Early-life Origins of Breast Development and the Implications for Breast Cancer Risk

Mandy Goldberg

Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy under the Executive Committee of the Graduate School of Arts and Sciences

# COLUMBIA UNIVERSITY

© 2019

Mandy Goldberg

All rights reserved

#### ABSTRACT

Early-life Origins of Breast Development and the Implications for Breast Cancer Risk

# Mandy Goldberg

Breast cancer incidence, particularly late-stage disease, is increasing in U.S. women under 40 years of age, pointing to the importance of exposures acting early in the life course to increase breast cancer risk. Earlier onset of breast development has recently been identified as an independent risk factor for breast cancer. Thus, identifying modifiable factors that can delay the onset of breast development may provide an opportunity for breast cancer primary prevention starting early in life. This dissertation examined the influence of the early-life environment on the age at onset of breast development through: 1) a systematic review of the literature relating maternal pre-pregnancy body size, gestational weight gain (GWG), birth size, and infant growth to the timing of breast development and menarche; 2) analyses assessing the associations between these factors and the onset of breast development in a pubertal cohort enriched for breast cancer family history (BCFH); and 3) a pilot study assessing whether these factors are associated with serum levels of insulin-like growth factor(IGF)-1 and insulin-like growth factor binding protein(IGFBP)-3 during puberty.

Our systematic review identified 96 studies, the majority of which examined the association between birthweight and age at menarche. Although low birthweight is often cited as a risk factor for early menarche, the majority of studies (40/73 total) that examined this association did not observe a statistically significant association. Differences in exposure assessment, inadequate control for confounders, and differences in postnatal growth across studies may drive inconsistencies in the birthweight literature. In contrast, higher maternal body mass index (BMI) prior to pregnancy, GWG in excess of recommended guidelines and faster rates of weight gain between birth and 2 years of age were consistently associated with earlier age at breast development and menarche.

We used data from the LEGACY Girls Study, a prospective cohort of girls primarily ages 6-13 years at baseline in which approximately 50% of girls had a family history of breast cancer, to examine the relations between maternal factors, birth size and infant growth and the onset of breast development, defined as a maternal report of breast Tanner stage 2 or greater. Daughters of women with a pre-pregnancy BMI of 25 or greater and who gained 30lbs or more during pregnancy experienced breast development at an earlier age than daughters of women with a pre-pregnancy BMI less than 25 and who gained less than 30lbs. This association was similar in girls with and without a BCFH. Birthweight and birthlength were not associated with the timing of breast development.

In a subset of LEGACY girls with height and weight data during infancy available from medical records, we examined the associations between changes in weight-for-age and length-for-age Z-scores from birth to 1 year of age and the onset of breast development. We observed a modest association between faster rates of weight gain from 0-12 months and earlier age at breast development. When we examined smaller age intervals within infancy, faster weight gain from 2-4 months and 6-9 months were each associated with an earlier age at breast development. A similar pattern was observed for growth in length, and these associations did not vary by BCFH.

In our pilot study including 109 girls with available serum samples between 6-17 years of age at the LEGACY New York site, rapid weight gain from 0-12 months was associated with higher mean levels of IGF-1 relative to IGFBP-3. Although not statistically significant, girls with a maternal pre-pregnancy BMI≥25 and GWG≥30lbs also had higher mean levels of the IGF-1/IGFBP-3 ratio. Since serum IGF-1 and IGFBP-3 are objective measures that are known to increase rapidly during puberty, the results of our pilot study support that the maternal BMI, GWG and rapid infant weight gain are associated with biological changes in the girls. Our findings suggest that measurement error in outcome assessment or confounding did not drive the associations that we observed between these factors and earlier onset of breast development.

In conclusion, we identified higher maternal pre-pregnancy BMI, excess GWG and rapid growth during infancy as modifiable factors associated with earlier onset of breast development in girls across the spectrum of familial risk for breast cancer. While this suggests that modifying these factors may decrease breast cancer risk later in life, further research should consider additional and potentially opposing pathways, such as childhood body size, through which the early-life environment affects breast cancer risk.

# **Table of Contents**

| List of Tables and Figuresv |        |                                                                                              |
|-----------------------------|--------|----------------------------------------------------------------------------------------------|
| Ackı                        | nowle  | edgmentsxi                                                                                   |
| Cha                         | pter   | 1. Introduction1                                                                             |
| 1.                          | 1      | Background1                                                                                  |
| 1.                          | 2      | Dissertation overview                                                                        |
| Cha                         | pter 2 | 2. Size and growth during early life and pubertal timing in girls: a systematic review       |
| 2.                          | 1      | Background                                                                                   |
| 2.                          | 2      | Methods11                                                                                    |
|                             | 2.2.   | 1. Search strategy11                                                                         |
|                             | 2.2.2  | 2. Study selection                                                                           |
|                             | 2.2.3  | 3. Data extraction                                                                           |
| 2.                          | 3      | Results                                                                                      |
|                             | 2.3.   | 1. Search results                                                                            |
|                             | 2.3.   | 2. Maternal pre-pregnancy body size, gestational weight gain and breast development14        |
|                             | 2.3.   | 3. Maternal pre-pregnancy body size, gestational weight gain and menarche16                  |
|                             | 2.3.4  | 4. Birth size and breast development19                                                       |
|                             | 2.3.   | 5. Birth size and menarche                                                                   |
|                             | 2.3.   | 6. Size and growth during infancy and breast development                                     |
|                             | 2.3.   | 7. Size and growth during infancy and menarche32                                             |
|                             | 2.3.   | 8. Study quality                                                                             |
| 2.                          | 4      | Discussion                                                                                   |
| 2.                          | 5      | Conclusions                                                                                  |
| 2.                          | 6      | Tables and figures                                                                           |
| Cha                         | pter : | 3. Maternal pre-pregnancy BMI, gestational weight gain, and birth size in relation to age at |
| brea                        | ist de | evelopment in the LEGACY Girls Study cohort                                                  |
| 3.                          | 1      | Background51                                                                                 |
| 3.                          | 2      | Methods                                                                                      |

|     | 3.2.1. Study population                                                                                                                                                                                                        | 53                               |  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--|
|     | 3.2.2. Data collection                                                                                                                                                                                                         | 54                               |  |
|     | 3.2.3. Statistical analysis                                                                                                                                                                                                    | 57                               |  |
| 3   | 3.3 Results                                                                                                                                                                                                                    | 59                               |  |
|     | 3.3.1. Participant characteristics                                                                                                                                                                                             | 59                               |  |
|     | 3.3.2. Association between maternal pre-pregnancy BMI, gestational weight gain and age at brea                                                                                                                                 | st                               |  |
|     | development                                                                                                                                                                                                                    | 60                               |  |
|     | 3.3.3. Association between maternal physical activity during pregnancy and age at breast                                                                                                                                       |                                  |  |
|     | development                                                                                                                                                                                                                    | 61                               |  |
|     | 3.3.4. Association between birth size and age at breast development                                                                                                                                                            | 62                               |  |
|     | 3.3.5. Mediation by pre-pubertal body size                                                                                                                                                                                     | 62                               |  |
|     | 3.3.6. Modification by breast cancer family history                                                                                                                                                                            | 63                               |  |
|     | 3.3.7. Sensitivity analyses for the association between maternal pre-pregnancy BMI, GWG and                                                                                                                                    |                                  |  |
|     | onset of breast development                                                                                                                                                                                                    | 63                               |  |
| 3   | 3.4 Discussion                                                                                                                                                                                                                 | 64                               |  |
| 3   | 3.5 Conclusions                                                                                                                                                                                                                | 72                               |  |
| 3   | 3.6 Tables and figures                                                                                                                                                                                                         | 73                               |  |
| Cha | Chapter 4. Infant growth and the onset of breast development in the LEGACY Girls Study cohort83                                                                                                                                |                                  |  |
|     | apter 4. Infant growth and the onset of breast development in the LEGACT Gins Study conort                                                                                                                                     | 83                               |  |
| 4   | I.1 Background                                                                                                                                                                                                                 |                                  |  |
|     |                                                                                                                                                                                                                                | 84                               |  |
|     | I.1 Background                                                                                                                                                                                                                 | 84<br>85                         |  |
|     | I.1 Background                                                                                                                                                                                                                 | 84<br>85<br>85                   |  |
|     | 4.2.1. Study population                                                                                                                                                                                                        | 84<br>85<br>85<br>86             |  |
| 4   | <ul> <li>4.2.1. Study population</li></ul>                                                                                                                                                                                     | 84<br>85<br>85<br>86<br>90       |  |
| 4   | <ul> <li>4.2.1. Study population</li> <li>4.2.2. Data collection</li> <li>4.2.3. Statistical analysis</li> </ul>                                                                                                               | 84<br>85<br>85<br>86<br>90<br>93 |  |
| 4   | <ul> <li>Background</li> <li>Methods</li></ul>                                                                                                                                                                                 | 84<br>85<br>86<br>90<br>93       |  |
| 4   | <ul> <li>4.1 Background</li> <li>4.2 Methods</li> <li>4.2.1. Study population</li> <li>4.2.2. Data collection</li> <li>4.2.3. Statistical analysis</li> <li>4.3 Results</li> <li>4.3.1. Participant characteristics</li> </ul> | 84<br>85<br>85<br>90<br>93<br>93 |  |

| 4.3                                                                                                | 3.5. Association between infant growth and the onset of breast development               | 95     |  |
|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------|--|
| 4.3                                                                                                | 3.6. Mediation by pre-pubertal body size                                                 | 97     |  |
| 4.3                                                                                                | 3.7. Modification by breast cancer family history                                        | 98     |  |
| 4.3                                                                                                | 4.3.8. Maternal pre-pregnancy BMI, GWG and patterns of infant growth                     |        |  |
| 4.3.9. Sensitivity analyses for the association between infant growth and the onset of breast      |                                                                                          |        |  |
| de                                                                                                 | velopment                                                                                | 98     |  |
| 4.4                                                                                                | Discussion                                                                               | 99     |  |
| 4.5                                                                                                | Conclusions                                                                              | 106    |  |
| 4.6                                                                                                | Tables and figures                                                                       | 108    |  |
| Chapter                                                                                            | r 5. Maternal pregnancy factors, birth size and infant growth in relation to IGF-1 and I | GFBP-3 |  |
| levels d                                                                                           | luring puberty in the LEGACY Girls Study cohort                                          | 116    |  |
| 5.1                                                                                                | Background                                                                               | 117    |  |
| 5.2                                                                                                | Methods                                                                                  | 117    |  |
| 5.2                                                                                                | 2.1. Study population                                                                    | 117    |  |
| 5.2                                                                                                | 2.2. Data collection                                                                     | 118    |  |
| 5.2                                                                                                | 2.3. Statistical analysis                                                                | 119    |  |
| 5.3                                                                                                | Results                                                                                  | 121    |  |
| 5.4                                                                                                | Discussion                                                                               | 124    |  |
| 5.5                                                                                                | Conclusions                                                                              | 127    |  |
| 5.6                                                                                                | Tables and figures                                                                       | 128    |  |
| Chapter                                                                                            | r 6. Conclusions                                                                         | 135    |  |
| 6.1                                                                                                | Main findings                                                                            | 135    |  |
| 6.2                                                                                                | Methodological considerations for studies of pubertal timing                             | 147    |  |
| 6.3                                                                                                | Implications and future directions                                                       | 148    |  |
| 6.4                                                                                                | Tables and figures                                                                       | 151    |  |
| References                                                                                         |                                                                                          |        |  |
| Appendices                                                                                         |                                                                                          |        |  |
| Appendix A Protocol for systematic review on early-life body size and pubertal timing in girls 173 |                                                                                          |        |  |

| Appendix B | Supplemental tables for Chapter 2176                                                      |
|------------|-------------------------------------------------------------------------------------------|
| Appendix C | Additional background information for Chapter 3                                           |
| Appendix C | 2.1. Early-life exposure constructs                                                       |
| Appendix C | 2.2. 2009 Institute of Medicine recommendations for total weight gain during pregnancy by |
| pre-pregna | ncy BMI and modified range used to define adequate gestational weight gain for LEGACY     |
|            |                                                                                           |
| Appendix C | 3.3. Advantages and disadvantages of the methods for modeling breast development in       |
| LEGACY     |                                                                                           |
| Appendix C | 2.4. Comparison and interpretation of the different methods for modeling breast           |
| developme  | nt in LEGACY                                                                              |
| Appendix D | Supplemental tables for Chapter 3                                                         |
| Appendix E | Supplemental tables and figures for Chapter 4                                             |
| Appendix F | Supplemental tables and figures for Chapter 5                                             |

# List of Tables and Figures

| Figure 2.1. Directed acyclic graph (DAG) of hypothesized causal structure linking maternal pre-pregnancy   |
|------------------------------------------------------------------------------------------------------------|
| BMI, gestational weight gain, birthweight and infant weight gain to age at breast development46            |
| Figure 2.2. Flow diagram of study selection based on PRISMA 2009 guidelines47                              |
| Table 2.1. Number of included studies for each exposure-outcome association (N=96 articles)48              |
| Table 2.2. Comparison of methods to assess infant growth49                                                 |
| Table 3.1. Descriptive characteristics of the LEGACY Girls Study cohort overall and by analytic subset73   |
| Table 3.2. Time ratios (TR), hazard ratios (HR) and 95% confidence intervals (CIs) for associations        |
| between maternal pre-pregnancy BMI and GWG and the onset of breast development for the overall             |
| cohort and girls age <8 years at baseline77                                                                |
| Table 3.3. Time ratios (TR), hazard ratios (HR) and 95% confidence intervals (CIs) for associations        |
| between maternal physical activity during pregnancy and the onset of breast development for the overall    |
| cohort and girls age <8 years at baseline78                                                                |
| Table 3.4. Time ratios (TR), hazard ratios (HR) and 95% confidence intervals (CIs) for associations        |
| between maternal pre-pregnancy BMI, recreational physical activity during pregnancy and GWG with           |
| adjustment for daughter's pre-pubertal body size79                                                         |
| Table 3.5. Time ratios (TR), hazard ratios (HR) and 95% confidence intervals (CIs) for associations        |
| between maternal pre-pregnancy BMI, recreational physical activity during pregnancy and GWG stratified     |
| by breast cancer family history                                                                            |
| Table 4.1. Descriptive characteristics of the LEGACY Girls Study by availability of infant growth measures |
| (N=1068)108                                                                                                |
| Table 4.2. Summary measures of height and weight by age and age interval (N=255)                           |

| Table 4.3. Correlation matrix for birthweight Z-score and change in weight-for-age Z-score (WAZ) by age   |
|-----------------------------------------------------------------------------------------------------------|
| interval (N=255)111                                                                                       |
| Table 4.4. Correlation matrix for birthlength Z-score and change in length-for-age Z-score (LAZ) by age   |
| interval (N=255)112                                                                                       |
| Table 4.5. Correlations between changes in weight-for-age and length-for-age Z-scores by age interval     |
| (N=255)113                                                                                                |
| Table 4.6. Adjusted time ratios (TR), hazard ratios (HR) and 95% confidence intervals (CIs) for           |
| associations between rates of weight and length gain during infancy and the onset of breast development   |
| in the LEGACY Girls Study114                                                                              |
| Figure 4.1. Associations between growth patterns from 2-4 months and 6-9 months and onset of breast       |
| development in the LEGACY Girls Study115                                                                  |
| Table 5.1. Biomarker concentrations from first available sample by early-life and adolescence             |
| characteristics (N=109 girls from the LEGACY Girls Study, New York site)128                               |
| Table 5.2. Range of biomarker data by age (N=289 samples from 109 girls)                                  |
| Table 5.3. Difference in mean levels of IGF-1, IGFBP-3 and the IGF-1/IGFBP-3 molar ratio by maternal      |
| factors                                                                                                   |
| Table 5.4. Difference in mean levels of IGF-1, IGFBP-3 and the IGF-1/IGFBP-3 molar ratio by size at       |
| birth                                                                                                     |
| Table 5.5. Difference in mean levels of IGF-1, IGFBP-3 and the IGF-1/IGFBP-3 molar ratio by growth        |
| during infancy133                                                                                         |
| Figure 5.1. Boxplots of first a) IGF-1 (ng/ml) and b) IGF-1/IGFBP-3 molar ratio measure by rapid, stable, |
| and slow weight gain patterns from birth-12 months                                                        |

| Table 6.1. Summary of the direction of associations between maternal, birth and infant exposures with the |
|-----------------------------------------------------------------------------------------------------------|
| timing of breast development and levels of serum biomarkers during puberty151                             |
| Table 6.2. Summary of the strengths and limitations of this dissertation                                  |
| Supplemental Table 2.1. Studies of maternal pre-pregnancy BMI, weight and gestational weight gain and     |
| the timing of breast development                                                                          |
| Supplemental Table 2.2. Studies of maternal pre-pregnancy BMI, weight and gestational weight gain and     |
| the timing of menarche                                                                                    |
| Supplemental Table 2.3. Studies of birth size and the timing of breast development                        |
| Supplemental Table 2.4. Studies of birth size and the timing of menarche                                  |
| Supplemental Table 2.5. Studies of infant size or growth and timing of breast development                 |
| Supplemental Table 2.6. Studies of infant size or growth and timing of menarche                           |
| Supplemental Table 2.7. NIH quality assessment of included studies                                        |
| Supplemental Table 2.8. Newcastle-Ottawa Scale quality assessment of included studies                     |
| Supplemental Table 3.1. Descriptive characteristics of the LEGACY Girls Study cohort by maternal pre-     |
| pregnancy body mass index                                                                                 |
| Supplemental Table 3.2. Descriptive characteristics of the LEGACY Girls Study cohort by breast cancer     |
| family history                                                                                            |
| Supplemental Table 3.3. Time ratios (TR), hazard ratios (HR) and 95% confidence intervals (CIs) for       |
| associations between maternal pre-pregnancy BMI and GWG, categorized by the 2009 IOM guidelines,          |
| and the onset of breast development for the overall cohort and girls age <8 years at baseline             |
| Supplemental Table 3.4. Time ratios (TR), hazard ratios (HR) and 95% confidence intervals (CIs) for       |
| associations between maternal physical activity during pregnancy and the onset of breast development      |
| with adjustment for GWG for the overall cohort and girls age <8 years at baseline                         |

| Supplemental Figure 4.1. Examples of individual quadratic spline interpolation of infancy height and  |
|-------------------------------------------------------------------------------------------------------|
| weight data                                                                                           |
| Supplemental Figure 4.2. Histograms of data availability for infant growth interpolation              |
| Supplemental Figure 4.3. Mean weight-for-age Z-scores and 95% confidence intervals by age calculated  |
| using the 2000 CDC growth charts and the 2006 WHO growth charts                                       |
| Supplemental Figure 4.4. Histograms of change in weight-for-age Z-scores for each age interval        |
| calculated using the 2000 CDC growth charts and the 2006 WHO growth charts                            |
| Supplemental Figure 4.5. Mean length-for-age Z-scores and 95% confidence intervals by age calculated  |
| using the 2000 CDC growth charts and the 2006 WHO growth charts                                       |
| Supplemental Figure 4.6. Mean weight-for-length Z-scores and 95% confidence intervals by age          |
| calculated using the 2000 CDC growth charts and the 2006 WHO growth charts                            |
| Supplemental Figure 4.7. Mean weight-for-age Z-scores and 95% confidence intervals through infancy    |
| by maternal pre-pregnancy body mass index and gestational weight gain                                 |
| Supplemental Figure 4.8. Mean length-for-age Z-scores and 95% confidence intervals through infancy by |
| maternal pre-pregnancy body mass index and gestational weight gain                                    |
| Supplemental Figure 5.1. Boxplots of first serum biomarker measures by breast Tanner stage at visit   |
| (N=97 girls)                                                                                          |
| Supplemental Figure 5.2. Boxplot of first IGF-1/IGFBP-3 molar ratio by maternal education (N=109      |
| girls)                                                                                                |
| Supplemental Table 5.1. Descriptive characteristics of the LEGACY Girls Study New York site by serum  |
| availability (N=177 girls)355                                                                         |
| Supplemental Table 5.2. Difference in mean levels of IGF-1, IGFBP-3 and the IGF-1/IGFBP-3 molar ratio |
| by birthweight with and without adjustment for infant weight gain                                     |

| Supplemental Table 5.3. Associations between maternal, birth and infant factors and square-root |     |
|-------------------------------------------------------------------------------------------------|-----|
| transformed IGF-1 and IGF-1/IGFBP-3 molar ratio                                                 | 360 |

#### Acknowledgments

This dissertation is the culmination of a long journey, and I would not have made it to this point without the support and encouragement of many people. First and foremost, I'd like to thank Dr. Mary Beth Terry for her incredible mentorship over the last six years. Mary Beth took me under her wing when I was new to Columbia and welcomed me into her wonderful research group, which has been a huge source of support for me over the last six years. She provided me with every opportunity and pushed me to excel during my time in the program, supported all of my personal and professional goals, and shared her vast expertise with me on all aspects of the research process. She also shaped my interest in lifecourse epidemiology by providing me with the opportunity to work with amazing cohorts, including the LEGACY Girls Study. With her as a role model, I am now a better researcher, a better teacher, and a better person. I'd also like to thank the other members of my dissertation committee: Dr. Ezra Susser, the chair of my committee, for his guidance on lifecourse methods and wise advice on how to build a successful academic career; Dr. Jasmine McDonald, for her unwavering support and thought-provoking questions; Dr. Ying Wei, for her statistical expertise and help when I was struggling with deciphering R code; and Dr. Frank Biro, for his enthusiasm, clinical knowledge and expertise on puberty.

I would also like to thank my colleagues at Columbia for always lending an empathetic ear when I was struggling through this process and supporting me in innumerable ways. Drs. Lauren Houghton, Nur Zeinomar and Rebecca Kehm for talking through analyses with me and reminding me that there was a light at the end of the tunnel. Melissa White, Rachel Sweeden and the other members of the LEGACY and MNYR research teams for their help, patience and support. I'd like to thank the faculty and staff in the Epidemiology department and Liliane Zaretsky, in particular, for guiding me through the ins and outs of Columbia and always having chocolate available for stressful times. I'm grateful for the friendship, encouragement and sense of community from my fellow epidemiology doctoral students, especially my cohort year. While the dissertation process itself can feel isolating at times, I always knew that I could reach out to them whenever I needed support.

Last but certainly not least, I'm forever grateful to my family and friends for their love, support and humor through my seemingly never-ending time as a student. I'd like to thank my parents and my sisters for nudging me along when I needed a little push, and sending me with baked goods, pictures of my nieces and nephews, and other little treats from across the country when I needed a pick-me-up. Thank you to my friends for always picking up my calls when I needed a break, and to Maytal, for managing my real and imagined emergencies and keeping me sane. Finally, I'd like to thank my husband, Jason, for his constant support of my career and other ambitions, for reminding me to breathe in times of stress, and for all of the little things that he does every day to make me smile.

# **Chapter 1. Introduction**

# 1.1 Background

Breast cancer is the most common cancer in women worldwide and one-third of global breast cancers are diagnosed in women under the age of 50,<sup>1</sup> indicating the importance of modifying exposures prior to mid-life to decrease risk. Exposures across the life course, including body size (weight, height, and weight for height, often assessed by body mass index (BMI)), have long been recognized as affecting breast cancer risk.<sup>2-4</sup> Weight, specifically, is of interest as it is often cited as a potentially modifiable risk factor for breast cancer.<sup>4,5</sup> The direction of the association between weight and breast cancer risk, however, changes over the life course. Weight in adulthood is positively associated with post-menopausal breast cancer risk, as is weight gain after age 18-25 years.<sup>6–10</sup> In contrast, adult weight is inversely associated with premenopausal breast cancer risk,<sup>6,7</sup> and most studies have not observed an association between long-term weight gain and risk of pre-menopausal breast cancer.<sup>8,11–13</sup> Weight during adolescence is inversely associated with both pre- and post-menopausal breast cancer risk.<sup>14–17</sup> Birthweight is positively associated with the risk of pre-menopausal breast cancer and may be modestly positively associated with postmenopausal cancer risk as well,<sup>18</sup> suggesting that breast cancer susceptibility may be altered by intrauterine factors that affect birthweight and early-life weight gain.<sup>19</sup> The associations in opposing directions between body weight at birth and in adolescence highlight the importance of examining associations between different trajectories of early-life growth, and factors that influence growth trajectories, and breast cancer risk. Maternal pre-pregnancy BMI and gestational weight gain influence fetal and postnatal growth,<sup>20-22</sup> but the few studies that have examined these factors and breast cancer risk have not consistently observed an association.<sup>23,24</sup> Birthweight also influences weight gain during infancy, a dynamic period of change when most infants triple their birthweight by 12 months of age.<sup>25</sup> However, no studies have assessed whether patterns of weight gain during multiple windows within infancy are associated with breast cancer risk.

Intrauterine factors that may explain the positive association between birthweight and breast cancer risk: Under the early-life etiologic model for breast cancer, intrauterine factors can affect offspring breast cancer risk both through an effect on the number of mammary tissue-specific stem cells and the replication rate of these cells in utero, which is affected by levels of growth-enhancing hormones.<sup>19</sup> While the

association between birthweight and breast cancer risk supports this hypothesis, birthweight is a measure of size, and only a crude indicator of fetal growth and the intrauterine environment in general.<sup>26</sup> The data connecting other characteristics that influence the intrauterine environment to breast cancer risk are limited. Maternal pre-pregnancy BMI and gestational weight gain are associated with birthweight<sup>20</sup> and maternal hormone levels during pregnancy,<sup>27–29</sup> but studies have not consistently supported an association with breast cancer risk.<sup>23,24</sup> Given the long induction time between the intrauterine environment and breast cancer diagnosis, most studies in the literature are from pregnancies over 50 years ago, when the prevalence of obesity and excess gestational weight gain was much lower than today.<sup>30</sup> Considering the increasing prevalence of these pregnancy conditions over time, it is important to examine the association between the intrauterine environment and breast cancer risk. Through this research, we can understand whether these factors drive the positive association between birthweight and breast cancer and identify modifiable factors, such as gestational weight gain and physical activity during pregnancy, to target during pregnancy for primary prevention.

Infancy is the missing link in the body size and breast cancer literature: Under the early-life etiologic model, postnatal growth could operate via the same mechanisms as intrauterine factors to affect breast cancer risk,<sup>19</sup> but few studies have examined the early postnatal period. In the 1946 British birth cohort, BMI velocity from 2-4 years was inversely associated with breast cancer risk, though there was no association with BMI at 2 years.<sup>31</sup> This study did not have measures of body size between birth and 2 years and could not examine growth rates within this window. In the Hertfordshire cohort born between 1911 and 1939, women in the lowest and highest third of the weight gain distribution from birth to one year both had increased risks of breast cancer mortality compared to those of average weight gain.<sup>32</sup> A Swedish study examining neonatal growth in 405 BC cases and 1081 controls found that neonates who gained ≥25 grams per day until hospital discharge after an initial weight loss of <200 grams after birth had a 50% increased risk of breast cancer later in life compared to those that gained <25 grams per day; the increased risk was twofold in women less than 50 years at diagnosis.<sup>33</sup> These studies suggest that infancy may be a key transition point when the positive association between birthweight and breast cancer risk. Trajectories of weight and height growth may be more important than size at any given time point in relation to later breast

cancer risk. Evidence from pubertal cohorts suggest that rapid infant weight gain is a predictor of earlier pubertal onset, a breast cancer risk factor.<sup>34,35</sup> Recently, using prospective data from a 1960s U.S. birth cohort, we observed a two-fold increased risk of benign breast disease, a well-established breast cancer risk factor,<sup>36</sup> in women with rapid weight gain in infancy.<sup>37</sup> Previous studies have been unable to assess the association between size or growth during infancy and early childhood and breast cancer risk directly due to a lack of prospective anthropometric measures within the first year of life.<sup>14</sup> Since growth during these time periods cannot be assessed retrospectively, data on early-life growth has been largely limited to birth cohorts that collect these measures prospectively at specific time points, or data abstracted from medical records. With the recent widespread adoption of electronic medical records,<sup>38</sup> children born in the past 10-15 years will be the first generation where growth data will be available across the life course and can be linked to later health outcomes.

Puberty is a critical window for breast cancer risk: Although contemporary cohorts with prospective infant growth measures have yet to reach the age when incident breast cancer can be directly studied as an outcome, studies can examine associations between early-life growth and breast cancer risk factors that can be measured earlier in the life course. Early age at menarche is a well-established risk factor for breast cancer.<sup>39,40</sup> Recently, the Breakthrough Generations Study of 104,931 women found that earlier age at breast development and longer time period between breast development and menarche, also known as slower tempo, were both independently associated with a 20-30% increased risk of breast cancer.<sup>41</sup> While age at menarche has been fairly stable over the past 50 years, age at breast development has decreased rapidly over this same time period, suggesting that the pubertal tempo in girls today is likely slower than in the past.<sup>42</sup> Puberty is a period of rapid growth and development for the breast, when ductal branching occurs and the terminal ductal lobular units (TDLUs) form, though they do not fully differentiate until pregnancy.<sup>43,44</sup> TDLUs are the milk-producing structure of the breast and the structure within the breast where most breast cancers originate.<sup>45,46</sup> The breast is more susceptible to carcinogenic effects from environmental exposures during these periods of rapid growth and development, termed windows of susceptibility for breast cancer risk.<sup>43</sup> Factors that accelerate the onset of breast development and slow the tempo of breast growth may elongate this pubertal window of susceptibility and increase the risk of breast cancer later in life.

Drivers of normal breast development are unknown: Although puberty is recognized as a critical period for breast development, few studies have examined trajectories of normal breast development in childhood and adolescence. While mammography is assessed on a population level in adult women of screening age, there is no imaging method that is used clinically in adolescents. Mammography is not used in adolescents due to the radiation exposure. Some studies are currently using alternate methods to assess breast tissue composition in adolescents, including dual energy X-ray absorptiometry (DXA),<sup>47,48</sup> magnetic resonance imaging (MRI)<sup>49</sup> and optical spectroscopy (OS).<sup>50</sup> Longitudinal studies using these technologies will provide novel insights into the variability of normal breast development and factors that influence breast development. However, these methods are not yet available on a widespread basis. Age at onset of breast development, age at menarche and the tempo between these two events are markers of breast development that can be measured non-invasively through parent or self-reports. Studies that identify drivers of normal breast development are needed both to understand the secular trends in pubertal timing, but also to identify early-life factors that may affect how the breast develops during this critical window of susceptibility, increasing vulnerability to carcinogenesis in adulthood. In addition, investigating the associations between early-life factors and repeated measures of blood biomarkers, such as insulin-like growth factor (IGF)-1 and insulin-like growth factor-binding protein 3 (IGFBP-3), which are associated with stages of breast development,<sup>51,52</sup> can implicate specific pathways through which early-life factors affect normal breast development and breast cancer risk.

Gene-environment interactions matter for etiology and prevention: Examining whether associations between early-life environmental factors vary across the spectrum of underlying susceptibility for breast cancer is critical for breast cancer etiology and primary prevention efforts. Women with a family history of breast cancer are at an increased risk of being diagnosed themselves, and this risk increases with the number of relatives affected and the younger those relatives were diagnosed.<sup>53</sup> Recently, we observed that girls at an increased risk of breast cancer due to their family history experience earlier breast development than girls without a family history.<sup>54</sup> If there is no heterogeneity by susceptibility based on absolute risk estimated by family history, then risk factors will still have a greater effect on an absolute scale in those with greater underlying risk,<sup>55,56</sup> and *girls and women at high risk need to know that the environment*  matters and that their risk can be modified. If there is heterogeneity, then identifying the context in which the early-life environment affects risk will allow for targeted prevention to those groups that will benefit most.

## 1.2 Dissertation overview

In this dissertation, we examine the contribution of maternal factors, body size at birth and infant growth to the timing of breast development and consider the implications of these findings in light of breast cancer risk on an individual level and future trends in breast cancer incidence on a population level. We hypothesize that maternal factors, including higher maternal pre-pregnancy BMI, excess gestational weight gain and physical inactivity during pregnancy, and rapid weight gain during infancy are associated with earlier breast development, independent of birthweight, and that these associations may be modified by underlying susceptibility. We examine these hypotheses in the following chapters:

In **Chapter 2**, we systematically review and synthesize the epidemiologic literature on the associations between maternal body size, birth size, and infant growth and the timing of breast development and menarche. In this chapter, we examine sources of heterogeneity in the literature and identify gaps that future research should address. The findings from Chapter 2 inform the background and methodology of the analytic chapters that follow, which seek to address some of the identified gaps in the literature.

In the analytic chapters, we utilize data from the LEGACY (Lessons in Epidemiology and Genetics of Adult Cancer from Youth) Girls Study, a prospective cohort of 1040 girls primarily ages 6-13 years at baseline that is enriched for breast cancer family history (BCFH),<sup>57</sup> in order to examine the associations between early-life factors and the onset of breast development overall and by BCFH. The LEGACY girls have been followed prospectively since 2011 with biospecimen, anthropometric and questionnaire data collected every 6 months and a 92% retention rate at the end of the first five years. Weight and height data prior to recruitment has been abstracted for 82% of the cohort from medical records.

In Chapter 3, we examine the association between maternal factors (including maternal prepregnancy BMI, gestational weight gain, and maternal physical activity during pregnancy), birth size

(weight and length at birth, adjusted for gestational age) and the onset of breast development in the LEGACY Girls Study. We also examine whether these associations are independent of childhood BMI and if they are modified by BCFH. The goal of this chapter is to identify modifiable factors during pregnancy that affect pubertal timing in order to inform primary prevention efforts.

In **Chapter 4**, we examine measures of infant size (weight and length prior to 12 months) and infant growth (rates of change in weight and length) and the onset of breast development in LEGACY girls. This chapter focusing on postnatal growth is a natural follow-up to Chapter 3, which focuses on factors that affect fetal growth. We also explore mediation by childhood body size and effect measure modification by BCFH. Few studies have examined the association between infant growth and breast cancer risk directly. By examining infant growth in relation to pubertal timing in girls with an increased risk of breast cancer due to their family history, the findings from this chapter may shed light on how infant growth may be associated with breast cancer risk.

In **Chapter 5**, we examine the association between the early-life exposures and serum levels of IGF-1 and IGFBP-3 during puberty in the New York site of LEGACY. The aim of this pilot study is to complement Chapters 3 and 4, which examined the maternal report of breast development as the outcome, by assessing whether maternal pregnancy factors, birth size and infant growth are associated with objectively measured biomarkers that are correlated with pubertal development.

In **Chapter 6**, we synthesize the findings of this dissertation and their contribution to our understanding of the pre- and postnatal periods as windows of susceptibility for breast development. We conclude with the implications of these findings for breast cancer risk, considering avenues for primary prevention. We also suggest areas for future research based on hypotheses generated from these findings.

# Chapter 2. Size and growth during early life and pubertal timing in girls: a systematic review

## ABSTRACT

<u>Background</u>: Earlier age at menarche is a well-established risk factor for breast cancer, and early age at breast development (thelarche) has recently been associated with breast cancer risk as well. Body size and growth in early life may be associated with pubertal timing, suggesting that these factors may also affect breast cancer risk. The majority of the literature examining early-life body size and pubertal timing focuses on birthweight and menarche, and findings have been inconsistent. Fewer studies have examined the associations between maternal body size and/or body size in infancy, in addition to birthweight, and age at menarche. More recently, this literature has expanded to include age at breast development and the time interval between breast development and menarche (pubertal tempo). The objective of this chapter is to systematically review studies that examine the association between at least one exposure of interest (maternal pre-pregnancy body mass index (BMI) or weight, gestational weight gain (GWG), birth weight or length and/or size or growth in weight or height during infancy) and at least one pubertal outcome (thelarche, menarche and/or tempo) in girls, and identify sources of heterogeneity in study-specific estimates that contribute to inconsistencies in the literature.

Methods: We conducted a systematic search of peer-reviewed studies in PubMed from 1970 through March 30, 2018 for original research articles published in English. We excluded studies if the study population included males and did not present sex-stratified results, the outcome was central or peripheral precocious puberty, the outcome was a pubertal event other than breast development, menarche or tempo between these two events, the exposure was body size or growth measured after 2 years of age, or the study population was comprised of children with conditions that would affect either pubertal development (such as endocrine disorders or precocious puberty) or early-life growth (such as pediatric cancers or autoimmune disorders). Multiple articles using data from the same study population were eligible for inclusion. Six studies of maternal pre-pregnancy weight or BMI, 1 study of GWG, 17 studies of birth size (weight or length), and 8 studies of size and/or growth during infancy were included in relation to age at breast development or pubertal tempo. For menarche, 14 studies of maternal size, 8 studies of GWG, 74 studies of birth size, and 18 studies of infant size and/or growth were included in the review.

Results: Higher maternal pre-pregnancy BMI was associated with earlier age at breast development in 4 of 5 studies, though 3 of these analyses were conducted within the same cohort, and higher pre-pregnancy weight was associated with earlier breast development in one study. Higher maternal pre-pregnancy BMI was associated with earlier age at menarche in 7 of 12 studies, as was higher maternal weight in 2 of 3 studies. Higher GWG was associated with earlier age at breast development in the one study that examined this association. Higher GWG was associated with earlier age at menarche in 3 studies that used multivariable-adjusted models, but not in 5 studies examining unadjusted associations. GWG in excess of the 2009 Institute of Medicine guidelines was also associated with age at menarche in two studies that used this categorization. The majority of studies examining birthweight or birthlength in relation to age at breast development were null, though 4 studies reported an association between lower birthweight and earlier breast development and 3 found the opposite. The results for birthweight and menarche were similar: 40 studies did not observe an association, 28 observed earlier menarche in girls with lower birthweight, and 5 observed earlier menarche in girls with higher birthweight. Most (11) studies of birthlength and menarche were also null, with 6 studies reporting contradictory results. Faster weight gain in infancy was associated with earlier age at breast development and menarche in 3 of 5 and 10 of 12 studies, respectively. Higher weight in infancy was also associated with earlier age at these pubertal events. Very few studies examined pubertal tempo as an outcome.

<u>Conclusions</u>: Studies suggest that higher maternal pre-pregnancy BMI, greater GWG and rapid postnatal weight gain are associated with earlier age at breast development and menarche with girls. There is insufficient data to determine if these exposures also affect pubertal tempo. The literature does not support an independent effect of birthweight on pubertal timing. Modifying weight gain prior to and throughout pregnancy in mothers and through infancy in their daughters may delay pubertal timing and potentially lower breast cancer risk in adulthood.

# 2.1 Background

Early age at menarche is a well-established risk factor for breast cancer.<sup>39,40</sup> Recently, the Breakthrough Generations Study of 104,931 women found that earlier age at breast development and a longer time period between breast development and menarche (slower tempo) were both independently associated with a 20-30% increased risk of breast cancer.<sup>41</sup> Since women recalled age at breast development in adulthood and breast cancer was then assessed prospectively, non-differential misclassification likely biased the results towards the null, suggesting that the true association may be even larger. While age at menarche has been relatively stable over the past 50 years,<sup>58,59</sup> age at breast development has continued to decline rapidly.<sup>60,61</sup> The correlation between age at menarche and age at breast development has also decreased over time,<sup>62</sup> suggesting that girls with an earlier age at breast development progress through puberty at a slower rate.<sup>42</sup> These secular trends, when considered in light of the associations observed in the Breakthrough Generations Study,<sup>41</sup> suggest future increases in breast cancer incidence. The identification of modifiable factors that affect pubertal timing, defined as age at breast development and/or age at menarche, may have important implications for altering breast cancer risk.

The secular decrease in age at breast development parallels the increase in childhood obesity, and overweight girls have an earlier age at breast development and menarche than girls who are not overweight prior to puberty.<sup>42</sup> Larger body size starting at birth and rapid postnatal growth patterns both track to larger body size prior to puberty.<sup>63–66</sup> Earlier age at breast development has also been observed, however, in populations with a lower prevalence of childhood obesity, such as Hong Kong,<sup>67</sup> suggesting that early-life growth may affect breast development independent of childhood body size. In addition, there have been secular changes in the early-life environment, including maternal body size and infant growth patterns,<sup>30,68</sup> which parallel the decrease in the age at breast development. The pre- and postnatal periods may be an effective period for intervention on modifiable factors such as physical activity during pregnancy, gestational weight gain (GWG) and weight gain during infancy, as pregnant women and new parents are regularly engaged with clinicians who are already monitoring maternal body size and behaviors and infant growth.<sup>69</sup> However, although many studies have examined the association between birthweight, a proxy for fetal growth,<sup>26</sup> and age at menarche, the direction of the association is not clear. While some have observed that girls with lower birthweight have an earlier age at menarche,<sup>70-72</sup> many did not observe an association<sup>73-75</sup> and a few observed the opposite - earlier age at menarche in girls with high birthweight.<sup>76,77</sup> Studies of birthweight and the onset of breast development are similarly inconsistent.73,75,78-80 Fewer studies have examined maternal body size and GWG or infant growth patterns in relation to pubertal timing, but these

studies suggest that higher maternal pre-pregnancy BMI,<sup>73,81,82</sup> increased GWG<sup>82,83</sup> and rapid postnatal weight gain<sup>72,73,75,77</sup> are associated with earlier age at breast development and menarche.

Since maternal body size and GWG are associated with size at birth,<sup>20</sup> which is correlated with infant growth,<sup>84</sup> it is extremely difficult to separate out the independent effects of these factors. Maternal body size may confound associations between birthweight and pubertal timing, while infant growth patterns could mediate or modify a birthweight effect. To illustrate the complexity of these relationships, **Figure 2.1** shows a directed acyclic graph (DAG) for a hypothesized causal structure between early-life body size measures during early life (including pre-pregnancy weight or BMI, GWG and birth size, indicators of the intrauterine environment, and size and growth during infancy) and pubertal timing in girls, can explore whether patterns of early-life growth are consistently associated with pubertal timing and may identify methodological differences across studies that explain the heterogeneity in study findings.

Although previous reviews have been published regarding early-life factors and puberty,<sup>85–89</sup> most have not been systematic in nature.<sup>86–88</sup> These reviews focused predominantly on menarche as a measure of pubertal development, even though menarche occurs on average two years after the onset of pubertal development in girls.<sup>90</sup> More studies examined age at menarche since timing of menarche can be reliably recalled into adulthood.<sup>91</sup> Recently, as birth cohorts have aged into adolescence and pubertal cohorts have been established, studies have begun to examine prospective measures of breast and pubic hair development as markers of pubertal onset.<sup>79,92,93</sup> Previously, data on early-life growth has been largely limited to birth cohorts that collect these measures prospectively at specific time points, or data abstracted from medical records. With the recent widespread adoption of electronic medical records, there is an increasing number of studies with early-life growth data that can be examined in relation to later health outcomes, such as pubertal timing.

This review will address these limitations of previous reviews by following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines<sup>94</sup> to systematically identify studies that examine at least one of the exposures of interest (maternal pre-pregnancy weight or BMI, gestational weight gain (GWG), birth weight or length and/or size or growth in weight or height during infancy) and at

least one pubertal outcome (thelarche, menarche and/or tempo) in girls and examine sources of heterogeneity in study-specific estimates that contribute to inconsistencies in the literature. Given the importance of early puberty to the risk of breast cancer<sup>41,95</sup> and other chronic diseases,<sup>96,97</sup> in addition to the psychological and behavioral consequences of early puberty in girls,<sup>98,99</sup> identifying modifiable factors that can delay pubertal onset is crucial to women's health.

#### 2.2 Methods

#### 2.2.1. Search strategy

We conducted a systematic search following the PRISMA guidelines<sup>94</sup> to identify studies that examined the association(s) between maternal pre-pregnancy weight or BMI, GWG, birth size and/or size or growth during infancy (from birth to age 2 years) and the timing of puberty in girls. **Appendix A** details the protocol for this systematic review. We included normal breast development, age at menarche, and the tempo between these two events as our pubertal outcomes of interest. We identified studies by a systematic search of peer-reviewed studies in PubMed through March 30, 2018. We used both MeSH terms and key words identified from the literature as search terms. We combined terms related to the pubertal outcomes (i.e. 'breast development' OR 'thelarche' OR 'menarche') with terms related to body size and growth ('weight' OR 'height' OR 'length' OR 'ponderal index' or 'body mass index' OR 'BMI' OR 'obese' OR 'obesity' OR 'overweight' OR 'adiposity' OR 'growth' OR 'weight gain' OR 'height gain') and time period of exposure ('mother' OR 'birth' OR 'maternal' OR 'prenatal' OR 'pregnancy' OR "in utero" OR 'fetal' OR 'infant' OR 'infant' OR 'infancy' OR 'postnatal' OR 'early life' OR 'early-life' OR 'childhood') using Boolean operators (see **Appendix A** for full list of search terms). We did not use any limits when conducting the search in PubMed to ensure that we would capture recent articles that had yet to be classified within PubMed.

# 2.2.2. Study selection

Original research articles published in English between January 1, 1970 and March 30, 2018 were eligible for inclusion. We chose 1970 as the lower limit for the review because the seminal paper by Marshall and Tanner describing the stages of pubertal development in girls was published in 1969.<sup>100</sup> I downloaded

the search results into a reference management software (Endnote X7) and removed duplicates. I screened titles and abstracts and identified articles that examined the association between at least one exposure of interest in relation to either normal breast development, menarche or tempo between these two events in girls for full-text review. We excluded studies published prior to 1970, reviews, editorials, letters or conference abstracts, animal studies, and case studies (defined as studies with a study population of 10 girls or less). We also excluded studies if: 1) the study population included males and did not present sexstratified results; 2) the outcome was central or peripheral precocious puberty (puberty before age 8 years in females); 3) the outcome was a pubertal event other than breast development, menarche or tempo (i.e. adrenarche, pubarche, pubertal growth spurt); 4) the exposure was body size or growth measured after 2 years of age; or 5) the study population was comprised of children with conditions that would affect either pubertal development (such as endocrine disorders or precocious puberty) or early-life growth (such as pediatric cancers, autoimmune disorders). We excluded studies of size or growth after 2 years of age because childhood body size has been consistently associated with age at breast development and menarche, and has been the subject of multiple review articles.<sup>89,101–104</sup> A second reviewer screened 10% of identified articles using the same inclusion and exclusion criteria to assess the reliability of the single reviewer. The agreement between the two reviewers was 98.5% (18 discrepancies/1241 screened titles/abstracts), and all discrepancies were resolved after discussion. Given this high-level of agreement, I independently reviewed the full-text articles for inclusion in the review. I also reviewed the reference list of included articles and relevant review articles published in the last 10 years to identify additional articles for inclusion. We did not exclude studies based on design or the type of results presented (i.e. inclusion was not limited to studies that presented multivariable-adjusted effect estimates) in order to present a comprehensive review of the literature and avoid bias towards the inclusion of articles that present non-null findings.

## 2.2.3. Data extraction

I extracted the following information for each exposure and outcome of interest from all studies that met the inclusion criteria: author(s), publication year, study design, study setting and time frame, sample size, age range of participants, exposure assessment (definition and source), outcome assessment

(definition and source), covariate information, statistical methods, and results (differences in means or proportions or effect estimates and confidence intervals). I extracted results from multivariable-adjusted models with and without adjustment for childhood body size when available; if multivariable-adjusted results were not available, I extracted differences in means or proportions or crude associations. I assessed the quality of included studies by using the NIH Quality Assessment Tool for Observational and Cohort Studies<sup>105</sup> and the Newcastle-Ottawa Scale (NOS) for cohort or case control studies.<sup>106</sup> I assessed cross-sectional studies using a modified NOS for cohort studies, considering adequacy of response rate instead of follow-up rate. The quality scores did not affect the inclusion of the articles in the review, but we considered them when interpreting the results of the review. Given the heterogeneity in exposure and outcome assessment, as well as the statistical methods used, we present a qualitative synthesis of the included articles and did not quantitatively combine the study results in a meta-analysis.

