, 
some analytic 
controls (1) 

Self-report 
(0) Yes (1) 

NA, 
participation 
rate not 
provided (0) 3 

Ruder, 2010 

Not stated, but 
likely not 
representative 
since RCT (0) 

Same as 
exposed (1) Recalled (0) Yes (1) 

Original cohort 
excluded 
extremes of 
height and 
weight, limited 
analytic 
controls (1) 

Self-
report(0) Yes(1) 

Not provided 
(0) 4 

Olivo-
Marston, 
2010 

Representativ
e (1) 

Same as 
exposed (1) Parent recall (0) No (0) 

Design 
comparable, 
limited analytic 
controls (1) 

Clinical 
rating for 
breast 
developme
nt (1) Yes (1) 

NA, 
participation 
rate not 
provided and a 
lot of missing 
data for TS (0) 5 

Cho, 2010 
Representativ
e (1) 

Same as 
exposed (1) Parent recall (0) No (0) 

Design 
comparable, 
limited analytic 
controls (1) 

Self-report 
(0) Yes (1) 

NA, 
participation 
rate not 
provided (0) 4 
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Shrestha, 
2011 Not stated (0) 

Same as 
exposed (1) Self-report (0) Yes (1) 

Design 
comparable, 
controlled for 
maternal 
factors (2) 

Self-
report(0) Yes(1) 

72% of girls 
completed 
follow-up 
survey, did not 
compare those 
that did and did 
not participate 
(0) 5 

Boynton-
Jarrett, 2011 

Selected - 
nurses (0) 

Same as 
exposed (1) 

Maternal recall 
(0) No (0) 

Design 
comparable, 
controlled for 
maternal 
factors (2) 

Self-report 
(0) Yes (1) 

Not provided 
(0) 4 

Chevalley, 
2011 

Selected - 
RCT 
volunteers (0) 

Same as 
exposed (1) 

Maternal/pediatri
cian report (0) Yes (1) 

Exposure 
source not 
clear, no 
analytic 
controls (0) 

Self-report 
(0) Yes (1) 

Not provided 
(0) 3 

Orden, 2011 
Not provided 
(0) 

Same as 
exposed (1) 

Maternal recall 
(0) No (0) 

Cross-sectional 
study, no 
analytic 
controls (0) 

Self-report 
(0) Yes (1) 

NA, 
participation 
rate not 
provided (0) 2 

Wehkalampi, 
2011 

Selected - 
survivors (0) 

Same as 
exposed (1) 

Hospital records 
(1) Yes (1) 

Matched, no 
analytic 
controls (1) 

Self-report 
(0) Yes (1) 

Not provided 
(0) 5 

Szwed, 2012 
Not provided 
(0) 

Same as 
exposed (1) 

Medical records 
(1) No (0) 

More 
recruitment 
details needed, 
no analytic 
controls (0) 

Self-report 
(0) Yes (1) 

NA, 
participation 
rate not 
provided (0) 3 

Reagan, 2012 
Representativ
e (1) 

Same as 
exposed (1) 

Maternal report 
(0) Yes (1) 

Appropriate 
selection, 
controlled for 
pre-pubertal 
BMI in all 
analyses (1) 

Maternal 
and self-
report(0) Yes(1) 

78% of those 
eligible were 
included in this 
analysis, but 
compared 
those that did 
and did not 
participate and 
found no 
differences (1) 6 

Wang, 2012 

Selected 
(volunteers) 
(0) 

Same as 
exposed (1) 

Study measures, 
except for 
maternal BMI (1) Yes (1) 

Appropriate 
analytic 
controls, but 
excluded 
preterm (1) 

Maternal 
and self-
report(0) Yes (1) 

70% of cohort 
was follow-up, 
though N for 
analyses was 
much smaller. 
Compared 
those that were 
and were not 
followed-up 6 
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with minimal 
differences (1). 

Oh, 2012 
Not provided 
(0) 

Same as 
exposed (1) 

Maternal recall 
(0) No (0) 

Cross-sectional 
study, limited 
analytic 
controls (0) 

Maternal 
and self-
report(0) Yes (1) 

93% agreed to 
participate, 
though only 
60% were 
included in 
analyses due to 
missing data 
(1) 3 

Hui, 2012 
Representativ
e (1) 

Same as 
exposed (1) 

Medical records 
(1) Yes (1) 

Representative 
cohort, 
appropriate 
covariates, 
though did 
exclude pre 
term (2) 

Clinical 
report (1) Yes (1) 

88% of cohort 
members were 
included in 
analysis (1) 9 

Dossus, 2012 
Representativ
e (1) 

Same as 
exposed (1) Self-report (0) No (0) 

Excluded pre-
term in 
birthweight 
analysis, may 
have over-
adjusted 
models (0) 

Self-report 
(0) Yes (1) 

Approximately 
80% did each 
questionnaire, 
those included 
didn't differ 
from those 
excluded (1) 4 

D'Aloisio, 
2013 Selected (0) 

Same as 
exposed (1) Self-report (0) No (0) 

Cross-sectional 
study, 
appropriate 
controls (1) 

Self-report 
(0) Yes (1) 

Participation 
rate not 
provided (0) 3 

Sorensen, 
2013 

Representativ
e of twins (1) 

Same as 
exposed (1) 

Medical records 
(1) No (0) Appropriate (2) 

Self-report 
(0) Yes (1) 

86.2% 
response rate 
(1) 8 

Deardorff, 
2013 

Representativ
e (1) 

Same as 
exposed (1) Self-report (0) Yes (1) Appropriate (2) 

Self-report 
(0) Yes (1) 

Loss to follow-
up not reported, 
but 35.5% not 
included due to 
missing data 
(0) 6 

Hernandez, 
2013 

Representativ
e (1) 

Same as 
exposed (1) Self-report (0) Yes (1) 

Cohorts 
comparable, 
limited analytic 
controls (1) 

Not clear 
(0) No (0) 

>40% LTFU, 
though not 
different in 
baseline 
characteristics 5 
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from those 
followed (1) 

Jahanfar, 
2013 

Representativ
e of twins (1) 

Same as 
exposed (1) Not provided (0) No (0) 

Cohorts 
comparable, 
limited analytic 
controls (1) 

Self-report 
(0) Yes (1) 

NA, 
participation 
rate not 
provided (0) 4 

Kale, 2014 
Representativ
e (1) 

Same as 
exposed (1) Self-report (0) Yes (1) 

Appropriate, 
only crude 
analyses for 
birthweight 
presented (1) 

Clinical 
report (1) Yes (1) 

Loss to follow-
up not reported 
(0) 6 

Zhang & 
Hartman, 
2014 

Representativ
e (1) 

Same as 
exposed (1) 

Maternal report 
(0) No (0) 

Cohorts 
comparable, 
limited analytic 
controls (1) 

Self-report 
(0) Yes (1) 

Cross-sectional 
study, response 
rate not 
reported (0) 4 

Gavela-
Perez, 2015 

Representativ
e (1) 

Same as 
exposed (1) 

Maternal report 
(0) Yes (1) 

Cohorts 
comparable, 
limited analytic 
controls (1) 

Self-report 
(0) Yes (1) 

96% follow-up 
rate (1) 6 

Meulenijzer, 
2015 

Representativ
e (1) 

Same as 
exposed (1) 

Maternal report 
(0) No (0) 

Cohorts 
comparable, 
limited analytic 
controls (1) 

Self-report 
(0) Yes (1) 

Cross-sectional 
study, response 
rate not 
reported, 42% 
excluded due to 
missing data 
(0) 4 

German, 
2015 

Not provided 
(0) 

Same as 
exposed (1) 

Measured by 
researchers (1) Yes (1) 

Cohort 
comparable, 
limited analytic 
controls (1) 

Clinical 
report (1) Yes (1) 

71% followed, 
no comparison 
of those that 
were and were 
not followed (0) 6 

Salgin, 2015 
Representativ
e (1) 

Same as 
exposed (1) 

Hospital 
record/study 
measures (1) Yes (1) Appropriate (2) 

Self-report 
(0) Yes (1) 

69% followed, 
no comparison 
of those that 
were and were 
not followed (0) 7 

Behie, 2015 
Representativ
e (1) 

Same as 
exposed (1) Parent report (0) Yes (1) 

Cohorts 
comparable, 
limited analytic 
controls (1) 

Parent 
report (0) 

Yes, for early 
menarche (1) 

61% included in 
analysis, no 
comparison (0) 5 

Wells, 2016 

Selected 
(volunteers) 
(0) 

Same as 
exposed (1) Self-report (0) No (0) 

Exclusion 
criteria could be 
associated with 
birthweight, 
more analytic 
controls 
needed (0) 

Self-report 
(0) Yes (1) 

30% response 
rate (0) 2 
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Mariansdatter
, 2016 

Representativ
e (1) 

Same as 
exposed (1) Self-report (0) Yes (1) 

Cohorts 
comparable, 
limited analytic 
controls (1) 

Self-report 
(0) Yes (1) 

83% follow-up 
rate, 
differences 
examined (1) 6 

Krzyzanowsk
a, 2016 

Representativ
e (1) 

Same as 
exposed (1) 

Medical record 
(1) Yes (1) 

Cohorts 
comparable, 
limited analytic 
controls (1) 

Self-report 
(0) Yes (1) 

Not provided 
(0) 6 

Schulte, 2016 

Selected, twin 
pairs with 
TTTS (0) 

Same as 
exposed (1) 

Medical record 
(1) Yes (1) 

Control by 
design (2) 

Self-report 
(0) Yes (1) 

Not provided 
(0) 6 

Kubo, 2016 
Representativ
e (1) 

Same as 
exposed (1) Self-report (0) Yes (1) 

Cohorts 
comparable, 
limited analytic 
controls (1) 

Clinical 
report (1) Yes (1) 

Follow-up rate 
not provided. 
86.7% of girls 
included in 
analysis 
(missing data 
excluded), no 
difference 
between those 
included and 
excluded (1) 7 

Aydin, 2017 Volunteers (0) 
Same as 
exposed (1) 

Medical record 
(1) No (0) 

Cohorts 
comparable, 
limited analytic 
controls (1) 

Clinical 
report (1) 

Early breast 
development 
only (1) 

Participation 
rate low (0) 5 

Aurino, 2017 
Representativ
e (1) 

Same as 
exposed (1) 

Mix of medical 
record and self-
report (0) Yes (1) 

Cohorts 
comparable, 
limited analytic 
controls (1) 

Self-report 
(0) 

Early 
menarche 
only (1) 

Only 5.2% lost 
to follow-up, no 
difference in 
exposure (1) 6 

Flom, 2017 
Representativ
e (1) 

Same as 
exposed (1) 

Medical record 
(1) Yes (1) Appropriate (2) 

Self-report 
(0) Yes (1) 

86.3% of traced 
women 
participated (1) 8 

Workman & 
Kelly, 2017 

Representativ
e (1) 

Same as 
exposed (1) Self-report (0) No (0) 

Cohorts 
comparable, 
limited analytic 
controls (1) 

Self-report 
(0) Yes (1) 

Participate rate 
not provided. 
88% included in 
analysis 
(missing 
excluded), girls 
excluded more 
likely to be non-
Hispanic black 
(1) 5 

Kelly, 2016 
Representativ
e (1) 

Same as 
exposed (1) 

Maternal report 
(0) Yes (1) 

Cohorts 
comparable, 
analytic 
controls not 
appropriate for 
birthweight (1) 

Mother 
report (0) 

Early 
menarche 
only (1) 

Not provided 
(0) 5 
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Lawn et al, 
2018 

Representativ
e (1) 

Same as 
exposed (1) 

Self-report and 
medical record 
(1) Yes (1) 

Cohorts 
comparable, 
appropriate 
controls (2) 

Self-report 
(0) Yes (1) 

No difference 
between those 
that were and 
were not lost to 
follow-up in 
early-life data 
(1) 8 

Kubo et al, 
2018 

Representativ
e (1) 

Same as 
exposed (1) 

Medical record 
(1) Yes (1) 

Cohorts 
comparable, 
appropriate 
controls (2) 

Medical 
record (1) Yes (1) 

N/A 
(retrospective 
cohort) (1) 9 

          
Case-Control Studies 

Article 

1. Is the case 
definition 
adequate? 

2. 
Representative
ness of the 
cases 

3. Selection of 
Controls 

4. Definition 
of Controls 

5. 
Comparability 
of cases and 
controls on 
the basis of 
the design or 
analysis 

6. 
Ascertain
ment of 
exposure 

7. Same 
method of 
ascertainme
nt for cases 
and 
controls 

8.Non-
Response rate 

Total score 
(Max 9) 

Moisan et al, 
1990 

Yes, self-
report (0) 

All girls with 
menarche in 
cohort (1) 

Nested from 
cohort (1) 

No reported 
menarche (1) 

Cases and 
controls are 
from same 
source 
population 
(nested). (1)  
Unclear if 
analyses were 
adjusted (0) 

Self-report 
(0) Yes (1) 

High response 
rate in both 
groups (1) 5 

Papadimitriou
, 2011 

Yes, self-
report (0) 

Potential for 
selection bias (0) 

Details not 
provided (0) 

Breast 
development 
after age 9 (1) 

Unclear if 
cases and 
controls are 
comparable 
based on 
design (0) 

Medical 
records (1) Unclear (0) 

Not provided 
(0) 2 
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Appendix C Additional background information for Chapter 3 

 

Appendix C.1. Early-life exposure constructs 

Primary Exposures of Interest 

Exposure of Interest Definition Scale 

Maternal pre-pregnancy 
BMI 

BMI of mother before pregnancy with LEGACY daughter, 
calculated from the maternal report of height and usual 
weight before pregnancy with LEGACY daughter. 

Continuous  
 
Categorical: 
<18.5, 18.5 to 
<25, 25 to 
<30, ≥30 

Maternal weight gain 
during pregnancy 

Amount of weight gained during pregnancy with LEGACY 
daughter as reported by mother at baseline 

Categorical:  
< 10 lbs, 10-
14 lbs, 15-19 
lbs, 20-29 lbs, 
30-39 lbs, 40-
49 lbs,  ≥50 
lbs 

Gestational weight gain 
adequacy per 2009 IOM 
guidelines 

Based on the maternal report of pre-pregnancy BMI and 
gestational weight gain, created categories based on 
modified 2009 IOM guidelines (based on collection of 
gestational weight gain in LEGACY) for singleton and 
multiple pregnancies (see Appendix C.2): 
 -Inadequate 
 -Adequate 
 -Excessive 

Categorical 

Recreational physical 
activity during 
pregnancy 

Recreational physical activity during pregnancy as reported 
by mother at baseline:  
-Inactive, no walking or other regular exercise 
-Mostly inactive, equivalent to walking about half a mile or 
less every day 
-Somewhat active, equivalent to walking about 1 mile 
every day 
-Active, equivalent to walking about 2 miles every day 
-Highly active, equivalent to walking about 3 or more miles 
every day 

Categorical 
 

Physical activity at 
home during pregnancy 

Physical activity level at home during pregnancy as 
reported by mother at baseline: 
-Mostly sitting 
-Active housework most of the time with little sitting 
-Heavy manual work at home 
 

Categorical 

Physical activity at work 
during pregnancy 

Physical activity level at work during pregnancy as 
reported by mother at baseline: 
-Not working 
-Mostly sitting and standing 
-Mostly walking with some sitting and standing 
-Mostly heavy labor with some walking and standing and 
little sitting 

Categorical 

Birth weight in kg Birth weight of the daughter as reported by mother at 
baseline. Birthweight was reported in grams or in lbs/oz 
and converted to kilograms. 

Continuous 
 
Categorical: 
<2.5kg, 2.5 to 
<3kg, 3 to 
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<3.5kg, 3.5 to 
<4kg, ≥4kg 

Birthlength in cm Birthlength of the daughter as reported by mother at 
baseline. Birthlength was reported in centimeters or inches 
and converted to centimeters. 

Continuous 
 
Categorical 
(quartiles) 

Additional Early-life Factors 

Gestational age in 
weeks 

Weeks or months that pregnancy lasted as reported by 
LEGACY mom at baseline.  
 
Pregnancy length reported in months was converted to 
weeks (Conversion to weeks = [length in months*4] + 4, 
i.e. 9 months = 40 weeks).  
 
For those that did not know the pregnancy length, some 
reported the number of days born before or after the due 
date. Gestational age in weeks was then calculated 
assuming that the due date corresponded to 40 weeks. 