#### 2.3 Results

#### 2.3.1. Search results

This systematic search resulted in 12,413 articles, with an additional 5 articles identified by a manual search of the reference lists of included articles and recent review articles (see **Figure 2.2** for flow chart of study selection). After removing 6 duplicates, I identified 12,412 articles for screening. I excluded 12,227 articles after title and abstract review, leaving 185 articles for full-text review. After full-text review, I excluded an additional 89 articles, leaving 96 articles that met the inclusion criteria to be included in the qualitative synthesis. **Figure 2.2** lists the reasons for exclusion of articles after full-text review. The most common reason for exclusion was the lack of at least one of the early-life body size exposures of interest (i.e. body size was measured after 2 years of age only) or the use of a pubertal outcome other than breast development, menarche or tempo (i.e. pubarche or peak height velocity). Many of the 96 included articles examined more than one exposure and/or outcome of interest. Some of the articles were also conducted within the same study population (i.e. three articles used the (Avon Longitudinal Study of Parent and Children (ALSPAC)) cohort to examine maternal pre-pregnancy BMI and the age at breast development<sup>73,82,107</sup>). We included multiple articles from the same cohort since the articles differed in the

analytic techniques used or in the subset of the population included, which is informative in considering how these differences contribute to heterogeneity in the literature. In addition, there was significant heterogeneity in terms of the results presented. Null results were sometimes presented in the text only (data not shown), and some studies provided descriptive statistics only, particularly older studies. **Table 2.1** details the number of included studies per exposure-outcome association and includes a breakdown of the type of results included for each exposure and outcome assessed (text only, descriptive statistics, crude models, and adjusted models). We did not include tempo as a separate outcome category in **Table 2.1** since few studies examined this outcome; tempo results are included in the tables for breast development when presented. I extracted data from all studies, regardless of the type of results presented, and present this information in the supplemental tables. However, we will focus more on the papers that present multivariable-adjusted models in the text. We have organized the summary of the results by exposure, with the results for breast development presented first, followed by the results for menarche.

## 2.3.2. Maternal pre-pregnancy body size, gestational weight gain and breast development

#### Maternal pre-pregnancy weight or BMI

Six articles from four unique studies examined the association between maternal pre-pregnancy body size and the timing of breast development in their daughters (**Supplemental Table 2.1**).<sup>73,81,82,107–109</sup> Higher maternal pre-pregnancy BMI was associated with earlier breast development in daughters in four of the five articles.<sup>73,81,82,107</sup> Three of these analyses were conducted within the ALSPAC birth cohort,<sup>73,82,107</sup> which contributes to the consistency in this literature. Four of the five studies examining maternal pre-pregnancy BMI assessed the exposure as a categorical variable, defining maternal overweight and obese using BMI cut-offs of 25 and 30, respectively,<sup>73,81,107,109</sup> while one analysis assessed BMI continuously.<sup>82</sup> One study examined maternal pre-pregnancy weight as a continuous variable and also observed an association between higher weight and earlier breast development.<sup>108</sup> All studies assessed breast development using Tanner staging,<sup>100</sup> which was assessed repeatedly via parent- and self-report in the ALSPAC study<sup>73,82,107</sup> and via trained research staff<sup>109</sup> or physician<sup>81</sup> in two U.S. studies.

A cross-sectional study of Belgian girls in secondary school found that higher maternal prepregnancy weight was associated with earlier age of onset of breast development in unadjusted models (RR=1.013, 95% CI=1.006, 1.021).<sup>108</sup> In the ALSPAC cohort, daughters of overweight and obese mothers, as assessed by a pre-pregnancy BMI  $\geq$ 25, had an earlier age at transition to breast Tanner stage (TS)  $\geq$ 2 or  $\geq$ 3 after adjusting for other maternal characteristics (Difference in age at transition to TS $\geq$ 2= -0.4, 95% CI= -0.62, -0.25 for maternal overweight and -0.7, 95% CI=-1.00, -0.40 for maternal obesity compared with maternal BMI in the normal range).73 An additional study in ALSPAC that considered breast TS as an ordinal outcome also found an increased probability of being in a higher breast TS for daughters of overweight and obese mothers.<sup>107</sup> A more recent analysis of ALSPAC with follow-up extended through age 17 years also found an association between higher maternal pre-pregnancy BMI assessed continuously and earlier age at breast development in daughters in adjusted models. In addition, this study decomposed the total effect of pre-pregnancy BMI and found both a significant direct effect and an indirect effect through daughters' body size, while there was not an indirect effect via daughters' birthweight.<sup>82</sup> Using a retrospective cohort design using medical record data from Kaiser Permanente, Kubo et al also found that maternal overweight and obesity was associated with earlier age at breast TS≥2 in adjusted models, with partial mediation by daughters' pre-pubertal BMI (HR=1.39, 95% CI=1.30, 1.49 without daughters' BMI and HR=1.22, 95% CI 1.13, 1.31 with daughters' BMI in the model).<sup>81</sup> An earlier study by Kubo et al observed earlier breast development in daughters of mothers with a pregravid BMI ≥30 in unadjusted analyses, but the association was attenuated and no longer statistically significant after adjustment for race/ethnicity, household income and maternal age at menarche.<sup>109</sup> This study included only 386 girls and was likely underpowered in adjusted models.

# Gestational weight gain

Only one study in the ALSPAC cohort examined the association between GWG and daughters' age at breast development.<sup>82</sup> After adjusting for maternal pre-pregnancy BMI and other maternal characteristics, this study found that higher GWG was associated with earlier age at breast development ( $\beta$  for 1 kilogram increase in GWG=-0.28, 95% CI= -0.42, -0.14).<sup>82</sup> Similar to the models examining pre-pregnancy BMI, the association was partially mediated by pre-pubertal BMI, but there was no evidence of

mediation by birthweight. Analyses that examined the period of GWG were consistent with an inverse association in both early ( $\leq$ 18 weeks) and late ( $\geq$ 28 weeks) of pregnancy, while no association was observed with weight gain in mid-pregnancy.

# Summary

Overall, these studies consistently support an association between larger maternal pre-pregnancy body size and earlier breast development in their daughters. While daughters of underweight mothers did not have significantly different age at breast development compared with average-weight mothers in studies that examined this group separately,<sup>73,81,107</sup> the evidence suggests a linear trend overall between maternal pre-pregnancy body size and timing of breast development.<sup>73,81,82</sup> More studies are needed to replicate these findings, however, since five of the six articles are from the same two study populations. In addition, studies are needed that assess both maternal pre-pregnancy BMI and GWG separately and jointly in relation to age at breast development. For example, studies that examine GWG as inadequate, adequate or excessive based on pre-pregnancy BMI, such as using the classification of the 2009 Institute of Medicine (IOM) guidelines,<sup>110</sup> are directly relevant to clinicians and may inform the guidance that they give pregnant women regarding lifestyle modification and guideline adherence.

#### 2.3.3. Maternal pre-pregnancy body size, gestational weight gain and menarche

## Maternal pre-pregnancy weight or BMI

Fourteen articles examined the association between maternal pre-pregnancy body size and daughters' age at menarche, with 11 articles examining BMI,<sup>71,73,82,111–118</sup> two articles examining weight,<sup>75,108</sup> and one looking at both<sup>77</sup> (**Supplemental Table 2.2**). Three of these studies used data from the ALSPAC cohort,<sup>73,82,114</sup> four used data from various sites of the Collaborative Perinatal Project (CPP) cohort,<sup>77,113,115,116</sup> and two used data from the California Child Health and Development Studies (CHDS) cohort.<sup>77,112</sup> Age at menarche was reported during adolescence (age <18 years) in half of the included studies<sup>71,73,75,82,108,112,114,118</sup> and recalled in adulthood (age ≥18 years) in the other studies.<sup>77,111,113,115–117</sup> Most studies used pre-pregnancy weight measures reported by the mother during pregnancy. Higher maternal pre-pregnancy BMI or weight was associated with earlier age at menarche in daughters in nine of

the ten studies that used regression analyses.<sup>73,75,77,82,108,111,114,115,117,118</sup> Of the five studies that did not observe an association between maternal pre-pregnancy BMI and age at menarche, four were either based on descriptive statistics or stated the null results in the text only.<sup>71,77,112,116</sup> Windham et al observed a crude association between tertiles of maternal pre-pregnancy BMI and age at menarche, but the association was not statistically significant after adjustment for confounders including prenatal smoke exposure, maternal age at pregnancy, maternal age at menarche, maternal race, and other socioeconomic factors ( $\beta$ =-0.09, 95% CI=-0.34, 0.16 for BMI>26 compared with 20-26).<sup>113</sup>

Two studies observed a modest linear association between higher maternal pre-pregnancy weight and earlier age at menarche in unadjusted models.<sup>75,108</sup> Studies that assessed maternal BMI continuously also observed an inverse association with age at menarche. A follow-up of a Danish pregnancy cohort (recruited 1984-1987 in two Danish cities) observed a very modest association between age at menarche, reported to the nearest year only in approximately 50% of girls, and maternal pre-pregnancy BMI, equivalent to a decrease in age at menarche of 7.6 days for every one-unit increase in maternal pre-pregnancy BMI.<sup>117</sup> This association was attenuated after adjustment for daughters' BMI measured between 14-18 years of age (difference in days = 2.9, 95% CI=-4.3, 10.1), though BMI during this age range was likely measured after menarche for most girls. In the ALSPAC cohort of girls born 1991-1992, menarche occurred 3.4 months earlier for each one-unit increase in maternal pre-pregnancy BMI.<sup>82</sup> This study also found that the association was mediated by daughters' body size. Studies that examined maternal pre-pregnancy BMI as a categorical outcome were consistent with earlier menarche in daughters of overweight and obese mothers, though the categories used varied by study.73,111,114,115,118 In contrast to the studies looking at continuous exposures, adjustment for daughters' pre-pubertal BMI did not attenuate the association between maternal overweight (BMI>25) or maternal obesity (BMI≥30) and earlier menarche in two U.S. populations.<sup>115,118</sup> Daughters of underweight mothers did not have significantly later menarche than daughters of average-weight mothers in analyses that examined this category separately.<sup>73,82,111,119</sup>

# Gestational weight gain

Seven of the fourteen studies that examined maternal pre-pregnancy BMI also assessed the association between GWG and age at menarche (Supplemental Table 2.2).<sup>71,75,77,82,113,116,118</sup> One

additional study examined GWG and age at menarche in the Nurse's Health Study (NHS) II cohort, but did not present results for maternal pre-pregnancy weight.<sup>83</sup> Five of these studies reported no association between GWG and age at menarche, but none of these null studies used multivariable-adjusted models to estimate the association.<sup>71,75,77,113,116</sup> Three studies that did present multivariable-adjusted estimates, including adjustment for maternal pre-pregnancy weight or BMI, all observed an association between higher GWG and earlier age at menarche.82,83,118 In NHSII women whose mothers participated in the Nurses' Mothers' Cohort and recalled their GWG, GWG≥40 lbs, compared with the referent group of 20-29lbs, was associated with early menarche (<11 years) but not late menarche (>15 years).<sup>83</sup> The association was Ushaped - daughters of mothers who gained <10lbs were also more likely to have early menarche. Adjustment for daughters' childhood body size did not attenuate the associations between low or high GWG and age at menarche. Similar findings were observed in the National Longitudinal Survey of Youth (HR for menarche=1.12, 95% CI 1.00, 1.25 for >40lbs and HR=1.19, 95% CI 0.96, 1.47 for <10lbs compared with 10-40lbs).<sup>118</sup> In the ALSPAC cohort, GWG assessed continuously had an inverse linear relationship with age at menarche, with partial mediation by daughters' pre-pubertal BMI.<sup>82</sup> There was not strong evidence of heterogeneity by period of gestation, though the inverse association was statistically significant only for GWG in late pregnancy in analyses that examined multiple time periods of gestation.

Two studies also examined GWG in relation to the 2009 IOM guidelines, which defines inadequate, adequate and excessive GWG differently based on pre-pregnancy BMI. For example, women with a pre-pregnant BMI≥30 are recommended to gain 11-20lbs, while women with a pre-pregnant BMI of 18.5-24.9 are recommended to gain 25-35lbs.<sup>110</sup> In the National Longitudinal Survey of Youth, GWG adequacy was calculated as the ratio of GWG divided by the expected amount based on pre-pregnancy BMI and gestational age at delivery and categorized as inadequate (<88%), adequate (88-123%) or excessive (>123%) based on the percent of the expected weight gain based on 2009 IOM guidelines. In models examining these categories with relation to age at menarche, excessive GWG was significantly associated with earlier menarche compared with adequate GWG. The point estimate for the inadequate GWG group also suggested earlier menarche in this group, but the association was not statistically significant.<sup>118</sup> In the ALSPAC cohort, GWG in excess of the 2009 IOM guidelines was associated with a 24% decrease in the odds of late menarche (defined as >1 SD above the sample mean, or age >13.8 years, compared to

menarche within 1 SD of the sample mean), but was not significantly associated with early menarche (defined as >1 SD below the sample mean, or age <11.5 years). Inadequate GWG was associated with a 22% decrease in the odds of early menarche compared with daughters of mothers with adequate weight gain, but was not significantly associated with late menarche.<sup>82</sup>

#### Summary

Although there is slightly more heterogeneity in the literature examining maternal pre-pregnancy BMI and menarche compared to the breast development literature, this is likely due to differences in adjustment for confounders. Most studies that controlled for maternal confounders in multivariable-adjusted models consistently observed an inverse association between maternal pre-pregnancy BMI and age at menarche. Studies of GWG consistently observed an association between high GWG, or GWG in excess of guidelines, and earlier age at menarche. While some studies observed earlier menarche in daughters of women with low GWG, this could be due to residual confounding by maternal pre-pregnancy BMI. Additional studies examining the interaction between maternal BMI and GWG and categorizations based on guidelines are needed to disentangle these two effects. In addition, since high maternal BMI and GWG are associated with both breast development and age at menarche, studies are warranted to examine if these factors have independent effects on pubertal tempo.

#### 2.3.4. Birth size and breast development

#### Birthweight

Seventeen articles from sixteen unique studies assessed the association between birthweight and the timing of breast development (**Supplemental Table 2.3**).<sup>73,75,78–80,107,120–130</sup> Most studies used records of weight measured at birth, while three were based on parent recall of birthweight.<sup>80,123,126</sup> Breast development was assessed using TS, with 12 studies reporting breast TS as assessed by a clinician or trained research staff, 4 using parent or self-reports, and 1 study using the self-reported age at breast development as the outcome. Since studies differed in the assessment of breast development, I will consider studies of breast onset (TS≥2), later breast development (TS3-5) and pubertal tempo separately.

#### Onset of breast development

In the nine studies that examined the onset of breast development (TS≥2), six reported no association,<sup>73,80,123,124,126,128</sup> two observed earlier breast development in girls that were smaller at birth,<sup>78,127</sup> and one observed later breast development in girls that were smaller at birth.<sup>75</sup> In a study of 216 Indian girls born 1968-1971, Bhargava et al observed a median age at breast TS2 of 10.7 years in term girls with a birthweight <2000g who were small for date compared with 11.1 years in control girls with a birthweight ≥2500g.127 Another study of 38 full-term girls in Italy also observed earlier age at breast development in girls with a birthweight below the third percentile for gestational age compared with girls with a birthweight between the 25<sup>th</sup> and 75<sup>th</sup> percentiles (9.9 vs 10.4 years, respectively).<sup>78</sup> However, neither study reported a test of statistical significance for this difference. A UK study of 69 girls with very low birthweight (defined as <1251g or <1501g and gestation<31 weeks) did not observe a difference in the number of girls with TS≥2 or median TS in adolescence compared with 81 normal birthweight controls, though the low birthweight girls in this study were all preterm.<sup>128</sup> In full-term girls in ALSPAC, neither birthweight measured continuously nor small for gestational age (SGA), defined as birthweight<10<sup>th</sup> percentile of gestational age, were significantly associated with age at breast development, though the point estimate for SGA was in the direction of earlier breast development (Diff= -0.23, 95% CI= -0.55, 0.09). Two studies in the U.S., a crude model in the BCERP pubertal cohort and a model adjusted for childhood body size in NHANES, did not observe an association between birthweight<2500g and age at breast development.<sup>80,126</sup> The only study that observed an inverse linear association between birthweight and breast development (earlier age in term girls of higher birthweight) presented results that were adjusted for weight gain in infancy and childhood.75

#### Later stages of breast development

In the eight studies that examined later stages of breast development, four were null,<sup>79,107,120,130</sup> two observed more advanced breast TS for age in smaller girls,<sup>121,122</sup> one observed more advanced breast TS at 14 years of age in higher birthweight girls,<sup>129</sup> and one observed a U-shape association between birthweight and breast TS.<sup>80</sup> Two studies of 35 and 29 girls, respectively, in the Netherlands observed a trend of lower chronological age adjusted for mean pubertal age in girls with lower birthweight, suggesting

a more advanced breast TS at a given age.<sup>122,131</sup> Given the small sample size in these studies, the associations observed could be due to chance. Two additional small studies of extremely low birthweight infants also did not observe a difference in the proportion of girls at higher TS compared with normal weight infants.<sup>120,130</sup> In a study of 130 Cuban adolescents that weighed at least 1500g at birth, a positive correlation was observed between birthweight and breast TS at 14 years of age, suggesting earlier maturation in higher birthweight girls.<sup>129</sup> A study of 956 girls age 8-11 years using NHANES, which did not observe an association with birthweight when comparing breast TS2 with TS1, observed a U-shape association between birthweight of 2500-2999g were more likely to be in TS3-5 (OR=3.28, 95% CI=0.99, 7.32), as were girls with a birthweight and BMI. The U-shape suggests that postnatal growth patterns may modify the association between birthweight and BMI. The U-shape suggests that postnatal growth patterns may modify the association between birthweight and breast TS did not differ between girls with a birthweight <2500g, 2500-3999g or ≥4000g in models with and without adjustment for childhood BMI.<sup>107</sup> Birthweight, assessed continuously, was also not associated with breast TS in the Vulnerable Windows Cohort Study.<sup>79</sup>

#### Pubertal tempo

Two studies examined whether pubertal tempo differed in girls born SGA or with very low birthweight compared with appropriate for gestational age (AGA) or normal birthweight girls. There was no difference in the time interval between breast development and menarche in 116 girls born <2000g in New Delhi compared with 100 full-term girls with birthweight ≥2500g.<sup>127</sup> However, a study of 16 SGA and 25 AGA girls in Chile observed slightly faster progression through breast TS during two years of follow-up in the girls born SGA.<sup>125</sup>

#### Birthlength

Three studies examined the association between birthlength and the timing of breast development.<sup>73,79,124</sup> Birthlength was either measured at birth by study personnel or abstracted from medical records and assessed continuously in each study. Birthlength was not associated with timing of breast

development in any of the studies, with the outcome defined as breast TS at 11 years of age,<sup>79</sup> age at transition to breast TS 2 or 3,<sup>73</sup> or breast development between 8 and 9 years of age compared with greater than 9 years.<sup>124</sup>

#### Summary

Overall, there was no consistent pattern between birthweight and the timing of breast development. The studies that observed earlier breast development in low birthweight girls could be due to chance, given the small size of these studies (<150 girls).<sup>78,127</sup> However, these studies also compared girls that weighed either <2000g at birth or had a birthweight below the 3<sup>rd</sup> percentile for gestational age, representing the extreme low of the distribution, compared with normal birthweight or AGA girls. It may be that girls that are extremely low birthweight and/or preterm experience earlier breast development. However, studies with increased statistical power to study intrauterine growth restriction are needed to assess whether there is a threshold effect in the tail of the distribution. In general, studies that were not selected for low birthweight do not support an association between birthweight also do not support an association to birthweight also do not support an association with age at breast development.

#### 2.3.5. Birth size and menarche

# Birthweight

Seventy-three articles examined the association between birthweight and age at menarche, though several studies resulted in multiple included publications (i.e. three papers used the ALSPAC cohort, two papers used NHANES data, etc) (**Supplemental Table 2.4**). The majority of the studies assessing the association between birthweight and age at menarche were conducted in prospective cohorts (N=49), but we also identified 17 cross-sectional studies, 2 retrospective cohorts, 1 nested case-control study and 3 twin studies. Birthweight was measured prospectively or abstracted from records in 62% of studies, while the remainder relied predominately on parent recall. The majority of studies used self-reports of age at menarche from adolescent girls, while 14 studies used recalled age at menarche from adult participants. Overall, the results of these studies were not consistent. More than 50% of studies did not observe a

statistically significant association between birthweight and age at menarche. Of the studies that did observe an association, most observed earlier age at menarche in girls with lower birthweight, but a few observed an association in the opposite direction. Given the heterogeneity of this literature, particularly in terms of birthweight measures and analytical approaches used, I will briefly review studies presenting descriptive or crude analyses only and focus more on studies that presented multivariable-adjusted estimates of the effect of birthweight on age at menarche, particularly studies that reported results with and without adjustment for postnatal size or growth.

#### **Descriptive statistics**

In the twenty-five studies that presented descriptive statistics only (predominantly mean age at menarche by birthweight category), fifteen did not observe a significant association between birthweight and age at menarche.<sup>112,115,128,132–143</sup> Seven studies observed an earlier age at menarche in girls with lower birthweight, 35, 78, 118, 120, 144-146 though five of these studies did not present a test of statistical significance for the observed difference. The lowest mean birthweight was observed in girls with menarche before 12 years of age in a subset of women born in 1947 in the Thousand Families in Newcastle upon Tyne study.<sup>144</sup> Similar patterns were also observed in the ALSPAC cohort and the National Longitudinal Study of Youth Children and Young Adult survey of girls born in the late 1980s and 1990s.<sup>35,118</sup> Studies in Canada, the U.S. and Italy observed an earlier mean age at menarche in low birthweight or SGA girls compared with normal birthweight or AGA girls;<sup>78,120,145</sup> the observed differences were approximately 6 months or less. A study in monozygotic twins who suffered from twin-to-twin transfusion syndrome (TTTS) in utero, leading to large birthweight differences in co-twins, found that the twin with lower birthweight experienced menarche at an earlier age than her co-twin in 77% of pairs (10/13), with almost a year difference in median age between the lower and higher birthweight twin.<sup>146</sup> Although twin studies control for genetics and shared environment by design, twins exposed to TTTS are not representative of the general population. Three studies reported a later age at menarche in girls with lower birthweight. In a small Danish study, average age at menarche was 6 months later in 34 girls with birthweight <2000g compared with 31 girls born fullterm with a birthweight between 3000-4000g.<sup>147</sup> In a follow-up study of 39 very low birthweight (<1000g), 42 low birthweight (1000-1499g) and 16 normal birthweight (≥2499g) infants in Australia at 14 years of age,

Ford *et al* observed that 15% of girls born<1000g were still pre-menarcheal at 14 years of age, compared with 6% of normal birthweight girls.<sup>130</sup> However, a p-value was not provided for this difference and all low birthweight girls were post-menarche, so the difference is likely due to chance.<sup>130</sup> A cross-sectional study of Greek adolescents reported a significant association between birthweight and age at menarche, with a later age at menarche in girls with a birthweight below 2500g;<sup>148</sup> however, this was limited to one of two regions, neither of which had a consistent pattern. Six studies reported no association between birthweight and age at menarche in the text only (data not shown).<sup>123,149–153</sup>

#### Unadjusted or age-adjusted models only

Nine studies presented crude or age-adjusted analyses only examining birthweight and menarche; of these, six were null,<sup>79,114,154–158</sup> two observed an earlier age at menarche in lower birthweight girls,<sup>127,159</sup> and one observed a later age at menarche in lower birthweight girls.<sup>160</sup> Bhargava *et al* found that the median age at menarche was earlier in Indian girls with a birthweight <2000g compared with girls with a birthweight ≥2500g; the difference was 6 months earlier in girls <2000g born pre-term and 12 months earlier in girls born full-term.<sup>127</sup> Median age at menarche was approximately 8 months earlier in girls in the lowest tertile of birthweight (<3200g) compared with the highest tertile (≥3700g) in a Norwegian cohort. In contrast, girls born at <2500g had later age at menarche than girls with a birthweight ≥2500g in a cross-sectional study in Poland.<sup>160</sup> In this same study, there was not a significant difference in age at menarche when size for gestational age (SGA, AGA and large for gestational age (LGA)) were examined instead of birthweight. Among the null studies, three did not observe a significant correlation between birthweight and age at menarche,<sup>79,156,158</sup> and two observed no difference in mean birthweight between pre-menarcheal and menarcheal girls, controlling for age.<sup>155,157</sup> There was also no association between continuous birthweight and odds of menarche by age 11 years in the ALSPAC cohort.<sup>114</sup>

#### Multivariable models without adjustment for postnatal size

Twelve studies examined the association between birthweight and age at menarche in study populations born in the 1950s through 2000s using multivariable models that did not adjust for postnatal body size. Six studies observed earlier age at menarche in girls with lower birthweight<sup>70,71,161–164</sup> and six did

not observe a significant association.73,74,125,165-167 No studies observed a later age at menarche in low birthweight girls in confounder-adjusted models. Studies that did not observe an association between continuous measures of birthweight and menarche include analyses in larger cohorts such as ALSPAC in the U.K.<sup>73</sup> and the Young Lives cohort in India, Peru and Vietnam,<sup>167</sup> along with analyses of several hundred girls in NHANES<sup>74</sup> and Kaiser Permanente Hawaii<sup>165</sup> in the U.S. Small studies examining SGA girls in Chile<sup>125</sup> and very low birthweight girls in Finland<sup>166</sup> also did not find significant differences in age at menarche, adjusting for gestational age. In full-term, singleton girls in the Young-HUNT Study in Norway, girls in the highest quintile of birthweight had a later age at menarche than girls in the lowest quintile (p for trend=0.03).<sup>70</sup> This pattern was similar in models adjusting for gestational length, maternal age at menarche and parental height and weight. Birthweight below 2500g was associated with increased odds of menarche before age 11 years, controlling for early-life factors including prematurity, in women in the Sister Study, a cohort of women with a sister affected with breast cancer.<sup>161</sup> The Millennium Cohort Study in the U.K. also found, using a continuous measure of birthweight, that girls with lower birthweight had increased odds of menarche by age 11 years, controlling for income and ethnicity.<sup>164</sup> A small study of 58 South Asian women in central London also found lower birthweight to be associated with earlier age at menarche, adjusting for gestational age and first-generation migrant status.<sup>163</sup> In the Raine cohort in Western Australia, girls with an expected birthweight ratio (EBW), a measure of birthweight adjusted for maternal age, height, parity, sex and gestational age, below the median had a significantly earlier menarche than girls with an EBW above the median.<sup>71</sup> Sorensen et al examined the association between birthweight standardized for gestational age and age at menarche using both marginal models to measure population-level effects and paired analyses to measure within-family effects in Danish twins.<sup>162</sup> Interestingly, lower birthweight for gestational age was associated with earlier age at menarche in marginal models, but being the smaller twin was not associated with earlier age at menarche in within-twin comparisons. The within-pair associations were also null when limited to monozygotic twins and twins with a large birthweight difference (>1 or >2 SDS), which differs from the study of 13 twin sets with a large birthweight difference due to TTTS discussed above.<sup>146</sup> The authors suggest, given the differences between the marginal and paired analyses, that the association between low birthweight and early menarche is driven by factors shared by twins, which could be genetic or environmental, and is not by non-shared factors such as intrauterine nutritional factors.<sup>162</sup>

Multivariable models with adjustment for postnatal size

Twenty-four articles examined the association between birthweight and age at menarche while controlling for at least one measure of postnatal size or growth, which may mediate or moderate an association between birthweight and menarche. Fourteen articles observed a significant association between lower birthweight and earlier age at menarche while controlling for later growth,<sup>34,71,72,164,167–176</sup> four reported later age at menarche in girls with lower birthweight,<sup>75–77,177</sup> and six did not observe a significant birthweight generally controlled for measures of body size in childhood or adolescence. In a cross-sectional study of Polish adolescents, girls born SGA were 2.5 times more likely to have reached menarche by age 14 years than AGA girls, adjusting for body size at 8 years.<sup>173</sup> The Millennium Cohort Study in the UK also observed increased odds of menarche by age 11 years in girls with lower birthweight, on in an Australian cohort,<sup>171</sup> one in the Philippines,<sup>72</sup> and one in a cohort of girls from Vietnam, Peru and India,<sup>167</sup> using Cox proportional hazard models, which controlled for BMI at age 8-9 years, BMI at 8 years and change in BMI and height Z-scores from 1-8 years, respectively.

In studies that used linear regression models to examine associations between continuous measures of birthweight and age at menarche, a one kilogram increase in birthweight was associated with a delay in age at menarche of 2-6 months, controlling for body size in childhood or adolescence.<sup>168,170,174,176</sup> The pattern was similar in studies that assessed birthweight in categories. In the DONALD study in Germany, girls with a birthweight between 2500-3000g experienced menarche 8 months earlier than girls with a birthweight >3000g after controlling for pre-pubertal BMI. In French women in the E3N cohort, girls with a birthweight >4000g had menarche 1.5 months later, on average, than girls with a birthweight <2500g, controlling for body silhouette at menarche, physical activity in adolescence and many early-life confounders.<sup>169</sup> Several studies also suggested that the earliest age at menarche occurred in girls who were light at birth, but heavier than their peers by childhood.<sup>71,176</sup> However, in the Newcastle Thousand Families study, girls who were youngest at menarche were born heavy for their gestational age and were

heavy at age 9 years, and the group with the latest age at menarche were also heavy for their gestational age and were light for their age at 9 years.<sup>177</sup>

However, six studies controlling for later growth did not observe a significant association between birthweight and menarche, though the point estimates were consistent with earlier menarche in lower birthweight girls in four of these studies.<sup>165,178–180</sup> In NHANES, point estimates suggested that both girls with birthweight <2500g and those with birthweight >4000g had earlier age at menarche than girls with normal birthweight ( $\beta$ =-0.24, 95% CI=-0.60, 0.12 and  $\beta$ =-0.32, 95% CI=-0.68, 0.03 for low and high birthweight, respectively) controlling for BMI-for-age percentile at age 8-15 years. Higher birthweight was also associated with earlier age at menarche in the New York site of the CPP controlling for changes in height and weight from birth to 7 years, though this association was limited to girls with a BMI below the median at age 7 years.<sup>116</sup> Higher birthweight was associated with earlier age at menarche in the North Carolina Infant Feeding Study as well, but only after controlling for changes in BMI Z-score from birth to 5 years of age.<sup>75</sup>

Studies that reported contradictory findings depending on the adjustment factors are particularly useful in understanding heterogeneity in the literature. For example, Cooper *et al* found a positive relationship between birthweight and age at menarche using adolescent follow-up data from the 1946 British Birth Cohort. Adjusting for height and weight at age 7 years, the girls with the lowest birthweight who became heavy by 7 years had the earliest age at menarche.<sup>172</sup> In another analysis of the same cohort, followed up to age 48 years, dos Santos Silva *et al* did not observe a significant crude association between birthweight (HR=0.96, 95% CI 0.87, 1.05).<sup>76</sup> After controlling for height growth in infancy, the association between birthweight and menarche reversed direction (HR=1.17, 95% CI=1.06, 1.36), leading the authors to conclude that menarche occurred earlier in girls with a higher birthweight for a given rate of postnatal growth. Similarly, birthweight was not associated with age at menarche in crude models in an adult follow-up of women born in the 1960s in the CHDS and CPP.<sup>77</sup> After controlling for postnatal changes in percentile rank change in weight from birth-4 years, birthweight was positively associated with age at menarche (HR=1.78, 95% CI 1.11, 2.85). However, when the authors controlled for conditional measures

of postnatal weight gain, which are not correlated with birthweight, the birthweight association was again null (see **Table 2.2** for an overview of different methods for modeling infant growth). Overall, the lack of consistency in the association between birthweight and menarche suggests that the association could actually be driven by postnatal growth patterns. Disentangling pre- and postnatal growth effects are challenging since they are naturally correlated, though the degree of statistical correlation depends on how these exposures are measured and modeled.

#### Birthlength

While more than 70 studies examined the association between birthweight and age at menarche, only studies birthlength. 17 of these also assessed Of these, 11 reported no association,<sup>35,70,73,77,79,116,140,154,158,162,178</sup> 3 observed earlier age at menarche in girls who were shorter at birth<sup>108,159,170</sup>, and 3 observed later age at menarche in girls who were shorter at birth.<sup>72,169,175</sup> In birth cohorts from Switzerland,<sup>158</sup> New Zealand<sup>140</sup> and the U.K.,<sup>35</sup> mean birthlength did not differ by age at menarche. There was no correlation between birthlength and menarche in a Jamaican birth cohort<sup>79</sup> or in a Danish twin study.<sup>162</sup> Quintiles of birthlength were not associated with age at menarche in a Norwegian birth cohort.<sup>70</sup> Continuous measures of birthlength were also not associated with age at menarche in confounderadjusted models in the ALSPAC cohort<sup>73</sup> or in models adjusted for birthweight and measures of postnatal growth in height and weight in analyses in adult follow-ups of two U.S. birth cohorts.<sup>77,116</sup> Age at menarche was not significantly different in girls born short or tall for gestational age, adjusted for maternal factors and postnatal growth in a Swedish study.<sup>178</sup> This was consistent with a study in Bangladesh which assessed relative size as an exposure and did not find a significant difference in babies classified as small compared with those born normal or tall.<sup>154</sup>

Birthlength was positively associated with age at menarche in a cross-sectional Belgian study when unadjusted for confounders.<sup>108</sup> A positive association was also observed in a Norwegian cohort of girls born in the 1980s, where the median age at menarche was 13.33 years for girls with a birthlength  $\geq$ 51cm and 12.50 years for girls with a birthlength <49cm.<sup>159</sup> Although the medians were unadjusted, the authors noted that adjustment for potential confounders did not substantially affect the results. In European adolescents, birthlength was also positively associated with age at menarche, but only after controlling for BMI Z-score

in adolescence.<sup>170</sup> In contrast, three studies observed negative associations between birthlength and age at menarche in models that also controlled for birthweight. In the E3N cohort of more than 96,000 French women, girls with a birthlength >51cm experienced menarche 1.8 months earlier than girls with a birthlength <48cm, controlling for birthweight and other pre- and postnatal exposures.<sup>169</sup> Higher birthlength was also associated with earlier age at menarche, adjusting for birthweight, gestational age and maternal characteristics, in a birth cohort in the Philippines (HR per 1 cm increase=1.08, p<0.01).<sup>72</sup> However, there was an interaction between birthweight and birthlength, both dichotomized at the median. Compared to girls who were short and heavy at birth, the earliest age at menarche was observed in girls who were long and light (adjusted HR=1.54). A similar pattern was observed in an Australian cohort. Although neither weight nor length at birth were individually correlated with age at menarche, girls who were long and light experienced menarche one year earlier, on average, than girls who were short and heavy, adjusted for BMI Z-score in childhood.<sup>175</sup>

# Summary

Overall, neither birthweight nor birthlength were consistently associated with age at menarche. Comparisons across studies is limited by differences in exposure assessment, including whether or not size at birth is adjusted for gestational age, and differences in adjustment factors and analytic techniques. Although there was heterogeneity in birthweight findings across each analytic group considered (descriptive statistics only, unadjusted associations, and multivariable associations with and without adjustment for postnatal growth), the majority of studies that controlled for measures of body size in childhood or adolescence observed associations between lower birthweight and earlier age at menarche. This suggests that growth patterns between these two time periods may contribute to the observed association, but studies that controlled for infant or early childhood growth patterns did not observe a consistent birthweight finding. Studies that examine the interaction between birthweight and postnatal growth patterns can determine whether different trajectories of growth in early life are associated with differences in age at menarche.

# 2.3.6. Size and growth during infancy and breast development

Eight prospective cohort studies examined the association between measures of either size or growth between birth and 2 years of age and the timing of breast development (**Supplemental Table 2.5**).<sup>73,75,79,92,182–185</sup> All studies assessed the exposure using prospectively collected anthropometric measures, either by trained study personnel or via a link to medical records. Four studies examined the age at breast development as the outcome,<sup>73,75,92,184</sup> while the other 4 studies examined breast TS at a specific age or study visit.<sup>79,182,185,186</sup> One study examined the tempo of breast development in addition to age at onset.<sup>184</sup> Breast TS was assessed by a physician or trained staff in most studies, while two used parent- and/or self-reports of breast TS.<sup>73,75</sup> Given the heterogeneity in exposure assessment, we will briefly summarize the results of each study.

#### Measures of size (weight, BMI or height) at specific time points

Four studies examined the association between measures of size (height, weight or BMI) at specific time points during infancy and timing of breast development. BMI at 1 year of age was positively correlated with breast TS (r=0.43) in high school students in Cuba, all of whom had a birthweight ≥2500g at birth and were TS 3, 4, or 5 at the study visit, suggesting that girls with a larger body size at 1 year reached advanced TS at an earlier age than girls who were smaller in infancy.<sup>182</sup> Using a mixed measures model of repeated measures of Z-scores in weight, height, or BMI from birth to 5 years of age in Turkish girls, Aydin et al observed that girls with breast development at age 6-9 years of age had a higher weight and BMI Z-score than girls without breast development starting at 9 months, but this difference was only statistically significant at 18 months of age and at the study visit. In contrast, height Z-score was only significantly different in girls with and without breast development at the study visit.<sup>185</sup> In a U.S. cohort, German et al observed inverse correlations between height and BMI Z-scores and age at breast development at 15 months of age, but the correlation for BMI Z-score did not reach statistical significance until 36 months of age.<sup>184</sup> This study also examined the progression of breast development, and did not observe an association with either height or BMI at any age. One study in Senegal compared breast TS in adolescence by stunting status in infancy, with stunting defined as at least one length measure <2 Z-scores based on World Health Organization (WHO) reference data between 6-18 months of age. This study did not observe a significant difference in the distribution of breast TS by stunting status,<sup>183</sup> though the growth patterns and

pubertal timing are likely different in this Sengalese population than in the other study populations examined, which were less likely to be malnourished.

Measures of growth (Change in weight, height or BMI)

Four studies examined the association between measures of growth (change in height, weight or BMI between two time points) in multiple time windows and the timing of breast development. In Jamaican girls, Boyne et al looked at the correlations between growth in height, weight and BMI from 0-6 months and 6 months-2 years and breast TS at 11 years of age. For each exposure, growth was defined as the amount that the size at the end of the time interval exceeded the size that would have been predicted by linear regression using the size at the beginning of the interval. The correlation coefficient was positive, suggesting earlier maturation, for weight, BMI and height gain and breast TS in each interval (range 0.02-0.15), but none of these correlations were statistically significant.<sup>79</sup> Maisonet et al examined the association between growth in weight and BMI, defined by changes in weight or BMI Z-scores, from 0-2 months, 2-9 months and 9-20 months in the ALSPAC cohort. Although the point estimates differed slightly depending on whether the analysis also controlled for birthweight and growth in other time periods or whether the outcome was breast TS  $\ge 2$  or TS  $\ge 3$ , the inference was consistent with earlier age at breast development in girls with faster gain in weight or BMI in infancy.<sup>73</sup> These results were consistent with those in the North Carolina Infant Feeding Study, which found that faster weight gain from 0-6 months, 6-12 months and 1-2 years was also associated with earlier age at breast development,<sup>75</sup> and the Turkish cohort, which found that girls with breast development at ages 6-9 years of age were more likely to have experienced rapid weight gain from 6-15 months of age than girls without breast development.<sup>185</sup>

In the "Children of 1997" birth cohort in Hong Kong, the authors used latent class analyses to classify girls into 5 growth trajectories based on their birthweight and weight gain in the first year of life. Compared with girls with an average birthweight and stable weight gain in the first year, girls with below average birthweight and slow infant weight gain had later age at breast development (Time ratio (TR)=1.02, 95% CI=1.01, 1.03). The association was attenuated after adjusting for BMI in childhood and reversed direction with additional adjustment for height in childhood (TR=0.98, 95% CI=0.97, 0.99), which the authors attribute to the tendency of girls in this trajectory to be shorter and thinner throughout childhood.<sup>92</sup> While

this article supports an overall association between infant growth and breast development, the association from the mediator model is difficult to interpret. If there is interaction between infant growth and BMI or height in childhood, then the controlled direct effect differs depending on the level of the mediator.<sup>187</sup> In the case of infant growth and childhood BMI or height, the association between slow weight gain and age at breast development may differ for girls that catch up in height or BMI after infancy compared with those that remain shorter and thinner, and studies should examine this potential interaction.

# Summary

Overall, these studies support that the rate of growth in weight or BMI during infancy is associated with the timing of breast development. Girls with rapid gain in weight or BMI at any point during the first two years of life experience earlier breast development than girls with stable or slow growth. These findings are also consistent with the studies of size, which suggest that girls with a higher BMI by late infancy mature earlier than girls with a lower BMI, and suggest a similar association with height in infancy. In comparison with the birthweight literature, rapid weight gain during infancy is a more consistent predictor of earlier breast development than small size at birth.

#### 2.3.7. Size and growth during infancy and menarche

Eighteen studies examined the association between measures of size or growth during infancy and age at menarche (**Supplemental Table 2.6**);<sup>34,35,71–73,75–77,79,116,158,167,183,184,188–191</sup> two of these studies were both conducted within the ALSPAC cohort.<sup>35,73</sup> Fourteen of these studies collected age at menarche information in adolescence, while three used self-reports of age at menarche from adult participants and a one study used a mixture of reports in adolescence and in adulthood. The majority of studies looked at measures of both height and either weight or BMI in infancy. Six studies reported measures of size only, while 12 studies looked at measures of growth, sometimes in addition to size. Generally, most studies examined size measures using descriptive statistics, while growth measures were examined more often using multivariable-adjusted models.

Weight or BMI at specific time points

Twelve studies compared measures of weight or BMI during infancy in relation to age at menarche. BMI at 1-2 years of age and BMI Z-score at 15 months were not significantly correlated with age at menarche in two studies, respectively; however, the correlation coefficients were both inverse and similar to each other in magnitude.<sup>184,188</sup> In the Young Lives cohort, menarcheal girls had a significantly higher average BMI Z-score at 1 year of age than pre-menarcheal girls.<sup>167</sup> However, several other studies did not observe an association between BMI at 1 year<sup>71,158</sup> or 2 years<sup>76,189</sup> and age at menarche.

Studies that looked at multiple measures of weight in infancy tell a more consistent story. In the ALSPAC cohort, there was no difference in weight by age at menarche at 2 months of age, but by 9 months of age girls with menarche before age 12 had significantly higher weight, and this difference was even larger for weight at 19 months (similar results were also observed for BMI).<sup>35</sup> A similar pattern was observed in the North Carolina Feeding study and the Birth to Twenty cohort in South Africa, where differences in weight-for-age by age at menarche began to emerge by 1 year of age,<sup>75,191</sup> though in the South African cohort these trajectories converged again by 4 years of age.<sup>191</sup> Higher weight-for-age Z score (and weight-for-height Z-score) at 19.4 months was also associated with an increased risk of menarche before 12 years of age in the Pelotas birth cohort, adjusting for early-life confounders.<sup>190</sup> Finally, two studies examined the mean weight at 4 months and 12 months of age by menarche status at 12 years of age. In the New York site of CPP, there was no significant difference in weight at either age by age at menarche.<sup>116</sup> In an analysis of the New England CPP and the CHDS studies, girls with menarche before age 12 had a higher mean weight at both time points, but a test of statistical significance was not provided.<sup>77</sup> These studies are not consistent in identifying specific time points when higher weight is associated with age at menarche, but they suggest that girls with higher weight or BMI by late infancy may have an earlier age at menarche.

#### Growth (change in weight or BMI)

Twelve studies assessed the association between weight or BMI gain during infancy and age at menarche.<sup>34,35,72,73,75–77,79,116,158,190,191</sup> Ten of the twelve studies observed that faster growth in weight or BMI during at least one time period in infancy was associated with earlier age at menarche in girls. Fast growth from birth to 1 year, defined as a weight or length increment above the sample median, was associated with earlier age at menarche in girls.<sup>72</sup>

Although the earliest age at menarche was observed in girls who were long and light at birth and experienced fast growth in infancy, girls with fast growth had an earlier age at menarche than girls with slow growth within each birth size category. The exception was girls who were short and heavy at birth - the group with the latest age at menarche overall. In the Birth to Twenty cohort, girls with rapid weight gain from birth to 1 year, defined as gain in weight Z-score >0.67, also had an earlier age at menarche compared with girls with slow growth, defined as a change in weight Z-score <-0.67 (12.5 vs. 13.1 years, respectively), which persisted after adjustment for early-life confounders.<sup>191</sup> Three studies that assessed growth from between birth and 2 years had similar inference. Girls in the highest tertile of BMI change from 0-2 years had an earlier age at menarche compared with girls in the lowest tertile in the 1946 British birth cohort, controlling for birthweight, infant and childhood growth in height and BMI rate in childhood; there was no evidence of effect modification by birthweight.<sup>76</sup> Rapid weight gain from 0-2 years, defined as >0.67 change in weight Z-score, was associated with earlier age at menarche compared with a change of ≤0.67 in girls from the DONALD cohort.<sup>34</sup> In this study, there was a significant interaction with birthweight, and girls with a birthweight between 2500-3000g who also experienced rapid infant weight gain experienced the earliest age at menarche. Rapid weight gain from 0-19.4 months was also associated with earlier age at menarche in the Pelotas Birth cohort; while the association was observed across birthweight tertiles, the risk of early menarche was highest in girls who were small at birth and experienced rapid weight gain in infancy.<sup>190</sup>

For studies that examined multiple windows of growth between birth and 2 years, associations were generally inverse, with some differences depending on the window of exposure. In an analysis of the ALSPAC cohort which examined age at menarche (<12, 12-13, and >13 years) as a continuous outcome, rate of weight gain from 0-2 months and 2-9 months were significantly associated with earlier menarche, controlling for maternal smoking during pregnancy, birth order and infant feeding, but not weight gain from 9-19 months.<sup>35</sup> In another analysis of a smaller subset of the ALSPAC cohort using survival methods, faster weight gain from 0-2 months, 2-9 months and 9-20 months, assessed using change in weight Z-score, were inversely associated with age at menarche, though the statistical significance of each time period differed slightly depending on the other growth measures in the model.<sup>73</sup> For example, the weight gain from 9-20 months was not a significant predictor of age at menarche until weight gain from 0-2 months and 2-9 months was also included in the model, which suggests that weight gain in late infancy was associated with

menarche only after conditioning for the weight gain trajectory up until that point. In contrast, the negative coefficient for weight gain from 0-2 months was not statically significant (p=0.15) after controlling for birthweight and birthlength though the precision of this estimate could be affected by the moderate correlation between weight gain from 0-2 months and birthweight (r=-0.41). The inference was similar, though the point estimates were lower in magnitude, in model examining the change in BMI Z-score instead of weight.

In the North Carolina Feeding Study, faster weight gain from 0-6 months, 6-12 months and 1-2 years were all associated with earlier age at menarche in models that included birth weight, weight gain in all three time periods, weight gain from 2-5 years, maternal pre-pregnancy weight and race.<sup>75</sup> This was consistent with the findings from two 1960s U.S. birth cohorts (CHDS and two sites of the CPP), which found that rapid weight gain, defined as the within-cohort percentile rank change, from 0-4 months and 4-12 months were associated with earlier age at menarche in the overall cohort and within sibling subsets,<sup>77</sup> which controls for many early-life confounders by design.<sup>192</sup> These results were consistent after adjusting for height gain in these same time periods. The results were also generally consistent when conditional growth methods were used instead of percentile rank change (see Table 2.2 for a comparison of different methods for assessing infant growth, informed by <sup>193–196</sup>). Infants who grow rapidly in one time period are less likely to experience rapid growth in the adjacent time period, often referred to as the regression-to-themean effect.<sup>193</sup> The results from the conditional growth methods, which remove the correlation between the growth measures at different time points, were generally closer to the null than the effect estimates from the percentile rank change models. An analysis of the New York site of the CPP also found that girls with faster weight gain from 4-12 months had an earlier age at menarche, but not weight gain from 0-4 months.<sup>116</sup> The two studies that did not detect a significant infant weight gain association both had small sample sizes. In 96 Swiss girls, change in BMI Z-score from birth to 1 year of age was not associated with age at menarche in an unadjusted linear regression model.<sup>158</sup> There was also no association between gains in weight or BMI from 0-6 months and 6 months-2 years in 140 Jamaican girls - correlation coefficients were inverse, but not statistically significant.79

Measures of height

Thirteen studies provided some data on height between birth and 2 years and age at menarche, though many of the results shown were descriptive. Height at 1 year was not correlated with age at menarche in the Raine birth cohort.<sup>71</sup> Height at 1-2 years, however, was inversely correlated with age at menarche (r=-0.35, p<0.05) in data from women born in the 1930s and 1940s from the Harvard Longitudinal Studies of Child Health and Development.<sup>188</sup> The correlation coefficient between height at 15 months and age at menarche was also inverse in a study of U.S. girls born in 1990, but the correlation was not statistically significant until 54 months of age.<sup>184</sup> This was consistent with U.S. data from the Children of the National Longitudinal Study of Youth, which found statistically significant height differences by age at menarche starting at age 5 years, though the pattern was observed earlier.<sup>189</sup> In the Pelotas Birth cohort in Brazil, girls with menarche before 12 years had higher height-for-age Z-scores at 19.4 months than girls who experienced menarche at age 12 years or later, adjusting for maternal confounders (p for trend=0.01).<sup>190</sup> Higher height-for-age Z-scores at 1 year and 1-2 years were also observed in girls with earlier menarche in study populations in India, Peru and Vietnam<sup>167</sup> and South Africa,<sup>191</sup> respectively. In the ALSPAC cohort, height at 2 months did not differ by age at menarche. By 9 months, however, girls with menarche before 12 years were taller, on average, though the difference in height was not statistically significant until 19 months of age.<sup>35</sup> In the remaining studies that presented mean height by age at menarche, there was no association in two studies, <sup>116,158</sup> while an additional two studies suggested that girls with earlier menarche had taller mean height at 1 or 2 years of age without providing statistical tests of this difference.<sup>76,77</sup> Stunting was not associated with menarche status in a Sengalese cohort.<sup>183</sup> Overall, these studies suggest that girls who are taller by late infancy are more likely to experience menarche at an earlier age, though none of these studies controlled for weight.