Continuous 
 
Categorical: 
<37 weeks vs. 
≥37 weeks 

Birth order Birth order of the LEGACY daughter based on the number 
of reported prior pregnancies lasting at least 6 months and 
resulting in a live birth by LEGACY mom at baseline 

Continuous 
 
Categorical: 
First-born vs. 
not 

Multiple pregnancy  Singleton vs. multiple pregnancy, based on maternal report 
at baseline 

Dichotomous 

Gestational diabetes Diabetes or high blood sugar during pregnancy as reported 
by mother at baseline 

Dichotomous 

Gestational 
hypertension or 
toxemia/pre-eclampsia 

Hypertension or high blood pressure or toxemia or pre-
eclampsia during pregnancy as reported by mother at 
baseline 

Dichotomous 

Maternal age at birth Mom’s age in years at birth of LEGACY daughter Continuous 
 
Categorical: 
<30, 30-39, 
≥40 
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Appendix C.2. 2009 Institute of Medicine recommendations for total weight gain during pregnancy by pre-

pregnancy BMI and modified range used to define adequate gestational weight gain for LEGACY 

Pre-pregnancy 
BMI 

Singleton Gestation Multiple Gestation 

IOM 
recommended 

weight gain in lbs 

Range used to 
define adequate 
weight gain in lbs 

in LEGACY 

IOM 
recommended 

weight gain in lbs 

Range used to 
define adequate 
weight gain in lbs 

in LEGACY 

Underweight 
(<18.5 kg/m2) 28-40 30-39.9 

No 
recommendation 

Not included (set 
to missing, n=2) 

Normal weight 
(18.5-24.9 kg/m2) 25-35 20-39.9 37-54 >30 

Overweight  
(25.0-29.9 kg/m2) 15-25 15-29.9 31-50 30-49.9 

Obese 
(≥30 kg/m2) 11-20 10-19.9 25-42 20-39.9 
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Appendix C.3. Advantages and disadvantages of the methods for modeling breast development in 

LEGACY 

  Advantages Disadvantages 

Study subset   

Full cohort 

Increased precision 
 
No bias resulting from subgroup 
selection 
 
Can control for more confounding 
factors in larger sample size 

Measurement error on the 
outcome for girls that already 
reached puberty at baseline, 
which is related to age (Recalled 
age at pubertal events is older as 
girls are further from puberty) 
 
Cannot assess mediation by pre-
pubertal body size 

Subset with pre-pubertal 
BMI available 

Not selecting directly on age or 
outcome, which could result in bias 
 
Can examine mediation by pre-
pubertal BMI 

Measurement error on the 
outcome for girls for girls that 
already reached puberty at 
baseline, which is related to age 
(Recalled age at pubertal events 
is older as girls are further from 
puberty) 
 
Less precision than using full 
cohort 

Subset with prospective 
data based on age cut-off 
at baseline 

Limited bias due to recall of 
outcome since limiting to (mostly) 
prospective data 
 
Not selecting based on observed 
outcome (if selecting all girls 
reported to be pre-pubertal at 
baseline, those with early 
development would be more likely 
to be excluded which could induce 
bias) 
 
Can examine mediation by pre-
pubertal BMI 

Less precision 
 
Potential for selection bias if 
younger girls at baseline differ 
from full cohort in characteristics 
related to pubertal timing 
 
Able to control for fewer 
confounders due to small cell 
counts in subset 

Subset with clinical breast 
Tanner stage data 

Limited measurement error on the 
outcome as 1) clinical breast TS is 
considered the gold standard for 
assessing breast development and 
2) inter-rater reliability for clinical 
TS in LEGACY is very high 
 
Not selecting based on observed 
outcome 

Less precision 
 
Potential for selection bias if girls 
that are more developed are less 
likely to agree to participate in 
clinical TS measures  
 
May not be generalizable to other 
LEGACY sites 
 
Able to control for fewer 
confounders due to small cell 
counts in subset 

Modeling option  

Option 1: 
 - Girls with breast 
development at first visit 

No additional assumptions are 
made regarding pubertal timing 
 

Does not take advantage of 
collected data on age at breast 
development 



 

312 

 

are left censored at first 
visit age 
 - Girls with breast 
development during follow-
up are interval censored 
(age at last visit with no 
development, age at first 
visit with development) 
 - Girls without breast 
development at last visit 
are right censored at age 
of last report of no 
development 

The only option that is not a 
mixture of PDS and Tanner (since 
only PDS has recalled age) 

 
Must use parametric model with 
all types of censoring patterns 
 
Cannot accommodate left and 
interval censoring and left 
truncation 
 
Percentage of left censored girls 
differs between Tanner and PDS 
models (higher for PDS) 

Option 2: 
 - Recalled age at breast 
development is imputed as 
though it were observed 
for left censored girls 
 - Girls with breast 
development during follow-
up are interval censored 
(age at last visit with no 
development, age at first 
visit with development) 
 - Girls without breast 
development at last visit 
are right censored at age 
of last report of no 
development 

Use of recalled age allows for a 
more precise estimate of the age 
at breast development for left 
censored girls and takes 
advantage of this data 
 
Can be directly compared with 
Option 1 to determine the influence 
that use of recalled age has on the 
results 

 
Cannot accommodate left and 
interval censoring and left 
truncation 
 
Semi-parametric Cox model 
cannot accommodate interval 
censoring 
 
Percentage of left censored girls 
differs between Tanner and PDS 
models (higher for PDS) 
 
Could be bias from 
measurement error on the 
outcome by using recalled age 
for left censored girls (recalled 
age increases with time from 
development) 

Option 3: 
 - Recalled age at breast 
development is imputed as 
though it were observed 
for left censored girls 
 - Midpoint of interval is 
imputed as though it were 
observed for interval 
censored girls 
 - Girls without breast 
development at last visit 
are right censored at age 
of last report of no 
development 

Use of recalled age allows for a 
more precise estimate of the age 
at breast development for left 
censored girls and takes 
advantage of this data 
 
Since only using right censored 
data, can run both a parametric 
Weibull model or a semi-
parametric Cox proportional 
hazards model 
 
With a semi-parametric Cox 
model, can accommodate left 
truncation (i.e. allow everyone to 
be at risk starting at age 5) 

Could be bias from 
measurement error on the 
outcome by using recalled age 
for left censored girls (recalled 
age increases with time from 
development) 
 
Makes additional assumption 
about the timing of breast 
development for interval 
censored girls (which may not be 
appropriate over long intervals). 
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Option 4: 
 - Recalled age at breast 
development is imputed as 
though it were observed 
for left censored girls and 
interval censored girls 
 - Girls without breast 
development at last visit 
are right censored at age 
of last report of no 
development 

Not affected by the length of the 
interval for interval censored 
 
Schema is consistent for left 
censored and interval censored 
girls 
 
Since only using right censored 
data, can run both a parametric 
Weibull model or a semi-
parametric Cox proportional 
hazards model 
 
With a semi-parametric Cox 
model, can accommodate left 
truncation (i.e. allow everyone to 
be at risk starting at age 5) 

Could be bias from 
measurement error on the 
outcome by using recalled age 
for both left and interval 
censored girls (recalled age 
increases with time from 
development, so would expect 
this would matter more for left 
censored girls) 
 
Recalled age is based on PDS, 
so makes more sense to use this 
on a PDS model.  Tanner model 
may be more sensitive to bias 
from measurement error since it 
may use reports of recalled age 
at a later follow-up visit 
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Appendix C.4. Comparison and interpretation of the different methods for modeling breast development in 

LEGACY 

 

Comparison If Similar:  If Different: 

Full cohort vs. subset 
with pre-pubertal data 

Use of subset with pre-
pubertal data does not affect 
inference 

Possible selection bias in terms of who has 
pre-pubertal data 
 

Could be due to smaller amount of bias on 
outcome in subset with pre-pubertal data - 
look at difference in age distribution 

Full cohort vs. 
"prospective" subset 

Inclusion of older girls does 
not bias the effect estimate 
 
Confounding did not drive 
estimates for young cohort 

Likely due to use of retrospective data 
 

Possible selection bias in terms of who is 
in the prospective cohort  
 

Possible confounding in "prospective" 
cohort since can adjust for fewer variables 
with smaller sample size 

Full cohort vs. subset 
with clinical Tanner 

Measurement error of the 
outcome does not drive 
association 

Likely due to use of mother-reported data 
 

Possible selection bias in terms of who has 
clinical Tanner data  
 

Possible confounding in subset with clinical 
Tanner since can adjust for fewer variables 
with smaller sample size 

Modeling Option 1 vs. 
Modeling Option 2 

Use of recalled age for left 
censored girls does not affect 
inference - can use either 
model 

Could be due to measurement error of the 
outcome when using recalled data. Would 
expect a likely bias towards the null 
(heavier girls more likely to have early 
puberty and be left censored; since BMI 
likely on causal pathway, could bias 
towards null) 
 

Could compare these modeling options 
again in subset of girls that were not 
overweight and see if difference is smaller 
in this subgroup 

Modeling Option 2 vs. 
Modeling Option 3 

Use of midpoint for interval 
censored girls does not affect 
inference - can use either 
model 

Assumption that puberty occurred at 
midpoint of interval may not be valid - use 
Option 2 

Modeling Option 2/3 vs. 
Modeling Option 4 

Use of recalled age for 
interval censored girls does 
not affect inference - can use 
either model 

Likely due to measurement error in 
recalled age or possible wide interval - do 
sensitivity analyses to explore 

Option 1: Breast Tanner 
models vs Breast PDS 
models 

Exposure-outcome 
association is robust to use of 
PDS or Tanner 

Exposure may be associated with 
differential reporting of breast development 
based on method. 
 

Consider adjusting estimates for sensitivity 
and specificity of measure 

Option 3 or 4: 
Parametric Weibull 
model vs. semi-
parametric Cox model 

Assumption of Weibull 
distribution is reasonable 

Weibull distribution may not be a good fit 
for the data - consider other distributions 
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Appendix D Supplemental tables for Chapter 3 

 

Supplemental Table 3.1. Descriptive characteristics of the LEGACY Girls Study cohort by maternal 
pre-pregnancy body mass index 

  BMI <18.5 
(N=47) 

BMI 18.5-24.9 
(N=676) 

BMI 25-29.9 
(N=179) 

BMI ≥30 
(N=96) 

Early-life characteristics     

Maternal age at birth (Mean±SD) 30.8 ± 5.9 32.4 ± 5.2 32.4 ± 5.6 31.5 ± 6.0 

Maternal height, m (Mean±SD) 1.7 ± 0.1 1.6 ± 0.1 1.6 ± 0.1 1.6 ± 0.1 

Maternal pre-pregnancy weight, kg (Mean±SD) 49.9 ± 4.8 58.6 ± 5.9 72.8 ± 8.0 92.6 ± 14.5 

Gestational weight gain (n, %)     

<10 lbs 2 (4.3) 6 (0.9) 4 (2.2) 15 (15.6) 

10-14 lbs 3 (6.4) 19 (2.8) 14 (7.8) 5 (5.2) 

15-19 lbs 6 (12.8) 46 (6.8) 20 (11.2) 12 (12.5) 

20-29 lbs 10 (21.3) 221 (32.7) 53 (29.6) 26 (27.1) 

30-39 lbs 11 (23.4) 188 (27.8) 45 (25.1) 17 (17.7) 

40-49 lbs 7 (14.9) 101 (14.9) 24 (13.4) 10 (10.4) 

≥50 lbs 6 (12.8) 84 (12.4) 17 (9.5) 6 (6.3) 

Missing 2 (4.3) 11 (1.6) 2 (1.1) 5 (5.2) 

Gestational weight gain adequacy based on the 2009 
IOM guidelines (n, %) 

    

Inadequate (below guidelines) 20 (42.6) 79 (11.7) 20 (11.2) 13 (13.5) 

Adequate (within guidelines) 11 (23.4) 417 (61.7) 73 (40.8) 18 (18.8) 

Excessive (above guidelines) 12 (25.5) 164 (24.3) 83 (46.4) 58 (60.4) 

Missing 4 (8.5) 16 (2.4) 3 (1.7) 7 (7.3) 

Maternal recreational physical activity during 
pregnancy (N, %) 

    

Inactive, no walking or other regular exercise 4 (8.5) 70 (10.4) 27 (15.1) 25 (26.0) 

Mostly inactive, equivalent to walking about half  a mile 
or less every day 

10 (21.3) 131 (19.4) 56 (31.3) 27 (28.1) 

Somewhat active, equivalent to walking about 1 mile 
every day 

11 (23.4) 169 (25.0) 32 (17.9) 10 (10.4) 

Active, equivalent to walking about 2 miles every day 
18 (38.3) 255 (37.7) 62 (34.6) 33 (34.4) 

Highly active, equivalent to walking about 3 or more 
miles every day 

4 (8.5) 50 (7.4) 2 (1.1) 1 (1.0) 

Missing 0 (0.0) 1 (0.2) 0 (0.0) 0 (0.0) 

Maternal physical activity at home during pregnancy 
(N, %) 

    

Mostly sitting 4 (8.5) 129 (19.1) 39 (21.8) 28 (29.2) 

Mostly walking and standing, with some sitting 18 (38.3) 265 (39.2) 78 (43.6) 36 (37.5) 

Active housework most of the time with little sitting 24 (51.1) 275 (40.7) 62 (34.6) 30 (31.3) 

Heavy manual work at home 0 (0.0) 4 (0.6) 0 (0.0) 1 (1.0) 

Missing 1 (2.1) 3 (0.4) 0 (0.0) 1 (1.0) 
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Maternal physical activity at work during pregnancy 
(N, %) 

    

Not working 13 (27.7) 120 (17.8) 41 (22.9) 28 (29.2) 

Mostly sitting and standing 13 (27.7) 282 (41.7) 74 (41.3) 35 (36.5) 

Mostly walking with some sitting and standing 20 (42.6) 244 (36.1) 60 (33.5) 28 (29.2) 

Mostly heavy labor with some walking and standing and 
little sitting 

1 (2.1) 29 (4.3) 4 (2.2) 4 (4.2) 

Missing 0 (0.0) 1 (0.2) 0 (0.0) 1 (1.0) 

Maternal physical activity during pregnancy, 2nd 
trimester (N, %) 

    

Stayed the same 32 (68.1) 489 (72.3) 133 (74.3) 64 (66.7) 

Substantially increased 2 (4.3) 36 (5.3) 10 (5.6) 6 (6.3) 

Substantially decreased 13 (27.7) 151 (22.3) 36 (20.1) 26 (27.1) 

Gestational diabetes during pregnancy with 
LEGACY daughter (N, %) 

    

Yes 4 (8.5) 32 (4.7) 19 (10.6) 19 (19.8) 

No 42 (89.4) 636 (94.1) 158 (88.3) 74 (77.1) 

Missing 1 (2.1) 8 (1.2) 2 (1.1) 3 (3.1) 

Gestational hypertension, toxemia or pre-eclampsia 
during pregnancy with LEGACY daughter (N, %) 

    

Yes 2 (4.3) 30 (4.4) 20 (11.2) 20 (20.8) 

No 44 (93.6) 636 (94.1) 157 (87.7) 73 (76.0) 

Missing 1 (2.1) 10 (1.5) 2 (1.1) 3 (3.1) 

Type of gestation (N, %)     

Multiple 2 (4.3) 36 (5.3) 5 (2.8) 2 (2.1) 

Singleton 45 (95.7) 635 (93.9) 173 (96.7) 92 (95.8) 

Missing 0 (0.0) 5 (0.7) 1 (0.6) 2 (2.1) 

Birth order (Mean±SD) 1.5 ± 0.7 1.7 ± 0.9 1.9 ± 1.0 2.1 ± 1.2 

Birth order, dichotomized (N, %)     

First-born 29 (61.7) 324 (47.9) 78 (43.6) 30 (31.3) 

Not first-born 18 (38.3) 347 (51.3) 100 (55.9) 64 (66.7) 

Missing 0 (0.0) 5 (0.7) 1 (0.6) 2 (2.1) 

Gestational age in weeks (Mean±SD) 39.1 ± 1.9 39.0 ± 2.2 39.1 ± 2.0 39.0 ± 1.6 

Gestational age, categorized (N, %)     

<37 weeks 4 (8.5) 89 (13.2) 18 (10.1) 8 (8.3) 

≥37 weeks 43 (91.5) 585 (86.5) 161 (89.9) 87 (90.6) 

Missing 0 (0.0) 2 (0.3) 0 (0.0) 1 (1.0) 

Intrauterine smoke exposure (N, %)     

Yes 2 (4.3) 7 (1.0) 6 (3.4) 4 (4.2) 

No 45 (95.7) 669 (99.0) 173 (96.7) 92 (95.8) 

Missing 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 

Birthweight, g (Mean±SD) 
3173.4 ± 

624.8 
3264.3 ± 

584.3 
3368.7 ± 562.3 

3430.0 ± 
525.0 
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Birthweight, categorized (N, %)     

<2500g 3 (6.4) 59 (8.7) 11 (6.2) 4 (4.2) 

2500-2999g 9 (19.2) 130 (19.2) 23 (12.9) 14 (14.6) 

3000-3499g 24 (51.1) 252 (37.3) 66 (36.9) 36 (37.5) 

3500-3999g 8 (17.0) 182 (26.9) 56 (31.3) 26 (27.1) 

≥4000g 3 (6.4) 50 (7.4) 19 (10.6) 16 (16.7) 

Missing 0 (0.0) 3 (0.4) 4 (2.2) 0 (0.0) 

Birthlength, cm (Mean±SD) 50.3 ± 3.4 50.5 ± 3.7 50.5 ± 3.7 51.1 ± 2.9 

Birthlength categorized (N, %)     

<48.25 3 (6.4) 78 (11.5) 17 (9.5) 7 (7.3) 

48.25-50.74 18 (38.3) 174 (25.7) 53 (29.6) 27 (28.1) 

50.75-53.24 15 (31.9) 144 (21.3) 31 (17.3) 17 (17.7) 

≥53.25 7 (14.9) 199 (29.4) 55 (30.7) 32 (33.3) 

Missing 4 (8.5) 81 (12.0) 23 (12.9) 13 (13.5) 

Ponderal index at birth, kg/m3 (Mean±SD) 25.5 ± 3.8 25.6 ± 5.3 26.7 ± 8.5 25.6 ± 4.0 

Ponderal index at birth, categorized (N, %)     

<22.98 12 (25.5) 163 (24.1) 35 (19.6) 23 (24.0) 

22.98-25.21 10 (21.3) 147 (21.8) 40 (22.4) 15 (15.6) 

25.22-28.11 11 (23.4) 144 (21.3) 33 (18.4) 30 (31.3) 

≥28.12 10 (21.3) 141 (20.9) 48 (26.8) 15 (15.6) 

Missing 4 (8.5) 81 (12.0) 23 (12.9) 13 (13.5) 

Baseline characteristics     

Age at baseline (Mean±SD)a 10.2 ± 2.3 10.0 ± 2.4 9.9 ± 2.3 9.6 ± 2.5 

BMI-for-age percentile at baseline, (Mean±SD)a  38.0 ± 29.6 46.2 ± 29.0 60.5 ± 30.1 71.6 ± 29.2 

BMI-for-age percentile at baseline, categorized (N, 
%)a  

    

≥85th BMI-for-age percentile 3 (6.4) 75 (11.1) 48 (26.8) 43 (44.8) 

<85th BMI-for-age percentile 44 (93.6) 569 (84.2) 121 (67.6) 47 (49.0) 

Missing 0 (0.0) 32 (4.7) 10 (559.0) 6 (6.3) 

History of breast cancer in a first- or second-degree 
relative (N, %) 

    

BCFH+ 23 (48.9) 352 (52.1) 94 (52.5) 46 (47.9) 

BCFH- 24 (51.1) 324 (47.9) 85 (47.5) 50 (52.1) 

BOADICEA lifetime risk score (Mean±SD) 14.1 ± 4.5 14.7 ± 4.8 14.9 ± 4.9 13.5 ± 3.8 

Study site     

Philadelphia 5 (10.6) 112 (16.6) 18 (10.1) 15 (15.6) 

New York 8 (17.0) 117 (17.3) 33 (18.4) 15 (15.6) 