# Measures of height growth

Six studies examined the association between rate of height gain in infancy and age at menarche. In a Swiss cohort, mean height gain between birth and 1 year was similar in girls with early vs late menarche.<sup>158</sup> Using conditional measures to assess changes in height, neither height gain from 0-6 months nor 6 months-2 years were associated with menarche at age 11 years in the Vulnerable Windows Cohort Study in Jamaica.<sup>79</sup> In contrast, 3 studies did observe significant associations between height gain in infancy

and age at menarche. In the ALSPAC cohort, height gain from 2-9 months and 9-19 months, but not 0-2 months, was associated with earlier age at menarche; however, the associations were no longer statistically significant after adjustment for infancy weight gain.<sup>35</sup> A similar pattern was observed in an adult follow-up of the CHDS and CPP cohorts. Height gain from 0-4 months and 4-12 months were associated with earlier age at menarche in models that did not control for weight gain during those periods; however, when weight gain measures were also included, the effect estimates for height gain were attenuated.<sup>77</sup> Height gain during these same two periods was also not associated with age at menarche in the New York site of the CPP in models controlling for weight gain.<sup>116</sup> In the 1946 British Birth Cohort, girls in the highest tertile of height gain from 0-2 years had an earlier age at menarche compared with girls in the lowest tertile in models that did not adjust for changes in BMI.<sup>76</sup> This association was attenuated in models that adjusted for rate of height growth in childhood, and was null in models that additionally adjusted for gains in BMI in infancy and childhood. Together, these studies suggest that rates of weight gain may drive associations between rapid height gain and earlier age at menarche.

#### Summary

Similar to the studies of breast development, studies of infant growth and age at menarche consistently observed earlier age at menarche in girls with rapid gain in weight or BMI during the first two years of life. Studies of size found that higher weight or BMI by late infancy was also associated with earlier age at menarche, which again points to the importance of postnatal weight gain trajectories and their role in pubertal timing. Although fewer studies have examined infant weight gain compared with the birthweight literature, the consistency of these studies suggests that differences in postnatal growth could contribute to the heterogeneity in the birthweight literature. There is not clear evidence for a role of height gain during infancy and age at menarche, and more studies should consider weight, height and weight-for-height measures to determine whether these growth measures have independent effects on age at menarche.

#### 2.3.8. Study quality

The quality assessment of the included studies is presented in **Supplemental Table 2.7** (NIH Quality Assessment Tool for Observational and Cohort Studies<sup>105</sup>) and **Supplemental Table 2.8** (NOS for

cohort or case control studies<sup>106</sup>). The NOS considers three domains of quality, Selection (4 possible points), Comparability (2 possible points) and either Outcome Assessment for cohort studies or Exposure Assessment for case-control studies (3 possible points), for a total possible quality score of 9. The scores ranged from 2-9, with a mean value of 5.1. Although the NOS does not provide a categorized assessment of bias based on the continuous scale, previous studies have used cut-offs of 0-3, 4-6 and 7-9 to indicate low, intermediate and high quality. Using this cut-off, the majority of studies (63.5%) were categorized as intermediate guality, and 19.8% and 16.7% of studies were categorized as low and high guality, respectively. Given the nature of the outcomes, particularly menarche, almost all studies relied on selfreports of age at menarche, or parent reports in some cases, which affected the quality scores. Selfreported outcomes may introduce some misclassification bias, which affects the quality score on the assessment scale. However, age at menarche has been shown to be reliably recalled into adulthood.<sup>91</sup> Many studies also lacked control for key early-life confounding variables or controlled inappropriately for variables that may be in the causal pathway as confounders. This is reflected in the comparability scores from the NOS, in that only 13 studies (13.5%) received two points for comparability, meaning that they adequately controlled for confounders and did not inappropriately control for potential mediators. In the birthweight literature, which had the most heterogeneity in terms of study findings, there were no obvious differences in quality scores between studies with conflicting results.

# 2.4 Discussion

Higher maternal pre-pregnancy BMI is associated with earlier breast development and earlier age at menarche. Although fewer studies examined GWG in relation to breast development and age at menarche, studies using multivariable-adjusted models suggest that breast development and menarche occur earlier in girls whose mothers gained more weight during pregnancy. Rapid weight gain in infancy is also consistently associated with earlier breast development and earlier age at menarche in girls. In contrast, birthweight is not consistently associated with timing of breast development or age at menarche. There were also no consistent patterns relating birthlength or height during infancy to age at breast development or menarche, particularly after controlling for weight. The associations observed between maternal and infant weight gain patterns and earlier age at breast development and menarche suggest that

these exposures may affect the timing of these milestones but not the time interval between them; however, more studies that examine this pubertal tempo directly as an outcome are needed to explore this hypothesis.

Heterogeneity in the birthweight literature may result from the lack of adjustment for confounders (such as maternal BMI and GWG) or adjustment for weight and/or weight gain measures later in the life course. After adjusting for at least one measure of size or growth later in the life course, 14 of 24 studies observed an earlier age at menarche in girls with low birthweight. Differences in the modeling strategies and time period of postnatal measurements across studies could also contribute to the heterogeneity of study findings. Studies that found an association between low birthweight and earlier pubertal development may be driven by infant weight gain patterns, as lower birthweight infants are more likely to experience rapid postnatal weight gain. As was noted in a recent review of prospective studies of birthweight and menarche,<sup>89</sup> differences in exposure assessment, particularly in the assessment of birthweight in relation to gestational age, across studies limits the comparability of study results and makes it difficult to disentangle prenatal size from growth.

In contrast to the birthweight literature, studies consistently observed earlier breast development and earlier age at menarche in daughters of overweight and obese mothers. Maternal pre-pregnancy body size may affect pubertal timing through an indirect pathway, where daughters of overweight or obese mothers are more likely to be overweight themselves, which could be due to shared genetic or lifestyle factors,<sup>197</sup> leading to earlier breast development and menarche. The lack of full mediation by daughters' body size suggests that there may also be a direct effect of maternal body size. A similar pattern was observed with GWG.<sup>82</sup> The developmental origins of health and disease (DOHAD) hypothesis posits that early-life exposures affect health throughout the life course, either through a direct effect on the developing organs during the critical period of fetal development or through a direct effect on the developing mechanism.<sup>198</sup> The breast undergoes multiple periods of rapid development throughout the life course, including in utero, during puberty and pregnancy, post-partum and during menopause.<sup>43,199</sup> The rapidly developing breast is more susceptible to carcinogenic effects from the environment, leading these periods of rapid proliferation to be considered windows of susceptibility in terms of breast cancer risk.<sup>43</sup> The prenatal

period has been identified as a window of susceptibility since the ductal system of the breast develops rapidly in utero,<sup>43,199,200</sup> and exposures that affect this ductal development in utero could alter later breast development and cancer risk.<sup>43,201,202</sup>

Maternal overnutrition could also affect pubertal timing, and thus breast cancer risk indirectly, through a programming mechanism. Women who are overweight or obese during pregnancy have higher levels of hormones that are involved in energy regulation, such as leptin.<sup>203</sup> Exposure to high levels of these hormones in utero may program higher levels of these hormones in their daughters. Higher levels of leptin, an adipokine which plays a role in appetite regulation and may stimulate the hypothalamic-pituitary-gonadal (HPG) axis and allow for pubertal progression,<sup>204</sup> have been observed in girls with premature breast development<sup>205</sup> and has been associated with earlier age at menarche.<sup>206</sup> Maternal obesity is also associated with insulin resistance during pregnancy, which may predispose the offspring to the development of insulin resistance and compensatory hyperinsulemia.<sup>207</sup> Hyperinsulinemia is associated with decreased levels of sex hormone-binding globulin,<sup>87</sup> which in turn increases sex steroid bioavailability and may promote puberty.<sup>208</sup> Finally, maternal obesity may affect daughters' health later in life via an epigenetic mechanism, altering gene expression.<sup>207,209</sup> Patterns of DNA methylation are established in early life and persist into adulthood, and evidence from animal studies suggest that maternal overnutrition can induce epigenetic changes in the offspring.<sup>210</sup>

Studies also consistently observed associations between rapid weight gain during the first two years of life and earlier age at breast development and menarche, although the time period within infancy when rapid weight gain had the strongest association with pubertal timing varied by study. Some studies suggested that the earliest age at menarche occurred in girls who were small at birth and experienced rapid weight gain during infancy, though generally faster weight gain was associated with earlier puberty across the spectrum of birthweight. Although infancy has not been identified as a window of susceptibility for breast cancer,<sup>43</sup> the rapid growth that the breast undergoes in utero may continue in early postnatal life. Infancy is also associated with an activation of the HPG axis, termed "mini-puberty", when breast tissue is present along with increased levels of reproductive hormones.<sup>211,212</sup> In girls, follicle stimulating hormone (FSH) and luteinizing hormone (LH) both increase in early infancy and peak at 1-3 months. LH then decreases by 6-9

months, while elevated FSH levels are present until age 3-4 years. Estradiol levels in girls fluctuate during the first year of life, and then decrease until puberty.<sup>213</sup> While both male and female infants have breast tissue present at birth that regresses during infancy, breast tissue size is larger and persists for a longer time period in female infants.<sup>211</sup> Estradiol levels have been found to be positively associated with breast tissue size in 3-month old female infants, but not in males.<sup>214</sup> Together, this suggests that breast tissue in female infants is stimulated by endogenous hormones, which may affect breast development and later breast cancer risk.<sup>214</sup>

Rapid infant growth could also be associated with pubertal timing via a hormonal or epigenetic pathway, similar to maternal overnutrition in utero. Rapid infant growth is associated with hormonal changes such as increased levels of leptin, IGF-1 and insulin which affects growth throughout childhood and may lead to earlier initiation of puberty.<sup>87</sup> A recent study found that rapid weight gain in the first year of life was associated with increased *Alu* methylation, a measure of global DNA methylation, at age 20.<sup>215</sup> Changes in DNA methylation of imprinted genes are known to be associated with infant growth,<sup>216</sup> and are also associated with genomic instability and chronic disease in adulthood.<sup>217</sup> In addition, early-life environmental stimuli are associated with changes in promoter methylation of non-imprinted genes,<sup>218</sup> which could affect gene expression in insulin-signaling pathways<sup>219</sup> or changes in genes related to body size or pubertal timing.<sup>220,221</sup> Studies that incorporate biomarkers assessed prior to puberty are needed to examine whether these hormonal and epigenetic pathways mediate associated with rapid growth in infancy,<sup>222</sup> suggesting that early-life growth and pubertal timing could have a shared genetic origin.

This review of the literature has informed the analytic approaches that we will use to examine the associations between maternal pre-pregnancy BMI, GWG and birth size (**Chapter 3**) and rates of change in weight and length during infancy (**Chapter 4**) of this dissertation. We will use a DAG (**Figure 2.1**) to inform our modeling strategy by considering common causes of the exposure and outcome as confounders and only controlling for mediators when interested in estimating direct, as opposed to total, effects. For example, we will control for maternal pre-pregnancy BMI as a confounder in models examining GWG as the exposure, but will not control for GWG in models examining the total effect of maternal BMI. We will

also use DAGs to prevent collider bias. Collider bias is a well-recognized problem in perinatal epidemiology, and can result when associations between intrauterine factors, such as intrauterine smoke exposure, and postnatal outcomes are adjusted for partial mediators like birthweight or gestational age,<sup>223</sup> as is often done in practice. However, since we will be examining multiple exposures of interest, we will indirectly be able to compare the point estimates from models that include potential mediators to my primary models. For example, since we will control for maternal pre-pregnancy BMI as a confounder in models examining birthweight as an exposure, we can assess how this adjustment influences the association between maternal pre-pregnancy BMI and pubertal timing and how our results compare with previous studies that have presented adjusted analyses.

Similarly, we will employ multiple analytic approaches to model birth size and infant growth, in order to examine how robust findings are to model specification and in order to compare the results from these chapters with previous studies. We will consider birthweight and birthlength with and without adjustment for gestational age as both continuous and categorical variables. We will also conduct sensitivity analyses excluding girls born preterm or low birthweight as the association with pubertal timing may differ in the extremes of the distribution. While our primary analyses will mutually adjust for weight and height measures, we will also examine these exposures independently, in addition to considering weight-for-height as an overall measure of body size as an exposure. Prior to modeling infant growth, we will examine the variability in height and weight at each time point, as well as the correlation between measures at different time points and the correlation with birthweight. Although we will employ progressive modeling techniques as a primary approach, which adjust only for measures earlier in the life course, we will also consider models mutually adjusted for growth in all time periods, as several prior studies have done.

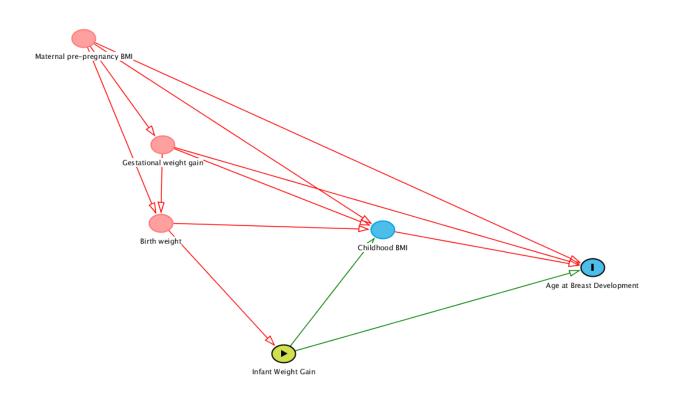
We will also categorize exposures based on relevant guidelines so that the results from these analyses can inform clinical practice. For example, we will consider a joint categorization of maternal prepregnancy BMI and GWG based on the 2009 IOM guidelines in order to assess if the categories of inadequate, adequate and excessive GWG are associated with differences in pubertal timing in the daughters. We will also categorize infant weight gain based on crossing growth chart percentiles, a cut-off used clinically to assess catch-up or catch-down growth. Finally, we will examine interactions between

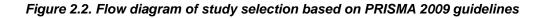
these measures, including maternal pre-pregnancy BMI and GWG, and birthweight and infant growth patterns.

In summary, a growing literature supports that higher maternal pre-pregnancy body size, excess GWG and rapid infant growth are risk factors for early puberty in girls. However, there are still gaps within this literature that future studies can address:

- 1. Most studies were conducted in developed countries and may not be generalizable to other settings. Studies conducted in low and middle income populations, where the prevalence of early-life growth patterns differs from high-income countries and the prevalence of childhood obesity is lower but increasing,<sup>224,225</sup> may help to clarify the direct role of early-life growth and pubertal timing by reducing the indirect pathway via childhood body size. Pubertal timing also differs by race/ethnicity,<sup>60,62,226</sup> but few studies have examined early-life exposures and pubertal timing in non-white populations.
- 2. From a methodological perspective, future analyses should be more explicit in how early-life factors are conceptualized in relation to the exposure and outcome of interest and modeled appropriately. For example, analyses of birthweight and infant weight gain should control for maternal confounders such as pre-pregnancy body size and GWG. However, analyses examining these maternal factors as exposures of interest should not control for postnatal factors as confounders in adjusted models. Instead, postnatal factors should be modeled as mediators or modifiers of the association, depending on the hypothesized causal structure (see Figure 2.1).
- 3. Additional studies of birthlength and height gain will help to clarify whether associations between rapid weight gain and pubertal timing are reflective of linear growth, particularly catchup growth to expected body size based on genetic potential, or adiposity resulting from overnutrition.<sup>227</sup> Separating adiposity from linear growth may also clarify why some studies observed earlier puberty in girls who were small at birth, who are more likely to experience catch-up growth in infancy.<sup>228</sup>

- 4. Additional studies should examine pubertal tempo directly as an outcome. The recent secular decline in age at breast development suggests that the time period between onset of breast development and menarche is increasing.<sup>42</sup> Since puberty is a period of rapid growth for the breast, a slower pubertal tempo implies that the pubertal window, when the breast is more susceptible to environmental carcinogens, is widening.<sup>43</sup> In addition to examining associations between early-life growth and breast development and menarche independently, it's important to determine whether early-life growth has an effect on pubertal tempo, which also affects breast cancer risk.<sup>41</sup>
- 5. Studies that examine the full trajectory of early-life growth by modeling maternal body size, GWG, birth size and infant growth can explore whether pre- and postnatal growth have independent effects, or if particularly trajectories of early-life growth have synergistic effects. In addition, studies that examine multiple time points within infancy can help to clarify whether there are specific windows within the first two years of life that are a sensitive or critical period in influencing pubertal timing.<sup>229</sup> Although some studies have examined multiple windows within infancy,<sup>73,75,77,79,116,222</sup> time periods have differed by study, making comparisons difficult.
- 6. Twin and familial studies estimate that 50-80% of the variation in pubertal timing in girls is heritable (for review, see <sup>42</sup>). However, the rapid decline in age at puberty cannot be explained by genetics alone and supports the importance of environmental influences, which may act independently or interact with genetic susceptibility to influence pubertal timing. Since earlier ages at breast development and menarche are associated with increased breast cancer risk,<sup>41</sup> it is important to determine whether early-life factors that affect pubertal timing are modified by underlying susceptibility for breast cancer. Two studies have found that girls with a family history of breast cancer had an earlier age at breast development<sup>54</sup> and menarche,<sup>165</sup> respectively. If there is no heterogeneity in the associations between early-life growth and pubertal timing by underlying genetic susceptibility, then early-life growth will still have a greater effect on an absolute scale in those with greater underlying risk,<sup>55,56</sup> and girls and women at high risk need to know that the environment matters and that their risk can be modified. If there


is heterogeneity, then identifying the context in which the early-life environment affects risk will allow for targeted prevention to those groups that will benefit most.


# 2.5 Conclusions

A small but consistent literature suggests that higher maternal pre-pregnancy BMI, greater GWG and rapid postnatal weight gain are associated with earlier age at breast development and menarche in girls. The role of birthweight, however, is still not clear. The pre- and postnatal periods may be an effective period for intervention as pregnant women and new parents are regularly engaged with clinicians who are already monitoring maternal body size and behaviors and infant growth.<sup>69</sup> Empirical evidence from randomized trials show that interventions can successfully reduce gestational weight gain<sup>230,231</sup> and modify infant growth patterns.<sup>232</sup> Modifying weight gain prior to and throughout pregnancy in mothers and through infancy in their daughters may delay pubertal timing and potentially lower breast cancer risk in adulthood.

# 2.6 Tables and figures

Figure 2.1. Directed acyclic graph (DAG) of hypothesized causal structure linking maternal prepregnancy BMI, gestational weight gain, birthweight and infant weight gain to age at breast development







PRISMA flow diagram and additional information regarding the 2009 guidelines available from <sup>94</sup>.

 Table 2.1. Number of included studies for each exposure-outcome association (N=96 articles)

|                                | Breast Development                                   |                         |                            |                                              | Menarche                                                |                         |                            |                                              |
|--------------------------------|------------------------------------------------------|-------------------------|----------------------------|----------------------------------------------|---------------------------------------------------------|-------------------------|----------------------------|----------------------------------------------|
|                                | Maternal pre-<br>pregnancy<br>body size <sup>1</sup> | Gestational weight gain | Birth<br>size <sup>2</sup> | Size or<br>growth in<br>infancy <sup>3</sup> | Maternal<br>pre-<br>pregnancy<br>body size <sup>1</sup> | Gestational weight gain | Birth<br>size <sup>2</sup> | Size or<br>growth in<br>infancy <sup>3</sup> |
| Text only                      | 0                                                    | 0                       | 2                          | 0                                            | 2                                                       | 2                       | 6                          | 1                                            |
| Descriptive<br>statistics only | 0                                                    | 0                       | 7*                         | 1                                            | 2                                                       | 2                       | 25                         | 2                                            |
| Crude models                   | 1                                                    | 0                       | 4                          | 2                                            | 2                                                       | 1                       | 9                          | 3                                            |
| Adjusted<br>models             | 5                                                    | 1                       | 4                          | 5                                            | 8                                                       | 3                       | 34                         | 12                                           |
| Total                          | 6                                                    | 1                       | 17                         | 8                                            | 14                                                      | 8                       | 74                         | 18                                           |

\*Includes one study where outcome is tempo of breast development

<sup>1</sup>Body size refers to either maternal pre-pregnancy weight or BMI

<sup>2</sup>Includes studies of weight, length and/or BMI at birth

<sup>3</sup>Includes studies of size (weight, length and/or BMI between birth and 2 years) and/or growth (change in weight, length and/or BMI between birth and 2 years)

# Table 2.2. Comparison of methods to assess infant growth

| Method                                                                                                       | Advantages                                                                                                                                                                                                                            | Disadvantages                                                                                                                                                                      |  |
|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Change in absolute value                                                                                     | Straightforward to implement<br>and interpret                                                                                                                                                                                         | Absolute measures are more<br>highly correlated than<br>transformed values<br>Differences in variability of<br>measures at different time<br>points makes comparisons<br>difficult |  |
| Change in Z-score                                                                                            | Easy to interpret<br>Change in Z-score is less<br>correlated than absolute<br>measures                                                                                                                                                | Measures at different time<br>points likely correlated, with<br>stronger correlation the closer in<br>time the measurements are<br>taken                                           |  |
| Change in percentile rank                                                                                    | Easy to interpret<br>Clinically relevant (crossing of<br>percentiles)<br>Change in percentile rank is less<br>correlated than absolute<br>measures                                                                                    | Measures at different time<br>points likely correlated, with<br>stronger correlation the closer in<br>time the measurements are<br>taken                                           |  |
| Conditional (difference between<br>observed size and predicted<br>based on size at beginning of<br>interval) | Measures at different time<br>points are statistically<br>independent<br>Not influenced by regression-to-<br>the-mean effect – those that<br>start at the extremes of size are<br>more likely to experience larger<br>rates of change | More difficult to interpret                                                                                                                                                        |  |
| Latent class analysis                                                                                        | Can identify non-linear<br>trajectories<br>Parsimonious way to examine<br>patterns<br>Compare absolute instead of<br>conditional trajectories                                                                                         | Data driven and somewhat<br>subjective in choosing the<br>number of classes<br>Cannot look at different windows<br>within the trajectory                                           |  |

# Chapter 3. Maternal pre-pregnancy BMI, gestational weight gain, and birth size in relation to age at breast development in the LEGACY Girls Study cohort

# ABSTRACT

<u>Background</u>: Earlier onset of breast development (thelarche) is a known risk factor for breast cancer and may be influenced by maternal pre-pregnancy body mass index (BMI), maternal gestational weight gain (GWG) and infant body size. To date, the epidemiologic evidence is from cohorts of girls that were not enriched for breast cancer family history (BCFH). We investigated whether maternal BMI, GWG and size at birth were associated with age at breast development, and whether these associations varied by BCFH, using a prospective cohort of girls in which approximately half are at an increased risk of breast cancer due to their family history.

<u>Methods</u>: Using longitudinal Weibull models with left, right and interval censoring, we assessed whether maternal pre-pregnancy BMI, maternal physical activity during pregnancy, GWG, and daughters' weight and length at birth, reported by the mother at baseline, were associated with the age at breast development, defined as maternal report of Tanner stage≥2, in LEGACY girls participating with their biological mother (N=1031). We examined modification by BCFH and mediation by daughters' childhood BMI in adjusted models. LEGACY girls were primarily between 6-13 years of age when they entered the cohort, and 43% of girls experienced the onset of breast development prior to cohort entry (left censored). We conducted sensitivity analyses limited to girls age less than 8 years at baseline (n=259) to examine how sensitive results in the overall cohort were to the inclusion of older girls.

<u>Results</u>: Higher maternal pre-pregnancy BMI was associated with earlier breast development in daughters (Hazard ratio (HR)=1.03, 95% CI 1.01-1.05). This association was consistent in the subset of girls with clinical breast Tanner staging available and mediated by daughters' pre-pubertal body size. Higher gestational weight gain was also associated with earlier thelarche. Compared to daughters whose mothers had a pre-pregnancy BMI of <25 kg/m<sup>2</sup> and gained <30 lbs, girls whose mothers had a pre-pregnancy BMI of <25 kg/m<sup>2</sup> and gained <30 lbs, girls whose mothers had a pre-pregnancy BMI  $\geq 25$  kg/m<sup>2</sup> and gained  $\geq 30$  lbs experienced the onset of breast development at a 60% faster rate (HR=1.57, 95% CI 1.17-2.12). This association was similar in girls with and without a BCFH, but was only statistically significant in the latter (HR in girls with a BCFH: 1.43, 95% CI 0.89, 2.29; HR in girls without a BCFH: 1.62,

95% CI 1.10, 2.39; RERI=0.13, 95% CI -0.95, 1.21). In the subset of girls <8 years at baseline, daughters were approximately two times more likely to experience earlier thelarche if their mothers had a prepregnancy BMI <25 kg/m<sup>2</sup> and gained ≥30 lbs or a pre-pregnancy BMI ≥25 kg/m<sup>2</sup>, regardless of their GWG, compared with daughters of women with a BMI <25 kg/m<sup>2</sup> who gained <30 lbs. In younger girls, daughters of women who reported no recreational physical activity during pregnancy experienced earlier breast development than daughters of active women (HR=1.70, 95% CI 1.02, 2.83). This association was independent of maternal pre-pregnancy BMI and was not mediated by GWG or modified by BCFH. Daughters' weight and length at birth were not associated with the timing of thelarche.

<u>Conclusions</u>: Earlier thelarche was associated with three potentially modifiable risk factors – maternal prepregnancy BMI, maternal physical activity during pregnancy and GWG - in a cohort of girls enriched for BCFH. These associations were partially mediated by the daughters' pre-pubertal body size. Our results suggest that maintaining a healthy pre-pregnancy BMI, engaging in recreational physical activity during pregnancy, and moderate weight gain during pregnancy (<30lbs) may delay breast development in daughters.

#### 3.1 Background

Breast cancer incidence, particularly advanced disease, is increasing in U.S. women under 40 years of age,<sup>233</sup> pointing to the importance of exposures acting early in the life course to increase breast cancer risk. Earlier age at menarche is a well-established risk factor for breast cancer.<sup>95</sup> Age at menarche has decreased over time, but this decline has stabilized over the last 50 years.<sup>42</sup> In contrast, age at breast development, or thelarche, has continued to decline rapidly.<sup>42</sup> In a recent prospective cohort study of over 100,000 women, earlier thelarche and longer time period between thelarche and menarche (tempo) were independently associated with a 20-30% increased risk of breast cancer.<sup>41</sup> Given the secular trends in pubertal timing, this suggests a future increase in breast cancer incidence.

Modifiable factors that are associated with pubertal timing could be a target for breast cancer primary prevention efforts starting early in life. Since breast cancer risk accumulates over the life course, modifying early-life exposures may have a greater impact in decreasing breast cancer risk later in life

compared with modifying exposures in adulthood.<sup>4,5</sup> Studies have found that higher birthweight is consistently associated with an increased risk of pre-menopausal breast cancer, and may be modestly associated with post-menopausal breast cancer risk as well (for review, see <sup>18,234</sup>), suggesting that factors that influence the intrauterine environment may affect breast cancer risk. Birthweight is a crude indicator of fetal growth and the intrauterine environment in general,<sup>26</sup> and is difficult to modify directly. However, the data connecting other prenatal characteristics to breast cancer risk is limited. Maternal pre-pregnancy body mass index (BMI) and gestational weight gain (GWG) are associated with birthweight<sup>20</sup> and maternal hormone levels during pregnancy,<sup>27–29</sup> but studies have not consistently supported an association with breast cancer risk.<sup>23,24</sup> However, most studies in the literature were from pregnancies over 50 years ago, when the prevalence of obesity and excess GWG was much lower than today.<sup>30</sup>

Maternal obesity and excessive GWG have increased in prevalence in parallel to the secular trends in pubertal timing. Higher maternal pre-pregnancy BMI and increased GWG are both associated with earlier age at menarche.<sup>82,83,115,118</sup> Increased maternal physical activity during pregnancy, which is associated with pre-pregnancy BMI and GWG,<sup>235</sup> was associated with later age at menarche in the Nurses' Health Study II cohort, independent of maternal BMI.<sup>236</sup> Few studies have examined these exposures in relation to age at thelarche, which occurs on average two years before menarche.<sup>90</sup> In the ALSPAC cohort, maternal prepregnancy BMI and GWG during pregnancy were both inversely associated with age at thelarche in daughters.<sup>73,82</sup> In studies conducted using electronic health record data from Kaiser Permanente Northern California (KPNC), maternal pre-pregnancy obesity<sup>81</sup> and GWG in excess of the 2009 Institute of Medicine (IOM) guidelines, in addition to inadequate GWG,<sup>237</sup> were all associated with earlier age at breast development in daughters. The associations with excess or inadequate GWG and breast development were stronger if mothers had a BMI≥30 before or at the beginning of pregnancy.<sup>237</sup> A prior study of 421 girls from the Cohort Study of Young Girls' Nutrition, Environment and Transitions (CYGNET), which also used KPNC data, found that girls whose mothers were overweight and had gestational diabetes experienced earlier pubic hair development, but there was no statistically significant association with the larche in adjusted models.<sup>109</sup> Studies suggest that the association between maternal body size and earlier pubertal timing is partially mediated by daughters' BMI.81,82,117

To date, previous studies examining maternal body size, GWG and age at breast development were conducted in cohorts of girls at average-risk of breast cancer. We recently observed within the LEGACY Girls Study, a prospective pubertal cohort enriched for breast cancer family history (BCFH),<sup>57</sup> that non-overweight girls at an increased risk of breast cancer due to their BCFH experience earlier breast development than girls without a BCFH.<sup>54</sup> Since maternal pre-pregnancy BMI, physical activity during pregnancy and GWG are potentially modifiable, we investigated whether these exposures, in addition to size at birth, were associated with age at breast development in LEGACY. As secondary aims, we also examined whether associations were modified by BCFH and mediated by daughters' pre-pubertal body size.

#### 3.2 Methods

#### 3.2.1. Study population

The LEGACY (Lessons in Epidemiology and Genetics of Adult Cancer from Youth) Girls Study is a prospective cohort study of 1040 girls recruited at five study sites in the U.S. (New York City, NY; Philadelphia, PA; Salt Lake City, Utah; San Francisco Bay Area, CA) and Canada (Toronto, ON) between 2011 and 2013 (for more details, see <sup>57</sup>). The girls were primarily between the ages of 6 and 13 years at recruitment, and half had a BCFH, defined as a report of breast cancer in a first- or second-degree relative by the participating mother/guardian at baseline. Younger siblings of cohort members can also join when they reach 6 years of age. The participating guardian at baseline was the biological mother for 97% of LEGACY girls.<sup>57</sup> We excluded girls whose participating guardian was not the biological mother from the analyses (N=37) because some exposures, such as maternal pre-pregnancy weight, were collected only from biological mothers, and other pregnancy exposures may be reported with error when completed by others. For this analysis, prospective follow-up data through August 2016 was included for 1031 girls participating daughters and 24 with 3 participating daughters. Mothers provided written informed consent for themselves and for their daughters, and daughters provided written informed assent according to institutional standards. The study was approved by the institutional review boards of the collaborating institutions.

#### 3.2.2. Data collection

Maternal and pregnancy exposures. Mothers completed an early-life questionnaire at their daughters' baseline visit that included detailed information about their pregnancy, including pre-pregnancy weight (continuous), GWG (in categories) and physical activity. These questions were developed and used previously in the Nurses' Health Study cohort.<sup>24</sup> We calculated maternal pre-pregnancy BMI from mothers' self-reported height and pre-pregnancy weight. GWG was recorded as <10 lbs, 10-14 lbs, 15-19 lbs, 20-29 lbs, 30-39 lbs, 40-49 lbs, and 50 or more lbs (see Appendix C.1 for more information about pregnancy exposures, including definitions of each category). Since guidelines for weight gain during pregnancy vary by BMI,<sup>110</sup> we created a categorical variable for GWG based on the 2009 IOM guidelines to categorize GWG as inadequate (below guidelines), adequate (within recommended range) and excessive (above guidelines). We modified the cutpoints used to define adequate GWG for LEGACY since GWG was collected in categories that did not directly correspond to the categories used in the 2009 IOM guidelines (see Appendix C.2 for the 2009 IOM recommended ranges based on maternal pre-pregnancy BMI and type of gestation and the modified ranges used for this analysis).<sup>110</sup> We also considered maternal prepregnancy BMI and GWG jointly by creating a cross-classified variable with maternal pre-pregnancy BMI, using a cut-off of 25kg/m<sup>2</sup>, and GWG, using a cut-off of either 30lbs or exceeding vs. not exceeding the guidelines.

Mothers reported their recreational physical activity level during pregnancy in five categories, from inactive (no walking or regular exercise) to highly active (equivalent to walking 3 miles or more per day). Mothers also reported their physical activity at home (mostly sitting, active housework most of the time, or heavy manual work) and at work (not working outside the home, mostly sitting and standing, mostly walking, or mostly heavy labor). We considered additional pregnancy characteristics as potential confounders in the analyses. Mothers reported whether they experienced diabetes or high blood sugar, toxemia or pre-eclampsia, and hypertension or high blood pressure during their pregnancy with the LEGACY daughter. Mothers provided information about all pregnancies lasting 6 months or longer, including the pregnancy

outcome and date that the pregnancy ended. We used this information to determine the birth order of the LEGACY daughter and the type of gestation (singleton or multiple). We calculated gestational age in weeks from the length that the pregnancy lasted, in weeks, months, or days before/after the due date, as reported by mothers. We considered a reported gestational age of less than 37 weeks as preterm. Mothers also reported if they smoked during their pregnancy with the LEGACY daughter; however, we did not include this variable in the analyses since only 1.2% of daughters were exposed to maternal smoke during pregnancy.

Mothers reported their daughters' weight (in grams or pounds/ounces) and length at birth (in centimeters or inches), and the source of this information (i.e. memory, medical records, baby book). We converted birthweight to kilograms and birthlength to centimeters for analysis. We created four body size groups based on the median birthweight and birthlength in the cohort (long/light, long/heavy, short/light and short/heavy) based on the schema by Adair, who observed differences in age at menarche by these categorizations.<sup>72</sup> We also calculated ponderal index at birth as weight in kilograms divided by height in meters cubed. We asked mothers to sign a medical release form at the baseline LEGACY visit to collect growth records prior to baseline from their daughters' pediatricians. We obtained growth charts and/or medical records for 82% of the cohort. For the subset of girls whose medical record data included measurements at birth, we examined the correlation between recalled birthweight and birthlength and the medical record.

Pubertal outcomes. We assessed pubertal development through the Growth and Development Questionnaire completed every 6 months by mothers. Mothers assessed their daughters' stage of breast development with the picture-based Sexual Maturation Scale (SMS)<sup>238</sup> showing the five Tanner stages.<sup>100</sup> Tanner stage (TS) 2 indicates the onset of breast development.<sup>100</sup> We previously found maternal reports of breast onset using TS to be highly reliable (kappa=0.73) and valid (sensitivity=77%, specificity=94%) in a subset of LEGACY girls that also had clinical TS data.<sup>239</sup> In addition, mothers reported whether their daughters' breast development had started using the non-picture-based Pubertal Development Scale (PDS),<sup>240</sup> in which a response of "breast development has barely started" was used to indicate the onset of breast development. Mothers that reported that breast development had started based on the PDS also reported the age that they first noticed their daughters' breast development. Mothers reported their daughters' age at breast development in years and months at baseline, and in half-year intervals at subsequent visits. We used the first maternal report of TS≥2 as the primary outcome to be comparable with previous studies, including analyses in the ALSPAC cohort, of maternal body size and breast development.<sup>73,82,108</sup>

<u>Covariates</u>. In addition to the early-life variables described above, we also considered race/ethnicity, socioeconomic status (SES) and maternal age at menarche as potential confounders in adjusted models. Mothers reported the race/ethnicity of their daughters at baseline, which we categorized as non-Hispanic white, non-Hispanic black, Hispanic, Asian/Pacific Islander, or other/mixed race/ethnicity for analyses. We assessed SES using maternal education, paternal education and family income; however, since 17.9% did not report family income and maternal and paternal education were correlated, we used maternal education to assess confounding by SES in the analyses. Mothers recalled their age at menarche to the nearest half-year at baseline, which we categorized as early (<12 years), average (12-13 years) and late (≥14 years). We considered BCFH as a modifier of the associations between early-life exposures and age at breast development.

At each study visit, trained research staff measured the height and weight of the girls at least twice using standardized instruments and we averaged these measures for the analysis. We also abstracted height and weight prior to baseline from medical records and growth charts obtained from girls' pediatricians. We calculated age-specific height, weight, and BMI percentiles based on the 2000 Centers for Disease Control and Prevention (CDC) growth charts.<sup>241</sup> Since we considered pre-pubertal body size as a potential mediator, we used body measurements at age 5-7 years when available from the medical record or measurements from the first clinic visit for girls age 5-7 years at baseline. We used <8 years as the cut-off to define pre-puberty since less than 5% of LEGACY girls had experienced the onset of breast development, defined as breast TS≥2, by 8 years of age. Of the 1031 girls included in the analysis, 619 (60.0%) had a BMI measure between 5-7 years and were included in this mediation analysis. We classified girls with a BMI-for-age percentile ≥85 as overweight and those less than the 85<sup>th</sup> percentile as average weight.

#### 3.2.3. Statistical analysis

We examined the distribution of early-life exposures and baseline covariates in the overall cohort (N=1068) and in the three subsets used in these analyses: 1) girls participating with their biological mother (N=1031); 2) girls participating with their biological mother with BMI measured between 5-7 years (N=619); and 3) girls participating with their biological mother who were less than 8 years of age at baseline (N=259). We also examined whether the distributions of these variables differed by BCFH and by categories of maternal pre-pregnancy BMI based on the CDC classifications of underweight, normal or healthy weight, overweight and obesity.

We assessed associations between maternal pregnancy characteristics and the timing of breast development using longitudinal parametric Weibull models with age as the time scale to allow for left, interval and right censoring. In the primary analyses, girls whose mother reported that they had already experienced the onset of breast development, defined as TS≥2, at baseline were left-censored at their baseline age. Girls whose mothers reported breast TS≥2 at subsequent visits were interval-censored, with the daughters' age at the last visit where the mother reported TS1 as the beginning of the interval and the daughters' age at the first visit where the mother reported TS≥2 as the end of the interval. Girls who had yet to experience thelarche were right-censored at the age at the last study visit where mom reported TS1. Since some families had more than one participating daughter, we used cluster-robust standard errors to account for correlation within families.

We estimated time ratios (TR) and hazard ratios (HR), along with their respective 95% confidence intervals (CI)s for each exposure of interest in unadjusted models. We examined maternal pre-pregnancy BMI, birthweight and birthlength continuously and in categories. The TR is interpreted as the ratio of the median age or time at event for a given exposure level compared with the referent group, while the HR is interpreted as the ratio of the rate of transition to the pubertal event. A TR below 1 indicates that the exposure is associated with earlier onset of breast development, and a TR above 1 indicates that the exposure is associated with later breast development. For example, if the median age at breast development is 10 years in the referent group and the estimated TR for the exposure is 0.95, this

corresponds to a median age of 9.5 years for the exposed group, or a 6-month acceleration in the age at breast development.<sup>242</sup>

In multivariable models, we adjusted for confounders that were antecedent to the exposure. For example, we did not adjust for GWG, maternal physical activity during pregnancy and birth characteristics in models examining maternal pre-pregnancy BMI as the exposure of interest. In contrast, we adjusted models examining pregnancy physical activity or GWG as the exposure of interest for maternal pre-pregnancy BMI, and we adjusted models examining weight and length at birth for both maternal BMI and GWG. We mutually adjusted birth size models for weight and length, and also adjusted for gestational age in weeks.

We adjusted for race/ethnicity and maternal education in models for the full cohort since these variables were associated with maternal pregnancy characteristics and age at breast development. In the subset of girls <8 years at baseline, we present models adjusted for maternal education only due to small cell counts for several of the race/ethnicity groups. However, associations were similar in models additionally adjusted for race/ethnicity in this subset (data not shown). Associations were also similar, though slightly attenuated, when additionally adjusted for maternal age at menarche (data not shown). We did not adjust for other early-life characteristics such as birth order, multiple gestation, gestational diabetes, gestational hypertension and toxemia/pre-eclampsia since these factors were not associated with breast development. However, we ran sensitivity analyses restricting the analytic sample to singleton pregnancies since GWG and fetal growth patterns may differ in multiple gestation pregnancies.

In the subset of girls that had pre-pubertal body size measures, we examined the presence of mediation by daughters' pre-pubertal body size by adding BMI-for-age percentile and an interaction for BMI-for-age percentile and age at BMI measurement, centered at the mean, to parsimonious adjusted models. We also conducted sensitivity analyses excluding girls that were overweight prior to puberty (BMI-for-age percentile ≥85) as an alternate method to examine the influence of pre-pubertal body size.

We formally tested for effect measure modification by BCFH by adding a cross-product term between the exposure of interest and BCFH to adjusted models and assessed statistical significance using

the Wald test. If the cross-product term was statistically significant at p<0.05, we further examined effect modification through stratification by BCFH. We also calculated the relative excess risk due to interaction (RERI) to assess effect modification on the additive scale.<sup>243</sup>

We conducted several sets of additional analyses to examine how sensitive the results were to different modeling assumptions, the use of recalled data, and the method of assessing breast development (Appendix C.3 and C.4). We imputed the recalled age at breast development from the PDS as though it were observed for left-censored girls (43% of girls experienced the onset of breast development prior to cohort entry based on mom's report of TS≥2 at first growth and development questionnaire). We also used the midpoint of the interval as the age at breast development for interval censored-girls. We then assessed associations using semi-parametric Cox proportional hazards models, in addition to parametric Weibull models, in analyses using these imputed values since these models included right-censored data only. We also used the PDS to define breast onset instead of TS. In the subset of girls at the New York and Utah LEGACY sites that had clinical TS data (N=311), we used clinical reports of breast TS≥2 to define the onset of breast development instead of maternal report. We limited the analyses to prospective data by excluding girls who were 8 years of age or older at baseline in order to examine how sensitive findings were to the inclusion of older girls and the use of recalled data using both SMS and PDS. We also ran sensitivity analyses excluding girls with inconsistent Tanner staging by maternal report (mothers reported a regression to TS1 at the visit after the first report of TS≥2; approximately 5% of girls in the full cohort and 10% of girls <8 years at baseline) to examine whether these inconsistent girls were driving the observed results. We conducted these analyses using SAS 9.4 and STATA 15.1.

# 3.3 Results

#### 3.3.1. Participant characteristics

The distribution of baseline and early-life characteristics were similar across the three subsets used in this analysis compared with the full LEGACY cohort (**Table 3.1**). The average age at baseline was 10.0 years in all eligible girls participating their biological mother (N=1031), 9.2 years in girls with pre-pubertal BMI measures available (N=619) and 6.9 years in girls <8 years at baseline (N=259). The majority of the cohort (63%) identified as non-Hispanic white, and 18% of girls had a BMI-for-age percentile  $\geq$ 85<sup>th</sup> at baseline. Most mothers (71%) had a Bachelor's or graduate degree. The prevalence of pregnancy conditions including gestational diabetes and toxemia or pre-eclampsia were low at approximately 7%. Compared to the full cohort, fewer girls <8 years at baseline were overweight at baseline (14.5%) or were firstborn (37.5%).

The majority of mothers had a BMI in the normal range prior to pregnancy (18.5-24.9), while 4.7% were classified as underweight (<18.5), 17.9% as overweight (25-29.9) and 9.6% as obese (≥30). Approximately 30% of LEGACY mothers reported GWG in excess of the guidelines and 12% reported no recreational physical activity. Women that were obese prior to pregnancy were more likely to gain weight in excess of the guidelines, reported less recreational physical activity during pregnancy, and had a higher prevalence of pregnancy conditions (**Supplemental Table 3.1**). Daughters' birthweight was also higher in women with a higher pre-pregnancy BMI. The mean pre-pregnancy BMI was similar by BCFH, though women with a BCFH were slightly more likely to have inadequate GWG and report no recreational physical activity during pregnancy (**Supplemental Table 3.2**).

3.3.2. Association between maternal pre-pregnancy BMI, gestational weight gain and age at breast development

Maternal pre-pregnancy BMI was associated with earlier age at breast development in daughters (HR=1.03, 95% CI 1.01-1.05, adjusted for race/ethnicity and maternal education) (**Table 3.2**). Although point estimates from the categorical BMI model were not statistically significant, they supported a linear relationship between maternal BMI and age at breast development. Compared with daughters of women who gained 20-29lbs, daughters of women who gained 30lbs or more had an earlier age at breast development, though the association was only statistically significant in daughters of women who gained more than 50lbs during their pregnancy (HR=1.37, 95% CI 1.01-1.85, controlling for maternal pre-pregnancy BMI, maternal education and race/ethnicity). The TR corresponds to approximately 4.9 months earlier onset of breast development in girls whose mother gained 50 or more pounds compared with girls who mother gained 20-29 pounds, with all covariates at the reference level. The pattern for GWG was

slightly J-shaped, with daughters of women who gained less than 20lbs also experiencing slightly earlier development than the referent group (HR 1.15, 95% CI 0.86, 1.54). However, this pattern was not observed when GWG was categorized according to the modified 2009 IOM guidelines (**Supplemental Table 3.3**). These models supported earlier development in daughters of women who gained in excess of the guidelines, but no difference in age at breast development in girls whose mothers gained below the guidelines compared with girls whose mothers' GWG was within the recommended range.

When considering maternal pre-pregnancy BMI and GWG jointly, daughters of women with a prepregnancy BMI ≥25 and GWG ≥30lbs experienced breast development at a rate 1.6 times faster than daughters of women with a pre-pregnancy BMI <25 and GWG <30lbs (HR 1.57, 95% CI 1.17-2.12) (**Table 3.2**), a difference of approximately 7 months. In contrast, age at breast development was not earlier in daughters of women who gained ≥30lbs but had a pre-pregnancy BMI <25 or gained <30lbs, but were overweight prior to pregnancy. Results were similar when we considered GWG in excess of the guidelines jointly with maternal BMI instead of using a cut-off of 30lbs (**Supplemental Table 3.3**).

Associations between maternal pre-pregnancy BMI and GWG were in the same direction in the subset of girls <8 years at baseline. GWG of 30 lbs or more was associated with an 80-90% increased rate of breast development in girls <8 years of age (**Table 3.2**). In younger girls, the pattern of age at breast development by categories of maternal BMI and GWG was slightly different than the pattern observed in the full cohort. Daughters had approximately a two-fold increased rate of earlier thelarche if their mothers had a pre-pregnancy BMI <25 kg/m<sup>2</sup> and gained ≥30 lbs or a pre-pregnancy BMI ≥25 kg/m<sup>2</sup>, regardless of their GWG, compared with daughters of women with a BMI <25 kg/m<sup>2</sup> who gained <30 lbs. The TRs correspond to approximately 12-12.5 months earlier onset of development in these girls.

#### 3.3.3. Association between maternal physical activity during pregnancy and age at breast development

Daughters of women who reported no recreational physical activity during pregnancy experienced earlier onset of breast development than daughters of physically active women in unadjusted models, but the association was attenuated after adjustment for maternal pre-pregnancy BMI, race/ethnicity and maternal education in the full cohort (**Table 3.3**). There was no association between maternal physical

activity at home and age at breast development. In adjusted models, daughters of women who did not work outside the home experienced later onset of breast development than daughters of women who reported mostly sitting and standing at work during pregnancy (HR=0.77, 0.61-0.98).