Utah 8 (17.0) 121 (17.9) 26 (14.5) 11 (11.5) 

Ontario 10 (21.3) 118 (17.5) 24 (13.4) 15 (15.6) 

Northern California 16 (34.0) 208 (30.8) 78 (43.6) 40 (41.7) 

Race/ethnicity     

Non-Hispanic white 24 (51.1) 466 (68.9) 92 (51.4) 45 (46.9) 

Non-Hispanic black 5 (10.6) 29 (4.3) 18 (10.1) 22 (22.9) 
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Hispanic 6 (12.8) 100 (14.8) 54 (30.2) 20 (20.8) 

Asian/Pacific Islander 9 (19.2) 67 (9.9) 8 (4.5) 4 (4.2) 

Other or mixed race/ethnicity 3 (6.4) 14 (2.1) 7 (3.9) 5 (5.2) 

Maternal education     

Some college, vocational or technical school or less 11 (23.4) 158 (23.4) 56 (31.3) 48 (50.0) 

Bachelor's degree 20 (42.6) 250 (37.0) 65 (36.3) 28 (29.2) 

Graduate degree 15 (31.9) 253 (37.4) 54 (30.2) 15 (15.6) 

Missing 1 (2.1) 15 (2.2) 4 (2.2) 5 (5.2) 

Paternal education     

Some college, vocational or technical school or less 18 (38.3) 189 (28.0) 66 (36.9) 53 (55.2) 

Bachelor's degree 14 (29.8) 205 (30.3) 49 (27.4) 20 (20.8) 

Graduate degree 13 (27.7) 255 (37.7) 48 (26.8) 10 (10.4) 

Missing 2 (4.3) 27 (4.0) 16 (8.9) 13 (13.5) 

Maternal age at menarche  (Mean±SD) 13.4 ± 1.6 12.9 ± 1.5 12.4 ± 1.5 11.7 ± 1.5 

Maternal age at menarche, categorized     

<12 years 5 (10.6) 98 (14.5) 48 (26.8) 41 (42.7) 

12-13 years 21 (44.7) 384 (56.8) 96 (53.6) 38 (39.6) 

≥14 years 21 (44.7) 183 (27.1) 26 (14.5) 12 (12.5) 

Missing 0 (0.0) 11 (1.6) 9 (5.0) 5 (5.2) 

aAge at pilot baseline visit for girls with pilot data (N=21) 
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Supplemental Table 3.2. Descriptive characteristics of the LEGACY Girls Study cohort by breast 
cancer family history 

  
BCFH+ 
(N=530) 

BCFH- 
(N=501) 

Early-life characteristics   

Maternal age at birth (Mean±SD) 32.8 ± 5.1 31.5 ± 5.7 

Maternal height, m (Mean±SD) 1.6 ± 0.1 1.6 ± 0.1 

Maternal pre-pregnancy weight, kg (Mean±SD) 64.3 ± 12.9 63.7 ± 13.7 

Maternal pre-pregnancy BMI (Mean±SD) 23.8 ± 4.8 23.7 ± 5.0 

Maternal pre-pregnancy BMI, categorized (N, %)   

 <18.5 23 (4.3) 24 (4.8) 

18.5 to <25 352 (66.4) 324 (64.7) 

25 to <30 94 (17.7) 85 (17.0) 

≥30 46 (8.7) 50 (10.0) 

Missing 15 (2.8) 18 (3.6) 

Gestational weight gain (n, %)   

<10 lbs 15 (2.8) 12 (2.4) 

10-14 lbs 24 (4.5) 18 (3.6) 

15-19 lbs 43 (8.1) 43 (8.6) 

20-29 lbs 174 (32.8) 142 (28.3) 

30-39 lbs 132 (24.9) 132 (26.4) 

40-49 lbs 68 (12.8) 77 (15.4) 

≥50 lbs 53 (10.0) 60 (12.0) 

Missing 21 (4.0) 17 (3.4) 

Gestational weight gain adequacy based on the 2009 IOM 
guidelines (n, %) 

  

Inadequate (below guidelines) 77 (14.5) 55 (11.0) 

Adequate (within guidelines) 265 (50.0) 254 (50.7) 

Excessive (above guidelines) 157 (29.6) 160 (31.9) 

Missing 31 (5.9) 32 (6.4) 

Maternal recreational physical activity during pregnancy (N, 
%) 

  

Inactive, no walking or other regular exercise 74 (14.0) 54 (10.8) 

Mostly inactive, equivalent to walking about half  a mile or less 
every day 

130 (24.5) 105 (21.0) 

Somewhat active, equivalent to walking about 1 mile every day 
105 (19.8) 117 (23.4) 

Active, equivalent to walking about 2 miles every day 188 (35.5) 191 (38.1) 

Highly active, equivalent to walking about 3 or more miles every 
day 

31 (5.9) 26 (5.2) 

Missing 2 (0.4) 8 (0.4) 

Maternal physical activity at home during pregnancy (N, %)   

Mostly sitting 98 (18.5) 111 (22.2) 

Mostly walking and standing, with some sitting 207 (39.1) 196 (39.1) 

Active housework most of the time with little sitting 219 (41.3) 181 (36.1) 
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Heavy manual work at home 2 (0.4) 3 (0.6) 

Missing 4 (0.8) 10 (2.0) 

Maternal physical activity at work during pregnancy (N, %)   

Not working 106 (20.0) 105 (21.0) 

Mostly sitting and standing 222 (41.9) 191 (38.1) 

Mostly walking with some sitting and standing 183 (34.5) 174 (34.7) 

Mostly heavy labor with some walking and standing and little 
sitting 

17 (3.2) 22 (4.4) 

Missing 2 (0.4) 9 (1.8) 

Maternal physical activity during pregnancy, 2nd trimester (N, 
%) 

  

Stayed the same 382 (72.1) 355 (70.9) 

Substantially increased 26 (4.9) 28 (5.6) 

Substantially decreased 120 (22.6) 111 (22.2) 

Missing 2 (0.4) 7 (1.4) 

Gestational diabetes during pregnancy with LEGACY 
daughter (N, %) 

  

Yes 43 (8.1) 35 (7.0) 

No 479 (90.4) 451 (90.0) 

Missing 8 (1.5) 15 (3.0) 

Gestational hypertension, toxemia or pre-eclampsia during 
pregnancy with LEGACY daughter (N, %) 

  

Yes 39 (7.4) 35 (7.0) 

No 483 (91.1) 449 (89.6) 

Missing 8 (1.5) 17 (3.4) 

Type of gestation (N, %)   

Multiple 19 (3.6) 26 (5.2) 

Singleton 506 (95.5) 464 (92.6) 

Missing 5 (0.9) 11 (2.2) 

Birth order (Mean±SD) 1.8 ± 0.9 1.8 ± 1.0 

Birth order, dichotomized (N, %)   

First-born 239 (45.1) 231 (46.1) 

Not first-born 286 (54.0) 259 (51.7) 

Missing 5 (0.9) 11 (2.2) 

Gestational age in weeks (Mean±SD) 39.0 ± 2.1 39.0 ± 2.2 

Gestational age, categorized (N, %)   

<37 weeks 62 (11.7) 58 (11.6) 

≥37 weeks 459 (86.6) 434 (86.6) 

Missing 9 (1.7) 9 (1.8) 

Intrauterine smoke exposure (N, %)   

Yes 13 (2.5) 6 (1.2) 

No 513 (96.8) 487 (97.2) 

Missing 4 (0.8) 8 (1.6) 

Birthweight, g (Mean±SD) 3302.3 ± 574.0 3294.0 ± 593.6 
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Birthweight, categorized (N, %)   

<2500g 44 (8.3) 34 (6.8) 

2500-2999g 86 (16.2) 93 (18.6) 

3000-3499g 196 (37.0) 192 (38.3) 

3500-3999g 154 (29.1) 125 (25.0) 

≥4000g 45 (8.5) 49 (9.8) 

Missing 5 (0.9) 8 (1.6) 

Birthlength, cm (Mean±SD) 50.4 ± 3.4 50.7 ± 3.8 

Birthlength categorized (N, %)   

<48.25 57 (10.8) 49 (9.8) 

48.25-50.74 150 (28.3) 127 (25.4) 

50.75-53.24 106 (20.0) 109 (21.8) 

≥53.25 149 (28.1) 151 (30.1) 

Missing 68 (12.8) 65 (13.0) 

Ponderal index at birth, kg/m3 (Mean±SD) 26.0 ± 6.1 25.6 ± 5.5 

Ponderal index at birth, categorized (N, %)   

<22.98 116 (21.9) 122 (24.4) 

22.98-25.21 121 (22.8) 96 (19.2) 

25.22-28.11 112 (21.1) 113 (22.6) 

≥28.12 113 (21.3) 105 (21.0) 

Missing 68 (12.8) 65 (13.0) 

Baseline characteristics   

Age at baseline (Mean±SD)a 10.1 ± 2.5 9.8 ± 2.3 

BMI-for-age percentile at baseline, (Mean±SD)a  52.1 ± 30.4 49.4 ± 30.5 

BMI-for-age percentile at baseline, categorized (N, %)a    

≥85th BMI-for-age percentile 91 (17.2) 83 (16.6) 

<85th BMI-for-age percentile 410 (77.4) 396 (79.0) 

Missing 29 (5.5) 22 (4.4) 

BOADICEA lifetime risk score (Mean±SD) 17.9 ± 4.7 11.1 ± 0.4 

Study site   

Philadelphia 90 (17.0) 63 (12.6) 

New York 80 (15.1) 95 (19.0) 

Utah 78 (14.7) 95 (19.0) 

Ontario 90 (17.0) 89 (17.8) 

Northern California 192 (36.2) 159 (31.7) 

Race/ethnicity   

Non-Hispanic white 352 (66.4) 298 (59.5) 

Non-Hispanic black 29 (5.5) 49 (9.8) 

Hispanic 100 (18.9) 84 (16.8) 

Asian/Pacific Islander 38 (7.2) 50 (10.0) 

Other or mixed race/ethnicity 11 (2.1) 20 (4.0) 

Maternal education   
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Some college, vocational or technical school or less 139 (26.2) 148 (29.5) 

Bachelor's degree 190 (35.9) 183 (36.5) 

Graduate degree 181 (34.2) 165 (32.9) 

Missing 20 (3.8) 5 (1.0) 

Paternal education   

Some college, vocational or technical school or less 168 (31.7) 171 (34.1) 

Bachelor's degree 164 (30.9) 134 (26.8) 

Graduate degree 166 (31.3) 167 (33.3) 

Missing 32 (6.0) 29 (5.8) 

Maternal age at menarche  (Mean±SD) 12.7 ± 1.6 12.7 ± 1.5 

Maternal age at menarche, categorized   

<12 years 96 (18.1) 104 (20.8) 

12-13 years 281 (53.0) 277 (55.3) 

≥14 years 135 (25.5) 112 (22.4) 

Missing 18 (3.4) 8 (1.6) 

aAge at pilot baseline visit for girls with pilot data (N=21) 
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Supplemental Table 3.3. Time ratios (TR), hazard ratios (HR) and 95% confidence intervals (CIs) for associations between maternal pre-
pregnancy BMI and GWG, categorized by the 2009 IOM guidelines, and the onset of breast development for the overall cohort and girls 
age <8 years at baseline 
 

 Overall cohort Girls <8 years at baseline 
  Unadjusted Adjusteda  Unadjusted Adjustedb 

  N TR (95% CI) 
HR (95% 

CI) 
TR (95% CI) 

HR (95% 
CI) 

N TR (95% CI) 
HR (95% 

CI) 
TR (95% CI) 

HR (95% 
CI) 

Gestational weight gain 
adequacy by the modified 
2009 IOM guidelines 

          

Below guidelines 132 0.994 
(0.961, 1.027) 

1.05 
(0.81, 1.36) 

1.003 
(0.969, 1.038) 

0.98 
(0.74, 1.29) 

27 1.021 
(0.933, 1.112) 

0.86 
(0.45, 1.65) 

1.031 
(0.949, 1.121) 

0.79 
(0.42, 1.48) 

Within guidelines 513 Reference Reference Reference Reference 130 Reference Reference Reference Reference 

Exceeding guidelines 313 0.968 
(0.946, 0.992) 

1.28 
(1.07, 1.54) 

0.981 
(0.958, 1.006) 

1.16 
(0.96, 1.41) 

80 0.956 
(0.907, 1.007) 

1.38 
(0.95, 2.02) 

0.969 
(0.914, 1.028) 

1.27 
(0.81, 1.98)            

Maternal pre-pregnancy 
BMI and GWG guidelines 

          

BMI<25 and did not exceed 
guidelines 

521 Reference Reference Reference Reference 122 Reference Reference Reference Reference 

BMI<25 and exceeded 
guidelines 

173 0.982 
(0.955, 1.009) 

1.15 
(0.93, 1.43) 

0.980 
(0.953, 1.007) 

1.18 
(0.94, 1.47) 

40 0.915 
(0.855, 0.979) 

1.92 
(1.18, 3.14) 

0.917 
(0.857, 0.980) 

1.92 
(1.17, 3.16) 

BMI≥25 and did not exceed 
guidelines 

124 0.977 
(0.930, 1.026) 

1.20 
(0.81, 1.77) 

0.989 
(0.942, 1.037) 

1.10 
(0.75, 1.61) 

35 0.906 
(0.846, 0.971) 

2.06 
(1.26, 3.35) 

0.935 
(0.870, 1.005) 

1.65 
(0.99, 2.78) 

BMI≥25 and exceeded 
guidelines 

140 0.942 
(0.913, 0.972) 

1.59 
(1.25, 2.03) 

0.957 
(0.928, 0.988) 

1.41 
(1.10, 1.82) 

40 0.949 
(0.887, 1.016) 

1.47 
(0.90, 2.40) 

0.957 
(0.889, 1.031) 

1.39 
(0.80, 2.41) 

aAdjusted for race (Non-Hispanic white Non-Hispanic black, Hispanic, Asian, Other) and maternal education (some college or less, Bachelor's degree, graduate degree). Model for 
GWG also adjusted for maternal pre-pregnancy BMI (continuous). 
bAdjusted for maternal education (some college or less, Bachelor's degree, graduate degree). Model for GWG also adjusted for maternal pre-pregnancy BMI (continuous). 
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Supplemental Table 3.4. Time ratios (TR), hazard ratios (HR) and 95% confidence intervals (CIs) for associations between maternal 
physical activity during pregnancy and the onset of breast development with adjustment for GWG for the overall cohort and girls age <8 
years at baseline 
 

 Overall cohorta Girls <8 yearsb 

  TR (95% CI) HR (95% CI) TR (95% CI) HR (95% CI) 

Recreational physical activity         

Inactive, no walking or other regular 
exercise 

0.977 
(0.941, 1.015) 

1.20 
(0.89, 1.63) 

0.933 
(0.873, 0.998) 

1.70 
(1.02, 2.83) 

Mostly inactive, equivalent to walking 
about half  a mile or less every day 

1.006 
(0.976, 1.038) 

0.95 
(0.74, 1.22) 

1.012 
(0.951, 1.077) 

0.91 
(0.56, 1.47) 

Somewhat active, equivalent to 
walking about 1 mile every day 

1.010 
(0.983, 1.038) 

0.93 
(0.75, 1.15) 

1.008 
(0.949, 1.071) 

0.94 
(0.59, 1.51) 

Active or highly active, equivalent to 
walking 2 miles or more every day 

Reference Reference Reference Reference 

     

Physical activity at home 
    

Mostly sitting 1.013 
(0.981, 1.046) 

0.90 
(0.70, 1.17) 

0.974 
(0.912, 1.041) 

1.22 
(0.74, 2.02) 

Mostly walking and standing, with 
some sitting 

Reference Reference Reference Reference 

Active housework most of the time 
with little sitting or heavy manual labor 

1.019 
(0.995, 1.044) 

0.86 
(0.70, 1.04) 

0.994 
(0.942, 1.048) 

1.05 
(0.70, 1.57)      

Physical activity at work 
    

Not working outside the home 1.033 
(1.003, 1.063) 

0.77 
(0.61, 0.98) 

1.089 
(1.021, 1.163) 

0.52 
(0.31, 0.86) 

Mostly sitting and standing Reference Reference Reference Reference 

Mostly walking or heavy labor 1.004 
(0.980, 1.028) 

0.97 
(0.80, 1.18) 

1.016 
(0.964, 1.070) 

0.89 
(0.59, 1.33) 

aAdjusted for race (Non-Hispanic white Non-Hispanic black, Hispanic, Asian, Other), maternal education (some college or less, Bachelor's degree, graduate degree), maternal pre-
pregnancy BMI (continuous) and gestational weight gain (<20lbs, 20-29 lbs, 30-39lbs, 40-49lbs, ≥50lbs). 
bAdjusted for maternal education (some college or less, Bachelor's degree, graduate degree), maternal pre-pregnancy BMI (continuous) and gestational weight gain (<20lbs, 20-29 lbs, 
30-39lbs, 40-49lbs, ≥50lbs). 
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Supplemental Table 3.5. Time ratios (TR), hazard ratios (HR) and 95% confidence intervals (CIs) for associations between size at birth 
and the onset of breast development for the overall cohort and girls age <8 years at baseline 
 

 Overall cohort Girls <8 years at baseline 

  Adjusted for weight and length 
onlya 

Multivariable-adjustedb  Adjusted for weight and 
length onlya 

Multivariable-adjustedc 

  N TR (95% CI) 
HR (95% 

CI) 
TR (95% CI) 

HR (95% 
CI) 

N TR (95% CI) 
HR (95% 

CI) 
TR (95% CI) 

HR (95% 
CI) 

Birthweight 
          

<2500g 62 1.003 
(0.955, 1.053) 

0.98 
(0.67, 1.43) 

0.989 
(0.937, 1.045) 

1.09 
(0.70, 1.70) 

17 1.057 
(0.925, 1.210) 

0.67 
(0.25, 1.77) 

1.054 
(0.904, 1.229) 

0.66 
(0.20, 2.21) 

2500-2999g 157 1.008 
(0.975, 1.041) 

0.94 
(0.73, 1.22) 

1.013 
(0.982, 1.046) 

0.90 
(0.69, 1.16) 

38 0.997 
(0.927, 1.073) 