In girls <8 years at baseline, daughters of women who reported no recreational physical activity experienced breast development at a rate 1.7 times faster than daughters of physical active women, a difference of approximately 8 months (HR 1.70, 95% CI 1.02, 2.83 adjusting for maternal pre-pregnancy BMI and maternal education). This association was independent of GWG (**Supplemental Table 3.4**). Age at breast development was not statistically different in daughters of women who reported mostly inactive or somewhat active physical activity levels during pregnancy compared with active women. Results for physical activity at home and at work were similar in younger girls compared with the full cohort.

#### 3.3.4. Association between birth size and age at breast development

In girls with birthweight or birthlength available from both medical records/growth charts and maternal report (N=69 for birthweight and 44 for birthlength), the correlation between these measures was 0.91 for birthweight and 0.59 for birthlength. Neither birthweight, birthlength nor ponderal index were associated with age at breast development in the full cohort or the subset of girls <8 years at baseline (**Supplemental Table 3.5**). The inference was unchanged when models were restricted to singleton pregnancies only (data not shown). There were no statistically significant differences in the timing of breast development between girls classified as long/light, long/heavy, short/light or short/heavy at birth based on the median birthweight and birthlength (**Supplemental Table 3.6**).

#### 3.3.5. Mediation by pre-pubertal body size

The inverse association between maternal pre-pregnancy BMI and age at the larche was mediated by daughters' body size prior to puberty (HR 1.01, 95% CI 0.99-1.04 after adding daughters' BMI-for-age percentile and the interaction between BMI-for-age percentile and centered age at BMI measure to adjusted model in all girls with available BMI measures from 5-7 years of age) (**Table 3.4**). In contrast, effect estimates for GWG were only slightly attenuated after adjustment for daughters' body size and there was no evidence of mediation of the association between maternal physical inactivity during pregnancy and earlier breast development. These patterns of mediation were the same in girls <8 years of age at baseline. The patterns of earlier breast development in daughters of women that reported no recreational physical activity during pregnancy, high pre-pregnancy BMI, and high GWG were also observed when we excluded girls that were overweight prior to puberty from adjusted models, suggesting that these associations hold across the range of daughters' pre-pubertal body size (**Supplemental Table 3.7**).

#### 3.3.6. Modification by breast cancer family history

In the full cohort, the pattern of the associations between maternal pre-pregnancy BMI, GWG and timing of breast development differed by BCFH (Table 3.5). When considering maternal BMI and GWG as a composite variable, the overall interaction with BCFH was statistically significant (p from Wald test <0.01), which was driven by differences in the association for girls whose mothers had a pre-pregnancy BMI≥25 and gained <30lbs compared with the referent group. In girls without a BCFH, the daughters of women who were overweight or obese prior to pregnancy and gained <30 lbs were almost two times more likely to develop early (HR=1.98, 95% CI 1.29-3.05) compared with daughters of women with a pre-pregnancy BMI<25 who gained <30lbs. In girls with a BCFH, girls whose mothers had a pre-pregnancy BMI≥25 and gained <30lbs did not have an increased likelihood of early development compared with the referent group (HR=0.68, 95% CI 0.43-1.09). The negative multiplicative interaction between maternal BMI≥25, GWG <30lbs and BCFH was also statistically significant on the additive scale (RERI: -1.46, 95% CI -2.47, -0.44), suggesting that the joint effect of BCFH and maternal overweight and obesity with moderate GWG (<30lbs) is less than the sum of the effects of each of these exposures when considered individually. There was no interaction on the additive scale for the other two levels of the composite variable (RERI for maternal BMI<25, GWG≥30lbs and BCFH: -0.29, 95% CI -0.82, 0.25 and RERI for maternal BMI≥25, GWG≥30lbs and BCFH: 0.13, 95% CI -0.95, 1.21). This suggests that maintaining a healthy BMI prior to pregnancy and preventing excessive GWG (≥30lbs) could delay breast development in daughters with and without a BCFH. These patterns were similar in models stratified by BCFH in girls <8 years at baseline.

3.3.7. Sensitivity analyses for the association between maternal pre-pregnancy BMI, GWG and onset of breast development

Associations were similar when analyses were restricted to singleton pregnancies only and when girls with inconsistent maternal reports of the onset of breast development (TS≥2) were excluded from adjusted models (data not shown). In the full cohort, the inference was similar when the recalled age at breast development from the PDS was imputed as though it were observed in left-censored girls and/or the midpoint of the interval was imputed as the age of breast development for interval-censored girls (**Supplemental Table 3.8**). Hazard ratios from semi-parametric Cox proportional hazard models were also similar to the hazard ratios from the parametric Weibull models. The patterns of the associations were similar in models where we used PDS to define the onset of breast development instead of SMS, but effect estimates, particularly for maternal pre-pregnancy BMI, were slightly attenuated in both the overall cohort (**Supplemental Table 3.9**) and the subset of girls < 8 years at baseline (**Supplemental Table 3.10**). In the subset of girls with clinical breast TS, the association between maternal pre-pregnancy BMI and onset of breast development as assessed by trained personnel<sup>239</sup> was the same as the estimate using maternal reports of breast TS (HR 1.03, 95% CI 0.99-1.07, adjusted for maternal education and maternal pre-pregnancy BMI), while the estimate using maternal reports of PDS was closer to the null (**Supplemental Table 3.11**).

#### 3.4 Discussion

In this prospective cohort enriched for BCFH, we found that three potentially modifiable risk factors – higher maternal pre-pregnancy BMI, lack of recreational physical activity during pregnancy and higher GWG, were associated with earlier breast development in daughters. The inverse linear relationship between maternal pre-pregnancy BMI and age at breast development was partially mediated by daughters' pre-pubertal body size. When we considered maternal BMI and GWG together, maternal overweight or obesity and high GWG (≥30lbs) was associated with earlier breast development compared with daughters of women with a pre-pregnancy BMI <25 who gained <30lbs during pregnancy, and this association was similar in girls with and without a BCFH. Thus, maintaining a healthy BMI prior to pregnancy and preventing excessive weight gain during pregnancy (≥30lbs) may delay breast development in girls across the spectrum of familial risk for breast cancer.

#### Comparison with previous studies

Our findings extend the previous literature conducted in study populations of girls predominantly at average-risk of breast cancer due to their family history. The inverse linear relationship between maternal pre-pregnancy BMI and age at breast development that we observed in girls without a BCFH is consistent with previous studies in the prospective ALSPAC birth cohort ( $\beta$  for age at menarche: -0.77, 95% CI -0.93, -0.60 per 1 BMI-unit increase), 73,82 and a retrospective pubertal cohort nested in KPNC (HR: 1.39, 95% CI 1.30, 1.49 for maternal BMI≥30 compared with 18.5-24.9, p for trend<0.0001).<sup>81</sup> Higher maternal prepregnancy BMI has also been consistently associated with earlier age at menarche.<sup>73,82,111,115,117,118</sup> Similar to our results, previous studies have also observed earlier age at breast development and menarche in daughters of women with greater absolute GWG or GWG in excess of guidelines.<sup>82,83,118,237</sup> However, the shape of this association at the extreme of low or inadequate GWG has not been consistent in the literature. In ALSPAC, GWG had an inverse linear relationship with age at the larche and age at menarche, and inadequate GWG based on the 2009 IOM guidelines was associated with a decreased risk of early menarche compared with adequate GWG.<sup>82</sup> In contrast, inadequate GWG was associated with earlier age at breast development in KPNC.<sup>237</sup> A U-shaped association was also observed between GWG and early menarche in the Nurses' Health Study II cohort.83 We did not observe a statistically significant difference in age at breast development in girls whose mothers gained <20lbs compared with 20-29lbs, but point estimates were in the direction of earlier breast development in this group. The inconsistent association between low GWG and pubertal timing could be due to heterogeneity within the group of women who do not gain much weight during pregnancy, particularly in terms of pre-pregnancy BMI. In girls <8 years at baseline, the HR for breast development for GWG<20lbs when adjusted for maternal pre-pregnancy BMI as a confounder was 1.64 (95% CI 0.91-2.94). However, when we considered GWG together with maternal pre-pregnancy BMI, we observed earlier breast development in girls with low GWG only if their mothers were overweight or obese prior to pregnancy. Although previous studies adjusted for pre-pregnancy BMI, the estimated association between low GWG and breast development without considering an interaction between GWG and maternal BMI would be an average effect over the distribution of maternal BMI. Differences in the distribution of maternal BMI in previous studies could explain inconsistencies in the associations between low GWG and pubertal timing in the literature. In the ALSPAC cohort, which did not observe earlier pubertal timing in daughters of inadequate GWG, only 21.7% of mothers had a BMI≥25

prior to pregnancy.<sup>82</sup> In KPNC, which did observe a statistically significant association between inadequate GWG and earlier breast development, more than 50% of mothers had a BMI≥25 at the beginning of pregnancy. The HR was elevated, but not statistically significant, comparing girls whose mother had a prepregnancy BMI<25 and inadequate GWG with girls whose mothers also had a pre-pregnancy BMI<25 and adequate GWG (HR=1.26, 95% CI 0.90-1.75). <sup>237</sup>

We observed earlier age at breast development in daughters of women that were physically inactive during pregnancy. The association between maternal physical activity and breast development was not linear and was limited to women that reported no walking or regular exercise, suggesting that even a small amount of physical activity during pregnancy may reduce the risk of early breast development in daughters. While we also observed later age at breast development in daughters of women who did not work outside the home, no difference was observed between daughters of women with more sedentary compared with more physically active jobs among women who worked outside the home. It seems unlikely that the observed association in daughters of women who do not work outside the home is due to physical activity, and may reflect an influence of socioeconomic status or other differences in the home environment in families where the mother does not work outside the home. Only one prior study has examined maternal physical activity levels during pregnancy in relation to pubertal timing. In the Nurses' Health Study II cohort, there was a modest linear relationship between maternal leisure-time physical activity and daughters' age at menarche, with a 1 month difference in age at menarche between daughters of highly active compared with inactive women.<sup>236</sup> The magnitude of this association is much smaller than what we observed for breast development, but age at menarche was recalled to the nearest year by participants in adulthood and measurement error on the outcome may have biased effect estimates towards the null.

While our results support that maternal factors that affect the intrauterine environment are associated with age at breast development, they do not support an independent role for birthweight or birthlength in regards to the onset of breast development. Mothers recalled birthweight and birthlength when girls were primarily 6-13 years of age and these measures are likely subject to some measurement error. We mailed the questionnaire for parents to complete at home, and 41% of mothers reported that the source of the birthweight information was a written record (birth certificate, baby book, birth announcement, etc.).

The correlation between maternal report of birthweight and birthweight abstracted from medical record data was also high (0.9) in our validation subset, and previous studies have found parental recall of birthweight to be reliable.<sup>244,245</sup> Birth cohorts using prospective measures of birthweight have also not observed an association between birthweight and onset of breast development,<sup>73,79</sup> which supports that our results are less likely to be driven by measurement error. Earlier age at breast development was observed in higher birthweight infants in the North Carolina Infant Feeding Study, but the association was adjusted for weight gain in infancy and early childhood and may reflect the influence of postnatal growth patterns.<sup>75</sup> The correlation for birthlength in our validation subset was modest at 0.6, and 13% of mothers did not report length at birth. However, assessments of length before standing height can be measured by nurses.<sup>246,247</sup> Three previous studies using prospective measures of birthlength also did not observe an association with the timing of breast development.<sup>73,79,124</sup>

#### Potential mechanisms

Several potential mechanisms may link maternal pre-pregnancy BMI, GWG and maternal physical activity during pregnancy to the timing of breast development. Previous studies have found that the combination of excess GWG and higher maternal pre-pregnancy BMI is associated with rapid infant weight gain,<sup>248,249</sup> a risk factor for earlier age at breast development<sup>73,75</sup> and menarche.<sup>34,72,76,77,190</sup> The increased risk of early breast development that we observed in daughters of women that were overweight or obese prior to pregnancy and gained more than 30lbs may be mediated by rapid infant weight gain, a hypothesis that we will explore in **Chapter 4**. Overweight girls have earlier onset of breast development than girls of average weight,<sup>54,60</sup> and maternal pre-pregnancy BMI and GWG are both positively associated with daughters' BMI in childhood.<sup>250</sup> Our results suggest that the association between maternal pre-pregnancy BMI and earlier age at breast development is partially mediated by daughters' BMI, which could be due to shared genetic or lifestyle factors.<sup>197</sup> However, when we limited our analyses to girls with a pre-pubertal BMI <85<sup>th</sup> percentile, we still observed an inverse association between maternal BMI and age at breast development. Associations between higher GWG and maternal physical inactivity and earlier age at breast development were only slightly attenuated after adjusting for daughters' BMI.

Overall, the lack of full mediation by daughters' body size suggests that maternal pregnancy factors may have a direct effect on the developing breast. The developmental origins of health and disease (DOHAD) hypothesis posits that intrauterine exposures affect health throughout the life course, either through a direct effect on the developing organs during the critical period of fetal development or through a developmental programming mechanism.<sup>198</sup> The breast undergoes multiple periods of rapid development throughout the life course when it is more susceptible to carcinogenetic effects from the environment.<sup>43,199</sup> The prenatal period has been identified as a critical window of susceptibility since the ductal system of the breast develops rapidly in utero,<sup>43,199,200</sup> and exposures that affect this ductal development could alter later breast development and breast cancer risk.<sup>43,201,202</sup> In rats, maternal high fat diet during pregnancy has been associated with increased estrogen levels in mothers and earlier pubertal development and increased incidence of mammary tumors in offspring.<sup>251</sup> In humans, however, high-fat diet, maternal obesity and GWG have not been consistently associated with estrogen levels during pregnancy.<sup>27,28,252,253</sup>

Maternal overnutrition could also affect breast development via the programming of hormones related to glucose and insulin regulation. Women with higher pre-pregnancy BMI and greater GWG have higher levels of leptin.<sup>203,254,255</sup> Exposure to high leptin levels in utero may program higher levels of these hormones in their daughters. Higher levels of leptin, an adipokine which plays a role in appetite and energy regulation, may stimulate the hypothalamic-pituitary-gonadal (HPG) axis, leading to earlier onset of breast development.<sup>204</sup> Higher leptin levels have been observed in girls with premature breast development<sup>205</sup> and is associated with earlier age at menarche.<sup>206</sup> Maternal obesity is also associated with insulin resistance during pregnancy, which may predispose the offspring to the development of insulin resistance and compensatory hyperinsulemia.<sup>207</sup> Hyperinsulinemia is associated with decreased levels of sex hormonebinding globulin,<sup>87</sup> which in turn increases sex steroid bioavailability and may promote puberty.<sup>208</sup> Some studies have shown that physical activity during pregnancy is associated with reduced maternal leptin levels and increased insulin sensitivity (for review, see <sup>256</sup>), suggesting that physical activity during pregnancy could also affect pubertal timing through a hormonal mechanism. Maternal overnutrition may affect daughters' health later in life via an epigenetic mechanism.<sup>207,209</sup> Patterns of DNA methylation are established in early life and persist into adulthood, and evidence from animal studies suggest that maternal overnutrition can induce epigenetic changes in the offspring.<sup>210</sup>

#### Differences by breast cancer family history

We previously observed that girls with a BCFH experience earlier onset of breast development than girls without a BCFH.<sup>54</sup> Identifying risk factors for earlier puberty that are modifiable could therefore have a greater effect on an absolute scale in girls with a BCFH. We found that the association between maternal overweight or obesity, high GWG (≥30lbs) and earlier age at breast development did not differ by BCFH on the additive scale, as assessed by the RERI. This suggests that the absolute risk of early breast development can be modified, even in girls at increased risk due to their family history, by changing the early-life environment. Maintaining a healthy weight prior to pregnancy, preventing excessive GWG and engaging in physical activity during pregnancy has many additional health benefits for both the mother and the child. Raising awareness that these behaviors, which are in line with current clinical and public health message. This message may resonate in particular with mothers of girls with a BCFH, who have a greater level of breast-cancer specific distress.<sup>257</sup>

#### Methodological considerations in the assessment of breast development

One of the methodological challenges in studying pubertal timing is accurately capturing the onset of breast development. We ran multiple sensitivity analyses to examine how robust the association that we observed between maternal pre-pregnancy BMI, GWG and the onset of breast development was across different assessments of breast development and modeling strategies. In our sample, 43% of girls experienced the onset of breast development prior to study entry. Excluding girls based on their attainment of the outcome is recognized to bias studies of pubertal timing.<sup>58</sup> In particular, girls with earlier onset of breast development would be more likely to be excluded; if the exposure is associated with earlier development, this exclusion could lead to a bias towards the null in the observed measure of association. In our primary analysis, we included these girls in the model as left-censored without making additional assumptions about the timing of their breast development. We also ran sensitivity analyses imputing their age at breast development using recalled data. The imputation of an observed event time is more precise than left censored data, but is more prone to measurement error. Since we administered the growth and development questionnaire every 6 months, we had multiple reports of mothers' recalled age at onset of breast development for a subset of the cohort. As daughters mature and mothers are recalling the age of onset further from the actual time of transition, the age at onset recalled by the mother became progressively later on average (data not shown). The estimated median age at breast development was later when we used recalled data for left-censored girls, but the estimated associations for our exposures of interest were largely unchanged. Our inference was also similar when we imputed the midpoint of the interval as though it were observed for interval-censored girls.

While we used maternal reports of breast TS as our main outcome since it was available for all LEGACY sites, we conducted sensitivity analyses in the subset of girls with clinical breast TS. While estimates in this subset lack precision, the patterns of association were similar to what we observed in the full cohort using maternal reports. We also ran sensitivity analyses assessing the onset of breast development using PDS. Compared with clinical TS as the gold standard, we've previously found that breast onset as measured by maternal report using PDS has higher sensitivity compared with maternal report of SMS, but slightly lower specificity (Sensitivity 86.6% vs 77.0% for PDS and SMS; Specificity 89.6% vs 94.3% for PDS and SMS).<sup>239,258</sup> Since mothers are more likely to report breast onset using PDS compared with SMS, a higher percentage of girls were left-censored when using PDS as the outcome, which could explain why the point estimates from the PDS models are slightly closer to the null than the SMS models. Girls with inconsistent development by either measure (a report of TS1 or PDS1 after a report of TS or PDS≥2, which may reflect inaccurate reporting by the mother of the initial onset) were more likely to be discordant across these two measures. Our results were similar when we excluded inconsistent girls based on TS from the analyses, which suggests that our findings are less likely to be driven by measurement error. Finally, the validity of breast TS when based on visual assessment is different in average-weight compared with overweight girls, even when assessed by clinicians, as fat tissue in overweight girls can be mistaken for breast tissue.<sup>58</sup> In LEGACY, we found that the sensitivity of maternal reports of breast onset, when assessed by SMS and PDS, is higher, but the specificity is lower, in overweight compared with average-weight girls.<sup>239,258</sup> Since maternal pre-pregnancy BMI and GWG are associated with daughters' body size, this differential outcome assessment could bias the results away from the null. We examined this potential bias by restricting our analyses to non-overweight girls, and the inference was the same in this subset. Overall, the associations between higher maternal pre-pregnancy

BMI, greater GWG and earlier breast development were robust to these different modeling strategies. The consistency across our sensitivity analyses reduces the likelihood that our findings are due to bias, but is also informative for the comparison of previous studies that use these different methodologies and the design of future studies of breast development. While biannual assessments of clinical TS with palpation has been recommended as a "wish list" for longitudinal studies,<sup>58</sup> our results suggest that, in the case of exposures with a strong signal, the bias from the use of maternal reports and recalled data is minimal and leads to similar inference.

#### Strengths and limitations

The utilization of the LEGACY cohort is a major strength of this research. LEGACY is the only pubertal cohort worldwide enriched for BCFH, which allowed us to examine whether the associations between these early-life factors and breast development varies by underlying breast cancer susceptibility. LEGACY girls have been followed for up to five years with visits at six-month intervals, and thus have breast development data collected at frequent intervals to assess breast onset. Previous studies have primarily assessed development on an annual basis,<sup>82,109</sup> decreasing precision. The collection of multiple measures of breast development is also a strength, and allowed us to compare findings across mother-reported breast TS, mother-reported PDS, and clinician-reported breast TS. The consistency of the finding that daughters of mothers who were overweight or obese prior to pregnancy and gained more than 30lbs during pregnancy across these measures support that this finding is less likely to be driven by measurement error in outcome assessment.

Limitations of this study include the use of self-reported exposure data and censoring of the breast development outcome. Maternal recall of prenatal exposures, including maternal body size and daughters' birth characteristics, could be subject to measurement error, though the use of categorical variables likely limited the amount of misclassification. GWG was not collected in a way to be able to create categories of inadequate, adequate, and excessive weight gain based on the exact recommendations of the 2009 IOM guidelines.<sup>110</sup> Since girls were predominantly between the ages of 6 and 13 years at baseline, some of the girls had already experienced breast development prior to cohort entry. We included these girls in the analyses by using both left censoring and recalled age at development in sensitivity analyses, but the lack

of prospective data on these girls could have biased our results towards the null. We also conducted analyses in the subset of girls <8 years at baseline, in which <5% of girls were left-censored for the outcome, limiting the potential for bias due to the use of retrospective data. However, the sample size of this subset affected precision and limited the number of confounders that we included in adjusted models. Overall, the consistency of the main study findings across the analytic subsets, which are susceptible to different sources of bias, support that bias is unlikely to explain the results that we observed.

### 3.5 Conclusions

Earlier thelarche was associated with three potentially modifiable risk factors – maternal prepregnancy BMI, maternal physical activity during pregnancy and gestational weight gain - in a cohort of girls enriched for BCFH. Health promotion campaigns should educate both women who are planning pregnancies and their clinicians that maintaining a healthy pre-pregnancy BMI, engaging in recreational physical activity during pregnancy, and moderate weight gain during pregnancy (<30lbs) may delay breast development in daughters, in addition to other health benefits to the mother and child.

# 3.6 Tables and figures

|                                                                             | All of<br>LEGACY<br>(N=1068) | Participating<br>guardian is<br>biological<br>mother<br>(N=1031) | Subset with<br>BMI measured<br>at <8 years<br>(N=619) | Subset age <8<br>years at<br>baseline<br>(N=259) |
|-----------------------------------------------------------------------------|------------------------------|------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------|
| Early-life characteristics                                                  |                              |                                                                  | · · ·                                                 |                                                  |
| Maternal age at birth (Mean±SD)                                             | 32.3 ± 5.5                   | 32.1 ± 5.4                                                       | 32.5 ± 5.2                                            | 32.1 ± 5.5                                       |
| Maternal height, m (Mean±SD)                                                | 1.6 ± 0.1                    | 1.6 ± 0.1                                                        | 1.6 ± 0.1                                             | $1.6 \pm 0.1$                                    |
| Maternal pre-pregnancy weight, kg (Mean±SD)                                 | 64.0 ± 13.3                  | 64.0 ± 13.3                                                      | 64.0 ± 13.0                                           | 65.8 ± 14.5                                      |
| Maternal pre-pregnancy BMI (Mean±SD)                                        | 23.8 ± 4.9                   | 23.8 ± 4.9                                                       | 23.7 ± 4.8                                            | $24.5 \pm 5.6$                                   |
| Maternal pre-pregnancy BMI, categorized (N, %)                              |                              |                                                                  |                                                       |                                                  |
| <18.5                                                                       | 47 (4.4)                     | 47 (4.6)                                                         | 28 (4.5)                                              | 8 (3.1)                                          |
| 18.5 to <25                                                                 | 677 (63.4)                   | 676 (65.6)                                                       | 415 (67.0)                                            | 162 (62.6)                                       |
| 25 to <30                                                                   | 180 (16.9)                   | 179 (17.4)                                                       | 94 (15.2)                                             | 46 (17.8)                                        |
| ≥30                                                                         | 96 (9.0)                     | 96 (9.3)                                                         | 59 (9.5)                                              | 31 (12.0)                                        |
| Missing                                                                     | 68 (6.4)                     | 33 (3.2)                                                         | 23 (3.7)                                              | 12 (4.6)                                         |
| Gestational weight gain (n, %)                                              |                              |                                                                  |                                                       |                                                  |
| <10 lbs                                                                     | 27 (2.5)                     | 27 (2.6)                                                         | 20 (3.2)                                              | 7 (2.7)                                          |
| 10-14 lbs                                                                   | 42 (3.9)                     | 42 (4.1)                                                         | 25 (4.0)                                              | 10 (3.9)                                         |
| 15-19 lbs                                                                   | 86 (8.1)                     | 86 (8.3)                                                         | 54 (8.7)                                              | 17 (6.6)                                         |
| 20-29 lbs                                                                   | 317 (29.7)                   | 316 (30.7)                                                       | 169 (27.3)                                            | 78 (30.1)                                        |
| 30-39 lbs                                                                   | 266 (24.9)                   | 264 (25.6)                                                       | 161 (26.0)                                            | 68 (26.3)                                        |
| 40-49 lbs                                                                   | 145 (13.6)                   | 145 (14.1)                                                       | 87 (14.1)                                             | 34 (13.1)                                        |
| ≥50 lbs                                                                     | 113 (10.6)                   | 113 (11.0)                                                       | 69 (11.2)                                             | 31 (12.0)                                        |
| Missing                                                                     | 72 (6.7)                     | 38 (3.7)                                                         | 34 (5.5)                                              | 14 (5.4)                                         |
| Gestational weight gain adequacy based on the 2009 IOM guidelines $(n, \%)$ |                              |                                                                  |                                                       |                                                  |
| Inadequate (below guidelines)                                               | 132 (12.4)                   | 132 (12.8)                                                       | 87 (14.1)                                             | 27 (10.4)                                        |
| Adequate (within guidelines)                                                | 519 (48.6)                   | 519 (50.3)                                                       | 300 (48.5)                                            | 134 (51.7)                                       |
| Excessive (above guidelines)                                                | 317 (29.7)                   | 317 (30.8)                                                       | 187 (30.2)                                            | 81 (31.3)                                        |
| Missing                                                                     | 100 (9.4)                    | 63 (6.1)                                                         | 45 (7.3)                                              | 17 (6.6)                                         |
| Maternal recreational physical activity during pregnancy (N, $\%)$          |                              |                                                                  |                                                       |                                                  |
| Inactive, no walking or other regular exercise                              | 129 (12.1)                   | 128 (12.4)                                                       | 71 (11.5)                                             | 30 (11.6)                                        |
| Mostly inactive, equivalent to walking about half a mile or less every day  | 241 (22.6)                   | 235 (22.8)                                                       | 156 (25.2)                                            | 71 (27.4)                                        |
| Somewhat active, equivalent to walking about 1 mile every day               | 226 (21.2)                   | 222 (21.5)                                                       | 136 (22.0)                                            | 57 (22.0)                                        |
| Active, equivalent to walking about 2 miles every day                       | 384 (36.0)                   | 379 (36.8)                                                       | 215 (34.7)                                            | 85 (32.8)                                        |

# Table 3.1. Descriptive characteristics of the LEGACY Girls Study cohort overall and by analytic subset

| Highly active, equivalent to walking about 3 or more miles every day                                | 58 (5.4)   | 57 (5.5)   | 33 (5.3)   | 11 (4.3)       |
|-----------------------------------------------------------------------------------------------------|------------|------------|------------|----------------|
| Missing                                                                                             | 30 (2.8)   | 10 (1.0)   | 8 (1.3)    | 5 (1.9)        |
| Maternal physical activity at home during pregnancy (N, %)                                          |            |            |            |                |
| Mostly sitting                                                                                      | 212 (19.9) | 209 (20.3) | 123 (19.9) | 51 (19.7)      |
| Mostly walking and standing, with some sitting                                                      | 412 (38.6) | 403 (39.1) | 246 (39.7) | 108 (41.7)     |
| Active housework most of the time with little sitting                                               | 405 (37.9) | 400 (38.8) | 236 (38.1) | 90 (34.8)      |
| Heavy manual work at home                                                                           | 5 (0.5)    | 5 (0.5)    | 2 (0.3)    | 2 (0.8)        |
| Missing                                                                                             | 34 (3.2)   | 14 (1.4)   | 12 (1.9)   | 8 (3.1)        |
| Maternal physical activity at work during pregnancy (N, %)                                          |            |            |            |                |
| Not working                                                                                         | 214 (20.0) | 211 (20.5) | 112 (18.1) | 54 (20.9)      |
| Mostly sitting and standing                                                                         | 422 (39.5) | 413 (40.1) | 258 (41.7) | 103 (39.8)     |
| Mostly walking with some sitting and standing                                                       | 362 (33.9) | 357 (34.6) | 224 (36.2) | 92 (35.5)      |
| Mostly heavy labor with some walking and standing and little sitting                                | 39 (3.7)   | 39 (3.8)   | 17 (2.8)   | 5 (1.9)        |
| Missing                                                                                             | 31 (2.9)   | 11 (3.8)   | 8 (1.3)    | 5 (1.9)        |
| Maternal physical activity during pregnancy,<br>2nd trimester (N, %)                                |            |            |            |                |
| Stayed the same                                                                                     | 751 (70.3) | 737 (71.5) | 446 (72.1) | 189 (73.0)     |
| Substantially increased                                                                             | 54 (5.1)   | 54 (5.2)   | 29 (4.7)   | 8 (3.1)        |
| Substantially decreased                                                                             | 233 (21.8) | 231 (22.4) | 136 (22.0) | 57 (22.0)      |
| Missing                                                                                             | 30 (2.8)   | 9 (0.9)    | 8 (1.3)    | 5 (1.9)        |
| Gestational diabetes during pregnancy with LEGACY daughter (N, $\%$ )                               |            |            |            |                |
| Yes                                                                                                 | 80 (7.5)   | 78 (7.6)   | 50 (8.1)   | 24 (9.3)       |
| No                                                                                                  | 944 (88.4) | 930 (90.2) | 555 (89.7) | 225 (86.9)     |
| Missing                                                                                             | 44 (4.1)   | 23 (2.2)   | 14 (2.3)   | 10 (3.9)       |
| Gestational hypertension, toxemia or pre-<br>eclampsia during pregnancy with LEGACY daughter (N, %) |            |            |            |                |
| Yes                                                                                                 | 76 (7.1)   | 74 (7.2)   | 42 (6.8)   | 20 (7.7)       |
| No                                                                                                  | 947 (88.7) | 932 (90.4) | 557 (90.0) | 227 (87.6)     |
| Missing                                                                                             | 45 (4.2)   | 25 (2.4)   | 20 (3.2)   | 12 (4.6)       |
| Type of gestation (N, %)                                                                            |            |            |            |                |
| Multiple                                                                                            | 45 (4.2)   | 45 (4.4)   | 34 (5.5)   | 13 (5.0)       |
| Singleton                                                                                           | 970 (90.8) | 970 (94.1) | 576 (93.1) | 241 (93.1)     |
| Missing                                                                                             | 53 (5.0)   | 16 (1.6)   | 9 (1.5)    | 5 (1.9)        |
| Birth order (Mean±SD)                                                                               | 1.8 ± 0.9  | 1.8 ± 0.9  | 1.7 ± 0.9  | $1.9 \pm 0.9$  |
| Birth order, dichotomized (N, %)                                                                    |            |            |            |                |
| First-born                                                                                          | 470 (44.0) | 470 (45.6) | 281 (45.4) | 97 (37.5)      |
| Not first-born                                                                                      | 545 (51.0) | 545 (52.9) | 329 (53.2) | 157 (60.6)     |
| Missing                                                                                             | 53 (5.0)   | 16 (1.6)   | 9 (1.5)    | 5 (1.9)        |
| Gestational age in weeks (Mean±SD)                                                                  | 39.0 ± 2.1 | 39.0 ± 2.1 | 38.9 ± 2.2 | $38.8 \pm 2.2$ |

| Gestational age, categorized (N, %)                                       |                   |                |                |                 |
|---------------------------------------------------------------------------|-------------------|----------------|----------------|-----------------|
| <37 weeks                                                                 | 121 (11.3)        | 120 (11.6)     | 80 (12.9)      | 32 (12.4)       |
| ≥37 weeks                                                                 | 909 (85.1)        | 893 (86.6)     | 525 (84.8)     | 218 (84.2)      |
| Missing                                                                   | 38 (3.6)          | 18 (1.8)       | 14 (2.3)       | 9 (3.5)         |
| Intrauterine smoke exposure (N, %)                                        |                   |                |                |                 |
| Yes                                                                       | 19 (1.8)          | 12 (1.2)       | 10 (1.6)       | 4 (1.5)         |
| No                                                                        | 1017 (95.2)       | 1000 (97.0)    | 598 (96.6)     | 247 (95.4)      |
| Missing                                                                   | 32 (3.0)          | 12 (1.2)       | 11 (1.6)       | 8 (3.1)         |
| Birthweight, g (Mean±SD)                                                  | 3293.7 ±<br>582.9 | 3298.3 ± 583.3 | 3297.8 ± 574.6 | 3287.2 ± 574.6  |
| Birthweight, categorized (N, %)                                           |                   |                |                |                 |
| <2500g                                                                    | 81 (7.6)          | 78 (7.6)       | 43 (7.0)       | 19 (7.3)        |
| 2500-2999g                                                                | 186 (17.4)        | 179 (17.4)     | 111 (17.9)     | 42 (16.2)       |
| 3000-3499g                                                                | 397 (37.2)        | 388 (37.6)     | 233 (37.6)     | 104 (40.2)      |
| 3500-3999g                                                                | 287 (26.9)        | 279 (27.1)     | 165 (26.7)     | 66 (25.5)       |
| ≥4000g                                                                    | 94 (8.8)          | 94 (9.1)       | 59 (9.5)       | 24 (9.3)        |
| Missing                                                                   | 23 (2.2)          | 13 (1.3)       | 8 (1.3)        | 4 (1.5)         |
| Birthlength, cm (Mean±SD)                                                 | 50.5 ± 3.7        | $50.5 \pm 3.6$ | $50.4 \pm 3.7$ | $50.4 \pm 3.8$  |
| Birthlength, categorized (N, %)                                           |                   |                |                |                 |
| <48.25                                                                    | 113 (10.6)        | 106 (10.3)     | 65 (10.5)      | 30 (11.6)       |
| 48.25-50.74                                                               | 283 (26.5)        | 277 (26.9)     | 167 (27.0)     | 65 (25.1)       |
| 50.75-53.24                                                               | 222 (20.8)        | 215 (20.9)     | 138 (22.3)     | 58 (22.4)       |
| ≥53.25                                                                    | 303 (28.4)        | 300 (29.1)     | 176 (28.4)     | 76 (29.3)       |
| Missing                                                                   | 147 (13.8)        | 133 (12.9)     | 73 (11.8)      | 30 (11.6)       |
| Ponderal index at birth, kg/m <sup>3</sup> (Mean±SD)                      | $26.0 \pm 6.3$    | $25.8 \pm 5.8$ | $25.8 \pm 5.2$ | $25.7 \pm 5.3$  |
| Ponderal index at birth, categorized (N, %)                               |                   |                |                |                 |
| <22.98                                                                    | 241 (22.6)        | 238 (23.1)     | 146 (23.6)     | 59 (22.8)       |
| 22.98-25.21                                                               | 222 (20.8)        | 217 (21.1)     | 122 (19.7)     | 57 (22.0)       |
| 25.22-28.11                                                               | 230 (21.5)        | 225 (21.8)     | 152 (24.6)     | 64 (24.7)       |
| ≥28.12                                                                    | 228 (21.4)        | 218 (21.1)     | 126 (20.4)     | 49 (18.9)       |
| Missing                                                                   | 147 (13.8)        | 133 (12.9)     | 73 (11.8)      | 30 (11.6)       |
| Baseline characteristics                                                  |                   |                |                |                 |
| Age at baseline, (Mean±SD)a                                               | $10.0 \pm 2.4$    | $10.0 \pm 2.4$ | 9.2 ± 2.3      | $6.9 \pm 0.6$   |
| BMI-for-age percentile at baseline, $(Mean \pm SD)^a$                     | $50.5 \pm 30.6$   | 50.8 ± 30.5    | 50.2 ± 30.5    | $49.9 \pm 30.6$ |
| BMI-for-age percentile at baseline, categorized (N, %) <sup>a</sup>       |                   |                |                |                 |
| ≥85th BMI-for-age percentile                                              | 180 (16.9)        | 174 (16.9)     | 100 (16.2)     | 36 (13.9)       |
| <85th BMI-for-age percentile                                              | 836 (78.3)        | 806 (78.2)     | 503 (81.3)     | 212 (81.9)      |
| Missing                                                                   | 52 (4.9)          | 51 (5.0)       | 16 (2.6)       | 11 (4.3)        |
| History of breast cancer in a first- or second-<br>degree relative (N, %) |                   |                |                |                 |
| BCFH+                                                                     | 543 (50.8)        | 530 (51.4)     | 310 (50.1)     | 134 (51.7)      |
| BCFH-                                                                     | 525 (49.2)        | 501 (48.6)     | 309 (49.9)     | 125 (48.3)      |
|                                                                           |                   |                |                |                 |

| BOADICEA lifetime risk score (Mean±SD)               | 14.6 ± 4.8 | 14.6 ± 4.8 | 14.4 ± 4.7 | 14.7 ± 5.0 |
|------------------------------------------------------|------------|------------|------------|------------|
| Study site                                           |            |            |            |            |
| Philadelphia                                         | 159 (14.9) | 153 (14.8) | 112 (18.1) | 24 (9.3)   |
| New York                                             | 177 (16.6) | 175 (17.0) | 116 (18.7) | 56 (21.6)  |
| Utah                                                 | 178 (16.7) | 173 (16.8) | 103 (16.6) | 60 (23.2)  |
| Ontario                                              | 192 (18.0) | 179 (17.4) | 106 (17.1) | 46 (17.8)  |
| Northern California                                  | 362 (33.9) | 351 (34.0) | 182 (29.4) | 73 (28.2)  |
| Race/ethnicity                                       |            |            |            |            |
| Non-Hispanic white                                   | 669 (62.6) | 650 (63.1) | 406 (65.6) | 167 (64.5) |
| Non-Hispanic black                                   | 79 (7.4)   | 78 (7.6)   | 49 (7.9)   | 20 (7.7)   |
| Hispanic                                             | 196 (18.4) | 184 (17.9) | 96 (15.5)  | 48 (18.5)  |
| Asian/Pacific Islander                               | 93 (8.7)   | 88 (8.5)   | 52 (8.4)   | 20 (7.7)   |
| Other or mixed race/ethnicity                        | 31 (2.9)   | 31 (3.0)   | 16 (2.6)   | 4 (1.5)    |
| Maternal education                                   |            |            |            |            |
| Some college, vocational or technical school or less | 296 (27.7) | 287 (27.8) | 147 (23.8) | 75 (29.0)  |
| Bachelor's degree                                    | 385 (36.1) | 373 (36.2) | 226 (36.5) | 93 (35.9)  |
| Graduate degree                                      | 361 (33.8) | 346 (33.6) | 232 (37.5) | 85 (32.8)  |
| Missing                                              | 26 (2.4)   | 25 (2.4)   | 14 (2.3)   | 6 (2.3)    |
| Paternal education                                   |            |            |            |            |
| Some college, vocational or technical school or less | 345 (32.3) | 339 (32.9) | 177 (28.6) | 76 (29.3)  |
| Bachelor's degree                                    | 306 (28.7) | 298 (28.9) | 189 (30.5) | 83 (32.1)  |
| Graduate degree                                      | 348 (32.6) | 333 (32.3) | 219 (35.4) | 79 (30.5)  |
| Missing                                              | 69 (6.5)   | 61 (5.9)   | 34 (5.5)   | 21 (8.1)   |
| Maternal age at menarche (Mean±SD)                   | 12.7 ± 1.5 | 12.7 ± 1.5 | 12.8 ± 1.6 | 12.8 ± 1.6 |
| Maternal age at menarche, categorized                |            |            |            |            |
| <12 years                                            | 205 (19.2) | 200 (19.4) | 115 (18.6) | 52 (20.1)  |
| 12-13 years                                          | 575 (53.8) | 558 (54.1) | 338 (54.6) | 135 (52.1) |
| ≥14 years                                            | 253 (23.7) | 247 (24.0) | 152 (24.6) | 66 (25.5)  |
| Missing                                              | 35 (3.3)   | 26 (2.5)   | 14 (2.3)   | 6 (2.3)    |

<sup>a</sup>Age at pilot baseline visit for girls with pilot data (N=21)

Table 3.2. Time ratios (TR), hazard ratios (HR) and 95% confidence intervals (CIs) for associations between maternal pre-pregnancy BMI and GWG and the onset of breast development for the overall cohort and girls age <8 years at baseline

|                                       |     |                         | Overall co           | hort                    |                      |     | (                       | Girls <8 years a     | t baseline                  |                      |
|---------------------------------------|-----|-------------------------|----------------------|-------------------------|----------------------|-----|-------------------------|----------------------|-----------------------------|----------------------|
|                                       |     | Unadj                   | usted                | Adjus                   | sted <sup>a</sup>    |     | Unadj                   | usted                | Adjus                       | sted <sup>b</sup>    |
|                                       | Ν   | TR (95% CI)             | HR (95% CI)          | TR (95% CI)             | HR (95% CI)          | Ν   | TR (95% CI)             | HR (95% CI)          | TR (95% CI)                 | HR (95%<br>CI)       |
| Maternal pre-pregnancy<br>BMI         |     |                         |                      |                         |                      |     |                         |                      |                             | i                    |
| <18.5                                 | 47  | 1.038<br>(0.999, 1.079) | 0.75<br>(0.55, 1.01) | 1.055<br>(1.011, 1.101) | 0.65<br>(0.46, 0.92) |     | *Those with             | BMI<18.5 are in num  | n referent group du<br>bers | ie to small          |
| 18.5 to <25                           | 667 | Reference               | Reference            | Reference               | Reference            | 165 | Reference               | Reference            | Reference                   | Reference            |
| 25 to <30                             | 178 | 0.979<br>(0.942, 1.017) | 1.18<br>(0.87, 1.60) | 0.993<br>(0.955, 1.031) | 1.06<br>(0.78, 1.44) | 46  | 0.959<br>(0.905, 1.016) | 1.36<br>(0.89, 2.07) | 0.977<br>(0.921, 1.037)     | 1.19<br>(0.76, 1.86) |
| ≥30                                   | 96  | 0.948<br>(0.912, 0.985) | 1.51<br>(1.12, 2.04) | 0.967<br>(0.930, 1.006) | 1.31<br>(0.95, 1.79) | 31  | 0.923<br>(0.858, 0.993) | 1.80<br>(1.07, 3.01) | 0.927<br>(0.853, 1.008)     | 1.77<br>(0.96, 3.26) |
| Continuous (per kg/m <sup>2</sup> )   | 988 | 0.995<br>(0.993, 0.997) | 1.04<br>(1.02, 1.06) | 0.997<br>(0.994, 0.999) | 1.03<br>(1.01, 1.05) | 242 | 0.994<br>(0.991, 0.998) | 1.04<br>(1.02, 1.07) | 0.996<br>(0.992, 0.999)     | 1.04<br>(1.01, 1.07) |
| Gestational weight gain               |     |                         |                      |                         |                      |     |                         |                      |                             |                      |
| <20lbs                                | 155 | 0.975<br>(0.941, 1.010) | 1.21<br>(0.92, 1.60) | 0.983<br>(0.958, 1.019) | 1.15<br>(0.86, 1.54) | 34  | 0.919<br>(0.846, 0.999) | 1.85<br>(1.02, 3.37) | 0.938<br>(0.869, 1.013)     | 1.64<br>(0.91, 2.94) |
| 20-29 lbs                             | 315 | Reference               | Reference            | Reference               | Reference            | 77  | Reference               | Reference            | Reference                   | Reference            |
| 30-39 lbs                             | 261 | 0.988<br>(0.960, 1.020) | 1.10<br>(0.88, 1.38) | 0.975<br>(0.947, 1.004) | 1.23<br>(0.97, 1.55) | 67  | 0.952<br>(0.893, 1.015) | 1.43<br>(0.91, 2.27) | 0.928<br>(0.872, 0.986)     | 1.78<br>(1.12, 2.86) |
| 40-49 lbs                             | 143 | 0.979<br>(0.947, 1.013) | 1.18<br>(0.91, 1.52) | 0.974<br>(0.942, 1.007) | 1.24<br>(0.95, 1.62) | 33  | 0.929 (0.862, 1.001)    | 1.71<br>(0.99, 2.97) | 0.919<br>(0.854, 0.988)     | 1.92<br>(1.08, 3.40) |
| ≥50 lbs                               | 109 | 0.969<br>(0.932, 1.010) | 1.28<br>(0.95, 1.72) | 0.962<br>(0.926, 0.999) | 1.37<br>(1.01, 1.85) | 29  | 0.917<br>(0.833, 1.009) | 1.88<br>(0.94, 3.78) | 0.923<br>(0.844, 1.009)     | 1.85<br>(0.93, 3.67) |
| Maternal pre-pregnancy<br>BMI and GWG |     |                         |                      |                         |                      |     |                         |                      |                             |                      |
| BMI<25 and <30 lbs                    | 312 | Reference               | Reference            | Reference               | Reference            | 67  | Reference               | Reference            | Reference                   | Reference            |
| BMI<25 and ≥30 lbs                    | 389 | 0.995<br>(0.971, 1.020) | 1.04<br>(0.86, 1.25) | 0.985<br>(0.960, 1.009) | 1.13<br>(0.93, 1.38) | 95  | 0.915<br>(0.853, 0.982) | 1.91<br>(1.15, 3.16) | 0.907<br>(0.848, 0.970)     | 2.11<br>(1.28, 3.48) |
| BMI≥25 and <30lbs                     | 149 | 0.980 (0.937, 1.025)    | 1.17<br>(0.82, 1.66) | 0.987 (0.944, 1.031)    | 1.11<br>(0.78, 1.59) | 43  | 0.887<br>(0.820, 0.960) | 2.40<br>(1.39, 4.16) | 0.910<br>(0.839, 0.987)     | 2.05<br>(1.13, 3.72) |
| BMI≥25 and ≥30 lbs                    | 118 | 0.935<br>(0.901, 0.970) | 1.69<br>(1.27, 2.26) | 0.945<br>(0.911, 0.981) | 1.57<br>(1.17, 2.12) | 32  | 0.912<br>(0.831, 1.000) | (1.01, 3.84)         | 0.907<br>(0.826, 0.996)     | 2.11<br>(1.04, 4.28) |

<sup>a</sup>Adjusted for race (Non-Hispanic white Non-Hispanic black, Hispanic, Asian, Other) and maternal education (some college or less, Bachelor's degree, graduate degree). Model for GWG also adjusted for maternal pre-pregnancy BMI (continuous).

<sup>b</sup>Adjusted for maternal education (some college or less, Bachelor's degree, graduate degree). Model for GWG also adjusted for maternal pre-pregnancy BMI (continuous).