1.02 
(0.60, 1.74) 

1.012 
(0.935, 1.100) 

0.91 
(0.49, 1.69) 

3000-3499g 345 Reference Reference Reference Reference 91 Reference Reference Reference Reference 

3500-3999g 247 1.012 
(0.988, 1.037) 

0.91 
(0.75, 1.10) 

1.010 
(0.986, 1.034) 

0.92 
(0.76, 1.12) 

57 1.006 
(0.940, 1.076) 

0.96 
(0.59, 1.56) 

0.993 
(0.932, 1.058) 

1.06 
(0.64, 1.74) 

≥4000g 79 0.981 
(0.938, 1.025) 

1.16 
(0.82, 1.64) 

0.997 
(0.953, 1.043) 

1.03 
(0.71, 1.48) 

22 0.967 
(0.876, 1.067) 

1.28 
(0.62, 2.61) 

0.981 
(0.882, 1.092) 

1.16 
(0.50, 2.70) 

           

Per 500g increase 890 0.996 
(0.984, 1.008) 

1.03 
(0.94, 1.13) 

1.000 
(0.987, 1.014) 

1.00 
(0.90, 1.12) 

225 0.988 
(0.958, 1.020) 

1.09 
(0.87, 1.37) 

0.987 
(0.950, 1.026) 

1.11 
(0.81, 1.50) 

           
Birthlength           

<48.25 104 1.012 
(0.973, 1.052) 

0.91 
(0.67, 1.24) 

1.011 
(0.970, 1.054) 

0.91 
(0.65, 1.28) 

28 1.085 
(0.980, 1.202) 

0.55 
(0.26, 1.16) 

1.051 
(0.951, 1.161) 

0.68 
(0.31, 1.47) 

48.25-50.74 276 Reference Reference Reference Reference 64 Reference Reference Reference Reference 
50.75-53.24 213 0.997 

(0.970, 1.025) 
1.03 

(0.83, 1.27) 
0.988 

(0.962, 1.015) 
1.10 

(0.88, 1.37) 
58 1.058 

(0.983, 1.138) 
0.67 

(0.39, 1.15) 
1.028 

(0.961, 1.101) 
0.81 

(0.47, 1.37) 

≥53.25 297 0.994 
(0.967, 1.022) 

1.05 
(0.85, 1.29) 

0.991 
(0.965, 1.017) 

1.08 
(0.88, 1.33) 

75 1.009 
(0.931, 1.094) 

0.93 
(0.52, 1.68) 

1.020 
(0.952, 1.093) 

0.86 
(0.50, 1.48) 

           
Per 1 cm increase 890 0.998 

(0.994, 1.002) 
1.02 

(0.99, 1.05) 
0.998 

(0.994, 1.002) 
1.02 

(0.99, 1.05) 
225 1.001 

(0.991, 1.009) 
1.00 

(0.93, 1.07) 
1.005 

(0.998, 1.013) 
0.96 

(0.91, 1.02) 
           

Ponderal index           

<22.98 234 1.002 
(0.974, 1.032) 

0.98 
(0.79, 1.23) 

0.994 
(0.967, 1.023) 

1.05 
(0.83, 1.32) 

56 1.015 
(0.946, 1.088) 

0.90 
(0.54, 1.49) 

1.009 
(0.943, 1.079) 

0.94 
(0.55, 1.59) 

22.98-25.21 216 Reference Reference Reference Reference 57 Reference Reference Reference Reference 

25.22-28.11 222 1.003 
(0.973, 1.033) 

0.98 
(0.78, 1.24) 

1.003 
(0.974, 1.034) 

0.97 
(0.76, 1.24) 

63 1.008 
(0.948, 1.072) 

0.94 
(0.60, 1.47) 

0.993 
(0.939, 1.062) 

1.05 
(0.62, 1.78) 

≥28.12 218 1.009 
(0.980, 1.038) 

0.93 
(0.75, 1.17) 

1.009 
(0.981, 1.038) 

0.93 
(0.74, 1.17) 

49 0.982 
(0.910, 1.059) 

1.14 
(0.66, 1.96) 

0.961 
(0.901, 1.026) 

1.36 
(0.82, 2.25)            

Per 1 kg/m3 increase 890 1.000 
(0.998, 1.003) 

1.00 
(0.98, 1.02) 

1.001 
(0.998, 1.003) 

0.99 
(0.98, 1.01) 

225 0.999 
(0.996, 1.002) 

1.01 
(0.99, 1.03) 

0.998 
(0.996, 1.000) 

1.02 
(1.00, 1.03) 

aMutually adjusted for birthweight and birthlength. Categorical model adjusted for other measure as continuous variable. 
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bAdjusted for race (Non-Hispanic white Non-Hispanic black, Hispanic, Asian, Other), maternal education (some college or less, Bachelor's degree, graduate degree), maternal pre-
pregnancy BMI (continuous), gestational weight gain (<20lbs, 20-29 lbs, 30-39lbs, 40-49lbs, ≥50lbs) and gestational age in weeks. 
cAdjusted for maternal education (some college or less, Bachelor's degree, graduate degree), maternal pre-pregnancy BMI (continuous), gestational weight gain (<20lbs, 20-29 lbs, 30-
39lbs, 40-49lbs, ≥50lbs) and gestational age in weeks. 
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Supplemental Table 3.6. Time ratios (TR), hazard ratios (HR) and 95% confidence intervals (CIs) for associations between birthweight 
and birthlength groups and the onset of breast development for the overall cohort and girls age <8 years at baseline 
 

 Overall cohort Girls <8 years at baseline 

  Adjusted for weight and length 
onlya 

Multivariable-adjustedb  Adjusted for weight and 
length onlya 

Multivariable-adjustedc 

  N TR (95% CI) 
HR (95% 

CI) 
TR (95% CI) 

HR (95% 
CI) 

N TR (95% CI) 
HR (95% 

CI) 
TR (95% CI) 

HR (95% 
CI) 

Birthweight & birthlength 
groups, defined by the 
median 

          

Long/light 164 0.973 
(0.933, 1.016) 

1.23 
(0.89, 1.71) 

0.976 
(0.939, 1.014) 

1.22 
(0.90, 1.66) 

42 0.990 
(0.883, 1.110) 

1.07 
(0.47, 2.44) 

1.015 
(0.926, 1.111) 

0.89 
(0.44, 1.81) 

Long/heavy 347 0.985 
(0.948, 1.023) 

1.13 
(0.84, 1.51) 

0.983 
(0.945, 1.018) 

1.15 
(0.87, 1.53) 

91 1.020 
(0.918, 1.134) 

0.87 
(0.41, 1.85) 

1.038 
(0.955, 1.128) 

0.75 
(0.40, 1.42) 

Short/light 278 0.992 
(0.951, 1.035) 

1.06 
(0.77, 1.47) 

0.989 
(0.951, 1.028) 

1.10 
(0.80, 1.51) 

70 1.007 
(0.903, 1.123) 

0.95 
(0.43, 2.09) 

1.024 
(0.934, 1.123) 

0.83 
(0.41, 1.68) 

Short/heavy 101 Reference Reference Reference Reference 22 Reference Reference Reference Reference 

aMutually adjusted for birthweight and birthlength. Categorical model adjusted for other measure as continuous variable. 
bAdjusted for race (Non-Hispanic white Non-Hispanic black, Hispanic, Asian, Other), maternal education (some college or less, Bachelor's degree, graduate degree), maternal pre-
pregnancy BMI (continuous), gestational weight gain (<20lbs, 20-29 lbs, 30-39lbs, 40-49lbs, ≥50lbs) and gestational age in weeks. 
cAdjusted for maternal education (some college or less, Bachelor's degree, graduate degree), maternal pre-pregnancy BMI (continuous), gestational weight gain (<20lbs, 20-29 lbs, 30-
39lbs, 40-49lbs, ≥50lbs) and gestational age in weeks. 
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Supplemental Table 3.7. Time ratios (TR), hazard ratios (HR) and 95% confidence intervals (CIs) for associations between maternal pre-
pregnancy BMI, recreational physical activity during pregnancy and GWG in girls with a BMI less than the 85th percentile for age 
 

 

Subset of cohort with pre-pubertal BMI measures, excluding girls 
with BMI-for-age percentile ≥85 

Girls <8 years at baseline, excluding girls with BMI-for-age 
percentile ≥85 

  Multivariable-adjusteda 
Additional adjustment for 

daughter’s body sizeb 
 Multivariable-adjustedc 

Additional adjustment for 
daughter’s body sized 

  N TR (95% CI) HR (95% CI) TR (95% CI) HR (95% CI) N TR (95% CI) HR (95% CI) TR (95% CI) 
HR (95% 

CI) 

Maternal pre-pregnancy 
BMI 

        
  

 <18.5 25 1.031 
(0.987, 1.077) 

0.77 
(0.53, 1.12) 

1.027 
(0.983, 1.072) 

0.80 
(0.55, 1.16) 

 
*Those with BMI<18.5 are in referent group due to small 

numbers 
18.5 to <25 346 Reference Reference Reference Reference 141 Reference Reference Reference Reference 

25 to <30 70 0.975 
(0.928, 1.024) 

1.25 
(0.81, 1.92) 

0.977 
(0.930, 1.026) 

1.22 
(0.79, 1.88) 

34 0.992 
(0.933, 1.055) 

1.07 
(0.64, 1.81) 

1.016 
(0.954, 1.083) 

0.87 
(0.50, 1.51) 

≥30 28 0.973 
(0.923, 1.026) 

1.27 
(0.81, 1.99) 

0.980 
(0.930, 1.032) 

1.19 
(0.76, 1.87) 

16 0.981 
(0.898, 1.071) 

1.18 
(0.56, 2.51) 

1.008 
(0.919, 1.017) 

0.93 
(0.41, 2.10)            

Continuous (per kg/m2) 469 0.996 
(0.992, 0.999) 

1.04 
(1.01, 1.07) 

0.996 
(0.993, 1.000) 

1.03 
(1.00, 1.07) 

191 0.997 
(0.991, 1.002) 

1.03 
(0.98, 1.08) 

0.999 
(0.993, 1.005) 

1.01 
(0.96, 1.06)            

Recreational physical 
activityb 

          

Inactive, no walking or other 
regular exercise 

50 0.975 
(0.925, 1.028) 

1.24 
(0.78, 1.98) 

0.971 
(0.921, 1.023) 

1.29 
(0.81, 2.06) 

22 0.952 
(0.892, 1.016) 

1.54 
(0.87, 2.71) 

0.938 
(0.883, 0.997) 

1.78 
(1.03, 3.08) 

Mostly inactive, equivalent 
to walking about half  a mile 
or less every day 

110 0.994 
(0.962, 1.028) 

1.05 
(0.78, 1.41) 

0.992 
(0.959, 1.026) 

1.07 
(0.80, 1.44) 

47 1.027 
(0.962, 1.100) 

0.79 
(0.45, 1.40) 

1.022 
(0.955, 1.093) 

0.82 
(0.45, 1.51) 

Somewhat active, 
equivalent to walking about 
1 mile every day 

109 1.018 
(0.984, 1.054) 

0.85 
(0.63, 1.16) 

1.014 
(0.978, 1.052) 

0.88 
(0.64, 1.21) 

44 1.019 
(0.957, 1.086) 

0.85 
(0.48, 1.47) 

1.012 
(0.951, 1.077) 

0.90 
(0.51, 1.58) 

Active or highly active, 
equivalent to walking 2 
miles or more every day 

200 Reference Reference Reference Reference 78 Reference Reference Reference Reference 

           

Gestational weight gainb 
          

<20lbs 71 0.987 
(0.944, 1.032) 

1.12 
(0.76, 1.66) 

0.988 
(0.944, 1.034) 

1.11 
(0.75, 1.65) 

26 0.944 
(0.868, 1.028) 

1.66 
(0.80, 3.48) 

0.948 
(0.873, 1.029) 

1.64 
(0.78, 3.42) 

20-29 lbs 137 Reference Reference Reference Reference 63 Reference Reference Reference Reference 

30-39 lbs 129 0.985 
(0.951, 1.021) 

1.14 
(0.83, 1.56) 

0.986 
(0.952, 1.022) 

1.13 
(0.83, 1.54) 

51 0.917 
(0.860, 0.977) 

2.17 
(1.25, 3.76) 

0.922 
(0.864, 0.984) 

2.10 
(1.18, 3.73) 

40-49 lbs 70 0.958 
(0.918, 1.000) 

1.45 
(1.00, 2.12) 

0.961 
(0.919, 1.005) 

1.42 
(0.96, 2.09) 

27 0.906 
(0.843, 0.975) 

2.40 
(1.25, 4.61) 

0.903 
(0.840, 0.971) 

2.54 
(1.29, 4.99) 

≥50 lbs 48 0.956 
(0.911, 1.004) 

1.48 
(0.96, 2.26) 

0.958 
(0.912, 1.007) 

1.45 
(0.94, 2.23) 

20 0.927 
(0.841, 1.023) 

1.96 
(0.82, 4.66) 

0.917 
(0.835, 1.007) 

2.21 
(0.94, 5.21)            



 

 

 

3
2
9

 

Maternal pre-pregnancy 
BMI and GWGa 

          

BMI<25 and <30 lbs 160 Reference Reference Reference Reference 61 Reference Reference Reference Reference 

BMI<25 and ≥30 lbs 201 0.979 
(0.949, 1.010) 

1.20 
(0.919, 1.57) 

0.980 
(0.949, 1.012) 

1.20 
(0.91, 1.58) 

77 0.910 
(0.853, 0.970) 

2.32 
(1.32, 4.07) 

0.912 
(0.856, 0.972) 

2.31 
(1.31, 4.10) 

BMI≥25 and <30lbs 48 0.974 
(0.916, 1.035) 

1.26 
(0.74, 2.15) 

0.975 
0.917, 1.037) 

1.25 
(0.73, 2.12) 

28 0.940 
(0.872, 1.013) 

1.73 
(0.91, 3.31) 

0.965 
(0.896, 1.040) 

1.38 
(0.70, 2.72) 

BMI≥25 and ≥30 lbs 46 0.947 
(0.898, 0.997) 

1.61 
(1.02, 2.54) 

0.953 
(0.905, 1.005) 

1.51 
(0.95, 2.39) 

21 0.932 
(0.840, 1.034) 

1.87 
(0.75, 4.70) 

0.963 
(0.863, 1.075) 

1.41 
(0.52, 3.83) 

aAdjusted for race (Non-Hispanic white Non-Hispanic black, Hispanic, Asian, Other) and maternal education (some college or less, Bachelor's degree, graduate degree). Model for 
GWG also adjusted for maternal pre-pregnancy BMI (continuous). 
bAdjusted for everything in a plus daughter’s BMI-for-age percentile between age 5-7 years and interaction between BMI-for-age percentile and centered age at BMI measure. 
cAdjusted for maternal education (some college or less, Bachelor's degree, graduate degree). Model for GWG also adjusted for maternal pre-pregnancy BMI (continuous). 
dAdjusted for everything in b plus daughter’s BMI-for-age percentile between age 5-7 years and interaction between BMI-for-age percentile and centered age at BMI measure 
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Supplemental Table 3.8. Sensitivity analyses for associations between maternal pre-pregnancy BMI and GWG and the onset of breast 
development for the overall cohort by modeling strategy using mother-reported Sexual Maturation Scale (SMS) 

  Mother SMS Model 1a Mother SMS Model 2b Mother SMS Model 3c 

  N TR (95% CI) HR (95% CI) TR (95% CI) HR (95% CI) TR (95% CI) HR (95% CI) 
Cox model:  

HR (95% CI)  

Maternal pre-pregnancy BMId 
        

 <18.5 46 1.055 
(1.011, 1.101) 

0.65 
(0.46, 0.92) 

1.037 
(0.999, 1.077) 

0.73 
(0.53, 1.02) 

1.039 
(1.001, 1.078) 

0.72 
(0.53, 0.99) 

0.74 
(0.54, 1.00) 

18.5 to <25 649 Reference Reference Reference Reference Reference Reference Reference 

25 to <30 174 0.993 
(0.956, 1.032) 

1.06 
(0.78, 1.44) 

0.986 
(0.955, 1.018) 

1.13 
(0.86, 1.49) 

0.986 
(0.955, 1.018) 

1.13 
(0.86, 1.48) 

1.16 
(0.92, 1.47) 

≥30 90 0.967 
(0.930, 1.006) 

1.30 
(0.95, 1.79) 

0.968 
(0.933, 1.003) 

1.33 
(0.97, 1.81) 

0.968 
(0.934, 1.003) 

1.32 
(0.97, 1.80) 

1.34 
(1.04, 1.74)          

Continuous (per kg/m2) 959 0.997 
(0.994, 0.999) 

1.03 
(1.01, 1.05) 

0.998 
(0.995, 1.000) 

1.02 
(1.00, 1.04) 

0.998 
(0.995, 1.000) 

1.02 
(1.00, 1.04) 

1.02 
(1.01, 1.04)          

Gestational weight gaine 
        

<20lbs 149 0.984 
(0.949, 1.021) 

1.14 
(0.85, 1.53) 

0.989 
(0.960, 1.018) 

1.10 
(0.86, 1.41) 

0.989 
(0.960, 1.018) 

1.10 
(0.86, 1.41) 

1.06 
(0.85, 1.32) 

20-29 lbs 301 Reference Reference Reference Reference Reference Reference Reference 

30-39 lbs 247 0.976 
(0.948, 1.006) 

1.21 
(0.96, 1.53) 

0.985 
(0.959, 1.012) 

1.14 
(0.90, 1.44) 

0.986 
(0.959, 1.012) 

1.13 
(0.90, 1.43) 

1.16 
(0.96, 1.40) 

40-49 lbs 138 0.975 
(0.942, 1.008) 

1.23 
(0.94, 1.61) 

0.987 
(0.956, 1.018) 

1.12 
(0.86, 1.47) 

0.987 
(0.957, 1.018) 

1.12 
(0.86, 1.46) 

1.11 
(0.88, 1.40) 

≥50 lbs 106 0.963 
(0.927, 1.000) 

1.36 
(1.00, 1.84) 

0.968 
(0.940, 0.996) 

1.33 
(1.03, 1.70) 

0.968 
(0.940, 0.997) 

1.32 
(1.03, 1.69) 

1.26 
(1.00, 1.58)          

Maternal pre-pregnancy BMI 
and GWGd 

        

BMI<25 and <30 lbs 306 Reference Reference Reference Reference Reference Reference Reference 

BMI<25 and ≥30 lbs 378 0.986 
(0.961, 1.011) 

1.12 
(0.92, 1.37) 

0.992 
(0.969, 1.015) 

1.07 
(0.88, 1.31) 

0.992 
(0.970, 1.015) 

1.07 
(0.88, 1.30) 

1.08 
(0.91, 1.28) 

BMI≥25 and <30lbs 144 0.988 
(0.945, 1.033) 

1.10 
(0.77, 1.57) 

0.988 
(0.953, 1.023) 

1.11 
(0.82, 1.51) 

0.988 
(0.954, 1.024) 

1.11 
(0.82, 1.50) 

1.15 
(0.88, 1.50) 

BMI≥25 and ≥30 lbs 113 0.946 
(0.911, 0.982) 

1.56 
(1.16, 2.10) 

0.950 
(0.918, 0.984) 

1.55 
(1.15, 2.09) 

0.951 
(0.919, 0.984) 

1.54 
(1.14, 2.07) 

1.57 
(1.21, 2.03) 

aGirls with maternal report of TS≥2 at first completed growth and development questionnaire were left-censored at age of questionnaire completion.  Girls that transitioned from TS1 to 
TS≥2 during follow-up were interval-censored with the start of the interval defined as the age at last questionnaire were mom reported TS1 and end of the interval defined as age at 
first questionnaire where mom reported  TS≥2. Girls without a maternal report of TS≥2 during follow-up were right censored at age of last questionnaire where mom reported TS1. This 
is the primary model used in the analyses and shown in Table 3.2.  It is included here for easy comparison across models. 
bRecalled age at breast development imputed as though observed for left-censored girls. Interval and right-censored girls are entered as in Model 1. 
cRecalled age at breast development imputed as though observed for left-censored girls and midpoint of interval imputed as though observed for interval-censored girls. Right-
censored girls are entered as in Model 1. 
dAdjusted for race (Non-Hispanic white Non-Hispanic black, Hispanic, Asian, Other) and maternal education (some college or less, Bachelor's degree, graduate degree). 
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eAdjusted for race (Non-Hispanic white Non-Hispanic black, Hispanic, Asian, Other), maternal education (some college or less, Bachelor's degree, graduate degree) and maternal pre-
pregnancy BMI (continuous). 
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Supplemental Table 3.9. Sensitivity analyses for associations between maternal pre-pregnancy BMI and GWG and the onset of breast 
development for the overall cohort by modeling strategy using mother-reported Pubertal Development Scale (PDS) 

 Mother PDS Model 1a Mother PDS Model 2b Mother PDS Model 3c Mother PDS Model 4d 

  
TR 

(95% CI) 
HR 

(95% CI) 
TR 

(95% CI) 
HR 

(95% CI) 
TR 

(95% CI) 
HR 

(95% CI) 

Cox model:  
HR 

(95% CI) 
TR 

(95% CI) 
HR 

(95% CI) 

Cox model:  
HR 

(95% CI) 

Maternal pre-
pregnancy BMId 

       
   

 <18.5 1.039 
(0.997,1.082) 

0.73 
(0.52,1.03) 

1.013 
(0.975,1.052) 

0.90 
(0.65,1.24) 

1.017 
(0.979,1.056) 

0.87 
(0.63,1.20) 

0.91 
(0.68,1.22) 

1.007 
(0.966,1.050) 

0.94 
(0.67,1.33) 

0.97 
(0.74,1.27) 

18.5 to <25 Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference 

25 to <30 0.989 
(0.959,1.021) 

1.09 
(0.84,1.41) 

0.986 
(0.957,1.016) 

1.12 
(0.88,1.44) 

0.986 
(0.958,1.016) 

1.12 
(0.88,1.44) 

1.16 
(0.95,1.42) 

0.986 
(0.957,1.016) 

1.12 
(0.88,1.44) 

1.15 
(0.96,1.37) 

≥30 0.981 
(0.940,1.023) 

1.17 
(0.83,1.66) 

0.976 
(0.938,1.016) 

1.23 
(0.88,1.72) 

0.977 
(0.940,1.017) 

1.21 
(0.87,1.68) 

1.25 
(0.98,1.62) 

0.974 
(0.935,1.014) 

1.24 
(0.89,1.74) 

1.26 
(1.00,1.58)         

   

Continuous (per kg/m2) 0.998 
(0.995,1.000) 

1.02 
(1.00,1.04) 

0.999 
(0.996,1.001) 

1.01 
(0.99,1.04) 

0.999 
(0.996,1.001) 

1.01 
(0.99,1.04) 

1.02 
(1.00,1.03) 

0.999 
(0.996,1.001) 

1.01 
(0.99,1.04) 

1.02 
(1.00,1.03)         

   

Gestational weight 
gaine 

       
   

<20lbs 0.975 
(0.940,1.012) 

1.23 
(0.91,1.66) 

0.989 
(0.961,1.018) 

1.10 
(0.86,1.40) 

0.989 
(0.961,1.017) 

1.10 
(0.87,1.40) 

1.05 
(0.86,1.29) 

0.990 
(0.962,1.019) 

1.09 
(0.86,1.38) 

1.04 
(0.87,1.25) 

20-29 lbs Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference 

30-39 lbs 0.975 
(0.949,1.002) 

1.23 
(0.99,1.54) 

0.989 
(0.962,1.017) 

1.10 
(0.87 1.39) 

0.990 
(0.962 1.017) 

1.09 
(0.86,1.38) 

1.11 
(0.93,1.33) 

0.994 
(0.967,1.023) 

1.05 
(0.83,1.32) 

1.06 
(0.90,1.24) 

40-49 lbs 0.961 
(0.929,0.994) 

1.39 
(1.06,1.84) 

0.983 
(0.952,1.014) 

1.16 
(0.89,1.51) 

0.982 
(0.952,1.013) 

1.17 
(0.90,1.52) 

1.15 
(0.93,1.41) 

0.984 
0.953,1.015) 

1.15 
(0.88,1.49) 

1.12 
(0.93,1.35) 

≥50 lbs 0.956 
(0.920,0.992) 

1.46 
(1.06,2.00) 

0.971 
(0.943,0.999) 

1.28 
(1.01,1.64) 

0.970 
(0.943,0.999) 

1.29 
(1.01,1.64) 

1.22 
(0.99,1.51) 

0.970 
(0.942,0.999) 

1.28 
(1.01,1.62) 

1.17 
(0.96,1.42)         

   

Maternal pre-
pregnancy BMI and 
GWGd 

       
   

BMI<25 and <30 lbs Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference 

BMI<25 and ≥30 lbs 0.982 
(0.958,1.007) 

1.16 
(0.95,1.43) 

0.994 
(0.970,1.017) 

1.06 
(0.86,1.29) 

0.994 
(0.971,1.018) 

1.05 
(0.86,1.28) 

1.06 
(0.91,1.25) 

0.996 
(0.972,1.020) 

1.04 
(0.85,1.27) 

1.04 
(0.90,1.20) 

BMI≥25 and <30lbs 0.994 
(0.957,1.032) 

1.05 
(0.77,1.43) 

0.994 
(0.962,1.027) 

1.05 
(0.80,1.38) 

0.995 
(0.964,1.028) 

1.04 
(0.79,1.37) 

1.10 
(0.88,1.37) 

0.993 
(0.960,1.027) 

1.06 
(0.81,1.39) 

1.10 
(0.90,1.35) 

BMI≥25 and ≥30 lbs 0.948 
(0.911,0.986) 

1.56 
(1.13,2.15) 

0.957 
(0.922,0.993) 

1.45 
(1.05,1.99) 

0.957 
(0.922, .993) 

1.45 
(1.06,1.98) 

1.49 
(1.16,1.90) 

0.960 
(0.924,0.997) 

1.40 
(1.02,1.91) 

1.38 
(1.11,1.73) 

aGirls with maternal report of PDS≥2 at first completed growth and development questionnaire were left-censored at age of questionnaire completion.  Girls that transitioned from PDS1 
to PDS≥2 during follow-up were interval-censored with the start of the interval defined as the age at last questionnaire were mom reported PDS1 and end of the interval defined as age 
at first questionnaire where mom reported  PDS≥2. Girls without a maternal report of PDS≥2 during follow-up were right censored at age of last questionnaire where mom reported 
PDS1. 
bRecalled age at breast development imputed as though observed for left-censored girls. Interval and right-censored girls are entered as in Model 1. 
cRecalled age at breast development imputed as though observed for left-censored girls and midpoint of interval imputed as though observed for interval-censored girls. Right-
censored girls are entered as in Model 1. 
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dRecalled age at breast development imputed as though observed for left-censored and interval-censored girls. Right-censored girls are entered as in Model 1. 
eAdjusted for race (Non-Hispanic white Non-Hispanic black, Hispanic, Asian, Other) and maternal education (some college or less, Bachelor's degree, graduate degree). 
fAdjusted for race (Non-Hispanic white Non-Hispanic black, Hispanic, Asian, Other), maternal education (some college or less, Bachelor's degree, graduate degree) and maternal pre-
pregnancy BMI (continuous). 
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Supplemental Table 3.10. Comparison of models using mother-reported Sexual Maturation Scale (SMS) vs. Pubertal Development Scale 
(PDS) for associations between maternal pre-pregnancy BMI and GWG and the onset of breast development in girls <8 years of age 
 

  Mother SMS Model 1a Mother PDS Model 1b 

  N TR (95% CI) HR (95% CI) TR (95% CI) HR (95% CI) 

Maternal pre-pregnancy BMIc 
     

<25 163 Reference Reference Reference Reference 

25 to <30 44 0.977 (0.921, 1.037) 1.19 (0.76, 1.86) 0.987 (0.934, 1.044) 1.11 (0.71, 1.72) 

≥30 29 0.927 (0.853, 1.008) 1.77 (0.96, 3.26) 0.944 (0.871, 1.022) 1.58 (0.84, 2.98) 
      

Continuous (per kg/m2) 236 0.995 (0.992, 0.999) 1.04 (1.01, 1.07) 0.996 (0.992, 1.000) 1.03 (1.00, 1.06) 
      

Gestational weight gaind 
     

<20lbs 34 0.938 (0.869, 1.013) 1.64 (0.91, 2.94) 0.960 (0.894, 1.031) 1.40 (0.78, 2.52) 

20-29 lbs 74 Reference Reference Reference Reference 

30-39 lbs 62 0.928 (0.872, 0.986) 1.78 (1.12, 2.86) 0.953 (0.899, 1.010) 1.49 (0.93, 2.40) 

40-49 lbs 32 0.919 (0.854, 0.988) 1.92 (1.08, 3.40) 0.918 (0.863, 0.976) 2.02 (1.22, 3.37) 

≥50 lbs 29 0.923 (0.844, 1.009) 1.85 (0.93, 3.67) 0.942 (0.872, 1.019) 1.63 (0.86, 3.10) 
      

Maternal pre-pregnancy BMI and 
GWGc 

     

BMI<25 and <30 lbs 67 Reference Reference Reference Reference 

BMI<25 and ≥30 lbs 93 0.907 (0.848, 0.970) 2.11 (1.28, 3.48) 0.929 (0.878, 0.983) 1.83 (1.15, 2.89) 

BMI≥25 and <30lbs 41 0.910 (0.839, 0.987) 2.05 (1.13, 3.72) 0.939 (0.875, 1.008) 1.67 (0.94, 2.95) 

BMI≥25 and ≥30 lbs 30 0.907 (0.826, 0.996) 2.11 (1.04, 4.28) 0.933 (0.856, 1.016) 1.77 (0.88, 3.54) 

aGirls with maternal report of TS≥2 at first completed growth and development questionnaire were left-censored at age of questionnaire completion.  Girls that transitioned from TS1 to 
TS≥2 during follow-up were interval-censored with the start of the interval defined as the age at last questionnaire were mom reported TS1 and end of the interval defined as age at 
first questionnaire where mom reported  TS≥2. Girls without a maternal report of TS≥2 during follow-up were right censored at age of last questionnaire where mom reported TS1. This 
is the primary model used in the analyses and shown in Table 3.2.  It is included here for easy comparison across models. 
bGirls with maternal report of PDS≥2 at first completed growth and development questionnaire were left-censored at age of questionnaire completion.  Girls that transitioned from PDS1 
to PDS≥2 during follow-up were interval-censored with the start of the interval defined as the age at last questionnaire were mom reported PDS1 and end of the interval defined as age 
at first questionnaire where mom reported  PDS≥2. Girls without a maternal report of PDS≥2 during follow-up were right censored at age of last questionnaire where mom reported 
PDS1. 
cAdjusted for maternal education (some college or less, Bachelor's degree, graduate degree). 
dAdjusted for maternal education (some college or less, Bachelor's degree, graduate degree) and maternal pre-pregnancy BMI (continuous). 
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Supplemental Table 3.11. Comparison of models using mother-reported Sexual Maturation Scale (SMS), mother-reported Pubertal 
Development Scale (PDS) and clinical Tanner scale for associations between maternal pre-pregnancy BMI and GWG and the onset of 
breast development in girls from New York and Utah sites with clinical Tanner assessment available 

  Mother SMS Model 1a Mother PDS Model 1b Clinical Tanner Model 1c 

  N TR (95% CI) HR (95% CI) TR (95% CI) HR (95% CI) TR (95% CI) HR (95% CI) 

Maternal pre-pregnancy BMId 
       

 <18.5 16 1.033 (0.968, 1.102) 0.78 (0.47, 1.29) 1.027 (0.967, 1.091) 0.80 (0.48, 1.33) 1.008 (0.943, 1.078) 0.93 (0.52, 1.68) 

18.5 to <25 209 Reference Reference Reference Reference Reference Reference 

25 to <30 52 0.958 (0.905, 1.014) 1.40 (0.89, 2.21) 1.000 (0.955, 1.047) 1.00 (0.68, 1.46) 0.972 (0.930, 1.016) 1.28 (0.87, 1.88) 

≥30 25 0.971 (0.900, 1.047) 1.26 (0.70, 2.28) 1.012 (0.942, 1.088) 0.90 (0.50, 1.65) 0.993 (0.933, 1.058) 1.06 (0.61, 1.84) 
        

Continuous (per kg/m2) 302 0.996 (0.991, 1.001) 1.03 (0.99, 1.07) 0.999 (0.994, 1.004) 1.01 (0.97, 1.05) 0.997 (0.993, 1.001) 1.03 (0.99, 1.07) 
        

Gestational weight gaine 
       

<20lbs 59 0.993 (0.946, 1.042) 1.06 (0.73, 1.55) 0.958 (0.913, 1.006) 1.43 (0.96, 2.12) 0.969 (0.926, 1.014) 1.32 (0.89, 1.96) 

20-29 lbs 100 Reference Reference Reference Reference Reference Reference 

30-39 lbs 67 0.995 (0.945, 1.048) 1.04 (0.70, 1.55) 0.980 (0.934, 1.027) 1.19 (0.80, 1.76) 0.999 (0.954, 1.045) 1.01 (0.68, 1.51) 

40-49 lbs 44 0.988 (0.936, 1.043) 1.10 (0.72, 1.68) 0.948 (0.902, 0.997) 1.56 (1.04, 2.33) 0.996 (0.953, 1.042) 1.03 (0.70, 1.53) 

≥50 lbs 29 0.965 (0.894, 1.041) 1.33 (0.73, 2.41) 0.988 (0.908, 1.075) 1.11 (0.54, 2.26) 0.969 (0.882, 1.064) 1.32 (0.58, 3.00) 
        

Maternal pre-pregnancy BMI 
and GWGd 

       

BMI<25 and <30 lbs 110 Reference Reference Reference Reference Reference Reference 

BMI<25 and ≥30 lbs 112 0.997 (0.958, 1.038) 1.02 (0.75, 1.40) 1.000 (0.964, 1.038) 1.00 (0.73, 1.36) 1.005 (0.962, 1.049) 0.96 (0.65, 1.40) 

BMI≥25 and <30 lbs 49 0.969 (0.911, 1.031) 1.28 (0.79, 2.08) 1.019 (0.963, 1.079) 0.85 (0.53, 1.36) 0.979 (0.928, 1.033) 1.20 (0.75, 1.92) 

BMI≥25 and ≥30 lbs 28 0.932 (0.861, 1.009) 1.73 (0.92, 3.25) 0.961 (0.888, 1.040) 1.39 (0.72, 2.71) 0.985 (0.932, 1.042) 1.14 (0.70, 1.85) 

aGirls with maternal report of TS≥2 at first completed growth and development questionnaire were left-censored at age of questionnaire completion.  Girls that transitioned from TS1 to 
TS≥2 during follow-up were interval-censored with the start of the interval defined as the age at last questionnaire were mom reported TS1 and end of the interval defined as age at 
first questionnaire where mom reported TS≥2. Girls without a maternal report of TS≥2 during follow-up were right censored at age of last questionnaire where mom reported TS1. This 
is the primary model used in the analyses. It is included here for comparison across this subset with clinical Tanner data. 
bGirls with maternal report of PDS≥2 at first completed growth and development questionnaire were left-censored at age of questionnaire completion.  Girls that transitioned from PDS1 
to PDS≥2 during follow-up were interval-censored with the start of the interval defined as the age at last questionnaire were mom reported PDS1 and end of the interval defined as age 
at first questionnaire where mom reported PDS≥2. Girls without a maternal report of PDS≥2 during follow-up were right censored at age of last questionnaire where mom reported 
PDS1. 
aGirls that were TS≥2 as assessed by a trained clinical rater at their first clinic visit with clinical Tanner staging available were left censored at age at visit. Girls that transitioned from 
TS1 to TS≥2 during follow-up were interval-censored with the start of the interval defined as the age at last clinic visit where TS1 as assessed by trained clinical rater and end of the 
interval defined as age at first clinic visit where TS≥2 as assessed by trained clinical rater. Girls without an assessment of TS≥2 by a trained clinical rater during follow-up were right 
censored at age at last visit where TS1 as assessed by trained clinical rater.  
dAdjusted for maternal education (some college or less, Bachelor's degree, graduate degree). 
eAdjusted for maternal education (some college or less, Bachelor's degree, graduate degree) and maternal pre-pregnancy BMI (continuous). 
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Appendix E Supplemental tables and figures for Chapter 4 