Table 3.3. Time ratios (TR), hazard ratios (HR) and 95% confidence intervals (CIs) for associations between maternal physical activity during pregnancy and the onset of breast development for the overall cohort and girls age <8 years at baseline

|                                                                                  |     |                         | Overall co           | hort                    |                      |     | (                       | Girls <8 years a     | t baseline              |                      |
|----------------------------------------------------------------------------------|-----|-------------------------|----------------------|-------------------------|----------------------|-----|-------------------------|----------------------|-------------------------|----------------------|
|                                                                                  |     | Unadj                   | usted                | Adjus                   | sted <sup>a</sup>    |     | Unadj                   | usted                | d Adjust                |                      |
|                                                                                  | Ν   | TR (95% CI)             | HR (95% CI)          | TR (95% CI)             | HR (95% CI)          | Ν   | TR (95% CI)             | HR (95% CI)          | TR (95% CI)             | HR (95%<br>CI)       |
| Recreational physical activity                                                   |     |                         |                      |                         |                      |     |                         |                      |                         |                      |
| Inactive, no walking or other regular exercise                                   | 127 | 0.946<br>(0.909, 0.985) | 1.54<br>(1.12, 2.11) | 0.977<br>(0.941, 1.015) | 1.20<br>(0.89, 1.63) | 30  | 0.914<br>(0.853, 0.980) | 1.95<br>(1.17, 3.25) | 0.933<br>(0.873, 0.998) | 1.70<br>(1.02, 2.83) |
| Mostly inactive, equivalent to<br>walking about half a mile or<br>less every day | 232 | 0.993<br>(0.958, 1.028) | 1.06<br>(0.81, 1.39) | 1.006<br>(0.976, 1.038) | 0.95<br>(0.74, 1.22) | 70  | 1.003<br>(0.947, 1.063) | 0.98<br>(0.63, 1.51) | 1.012<br>(0.951, 1.077) | 0.91<br>(0.56, 1.47) |
| Somewhat active, equivalent<br>to walking about 1 mile every<br>day              | 220 | 0.990<br>(0.964, 1.017) | 1.08<br>(0.88, 1.33) | 1.010<br>(0.983, 1.038) | 0.93<br>(0.75, 1.15) | 56  | 1.022<br>(0.959, 1.088) | 0.85<br>(0.54, 1.36) | 1.008<br>(0.949, 1.071) | 0.94<br>(0.59, 1.51) |
| Active or highly active,<br>equivalent to walking 2 miles<br>or more every day   | 433 | Reference               | Reference            | Reference               | Reference            | 93  | Reference               | Reference            | Reference               | Reference            |
| Physical activity at home                                                        |     |                         |                      |                         |                      |     |                         |                      |                         |                      |
| Mostly sitting                                                                   | 208 | 1.003<br>(0.972, 1.036) | 0.97<br>(0.76, 1.25) | 1.013<br>(0.981, 1.046) | 0.90<br>(0.70, 1.17) | 51  | 0.948<br>(0.889, 1.012) | 1.48<br>(0.92, 2.37) | 0.974<br>(0.912, 1.041) | 1.22<br>(0.74, 2.02) |
| Mostly walking and standing,<br>with some sitting                                | 398 | Reference               | Reference            | Reference               | Reference            | 105 | Reference               | Reference            | Reference               | Reference            |
| Active housework most of the time with little sitting or heavy manual labor      | 402 | 1.011<br>(0.986, 1.036) | 0.92<br>(0.76, 1.12) | 1.019<br>(0.995, 1.044) | 0.86<br>(0.70, 1.04) | 90  | 0.976<br>(0.925, 1.029) | 1.20<br>(0.81, 1.76) | 0.994<br>(0.942, 1.048) | 1.05<br>(0.70, 1.57) |
| Physical activity at work                                                        |     |                         |                      |                         |                      |     |                         |                      |                         |                      |
| Not working outside the home                                                     | 208 | 1.013<br>(0.986, 1.042) | 0.90<br>(0.73, 1.12) | 1.033<br>(1.003, 1.063) | 0.77<br>(0.61, 0.98) | 53  | 1.050<br>(0.986, 1.118) | 0.70<br>(0.45, 1.11) | 1.089<br>(1.021, 1.163) | 0.52<br>(0.31, 0.86) |
| Mostly sitting and standing                                                      | 408 | Reference               | Reference            | Reference               | Reference            | 99  | Reference               | Reference            | Reference               | Reference            |
| Mostly walking or heavy labor                                                    | 395 | 0.996<br>(0.972, 1.020) | 1.03<br>(0.86, 1.24) | 1.004<br>(0.980, 1.028) | 0.97<br>(0.80, 1.18) | 97  | 1.000<br>(0.945, 1.058) | 1.00<br>(0.67, 1.51) | 1.016<br>(0.964, 1.070) | 0.89<br>(0.59, 1.33) |

<sup>a</sup>Adjusted for race (Non-Hispanic white Non-Hispanic black, Hispanic, Asian, Other) and maternal education (some college or less, Bachelor's degree, graduate degree) and maternal pre-pregnancy BMI (continuous). <sup>b</sup>Adjusted for maternal education (some college or less, Bachelor's degree, graduate degree) and maternal pre-pregnancy BMI (continuous).

 Table 3.4. Time ratios (TR), hazard ratios (HR) and 95% confidence intervals (CIs) for associations between maternal pre-pregnancy BMI, recreational physical activity during pregnancy and GWG with adjustment for daughter's pre-pubertal body size

|                                                                                          |     | Subset of co            | hort with pre-p         | ubertal BMI meas            | sures                | Girls <8 years at baseline |                         |                         |                                |                          |  |  |
|------------------------------------------------------------------------------------------|-----|-------------------------|-------------------------|-----------------------------|----------------------|----------------------------|-------------------------|-------------------------|--------------------------------|--------------------------|--|--|
|                                                                                          |     | Multivariable           | e-adjusted <sup>a</sup> | Additional ad<br>daughter's | ,                    |                            | Multivariable           | e-adjusted <sup>c</sup> | Additional adj<br>daughter's l | ody size <sup>d</sup>    |  |  |
|                                                                                          | Ν   | TR (95% CI)             | HR (95% CI)             | TR (95% CI)                 | HR (95% CI)          | Ν                          | TR (95% CI)             | HR (95% CI)             | TR (95% CI)                    | HR (95%<br>CI)           |  |  |
| Maternal pre-pregnancy<br>BMI                                                            |     |                         |                         |                             |                      |                            |                         |                         |                                |                          |  |  |
| <18.5                                                                                    | 28  | 1.027<br>(0.977, 1.079) | 0.81<br>(0.55, 1.20)    | 1.018<br>(0.969, 1.069)     | 0.87<br>(0.59, 1.29) |                            | *Those with             | BMI<18.5 are in num     | referent group du<br>bers      | ie to small              |  |  |
| 18.5 to <25                                                                              | 402 | Reference               | Reference               | Reference                   | Reference            | 157                        | Reference               | Reference               | Reference                      | Reference                |  |  |
| 25 to <30                                                                                | 92  | 0.960<br>(0.919, 1.004) | 1.38<br>(0.97, 1.97)    | 0.970<br>(0.929, 1.013)     | 1.27<br>(0.90, 1.81) | 42                         | 0.970<br>(0.912, 1.031) | 1.26<br>(0.80, 1.99)    | 1.009<br>(0.952, 1.069)        | 0.93<br>(0.59, 1.47      |  |  |
| ≥30                                                                                      | 55  | 0.967<br>(0.919, 1.018) | 1.30<br>(0.87, 1.94)    | 1.006<br>(0.956, 1.061)     | 0.95<br>(0.63, 1.45) | 27                         | 0.914<br>(0.838, 0.996) | 1.95<br>(1.05, 3.63)    | 0.983<br>(0.901, 1.071)        | 1.15<br>(0.58, 2.27      |  |  |
| Continuous (per kg/m <sup>2</sup> )                                                      | 577 | 0.996<br>(0.992, 0.999) | 1.04<br>(1.01, 1.06)    | 0.999<br>(0.995, 1.002)     | 1.01<br>(0.99, 1.04) | 226                        | 0.993<br>(0.989, 0.998) | 1.05<br>(1.02, 1.09)    | 0.998<br>(0.993, 1.004)        | 1.01<br>(0.97, 1.06      |  |  |
| Recreational physical<br>activity <sup>b</sup>                                           |     |                         |                         |                             |                      |                            |                         |                         |                                |                          |  |  |
| Inactive, no walking or other regular exercise                                           | 70  | 0.972<br>(0.923, 1.023) | 1.25<br>(0.83, 1.89)    | 0.967<br>(0.921, 1.016)     | 1.31<br>(0.88, 1.95) | 28                         | 0.941<br>(0.879, 1.007) | 1.59<br>(0.95, 2.67)    | 0.924<br>(0.866, 0.985)        | 1.90<br>(1.13, 3.20      |  |  |
| Mostly inactive, equivalent to walking about half a mile                                 | 138 | 0.984<br>(0.951, 1.018) | 1.14<br>(0.87, 1.49)    | 0.978<br>(0.945, 1.012)     | 1.20<br>(0.91, 1.58) | 59                         | 0.996<br>(0.934, 1.062) | 1.03<br>(0.63, 1.68)    | 0.991<br>(0.928, 1.058)        | 1.08<br>(0.64, 1.84      |  |  |
| or less every day<br>Somewhat active,<br>equivalent to walking about<br>1 mile every day | 133 | 1.011<br>(0.978, 1.046) | 0.91<br>(0.70, 1.19)    | 1.004<br>(0.969, 1.041)     | 0.97<br>(0.73, 1.29) | 53                         | 1.003<br>(0.942, 1.068) | 0.98<br>(0.60, 1.58)    | 0.999<br>(0.939, 1.064)        | 1.01<br>(0.61, 1.67      |  |  |
| Active or highly active,<br>equivalent to walking 2<br>miles or more every day           | 236 | Reference               | Reference               | Reference                   | Reference            | 86                         | Reference               | Reference               | Reference                      | Reference                |  |  |
| Gestational weight gain <sup>b</sup>                                                     |     |                         |                         |                             |                      |                            |                         |                         |                                |                          |  |  |
| <20lbs                                                                                   | 95  | 0.975<br>(0.934, 1.017) | 1.23<br>(0.87, 1.73)    | 0.979<br>(0.937, 1.023)     | 1.19<br>(0.83, 1.69) | 32                         | 0.940<br>(0.869, 1.018) | 1.60<br>(0.88, 2.90)    | 0.941<br>(0.872, 1.016)        | 1.63<br>(0.88, 3.01      |  |  |
| 20-29 lbs                                                                                | 160 | Reference               | Reference               | Reference                   | Reference            | 72                         | Reference               | Reference               | Reference                      | Reference                |  |  |
| 30-39 lbs                                                                                | 153 | 0.980<br>(0.946, 1.015) | 1.18<br>(0.89, 1.56)    | 0.980<br>(0.946, 1.016)     | 1.17<br>(0.88, 1.57) | 58                         | 0.930<br>(0.871, 0.993) | 1.74<br>(1.06, 2.86)    | 0.939<br>(0.879, 1.004)        | 1.66<br>(0.97, 2.83      |  |  |
| 40-49 lbs                                                                                | 85  | 0.963<br>(0.925, 1.001) | 1.36<br>(0.99, 1.87)    | 0.968 (0.928, 1.009)        | 1.31<br>(0.93, 1.83) | 31                         | 0.929<br>(0.863, 0.999) | 1.76<br>(0.99, 3.11)    | 0.930 (0.863, 1.002)           | )<br>1.80<br>(0.97, 3.31 |  |  |
| ≥50 lbs                                                                                  | 67  | 0.943<br>(0.901, 0.987) | 1.61<br>(1.11, 2.32)    | 0.950<br>(0.906, 0.995)     | 1.52<br>(1.04, 2.22) | 28                         | 0.911<br>(0.832, 0.997) | 2.04<br>(1.02, 4.08)    | 0.921 (0.846, 1.002)           | )<br>(0.98, 3.89         |  |  |

| Maternal pre-pregnancy<br>BMI and GWGª |     |                         |                      |                         |                      |    |                         |                      |                         |                      |
|----------------------------------------|-----|-------------------------|----------------------|-------------------------|----------------------|----|-------------------------|----------------------|-------------------------|----------------------|
| BMI<25 and <30 lbs                     | 180 | Reference               | Reference            | Reference               | Reference            | 65 | Reference               | Reference            | Reference               | Reference            |
| BMI<25 and ≥30 lbs                     | 240 | 0.977<br>(0.947, 1.007) | 1.21<br>(0.95, 1.54) | 0.979<br>(0.948, 1.011) | 1.19<br>(0.92, 1.54) | 89 | 0.908<br>(0.847, 0.972) | 2.07<br>(1.24, 3.45) | 0.922<br>(0.861, 0.989) | 1.91<br>(1.10, 3.31) |
| BMI≥25 and <30lbs                      | 75  | 0.954<br>(0.907, 1.004) | 1.46<br>(0.97, 2.19) | 0.975<br>(0.925, 1.029) | 1.22<br>(0.79, 1.89) | 39 | 0.898<br>(0.826, 0.977) | 2.24<br>(1.23, 4.07) | 0.949<br>(0.877, 1.028) | 1.52<br>(0.81, 2.84) |
| BMI≥25 and ≥30 lbs                     | 65  | 0.935<br>(0.892, 0.980) | 1.71<br>(1.17, 2.50) | 0.955<br>(0.912, 1.001) | 1.45<br>(0.99, 2.12) | 28 | 0.904<br>(0.820, 0.998) | 2.13<br>(1.02, 4.44) | 0.961<br>(0.871, 1.061) | 1.37<br>(0.62, 3.01) |

<sup>a</sup>Adjusted for race (Non-Hispanic white Non-Hispanic black, Hispanic, Asian, Other) and maternal education (some college or less, Bachelor's degree, graduate degree). Model for

GWG also adjusted for maternal pre-pregnancy BMI (continuous). <sup>b</sup>Adjusted for everything in <sup>a</sup> plus daughter's BMI-for-age percentile between age 5-7 years and interaction between BMI-for-age percentile and centered age at BMI measure. <sup>c</sup>Adjusted for everything in <sup>b</sup> plus daughter's BMI-for-age percentile between age 5-7 years and interaction between BMI-for-age percentile and centered age at BMI measure. <sup>d</sup>Adjusted for everything in <sup>b</sup> plus daughter's BMI-for-age percentile between age 5-7 years and interaction between BMI-for-age percentile and centered age at BMI measure.

Table 3.5. Time ratios (TR), hazard ratios (HR) and 95% confidence intervals (Cls) for associations between maternal pre-pregnancy BMI, recreational physical activity during pregnancy and GWG stratified by breast cancer family history

|                                                                 |     |                         | Overal               | ll coho | rt                     |                      | Girls <8 years at baseline |                   |                 |          |                    |                |  |
|-----------------------------------------------------------------|-----|-------------------------|----------------------|---------|------------------------|----------------------|----------------------------|-------------------|-----------------|----------|--------------------|----------------|--|
|                                                                 |     | BCF                     | H+                   |         | BCF                    | H-                   |                            | BCF               | H+              | Ν        | BCF                | -H-            |  |
|                                                                 | Ν   | TR<br>(95% CI)          | HR<br>(95% CI)       | Ν       | TR<br>(95% CI)         | HR<br>(95% CI)       | Ν                          | TR<br>(95% CI)    | HR<br>(95% CI)  |          | TR<br>(95% CI)     | HR<br>(95% CI) |  |
| Maternal pre-                                                   |     |                         |                      |         | · ·                    |                      |                            |                   |                 |          | • •                |                |  |
| pregnancy BMP                                                   |     | 4 004                   |                      |         | 4 070                  | 0.54                 |                            | 4 <b>7</b> 1 11 F |                 |          |                    |                |  |
| <18.5                                                           | 22  | 1.021<br>(0.950, 1.098) | 0.85<br>(0.48, 1.51) | 24      | 1.076<br>(1.025,1.129) | 0.54<br>(0.36, 0.82) |                            | ^ I hose with E   | BMI<18.5 are in | n refere | nt group due to sn | nall numbers   |  |
| 18.5 to <25                                                     | 340 | Reference               | Reference            | 312     | Reference              | Reference            | 87                         | Reference         | Reference       | 76       | Reference          | Reference      |  |
| 25 to <30                                                       | 90  | 1.042                   | 0.72                 | 84      | 0.946                  | 1.59                 | 23                         | 1.003             | 0.98            | 21       | 0.953              | 1.37           |  |
| 2310<30                                                         | 90  | (0.987, 1.101)          | (0.47, 1.10)         | 04      | (0.907, 0.986)         | (1.12, 2.27)         | 23                         | (0.938,1.072)     | (0.54, 1.76)    | 21       | (0.853, 1.065)     | (0.66, 2.83    |  |
| ≥30                                                             | 41  | 0.977                   | 1.21                 | 50      | 0.960                  | 1.41                 | 13                         | 0.957             | 1.47            | 16       | 0.893              | 2.08           |  |
|                                                                 |     | (0.920, 1.037)          | (0.75, 1.95)         | 00      | (0.912, 1.011)         | (0.92, 2.15)         |                            | (0.881,1.040)     | (0.72, 3.02)    |          | (0.764, 1.045)     | (0.77, 5.59    |  |
| Continuous (per kg/m <sup>2</sup> )                             | 493 | 1.000                   | 1.00                 | 470     | 0.994                  | 1.05                 | 123                        | 0.997             | 1.02            | 113      | 0.991              | 1.06           |  |
|                                                                 |     | (0.996, 1.003)          | (0.98, 1.03)         |         | (0.991, 0.998)         | (1.02, 1.08)         |                            | (0.994,1.001)     | (0.99, 1.05)    |          | (0.981, 1.001)     | (1.00, 1.13    |  |
| Recreational physical activity <sup>b</sup>                     |     |                         |                      |         |                        |                      |                            |                   |                 |          |                    |                |  |
| Inactive, no walking or                                         | 68  | 0.984                   | 1.14                 | 53      | 0.964                  | 1.37                 | 19                         | 0.934             | 1.86            | 11       | 0.896              | 2.06           |  |
| other regular exercise                                          |     | (0.936, 1.034)          | (0.77, 1.69)         |         | (0.911, 1.020)         | (0.84, 2.21)         |                            | (0.866,1.006)     | (0.96, 3.61)    |          | (0.784, 1.025)     | (0.85, 4.96    |  |
| Mostly inactive,                                                | 111 | 1.001                   | 0.99                 | 98      | 1.005                  | 0.96                 | 30                         | 1.002             | 0.98            | 33       | 1.023              | 0.86           |  |
| equivalent to walking<br>about half a mile or<br>less every day |     | (0.955, 1.050)          | (0.68, 1.44)         |         | (0.970, 1.041)         | (0.71, 1.30)         |                            | (0.936,1.073)     | (0.53, 1.82)    |          | (0.899, 1.163)     | (0.37, 2.01    |  |
| Somewhat active,                                                | 102 | 0.970                   | 1.27                 | 114     | 1.040                  | 0.72                 | 27                         | 1.001             | 1.00            | 27       | 1.001              | 1.00           |  |
| equivalent to walking<br>about 1 mile every day                 |     | (0.937, 1.004)          | (0.96, 1.68)         |         | (1.004, 1.077)         | (0.53, 0.97)         |                            | (0.938,1.067)     | (0.55, 1.79)    |          | (0.890, 1.125)     | (0.46, 2.16    |  |
| Active or highly active,<br>equivalent to walking               | 212 | Reference               | Reference            | 205     | Reference              | Reference            | 47                         | Reference         | Reference       | 42       | Reference          | Reference      |  |
| ≥2 miles every day                                              |     |                         |                      |         |                        |                      |                            |                   |                 |          |                    |                |  |
| Gestational weight<br>gain <sup>b</sup>                         |     |                         |                      |         |                        |                      |                            |                   |                 |          |                    |                |  |
| <20lbs                                                          | 79  | 1.004                   | 0.97                 | 70      | 0.966                  | 1.34                 | 19                         | 0.985             | 1.14            | 15       | 0.872              | 2.50           |  |
| 20100                                                           | 10  | (0.957, 1.054)          | (0.65, 1.43)         | 10      | (0.920, 1.015)         | (0.89, 2.01)         |                            | (0.908,1.070)     | (0.54, 2.42)    | 10       | (0.750, 1.013)     | (0.93, 6.73    |  |
| 20-29 lbs                                                       | 163 | Reference               | Reference            | 140     | Reference              | Reference            | 38                         | Reference         | Reference       | 36       | Reference          | Reference      |  |
| 30-39 lbs                                                       | 123 | 0.980                   | 1.18                 | 124     | 0.974                  | 1.25                 | 30                         | 0.969             | 1.46            | 32       | 0.884              | 2.28           |  |
|                                                                 | ,   | (0.940, 1.021)          | (0.85, 1.64)         |         | (0.938, 1.011)         | (0.92, 1.71)         |                            | (0.900,1.023)     | (0.81, 2.65)    |          | (0.785, 0.996)     | (1.03, 5.05    |  |
| 40-49 lbs                                                       | 67  | 0.938                   | 1.67                 | 72      | 0.994                  | 1.05                 | 21                         | 0.909             | 2.39            | 11       | 1.040              | 0.77           |  |
|                                                                 |     | (0.893, 0.985)          | (1.13, 2.48)         |         | (0.955, 1.035)         | (0.75, 1.48)         |                            | (0.849,0.973)     | (1.24, 4.63)    |          | (0.831, 1.302)     | (0.17, 3.42    |  |
| ≥50 lbs                                                         | 50  | 0.988                   | 1.10                 | 57      | 0.939                  | 1.69                 | 12                         | 0.998             | 1.02            | 17       | 0.823              | 3.66           |  |
|                                                                 |     | (0.938, 1.040)          | (0.73, 1.67)         |         | (0.891, 0.990)         | (1.10, 2.61)         |                            | (0.903,1.103)     | (0.41, 2.55)    |          | (0.713, 0.950)     | (1.36, 9.87    |  |

| Maternal pre-<br>pregnancy BMI and<br>GWG <sup>a</sup> |     |                |              |     |                |              |    |               |              |    |                |              |
|--------------------------------------------------------|-----|----------------|--------------|-----|----------------|--------------|----|---------------|--------------|----|----------------|--------------|
| BMI<25 and <30 lbs                                     | 165 | Reference      | Reference    | 143 | Reference      | Reference    | 38 | Reference     | Reference    | 29 | Reference      | Reference    |
| BMI<25 and ≥30 lbs                                     | 189 | 0.997          | 1.02         | 190 | 0.975          | 1.24         | 47 | 0.963         | 1.41         | 46 | 0.826          | 3.74         |
|                                                        |     | (0.966, 1.029) | (0.79, 1.32) |     | (0.941, 1.009) | (0.93, 1.65) |    | (0.898,1.031) | (0.76, 2.59) |    | (0.722, 0.944) | (1.50, 9.33) |
| BMI≥25 and <30lbs                                      | 77  | 1.049          | 0.68         | 67  | 0.921          | 1.98         | 19 | 0.996         | 1.04         | 22 | 0.792          | 5.00         |
|                                                        |     | (0.989, 1.113) | (0.43, 1.09) |     | (0.873, 0.971) | (1.29, 3.05) |    | (0.920,1.078) | (0.51, 2.10) |    | (0.675, 0.928) | (1.75,14.30) |
| BMI≥25 and ≥30 lbs                                     | 51  | 0.957          | 1.43         | 63  | 0.944          | 1.62         | 16 | 0.914         | 2.23         | 14 | 0.908          | 1.94         |
|                                                        |     | (0.903, 1.013) | (0.89, 2.29) |     | (0.900, 0.989) | (1.10, 2.39) |    | (0.838,1.008) | (0.93, 5.33) |    | (0.746, 1.105) | (0.51, 7.42) |

<sup>a</sup>Adjusted for race (Non-Hispanic white Non-Hispanic black, Hispanic, Asian, Other) and maternal education (some college or less, Bachelor's degree, graduate degree) in full cohort.

<sup>b</sup>Adjusted for race (Non-Hispanic white Non-Hispanic black, Hispanic, Asian, Other), maternal education (some college or less, Bachelor's degree, graduate degree) and maternal pre-pregnancy BMI (continuous) in full cohort. In girls <8 years, adjusted for maternal education (some college or less, Bachelor's degree, graduate degree) and maternal pre-pregnancy BMI (continuous).

#### Chapter 4. Infant growth and the onset of breast development in the LEGACY Girls Study cohort

#### ABSTRACT

<u>Background</u>: Rapid weight gain during infancy is associated with earlier onset of breast development. To date, the epidemiologic evidence has come from cohorts of girls that are not enriched for breast cancer family history (BCFH). Since earlier onset of puberty is associated with increased breast cancer risk, we examined the associations between size and growth during infancy and age at breast development, and whether these associations varied by BCFH, using a prospective cohort of girls in which approximately half are at increased risk of breast cancer due to their family history.

<u>Methods</u>: We abstracted weight and length data from medical records for 255 girls that had at least two anthropometric measures between 2 weeks and 16 months of age. Including birth size from either the medical record or maternal report, we then used individual constrained quadratic splines to interpolate weight and length at 2, 4, 6, 9 and 12 months of age for each girl, ages that correspond to recommended postnatal physician visits (mean number of measures for interpolation, including birth data=7.3, range = 3-22). We examined growth velocity, defined as the change in weight-for-age (WAZ) and length-for-age (LAZ) Z-scores between two time points, calculated in reference to the 2000 CDC growth charts, as exposures of interest. Using longitudinal Weibull models, we assessed the associations between rates of growth in weight and length during multiple windows from birth to one year and age at breast development, defined as maternal report of Tanner stage  $\geq$ 2. We examined modification by BCFH and mediation by daughters' childhood BMI in adjusted models.

<u>Results</u>: Faster growth in weight and length between birth and one year were associated with earlier age at breast development in models adjusted for gestational age, race/ethnicity, maternal pre-pregnancy BMI and gestational weight gain (HR=1.20, 95% CI 1.02-1.41 for 1 SD increase in WAZ from 0-12 months and HR=1.15, 95% CI 1.00-1.33 for 1 SD increase in LAZ from 0-12 months). When we examined smaller age intervals within infancy, faster growth in weight and length between 2-4 months of age were associated with approximately a 50% increased rate of breast development, respectively (HR=1.54, 95% CI 1.13-2.12 for a 1 SD increase in WAZ from 2-4 months and HR=1.56, 95% CI 1.16-2.08 for 1 SD increase in LAZ from

2-4 months). Similar patterns of associations for growth in weight and length were observed from 6-9 months of age, but not in the other infancy time periods. Associations were similar when we excluded preterm, low birthweight and non-singleton infants, suggesting that the associations are not driven by catchup growth in infants that are small at birth. Associations were similar after adjustment for pre-pubertal BMI in the subset of girls with available data and did not vary by BCFH.

<u>Conclusions</u>: We observed that faster rates of growth in both weight and length during infancy are associated with earlier onset of breast development in a prospective cohort of girls enriched for BCFH. Associations between rate of weight gain and rate of change in length were specific to two time periods within infancy, 2-4 months and 6-9 months, suggesting that these may be sensitive periods for exposures in the early-life environment to affect breast development. Our findings suggest that slow growth in weight and length during infancy may delay breast development, even in girls at an increased risk of breast cancer due to their family history.

# 4.1 Background

Modifiable factors that are associated with pubertal timing could be a target for breast cancer primary prevention efforts starting early in life, when maximum impact is possible.<sup>4,5</sup> Girls who are overweight in childhood have an earlier age at breast development and menarche.<sup>60,76,140,175,259</sup> High birthweight tracks to larger body size in childhood, as does rapid postnatal growth.<sup>63–66</sup> This may explain why both high<sup>76,77</sup> and low birthweight,<sup>70–72</sup> which is associated with rapid postnatal weight gain,<sup>228</sup> have both been associated with earlier age at menarche in previous studies. Some studies found that the association between birthweight and pubertal timing is modified by postnatal growth,<sup>71,76,176</sup> suggesting that growth trajectories across critical periods may be more important than body size at specific time points in programming pubertal timing. Studies that have examined weight gain between birth and two years have consistently observed earlier age at breast development<sup>73,75</sup> and menarche<sup>34,72,76,77,190</sup> in girls with rapid infant weight gain. However, studies vary in terms of the time period within this two-year window that is the most important to pubertal timing.<sup>35,73,75,77,116</sup>

Infancy is a dynamic period of growth. Most babies triple their birthweight by their first birthday.<sup>25</sup> Given the large degree of variability in growth patterns during this time period, the first 12 months after birth may be a vital time period for setting growth trajectories and programming pubertal timing. There have also been secular trends in infant weight and weight gain over time, which parallel the secular decrease in pubertal onset in girls. Infants from more recent birth cohorts experience a more rapid rate of weight gain and are larger throughout infancy than those in birth cohorts from earlier in the 20<sup>th</sup> century.<sup>68</sup> Infancy may also be a critical period of development for the breast. Infants experience an activation of the hypothalamic-pituitary-gonadal (HPG) axis that is termed mini-puberty.<sup>213</sup> Endogenous hormone levels peak in female infants the first 2-4 months after birth, some of which reach pubertal levels, and they remain elevated for much of the first year before decreasing until the next peak during puberty.<sup>212,213</sup> Both male and female infants are born with breast tissue, which later regresses. In females, breast tissue is present for longer than in males and is associated with estradiol levels,<sup>214</sup> suggesting that infancy may be a biologically important time period for the breast in females.

To date, previous studies examining infant growth and age at breast development were conducted in cohorts of girls at average-risk of breast cancer. We previously observed earlier breast development in girls with a breast cancer family history (BCFH).<sup>54</sup> Since earlier onset of breast development is associated with increased breast cancer risk,<sup>41</sup> it is important to determine whether early-life factors that affect timing of breast development are modified by underlying susceptibility for breast cancer. We investigated whether rates of weight and height gain during multiple time periods within infancy were associated with the timing of breast development in the LEGACY Girls Study, a prospective cohort of girls in which approximately half are at increased risk of breast cancer due to their family history,<sup>57</sup> and whether these associations varied by BCFH.

#### 4.2 Methods

# 4.2.1. Study population

The LEGACY (Lessons in Epidemiology and Genetics of Adult Cancer from Youth) Girls Study is a prospective cohort study of 1040 girls recruited at five study sites in the U.S. (New York City, NY; Philadelphia, PA; Salt Lake City, Utah; San Francisco Bay Area, CA) and Canada (Toronto, ON) between 2011 and 2013 (for more details, see <sup>57</sup>). The girls were primarily between the ages of 6 and 13 years at recruitment, and half had a BCFH, defined as a report of breast cancer in a first- or second-degree relative by the participating mother/guardian at baseline. Younger siblings of cohort members can also join when they reach 6 years of age. The participating guardian at baseline was the biological mother for 97% of LEGACY girls,<sup>57</sup> so we will refer to participating guardians as mothers moving forward. Mothers provided written informed consent for themselves and for their daughters, and daughters provided written informed assent according to institutional standards. The study was approved by the institutional review boards of the collaborating institutions.

Willing LEGACY mothers signed an authorization form at baseline to allow the release of medical record information from the pediatrician's office of their child to the LEGACY Girls Study. We obtained medical record data for 82% of the cohort; however, the records included measurements prior to 16 months of age for 283 girls (33% of those with medical record data). For this analysis, we abstracted height and weight data from medical records between two weeks and 16 months of age and used measures of birthweight and birthlength from either the medical record or maternal report at baseline, since not all medical records include birth measurements. For girls with at least three measures of height or weight between birth and 16 months, we interpolated height and weight at specific time points. The final analytic sample included 255 girls with infancy data and prospective follow-up data through August 2016 from 216 families.

#### 4.2.2. Data collection

Infant Growth Assessment. A LEGACY staff member at the New York site abstracted age at measurement, height and weight information from medical record data. We abstracted measurements directly from growth charts if the medical record was not available. We converted height and weight data from growth charts to centimeters and kilograms, respectively. Since girls had varying numbers of measurements assessed at different time points, we used individual quadratic constrained smoothing splines to interpolate measures for each girl at 2 months, 4 months, 6 months, 9 months and 1 year of age as these time points correspond with recommended postnatal clinician visits (see **Supplemental Figure** 

**4.1** for example smoothing splines for two individuals).<sup>250</sup> We included birthweight and birthlength, as reported by the mother at baseline or abstracted from the medical record, in the interpolation, along with all measures of length and/or weight available from the medical records between 2 weeks and 16 months of age. We used data measured within 100 days of the target time point in the interpolation. Weight and height data were interpolated separately, and girls with less than 3 measures between birth and 16 months were not included in the interpolation. A small subset of girls was missing data on birthlength (N=37) and birthweight (N=4), but had  $\geq$ 3 infancy measures available from medical records. For these girls, we used the interpolated measures of weight and length at birth. For all other girls, we used the maternal report of birthweight and birthlength, and not the interpolated data.

We calculated Z-scores and percentiles for weight-for-age, length-for-age and weight-for-length measures based on both the 2000 Centers for Disease Control and Prevention (CDC) growth charts and the World Health Organization (WHO) growth charts for female infants from birth to 24 months using SAS macros available from the CDC.<sup>260,261</sup> The WHO growth charts, which reflect optimal infant growth and are based on longitudinal data from breastfed infants in six countries,<sup>262</sup> are recommended for use by U.S. pediatricians by the CDC.<sup>260</sup> The CDC growth charts are based on birth certificate and cross-sectional NHANES data from the 1980s and 1990s, and include both breastfed and formula-fed infants.<sup>262</sup> We used the 2000 CDC growth charts as the reference in the primary analyses, since this reference was used in a prior study of infant growth and pubertal timing in the North Carolina Infant Feeding Study<sup>75</sup> and our study population included both breastfed and formula-fed infants. We used the 2006 WHO growth charts in sensitivity analyses to examine how the choice of reference data affected the main study findings. Extreme values based on Z-scores are automatically flagged by the SAS programs that calculate the standardized measures as biologically implausible (see 260,261 for the cut-offs used to identify the extreme values by measure and reference). The interpolated weights were within the expected range, but 1.2% of the interpolated height values were flagged as extreme, including 11 of the interpolated birthlength values. We examined the individual interpolation splines for these observations, which had sparse data to contribute to the interpolation at the time points that yielded extreme values. We excluded these observations from the analyses, leading to a final sample size of 255 girls with infancy data. Of these girls, 5.9% had 3 measures

only, 5.1% had 4 measures, 7.5% had 5 measures, and the remaining 81.5% had 6 or more measures that were used in the interpolation (**Supplemental Figure 4.2**).

Pubertal outcomes. We assessed breast development through the Growth and Development Questionnaire completed every 6 months by mothers. Mothers assessed breast development using the picture-based Sexual Maturation Scale (SMS)<sup>238</sup> showing the five Tanner stages<sup>100</sup> in addition to the non-picture-based Pubertal Development Scale (PDS),<sup>240</sup> which also asked the mother to report the age that they first noticed their daughters' breast development for girls whose development had already started. Recalled age was reported as age in years and months at baseline, and in half-year intervals at subsequent visits. Tanner stage (TS) 2 indicates the onset of breast development.<sup>100</sup> We previously found maternal reports of breast onset using TS to be highly reliable (kappa=0.73) and valid (sensitivity=77%, specificity=94%) in a subset of LEGACY girls that also had clinical TS data.<sup>239</sup> We used the first maternal report of TS≥2 as the primary outcome and the first maternal report of development based on PDS in sensitivity analyses.

<u>Covariates</u>. Mothers completed an early-life questionnaire at their daughters' baseline visit that included detailed information about their pregnancy. These questions were developed and used previously in the Nurses' Health Study cohort.<sup>24</sup> We calculated maternal pre-pregnancy BMI from mothers' self-reported height and pre-pregnancy weight. Gestational weight gain (GWG) was recorded as <10 lbs, 10-14 lbs, 15-19 lbs, 20-29 lbs, 30-39 lbs, 40-49 lbs, and 50 or more lbs (**Appendix C.1** for more information on the early-life variables). Since we observed in **Chapter 3** that daughters of women with a pre-pregnancy BMI ≥25 and who gained ≥30 lbs during pregnancy had the highest risk of early breast development compared with daughters of women with a BMI<25 and GWG<30lbs, we controlled for this four-category composite variable of maternal pre-pregnancy BMI and GWG as a confounder in the adjusted analyses. Mothers provided information about all pregnancies lasting 6 months or longer, including the pregnancy outcome and date of that the pregnancy ended. We used this information to determine the birth order of the LEGACY daughter and the type of gestation (singleton or multiple). We calculated gestational age in weeks from the length that the pregnancy lasted, in weeks, months, or days before/after due date, as reported by mothers. Mothers reported whether they fed their daughter breastmilk and if so, for how long.

Mothers also reported whether they ever fed their daughter formula for one month or longer, and if so, for how long. We used this information to derive a variable for type of feeding (breastfed only, mixed feeding, formula fed only). If the participating guardian was not the biological mother, we collected pregnancy information from the participating relative when possible (i.e. from participating fathers). In the 255 girls in this analysis, only 4 girls participated with a guardian other than her biological mother; these girls were included in the analyses if they had available covariate data.

In addition to the early-life factors above, we considered race/ethnicity and maternal education as potential confounders. Mothers reported the race/ethnicity of the LEGACY daughter at baseline, and categorized as non-Hispanic white, non-Hispanic black, Hispanic, Asian/Pacific Islander, or other (predominantly mixed race/ethnicity). For this analysis, we combined the non-Hispanic black and mixed race/ethnicity groups due to small cell counts and similar associations with the timing of breast development. Mothers reported their highest level of education achieved at baseline, which we categorized as some college, vocational or technical school or less, Bachelor's degree, and graduate degree. We considered BCFH (history of breast cancer in a first-or second-degree relative) as a modifier of the associations between early-life exposures and age at breast development.

At each study visit, trained research staff measured the height and weight of the girls at least twice using standardized instruments; we averaged these measures for the analysis. We also abstracted height and weight prior to baseline from the medical records and growth charts obtained from girls' pediatricians. We calculated age-specific height, weight, and BMI percentiles based on the 2000 CDC growth charts.<sup>241</sup> Since we considered pre-pubertal body size as a potential mediator, we used body measurements at age 5-7 years when available from the medical record or measurements from the first clinic visit for girls age 5-7 years at baseline. We used <8 years as the cut-off to define pre-puberty since less than 5% of LEGACY girls had experienced the onset of breast development, defined as breast TS≥2, by 8 years of age. Of the 255 girls included in the analysis, 185 (72.5%) had a BMI measure between 5-7 years and were included in this mediation analysis. We classified girls with a BMI-for-age percentile ≥85 as overweight and those less than the 85<sup>th</sup> percentile as average weight.

#### 4.2.3. Statistical analysis

We examined the distribution of early-life characteristics and baseline covariates in girls with infant growth data and examined differences with the subset of the girls without infancy data. We then used histograms to examine the variability in size measures (weight-for-age, length-for-age, and weight-for-length Z-scores at birth, 2 months, 4 months, 6 months, 9 months and 12 months) and growth measures (change in Z-scores between subsequent time periods) calculated using both the CDC and WHO references. We plotted the mean weight-for-age, length-for-age and weight-for-length Z-scores using both references in order to visually examine the average growth patterns within the cohort. We also plotted the mean weight-for-age Z-scores by maternal pre-pregnancy BMI and GWG group in order to examine whether infant growth patterns differed by maternal weight patterns. We then examined the Pearson correlation matrices between weight-for-age. We assessed the correlations between changes in weight-for-age Z-scores at each time period.

We first examined the associations between size at each time point, assessed by the weight-forage and length-for-age Z-score, and the timing of breast development in order to identify whether the inverse association between pre-pubertal weight and height and age at breast development extends into infancy. We then examined rates of weight and length gain throughout the infancy period as the main exposures of interest. For these growth models, we defined the exposure of interest as the change in Zscore in the size measure of interest between two time periods (i.e. Weight-for-age Z-score at 4 months – weight-for-age Z-score at 2 months) as a continuous measure. In addition, we categorized the continuous change in Z-score measures into patterns of rapid, stable and slow growth. We defined rapid growth as an increase in Z-score of greater than 0.67, slow growth as a decrease in Z-score of greater than 0.67, and stable growth as a change of less than 0.67 (the referent group). A change of 0.67 standard deviations corresponds to an increase of a major percentile on standard growth charts (i.e. a change from the 25<sup>th</sup> to the 50<sup>th</sup> percentile), and this cut-off is commonly used in the infant growth literature.<sup>191,263</sup>

We assessed associations between infant growth and the age at breast development and menarche using longitudinal parametric Weibull models with age as the time scale to allow for left, interval and right censoring. In the primary analyses, girls whose mother reported that they had already experienced the onset of breast development (TS≥2) at the first completed Growth and Development questionnaire were left-censored at age at questionnaire completion. Girls whose mothers reported TS≥2 at subsequent visits were interval-censored, with the daughters' age at the last visit where the mother reported TS1 as the beginning of the interval and the daughters' age at the first visit where the mother reported TS≥2 as the end of the interval. Girls who had yet to experience the onset of breast development during follow-up were right-censored at last study visit where mom reported TS1. Since some families had more than one participating daughter, we used cluster-robust standard errors to account for correlation within families.

We ran a series of unadjusted models regressing the age at breast development on rates of growth in weight and length during infancy, starting with wide intervals examined in previous studies and adding additional time points in subsequent models. First, we examined the full infancy period as the change in Zscore between birth and 12 months. Second, we considered growth from 0-6 months and 6-12 months. Third, we examined all available intervals (0-2 months, 2-4 months, 4-6 months, 6-9 months and 9-12 months). We adjusted all models for weight-for-age and length-for age Z-scores at birth and changes in prior intervals. For example, we adjusted models examining change in weight-for-age Z-scores from 2-4 months for weight-for-age Z-score at birth and change in Z-score from birth to 2 months. We examined weight-for-age and length-for-age models independently, and also ran models that included both weight and length measures. In multivariable models, we adjusted for gestational age in weeks, maternal prepregnancy BMI and GWG group, and race/ethnicity. We did not adjust for other early-life characteristics such as birth order, multiple gestation, gestational diabetes, gestational hypertension and toxemia/preeclampsia since these factors were not independently associated with breast development. For parsimony, we did not adjust for maternal education since it was not associated with age at breast development in this subset. Since growth rates differ in infants that are exclusively fed breastmilk compared with formula-fed infants,<sup>68,264,265</sup> we also considered adjustment for infant-feeding. While type of feeding could be a confounder of the association between growth and pubertal timing, it could also be a mediator if mothers change the type of feeding based on how their child is growing.<sup>266</sup> For this reason, we present models unadjusted for infant feeding; however, associations between rates of weight and length gain were similar

when adjusted for infant-feeding type, categorized as breastfed only compared with some formula (data not shown). We did not examine exclusively formula-fed separately due to small numbers in this group.

We examined the potential interaction between weight-for-age and length-for-age Z-scores at birth and growth measures through cross-product terms. Since infants that are growth-restricted in utero are more likely to experience rapid weight gain in infancy, we ran sensitivity analyses excluding low birth weight (<2.5 kilograms), preterm (<37 weeks) and non-singleton girls to examine the extent to which the infant growth results were driven by the extremes of the birthweight distribution, which may reflect a regressionto-the-mean effect.<sup>227</sup>

We examined the presence of mediation by daughters' pre-pubertal body size by adding the BMIfor-age percentile and an interaction for BMI-for-age percentile and age at BMI measurement, centered at the mean, to adjusted models in the subset of girls with pre-pubertal BMI measures (N=185). We also conducted sensitivity analyses excluding girls who were overweight at baseline (BMI-for-age percentile ≥85) to examine whether findings in the overall cohort were driven by earlier puberty in overweight girls (N=177). We used baseline anthropometric data instead of pre-pubertal data to define this subset in order to preserve sample size since studies have shown that BMI tracks during childhood.<sup>267,268</sup>

We formally tested for effect measure modification by BCFH by adding a cross-product term between the exposure of interest and BCFH to adjusted models and assessed statistical significance using the Wald test.

We conducted several sets of additional analyses to examine the potential impact of selection bias and information bias in the assessment of the exposure and outcome on the main study findings. We reran the primary analyses using inverse probability weighting to adjust for potential bias relating to the subset selection of the girls with infancy data.<sup>269</sup> In these analyses, we first regressed an indicator variable for being in the infancy subset (N=255) on early-life and baseline variables to predict the probability of having infant growth data. We then weighted the survival analyses by the inverse of the probability of being sampled and compared these results with the unweighted findings. In order to examine the influence of the choice of growth chart reference data to calculate the rates of weight and length change, we ran sensitivity

analyses using the 2006 WHO growth charts as the reference and compared these results with the primary analyses using the 2000 CDC growth charts as the reference. Similar to **Chapter 3**, we then ran several sensitivity analyses to examine how robust the results were to differences in outcome assessment. We imputed the recalled age at breast development from the PDS as though it were observed for left-censored girls (37% of girls in this subset experienced the onset of breast development prior to cohort entry based on mom's report of TS≥2 at first growth and development questionnaire). We also used the PDS to define breast onset instead of TS. Finally, we excluded girls with inconsistent Tanner staging by maternal report (mothers reported a regression to TS1 at the visit after the first report of TS≥2; approximately 8.6% of girls). We conducted the analyses using SAS 9.4 and STATA 15.1.

# 4.3 Results

#### 4.3.1. Participant characteristics

**Table 4.1** describes the baseline and early-life characteristics of the LEGACY cohort by the availability of infant growth measures. Compared with girls without infancy data (N=813), girls included in the infancy analyses (N=255) were younger at cohort entry (mean age 8.9 vs 9.7 years, respectively) and a smaller proportion were overweight at baseline. Girls from the New York and Ontario sites were over-represented in the infancy subset, while Hispanic girls were under-represented. The mean maternal pre-pregnancy BMI was also lower in girls with infancy data, with a smaller proportion of girls whose mothers were obese prior to pregnancy compared with girls without infancy data. The mean birthweight was slightly higher in girls with infancy data (3370g vs 3270g), and a smaller proportion of girls were born preterm.

#### 4.3.2. Descriptive analyses of weight and height gain during infancy

The mean weight-for-age Z-score (WAZ) at birth was -0.01 when using the 2000 CDC growth charts as the reference population (**Table 4.2**). The mean WAZ increased until 4 months of age and then declined, with a mean WAZ of -0.10 at 12 months. While the overall change in WAZ from 0-12 month was negative with a mean of -0.06, there was substantial variation when weight gain was broken up into smaller age intervals. Compared with the reference population, the LEGACY girls had a faster rate of weight gain in

early infancy, particularly from 0-2 months, and then a slower rate of weight gain from 4 months onward. However, this pattern reversed when the 2006 WHO growth charts were used as the reference population (Supplemental Figure 4.3). LEGACY girls weighed more at birth (mean WAZ=0.24) but had a similar weight at 2 months (WAZ=-0.04) compared with the WHO reference, reflecting relatively slower weight gain in early infancy. The mean WAZ then increased from 2 months onward, so at 12 months the LEGACY girls weighed more on average than the WHO reference (mean WAZ=0.41) due to relatively faster rates of weight gain. Although the mean change in WAZ differed depending on the growth reference standard used, the variance of the change in WAZ for each interval was similar. The distribution of the change in WAZ in early infancy was shifted to the right when standardized to the 2000 CDC growth charts as opposed to the WHO growth charts (relatively faster weight gain), while distribution in later infancy using the CDC charts was shifted to the left (relatively slower weight gain) (Supplemental Figure 4.4). The shift in the distribution affected the percent of girls that were characterized as having "rapid" and "slow" weight gain patterns, using a cut-off of >0.67 or <-0.67 change in WAZ, based on each reference standard. For example, using the CDC growth charts, 38.4% of girls were categorized as having rapid weight gain, 53.3% as stable and 8.2% as slow weight gain from 0-2 months. Using the WHO growth charts, 12.9% were categorized as rapid, 53.7% as stable and 33.3% as slow weight gain. For this reason, we used continuous measures of change in Z-scores in the analyses unless there was evidence of non-linear associations based on sensitivity analyses using the categorical pattern variables.

The mean length-for-age Z-score (LAZ) at birth using the CDC reference was 0.45 and increased to 0.63 by 12 months of age (**Table 4.2**). Relative to the CDC reference, the LEGACY girls had a faster rate of length gain from 2-4 months of age, while the average rate of length gain in the other age intervals were similar to the reference population. Similar to the weight-for-age data, there were some differences in the pattern of mean LAZ depending on the reference standard used. Relative to the WHO growth charts, LEGACY girls were longer at birth (mean LAZ=0.9) and grew more slowly in length from 0-2 months (**Supplemental Figure 4.5**). From 2 months onward, the mean LAZ using the WHO reference increased. By 12 months, the LEGACY girls were taller on average compared with both the CDC and WHO reference populations.

The mean weight-for-length Z-scores (WFL) were similar using the CDC and WHO reference data from birth to 4 months and then diverged in late infancy (**Supplemental Figure 4.6**). Generally, the LEGACY girls had a lower weight-for-length in early infancy compared with both reference populations. From 4-12 months of age, the mean WFL was stable when compared with the CDC reference population, while the mean WFL continued to increase in comparison with the WHO reference population.

# 4.3.3. Correlations between change in WAZ and LAZ measures at different ages

WAZ at birth was negatively correlated with change in WAZ at each time interval, but the strength of the correlation decreased over time (**Table 4.3**). We observed the same pattern for LAZ at birth and change in subsequent intervals (**Table 4.4**). Change in WAZ between intervals were not highly correlated with each other, and there were no statistically significant correlations in change in LAZ between intervals. Change in WAZ was positively correlated with change in LAZ within the same interval (Pearson correlation coefficients of 0.24-0.27), with the exception of growth from 9-12 months (**Table 4.5**). Measures of size at each interval were more strongly correlated with each other than growth measures, with correlations for WAZ in subsequent intervals between 2-12 months ranging from 0.63-0.93 and correlations for LAZ ranging from 0.50-0.86 (data not shown).

#### 4.3.4. Association between infant size and the onset of breast development

When we considered WAZ without adjustment for LAZ, higher WAZ at each time point was associated with earlier onset of breast development, adjusted for gestational age, maternal pre-pregnancy BMI, GWG and race/ethnicity (**Supplemental Table 4.1**). We observed similar associations between higher LAZ at each time point and earlier onset of breast development in models unadjusted for WAZ. When we mutually adjusted for WAZ and LAZ, associations were slightly attenuated but still supported earlier breast development in girls that were taller and heavier by late infancy.

# 4.3.5. Association between infant growth and the onset of breast development

Faster weight gain from 0-12 months was associated with earlier age at breast development (HR=1.32, 95% CI 1.05, 1.65 adjusted for WAZ at birth only; **Supplemental Table 4.2**). After adjusting for

gestational age at birth, race/ethnicity, maternal pre-pregnancy BMI and GWG, a one-unit increase in WAZ between birth and 1 year of age was associated with a 20% increased risk of earlier breast development (HR=1.20, 95% CI 1.02, 1.41; **Table 4.6**). When early and late infancy were considered separately, faster weight gain from 0-6 months (adjusted HR=1.15, 95% CI 0.99, 1.34) and 6-12 months (adjusted HR=1.25, 95% CI 0.98, 1.60) were both associated with earlier age at breast development. However, when we considered smaller age intervals, the association between rate of weight gain and onset of breast development was limited to change in WAZ between 2-4 months and 6-9 months (HR=1.54, 95% CI 1.13, 2.12 for one-unit increase in change in WAZ from 2-4 months and HR=1.63, 95% CI 1.09, 2.42 for one-unit increase in change in WAZ from 6-9 months, respectively). No associations were observed between rate of weight gain during the other time periods and timing of breast development.

Faster gain in length from 0-12 months was also associated with earlier age at breast development (adjusted HR=1.15, 95% CI 1.00, 1.33), and this association was driven by gain in length in the first 0-6 months (adjusted HR=1.21, 95% CI 1.03, 1.41) (**Table 4.6**). When we considered smaller age intervals, 2-4 months was the only time period when change in LAZ had a statistically significant association with age at breast development (adjusted HR=1.56, 95% CI 1.16, 2.08).

In models mutually adjusted for weight and length, effect estimates were attenuated but still suggested earlier development in girls with faster growth in weight and length from birth to 12 months (**Table 4.6**). Both rate of weight gain and rate of length gain from 2-4 months were associated with the timing of breast development in mutually adjusted models (HR=1.40, 95% CI 1.00, 1.96 for change in WAZ and HR=1.50, 95% CI 1.10, 2.04 for change in LAZ, respectively). The association between rate of weight gain from 6-9 months and timing of breast development was similar after adjustment for growth in length. The inference was the same when we used the 2006 WHO growth charts to calculate Z-scores instead of the 2000 CDC growth charts (**Supplemental Table 4.3**).

When we examined patterns of growth in weight and length from 2-4 months and 6-9 months, we observed similar associations in both time periods (**Figure 4.1**). Girls with slow weight gain had a decreased risk of early breast development compared to girls with stable weight gain (HR=0.53, 95% CI 0.32-0.90 for 2-4 months and HR=0.44, 95% CI 0.28-0.70 for 6-9 months), while girls with rapid gain in length had an

increased risk of early breast development compared to girls with stable length gain (HR=1.71, 95% CI 1.08-2.69 for 2-4 months and HR=1.96, 95% CI 1.08-3.56 for 6-9 months). Change in weight-for-length Z-scores were negative on average over the interval both for girls with slow weight gain and for girls with rapid length gain, which may explain why rates of change in weight-for-length Z-score in these intervals were not associated with age at breast development (**Supplemental Table 4.4**).

The inference regarding infant weight and length gain and onset of breast development were similar when we excluded preterm, low birthweight (<2500g) and non-singletons (**Supplemental Table 4.5**), suggesting that these associations hold in the majority of births and are not driven by the extremes of birth size. WAZ at birth did not modify the associations between rates of infant weight gain and timing of breast development (p>0.05 for all interaction terms). LAZ at birth did not modify the associations between growth in length after 2 months and onset of breast development. However, there was a statistically significant interaction between LAZ at birth and change in LAZ from 0-2 months (p=0.04), suggesting that faster rates of length gain from 0-2 months may be associated with earlier breast development in girls that were long at birth (data not shown).

#### 4.3.6. Mediation by pre-pubertal body size

Similar patterns of association between weight and length gain during infancy and timing of breast development were observed when we restricted the analyses to girls with a BMI-for-age <85<sup>th</sup> percentile at baseline (**Supplemental Table 4.6**). In models mutually adjusted for weight and length, effect estimates for rate of length gain were similar to models without adjustment for weight gain, but rates of weight gain were slightly attenuated. In the subset of girls with pre-pubertal BMI data available, associations between rates of weight and length gain from 2-4 months and 6-9 months were attenuated and no longer statistically significant compared with all girls with infancy data (**Supplemental Table 4.7**). However, patterns were similar in this subset and adjustment for BMI-for-age percentile and the interaction between BMI-for-age percentile and age at BMI measurement had a negligible effect on the measures of association. Overall, these analyses suggest that the associations between infant growth and onset of breast development are not fully mediated by childhood body size.

# 4.3.7. Modification by breast cancer family history

BCFH did not modify the associations between rates of change in weight and length during infancy and timing of breast development (p for interaction>0.05 for all cross-product terms).

#### 4.3.8. Maternal pre-pregnancy BMI, GWG and patterns of infant growth

Since we found that patterns of maternal pre-pregnancy BMI and GWG were associated with the timing of breast development in Chapter 3, we examined whether the mean weight-for-age and length-forage Z-scores during infancy differed by maternal body size and GWG. Daughters of women who gained ≥30lbs during pregnancy weighed more at birth than daughters of women who gained <30lbs (Supplemental Figure 4.7). Daughters of women who were overweight prior to pregnancy and gained ≥30lbs weighed more throughout infancy than the other 3 groups, but their pattern of weight gain was similar to daughters of women who were not overweight prior to pregnancy. Daughters of women who were overweight prior to pregnancy but gained <30lbs had a slightly different weight gain trajectory. While all groups experienced an increase in WAZ from 0-2 months, daughters of women who were overweight prior to pregnancy but gained <30lbs were the only group that continued to experience an increase in average WAZ from 2-4 months as well. This group also had the smallest decline in average WAZ from 6-12 months, so that by 12 months of age their average WAZ was similar to daughters of women who were overweight prior to pregnancy and gained ≥30lbs, which may reflect catch-up growth after intrauterine growth restriction in this group. Patterns of LAZ were also different in this group, which had the highest LAZ at birth, compared with the other three groups (Supplemental Figure 4.8). Infant growth did not mediate the association between maternal pre-pregnancy BMI, GWG and the timing of breast development (data not shown). Daughters of women who were overweight prior to pregnancy and gained more than 30lbs experienced breast development at a faster rate than daughters of women with a BMI<25 who gained <30lbs after adjustment for rate of growth in weight and height from 0-12 months (HR=1.66, 95% CI 0.97, 2.85).

4.3.9. Sensitivity analyses for the association between infant growth and the onset of breast development

Although there were differences in the baseline and early-life characteristics between girls included in the infancy analyses and those that did not have infancy data (**Table 4.1**), the associations between rates of weight and length gain during infancy and timing of breast development were similar in models that accounted for these differences using inverse probability weighting (**Supplemental Table 4.8**). In addition, the association between faster gain in length from 6-9 months and earlier onset of breast development was statistically significant in the weighted analysis (adjusted HR=1.49, 95% Cl 1.12, 1.98).

The associations between infant growth and timing of breast development were sensitive to differences in outcome assessment. The associations between rates of weight gain and onset of breast development were no longer statistically significant when girls with inconsistent Tanner staging were excluded from the models, but the point estimates were only slightly attenuated (**Supplemental Table 4.9**). When we imputed the recalled age at breast development for left-censored girls, rates of weight gain during infancy were not associated with the onset of breast development. In both of these sensitivity analyses, growth in length from 2-4 months still had a statistically significant association with age at breast development. When we used maternal report of breast onset based on the PDS instead of TS, there were no statistically significant associations between growth in weight or length during infancy and age at breast development. Although not statistically significant, the direction of the association between rates of growth in weight and length from 2-4 months were consistent with the primary models based on maternal report of TS (**Supplemental Table 4.9**).

# 4.4 Discussion

Rates of growth in both weight and length during infancy are associated with the timing of breast development in a prospective cohort of girls enriched for breast cancer family history. Our finding that faster weight gain between birth and one year is associated with earlier breast development is consistent with previous studies linking rapid weight gain between birth and two years with earlier onset of breast development<sup>73,75,185</sup> and earlier age at menarche.<sup>34,35,72,73,75–77,116,190,191</sup> Our study adds to the prior literature by examining changes in both weight and length during multiple time intervals within the first year and by formally testing the interaction between infant growth and BCFH. While we observed a modest association between rate of weight gain from 0-12 months and onset of breast development, stronger associations

between rate of weight gain from 2-4 months and 6-9 months were masked when looking only at the relatively wide one-year window. We observed a similar pattern for growth in length. Few studies have weight and length measures at multiple time points within infancy to examine smaller windows of growth.

# Comparison with previous studies

Comparisons across studies is difficult since studies assess growth over different age intervals, which may be due more to data availability than by a priori hypotheses.<sup>73</sup> In the North Carolina Infant Feeding Study, increases in weight-for-age Z-scores from 0-6 months and 6-12 months were both associated with earlier age at breast TS>2 and earlier age at menarche, and point estimates were similar for each age interval.<sup>75</sup> However, weight gain during both time periods were included in the same model and were negatively correlated with each other, which may have resulted in a stronger parameter estimate for weight gain in early infancy due to the inclusion of weight gain in late infancy in the model. When we examined weight gain in these same intervals without adjustment for change in length, our inference for onset of breast development was similar, though the point estimate was slightly higher for 6-12 months than 0-6 months. In the ALSPAC cohort, increase in weight-for-age Z-scores from 0-2 months and 9-20 months was associated with earlier age at breast development; the point estimate for 2-9 months was also negative, but closer to the null and not statistically significant. For age at menarche, weight gain from 0-2 months was not associated with age at menarche in models adjusted for birth size, but weight gain from 2-9 and 9-20 months were both associated with earlier age at menarche.73 When we considered change in WAZ over these same age intervals of 0-2 months and 2-9 months and the onset of breast development, there was no association with weight gain from 0-2 months, but rate of weight gain from 2-9 months was inversely associated with age at breast development (data not shown). However, the point estimate for weight gain from 2-9 months was closer to the null compared with the effect estimates for weight gain from 2-4 months and 6-9 months when these intervals were modeled separately. In two studies that examined rate of weight gain from 0-4 months and 4-12 months and age at menarche in U.S. birth cohorts, one found inverse associations between weight gain in both time periods and age at menarche,<sup>77</sup> while the other study only observed a statistically significant association with weight gain in late infancy.<sup>116</sup> When we considered these same intervals, we observed inverse associations between rate of weight gain in both time periods

and age at breast development in models unadjusted for growth in length (data not shown). While our results are therefore generally consistent with previous work, we were able to further refine the infancy window and identify two specific periods of time, 2-4 months and 6-9 months, during which patterns of growth had a particularly strong influence on age at breast development.

When we examined rate of growth in length during infancy, these same time periods of 2-4 months and 6-9 months were also identified as sensitive windows when rates of length gain were associated with the onset of breast development. In comparison with weight gain, fewer studies have examined change in length as an independent predictor of pubertal timing. Conditional measures of change in length from 0-6 months and 6-24 months were not correlated with breast TS at 11 years of age in the Vulnerable Windows Birth Cohort Study in Jamaica (p>0.05), though the correlation coefficient for 0-6 months was in the direction of faster gain in length being associated with earlier development.<sup>79</sup> Gains in weight and BMI during these time periods were also not associated with breast development in this study. Three studies did observe an association between faster growth in length during the first two years and earlier age at menarche.35,76,77 In the 1946 British Birth Cohort, faster growth in length from 0-2 years was associated with increased risk of earlier menarche when examined independently, but the association was attenuated towards the null after adjustment for rate of growth in BMI from 0-2 years and childhood height growth.<sup>76</sup> Girls with menarche before 12 years of age also had faster rates of growth in length from 2-9 months and 9-19 months, but not 0-2 months, in the ALSPAC cohort, though the association was no longer statistically significant after controlling for weight gain during the same time periods.<sup>35</sup> A similar pattern was observed in two U.S. birth cohorts, where gain in length from 0-4 months and 4-12 months was associated with earlier age at menarche when examined independently, but these associations were attenuated after adjustment for weight gain.<sup>77</sup> While we also observed a modest attenuation of the effect estimates for weight and length when mutually adjusted, changes in weight and length from 2-4 months were both independently associated with the age at onset of breast development and we observed similar patterns of association from 6-9 months. Together, the associations between both rates of weight and length gain during the same two age intervals, when considered separately and when mutually adjusted, underscores the importance of growth during these specific windows to the timing of breast development.

# Influence of maternal BMI, GWG and size at birth

The associations between rates of growth in weight and length and timing of breast development were observed across the spectrum of size at birth, suggesting that the associations observed were not driven by a regression-to-the-mean effect of catch-up growth in infants born small or catch-down growth in infants that were large at birth.<sup>227</sup> Birthweight and birthlength were not associated with the timing of breast development in confounder-adjusted models in the full cohort (see Chapter 3). After adjusting for rates of growth in weight and length during infancy, which were negatively correlated with birth size, the point estimates for both birthweight and birthlength were further from the null (data not shown). The statistical significance of the estimates differed depending on the infant growth measures included in the model. In the 1946 British Birth Cohort, an inverse association between birthweight and age at menarche was reversed after adjustment for growth in height and BMI from 0-2 years, suggesting that girls with a higher birthweight had an earlier age at menarche for a given rate of postnatal growth.<sup>76</sup> The dependence of the birthweight association on adjustment for postnatal growth supports the hypothesis that birthweight does not have an independent role in influencing pubertal timing. In contrast, the increased risk of early breast development in daughters of women who were overweight prior to pregnancy and gained more than 30lbs remained after controlling for infant growth, suggesting that these factors have independent effects on age at breast development.

# Early-life nutrition and other potential mechanisms

Feeding practices are associated with patterns of weight and length gain during infancy and may be associated with the timing of breast development. Some studies have observed earlier onset of breast development<sup>126</sup> and earlier age at menarche<sup>35,270</sup> in formula-fed compared with breastfed infants, while others have not observed an association between infant feeding and pubertal timing.<sup>34,271</sup> On average, formula-fed infants have faster rates of weight gain than exclusively breastfed infants and are heavier by one year of age. However, breastfed infants gain weight faster than formula-fed infants in early infancy, then have slower rates of weight gain in later infancy.<sup>272</sup> While observational studies have observed lower risks of obesity in children that were breastfed,<sup>273</sup> the protective effect of breastfeeding on obesity is controversial since infant feeding is closely linked with socioeconomic status.<sup>274</sup> In addition, the clinical trial

of a breastfeeding promotion intervention in Belarus (PROBIT) succeeded in increasing breastfeeding rates, but did not observe any differences in childhood body size in children who received the intervention.<sup>275</sup> Associations between infant feeding and growth patterns are also difficult to disentangle – while form of feeding does influence rates of weight gain, parents may also modify their child's feeding practice in response to their growth trajectory.<sup>266</sup> Our results of earlier breast development in girls with faster rates of growth in weight and length in specific infant time periods were similar in models that also controlled for type of infant feeding, suggesting that infant feeding did not confound or mediate the effect of infant growth on onset of breast development. The introduction of solid foods could also influence growth patterns, though the evidence linking the timing of solid food introduction and childhood obesity is inconclusive.<sup>276</sup> The American Academy of Pediatrics and the WHO recommend introducing solid foods at 6 months of age.<sup>277</sup> It is possible that the associations that we observed between rates of weight and length gain, particularly from 6-9 months of age, and earlier breast development reflect changes in nutrient intake due to the addition of solid foods; however, we did not have data on the timing of solid food introduction to explore this hypothesis. Overall, more research is needed in study populations with detailed infant feeding data in order to examine the temporal associations between feeding and infant growth patterns and whether these factors interact to influence pubertal timing. Migrant and animal studies support that an energy-rich diet in early life affects mammary gland development and breast cancer risk.<sup>251,278-280</sup> Thus, early-life nutrition, which influences growth patterns in infancy, may also affect breast development.

Additional mechanisms that may link infant growth, onset of breast development and breast cancer risk include childhood body size, hormonal programming, genetic or epigenetic influences. Rates of growth in weight and length during infancy may set trajectories of height and weight gain in childhood. Infants who gain weight rapidly are at an increased risk of obesity starting in childhood,<sup>64</sup> and higher pre-pubertal weight is a well-recognized risk factor for earlier pubertal onset.<sup>54,60</sup> Our results from models adjusted for pre-pubertal BMI suggest that the association between rapid growth and earlier breast development is not fully mediated by childhood body size. Faster infant growth in length and weight is also associated with faster height growth and earlier age at peak height velocity,<sup>34,35,87</sup> an independent risk factor for breast cancer.<sup>41</sup> Rapid infant growth is associated with hormonal changes such as increased levels of leptin, insulin-like growth factor (IGF)-1 and insulin which affects growth throughout childhood and may lead to earlier initiation

of puberty.<sup>87,204</sup> Early-life growth and pubertal timing could also have a shared genetic origin. GWAS studies have identified multiple loci, including variants near *LIN28B*, that are associated with pubertal timing, linear growth and body size.<sup>220,281,282</sup> An epigenetic mechanism could also link infant growth, pubertal timing and chronic disease risk. Changes in DNA methylation of imprinted genes are known to be associated with infant growth,<sup>216</sup> and are also associated with genomic instability and chronic disease in adulthood.<sup>217</sup> Early-life environmental stimuli are associated with changes in promoter methylation of non-imprinted genes,<sup>218</sup> which could affect gene expression in insulin-signaling pathways<sup>219</sup> or changes in genes related to body size or pubertal timing.<sup>220,221</sup>

# Potential importance of mini-puberty

Our identification of 2-4 months as a sensitive window when growth velocity is associated with timing of breast development coincides with mini-puberty, the transient activation of the HPG in infancy.<sup>211,212</sup> In girls, follicle stimulating hormone (FSH) and luteinizing hormone (LH) both increase in early infancy and peak at 1-3 months. LH then decreases by 6-9 months, while elevated FSH levels are present until age 3-4 years. Estradiol levels in girls fluctuate during the first year after birth, and then decrease until puberty.<sup>213</sup> While both male and female infants have breast tissue present at birth that regresses during infancy, breast tissue size is larger and persists for a longer time period in female infants.<sup>211,283</sup> Serum estradiol levels have been found to be positively associated with breast tissue size in 3-month old female infants, but not in males.<sup>214</sup> In girls who are born preterm and have a smaller amount of breast tissue at birth than full-term infants, breast tissue size was found to increase from 1-6 months of age and was associated with increased levels of urinary estradiol.<sup>283</sup> Together, this suggests that breast tissue in female infants is stimulated by endogenous hormones,<sup>214,283</sup> which may affect breast development and later breast cancer risk. Daughters exposed to pre-eclampsia in utero, which is associated with decreased maternal levels of estrogen and IGF-1 but higher levels of androgens and progesterone, have a decreased risk of breast cancer in adulthood.<sup>284</sup> A case-control study comparing the timing of pubertal development between 203 daughters of normotensive pregnancies and 120 daughters of pre-eclamptic pregnancies found that daughters exposed to moderate or severe pre-eclampsia in utero were more likely to experience the onset of pubic hair development as the first sign of puberty, implying later age at breast development in these

girls.<sup>285</sup> However, little is known about whether endogenous hormone levels in infancy are associated directly with the timing of breast development and breast cancer risk.

The long-term effects of mini-puberty are not well understood.<sup>286</sup> Increases in height and faster peak height velocity during adolescent puberty, a critical period for breast development when growth and reproductive hormone levels are rapidly increasing,<sup>199</sup> are associated with breast cancer risk.<sup>14,287</sup> Growth hormone (GH) and IGF-1 are two key hormones that regulate linear growth.<sup>204,288</sup> During puberty, rising estrogen levels in girls are thought to promote the pubertal growth spurt by stimulating the GH-IGF-1 axis.<sup>204,289</sup> Rising estrogen levels in girls during mini-puberty could have a similar stimulatory effect on infant growth,<sup>288,290</sup> in which case faster rate of gain in length from 2-4 months of age could reflect higher endogenous hormone levels. A recent study that examined the role of sex steroids during mini-puberty in regulating growth in length from birth to 6 months of age did not observe an association between urinary estradiol levels and growth velocity in females, though estradiol levels did peak between 1-4 months of age.<sup>290</sup> However, the authors noted that urinary estradiol levels likely did not reflect estradiol concentrations in the growth plate, which may explain why no association was observed between estradiol levels and linear growth velocity. Serum IGF-1 levels at 3 months were associated with faster linear growth in both male and female infants in the study, as were testosterone levels from 0-5 months of age, supporting the hypothesis overall that sex steroid levels during mini-puberty have a role in regulating linear growth.<sup>288,290</sup>

# Strengths and limitations

The prospective assessment of weight and length across multiple time points in infancy due to the linkage to medical record data is a major strength of this study. We were able to replicate the results that others observed by examining the same age intervals.<sup>73,75</sup> In addition, we were able to examine smaller age intervals, which identified growth during two specific age intervals as driving the overall trends that we observed. Since LEGACY is enriched for breast cancer family history, we were also able to formally test whether the associations between infant growth and onset of breast development differed in girls at increased risk of breast cancer due to their family history. The lack of modification by BCFH suggests that the risk of earlier breast development, which is associated with increased breast cancer risk later in life,<sup>41</sup> can be modified by altering early-life growth patterns in girls across the spectrum of familial risk. However,

it is also possible that we did not have sufficient power to detect differences by BCFH since we lacked infant growth data for the majority of the cohort.

Although we had multiple measures of weight and length throughout infancy for the subset of girls with medical record data, our study was limited by the sample size of this subset. Small cell counts limited our ability to control for a large number of confounders in the analyses and also limited statistical power, particularly for interactions. For example, we lacked power to examine whether associations between infant growth and pubertal timing differed by infant feeding practices or in girls born preterm, questions that are worthwhile to consider in larger cohorts. Our results could also be affected by selection bias, as there were differences between the subset of girls with infancy data and those that were not included in the analysis. However, the inference was the same when we used IPW to adjust for these differences, supporting that selection bias did not drive the main results observed. We also relied on maternal reports of birthweight and birthlength, though the correlation with medical record data was high in our validation subset (see **Chapter 3**). There is also a potential for measurement error in the weight and length measurements from the medical record, since measures could vary between physician practices and were not assessed using a standardized protocol. Measures of length before standing height can be measured are more prone to measurement error and have been found to have poor reliability, even when measured by nurses.<sup>246,247</sup> While it is possible that measurement error may have influenced our findings regarding growth in length and onset of breast development, these errors would likely be random and we would expect a larger effect on the precision rather than the validity of study estimates.

# 4.5 Conclusions

We observed that faster rates of growth in both weight and length during infancy were associated with earlier onset of breast development in a prospective cohort of girls enriched for BCFH. Girls that were taller and heavier than their peers by late infancy experienced earlier onset of breast development. Associations between rate of weight gain and rate of change in length were specific to two time periods within infancy, 2-4 months and 6-9 months, suggesting that these may be sensitive periods for exposures in the early-life environment to affect breast development. These associations were not modified by BCFH,

suggesting that slow growth in weight and length during infancy may delay breast development, even in girls at an increased risk of breast cancer due to their family history.

# 4.6 Tables and figures

|                                                                            | Girls with<br>infancy data<br>(N=255) | Girls withou<br>infancy data<br>(N=813) |
|----------------------------------------------------------------------------|---------------------------------------|-----------------------------------------|
| Early-life characteristics                                                 |                                       |                                         |
| Maternal age at birth (Mean±SD)                                            | 33.3 ± 4.8                            | 32.0 ± 5.7                              |
| Maternal height, m (Mean±SD)                                               | 1.6 ± 0.1                             | 1.6 ± 0.1                               |
| Maternal pre-pregnancy weight, kg (Mean±SD)                                | 63.0 ± 10.9                           | 64.4 ± 14.0                             |
| Maternal pre-pregnancy BMI (Mean±SD)                                       | 23.4 ± 4.0                            | 23.9 ± 5.1                              |
| Maternal pre-pregnancy BMI, categorized (N, %)                             |                                       |                                         |
| <18.5                                                                      | 11 (4.3)                              | 36 (4.4)                                |
| 18.5 to <25                                                                | 169 (66.3)                            | 508 (62.5)                              |
| 25 to <30                                                                  | 43 (16.9)                             | 137 (16.9)                              |
| ≥30                                                                        | 15 (5.9)                              | 81 (10.0)                               |
| Missing                                                                    | 17 (6.7)                              | 51 (6.3)                                |
| Gestational weight gain (n, %)                                             |                                       |                                         |
| <10 lbs                                                                    | 3 (1.2)                               | 24 (3.0)                                |
| 10-14 lbs                                                                  | 14 (5.5)                              | 28 (3.4)                                |
| 15-19 lbs                                                                  | 24 (9.4)                              | 62 (7.6)                                |
| 20-29 lbs                                                                  | 68 (26.7)                             | 249 (30.6)                              |
| 30-39 lbs                                                                  | 69 (27.1)                             | 197 (24.2)                              |
| 40-49 lbs                                                                  | 35 (13.7)                             | 110 (13.5)                              |
| ≥50 lbs                                                                    | 22 (8.6)                              | 91 (11.2)                               |
| Missing                                                                    | 20 (7.8)                              | 52 (6.4)                                |
| Maternal recreational physical activity during pregnancy (N, $\%$ )        |                                       |                                         |
| Inactive, no walking or other regular exercise                             | 20 (7.8)                              | 109 (13.4)                              |
| Mostly inactive, equivalent to walking about half a mile or less every day | 64 (25.1)                             | 177 (21.8)                              |
| Somewhat active, equivalent to walking about 1 mile every day              | 58 (22.8)                             | 168 (20.7)                              |
| Active, equivalent to walking about 2 miles every day                      | 98 (38.4)                             | 286 (35.2)                              |
| Highly active, equivalent to walking about 3 or more miles every day       | 11 (4.3)                              | 47 (5.8)                                |
| Missing                                                                    | 4 (1.6)                               | 26 (3.2)                                |
| Type of gestation (N, %)                                                   |                                       |                                         |
| Multiple                                                                   | 13 (5.1)                              | 32 (3.9)                                |
| Singleton                                                                  | 235 (92.2)                            | 735 (90.4)                              |
| Missing                                                                    | 7 (2.8)                               | 46 (5.7)                                |
| Birth order (Mean±SD)                                                      | 1.7 ± 0.8                             | 1.8 ± 1.0                               |

Table 4.1. Descriptive characteristics of the LEGACY Girls Study by availability of infant growth measures (*N*=1068)

| Birth order, dichotomized (N, %)                                          |                   |                   |
|---------------------------------------------------------------------------|-------------------|-------------------|
| First-born                                                                | 118 (46.3)        | 352 (43.3)        |
| Not first-born                                                            | 130 (51.0)        | 415 (51.1)        |
| Missing                                                                   | 7 (2.8)           | 46 (5.7)          |
| Gestational age in weeks (Mean±SD)                                        | $39.3 \pm 2.0$    | 38.9 ± 2.2        |
| Gestational age, categorized (N, %)                                       |                   |                   |
| <37 weeks                                                                 | 21 (8.2)          | 100 (12.3)        |
| ≥37 weeks                                                                 | 226 (88.6)        | 683 (84.0)        |
| Missing                                                                   | 8 (3.1)           | 30 (3.7)          |
| Birthweight, g (Mean±SD)                                                  | 3370.2 ±<br>539.7 | 3270.2 ±<br>594.6 |
| Birthlength, cm (Mean±SD)                                                 | 50.8 ± 3.8        | 50.4 ± 3.7        |
| Type of feeding during infancy (N, %)                                     |                   |                   |
| Exclusively breastfed                                                     | 90 (35.3)         | 273 (33.6)        |
| Mix of breastfeeding and formula                                          | 144 (56.5)        | 432 (53.1)        |
| Exclusively formula-fed                                                   | 14 (5.5)          | 77 (9.5)          |
| Missing                                                                   | 7 (2.8)           | 31 (3.8)          |
| Baseline characteristics                                                  |                   |                   |
| Age at baseline (Mean±SD) <sup>a</sup>                                    | 8.9 ± 2.5         | 9.7 ± 2.3         |
| BMI-for-age percentile at baseline, (Mean±SD) <sup>a</sup>                | 50.1 ± 28.9       | 50.6 ± 31.2       |
| BMI-for-age percentile at baseline, categorized (N, %) <sup>a</sup>       |                   |                   |
| ≥85th BMI-for-age percentile                                              | 32 (12.6)         | 148 (18.2)        |
| <85th BMI-for-age percentile                                              | 208 (81.6)        | 628 (77.2)        |
| Missing                                                                   | 15 (5.9)          | 37 (4.6)          |
| Breast cancer family history in a first- or second-degree relative (N, %) |                   |                   |
| BCFH+                                                                     | 138 (54.1)        | 405 (49.8)        |
| BCFH-                                                                     | 117 (45.9)        | 408 (50.2)        |
| BOADICEA lifetime risk score (Mean±SD)                                    | 14.6 ± 4.9        | 14.6 ± 4.7        |
| Study site (N, %)                                                         |                   |                   |
| Philadelphia                                                              | 10 (3.9)          | 149 (18.3)        |
| New York                                                                  | 59 (23.1)         | 118 (14.5)        |
| Utah                                                                      | 23 (9.0)          | 155 (19.1)        |
| Ontario                                                                   | 87 (34.1)         | 105 (12.9)        |
| Northern California                                                       | 76 (29.8)         | 286 (35.2)        |
| Race/ethnicity (N, %)                                                     |                   |                   |
| Non-Hispanic white                                                        | 172 (67.5)        | 497 (61.1)        |
| Non-Hispanic black                                                        | 16 (6.3)          | 63 (7.8)          |
| Hispanic                                                                  | 30 (11.8)         | 166 (20.4)        |
| Asian/Pacific Islander                                                    | 28 (11.0)         | 65 (8.0)          |
| Other or mixed race/ethnicity                                             | 9 (3.5)           | 22 (2.7)          |
| Maternal education (N, %)                                                 |                   |                   |

| Maternal age at menarche (Mean±SD)<br><sup>a</sup> Pilot baseline for girls with pilot data (N=21) | 12.7 ± 1.4 | 12.7 ± 1.6 |
|----------------------------------------------------------------------------------------------------|------------|------------|
| Missing                                                                                            | 8 (3.1)    | 18 (2.2)   |
| Graduate degree                                                                                    | 88 (34.5)  | 273 (33.6) |
| Bachelor's degree                                                                                  | 111 (43.5) | 274 (33.7) |
| Some college, vocational or technical school or less                                               | 48 (18.8)  | 248 (30.5) |

|             |        | Birth        | 2      | months       | 4      | months       | 6      | months       | g      | months       | 12     | months       |
|-------------|--------|--------------|--------|--------------|--------|--------------|--------|--------------|--------|--------------|--------|--------------|
|             | Mean   |              | Mean   |              | Mean   |              | Mean   |              | Mean   |              | Mean   |              |
| Variable    | (SD)   | IQR          |
|             | 3.37   |              | 5.15   |              | 6.51   |              | 7.48   |              | 8.62   |              | 9.49   |              |
| Weight, kg  | (0.54) | 3.09, 3.71   | (0.70) | 4.71, 5.60   | (0.81) | 5.95, 7.03   | (0.92) | 6.89, 8.05   | (1.03) | 8.00, 9.25   | (1.11) | 8.80, 10.21  |
| Weight-for- | -0.01  |              | 0.42   |              | 0.45   |              | 0.28   |              | 0.06   |              | -0.10  |              |
| age Z-score | (1.07) | -0.62, 0.67  | (1.10) | -0.27, 1.13  | (1.07) | -0.26, 1.15  | (1.09) | -0.39, 0.97  | (1.11) | -0.56, 0.76  | (1.14) | -0.73, 0.65  |
| -           | 50.82  |              | 57.97  |              | 63.19  |              | 67.13  |              | 71.67  |              | 75.56  |              |
| Length, cm  | (3.80) | 48.26, 53.34 | (2.59) | 56.13, 60.00 | (2.70) | 61.50, 65.00 | (2.75) | 65.55, 69.00 | (3.03) | 69.85, 73.72 | (3.14) | 73.66, 77.54 |
| Length-for- | 0.45   |              | 0.50   |              | 0.68   |              | 0.74   |              | 0.67   |              | 0.63   |              |
| age Z-score | (1.79) | -0.43, 1.50  | (1.06) | -0.23, 1.34  | (1.09) | 0.00, 1.41   | (1.07) | 0.11, 1.46   | (1.11) | -0.02, 1.41  | (1.09) | -0.04, 1.31  |
|             | 0-     | 2 months     | 2-     | 4 months     | 4-6    | 6 months     | 6-9    | 9 months     | 9-1    | 12 months    | 0-1    | 2 months     |
| Change in   | 0.43   |              | 0.03   |              | -0.16  |              | -0.21  |              | -0.12  |              | -0.06  |              |
| WAZ         | (0.93) | -0.20, 1.03  | (0.54) | -0.32, 0.31  | (0.52) | -0.43, 0.10  | (0.44) | -0.46. 0.01  | (0.42) | -0.41, 0.12  | (1.35) | -0.87, 0.68  |
| Change in   | 0.02   |              | 0.19   |              | 0.06   |              | -0.08  |              | -0.03  |              | 0.19   |              |
| LAZ         | (1.59) | -0.83, 0.63  | (0.63) | -0.18, 0.52  | (0.63) | -0.33, 0.40  | (0.77) | -0.44, 0.31  | (0.55) | -0.38, 0.30  | (1.90) | -0.78, 0.89  |

Table 4.2. Summary measures of height and weight by age and age interval (N=255)

\*Z-scores calculated using the 2000 CDC growth charts

# $\frac{1}{2}$ Table 4.3. Correlation matrix for birthweight Z-score and change in weight-for-age Z-score (WAZ) by age interval (N=255)

| Parameter                | Birthweight<br>Z-score | Change in<br>WAZ, 0-2 m | Change in<br>WAZ, 2-4 m | Change in<br>WAZ, 4-6 m | Change in<br>WAZ, 6-9 m |
|--------------------------|------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
| Change in<br>WAZ, 0-12 m | -0.58**                |                         |                         |                         |                         |
| Change in<br>WAZ, 0-2 m  | -0.40**                |                         |                         |                         |                         |
| Change in<br>WAZ, 2-4 m  | -0.32**                | 0.04                    |                         |                         |                         |
| Change in<br>WAZ, 4-6 m  | -0.21*                 | -0.03                   | 0.10                    |                         |                         |
| Change in<br>WAZ, 6-9 m  | -0.16*                 | -0.05                   | 0.17*                   | 0.25**                  |                         |
| Change in<br>WAZ, 9-12 m | -0.08                  | -0.01                   | -0.00                   | -0.10                   | 0.16*                   |

Pearson correlation coefficients: \*p<.05, \*\*p<.0001

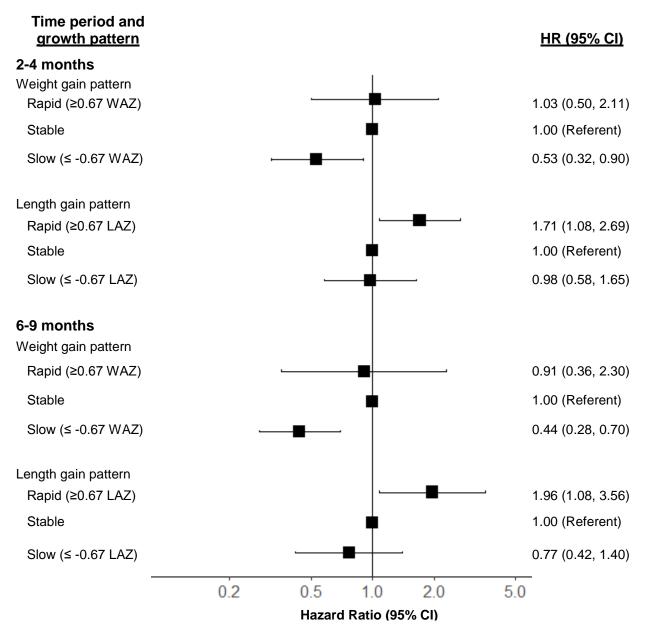
| Parameter                | Birthlength<br>Z-score | Change in<br>LAZ, 0-2 m | Change in<br>LAZ, 2-4 m | Change in<br>LAZ, 4-6 m | Change in<br>LAZ, 6-9 m |
|--------------------------|------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
| Change in<br>LAZ, 0-12 m | -0.83**                |                         |                         |                         |                         |
| Change in<br>LAZ, 0-2 m  | -0.80**                |                         |                         |                         |                         |
| Change in<br>LAZ, 2-4 m  | -0.15*                 | -0.05                   |                         |                         |                         |
| Change in<br>LAZ, 4-6 m  | -0.17*                 | -0.06                   | 0.04                    |                         |                         |
| Change in<br>LAZ, 6-9 m  | -0.09                  | -0.03                   | -0.12                   | -0.10                   |                         |
| Change in<br>LAZ, 9-12 m | -0.04                  | -0.01                   | -0.10                   | -0.09                   | 0.09                    |

Table 4.4. Correlation matrix for birthlength Z-score and change in length-for-age Z-score (LAZ) by age interval (N=255)

Pearson correlation coefficients: \*p<.05, \*\*p<.0001

| Parameter                | Birthweight<br>Z-score | Change in<br>WAZ, 0-12 m | Change in<br>WAZ, 0-2 m | Change in<br>WAZ, 2-4 m | Change in<br>WAZ, 4-6 m | Change in<br>WAZ, 6-9m | Change in<br>WAZ,9-12m |
|--------------------------|------------------------|--------------------------|-------------------------|-------------------------|-------------------------|------------------------|------------------------|
| Birthlength Z-<br>score  | 0.51**                 | -0.27**                  | -0.19*                  | -0.16*                  | -0.10                   | -0.01                  | -0.09                  |
| Change in LAZ,<br>0-12 m | -0.34**                | 0.38**                   | 0.25*                   | 0.28**                  | 0.13                    | 0.09                   | 0.09                   |
| Change in LAZ,<br>0-2 m  | -0.14*                 | 0.19*                    | 0.27**                  | 0.04                    | 0.03                    | -0.10                  | 0.07                   |
| Change in LAZ,<br>2-4 m  | -0.17*                 | 0.24*                    | 0.12                    | 0.26**                  | -0.08                   | 0.06                   | -0.01                  |
| Change in LAZ,<br>4-6 m  | -0.25**                | 0.26**                   | 0.09                    | 0.21*                   | 0.25*                   | 0.05                   | 0.03                   |
| Change in LAZ,<br>6-9 m  | -0.17*                 | 0.22*                    | 0.03                    | 0.09                    | 0.13*                   | 0.24*                  | 0.02                   |
| Change in LAZ,<br>9-12 m | -0.03                  | -0.002                   | -0.14*                  | 0.14*                   | 0.03                    | 0.06                   | 0.03                   |

| Table 4.5. Correlations between chan | ges in weight-for-a | ge and length-for-age Z-scores I | by age interval (l | N=255) |
|--------------------------------------|---------------------|----------------------------------|--------------------|--------|
|                                      |                     |                                  |                    |        |


Pearson correlation coefficients: \*p<.05, \*\*p<.0001

# Table 4.6. Adjusted time ratios (TR), hazard ratios (HR) and 95% confidence intervals (CIs) for associations between rates of weight and length gain during infancy and the onset of breast development in the LEGACY Girls Study

|                                                                       | Model 1ª - W         | /eight only       | Model 2ª - Lo        | ength only        | Model 3 <sup>a</sup> - Weight and Length |                   |  |
|-----------------------------------------------------------------------|----------------------|-------------------|----------------------|-------------------|------------------------------------------|-------------------|--|
|                                                                       | TR (95% CI)          | HR (95% CI)       | TR (95% CI)          | HR (95% CI)       | TR (95% CI)                              | HR (95% CI)       |  |
| Change in weight Z-score,<br>0-12 months<br>Change in length Z-score, | 0.978 (0.960, 0.997) | 1.20 (1.02, 1.41) | -                    | -                 | 0.986 (0.971, 1.001)                     | 1.12 (0.99, 1.28) |  |
| 0-12 months                                                           | -                    | -                 | 0.983 (0.966, 1.000) | 1.15 (1.00, 1.33) | 0.988 (0.972, 1.005)                     | 1.10 (0.96, 1.27) |  |
| Change in weight Z-score,<br>0-6 months<br>Change in weight Z-score,  | 0.983 (0.966, 1.001) | 1.15 (0.99, 1.34) | -                    | -                 | 0.991 (0.971, 1.010)                     | 1.08 (0.92, 1.28) |  |
| 6-12 months                                                           | 0.973 (0.946, 1.001) | 1.25 (0.98, 1.60) | -                    | -                 | 0.982 (0.954, 1.010)                     | 1.17 (0.92, 1.49) |  |
| Change in length Z-score,<br>0-6 months                               | -                    | -                 | 0.978 (0.960, 0.996) | 1.21 (1.03, 1.41) | 0.981 (0.962, 1.001)                     | 1.17 (0.99, 1.38) |  |
| Change in length Z-score,<br>6-12 months                              | -                    | -                 | 0.994 (0.969, 1.020) | 1.05 (0.85, 1.30) | 0.995 (0.969, 1.020)                     | 1.05 (0.84, 1.30) |  |
| Change in weight Z-score,<br>0-2 months<br>Change in weight Z-score,  | 0.991 (0.971, 1.011) | 1.08 (0.92, 1.27) | -                    | -                 | 1.006 (0.986, 1.026)                     | 0.96 (0.81, 1.12) |  |
| 2-4 months<br>Change in weight Z-score,                               | 0.949 (0.915, 0.985) | 1.54 (1.13, 2.12) | -                    | -                 | 0.962 (0.926, 0.999)                     | 1.40 (1.00, 1.96) |  |
| 4-6 months<br>Change in weight Z-score,                               | 0.989 (0.940, 1.040) | 1.10 (0.72, 1.69) | -                    | -                 | 0.991 (0.940, 1.045)                     | 1.08 (0.68, 1.72) |  |
| 6-9 months<br>Change in weight Z-score,                               | 0.946 (0.904, 0.989) | 1.63 (1.09, 2.42) | -                    | -                 | 0.953 (0.910, 0.997)                     | 1.55 (1.01, 2.36) |  |
| 9-12 months                                                           | 1.008 (0.968, 1.050) | 0.93 (0.66, 1.32) | -                    | -                 | 0.997 (0.955, 1.041)                     | 1.03 (0.70, 1.51) |  |
| Change in length Z-score,<br>0-2 months<br>Change in length Z-score,  | -                    | -                 | 0.990 (0.968, 1.013) | 1.09 (0.90, 1.31) | 0.988 (0.966, 1.010)                     | 1.11 (0.92, 1.33) |  |
| 2-4 months<br>Change in length Z-score,                               | -                    | -                 | 0.949 (0.918, 0.982) | 1.56 (1.16, 2.08) | 0.955 (0.922, 0.989)                     | 1.50 (1.10, 2.04) |  |
| 4-6 months<br>Change in length Z-score,                               | -                    | -                 | 1.012 (0.974, 1.052) | 0.90 (0.65, 1.25) | 1.017 (0.979, 1.056)                     | 0.87 (0.62, 1.21) |  |
| 6-9 months<br>Change in length Z-score,                               | -                    | -                 | 0.974 (0.944, 1.005) | 1.25 (0.95, 1.65) | 0.983 (0.953, 1.014)                     | 1.17 (0.88, 1.54) |  |
| 9-12 months                                                           | -                    | -                 | 1.005 (0.969, 1.042) | 0.96 (0.70, 1.31) | 1.021 (0.982, 1.061)                     | 0.83 (0.58, 1.18) |  |

\*Z-scores calculated using 2000 CDC growth charts as reference

<sup>2</sup> Estimates adjusted for weight and length Z-scores at birth, change in previous intervals, gestational age in weeks, maternal pre-pregnancy BMI and gestational weight gain (BMI<25 and GWG<30lbs, BMI<25 and GWG<30 lbs, BMI<30 lbs, BMI<



*Figure 4.1. Associations between growth patterns from 2-4 months and 6-9 months and onset of breast development in the LEGACY Girls Study.* Z-scores are calculated using the 2000 CDC growth charts. Estimates are adjusted for weight and length Z-score at birth, change in previous intervals, gestational age in weeks, maternal pre-pregnancy BMI, gestational weight gain and race/ethnicity.

# Chapter 5. Maternal pregnancy factors, birth size and infant growth in relation to IGF-1 and IGFBP-3 levels during puberty in the LEGACY Girls Study cohort

# ABSTRACT

<u>Background</u>: Serum levels of insulin-like growth factor (IGF)-1 and insulin-like growth factor binding protein (IGFBP-3) increase rapidly during puberty. In this pilot study, we examined whether maternal pregnancy factors and rates of growth during infancy, which were associated with earlier onset of breast development in prior chapters, influenced serum levels of IGF-1 and IGFBP-3 in girls during puberty, and if so, whether these associations differ in girls with and without a breast cancer family history (BCFH).

<u>Methods</u>: We used linear mixed models to estimate the mean difference in serum levels of IGF-1(ng/ml), IGFBP-3(ng/ml) and the IGF-1/IGFBP-3 molar ratio by maternal pre-pregnancy body mass index (BMI), gestational weight gain (GWG), maternal physical activity during pregnancy and size at birth in 109 girls from the New York site of the LEGACY Girls Study, a pubertal cohort enriched for BCFH (ages 6-17 years at sample collection). We included all available serum samples for each girl (range 1-5, median 3) in the analyses, which were clustered on the individual and the family. In the subset of 33 girls with infant growth data available from medical records, we also examined differences in serum biomarker levels by growth patterns from birth to 12 months of age. We adjusted for age, breast Tanner stage and BMI-for-age percentile at sample collection and assessed effect modification by BCFH for each exposure of interest through cross-product terms.

<u>Results</u>: The mean age at the first available serum sample was 10.2 years. Forty percent of girls had a BCFH, and 46% were breast Tanner stage 1 at their first sample. Serum IGF-1 levels increased from Tanner stage 1-3, were at a peak in stages 3 and 4, and were lower in Tanner stage 5. A similar pattern was observed for the IGF-1/IGFBP-3 molar ratio. Faster rates of weight gain in infancy were associated with a higher molar ratio of IGF-1/IGFBP-3, which reflect higher levels of bioactive IGF-1 ( $\beta$ =0.03, 95% CI 0.01, 0.06 for one-unit increase in weight-for-age Z-score from birth to 12 months). Higher birthweight was associated with decreased levels of IGF-1, which was attenuated after adjustment for infant growth ( $\beta$ = -4.5 ng/ml, 95% CI -35.6, 26.6 per 500g increase in birthweight with adjustment for infant weight gain). These

patterns did not differ by BCFH, which was not associated with serum biomarker levels after adjustment for age and breast Tanner stage.

<u>Conclusions</u>: Rapid infant weight gain was associated with higher levels of the IGF-1/IGFBP-3 molar ratio, a serum biomarker that maps to pubertal development. This supports that the association that we observed between faster infant growth and earlier onset of breast development is less likely to be driven by error in outcome assessment or confounding.

# 5.1 Background

Serum IGF-1 levels increase slowly during early childhood with a more rapid rate of increase during puberty.<sup>51</sup> After a peak during puberty, IGF-1 levels decrease in adolescence and adulthood.<sup>52</sup> Insulin-like growth factor binding protein (IGFBP)-3, which binds 75-90% of circulating IGF-1 and regulates its bioactivity,<sup>291</sup> follows a similar pattern in childhood and adolescence.<sup>52</sup> While breast Tanner stage is a somewhat subjective assessment, even among trained professionals,<sup>58</sup> serum levels of IGF-1 and IGFBP-3 are objective measures that are correlated with pubertal stage.<sup>51,52</sup> In this pilot study, we examine whether maternal pregnancy factors and rates of growth during infancy, which were associated with earlier onset of breast development in prior chapters, influence serum levels of IGF-1 and IGFBP-3 in girls during puberty, and if so, whether these associations differ in girls with and without a breast cancer family history (BCFH). Associations between these factors and higher serum levels of IGF-1, IGFBP-3 or the IGF-1/IGFBP-3 molar ratio would indicate biological changes that map to pubertal development in the girls, and support that bias is less likely to drive the associations that we observed with pubertal timing.