 

Supplemental Table 4.1. Adjusted time ratios (TR), hazard ratios (HR) and 95% confidence intervals (CIs) for associations between 
weight-for-age and length-for-age Z-scores at different ages across infancy and the onset of breast development  

 Model 1a - Weight only Model 2a - Length only Model 3b - Weight and Length 

  TR (95% CI) HR (95% CI) TR (95% CI) HR (95% CI) TR (95% CI) HR (95% CI) 

Weight-for-age Z-score, 0 months 0.968 (0.943, 0.994) 1.30 (1.04, 1.62)   0.973 (0.946, 1.001) 1.25 (0.99, 1.57) 

Weight-for-age Z-score, 2 months 0.981 (0.963, 0.999) 1.16 (1.01, 1.35) − − 0.999 (0.980, 1.019) 1.01 (0.86, 1.18) 

Weight-for-age Z-score, 4 months 0.976 (0.959, 0.994) 1.22 (1.05, 1.41) − − 0.992 (0.974, 1.010) 1.07 (0.92, 1.25) 

Weight-for-age Z-score, 6 months 0.976 (0.958, 0.994) 1.22 (1.05, 1.43) − − 0.986 (0.966, 1.006) 1.12 (0.95, 1.33) 

Weight-for-age Z-score, 9 months 0.971 (0.952, 0.989) 1.28 (1.09, 1.52) − − 0.983 (0.966, 1.001) 1.15 (0.99, 1.34) 

Weight-for-age Z-score, 12 months 0.972 (0.953, 0.992) 1.26 (1.07, 1.50) − − 0.983 (0.967, 0.999) 1.15 (1.01, 1.32) 

       
Length-for-age Z-score, 0 months   0.988 (0.945, 1.001) 1.10 (0.99, 1.22) 0.992 (0.981, 1.004) 1.06 (0.97, 1.17) 

Length-for-age Z-score, 2 months − − 0.979 (0.960, 0.999) 1.19 (1.01, 1.39) 0.980 (0.959, 1.000) 1.18 (1.00, 1.40) 

Length-for-age Z-score, 4 months − − 0.963 (0.945, 0.983) 1.36 (1.16, 1.59) 0.968 (0.948, 0.989) 1.31 (1.10, 1.55) 

Length-for-age Z-score, 6 months − − 0.972 (0.954, 0.991) 1.26 (1.07, 1.47) 0.979 (0.959, 1.000) 1.19 (1.00, 1.41) 

Length-for-age Z-score, 9 months − − 0.969 (0.953, 0.986) 1.30 (1.12, 1.51) 0.977 (0.960, 0.995) 1.21 (1.04, 1.41) 

Length-for-age Z-score, 12 months − − 0.975 (0.958, 0.993) 1.23 (1.06, 1.42) 0.983 (0.966, 1.000) 1.15 (1.00, 1.33) 

*Z-scores calculated using 2000 CDC growth charts as reference. Estimates for each age are from separate models. 
aEstimates adjusted for gestational age in weeks, maternal pre-pregnancy BMI and gestational weight gain (BMI<25 and GWG<30lbs, BMI<25 and GWG≥30 lbs, BMI≥25 
and GWG<30 lbs, BMI≥25 and GWG≥30), and race/ethnicity (Hispanic, Non-Hispanic Black or Mixed race/ethnicity, Non-Hispanic White, Asian) 
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Supplemental Table 4.2. Unadjusted time ratios (TR), hazard ratios (HR) and 95% confidence intervals (CIs) for associations between 
rates of weight and length gain during infancy and the onset of breast development in the LEGACY Girls Study 
 

 Model 1a - Weight only Model 2a - Length only Model 3a - Weight and Length 

  TR (95% CI) HR (95% CI) TR (95% CI) HR (95% CI) TR (95% CI) HR (95% CI) 

Change in weight Z-score, 
0-12 months 0.973 (0.952, 0.994) 1.32 (1.05, 1.65) − − 0.983 (0.966, 1.001) 1.14 (0.99, 1.31) 
Change in length Z-score, 
0-12 months − − 0.978 (0.959, 0.997) 1.19 (1.02, 1.38) 0.984 (0.966, 1.003) 1.13 (0.97, 1.31) 

       
Change in weight Z-score, 
0-6 months 0.979 (0.960, 0.998) 1.18 (1.02, 1.37) − − 0.985 (0.965, 1.006) 1.12 (0.95, 1.32) 
Change in weight Z-score, 
6-12 months 0.969 (0.940, 1.000) 1.27 (1.00, 1.63) − − 0.976 (0.948, 1.006) 1.21 (0.95, 1.53) 

       
Change in length Z-score, 
0-6 months − − 0.978 (0.958, 1.000) 1.18 (1.00, 1.39) 0.984 (0.962, 1.007) 1.13 (0.95, 1.34) 
Change in length Z-score, 
6-12 months − − 0.985 (0.960, 1.011) 1.12 (0.92, 1.37) 0.987 (0.961, 1.013) 1.11 (0.90, 1.36) 

       
Change in weight Z-score, 
0-2 months 0.991 (0.969, 1.014) 1.07 (0.90, 1.27) − − 1.005 (0.983, 1.027) 0.97 (0.82, 1.14) 
Change in weight Z-score, 
2-4 months 0.937 (0.899, 0.977) 1.66 (1.19, 2.32) − − 0.951 (0.911, 0.992) 1.49 (1.05, 2.10) 
Change in weight Z-score, 
4-6 months 0.988 (0.944, 1.035) 1.10 (0.76, 1.57) − − 0.982 (0.926, 1.042) 1.15 (0.72, 1.82) 
Change in weight Z-score, 
6-9 months 0.940 (0.902, 0.979) 1.66 (1.18, 2.32) − − 0.941 (0.902, 0.981) 1.65 (1.16, 2.35) 
Change in weight Z-score, 
9-12 months 0.998 (0.957, 1.041) 1.02 (0.73, 1.43) − − 0.995 (0.951, 1.042) 1.04 (0.72, 1.51) 

       
Change in length Z-score, 
0-2 months − − 0.986 (0.962, 1.011) 1.11 (0.93, 1.33) 0.985 (0.961, 1.009) 1.12 (0.94, 1.35) 
Change in length Z-score, 
2-4 months − − 0.949 (0.915, 0.984) 1.50 (1.14, 1.99) 0.960 (0.923, 0.998) 1.38 (1.02, 1.87) 
Change in length Z-score, 
4-6 months − − 1.011 (0.972, 1.051) 0.92 (0.68, 1.24) 1.015 (0.977, 1.055) 0.89 (0.66, 1.20) 
Change in length Z-score, 
6-9 months − − 0.974 (0.949, 1.000) 1.23 (1.00, 1.51) 0.985 (0.961, 1.009) 1.14 (0.93, 1.39) 
Change in length Z-score, 
9-12 months − − 0.999 (0.962, 1.037) 1.01 (0.76, 1.36) 1.014 (0.976, 1.053) 0.89 (0.65, 1.22) 

*Z-scores calculated using 2000 CDC growth charts as reference 

aEstimates adjusted for weight and length Z-scores at birth and change in previous intervals. 
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Supplemental Table 4.3. Adjusted time ratios (TR), hazard ratios (HR) and 95% confidence intervals (CIs) for associations between rates 
of weight and length gain during infancy and the onset of breast development in the LEGACY Girls Study using the 2006 WHO growth 
charts as the reference population. 
 

 Model 1a - Weight only Model 2a - Length only Model 3a - Weight and Length 

  TR (95% CI) HR (95% CI) TR (95% CI) HR (95% CI) TR (95% CI) HR (95% CI) 

Change in weight Z-score, 
0-12 months 0.974 (0.953, 0.996) 1.24 (1.03, 1.50) − − 0.984 (0.966, 1.002) 1.15 (0.98, 1.34) 
Change in length Z-score, 
0-12 months − − 0.983 (0.968, 0.999) 1.15 (1.01, 1.31) 0.988 (0.973, 1.003) 1.11 (0.97, 1.26) 

       
Change in weight Z-score, 
0-6 months 0.983 (0.964, 1.002) 1.15 (0.98, 1.35) − − 0.991 (0.972, 1.012) 1.08 (0.91, 1.28) 
Change in weight Z-score, 
6-12 months 0.967 (0.935, 1.000) 1.33 (1.00, 1.78) − − 0.972 (0.939, 1.006) 1.27 (0.95, 1.71) 

       
Change in length Z-score, 
0-6 months − − 0.980 (0.964, 0.996) 1.19 (1.03, 1.36) 0.983 (0.966, 1.000) 1.16 (1.00, 1.34) 
Change in length Z-score, 
6-12 months − − 0.991 (0.968, 1.014) 1.08 (0.89, 1.31) 0.993 (0.971, 1.015) 1.06 (0.88, 1.29) 

       
Change in weight Z-score, 
0-2 months 0.991 (0.971, 1.010) 1.08 (0.92, 1.27) − − 1.005 (0.986, 1.025) 0.96 (0.82, 1.12) 
Change in weight Z-score, 
2-4 months 0.946 (0.909, 0.985) 1.59 (1.13, 2.24) − − 0.959 (0.919, 0.999) 1.44 (1.00, 2.08) 
Change in weight Z-score, 
4-6 months 0.988 (0.933, 1.046) 1.11 (0.68, 1.80) − − 0.991 (0.934, 1.051) 1.08 (0.65, 1.80) 
Change in weight Z-score, 
6-9 months 0.937 (0.891 , 0.986) 1.77 (1.12, 2.78) − − 0.944 (0.896, 0.995) 1.68 (1.03, 2.73) 
Change in weight Z-score, 
9-12 months 1.008 (0.960, 1.059) 0.93 (0.61, 1.42) − − 0.987 (0.935, 1.042) 1.13 (0.69, 1.83) 

       
Change in length Z-score, 
0-2 months − − 0.991 (0.971, 1.067) 1.08 (0.92, 1.26) 0.989 (0.971, 1.008) 1.09 (0.94, 1.27) 
Change in length Z-score, 
2-4 months − − 0.955 (0.928, 0.984) 1.48 (1.14, 1.90) 0.961 (0.932, 0.991) 1.41 (1.08, 1.84) 
Change in length Z-score, 
4-6 months − − 1.010 (0.976, 1.045) 0.92 (0.69, 1.23) 1.013 (0.979, 1.048) 0.90 (0.67, 1.20) 
Change in length Z-score, 
6-9 months − − 0.976 (0.948, 1.004) 1.23 (0.96, 1.59) 0.985 (0.958, 1.013) 1.15 (0.89, 1.48) 
Change in length Z-score, 
9-12 months − − 1.002 (0.969, 1.036) 0.99 (0.74, 1.31) 1.015 (1.006, 1.025) 0.88 (0.64, 1.21) 

*Z-scores calculated using 2006 WHO growth charts as reference     
aEstimates adjusted for weight and length Z-scores at birth, change in previous intervals, gestational age in weeks, maternal pre-pregnancy BMI and gestational 
weight gain (BMI<25 and GWG<30lbs, BMI<25 and GWG≥30 lbs, BMI≥25 and GWG<30 lbs, BMI≥25 and GWG≥30), and race/ethnicity (Hispanic, Non-Hispanic 
Black or Mixed race/ethnicity, Non-Hispanic White, Asian) 
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Supplemental Table 4.4. Adjusted time ratios (TR), hazard ratios (HR) and 95% confidence intervals (CIs) for associations between 
weight-for-length Z-scores and change in weight-for-length Z-scores during infancy and the onset of breast development 

  TR (95% CI) HR (95% CI) 

Size modelsa   

Weight-for-length Z-score, 0 months 0.994 (0.983, 1.004) 1.05 (0.97, 1.15) 

Weight-for-length Z-score, 2 months 1.002 (0.995, 1.010) 0.98 (0.93, 1.04) 

Weight-for-length Z-score, 4 months 1.001 (0.993, 1.008) 1.00 (0.94, 1.05) 

Weight-for-length Z-score, 6 months 0.998 (0.988, 1.008) 1.02 (0.94, 1.10) 

Weight-for-length Z-score, 9 months 0.997 (0.988, 1.006) 1.02 (0.95, 1.10) 

Weight-for-length Z-score, 12 months 0.994 (0.985, 1.004) 1.05 (0.97, 1.13) 

   

Growth modelsb   

Change in weight-for-length Z-score, 0-12 months 1.003 (0.983, 1.023) 0.98 (0.83, 1.15) 

   

Change in weight-for-length Z-score, 0-6 months 1.004 (0.985, 1.023) 0.97 (0.83, 1.13) 

Change in weight-for-length Z-score, 6-12 months 1.002 (0.977, 1.027) 0.99 (0.81, 1.20) 

   

Change in weight-for-length Z-score, 0-2 months 1.014 (0.998, 1.031) 0.89 (0.78, 1.02) 

Change in weight-for-length Z-score, 2-4 months 0.999 (0.971, 1.027) 1.01 (0.81, 1.27) 

Change in weight-for-length Z-score, 4-6 months 0.987 (0.954, 1.020) 1.11 (0.85, 1.46) 

Change in weight-for-length Z-score, 6-9 months 0.998 (0.973, 1.024) 1.02 (0.82, 1.25) 

Change in weight-for-length Z-score, 9-12 months 1.002 (0.968, 1.038) 0.98 (0.74, 1.30) 

*Z-scores calculated using 2000 CDC growth charts as reference  
aEstimates adjusted for gestational age in weeks, maternal pre-pregnancy BMI and gestational weight gain  (BMI<25 and 
GWG<30lbs, BMI<25 and GWG≥30 lbs, BMI≥25 and GWG<30 lbs, BMI≥25 and GWG≥30), and race/ethnicity (Hispanic, 
Non-Hispanic Black or Mixed race/ethnicity, Non-Hispanic White, Asian) 
bEstimates adjusted for weight-for-age Z-score at birth, length-for-age Z-score at birth, change in weight-for-length Z-scores 
in previous intervals, gestational age in weeks, maternal pre-pregnancy BMI and gestational weight gain 
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Supplemental Table 4.5. Sensitivity analyses for the associations between rates of weight and length gain during infancy and the onset 
of breast development excluding infants at increased risk of rapid infant growth 

 Excluding preterma Excluding birthweight<2500gb Excluding multiplesc 

  TR (95% CI) HR (95% CI) TR (95% CI) HR (95% CI) TR (95% CI) HR (95% CI) 

Change in weight Z-score, 
0-12 months 0.985 (0.968, 1.002) 1.14 (0.98, 1.32) 0.986 (0.969, 1.002) 1.13 (0.98, 1.30) 0.985 (0.969, 1.002) 1.13 (0.98, 1.31) 
Change in length Z-score, 
0-12 months 0.992 (0.974, 1.009) 1.07 (0.93, 1.25) 0.989 (0.971, 1.008) 1.09 (0.94, 1.28) 0.989 (0.971, 1.007) 1.10 (0.94, 1.28) 

       
Change in weight Z-score, 
0-6 months 0.994 (0.974, 1.014) 1.05 (0.89, 1.25) 0.994 (0.975, 1.014) 1.05 (0.89, 1.24) 0.990 (0.971, 1.010) 1.09 (0.92, 1.28) 
Change in weight Z-score, 
6-12 months 0.977 (0.949, 1.007) 1.21 (0.94, 1.57) 0.978 (0.951, 1.006) 1.21 (0.94, 1.55) 0.978 (0.950, 1.008) 1.21 (0.94, 1.55) 

       
Change in length Z-score, 
0-6 months 0.978 (0.959, 0.998) 1.20 (1.02, 1.42) 0.977 (0.957, 0.997) 1.22 (1.03, 1.44) 0.981 (0.961, 1.001) 1.18 (1.00, 1.39) 
Change in length Z-score, 
6-12 months 1.001 (0.975, 1.028) 0.99 (0.76, 1.24) 1.001 (0.974, 1.028) 1.00 (0.79, 1.26) 0.995 (0.969, 1.023) 1.04 (0.83, 1.31) 

       
Change in weight Z-score, 
0-2 months 1.000 (0.980, 1.021) 1.00 (0.84, 1.18) 1.000 (0.980, 1.020) 1.00 (0.85, 1.18) 1.003 (0.983, 1.024) 0.98 (0.83, 1.35) 
Change in weight Z-score, 
2-4 months 0.968 (0.929, 1.008) 1.32 (0.93, 1.44) 0.969 (0.931, 1.009) 1.31 (0.92, 1.44) 0.961 (0.925, 0.999) 1.40 (1.00, 1.97) 
Change in weight Z-score, 
4-6 months 1.008 (0.954, 1.064) 0.94 (0.59, 1.49) 1.004 (0.952, 1.059) 0.97 (0.61, 1.53) 0.991 (0.939, 1.045) 1.09 (0.68, 1.72) 
Change in weight Z-score, 
6-9 months 0.948 (0.903, 0.994) 1.62 (1.03, 2.52) 0.951 (0.909, 0.996) 1.57 (1.03, 2.39) 0.945 (0.902, 0.990) 1.66 (1.08, 2.56) 
Change in weight Z-score, 
9-12 months 1.002 (0.955, 1.050) 0.99 (0.64, 1.51) 1.001 (0.956, 1.047) 0.99 (0.66, 1.50) 1.007 (0.962, 1.054) 0.94 (0.63, 1.42) 

       
Change in length Z-score, 
0-2 months 0.983 (0.961, 1.005) 1.15 (0.96, 1.38) 0.985 (0.963, 1.007) 1.14 (0.95, 1.36) 0.986 (0.964, 1.009) 1.12 (0.94, 1.35) 
Change in length Z-score, 
2-4 months 0.951 (0.917, 0.986) 1.54 (1.13, 2.10) 0.948 (0.915, 0.982) 1.58 (1.16, 2.19) 0.953 (0.919, 0.988) 1.51 (1.10, 2.07) 
Change in length Z-score, 
4-6 months 1.018 (0.980, 1.058) 0.86 (0.61, 1.19) 1.012 (0.974, 1.051) 0.90 (0.65, 1.26) 1.014 (0.975, 1.054) 0.89 (0.63, 1.25) 
Change in length Z-score, 
6-9 months 0.985 (0.953, 1.018) 1.15 (0.85, 1.54) 0.982 (0.951, 1.014) 1.18 (0.88, 1.57) 0.983 (0.953, 1.014) 1.17 (0.88, 1.55) 
Change in length Z-score, 
9-12 months 1.039 (0.996, 1.083) 0.71 (0.48, 1.04) 1.035 (0.996, 1.076) 0.73 (0.51, 1.05) 1.027 (0.987, 1.068) 0.79 (0.55, 1.13) 

*Z-scores calculated using 2000 CDC growth charts as reference 
aN=21 preterm girls excluded. Estimates adjusted for weight and length Z-scores at birth, change in weight and length in previous intervals, gestational age in 
weeks, maternal pre-pregnancy BMI and gestational weight gain (BMI<25 and GWG<30lbs, BMI<25 and GWG≥30 lbs, BMI≥25 and GWG<30 lbs, BMI≥25 and 
GWG≥30), and race/ethnicity (Hispanic, Non-Hispanic Black or Mixed race/ethnicity, Non-Hispanic White, Asian). 
bN=13 girls with birthweight <2500g excluded. Estimates are adjusted as described in a 
cN=13 girls from multiple gestations excluded. Estimates are adjusted as described in a 
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Supplemental Table 4.6. Adjusted time ratios (TR), hazard ratios (HR) and 95% confidence intervals (CIs) for associations between rates 
of weight and length gain during  infancy and the onset of breast development in girls with a BMI at baseline less than the 85th 
percentile for age 

 Model 1a - Weight only Model 2a - Length only Model 3a - Weight and Length 

  TR (95% CI) HR (95% CI) TR (95% CI) HR (95% CI) TR (95% CI) HR (95% CI) 

Change in weight Z-score, 
0-12 months 0.977 (0.956, 0.997) 1.23 (1.02, 1.49) − − 0.991 (0.964, 1.019) 1.08 (0.85, 1.38) 
Change in length Z-score, 
0-12 months − − 0.978 (0.961, 0.996) 1.21 (1.03, 1.42) 0.983 (0.961, 1.006) 1.16 (0.95, 1.42) 

       
Change in weight Z-score, 
0-6 months 0.979 (0.958, 1.000) 1.20 (0.99, 1.45) − − 0.988 (0.960, 1.016) 1.11 (0.87, 1.43) 
Change in weight Z-score, 
6-12 months 0.976 (0.947, 1.005) 1.24 (0.95, 1.62) − − 0.989 (0.955, 1.024) 1.10 (0.81, 1.50) 

       
Change in length Z-score, 
0-6 months − − 0.978 (0.960, 0.997) 1.21 (1.03, 1.43) 0.983 (0.961, 1.006) 1.16 (0.95, 1.41) 
Change in length Z-score, 
6-12 months − − 0.985 (0.957, 1.014) 1.14 (0.88, 1.47) 0.987 (0.957, 1.017) 1.12 (0.86, 1.47) 

       
Change in weight Z-score, 
0-2 months 0.984 (0.961, 1.008) 1.14 (0.93, 1.40) − − 1.005 (0.978, 1.033) 0.96 (0.76, 1.22) 
Change in weight Z-score, 
2-4 months 0.961 (0.923, 1.000) 1.41 (0.99, 1.99) − − 0.978 (0.938, 1.020) 1.22 (0.84, 1.78) 
Change in weight Z-score, 
4-6 months 0.978 (0.922, 1.038) 1.21 (0.72, 2.03) − − 0.983 (0.927, 1.042) 1.17 (0.69, 1.60) 
Change in weight Z-score, 
6-9 months 0.934 (0.890, 0.981) 1.84 (1.18, 2.88) − − 0.971 (0.924, 1.020) 1.33 (0.82, 2.15) 
Change in weight Z-score, 
9-12 months 1.017 (0.973, 1.063) 0.86 (0.58, 1.28) − − 1.012 (0.960, 1.068) 0.89 (0.54, 1.48) 

       
Change in length Z-score, 
0-2 months − − 0.985 (0.961, 1.009) 1.14 (0.93, 1.40) 0.983 (0.958, 1.009) 1.16 (0.93, 1.44) 
Change in length Z-score, 
2-4 months − − 0.949 (0.916, 0.983) 1.59 (1.16, 2.18) 0.951 (0.916, 0.987) 1.57 (1.12, 2.21) 
Change in length Z-score, 
4-6 months − − 1.029 (0.989, 1.071) 0.77 (0.54, 1.11) 1.032 (0.993, 1.074) 0.75 (0.52, 1.08) 
Change in length Z-score, 
6-9 months − − 0.947 (0.924, 0.970) 1.68 (1.31, 2.15) 0.952 (0.926, 0.979) 1.59 (1.21, 2.10) 
Change in length Z-score, 
9-12 months − − 1.010 (0.973, 1.048) 0.92 (0.65, 1.30) 1.015 (0.978, 1.054) 0.86 (0.60, 1.24) 

*Z-scores calculated using 2000 CDC growth charts as reference. N=177 girls with a BMI-for-age percentile <85th at baseline. 
aEstimates adjusted for weight and length Z-scores at birth, change in previous intervals, gestational age in weeks, maternal pre-pregnancy BMI and gestational 
weight gain  (BMI<25 and GWG<30lbs, BMI<25 and GWG≥30 lbs, BMI≥25 and GWG<30 lbs, BMI≥25 and GWG≥30), and race/ethnicity (Hispanic, Non-Hispanic 
Black or Mixed race/ethnicity, Non-Hispanic White, Asian) 
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Supplemental Table 4.7. Time ratios (TR), hazard ratios (HR) and 95% confidence intervals (CIs) for associations between rates of weight 
and length gain during infancy and the onset of breast development with adjustment for daughter’s pre-pubertal body size 

 Subset with BMI between 5-7a With adjustment for BMIb 

  TR (95% CI) HR (95% CI) TR (95% CI) HR (95% CI) 

Change in weight Z-score, 0-12 months 0.984 (0.970, 0.997) 1.15 (1.02, 1.29) 0.986 (0.971, 1.001) 1.12 (0.99, 1.28) 

Change in length Z-score, 0-12 months 0.980 (0.963, 0.998) 1.18 (1.01, 1.37) 0.981 (0.962, 1.000) 1.17 (1.00, 1.37) 

     

Change in weight Z-score, 0-6 months 0.982 (0.963, 1.002) 1.16 (0.98, 1.38) 0.987 (0.968, 1.008) 1.11 (0.94, 1.32) 

Change in weight Z-score, 6-12 months 0.989 (0.961, 1.018) 1.14 (0.97, 1.35) 0.988 (0.958, 1.019) 1.10 (0.85, 1.43) 

     

Change in length Z-score, 0-6 months 0.977 (0.955, 1.000) 1.21 (1.00, 1.47) 0.975 (0.953, 0.999) 1.23 (1.01, 1.49) 

Change in length Z-score, 6-12 months 0.987 (0.959, 1.016) 1.12 (0.88, 1.42) 0.988 (0.960, 1.018) 1.10 (0.86, 1.41) 

     

Change in weight Z-score, 0-2 months 0.992 (0.972, 1.013) 1.06 (0.90, 1.26) 1.000 (0.975, 1.025) 1.00 (0.82, 1.23) 

Change in weight Z-score, 2-4 months 0.964 (0.925, 1.005) 1.36 (0.96, 1.94) 0.966 (0.928, 1.007) 1.33 (0.94, 1.90) 

Change in weight Z-score, 4-6 months 0.973 (0.915, 1.033) 1.27 (0.75, 2.13) 0.975 (0.917, 1.036) 1.24 (0.73, 2.09) 

Change in weight Z-score, 6-9 months 0.965 (0.915, 1.017) 1.37 (0.86, 2.19) 0.957 (0.906, 1.012) 1.46 (0.89, 2.39) 

Change in weight Z-score, 9-12 months 1.005 (0.958, 1.054) 0.96 (0.63, 1.45) 1.007 (0.955, 1.061) 0.94 (0.60, 1.48) 

     

Change in length Z-score, 0-2 months 0.981 (0.959, 1.005) 1.17 (0.96, 1.41) 0.979 (0.955, 1.003) 1.19 (0.98, 1.45) 

Change in length Z-score, 2-4 months 0.962 (0.923, 1.002) 1.39 (0.98, 1.97) 0.961 (0.921, 1.002) 1.40 (0.98, 2.01) 

Change in length Z-score, 4-6 months 1.003 (0.957, 1.052) 0.97 (0.65, 1.45) 1.007 (0.962, 1.055) 0.94 (0.64, 1.39) 

Change in length Z-score, 6-9 months 0.983 (0.944, 1.024) 1.16 (0.81, 1.65) 0.988 (0.949, 1.029) 1.11 (0.78, 1.58) 

Change in length Z-score, 9-12 months 1.007 (0.959, 1.057) 0.94 (0.62, 1.44) 1.014 (0.965, 1.065) 0.89 (0.58, 1.36) 

*Z-scores calculated using 2000 CDC growth charts as reference. N=185 girls with pre-pubertal BMI data 
aEstimates adjusted for weight and length Z-scores at birth, change in weight and length in previous intervals, gestational age in weeks, 
maternal pre-pregnancy BMI and gestational weight gain (BMI<25 and GWG<30lbs, BMI<25 and GWG≥30 lbs, BMI≥25 and GWG<30 lbs, 
BMI≥25 and GWG≥30), and race/ethnicity (Hispanic, Non-Hispanic Black or Mixed race/ethnicity, Non-Hispanic White, Asian) 
bEstimates adjusted as described in a with additional adjustment for BMI-for-age percentile and interaction between BMI-for-age percentile 
and centered age at BMI measurement. 
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Supplemental Table 4.8. Adjusted time ratios (TR), hazard ratios (HR) and 95% confidence intervals (CIs) for associations between rates 
of weight and length gain during infancy and the onset of breast development using inverse probability weighting to adjust for subset 
selection bias 

 IPW Model 1a IPW Model 2b 

  TR (95% CI) HR (95% CI) TR (95% CI) HR (95% CI) 

Change in weight Z-score, 0-12 months 0.978 (0.949, 1.008) 1.18 (0.95, 1.48) 0.984 (0.960, 1.008) 1.15 (0.93, 1.42) 

Change in length Z-score, 0-12 months 0.989 (0.963, 1.017) 1.09 (0.88, 1.34) 0.993 (0.971, 1.016) 1.06 (0.87, 1.29) 

     

Change in weight Z-score, 0-6 months 0.983 (0.960, 1.006) 1.13 (0.96, 1.34) 0.988 (0.965, 1.011) 1.11 (0.92, 1.35) 

Change in weight Z-score, 6-12 months 0.971 (0.930, 1.014) 1.25 (0.90, 1.36) 0.985 (0.949, 1.021) 1.14 (0.83, 1.57) 

     

Change in length Z-score, 0-6 months 0.988 (0.955, 1.022) 1.09 (0.85, 1.40) 0.987 (0.961, 1.014) 1.12 (0.89, 1.39) 

Change in length Z-score, 6-12 months 0.990 (0.955, 1.027) 1.08 (0.81, 1.43) 0.999 (0.967, 1.032) 1.01 (0.76, 1.33) 

     

Change in weight Z-score, 0-2 months 0.994 (0.965, 1.024) 1.04 (0.85, 1.29) 0.999 (0.975, 1.023) 1.01 (0.84, 1.23) 

Change in weight Z-score, 2-4 months 0.952 (0.909, 0.998) 1.44 (1.02, 2.04) 0.956 (0.919, 0.995) 1.47 (1.05, 2.06) 

Change in weight Z-score, 4-6 months 1.026 (0.956, 1.101) 0.83 (0.49, 1.40) 1.028 (0.952, 1.109) 0.79 (0.41, 1.52) 

Change in weight Z-score, 6-9 months 0.949 (0.899, 1.002) 1.54 (0.95, 2.51) 0.957 (0.910, 1.006) 1.51 (0.91, 2.50) 

Change in weight Z-score, 9-12 months 1.020 (0.967, 1.075) 0.85 (0.55, 1.32) 1.027 (0.976, 1.080) 0.78 (0.48, 1.26) 

     

Change in length Z-score, 0-2 months 0.992 (0.963, 1.022) 1.06 (0.86, 1.32) 0.997 (0.970, 1.026) 1.02 (0.81, 1.29) 

Change in length Z-score, 2-4 months 0.956 (0.902, 1.013) 1.40 (0.91, 2.15) 0.955 (0.910, 1.002) 1.49 (0.98, 2.26) 

Change in length Z-score, 4-6 months 1.031 (0.978, 1.087) 0.79 (0.54, 1.18) 1.021 (0.970, 1.075) 0.84 (0.54, 1.30) 

Change in length Z-score, 6-9 months 0.955 (0.925, 0.987) 1.46 (1.11, 1.91) 0.958 (0.929, 0.989) 1.49 (1.12, 1.98) 

Change in length Z-score, 9-12 months 1.030 (0.987, 1.075) 0.78 (0.55, 1.11) 1.036 0.995, 1.077) 0.72 (0.49, 1.05) 

*Z-scores calculated using 2000 CDC growth charts as reference  

aEstimates adjusted for weight and length Z-scores at birth and change in weight and length in previous intervals 
bEstimates adjusted for weight and length Z-scores at birth, change in weight and length in previous intervals, gestational age in weeks, 
maternal pre-pregnancy BMI and gestational weight gain 
 (BMI<25 and GWG<30lbs, BMI<25 and GWG≥30 lbs, BMI≥25 and GWG<30 lbs, BMI≥25 and GWG≥30), and race/ethnicity (Hispanic, 
Non-Hispanic Black or Mixed race/ethnicity, Non-Hispanic White, Asian) 
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Supplemental Table 4.9. Sensitivity analyses based on outcome assessment and modeling strategy for the associations between rates 
of weight and length gain during infancy and the onset of breast development  
 

 Excluding inconsistent girlsa Model using SMS with recalled data Model using PDS 

  TR (95% CI) HR (95% CI) TR (95% CI) HR (95% CI) TR (95% CI) HR (95% CI) 

Change in weight Z-score, 
0-12 months 0.988 (0.961, 1.015) 1.12 (0.87, 1.45) 0.991 (0.977, 1.005) 1.09 (0.95, 1.24) 1.001 (0.988, 1.034) 0.99 (0.88, 1.12) 
Change in length Z-score, 
0-12 months 0.989 (0.967, 1.012) 1.10 (0.90, 1.36) 0.993 (0.978, 1.008) 1.07 (0.93, 1.22) 1.004 (0.989, 1.020) 0.96 (0.83, 1.10) 

       
Change in weight Z-score, 
0-6 months 0.991 (0.965, 1.017) 1.09 (0.86, 1.39) 1.005 (0.985, 1.026) 0.96 (0.81, 1.13) 0.995 (0.977, 1.014) 1.04 (0.88, 1.25) 
Change in weight Z-score, 
6-12 months 0.984 (0.951, 1.018) 1.21 (0.94, 1.55) 0.992 (0.964, 1.021) 1.08 (0.83, 1.40) 1.007 (0.981, 1.033) 0.94 (0.74, 1.19) 

       
Change in length Z-score, 
0-6 months 0.984 (0.964, 1.005) 1.16 (0.96, 1.40) 0.978 (0.960, 0.996) 1.21 (1.07, 1.52) 1.005 (0.987, 1.023) 0.96 (0.81, 1.14) 
Change in length Z-score, 
6-12 months 0.993 (0.965, 1.022) 1.04 (0.83, 1.31) 1.006 (0.983, 1.030) 0.95 (0.77, 1.18) 1.004 (0.980, 1.028) 0.97 (0.77, 1.21) 

       
Change in weight Z-score, 
0-2 months 1.004 (0.977, 1.032) 0.96 (0.75, 1.23) 1.007 (0.989, 1.026) 0.94 (0.81, 1.10) 1.011 (0.992, 1.030) 0.90 (0.75, 1.08) 
Change in weight Z-score, 
2-4 months 0.971 (0.936, 1.007) 1.32 (0.93, 1.89) 0.985 (0.952, 1.020) 1.14 (0.84, 1.54) 0.982 (0.949, 1.016) 1.20 (0.85, 1.68) 
Change in weight Z-score, 
4-6 months 1.011 (0.957, 1.067) 0.90 (0.54, 1.52) 1.048 (0.990, 1.110) 0.66 (0.41, 1.07) 0.977 (0.930, 1.027) 1.26 (0.77, 2.06) 
Change in weight Z-score, 
6-9 months 0.961 (0.911, 1.014) 1.49 (0.86, 2.56) 1.015 (0.965, 1.067) 0.88 (0.57, 1.36) 0.992 (0.950, 1.036) 1.08 (0.70, 1.65) 
Change in weight Z-score, 
9-12 months 0.999 (0.948, 1.054) 1.01 (0.59, 1.72) 1.007 (0.970, 1.006) 0.94 (0.65, 1.35) 1.000 (0.961, 1.041) 1.00 (0.68, 11.47) 

       
Change in length Z-score, 
0-2 months 0.989 (0.966, 1.012) 1.11 (0.90, 1.37) 0.996 (0.976, 1.016) 1.04 (0.88, 1.23) 1.009 (0.991, 1.028) 0.82 (0.76, 1.10) 
Change in length Z-score, 
2-4 months 0.953 (0.919, 0.987) 1.59 (1.13, 2.23) 0.958 (0.932, 0.983) 1.45 (1.16, 1.83) 0.984 (0.953, 1.017) 1.17 (0.85, 1.61) 
Change in length Z-score, 
4-6 months 1.025 (0.989, 1.063) 0.79 (0.55, 1.12) 0.996 (0.968, 1.026) 1.03 (0.80, 1.33) 1.030 (0.989, 1.073) 0.75 (0.50, 1.11) 
Change in length Z-score, 
6-9 months 0.979 (0.940, 1.019) 1.24 (0.83, 1.87) 0.990 (0.961, 1.019) 1.10 (0.84, 1.42) 1.000 (0.972, 1.028) 1.00 (0.76, 1.32) 
Change in length Z-score, 
9-12 months 1.011 (0.973, 1.050) 0.90 (0.61, 1.33) 1.029 (0.998, 1.025) 0.76 (0.56, 1.02) 1.009 (0.972, 1.049) 0.91 (0.63, 1.32) 

*Z-scores calculated using 2000 CDC growth charts as reference 
Estimates adjusted for weight and length Z-scores at birth, change in weight and length in previous intervals, gestational age in weeks, maternal pre-pregnancy BMI and 
gestational weight gain  (BMI<25 and GWG<30lbs, BMI<25 and GWG≥30 lbs, BMI≥25 and GWG<30 lbs, BMI≥25 and GWG≥30), and race/ethnicity (Hispanic, Non-
Hispanic Black or Mixed race/ethnicity, Non-Hispanic White, Asian) 
aN=22 girls excluded 
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Supplemental Figure 4.1. Examples of individual quadratic spline interpolation of infancy height 
and weight data. Height and weight data shown for two individuals. Circles represent observed data 
points. Triangles represent interpolated data points at 0 months, 2 months, 4 months, 6 months, 9 months 
and 12 months. Individual A had 5 observed data points to contribute to the interpolation. Individual B had 
9 observed data points to contribute to the interpolation. 
 