# 5.2 Methods

#### 5.2.1. Study population

The participants in this study were from the New York site of the LEGACY (<u>Lessons</u> in <u>E</u>pidemiology and <u>G</u>enetics of <u>A</u>dult <u>C</u>ancer from <u>Y</u>outh) Girls Study, a prospective pubertal cohort in which approximately 50% of girls have a breast cancer family history (BCFH) (for more information on the LEGACY cohort, see <sup>57</sup>). Girls were between the ages of 6 and 13 years when recruited into LEGACY

between 2011 and 2013 along with a participating guardian and have been prospectively followed every six months since baseline. Baseline data collected from mothers included family history of breast cancer in daughters' first- and second-degree relatives and detailed information about the pregnancy with the LEGACY daughter. At baseline and subsequent follow-up visits, mothers completed questionnaires assessing their daughters' pubertal development and trained staff members collected anthropometric measurements. Daughters were asked to provide a blood sample at baseline, the six-month follow-up visit, and annually thereafter. For this analysis, the study population was comprised of 109 girls from the New York LEGACY site who provided at least one blood sample over the course of the study. The participating guardian was the biological mother for 98% of these girls. The analysis included all available serum samples (N=289), along with prospective follow-up data on Tanner Stage, through August 2016. Mothers provided written informed consent for themselves and for their daughters, and daughters provided written informed assent according to institutional standards. The study was approved by the institutional review board at Columbia University Irving Medical Center.

#### 5.2.2. Data collection

<u>Maternal and infant exposures</u>. Mothers completed an early-life questionnaire at their daughters' baseline visit that included detailed information about their pregnancy, including pre-pregnancy weight (continuous), gestational weight gain (GWG) (in categories) and physical activity. These questions were developed and used previously in the Nurses' Health Study cohort.<sup>24</sup> Mothers also reported the length of their pregnancy, which we used to calculated gestational age, along with their daughters' weight and length at birth. Weight and length through one year of age was available for a subset of the girls from medical records and growth charts obtained from pediatricians' offices. As described in **Chapter 4**, we interpolated weight and height at 2 months, 4 months, 6 months, 9 months and 12 months for each girl using individual quadratic smoothing splines as these time points correspond with recommended postnatal clinician visits.<sup>250</sup> We calculated weight-for-age (WAZ) and length-for-age (LAZ) Z-scores at each time point standardized to the 2000 Centers for Disease Control and Prevention (CDC) growth charts.<sup>261</sup> Rate of growth in weight and length was calculated as the change in WAZ and LAZ between two time points. We defined rapid growth as an increase in Z-score of greater than 0.67, slow growth as a decrease in Z-score of greater than 0.67,

and stable growth as a change of less than 0.67 between time points. A change of 0.67 standard deviations corresponds to an increase of a major percentile on standard growth charts (i.e. a change from the 25<sup>th</sup> to the 50<sup>th</sup> percentile), and is commonly used in the literature.<sup>191,263</sup>

<u>Covariates.</u> We considered history of breast cancer in a first or second-degree relative, as reported by the mother at baseline, as a potential modifier. At each study visit, trained research staff measured the height and weight of the girls at least twice using standardized instruments. We averaged these measures and calculated body mass index (BMI) at the visit. We also calculated BMI-for-age percentiles based on the 2000 CDC growth charts.<sup>241</sup> Mothers also reported their daughters' stage of breast development at the visit using was the picture-based Sexual Maturation Scale (SMS)<sup>238</sup> showing the five Tanner stages (TS).<sup>100</sup> Mothers reported their highest level of education attained at baseline, which was used as a measure of socioeconomic status (SES).

Biomarker assessment. We measured IGF-1 and IGFBP-3 concentrations in ng/ml in serum at the Irving Institute for Clinical and Translational Research Core Biomarkers Lab at Columbia University. IGF-1 was measured using a chemiluminescent immunoassay (CLIA) on the Immulite 1000 automated platform (Siemens Healthcare Diagnostics). Serum samples for the same girl were run on the same day, and the inter-day precision of the assay calculated from a pooled sample was 6.5%. IGFBP-3 was measured using a quantikine enzyme-linked immunosorbent assay (ELISA) kit (R&D Systems), and all samples for the same girl were included on the same plate. The inter-assay precision calculated from a pooled sample was 11.4% and the intra-assay precision, calculated from samples run in duplicate, was 3.5%. All samples were above the limit of detection for IGF-1 and IGFBP-3. We calculated the molar ratio of IGF-1 to IGFBP-3 (IGF-1 in ng/ml times 0.1307 divided by IGFBP-3 in ng/ml times 0.03478, as in <sup>292</sup>) in order to examine the concentration of IGF-1 relative to its primary binding factor. The ratio is a reflection of the amount of bioactive IGF-1,<sup>52,292</sup> as opposed to total circulating IGF-1.

# 5.2.3. Statistical analysis

We examined the distribution of early-life characteristics and baseline covariates in girls with biomarker data and examined differences with the subset of the girls at the New York site without biomarker

data. We examined the distribution of IGF-1, IGFBP-3 and the molar ratio of IGF-1/IGFBP-3 by age and breast Tanner stage for all serum assessments (N=289 samples) and for the first serum assessment in each girl (N=109 samples). We then examined the distribution of the first IGF measures for each girl by SES and exposures of interest using boxplots. We also examined the correlation between continuous body size measures and the first available serum biomarker measures.

We used multivariable linear mixed models to assess associations between early-life exposures and the mean levels of IGF-1/IGFBP-3 and the IGF-1/IGFBP-3 molar ratio during puberty with a random intercept term for the individual and the family to allow for the clustering of repeated measures within girls and girls within families. The use of mixed models allows for a different number of measures per girl, so girls with only one biomarker measure and those with repeated measures can both contribute to the analysis. We adjusted all models for centered age at blood draw and the quadratic term for age to account for the decline in IGF-1 and IGFBP-3 after the peak during puberty.

Our exposures of interest for this analysis were maternal pre-pregnancy BMI, gestational weight gain, maternal recreational physical activity during pregnancy, birthweight and birthlength. We examined exposures as continuous variables if assumptions of linearity were not violated to avoid small cell counts. We adjusted models examining GWG and maternal physical activity for maternal pre-pregnancy BMI, and we adjusted birth size models for maternal pre-pregnancy BMI and prematurity (gestational age <37 weeks). Birth size models were run with and without mutual adjustment for weight and length. We additionally adjusted for breast TS and BMI-for-age percentile at visit. We tested for effect measure modification on the additive scale by adding a cross-product term between the exposure of interest and BCFH to adjusted models.

For the subset of girls with infancy data (N=33), we also examined rates of growth in weight and length between birth and one year. Due to the small sample size and few sets of siblings, infancy analyses were clustered on the individual only and adjusted for maternal pre-pregnancy BMI and size at birth. We ran models with and without mutual adjustment for growth in weight and length. We additionally adjusted for breast TS (TS≥2 vs TS1, due to small cell counts) and BMI-for-age percentile at visit and tested for interaction by BCFH.

We present our main models without transforming the outcome for interpretability, as the β estimates can be interpreted as the difference in the mean biomarker level between groups for a categorical exposure or for a one-unit increase in a continuous exposure. However, the distributions of IGF-1 and the IGF-1/IGFBP-3 molar ratio were slightly skewed, and normality was improved by using a square root transformation. We ran sensitivity analyses for our adjusted models using the square-root transformed IGF-1 and IGF-1/IGFBP-3 molar ratio measures. We also present the median and interquartile range using the first available biomarker measure across our exposures of interest (**Table 5.1**) and by age for all available measures (**Table 5.2**). Analyses were conducted using SAS 9.4.

# 5.3 Results

The analytic sample includes 109 girls with at least one serum sample available (median=3 samples per girl, range 1-5). The mean age at the first available serum sample was 10.2 years, and 46% of girls were breast Tanner stage 1 at their first sample (**Table 5.1**). Approximately 30% of mothers were overweight or obese prior to pregnancy, and 28% of girls were overweight at their first visit with serum available. Compared with girls from the New York site that did not provide a serum sample, girls that provided serum were slightly older at baseline and a greater percentage of girls were Hispanic (**Supplemental Table 5.1**). Forty percent of girls with serum had a first- or second-degree history of breast cancer, which was a lower percentage than in the overall cohort. Several families with a BCFH participated in LEGACY remotely and did not attend in-person clinic visits when serum samples were collected.

Girls were between the ages of 6-17 years at blood collection, and the range of IGF-1, IGFBP-3 and the IGF-1/IGFBP-3 molar ratio overall and by age are shown in **Table 5.2**. The median levels of IGF-1 increased until 12 years of age and started to decline by late adolescence, though we had a relatively small number of samples collected at 16 and 17 years of age. The largest increases in median IGF-1 were between 9 and 11 years of age, which corresponds to the onset of puberty for many girls. IGFBP-3 levels also increased with age and appeared to plateau in adolescence. Similar patterns were observed when we considered the first serum sample available for each girl by breast Tanner stage at the visit (**Supplemental Figure 5.1**). IGF-1 levels increased from Tanner stage 1-3, were at a peak in stages 3 and 4, and were lower in Tanner stage 5. A similar pattern was observed for the IGF-1/IGFBP-3 molar ratio. Trends in

IGFBP-3 by Tanner stage were more subtle – the median increased as girls entered breast development and then remained elevated in the later Tanner stages. The distribution of IGF-1, IGFBP-3 and the IGF-1/IGFBP-3 ratio were similar by maternal education (**Supplemental Figure 5.2**), suggesting that these biomarkers are independent of SES.

There was significant tracking of IGF-1, IGFBP-3 and their molar ratio within girls during puberty, with intraclass correlation coefficients (ICCs) ranging from 0.60-0.70 when only within- and betweenindividual levels were considered. When we also considered familial clustering, 36.3% of the variance in IGF-1 was due to within-individual differences, 47.2% to between-individual differences and 16.5% to between-family differences. Similar patterns were observed for IGFBP-3 and the IGF-1/IGFBP-3 molar ratio, where the majority of the variance was due to between-individual and between-family differences.

BMI-for-age percentile at the visit had a modest positive correlation with serum levels of IGF-1 (r=0.20) and the IGF-1/IGFBP-3 molar ratio (r=0.23), while birthweight was inversely correlated with IGF-1 (r= -0.14) and the molar ratio (r= -0.17). The correlation between maternal pre-pregnancy BMI and serum IGF-1 was extremely weak (r=0.07). Infant weight gain had the strongest correlation with serum levels of IGF-1 and the IGF-1/IGFBP-3 ratio (r=0.36 for IGF-1 and r=0.41 for IGF-1/IGFBP-3 molar ratio) – double the magnitude compared with current BMI. None of the body size exposures were strongly correlated with IGFBP-3. In multivariable models controlling for age and breast Tanner stage, the association between current BMI and serum levels of IGF-1 and the molar ratio was attenuated and not statistically significant.

Although the associations were not statistically significant, serum IGF-1 and IGFBP-3 levels increased with increasing maternal pre-pregnancy BMI after controlling for age, current BMI and Tanner stage (**Table 5.3**). There was no association between maternal pre-pregnancy BMI and the IGF-1/IGFBP-3 molar ratio after controlling for daughters' BMI-for-age percentile and breast TS. There was a suggestion of a slight U-shape in the association between GWG and IGF-1, IGFBP-3 and their molar ratio. When maternal pre-pregnancy BMI and GWG were considered as a joint categorical variable, daughters of women who had a pre-pregnancy BMI≥25 and gained ≥30 lbs during pregnancy had higher serum IGF-1 levels than daughters of women who were not overweight prior to pregnancy and gained less than 30 lbs ( $\beta$  adjusted for age, breast TS and BMI-for-age percentile at visit=51.1 ng/mI, 95% CI 1.1, 101.1). Serum

IGF-1 levels in daughters of women with a pre-pregnancy BMI  $\geq$ 25 and gained less than 30lbs or women with a BMI<25 and gained 30lbs or more were also elevated, but these differences were not statistically significant. There were no statistically significant differences in the IGF-1/IGFBP-3 molar ratio. However, the point estimates suggested that daughters of women who gained 30lbs or more during pregnancy had a greater ratio of IGF-1 to IGFBP-3 than daughters of women who gained less than 30 lbs in both average-weight and overweight women ( $\beta$  for BMI<25 and GWG $\geq$ 30 lbs=0.02, 95% CI -0.01, 0.08;  $\beta$  for BMI $\geq$ 25 and GWG $\geq$ 30 lbs=0.04, 95% CI=-0.01, 0.08, increases of 8% and 15%, respectively, in the mean molar ratio compared with the referent group of BMI<25 and GWG<30). There were no statistically significant differences in biomarker levels by maternal recreational physical activity during pregnancy. Point estimates were in the direction of lower levels of IGF-1, IGFBP-3 and their molar ratio in daughters of inactive women. Although levels of IGF-1, IGFBP-3 and their molar ratio were higher in girls with a BCFH in descriptive analyses (**Table 5.1**), there were no differences by BCFH after adjustment for breast Tanner stage and BMI-for-age percentile in addition to age (data not shown). The associations between maternal pregnancy factors, birth size and biomarker levels did not vary by BCFH (p>0.05 for all interaction terms).

Higher birthweight was associated with lower levels of serum IGF-1 and the IGF-1/IGFBP-3 molar ratio ( $\beta$  for IGF-1= -13.6 ng/ml, 95% CI -26.7, -0.5 per 500g increase in birthweight and  $\beta$  for IGF-1/IGFBP-3 molar ratio= -0.01, 95% CI -0.02, 0.00) (**Table 5.4**). BCFH did not modify the observed association. Birthlength was not associated with IGF levels. In the subset of girls with infancy data, boxplots suggested a dose-response relationship in levels of serum IGF-1 and the IGF-1/IGFBP-3 molar ratio by the pattern of weight gain in infancy, with the highest levels observed in girls with rapid weight gain (**Figure 5.1**). Effect estimates from multivariable-adjusted models examining the continuous change in weight-for-age Z-score from 0-12 months were consistent with this pattern (**Table 5.5**). A one-unit increase in weight-for-age Z-score between birth and 12 months of age was associated with approximately a 14% increase in the mean IGF-1/IGFBP-3 molar ratio after controlling for age, current BMI, Tanner stage, birthweight and maternal BMI. In this subset, we examined whether the negative association between birthweight and IGF-1 was mediated by infant weight gain. The estimated mean difference in IGF-1 per 500g increase in birthweight was similar, but not statistically significant in this subset ( $\beta$ = -12.6, 95% CI -38.4, 13.2), and was attenuated towards the null after adjustment for weight gain from 0-12 months ( $\beta$ = -4.5, 95% CI -35.6, 26.6)

(**Supplemental Table 5.2**). While we observed a similar pattern for change-in-length Z-score from 0-12 months in age-adjusted models, the difference was attenuated after adjustment for breast Tanner stage and BMI. When we considered growth from 0-6 months and 6-12 months separately, rate of weight gain in late infancy was associated with a larger increase in IGF-1 and the IGF1/IGFBP-3 molar ratio. Although infant growth measures were not associated with IGFBP-3 levels, there was a statistically significant interaction between change in weight Z-score from 0-12 months and 0-6 months and BCFH, which suggested lower levels of IGFBP-3 in girls with a BCFH that experienced faster weight gain. There was no evidence of interaction by BCFH for IGF-1 or the IGF-1/IGFBP-3 molar ratio (p>0.05). The interaction observed for IGFBP-3 could be due to chance, particularly given the small sample size for the infancy analyses.

The inference was the same for each exposure of interest when we modelled the square root of IGF-1 and the IGF-1/IGFBP-3 molar ratio as the outcome instead of the untransformed values (**Supplemental Table 5.3**).

# 5.4 Discussion

Similar to previous studies, we observed increases in serum levels of IGF-1, IGFBP-3 and the IGF-1/IGFBP-3 molar ratio with age and breast Tanner stage with a peak in late puberty in a pubertal cohort enriched for BCFH. Although the associations were not statistically significant, serum levels of IGF-1 and the IGF-1/IGFBP-3 molar ratio were higher in girls whose mothers were overweight or obese prior to pregnancy and gained more than 30lbs. Higher birthweight was associated with lower serum IGF-1 levels. In the subset of girls with infant growth data, adjustment for weight gain from 0-12 months attenuated the negative association between birthweight and IGF-1, suggesting that the birthweight association is mediated by postnatal growth. We also observed an independent association between faster rates of weight gain during infancy and higher levels of the IGF-1/IGFBP-3 molar ratio in girls during puberty. The magnitude of the association for infant weight gain and the molar ratio was double that of current BMI, which was not associated with IGF levels after adjustment for Tanner stage. These findings support that rapid growth during infancy, and potentially maternal pre-pregnancy body size and GWG, are associated with biological differences in IGF levels that are consistent with pubertal development.

In Chapters 3 and 4, we found that higher maternal pre-pregnancy BMI, excess GWG, maternal physical inactivity during pregnancy and rapid growth during infancy were associated with earlier onset of breast development. Ruling out information bias and confounding as an explanation for these findings is a challenge, particularly since breast development was based on maternal report and maternal pregnancy factors, infant growth and pubertal timing are socially patterned.<sup>242,293</sup> This pilot study can help to assess the likelihood that the associations between these factors and the timing of breast development were driven by these potential biases. Lab personnel that conducted the serum assays were blinded to exposure and pubertal status, limiting the potential for systematic bias in biomarker assessment, and the reliability of the assays suggest a minimal amount of random error. Although our sample size was small, serum biomarkers of IGF-1 and IGFBP-3 increased with age and breast Tanner stage in our sample and can be considered a physiological indicator of pubertal onset. Therefore, the association between rapid infant weight gain and higher levels of IGF-1 relative to IGFBP-3 in this analysis reduces the likelihood that the association that we observed between infant growth and earlier onset of breast development is driven by error in maternal report of breast onset. Higher IGF-1 levels in girls with high maternal pre-pregnancy BMI and GWG are also consistent with our finding of earlier breast development in this group. In addition, IGF measures did not vary by maternal education, which supports that confounding by SES is also not a likely explanation for these associations. In contrast, maternal physical inactivity during pregnancy was associated with lower, albeit not statistically significant, levels of IGF-1, IGFBP-3 and their molar ratio, which is not consistent with our finding of earlier breast development in these girls.

BCFH did not modify the associations that we observed between maternal pregnancy and infant factors and serum measures of IGF-1 and the IGF-1/IGFBP-3 ratio. However, we would not rule out the possibility of interaction by BCFH based on these analyses as we may have lacked power to detect statistically significant differences by BCFH. We did not observe an association between BCFH and mean IGF-1 and IGFBP-3 levels after adjustment for age and breast Tanner stage. Studies of differences in IGF-1 by BCFH in adulthood have not consistently observed an association. A pooled study of over 9000 women (mean age varied from 35.5-71.8 by study included in the pooled analysis) did not find a difference in IGF-1 levels in adulthood in women with or without a first-degree family history of breast cancer.<sup>294</sup> However, a study of 400 women (mean age 56.6±7.1) did observe higher mean IGF-1 levels in women with a first-

degree family history of breast cancer.<sup>295</sup> Since BCFH may be associated with earlier age at menarche,<sup>165</sup> changes in IGF-1 and IGFBP-3 levels across puberty may differ in girls with a BCFH, a hypothesis that we will explore in future studies.

The relations between body size, growth and levels of IGF-1 across the life course is complex. Higher birthweight has generally been found to be associated with higher levels of IGF-1 in cord blood<sup>296-</sup> <sup>298</sup> and in blood samples measured shortly after birth.<sup>299</sup> However, previous studies have found negative correlations between birthweight and circulating IGF-1 levels as early as 3 months of age<sup>300</sup> and into childhood,<sup>301–304</sup> which is consistent with the negative association that we observed in girls during puberty. In childhood, the highest levels of IGF-1 have been observed in taller and heavier children that weighed less at birth.<sup>302-304</sup> Barker and colleagues have suggested that this negative association between birth weight and IGF levels is due to the re-programming of the IGF-1 axis in response to undernutrition in utero, either due to higher levels of postnatal nutrition than anticipated based on the intrauterine environment or to IGF-1 resistance developed in response to prenatal undernutrition.<sup>303</sup> An alternative hypothesis is that rapid postnatal weight gain, which is more common in low birthweight infants, programs higher IGF-1 levels into childhood. Our finding that faster infant weight gain is associated with higher levels of IGF-1 during puberty, and that infant weight gain may mediate the association between birthweight and lower levels of IGF-1, supports this alternative hypothesis. Rapid weight gain between birth and 2 years was also associated with higher levels of IGF-1 at 5 years of age in the ALSPAC cohort.<sup>302</sup> In a study of twins and their non-twin siblings, lower birthweight was associated with higher levels of IGF-1 at 18 years of age only in adolescents that experienced catch-up growth, defined as an increase of >0.67 SD from birth to 2 years of age.<sup>305</sup> These studies point to the importance of postnatal growth in setting IGF-1 trajectories in childhood and adolescence. Since higher IGF-1 levels during childhood have been associated with earlier age at menarche<sup>306</sup> and faster progression through the pubertal growth spurt,<sup>307</sup> rapid infant weight gain may affect pubertal tempo through programming pathways involving the IGF system. We will explore this hypothesis in future analyses.

Strengths of this study include the repeated assessment of IGF-1 and IGFBP-3 during puberty in girls with and without a BCFH and the prospective assessment of infant growth through medical record

data. Although our analysis was limited to 109 girls, the patterns of IGF-1, IGFBP-3 and the IGF-1/IGFBP-3 molar ratio by age and breast Tanner stage in our sample were similar to the trends observed in large, cross-sectional studies.<sup>51,52,289,292,308</sup> The sample size did limit our power to detect significant differences in mean biomarker levels, particularly for categorical exposures, and limited the number of confounders that could be included in multivariable models. Since only a small subset of girls had both infancy and serum biomarker data, we could not examine smaller windows of growth during infancy in relation to IGF levels. Girls with a BCFH were relatively under-represented in the subset with IGF measurements, which could have reduced our power to detect a significant effect of BCFH on mean IGF measures or an interaction effect. Given our small sample size, replication of our results in larger studies is warranted.

# 5.5 Conclusions

Higher maternal pre-pregnancy BMI, increased GWG and rapid weight gain during infancy were associated with higher mean levels of serum IGF-1 and the IGF-1/IGFBP-3 molar ratio, a measure of bioactive IGF-1, in girls during puberty. These biological changes are consistent with pubertal development, which supports that the associations that we observed between these maternal pregnancy factors, infant growth and the timing of breast development are less likely to be driven by error in outcome assessment or confounding. Future analyses will examine whether early-life growth and BCFH are associated with trajectories of IGF-1 across puberty and the timing of later pubertal markers, including age at peak height velocity and age at menarche, which are associated with increased breast cancer risk.<sup>41,287</sup>

# 5.6 Tables and figures

Table 5.1. Biomarker concentrations from first available sample by early-life and adolescence characteristics (N=109 girls from the LEGACY Girls Study, New York site)

|                                                                                                  |                        | Biomarker concentrations, Median (Interquartile Range) |                         |                               |  |  |  |
|--------------------------------------------------------------------------------------------------|------------------------|--------------------------------------------------------|-------------------------|-------------------------------|--|--|--|
| Early-life characteristics                                                                       | Participants,<br>N (%) | IGF-1 (ng/ml)                                          | IGFBP-3 (ng/ml)         | IGF-1/IGFBP-3<br>molar ratio* |  |  |  |
| Maternal pre-pregnancy BMI and gestational weight gain                                           |                        |                                                        |                         |                               |  |  |  |
| BMI <25 and GWG<30lbs                                                                            | 29 (27.6)              | 245 (131, 324)                                         | 3219.6 (2845.6, 3460.6) | 0.28 (0.19, 0.35)             |  |  |  |
| BMI <25 and GWG≥30lbs                                                                            | 44 (41.9)              | 189 (149, 290.5)                                       | 3060.9 (2711.2, 3393.6) | 0.24 (0.20, 0.32)             |  |  |  |
| BMI ≥25 and GWG<30 lbs                                                                           | 20 (19.1)              | 230 (146.5, 285.5)                                     | 3016.4 (2735.1, 3537.4) | 0.31 (0.20, 0.35              |  |  |  |
| BMI≥25 and GWG≥30 lbs                                                                            | 12 (11.4)              | 277 (175, 323.5)                                       | 3590.9 (3062.9, 3765.6) | 0.29 (0.18, 0.34              |  |  |  |
| Maternal recreational physical activity during<br>pregnancy                                      |                        |                                                        |                         |                               |  |  |  |
| Inactive, no walking or other regular exercise                                                   | 19 (17.8)              | 226 (134, 284)                                         | 3096.7 (2860.3, 3460.7) | 0.26 (0.18, 0.33              |  |  |  |
| Mostly inactive, equivalent to walking about half a mile or less every day                       | 26 (24.3)              | 209 (132, 315)                                         | 3112.6 (2657.7, 3562.8) | 0.27 (0.19, 0.37              |  |  |  |
| Somewhat active, equivalent to walking about 1 mile every day                                    | 19 (17.8)              | 227 (146, 304)                                         | 3139.2 (2817.5, 3566.5) | 0.26 (0.20, 0.30              |  |  |  |
| Active or highly active, equivalent to walking about ≥2<br>miles every day<br><b>Birthweight</b> | 36 (40.2)              | 217 (147, 332)                                         | 3259.3 (2742.5, 3688.7) | 0.28 (0.19, 0.34              |  |  |  |
| <2500q                                                                                           | 13 (12.0)              | 226 (151, 340)                                         | 3155.1 (2701.2, 3374.6) | 0.29 (0.20, 0.33              |  |  |  |
| 2500-2999g                                                                                       | 17 (15.7)              | 210 (167, 318)                                         | 3151.9 (2843.2, 3326.3) | 0.26 (0.20, 0.35              |  |  |  |
| 3000-3499g                                                                                       | 35 (32.4)              | 245 (149, 315)                                         | 3308.9 (2858.3, 3713.7) | 0.30 (0.19, 0.37              |  |  |  |
| 3500-3999q                                                                                       | 34 (31.5)              | 192.5 (137, 300)                                       | 3118.0 (2670.1. 3653.9) | 0.24 (0.20, 0.32              |  |  |  |
| ≥4000g                                                                                           | 9 (8.3)                | 142 (102, 227)                                         | 2855.6 (2529.5, 2890.6) | 0.20 (0.15, 0.29              |  |  |  |
| Birthlength                                                                                      | . ,                    |                                                        |                         | •                             |  |  |  |
| <48.25                                                                                           | 8 (9.8)                | 170.5 (112.6, 255)                                     | 3114.2 (2344.6, 3282.4) | 0.21 (0.15, 0.32              |  |  |  |
| 48.25-50.74                                                                                      | 20 (24.4)              | 263 (167.5, 329)                                       | 3340.2 (2999.4, 3701.2) | 0.31 (0.23, 0.34              |  |  |  |
| 50.75-53.24                                                                                      | 22 (26.8)              | 196 (159, 332)                                         | 3060.9 (3845.6, 3423.0) | 0.25 (0.21, 0.34              |  |  |  |
| ≥53.25                                                                                           | 32 (39.0)              | 174 (141.5, 285)                                       | 2886.0 (2711.3, 3385.8) | 0.24 (0.19, 0.32              |  |  |  |
|                                                                                                  |                        |                                                        |                         |                               |  |  |  |

| 16 (44.4) | 213.5 (146, 324.5)                                                                                                                                                                                                                                              | 3044.5 (3824.4, 3393.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.24 (0.19, 0.38)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 14 (38.9) | 166.5 (142, 282)                                                                                                                                                                                                                                                | 3002.1 (2656.4, 3542.7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.23 (0.18, 0.33)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 6 (16.7)  | 139 (112, 171)                                                                                                                                                                                                                                                  | 3101.4 (2817.5, 3299.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.20 (0.17, 0.20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|           |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 9 (28.1)  | 282 (247, 325)                                                                                                                                                                                                                                                  | 2939.3 (3845.6, 3262.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.36 (0.29, 0.43)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 15 (46.9) | 146 (128, 210)                                                                                                                                                                                                                                                  | 2864.9 (2642.7, 3212.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.20 (0.18, 0.26)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 8 (25.0)  | 172 (153, 238)                                                                                                                                                                                                                                                  | 3261.4 (2978.4, 3657.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.21 (0.19, 0.28)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|           |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|           |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 30 (27.8) | 226.5 (152, 299)                                                                                                                                                                                                                                                | 2917.6 (2775.9, 3446.7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.29 (0.21, 0.35)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 78 (72.2) | 205 (135, 313)                                                                                                                                                                                                                                                  | 3215.8 (2742.5, 3584.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.25 (0.18, 0.33)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ,         |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 45 (46.4) | 151 (126, 199)                                                                                                                                                                                                                                                  | 2890.6 (2612.0, 3262.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.20 (0.16, 0.25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 52 (53.6) | 307 (248.5, 342.5)                                                                                                                                                                                                                                              | 3424.3 (2941.3, 3756.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.33 (0.29, 0.37)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|           |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 44 (40.4) | 263 (165, 314)                                                                                                                                                                                                                                                  | 3257.6 (2850.6, 3663.9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.31 (0.21, 0.35)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 65 (59.6) | 186 (131, 292)                                                                                                                                                                                                                                                  | 3073.2 (2680.0, 3401.8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.24 (0.17, 0.31)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|           |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 43 (39.5) | 227 (134, 304)                                                                                                                                                                                                                                                  | 3219.6 (2775.9, 3713.7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.27 (0.18, 0.33)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 14 (12.8) | 249.5 (175, 343)                                                                                                                                                                                                                                                | 3103.1 (2803.1, 3271.8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.31 (0.24, 0.38)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 43 (39.5) | 171 (137, 282)                                                                                                                                                                                                                                                  | 3096.7 (2656.4, 3423.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.22 (0.19, 0.33)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4 (3.7)   | 298 (204.5, 318)                                                                                                                                                                                                                                                | 3232.8 (2909.6, 3648.8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.33 (0.22, 0.38)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 5 (4.6)   | 299 (168, 383)                                                                                                                                                                                                                                                  | 3210.3 (3017.6, 3729.8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.35 (0.23, 0.38)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|           |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 37 (33.9) | 227 (139, 340)                                                                                                                                                                                                                                                  | 3374.6 (2890.6, 3678.9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.28 (0.18, 0.34)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 30 (27.5) | 226.5 (147, 299)                                                                                                                                                                                                                                                | 3072.4 (2803.1, 3401.8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.28 (0.20, 0.33)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 42 (38.5) | 188 (131, 284)                                                                                                                                                                                                                                                  | 3060.9 (2656.4, 3326.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.23 (0.19, 0.32)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|           | 14 (38.9)<br>6 (16.7)<br>9 (28.1)<br>15 (46.9)<br>8 (25.0)<br>30 (27.8)<br>78 (72.2)<br>,<br>45 (46.4)<br>52 (53.6)<br>44 (40.4)<br>65 (59.6)<br>43 (39.5)<br>14 (12.8)<br>43 (39.5)<br>14 (12.8)<br>43 (39.5)<br>14 (3.7)<br>5 (4.6)<br>37 (33.9)<br>30 (27.5) | 14 (38.9)       166.5 (142, 282)         6 (16.7)       139 (112, 171)         9 (28.1)       282 (247, 325)         15 (46.9)       146 (128, 210)         8 (25.0)       172 (153, 238)         30 (27.8)       226.5 (152, 299)         78 (72.2)       205 (135, 313)         ,       45 (46.4)         151 (126, 199)         52 (53.6)       307 (248.5, 342.5)         44 (40.4)       263 (165, 314)         65 (59.6)       186 (131, 292)         43 (39.5)       227 (134, 304)         14 (12.8)       249.5 (175, 343)         43 (39.5)       171 (137, 282)         4 (3.7)       298 (204.5, 318)         5 (4.6)       299 (168, 383)         37 (33.9)       227 (139, 340)         30 (27.5)       226.5 (147, 299)         42 (38.5)       188 (131, 284) | 14 (38.9)166.5 (142, 282) $3002.1$ (2656.4, $3542.7$ )6 (16.7)139 (112, 171) $3101.4$ (2817.5, 3299.1)9 (28.1)282 (247, 325)2939.3 (3845.6, 3262.4)15 (46.9)146 (128, 210)2864.9 (2642.7, 3212.0)8 (25.0)172 (153, 238)3261.4 (2978.4, 3657.2)30 (27.8)226.5 (152, 299)2917.6 (2775.9, 3446.7)78 (72.2)205 (135, 313)3215.8 (2742.5, 3584.5),,151 (126, 199)2890.6 (2612.0, 3262.4)52 (53.6)307 (248.5, 342.5)3424.3 (2941.3, 3756.6)44 (40.4)263 (165, 314)3257.6 (2850.6, 3663.9)65 (59.6)186 (131, 292)3073.2 (2680.0, 3401.8)43 (39.5)227 (134, 304)3219.6 (2775.9, 3713.7)14 (12.8)249.5 (175, 343)3103.1 (2803.1, 3271.8)43 (39.5)171 (137, 282)3096.7 (2656.4, 3423.0)4 (3.7)298 (204.5, 318)3232.8 (2909.6, 3648.8)5 (4.6)299 (168, 383)3210.3 (3017.6, 3729.8)37 (33.9)227 (139, 340)3374.6 (2890.6, 3678.9)30 (27.5)226.5 (147, 299)3072.4 (2803.1, 3401.8)42 (38.5)188 (131, 284)3060.9 (2656.4, 3326.3) |

\*Molar ratio = IGF-1(ng/ml)\*0.1307 divided by IGFBP-3 (ng/ml)\*0.03478

|           | N of sam |      |     | -1 (ng/m |     |     |        | IGF     | BP-3 (ng/r |         |        |          | IGF-1/IG | FBP-3 mola | r ratio <sup>a</sup> |          |
|-----------|----------|------|-----|----------|-----|-----|--------|---------|------------|---------|--------|----------|----------|------------|----------------------|----------|
|           | ples     | Min  | Q1  | Med      | Q3  | Max | Min    | Q1      | Med        | Q3      | Max    | Min      | Q1       | Med        | Q3                   | Max      |
| All       | 289      | 70.7 | 160 | 248      | 314 | 547 | 1549.5 | 2845.6  | 3210.3     | 3584.5  | 5203.4 | 0.121554 | 0.202596 | 0.288455   | 0.350003             | 0.570691 |
| By<br>age |          |      |     |          |     |     |        |         |            |         |        |          |          |            |                      |          |
| 6         | 13       | 70.7 | 112 | 129      | 173 | 227 | 2018.5 | 2495.5  | 2881.3     | 3155.1  | 3614.1 | 0.127576 | 0.153264 | 0.172047   | 0.19694              | 0.29511  |
| 7         | 23       | 82.2 | 124 | 133      | 146 | 218 | 1960.3 | 2652.4  | 2855.6     | 3151.9  | 3826.3 | 0.12765  | 0.154843 | 0.175801   | 0.200882             | 0.281942 |
| 8         | 30       | 95.8 | 121 | 146      | 195 | 340 | 2010.9 | 2477.2  | 3183.8     | 3423    | 4066.2 | 0.121554 | 0.161206 | 0.190258   | 0.233524             | 0.428065 |
| 9         | 35       | 83.1 | 142 | 170      | 206 | 383 | 1549.5 | 2728.6  | 3050.3     | 3505    | 4173.7 | 0.128089 | 0.189028 | 0.21339    | 0.24702              | 0.476961 |
| 10        | 38       | 87.4 | 172 | 239      | 336 | 547 | 1709.2 | 2701.2  | 3057.2     | 3633.4  | 4768.4 | 0.122475 | 0.234879 | 0.306161   | 0.374165             | 0.570691 |
| 11        | 33       | 112  | 267 | 297      | 340 | 502 | 1981.5 | 3015.9  | 3401.8     | 3688.3  | 5203.4 | 0.127859 | 0.295235 | 0.337014   | 0.381115             | 0.491935 |
| 12        | 32       | 157  | 272 | 316      | 349 | 419 | 1918   | 3047.25 | 3236.1     | 3579.75 | 4487   | 0.165868 | 0.317843 | 0.351271   | 0.395075             | 0.52254  |
| 13        | 37       | 134  | 256 | 307      | 340 | 448 | 2108.7 | 3085.6  | 3271.8     | 3713.7  | 4281.6 | 0.176051 | 0.299655 | 0.326492   | 0.371517             | 0.50664  |
| 14        | 19       | 242  | 254 | 301      | 334 | 388 | 2303.9 | 3308.9  | 3518.3     | 3836.7  | 4680.9 | 0.270399 | 0.285803 | 0.334051   | 0.356746             | 0.450186 |
| 15        | 17       | 147  | 228 | 274      | 290 | 352 | 2438.8 | 2929.8  | 3408.1     | 3750    | 4285.3 | 0.196929 | 0.276324 | 0.296837   | 0.325793             | 0.46997  |
| 16        | 8        | 168  | 237 | 302      | 328 | 356 | 2301.3 | 3192.4  | 3561.9     | 3851.25 | 4526.8 | 0.183297 | 0.275556 | 0.304786   | 0.363522             | 0.387009 |
| 17        | 4        | 223  | 224 | 251      | 313 | 349 | 2854.7 | 2979.15 | 3655.9     | 4242.45 | 4276.8 | 0.247366 | 0.25869  | 0.283101   | 0.301423             | 0.306657 |

Table 5.2. Range of biomarker data by age (N=289 samples from 109 girls)

\*Some age groups contain two samples from the same girl, as samples were sometimes taken 6 months apart.

<sup>a</sup>Molar ratio = IGF-1(ng/ml)\*0.1307 divided by IGFBP-3 (ng/ml)\*0.03478

|                                                                                  | IGF-1 (ng/ml)             |                           |                                | IGFBP-                       | 3 (ng/ml)                    |                                | IGF-1/IGFBP-             | 3 molar ratio*           |                                |
|----------------------------------------------------------------------------------|---------------------------|---------------------------|--------------------------------|------------------------------|------------------------------|--------------------------------|--------------------------|--------------------------|--------------------------------|
|                                                                                  | Model 1 <sup>ª</sup>      |                           |                                | Model 1 <sup>ª</sup>         | Model 2 <sup>b</sup>         | p for                          | Model 1 <sup>ª</sup>     | Model 2 <sup>b</sup>     | p for                          |
|                                                                                  | β (95% CI)                | β (95% CI)                | intx with<br>BCFH <sup>c</sup> | β (95% CI)                   | β (95% CI)                   | intx with<br>BCFH <sup>c</sup> | β (95% CI)               | β (95% CI)               | intx with<br>BCFH <sup>c</sup> |
| Maternal pre-pregnancy<br>BMI (per 1 kg/m²)                                      | 3.18<br>(-0.06, 6.43)     | 1.77<br>(-1.72, 5.26)     | 0.39                           | 17.76<br>(-5.97, 41.50)      | 22.72<br>(-3.35, 48.80)      | 0.12                           | 0.002<br>(-0.001, 0.005) | 0.000<br>(-0.003, 0.003) | 0.07                           |
| Maternal recreational<br>physical activity during<br>pregnancy <sup>d</sup>      |                           |                           | 0.89                           |                              |                              | 0.82                           |                          |                          | 0.16                           |
| Inactive, no walking or<br>other regular exercise                                | -29.24<br>(-68.40, 9.93)  | -37.09<br>(-79.00, 4.82)  |                                | -139.37<br>(-426.05, 147.32) | -154.29<br>(-466.52, 157.94) |                                | -0.02<br>(-0.06, 0.02)   | -0.03<br>(-0.07, 0.01)   |                                |
| Mostly inactive, equivalent<br>to walking about half a<br>mile or less every day | -10.07<br>(-41.83, 21.70) | -13.94<br>(-48.08, 20.19) |                                | -125.64<br>(-377.45, 126.18) | -147.57<br>(-415.85, 120.70) |                                | 0.02<br>(-0.02, 0.05)    | 0.01<br>(-0.02, 0.04)    |                                |
| Somewhat active,<br>equivalent to walking<br>about 1 mile every day              | -8.05<br>(-41.48, 25.38)  | -2.77<br>(-38.85, 33.30)  |                                | 17.51<br>(-253.57, 288.59)   | 21.30<br>(-267.72, 310.32)   |                                | -0.01<br>(-0.05, 0.02)   | 0.00<br>(-0.03, 0.04)    |                                |
| Active or highly active,<br>equivalent to walking<br>about ≥2 miles every day    | Reference                 | Reference                 |                                | Reference                    | Reference                    |                                | Reference                | Reference                |                                |
| Gestational weight gain <sup>d</sup>                                             |                           |                           | 0.27                           |                              |                              | 0.73                           |                          |                          | 0.56                           |
| <20 lbs                                                                          | 17.21<br>(-23.30, 57.72)  | 1.22<br>(-42.15, 44.59)   |                                | 99.10<br>(-260.64, 458.84)   | 94.26<br>(-239.84, 428.36)   |                                | 0.02<br>(-0.02, 0.06)    | 0.01<br>(-0.03, 0.05)    |                                |
| 20-29 lbs                                                                        | Reference                 | Reference                 |                                | Reference                    | Reference                    |                                | Reference                | Reference                |                                |
| 30-39lbs                                                                         | 26.90<br>(-4.33, 58.13)   | 26.15<br>(-8.29, 60.59)   |                                | 21.02<br>(-250.33, 292.37)   | -9.94<br>(-293.75, 273.86)   |                                | 0.03<br>(0.00, 0.06)     | 0.04<br>(0.01, 0.07)     |                                |
| 40-49lbs                                                                         | 6.72<br>(-29.44, 42.88)   | 11.54<br>(-29.07, 52.16)  |                                | -18.00<br>(-324.53, 288.52)  | -25.57<br>(-352.18, 301.04)  |                                | 0.01<br>(-0.03, 0.04)    | 0.02<br>(-0.02, 0.06)    |                                |
| ≥50 lbs                                                                          | 22.82<br>(-17.06, 62.70)  | 17.95<br>(-27.22, 63.11)  |                                | 79.90<br>(-231.00, 390.80)   | 104.44<br>(-241.74, 449.96)  |                                | 0.02<br>(-0.03, 0.05)    | 0.01<br>(-0.03, 0.06)    |                                |
| Maternal pre-pregnancy<br>BMI and GWG                                            |                           |                           | 0.10                           |                              |                              | 0.10                           |                          |                          | 0.16                           |
| BMI<25 and <30 lbs                                                               | Reference                 | Reference                 |                                | Reference                    | Reference                    |                                | Reference                | Reference                |                                |
| BMI<25 and ≥30 lbs                                                               | 11.09<br>(-22.43, 44.60)  | 15.58<br>(-19.24, 50.40)  |                                | -37.01<br>(-286.87, 212.86)  | -59.15<br>(-325.46, 207.16)  |                                | 0.02<br>(-0.02, 0.05)    | 0.02<br>(-0.01, 0.08)    |                                |

# Table 5.3. Difference in mean levels of IGF-1, IGFBP-3 and the IGF-1/IGFBP-3 molar ratio by maternal factors

| BMI≥25 and <30lbs  | 20.08           | 15.70           | 73.46             | 85.78             | 0.01 0.00                   |  |
|--------------------|-----------------|-----------------|-------------------|-------------------|-----------------------------|--|
|                    | (-20.28, 60.44) | (-26.25, 57.65) | (-226.27, 373.19) | (-234.76, 406.31) | (-0.03, 0.05) (-0.04, 0.04) |  |
| BMI≥25 and ≥30 lbs | 48.46           | 51.08           | 140.90            | 169.31            | 0.03 0.04                   |  |
|                    | (1.75, 95.18)   | (1.10, 101.05)  | (-222.02, 503.82) | (-221.00, 559.63) | (-0.02, 0.07) (-0.01, 0.08) |  |

\*Molar ratio = IGF-1(ng/ml)\*0.1307 divided by IGFBP-3 (ng/ml)\*0.03478

<sup>a</sup>Adjusted for age at blood draw (centered) and quadratic of age at blood draw (centered)

<sup>b</sup>Adjusted for age at blood draw (centered) and quadratic of age at blood draw (centered), breast Tanner stage at visit and BMI-for-age percentile at visit (centered) <sup>c</sup>P for interaction from F test from Model 2

<sup>d</sup>Models also adjusted for maternal pre-pregnancy BMI (continuous)

#### Table 5.4. Difference in mean levels of IGF-1, IGFBP-3 and the IGF-1/IGFBP-3 molar ratio by size at birth

|                                       |                         | IGF-1 (ng/ml)            | 1                       |               |                           | IGFBP-3 (ng/ml)           |                           |               | IGF-1                    | /IGFBP-3 molar           | ratio*                  |                   |
|---------------------------------------|-------------------------|--------------------------|-------------------------|---------------|---------------------------|---------------------------|---------------------------|---------------|--------------------------|--------------------------|-------------------------|-------------------|
|                                       | Model 1 <sup>ª</sup>    | Model 2 <sup>b</sup>     | Model 3 <sup>c</sup>    | p for<br>intx | Model 1 <sup>a</sup>      | Model 2 <sup>b</sup>      | Model 3 <sup>c</sup>      | p for<br>intx | Model 1 <sup>ª</sup>     | Model 2 <sup>b</sup>     | Model 3 <sup>c</sup>    | p for<br>intx     |
|                                       | β (95% CI)              | β (95% CI)               | β (95% CI)              | with<br>BCFH  | β (95% CI)                | β (95% CI)                | β (95% CI)                | with<br>BCFH  | β (95% CI)               | β (95% CI)               | β (95% CI)              | with<br>BCFH<br>d |
| Birthweight<br>(per 500g<br>increase) | -12.53<br>(-25.27,0.20) | -13.61<br>(-26.72,-0.50) | -15.80<br>(-33.04,1.44) | 0.09          | -45.75<br>(-137.46,45.97) | -38.32<br>(-136.69,60.04) | -33.00<br>(-163.35,97.35) | 0.26          | -0.01<br>(-0.02,0.00)    | -0.01<br>(-0.02,0.00)    | -0.01<br>(-0.03,0.01)   | 0.41              |
| Birthlength<br>(per 1cm<br>increase)  | -1.02<br>(-6.00,3.97)   | -0.17<br>(-5.11,4.78)    | 1.05<br>(-3.99,6.09)    | 0.18          | 4.49<br>(-31.09,40.06)    | 7.03<br>(-31.18,45.23)    | 9.68<br>(-30.13,49.50)    | 0.10          | -0.001<br>(-0.006,0.004) | -0.001<br>(-0.006,0.004) | 0.000<br>(-0.005,0.005) | 0.53              |

\*Molar ratio = IGF-1(ng/ml)\*0.1307 divided by IGFBP-3 (ng/ml)\*0.03478

<sup>a</sup>Adjusted for maternal pre-pregnancy BMI (continuous), preterm, age at blood draw (centered) and quadratic of age at blood draw (centered)

<sup>b</sup>Adjusted for maternal pre-pregnancy BMI (continuous), preterm, age at blood draw (centered) and quadratic of age at blood draw (centered), breast Tanner stage at visit and BMI-forage percentile at visit (centered)

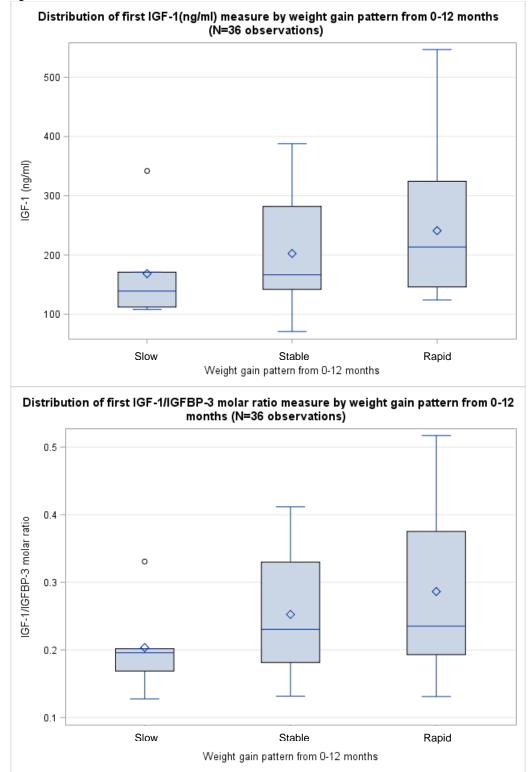
°Model 2 mutually adjusted for birthweight and birthlength

<sup>d</sup>P for interaction from F test from Model 2

|                                         |                         | IGF-1 (ng/ml)           | )                        |                    |                             | IGFBP-3 (ng/ml              | )                             |                    | IGF-1/10             | GFBP-3 molai          | r ratio*              |                    |
|-----------------------------------------|-------------------------|-------------------------|--------------------------|--------------------|-----------------------------|-----------------------------|-------------------------------|--------------------|----------------------|-----------------------|-----------------------|--------------------|
|                                         | Model 1 <sup>a</sup>    | Model 2 <sup>b</sup>    | Model 3 <sup>c</sup>     | p for intx<br>with |                             | Model 2 <sup>b</sup>        | Model 3 <sup>c</sup>          | p for intx<br>with | Model 1 <sup>a</sup> | Model 2 <sup>b</sup>  | Model 3 <sup>c</sup>  | p for intx<br>with |
|                                         | β (95% CI)              | β (95% CI)              | β (95% CI)               | BCFH <sup>d</sup>  | β (95% CI)                  | β (95% CI)                  | β (95% CI)                    | BCFH <sup>d</sup>  | β (95% CI)           | β (95% CI)            | β (95% CI)            | BCFHd              |
|                                         |                         |                         |                          |                    | Growth                      | from 0-12 montl             | hs                            |                    |                      |                       |                       |                    |
| Change in<br>weight-for-<br>age Z-score | 20.28<br>(-5.68,46.24)  | 14.49<br>(-13.29,42.27) | 16.87<br>(-17.03,50.76)  | 0.40               | -115.77<br>(-324.12,92.57)  | -145.13<br>(-377.58,87.32)  | -104.80<br>(-383.40,173.81)   | 0.02               | 0.04<br>(0.01,0.06)  | 0.03<br>(0.01,0.06)   | 0.03<br>(-0.00,0.06)  | 0.42               |
| Change in<br>length-for-<br>age Z-score | 20.03<br>(-8.33,48.40)  | 2.45<br>(-28.26,33.17)  | -4.31<br>(-40.16,31.54)  | 0.78               | -111.22<br>(-333.29,110.86) | -148.26<br>(-391.45,94.93)  | -94.23<br>(-388.10,199.64)    | 0.18               | 0.04<br>(0.01,0.06)  | 0.02<br>(-0.01,0.05)  | 0.01<br>(-0.03,0.04)  | 0.18               |
|                                         | Growth from 0-6 months  |                         |                          |                    |                             |                             |                               |                    |                      |                       |                       |                    |
| Change in<br>weight-for-<br>age Z-score | 12.07<br>(-17.29,41.43) | -1.50<br>(-34.50,31.50) | 0.86<br>(-38.07,39.79)   | 0.43               | -73.69<br>(-305.39,158.01)  | -116.88<br>(-387.14,153.37) | -184.73<br>) (-497.36,127.91) | 0.01               | 0.02<br>(-0.01,0.05) | 0.01<br>(-0.03 0.05)  | 0.02<br>(-0.02,0.06)  | 0.35               |
| Change in<br>length-for-<br>age Z-score | 11.03<br>(-14.03,36.09) | -4.71<br>(-30.93,21.51) | -1.31<br>(-32.70,30.08)  | 0.69               | 41.78<br>(-152.04,235.61)   | 26.27<br>(-184.32,236.86)   | 95.27<br>) (-153.42,343.96)   | 0.60               | 0.01<br>(-0.02,0.03) | -0.01<br>(-0.04,0.02) | -0.01<br>(-0.04,0.02) | 0.51               |
| -                                       |                         |                         |                          |                    | Growth                      | from 6-12 month             | IS <sup>e</sup>               |                    |                      |                       |                       |                    |
| Change in<br>weight-for-<br>age Z-score | 37.52<br>(-9.96,84.99)  | 42.33<br>(-3.19,87.85)  | 58.04<br>(-4.91,120.99)  | 0.40               | -198.56<br>(-587.84,190.72) | -179.62<br>(-77.83,218.58)  | 31.30<br>(-496.45,559.06)     | 0.50               | 0.07<br>(0.02,0.11)  | 0.07<br>(0.03,0.12)   | 0.07<br>(0.01,0.13)   | 0.59               |
| Change in<br>length-for-<br>age Z-score | 18.17<br>(-14.90,51.24) | 6.31<br>(-28.75,41.36)  | -18.29<br>(-62.04,30.18) | 0.99               | -178.30<br>(-434.40,77.80)  | -210.41<br>(-488.83,68.00)  | -211.40<br>(-577.00,154.19)   | 0.05               | 0.04<br>(0.01,0.07)  | 0.03<br>(-0.01,0.07)  | -0.00<br>(-0.04,0.04) | 0.07               |

Table 5.5. Difference in mean levels of IGF-1, IGFBP-3 and the IGF-1/IGFBP-3 molar ratio by growth during infancy

\*Molar ratio = IGF-1(ng/ml)\*0.1307 divided by IGFBP-3 (ng/ml)\*0.03478


<sup>a</sup>Adjusted for maternal pre-pregnancy BMI (continuous), weight-for-age or length-for-age Z-score at birth, age at blood draw (centered) and quadratic of age at blood draw (centered) <sup>b</sup>Adjusted for maternal pre-pregnancy BMI (continuous), weight-for-age or length-for-age Z-score at birth, age at blood draw (centered) and quadratic of age at blood draw (centered), breast Tanner stage at visit (TS1 vs. TS2+) and BMI-for-age percentile at visit (centered)

°Model 2 mutually adjusted for change in weight and length

<sup>d</sup>P for interaction from F test from Model 2

<sup>e</sup>Additionally adjusted for change in WAZ or LAZ from 0-6 months

Figure 5.1. Boxplots of first a) IGF-1 (ng/ml) and b)IGF-1/IGFBP-3 molar ratio measure by rapid, stable, and slow weight gain patterns from birth-12 months. These plots include 36 girls, 6 with slow weight gain, defined as a change in weight-for-age Z-score from 0-12 months of less than -0.67, 14 girls with stable weight gain, defined as a change in weight-for-age Z-score from 0-12 months between -0.67 and 0.67, and 16 girls with rapid weight gain, defined as a change in weight-for-age Z-score from 0-12 months of greater than 0.67.