 
 

A 
0m  2m  4m  6m      9m     12m 0m  2m  4m  6m      9m     12m 

B 
0m  2m  4m  6m      9m     12m 0m  2m  4m  6m      9m     12m 
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Supplemental Figure 4.2. Histograms of data availability for infant growth interpolation 
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Supplemental Figure 4.3. Mean weight-for-age Z-scores and 95% confidence intervals by age 
calculated using the 2000 CDC growth charts and the 2006 WHO growth charts. The means are 
connected by lines to better identify the CDC and WHO patterns. At each age, means and error bars are 
slightly offset to distinguish the groups from one another. 
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Supplemental Figure 4.4. Histograms of change in weight-for-age Z-scores for each age interval 
calculated using the 2000 CDC growth charts (blue) and the 2006 WHO growth charts (red).  
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Supplemental Figure 4.5. Mean length-for-age Z-scores and 95% confidence intervals by age 
calculated using the 2000 CDC growth charts and the 2006 WHO growth charts. The means are 
connected by lines to better identify the CDC and WHO patterns. At each age, means and error bars are 
slightly offset to distinguish the groups from one another. 
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Supplemental Figure 4.6. Mean weight-for-length Z-scores and 95% confidence intervals by age 
calculated using the 2000 CDC growth charts and the 2006 WHO growth charts. The means are 
connected by lines to better identify the CDC and WHO patterns. At each age, means and error bars are 
slightly offset to distinguish the groups from one another. 
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Supplemental Figure 4.7. Mean weight-for-age Z-scores and 95% confidence intervals through 
infancy by maternal pre-pregnancy body mass index and gestational weight gain. The means are 
connected by lines to better identify the different groups. At each age, means and error bars are slightly 
offset to distinguish the groups from one another. Z-scores were calculated using the 2000 CDC growth 
charts. 
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Supplemental Figure 4.8. Mean length-for-age Z-scores and 95% confidence intervals through 
infancy by maternal pre-pregnancy body mass index and gestational weight gain. The means are 
connected by lines to better identify the different groups. At each age, means and error bars are slightly 
offset to distinguish the groups from one another. Z-scores were calculated using the 2000 CDC growth 
charts. 
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Appendix F Supplemental tables and figures for Chapter 5 
 
Supplemental Figure 5.1. Boxplots of first serum biomarker measures by breast Tanner stage at 
visit (N=97 girls) 

 

 

 



 

354 

 

Supplemental Figure 5.2. Boxplot of first IGF-1/IGFBP-3 molar ratio by maternal education (N=109 
girls) 
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Supplemental Table 5.1. Descriptive characteristics of the LEGACY Girls Study New York site by 
serum availability (N=177 girls) 
 

  

At least 1 
serum IGF-
1/IGFBP-3 
measure* 
(N=109) 

No serum IGF-
1/IGFBP-3 
measures 

(N=68) 

Early-life characteristics   

Maternal age at birth (Mean±SD) 33.0 ± 6.3 33.8 ± 4.8 

Maternal height, m (Mean±SD) 1.6 ± 0.1 1.6 ± 0.1 

Maternal pre-pregnancy weight, kg (Mean±SD) 63.3 ± 11.1 62.0 ± 12.7 

Maternal pre-pregnancy BMI (Mean±SD) 23.8 ± 4.2 23.5 ± 5.4 

Maternal pre-pregnancy BMI, categorized (N, %)   

 <18.5 3 (2.8) 5 (7.4) 

18.5 to <25 71 (65.1) 46 (67.7) 

25 to <30 23 (21.1) 10 (14.7) 

≥30 9 (8.3) 6 (8.8) 

Missing 3 (2.8) 1 (1.5) 

Gestational weight gain (n, %)   

<10 lbs 5 (4.6) 0 (0.0) 

10-14 lbs 6 (5.5) 1 (1.5) 

15-19 lbs 5 (4.6) 13 (19.1) 

20-29 lbs 33 (30.3) 24 (35.3) 

30-39 lbs 23 (21.1) 15 (22.1) 

40-49 lbs 16 (14.7) 9 (13.2) 

≥50 lbs 17 (15.6) 5 (7.4) 

Missing 4 (3.7) 1 (1.5) 

Gestational weight gain adequacy based on the 
2009 IOM guidelines (n, %) 

  

Inadequate (below guidelines) 14 (12.8) 15 (22.1) 

Adequate (within guidelines) 54 (49.5) 30 (44.1) 

Excessive (above guidelines) 37 (33.9) 21 (30.9) 

Missing 4 (3.7) 2 (2.9) 

Maternal recreational physical activity during 
pregnancy (N, %) 

  

Inactive, no walking or other regular exercise 19 (17.4) 7 (10.3) 

Mostly inactive, equivalent to walking about half  a mile 
or less every day 

26 (23.9) 21 (30.9) 

Somewhat active, equivalent to walking about 1 mile 
every day 

19 (17.4) 23 (33.8) 

Active, equivalent to walking about 2 miles every day 36 (33.0) 15 (22.1) 

Highly active, equivalent to walking about 3 or more 
miles every day 

7 (6.4) 2 (2.9) 

Missing 2 (1.8) 0 (0.0) 
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Maternal physical activity at home during pregnancy 

(N, %) 
  

Mostly sitting 30 (27.5) 21 (30.9) 

Mostly walking and standing, with some sitting 35 (32.1) 28 (41.2) 

Active housework most of the time with little sitting 40 (36.7) 18 (26.5) 

Heavy manual work at home 1 (0.9) 1 (1.5) 

Missing 3 (2.8) 0 (0.0) 

Maternal physical activity at work during pregnancy 

(N, %) 
  

Not working 27 (24.8) 14 (20.6) 

Mostly sitting and standing 46 (42.2) 31 (45.6) 

Mostly walking with some sitting and standing 32 (29.4) 20 (29.4) 

Mostly heavy labor with some walking and standing and 
little sitting 

2 (1.8) 2 (2.9) 

Missing 2 (1.8) 1 (1.5) 

Maternal physical activity during pregnancy, 2nd 
trimester (N, %) 

  

Stayed the same 65 (59.6) 47 (69.1) 

Substantially increased 12 (11.0) 4 (5.9) 

Substantially decreased 30 (27.5) 17 (25.0) 

Missing 2 (1.8) 0 (0.0) 

Gestational diabetes during pregnancy with 
LEGACY daughter (N, %) 

  

Yes 10 (9.2) 8 (11.8) 

No 94 (86.2) 60 (88.2) 

Missing 5 (4.6) 0 (0.0) 

Gestational hypertension, toxemia or pre-eclampsia 
during pregnancy with LEGACY daughter (N, %) 

  

Yes 10 (9.2) 5 (7.4) 

No 94 (86.2) 62 (91.2) 

Missing 5 (4.6) 1 (1.5) 

Type of gestation (N, %)   

Multiple 7 (6.4) 4 (5.9) 

Singleton 99 (90.8) 64 (94.1) 

Missing 3 (2.8) 0 (0.0) 

Birth order (Mean±SD) 1.6 ± 0.7 1.8 ± 1.0 

Birth order, dichotomized (N, %)   

First-born 54 (49.5) 30 (44.1) 

Not first-born 52 (47.7) 38 (55.9) 

Missing 3 (2.8) 0 (0.0) 

Gestational age in weeks (Mean±SD) 38.9 ± 2.4 38.7 ± 2.5 

Gestational age, categorized (N, %)   

<37 weeks 16 (14.7) 9 (13.2) 

≥37 weeks 91 (83.5) 59 (86.8) 



 

357 

 

Missing 2 (1.8) 0 (0.0) 

Intrauterine smoke exposure (N, %)   

Yes 4 (3.7) 1 (1.5) 

No 103 (94.5) 67 (98.5) 

Missing 2 (1.8) 0 (0.0) 

Birthweight, g (Mean±SD) 3232.4 ± 681.3 3213.3 ± 618.7 

Birthweight, categorized (N, %)   

<2500g 13 (11.9) 7 (10.3) 

2500-2999g 17 (15.6) 11 (16.2) 

3000-3499g 35 (32.1) 26 (38.2) 

3500-3999g 34 (31.2) 19 (27.9) 

≥4000g 9 (9.0) 4 (4.0) 

Missing 1 (0.9) 1 (1.5) 

Birthlength, cm (Mean±SD) 51.3 ± 3.6 49.5 ± 4.0 

Birthlength categorized (N, %)   

<48.25 8 (7.3) 8 (11.8) 

48.25-50.74 20 (18.4) 25 (36.8) 

50.75-53.24 22 (20.2) 11 (16.2) 

≥53.25 32 (29.4) 16 (23.5) 

Missing 27 (24.8) 8 (11.8) 

Baseline characteristics   

Age at baseline (Mean±SD) 9.8 ± 2.4 9.0 ± 2.3 

BMI-for-age percentile at baseline, (Mean±SD) 63.1 ± 29.0 54.5 ± 31.1 

BMI-for-age percentile at baseline, categorized (N, %)   

≥85th BMI-for-age percentile 31 (28.4) 11 (16.2) 

<85th BMI-for-age percentile 77 (70.6) 43 (63.2) 

Missinga 1 (0.9) 14 (20.6) 

Breast cancer family history in a first- or second-
degree relative (N, %) 

  

BCFH+ 44 (40.4) 37 (54.4) 

BCFH- 65 (59.6) 31 (45.6) 

BOADICEA lifetime risk score (Mean±SD) 13.8 ± 4.4 13.7 ± 4.0 

Race/ethnicity (N, %)   

Non-Hispanic white 43 (39.5) 41 (60.3) 

Non-Hispanic black 14 (12.8) 6 (8.8) 

Hispanic 43 (39.5) 14 (20.6) 

Asian/Pacific Islander 4 (3.7) 6 (8.8) 

Other or mixed race/ethnicity 5 (4.6) 1 (1.5) 

Maternal education (N, %)   

Some college, vocational or technical school or less 37 (33.9) 7 (10.3) 

Bachelor's degree 30 (27.5) 28 (41.2) 

Graduate degree 42 (38.5) 33 (48.5) 
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Paternal education (N, %)   

Some college, vocational or technical school or less 29 (26.6) 15 (22.1) 

Bachelor's degree 32 (29.4) 23 (33.8) 

Graduate degree 36 (33.0) 29 (42.7) 

Missing 12 (11.0) 1 (1.5) 

Maternal age at menarche  (Mean±SD) 12.7 ± 1.7 12.6 ± 1.5 

Maternal age at menarche, categorized (N, %)   

<12 years 27 (24.8) 16 (23.5) 

12-13 years 55 (50.5) 40 (58.8) 

≥14 years 25 (22.9) 12 (17.7) 

Missing 2 (1.8) 0 (0.0) 

*The participating guardian for 2 girls with serum measures is not the biological mother and 
early-life data is missing for these girls. 
aMore participants without serum samples participated in LEGACY by phone/mail and did not 
attend in-person clinic visits. They did not give blood or have body measures taken. 
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Supplemental Table 5.2. Difference in mean levels of IGF-1, IGFBP-3 and the IGF-1/IGFBP-3 molar 
ratio by birthweight with and without adjustment for infant weight gain  
 

  IGF-1 (ng/ml) IGFBP-3 (ng/ml) 
IGF-1/IGFBP-3 molar 

ratio* 

 Model 1a Model 2b Model 1a Model 2b Model 1a Model 2b 

  β (95% CI) β (95% CI) β (95% CI) β (95% CI) β (95% CI) β (95% CI) 

Without adjustment for infant weight gain 

Birthweight 
(per 500g 
increase) 

-15.64 
(-42.43, 11.16) 

-12.61 
(-38.37, 13.15) 

-29.58 
(-241.24,182.08) 

-32.55 
(-244.41,179.30) 

-0.02 
(-0.05,0.01) 

-0.01 
(-0.04,0.01) 

       

With adjustment for infant weight gainc 

Birthweight 
(per 500g 
increase) 

-4.61 
(-37.49, 28.27) 

-4.47 
(-35.55,26.62) 

-120.16 
(-378.08,137.75) 

-118.23 
(-376.75,140.27) 

0.01 
(-0.03,0.04) 

0.01 
(-0.02,0.04) 

Models include 29 girls with birthweight, infant growth and all covariate data. 

*Molar ratio = IGF-1(ng/ml)*0.1307 divided by IGFBP-3 (ng/ml)*0.03478 
aAdjusted for maternal pre-pregnancy BMI (continuous), weight-for-age or length-for-age Z-score at birth, age at 
blood draw (centered) and quadratic of age at blood draw (centered) 
bAdjusted for maternal pre-pregnancy BMI (continuous),  weight-for-age or length-for-age Z-score at birth, age at 
blood draw (centered) and quadratic of age at blood draw (centered), breast Tanner stage at visit (TS1 vs. TS2+) 
and BMI-for-age percentile at visit (centered) 
cChange in weight-for-age Z-score from 0-12 months (continuous) 
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Supplemental Table 5.3. Associations between maternal, birth and infant factors and square-root 
transformed IGF-1 and IGF-1/IGFBP-3 molar ratio  
 

 

Square root of IGF-1 (ng/ml) Square root of IGF-1/IGFBP-3 
molar ratio* 

 Model 2 p for 
intx with 
BCFHa 

Model 2 p for 
intx with 
BCFHa   β (SE) P>t β (SE) P>t 

Maternal pre-pregnancy BMI 
(per 1 kg/m2)b 

0.06 (0.007) 0.26 0.38 0.00 (0.002) 0.85 0.06 
       

Maternal recreational physical 
activity during pregnancyc 

  0.82   0.16 

Inactive, no walking or other regular 
exercise 

-1.04 (0.66) 0.12  -0.02 (0.02) 0.21  

Mostly inactive, equivalent to walking 
about half  a mile or less every day 

-0.50 (0.54) 0.35  0.01 (0.01) 0.70  

Somewhat active, equivalent to 
walking about 1 mile every day 

0.02 (0.57) 0.97  0.00 (0.02) 0.84  

Active or highly active, equivalent to 
walking about ≥2 miles every day 

Reference -  Reference -  

       

Gestational weight gainc   0.33   0.60 

<20 lbs 0.13 (0.68) 0.85  0.01 (0.02) 0.58  

20-29 lbs Reference -  Reference -  

30-39lbs 0.87 (0.53) 0.11  0.04 (0.01) 0.01  

40-49lbs 0.55 (0.63) 0.39  0.02 (0.02) 0.20  

≥50 lbs 0.69 (0.71) 0.33  0.01 (0.02) 0.47  

       

Maternal pre-pregnancy BMI and 
GWGb 

  0.15   0.17 

BMI<25 and <30 lbs Reference -  Reference -  

BMI<25 and ≥30 lbs 0.59 (0.55) 0.28  0.02 (0.02) 0.16  

BMI≥25 and <30lbs 0.49 (0.66) 0.47  0.00 (0.02) 0.91  

BMI≥25 and ≥30 lbs 1.54 (0.79) 0.05  0.04 (0.02) 0.10  

       

Birthweight (per 500g increase)d -0.44 (0.21) 0.04 0.08 -0.01 (0.01) 0.11 0.42 
       

Birthlength (per 1cm increase)d 0.007 (0.08) 0.93 0.16 -0.001 (0.002) 0.82 0.62 
       

Growth from 0-12 monthse       

Change in weight-for-age Z-score 0.55 (0.43) 0.20 0.30 0.03 (0.01) 0.01 0.57 

Change in length-for-age Z-score 0.08 (0.48) 0.87 0.79 0.02 (0.02) 0.28 0.07 

       

Growth from 0-6 monthse       

Change in weight-for-age Z-score 0.05 (0.51) 0.92 0.42 0.01 (0.02) 0.48 0.40 

Change in length-for-age Z-score -0.16 (0.41) 0.70 0.73 -0.01 (0.01) 0.59 0.55 
       

Growth from 6-12 monthsf       

Change in weight-for-age Z-score 1.39 (0.70) 0.05 0.27 0.07 (0.02) 0.002 0.42 

Change in length-for-age Z-score 0.21 (0.55) 0.70 0.96 0.03 (0.02) 0.12 0.10 

*Molar ratio = IGF-1(ng/ml)*0.1307 divided by IGFBP-3 (ng/ml)*0.03478 
aP for interaction from F test from Model 2 

bAdjusted for age at blood draw (centered) and quadratic of age at blood draw (centered), breast Tanner stage at 
visit and BMI-for-age percentile at visit (centered) 
cAdjusted for age at blood draw (centered) and quadratic of age at blood draw (centered), breast Tanner stage at 
visit, BMI-for-age percentile at visit (centered) and maternal pre-pregnancy BMI 
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dAdjusted for maternal pre-pregnancy BMI (continuous), preterm, age at blood draw (centered) and quadratic of age 
at blood draw (centered), breast Tanner stage at visit and BMI-for-age percentile at visit (centered) 
eAdjusted for maternal pre-pregnancy BMI (continuous),  weight-for-age or length-for-age Z-score at birth, age at 
blood draw (centered) and quadratic of age at blood draw (centered), breast Tanner stage at visit (TS1 vs. TS2+) 
and BMI-for-age percentile at visit (centered) 
fAdjusted for maternal pre-pregnancy BMI (continuous),  weight-for-age or length-for-age Z-score at birth, change in 
weight-for-age or length-for-age Z-score from 0-6 months, age at blood draw (centered) and quadratic of age at 
blood draw (centered), breast Tanner stage at visit (TS1 vs. TS2+) and BMI-for-age percentile at visit (centered) 

 

 

 