#### **Chapter 6. Conclusions**

The age at onset of breast development has declined dramatically in the past 50 years.<sup>42,60,61</sup> The obesity epidemic contributes to earlier onset of breast development, but does not fully explain this secular trend.<sup>61</sup> Since earlier age at breast development is associated with higher breast cancer risk,<sup>41</sup> identifying modifiable factors that can delay the onset of breast development may provide an opportunity for breast cancer primary prevention starting early in life.<sup>4,5</sup> Thus, the overall goal of this dissertation was to identify modifiable factors that are associated with earlier age at breast development, and examine if these associations vary by underlying breast cancer susceptibility based on family history. First, we reviewed the literature connecting maternal body size, gestational weight gain (GWG), size at birth and growth during infancy and age at breast development and menarche to identify inconsistencies and gaps in the evidence base. Second, we examined associations between modifiable maternal factors, including pre-pregnancy BMI, GWG and physical activity during pregnancy, and birth size and the onset of breast development in girls with and without a breast cancer family history (BCFH). Third, we examined associations between rates of growth in weight and length during multiple age intervals from birth to one year and the onset of breast development and whether these associations varied by BCFH. Fourth, we conducted a pilot study assessing whether the modifiable maternal and infancy exposures associated with timing of breast development also influenced serum levels of IGF-1 and IGFBP-3, biomarkers that are known to increase during puberty. This chapter summarizes the results of this dissertation, the contribution of these findings for the design and interpretation of studies of breast development, and their public health implications.

#### 6.1 Main findings

In **Chapter 2**, we identified 96 articles that examined at least one of our exposures of interest (maternal pre-pregnancy weight or BMI, GWG, size at birth, or measures of size and/or growth between birth and 2 years) in relation to the timing of breast development, menarche or the time period between these two events (pubertal tempo). There were three main findings of this systematic review. First, although low birthweight is often cited as a risk factor for early menarche, the majority of studies (40/73 total) that examined birthweight in relation to age at menarche did not observe a statistically significant association.

Differences in exposure assessment, such as whether or not gestational age was taken into consideration, and control for confounders contributed to this heterogeneity and made it difficult to compare results across studies. However, examining disparate findings within the same study population suggested that associations observed between birthweight and menarche may be driven by postnatal growth patterns, and that differences across studies may be related to differences in postnatal growth. The majority of studies examining birthweight and breast development also did not observe a statistically significant association. Second, although comparatively fewer studies examined maternal pre-pregnancy BMI, GWG and/or infant growth and pubertal timing compared with the birthweight literature, higher maternal BMI prior to pregnancy, GWG in excess of recommended guidelines and faster rates of weight gain between birth and 2 years were consistently associated with earlier age at breast development and menarche. A general limitation of this literature, which likely contributes to the consistency of associations, is that much of the evidence comes from the same cohorts. For example, three separate publications examined maternal obesity and pubertal timing in the ALSPAC cohort,73,82,114 while two publications examined infant growth and menarche.35,73 In addition, studies that examined growth during infancy considered different age intervals, which complicates comparisons across studies, and were not consistent in identifying smaller windows within infancy in which growth had a stronger influence on pubertal timing. Third, many studies inappropriately controlled for variables on the causal pathway between the early-life exposures and pubertal outcomes as confounders and did not interpret these associations as mediated effects. Studies should explicate their assumed causal framework and use a directed acyclic graph (DAG) to guide modeling decisions, as well as consider potential effect measure modifiers. In addition, few studies considered whether associations differed by factors associated with rapid weight gain, such as birthweight or infant feeding, and/or earlier pubertal timing, such as race/ethnicity, socioeconomic status or BCFH. Overall, this review of the literature highlights the methodological limitations that future studies can overcome in the analysis or design phase to strengthen the existing evidence and identifies gaps in the literature that future studies can address.

In **Chapter 3**, we addressed some of the limitations and gaps in the literature by examining associations between maternal pre-pregnancy BMI, GWG, and size at birth and the onset of breast development in the LEGACY Girls Study, a prospective pubertal cohort in which approximately 50% of girls had a BCFH. We used a DAG (**Figure 2.2**) to inform our strategy for modeling multiple exposures that have

an inherent temporal order and to avoid adjusting for variables on the causal pathway. We observed that while higher maternal pre-pregnancy BMI and higher GWG were each associated with earlier onset of breast development in daughters, daughters of women who were overweight or obese prior to pregnancy and gained more than 30lbs were at the highest risk of early breast development. Our findings were consistent with previous studies conducted in girls predominantly at average-risk for breast cancer, including the ALSPAC birth cohort<sup>73,82</sup> and a retrospective cohort nested in Kaiser Permanente Northern California (KPNC).<sup>81,237</sup> In addition, we found that girls experienced earlier breast development if their mothers did not engage in recreational physical activity during pregnancy. We extended the prior literature by formally testing whether these associations varied by BCFH. While we observed some differences by BCFH, our results suggested that among girls with a BCFH, girls still experienced earlier onset of breast development if their mothers were overweight or obese prior to pregnancy and gained more than 30lbs, or were not physically active during pregnancy. Consistent with the results of our systematic review, we did not observe associations between either birthweight or birthlength and the age at breast development. Altogether, our findings support that maternal body size prior to pregnancy, GWG and maternal physical activity during pregnancy, modifiable factors that are associated with the intrauterine environment, are associated with the timing of breast development in their daughters, but do not support an independent role for birth size.

It is possible that our findings could be due to chance given our modest sample size of just over 1,000 girls. However, the consistency of the observed association between earlier breast development in girls exposed to higher maternal pre-pregnancy BMI and higher GWG with studies conducted in cohorts like ALSPAC and KPNC, which included more than twice as many girls, suggest that our results are less likely to be spurious. In addition, the ALSPAC cohort also did not observe associations between birthweight or birthlength and timing of breast development.<sup>73</sup> LEGACY is the only pubertal cohort enriched for BCFH and therefore has greater statistical power to formally test interactions by BCFH than an average-risk cohort. That being said, it is possible that the interaction that we observed is due to chance, and our models stratified for BCFH are less precise than analyses using the full cohort.

In a similar vein, we can use a triangulation of evidence approach to consider the likelihood that our findings are due to selection bias, information bias or confounding by comparing our results to other studies that were susceptible to different types of biases. Selection bias can arise generally in a cohort study due to differential loss to follow-up. In addition, analyses that are limited to a subset of the overall cohort can also be vulnerable to bias resulting from subset selection. For our overall approach, we included all LEGACY girls participating with their biological mother (97% of the full cohort). The retention rate in LEGACY was 92% at the end of the first five years of follow-up, which limits the likelihood that bias related to loss to follow-up explains our study findings. However, since girls were primarily between the ages of 6-13 years at recruitment, approximately 40% of the cohort had already experienced the onset of breast development at cohort entry. We were concerned that we may induce selection bias if we excluded girls that had already experienced the onset of breast development prior to cohort entry. If the exposure was associated with earlier onset of breast development, excluding girls with early development would likely bias the results towards the null. We therefore included these girls by using left censoring in our primary analyses, and by using a recalled age at breast development in sensitivity analyses. We also limited our analyses to girls less than 8 years of age at baseline only, in which less than 5% experienced breast onset prior to cohort entry, and the inference was the same. Our findings were also consistent with the ALSPAC cohort, a birth cohort that collected pubertal development information starting at 8 years of age on all participants. Overall, this supports that selection bias is unlikely to explain the associations that we observed.

A limitation of the **Chapter 3** analyses is that the maternal and pregnancy exposures were recalled by mothers at the LEGACY baseline visit and may be reported with error. Validity studies of maternal recall of pregnancy exposures compared with either medical records or prospective maternal reports suggest that social desirability bias affects maternal recall of pregnancy-related events, particularly in the report of maternal behaviors, such as alcohol consumption during pregnancy.<sup>309–311</sup> In LEGACY, the prevalence of maternal smoking during pregnancy was less than 2%, which limited us from examining maternal smoke exposure on its own or as a confounder in the analyses due to small cell counts. Approximately 7% of women who gave birth in 2016 smoked during pregnancy based on data from the National Vital Statistics System,<sup>312</sup> suggesting that maternal smoking during pregnancy may be under-reported by LEGACY

mothers. While there likely is some under-reporting of smoking due to stigma, the prevalence of smoking in LEGACY may also be lower than the national average since the LEGACY cohort is skewed towards a higher socioeconomic status. Other pregnancy conditions such as pre-eclampsia and gestational diabetes may also be reported with error. While there is likely some misclassification of the maternal body size and birth size exposures as well, studies have observed fairly good agreement for factors such as birthweight, pre-pregnancy weight and duration of pregnancy.<sup>309–311</sup>

In cohort studies, it is commonly assumed that information bias related to the exposure is likely to be non-differential with respect to the outcome. If that were the case, maternal under-reporting of exposures including maternal pre-pregnancy BMI and GWG and over-reporting of recreational physical activity during pregnancy, which could result from social desirability bias, would likely bias our findings towards the null. However, since mothers recalled their pre-pregnancy weight, GWG and other pregnancy factors at the baseline interview when daughters were primarily 6-13 years old, this data could be susceptible to differential recall bias for the mothers whose daughters have already gone through breast development. While it seems unlikely that maternal recall of pregnancy characteristics would depend on her daughters' stage of breast development, it is possible that measurement error in maternal recall of pregnancy exposure data could differ by daughters' body size, which is associated with pubertal timing. For example, mothers of overweight daughters may be more or less likely to report that they were overweight prior to pregnancy, gained more weight during pregnancy, or exercised less. The bias in estimating associations between these factors and the onset of breast development, which is also reported by the mother, may be towards or away from the null. However, the similarity of our results with those of the ALSPAC and KPNC cohorts, which calculated GWG based on medical record data and, in the case of ALSPAC, validated self-reported prepregnancy BMI with medical records based in early pregnancy,<sup>82</sup> suggests that recall bias does not explain these associations.

In addition to exposure misclassification, error in assessing the onset of breast development may also bias study findings. As detailed in **Chapter 3**, we conducted multiple sensitivity analyses to consider how robust our findings were to different methods of assessing breast development, including the use of clinical breast Tanner staging in the subset of girls with clinical data, the use of the Pubertal Development

Scale to assess breast development, and the exclusion of girls with inconsistent Tanner staging. The inference was the same across these sensitivity analyses, which supports that errors in outcome assessment are less likely to explain our findings. When considering the literature as a whole, the consistency of the associations between maternal pre-pregnancy BMI and GWG and earlier onset of breast development across cohorts that used different sources of breast development information (i.e. medical records, parent assessments, and self-assessments) and assessed development at different age intervals (i.e. biannually, annually, or based on physician visits) supports that measurement error in assessing the onset of breast development is unlikely to drive the observed associations.

Finally, our findings could be due to confounding. Maternal body size, GWG and physical activity levels during pregnancy vary by race/ethnicity and socioeconomic status (SES), which are also associated with pubertal timing. While we controlled for race/ethnicity and maternal education in our primary analyses, there may be residual confounding by socioeconomic status. We were also concerned with sparse data due to small cell counts and violations of the positivity assumption, particularly in the subset of girls less than 8 years at baseline, which limited the amount of variables that we included in adjusted models. Again, the consistency of our findings with larger cohorts that were able to control for more confounding variables suggests that confounding is not completely driving the observed associations. As the cohort ages into adolescence and all girls experience the onset of breast development, future analyses within LEGACY will be able to take advantage of the many siblings sets within the cohort to conduct within-family analyses, which control for shared family characteristics such as SES by design.<sup>313</sup> In addition to confounding, future studies need to consider exposures that may modify the associations between maternal pregnancy factors and the onset of breast development, such as race/ethnicity, SES and birth order. Since interaction requires increased statistical power, these analyses will require either very large cohorts, such as a KPNC study of over 15,000 girls which found that race/ethnicity did not modify the association between maternal prepregnancy BMI and the onset of breast development,<sup>81</sup> or studies enriched for a modifier for interest, like LEGACY is enriched for BCFH. These studies will provide a valuable contribution to the literature and will also aid in the interpretation of smaller studies that are not powered to examine these interactions.

Although we cannot completely rule out bias as an explanation for our study findings, the consistency of our results with previous studies in which selection bias, information bias, and confounding would likely operate in different ways support that these types of biases are not driving our findings. Given the rich pubertal outcome data collected in LEGACY, we were also able to conduct multiple sensitivity analyses to examine how differences in the assessment of breast development affects the estimated age at onset of breast development and estimates of exposure-outcome associations. These analyses suggest that our findings are robust to differences in outcome assessment, and may be informative in the interpretation of future studies that use different methods to assess breast development.

Our primary goal in these analyses was to estimate the total effect of the maternal and pregnancy exposures on the age at breast development. As a secondary aim, we also considered whether these associations were mediated by daughters' body size prior to puberty. We considered a BMI measure between 5-7 years of age as pre-puberty, since less than 5% of girls had experienced the onset of breast development by 8 years of age. Since girls were mostly age 6-13 years at baseline, our mediation analyses were limited to the approximately 60% of the cohort that had a BMI measure available between 5-7 years of age, either from the baseline LEGACY visit for younger girls or from available medical record data. Within this subset, we used the Baron and Kenny approach<sup>314</sup> to examine the presence of mediation by comparing the results of models with and without adjustment for pre-pubertal BMI. Limitations of this approach is that the total effect does not decompose when using regression methods other than linear regression or in the presence of exposure-mediator interaction.<sup>315</sup> However, even when these assumptions are not met, this approach still provides a qualitative assessment of the presence or absence of mediation. Given these limitations, we do not interpret the results from models adjusting for pre-pubertal BMI as a quantitative estimate of the direct effect of the early-life exposure on the age at breast development. Instead, we interpret these models as supporting that a portion of the association between these early-life factors and the age at breast development works through the pathway of childhood body size. Since these models do not suggest full mediation by childhood body size, our findings also support that alternate pathways other than daughters' body size explain a portion of the association between early-life factors and breast development, and these additional pathways should be examined in future research. Since modifying these early-life factors would likely affect childhood body size in addition to these alternate pathways, the total

effect of these early-life exposures on the timing of breast development is of interest when considering primary prevention.

In **Chapter 4**, we used a subset of the LEGACY Girls Study with infant growth data available from medical record and growth chart data collected from pediatricians to address several gaps in the literature relating infant growth and the onset of breast development. We found that faster weight gain between birth and one year of age was related to earlier onset of breast development in girls, which was consistent with prior studies assessing infancy weight gain in relation to age at breast development and age at menarche. Since we had measures of height and weight across infancy from the linked medical records, we were able to replicate previous analyses by considering growth during the same age intervals. In addition, we identified stronger associations between rate of weight and length gain from 2-4 months and 6-9 months that were masked when looking only at wider age intervals. The specificity of these associations generated hypotheses that can be tested in future studies regarding the potential importance of mini-puberty, which corresponds approximately to the 2-4 months window, and nutrition during infancy and the timing of solid food introduction to breast development. We also formally tested the interaction between BCFH and infant growth and did not observe heterogeneity by BCFH in these associations.

As we did for **Chapter 3**, it is important to critically examine whether the associations that we observed between rates of change in weight and length and the timing of breast development arose from random or systematic error. While we obtained medical record data for 82% of LEGACY girls, multiple records of weight and length during infancy were only available for 24% of the full cohort, which limited the sample size for these analyses to 255 girls. If the infancy data were missing completely at random, random error could still lead to spurious findings in this subset. We also may not have had sufficient power in this subset to detect differences in the association by BCFH. A greater concern for the main effect of infant growth, however, is that the data is not missing completely at random and that selection bias affects the validity of our findings. We compared the distribution of baseline and early-life characteristics in girls by the availability of infancy data and observed differences by race/ethnicity and study site. Girls with infancy data also had a lower mean maternal pre-pregnancy BMI and a higher mean birthweight than girls without infancy data, suggesting that they may have had a lower prevalence of rapid weight gain during infancy.

We used inverse probability weighting (IPW) in sensitivity analyses to adjust for the differences between this subset and the full cohort under the assumption that the data were missing at random after conditioning on the variables included in the prediction model. IPW would not remove bias if data were not missing at random, but this missing data structure is less likely given the variables that were available to include in our prediction model. The inference was the same across the complete case and IPW analyses, suggesting that our findings are less likely to be caused by selection bias. In addition, our main findings were consistent with the analyses including more than 1,000 girls in the ALSPAC cohort, which are less likely to be driven by random error.

Information bias for the exposure is less of a concern for our infancy analyses since we used measures of weight and length from the medical record. While there may be some errors in measurement, errors are more likely to be random than systematic in nature. We did rely on parent recall of birthweight and birthlength, and also used imputed birthlength values for girls that were missing parent report. It is possible that parent recall of birth size could differ by daughters' body size. However, recalled birthweight was highly correlated with medical record data (r=0.9) in our validation subset, and birthlength had a moderate correlation (0.6). To minimize error due to the use of imputed birthlength data, we excluded girls whose imputed values were identified as outliers based on the Z-score values standardized to the CDC growth charts. While we imputed weight and length data at common time points, most girls had at least five different time points of measurements to include in the interpolation analysis. Therefore, we do not think that measurement error is a likely explanation for our study results. We assessed infant growth by using the change in weight-for-age and length-for-age Z-scores, standardized using the 2000 CDC growth charts. Our inference was similar when we used the 2006 WHO growth charts to calculate Z-scores, which supports that our choice of reference data did not drive our findings. Change in weight and length Z-scores across infancy were moderately correlated with birthweight and birthlength, respectively, and collinearity may have affected estimates from the mutually adjusted model. However, change in Z-scores between the smaller age intervals that we examined in our analyses were mostly uncorrelated with each other, which reduced concerns about collinearity.

Our infancy analyses were less robust to differences in outcome assessment than the associations that we observed between maternal factors and the onset of breast development. The sensitivity of these analyses to the use of recalled data for left censored girls or the use of the PDS to define breast onset may be due to the reduced sample size of this subset. It is also possible that higher sensitivity and lower specificity of maternal report of Tanner stage in overweight girls, who are more likely to have experienced faster infant weight gain, are driving the observed findings based on maternal report of Tanner stage. When we excluded overweight girls from the models, there was an attenuation of the effect estimates for weight gain, but only in models that also included growth in length. Analyses of infant weight gain in the ALSPAC and North Carolina Infant Feeding Study, which also used changes in Z-scores to assess growth, were based on parent and/or self-reports of breast Tanner stage and may have also been subject to information bias. Two studies of infant growth and breast development used clinical assessments of breast Tanner stage. In the 'Children of 1997' birth cohort, girls born light with slow growth during infancy, as assessed using latent class analysis, experienced later onset of breast development than girls with stable weight gain using biannual assessments of breast Tanner stage starting at 7 years of age from school health records.<sup>92</sup> In 140 girls from the Vulnerable Windows Cohort study in Jamaica, conditional measures of weight gain from 0-6 months and 6 month-2 years were not associated with breast Tanner stage assessed by research nurses at age 11 years.<sup>79</sup> However, this outcome likely did not capture onset of breast development, as the median breast Tanner stage of the girls was 2.8. Additional studies with repeated clinical assessments of breast Tanner stage will be helpful to rule out that associations between rapid weight gain and earlier breast development are the result of bias in outcome assessment.

The associations that we observed could be due to residual confounding by SES or maternal factors, as we controlled for a limited number of confounders in our infancy analyses due to the reduced sample size of this subset. We adjusted for the categorical maternal pre-pregnancy BMI and GWG variable that was associated with the timing of breast development in the full cohort and race/ethnicity, and our infant growth findings were independent of these effects. Our overall inference was also similar to the ALSPAC cohort, which adjusted for additional maternal characteristics including parity, smoking during pregnancy, maternal age at birth and at menarche, and maternal education.<sup>73</sup> In addition, the Children of 1997 cohort did not observe a significant confounding effect by variables including birth order, maternal

smoking during pregnancy, parent education and type of infant feeding in their analyses.<sup>92</sup> While these analyses reduce concerns about confounding, gaps in the literature that remain include the use of alternative design methods, such as sibling or twin studies, to control for confounding and the examination of modifiers, such as detailed infant feeding and nutrition data.

While we cannot eliminate the possibility that the associations that we observed are due to bias or chance, our study adds to a consistent literature that has identified rapid infant growth as a risk factor for earlier onset of breast development. Our study is the first to examine effect modification by BCFH, and we identified two narrow age intervals, 2-4 months and 6-9 months, where growth during infancy had a stronger influence on pubertal timing. While the specificity of these associations could be due to chance, the 2-4 month period corresponds with our hypothesis that growth during mini-puberty may be biologically relevant for breast development and suggests an avenue for future research.

In **Chapter 5**, we conducted a pilot study in 109 girls with available serum samples between 6-17 years of age at the LEGACY New York site to assess whether maternal pre-pregnancy BMI, GWG, maternal physical activity during pregnancy and growth during infancy were associated with levels of IGF-1 and IGFBP-3 during puberty. While breast Tanner stage is somewhat subjective even among trained professionals and may be reported with error by mothers,<sup>58</sup> serum IGF-1 and IGFBP-3 can be measured objectively and are known to increase rapidly during puberty.<sup>51,52</sup> Associations between the maternal and infant factors that were associated with earlier onset of breast development in **Chapters 3** and **4** and higher serum levels of IGF-1, IGFBP-3 or the IGF-1/IGFBP-3 molar ratio support that these factors are associated with biological changes that map to puberty in the girls.

Table 6.1 summarizes the direction of the association between each exposure of interest, age at breast development, and serum levels of IGF-1 and the IGF1/IGFBP-3 molar ratio. We observed higher mean levels of the IGF-1/IGFBP-3 molar ratio in girls with faster weight gain between birth and one year of age. We also observed higher ratio levels in girls with a maternal pre-pregnancy BMI≥25 and GWG≥30lbs compared with girls with a maternal pre-pregnancy BMI<25 and GWG<30lbs, though this difference was not statistically significant. While serum IGF-1 levels decreased with higher birthweight, this association was attenuated in models adjusting for weight gain in infancy. While recreational physical activity during

pregnancy was not significantly associated with IGF-1 levels at p<0.05, the point estimates suggested lower IGF-1 levels in girls whose mothers reported no recreational physical activity, which is in the opposite direction of our finding for breast development. The associations that we observed could be due to chance given our small sample size and should be replicated in larger samples. However, the patterns that we observed in IGF-1 and IGFBP-3 by age and Tanner stage are consistent with previous, larger studies,<sup>51,52,289,292,308</sup> which reduces concern about selection bias driving the results.

This pilot study therefore supports that our finding of earlier breast development in girls whose mothers had a pre-pregnancy BMI ≥25 and gained 30 or more lbs during pregnancy and in girls with rapid weight gain during infancy is not driven by measurement error in the assessment of breast development. IGF levels also did not vary by SES, as assessed by maternal education. Confounding by SES is therefore not a likely explanation for the associations between maternal BMI, GWG and infant growth and higher serum IGF levels, which supports that the associations between these factors and earlier onset of breast development is not driven by social patterning.

We summarized the major strengths and limitations overall and by analytic aim in **Table 6.2**. The main limitations of this dissertation relate to a lack of data prior to puberty for a subset of the cohort. Since girls were recruited from 6-13 years of age, some girls experienced the onset of breast development prior to cohort entry. Since we did not observe the outcome for these girls during the study period, we were limited to analytic methods that could incorporate left-censored data. We also did not have measures of pre-pubertal BMI on all girls, which limited the mediation analyses. However, there are a number of strengths of these dissertation analyses, including the utilization of multiple measures of breast development of the LEGACY study population for BCFH. We had sufficient power to formally test the interactions between early-life exposures and BCFH in relation to the onset of breast development. Although we used maternal reports of breast Tanner stage as our primary outcome, we conducted sensitivity analyses using alternate reports of breast onset, including clinical breast Tanner staging data in at two LEGACY sites. We also took advantage of the multiple assessments of breast development available in LEGACY, including recalled age at development for left-censored girls, to examine the influence of

different analytic assumptions when modeling pubertal outcome data on the estimation of exposureoutcome associations.

#### 6.2 Methodological considerations for studies of pubertal timing

One of the methodological challenges both in studying secular trends in the onset of breast development and in identifying risk factors for early puberty is accurately capturing the onset of breast development. While age at menarche is a well-defined event that can be reliably recalled into adulthood,<sup>91</sup> the transition from no breast development to breast budding is a gradual process as opposed to a single event and is less likely to be accurately recalled. The onset of breast development would ideally be studied by collecting repeated prospective assessments of breast Tanner stage by a trained rater starting at ages prior to the onset of puberty,<sup>58</sup> which requires large commitments of time and resources that many studies do not have available. Even if breast Tanner staging is assessed by clinicians at well-child visits and can be collected from medical records, as was done in KPNC,<sup>81,237</sup> most families do not visit a clinician every six months and would not have regular assessments of breast development. Due to these limitations, most studies that examine drivers of earlier development will need to rely on imperfect measures of breast development, leaving their results susceptible to information bias.

This dissertation contributes to this field by examining the influence of different assessments of breast development and modeling strategies on exposure-outcome associations. The associations between higher maternal pre-pregnancy BMI, greater GWG and earlier breast development were robust to different modeling strategies and different sources of assessment. These results suggest that, in the case of exposures with a strong signal, the bias from the use of maternal reports and recalled data is minimal and leads to similar inference. However, our infancy analyses, conducted in a smaller subset of the cohort that was more susceptible to random error, were more sensitive to differences in outcome assessment. In this case, the use of an objectively measured biomarker that is correlated with pubertal timing provided an additional method to minimize information bias in outcome assessment. These results can inform the design of future studies of breast development. While studies may not be able to collect repeated clinical Tanner assessments or biomarker measures on everyone in a large study populations, the collection of additional metaures in a subset of the cohort can be used to conduct sensitivity analyses that aid in the interpretation

of the overall study findings.<sup>239</sup> Differences in the assessment of the onset of breast development will also affect the measurement of pubertal tempo,<sup>258</sup> which future studies examining drivers of pubertal tempo will need to take into account.

#### 6.3 Implications and future directions

Earlier puberty in girls is associated with psychological and behavioral consequences, such as higher incidence of anxiety and depression, earlier sexual activity, earlier initiation of risk behaviors such as smoking and drinking (for review, see <sup>316</sup>), as well as increased risks of cardiovascular disease<sup>96,97</sup> and breast cancer.<sup>41,95</sup> Given this significant burden of earlier puberty on both the individual and population level, it is imperative to think about how we can apply what we know now about risk factors for early puberty to primary prevention. The importance of maintaining a healthy body weight in adult women, including prior to pregnancy, is an established public health recommendation. During pregnancy, clinicians are already advised based on the current Institute of Medicine guidelines to encourage women to avoid excessive weight gain during pregnancy and engage in physical activity during pregnancy.<sup>110</sup> In addition, pediatricians and parents monitor growth during infancy, and avoiding rapid weight gain during infancy is important for reducing the risk of childhood obesity.<sup>64</sup> Our findings support that maintaining a healthy pre-pregnancy weight, engaging in some degree of physical activity during pregnancy, and avoiding excess GWG and rapid growth during infancy may, in addition to other health benefits to the mother and child, delay the onset of breast development in daughters, even in girls with a BCFH. Raising awareness that these behaviors may delay the onset of breast development complements the existing recommendations by providing an additional benefit that can be gained by adhering to recommendations. This message may resonate with women that are worried about the timing of puberty and breast cancer risk, including women with a family history of breast cancer.

Our findings support that maternal pre-pregnancy BMI, GWG and infant growth patterns may be associated with increased breast cancer risk later in life through earlier onset of breast development. Since breast cancer risk accumulates early in the life course, modifying factors that act early in the life course to increase breast cancer risk may lead to a greater overall reduction in risk.<sup>4,5</sup> Colditz and Bohlke estimate up to a 22% decrease in breast cancer risk with behavior change starting in midlife. However, the potential

reduction in risk is up to 64% with prevention efforts starting in young adulthood.<sup>5</sup> We hypothesize that there can be an even greater reduction in risk when prevention starts even earlier in the life course. That being said, more research is needed to understand the total effect that modifying the early-life environment may have on breast cancer risk. For example, maternal obesity, higher GWG and rapid infant weight gain are also associated with increased adiposity in children.<sup>317</sup> Even though overweight girls go through puberty earlier, higher BMI in childhood and adolescence is associated with decreased risks of pre- and post-menopausal breast cancer.<sup>14–17</sup> It is also possible that associations between maternal BMI, GWG and breast cancer risk vary by childhood body size, a hypothesis that can be explored in future research. Future studies need to consider both of these pathways to understand how secular increases in obesity, GWG and rapid infant growth may affect future breast cancer incidence.

This dissertation has generated additional hypotheses that can be examined in future research. First, is the association that we observed between rapid growth in early infancy and earlier breast development related to the transient activation of the HPG axis in infancy, or mini-puberty? It is not clear whether the variations in hormone levels during this period have a long-term effect on either breast tissue or on hormone levels later in life, but this question has relevance to pubertal timing and breast cancer risk. Second, are maternal BMI, GWG and infant growth independently associated with pubertal tempo? Girls with earlier age at breast development have a longer pubertal tempo.<sup>318</sup> The elongation of this time period, when the breast is rapidly developing and vulnerable to environmental carcinogens,<sup>43</sup> is also associated with increased breast cancer risk.<sup>41</sup> Future research should examine whether maternal pre-pregnancy BMI, GWG and infant weight gain have independent effects on tempo, given their associations with both age at breast development and age at menarche. In addition, we observed a strong correlation between rapid weight gain during infancy and IGF-1 in our pilot study. In future studies, we will examine within-person patterns of IGF-1 and IGFBP-3 across puberty, and whether rapid infant growth, in addition to maternal pre-pregnancy BMI and GWG, are associated with these trajectories. While higher IGF-1 and IGFBP-3 levels in adulthood are associated with breast cancer risk,<sup>294</sup> more research is needed to understand whether higher levels of these biomarkers track across the life course and, if so, whether this can be modified.

In conclusion, we identified higher maternal pre-pregnancy BMI, excess GWG and rapid growth during infancy as modifiable risk factors associated with earlier onset of breast development in girls at average-risk for breast cancer and girls at increased risk due to their family history. This supports that breast cancer risk has origins in early life and that modifying these factors may reduce breast cancer risk. Future studies should also consider alternate pathways through which the early-life environment may affect risk. In addition, early puberty is associated with multiple adverse health outcomes in girls, and delaying the onset of breast development may benefit physical and mental health in adolescence and adulthood. We therefore recommend that clinicians consider incorporating into their conversations with expectant and new parents the message that adherence to existing recommendations regarding healthy maternal and infant weight gain, in addition to other health benefits for both the mother and child, may delay breast development in girls.

### 6.4 Tables and figures

**Table 6.1. Summary of the direction of associations between maternal, birth and infant exposures with the timing of breast development and levels of serum biomarkers during puberty.** The green symbol indicates no association. Blue arrows indicate the direction of the association. Factors that are associated with earlier age at breast development and higher IGF-1 levels are consistent with earlier puberty.

|                                                     | Age at breast development <sup>a</sup> | Serum levels of<br>IGF-1 and IGF-<br>1/IGFBP-3 ratio <sup>b</sup> |
|-----------------------------------------------------|----------------------------------------|-------------------------------------------------------------------|
| Maternal BMI≥25<br>and GWG ≥30lbs                   |                                        | 1                                                                 |
| Maternal physical<br>inactivity during<br>pregnancy |                                        |                                                                   |
| Birthweight                                         | $\bigcirc$                             |                                                                   |
| Birthlength                                         | $\odot$                                | $\bigcirc$                                                        |
| Rate of weight<br>gain during<br>infancy            |                                        | 1                                                                 |

<sup>a</sup>An arrow facing down indicates earlier age at breast development for an increase in the exposure

<sup>b</sup>An arrow facing up indicates higher levels of IGF-1 and/or IGF-1/IGFBP-3 molar ratio. Associations may not be statistically significant at p<0.05 for this exploratory analysis

|                                                     | Strengths                                                                                                                             | Limitations                                                                                                                |
|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Aim 1<br>(Systematic<br>Review)                     | Comprehensive                                                                                                                         | Data too heterogeneous to combine                                                                                          |
| Aim 2<br>(Maternal<br>and<br>pregnancy<br>analyses) | Examine differences by BCFH<br>Sensitivity analyses using<br>multiple reports of breast<br>development, including clinical<br>reports | Self-reported maternal and<br>pregnancy exposures<br>Maternal report of breast<br>development                              |
| Aim 3<br>(Infancy<br>analyses)                      | Exposure assessed through medical record data                                                                                         | Limited to subset of cohort<br>with available infancy data<br>Maternal report of breast<br>development                     |
| Aim 4<br>(Biomarker<br>analyses)                    | Objective biomarker<br>measurement                                                                                                    | Pilot study limited to girls at the NY site that provided a blood sample                                                   |
| Overall                                             | Data collection every 6 months<br>using standard protocol with<br>high retention rate<br>Enrichment for BCFH                          | Some girls experienced breast<br>development prior to cohort<br>entry<br>Lack of pre-pubertal BMI<br>measures on all girls |

Table 6.2. Summary of the strengths and limitations of this dissertation.

### References

- Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D BF. GLOBOCAN 2012 v. 1.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11 [Internet]. http://globocan.iarc.fr. Published 2013.
- 2. Okasha M, McCarron P, Gunnell D, Smith GD. Exposures in childhood, adolescence and early adulthood and breast cancer risk: a systematic review of the literature. *Breast Cancer Res Treat*. 2003;78(2):223-276. doi:10.1023/A:1022988918755
- 3. Ruder EH, Dorgan JF, Kranz S, Kris-Etherton PM, Hartman TJ. Examining breast cancer growth and lifestyle risk factors: early life, childhood, and adolescence. *Clin Breast Cancer*. 2008;8(4):334-342. doi:10.3816/CBC.2008.n.038
- 4. Colditz GA, Bohlke K, Berkey CS. Breast cancer risk accumulation starts early: prevention must also. *Breast Cancer Res Treat*. 2014;145(3):567-579. doi:10.1007/s10549-014-2993-8
- 5. Colditz G a, Bohlke K. Priorities for the Primary Prevention of Breast Cancer. *CA Cancer J Clin.* 2014;00(64):186-194. doi:10.3322/caac.21225.
- 6. van den Brandt PA, Spiegelman D, Yaun SS, et al. Pooled analysis of prospective cohort studies on height, weight, and breast cancer risk. *Am J Epidemiol*. 2000;152(6):514-527. doi:10.1093/aje/152.6.514
- 7. White AJ, Nichols HB, Bradshaw PT, Sandler DP. Overall and central adiposity and breast cancer risk in the Sister Study. *Cancer*. 2015;121(20):3700-3708. doi:10.1002/cncr.29552
- 8. Keum N, Greenwood DC, Lee DH, et al. Adult weight gain and adiposity-related cancers: a doseresponse meta-analysis of prospective observational studies. *J Natl Cancer Inst.* 2015;107(2). doi:10.1093/jnci/djv088
- 9. Gathirua-Mwangi WG, Zollinger TW, Murage MJ, Pradhan KR, Champion VL. Adult BMI change and risk of Breast Cancer: National Health and Nutrition Examination Survey (NHANES) 2005-2010. *Breast Cancer*. 2015;22(6):648-656. doi:10.1007/s12282-015-0638-3
- 10. Eliassen AH, Colditz GA, Rosner B, Willett WC, Hankinson SE. Adult Weight Change and Risk of Postmenopausal Breast Cancer. *JAMA*. 2006;296(2):193-201. doi:10.1001/jama.296.2.193
- 11. Huang Z, Hankinson SE, Colditz GA, et al. Dual Effects of Weight and Weight Gain on Breast Cancer Risk. *JAMA*. 1997;278(17):1407. doi:10.1001/jama.1997.03550170037029
- 12. Michels KB, Terry KL, Eliassen AH, Hankinson SE, Willett WC. Adult weight change and incidence of premenopausal breast cancer. *Int J cancer*. 2012;130(4):902-909. doi:10.1002/ijc.26069
- 13. Lahmann PH, Schulz M, Hoffmann K, et al. Long-term weight change and breast cancer risk: the European prospective investigation into cancer and nutrition (EPIC). *Br J Cancer*. 2005;93(5):582-589. doi:10.1038/sj.bjc.6602763
- 14. Ahlgren M, Melbye M, Wohlfahrt J, Sorensen TI. Growth patterns and the risk of breast cancer in women. *N Engl J Med*. 2004;351(16):1619-1626. doi:10.1056/NEJMoa040576
- 15. Bandera E V, Chandran U, Zirpoli G, et al. Body size in early life and breast cancer risk in African American and European American women. *Cancer Causes Control*. 2013;24(12):2231-2243. doi:10.1007/s10552-013-0302-1
- 16. Keinan-Boker L, Levine H, Derazne E, Molina-Hazan V, Kark JD. Measured adolescent body mass index and adult breast cancer in a cohort of 951,480 women. *Breast Cancer Res Treat.*

2016;158(1):157-167. doi:10.1007/s10549-016-3860-6

- 17. Baer HJ, Tworoger SS, Hankinson SE, Willett WC. Body fatness at young ages and risk of breast cancer throughout life. *Am J Epidemiol*. 2010;171(11):1183-1194. doi:10.1093/aje/kwq045
- 18. Michels KB, Xue F. Role of birthweight in the etiology of breast cancer. *Int J cancer*. 2006;119(9):2007-2025. doi:10.1002/ijc.22004
- Trichopoulos D, Adami H-O, Ekbom A, Hsieh C-C, Lagiou P. Early life events and conditions and breast cancer risk: from epidemiology to etiology. *Int J cancer*. 2008;122(3):481-485. doi:10.1002/ijc.23303
- 20. Frederick IO, Williams MA, Sales AE, Martin DP, Killien M. Pre-pregnancy body mass index, gestational weight gain, and other maternal characteristics in relation to infant birth weight. *Matern Child Health J.* 2008;12(5):557-567. doi: 10.1007/s10995-007-0276-2
- 21. Baker JL, Michaelsen KF, Rasmussen KM, Sørensen TI. Maternal prepregnant body mass index, duration of breastfeeding, and timing of complementary food introduction are associated with infant weight gain. *Am J Clin Nutr.* 2004;80(6):1579-1588. doi:10.1093/ajcn/80.6.1579
- 22. Oken E, Taveras EM, Kleinman KP, Rich-Edwards JW, Gillman MW. Gestational weight gain and child adiposity at age 3 years. *Am J Obstet Gynecol*. 2007;196(4):322.e1-322.e8. doi:10.1016/j.ajog.2006.11.027
- 23. Sanderson, Williams, Daling, et al. Maternal factors and breast cancer risk among young women. *Paediatr Perinat Epidemiol.* 1998;12(4):397-407. doi:10.1046/j.1365-3016.1998.00133.x
- 24. Wilson KM, Willett WC, Michels KB. Mothers' pre-pregnancy BMI and weight gain during pregnancy and risk of breast cancer in daughters. *Breast Cancer Res Treat*. 2011;130(1):273-279. doi:10.1007/s10549-011-1582-3
- 25. Kuczmarski R, Ogden C, Grummer-Strawn L. CDC growth charts: United States. *Adv Data*. 2000;314:1-28. http://www.ncbi.nlm.nih.gov/pubmed/11183293/.
- 26. Burdge GC, Lillycrop KA, Jackson AA. Nutrition in early life, and risk of cancer and metabolic disease: alternative endings in an epigenetic tale? *Br J Nutr*. 2009;101(5):619-630. doi:10.1017/S0007114508145883
- 27. Lagiou P, Lagiou A, Samoli E, Hsieh C-CC, Adami H-OO, Trichopoulos D. Diet during pregnancy and levels of maternal pregnancy hormones in relation to the risk of breast cancer in the offspring. *Eur J Cancer Prev.* 2006;15(1):20-26. doi:10.1097/01.cej.0000186639.12249.c7
- 28. Lof M, Hilakivi-Clarke L, Sandin S S, de Assis S, Yu W, Weiderpass E. Dietary fat intake and gestational weight gain in relation to estradiol and progesterone plasma levels during pregnancy: a longitudinal study in Swedish women. *BMC Womens Health*. 2009;9(1):10. doi:10.1186/1472-6874-9-10
- 29. Ferraro ZM, Qiu Q, Gruslin A, Adamo KB. Excessive gestational weight gain and obesity contribute to altered expression of maternal insulin-like growth factor binding protein-3. *Int J Womens Health*. 2013;5:657-665. doi:10.2147/IJWH.S49594
- 30. Gunderson EP. Childbearing and Obesity in Women: Weight Before, During and After Pregnancy. *Obs Gynecol Clin North Am.* 2009;36(2):1-17. doi:10.1016/j.ogc.2009.04.001.
- 31. De Stavola BL, dos Santos Silva I, McCormack V, Hardy RJ, Kuh DJ, Wadsworth MEJ. Childhood growth and breast cancer. *Am J Epidemiol.* 2004;159(7):671-682. doi:10.1093/aje/kwh097
- 32. Syddall HE, Sayer AA, Simmonds SJ, et al. Birth weight, infant weight gain, and cause-specific

mortality: the Hertfordshire Cohort Study. *Am J Epidemiol*. 2005;161(11):1074-1080. doi:10.1093/aje/kwi137

- 33. Lagiou P, Hsieh C-C, Trichopoulos D, et al. Neonatal growth and breast cancer risk in adulthood. *Br J Cancer*. 2008;99(9):1544-1548. doi:10.1038/sj.bjc.6604702
- Karaolis-Danckert N, Buyken AE, Sonntag A, Kroke A. Birth and early life influences on the timing of puberty onset: Results from the DONALD (DOrtmund Nutritional and Anthropometric Longitudinally Designed) study. *Am J Clin Nutr.* 2009;90(6):1559-1565. doi:10.3945/ajcn.2009.28259
- 35. Ong KK, Emmett P, Northstone K, et al. Infancy weight gain predicts childhood body fat and age at menarche in girls. *J Clin Endocrinol Metab.* 2009;94(5):1527-1532. doi:10.1210/jc.2008-2489
- 36. Dyrstad SW, Yan Y, Fowler AM, Colditz GA. Breast cancer risk associated with benign breast disease: systematic review and meta-analysis. *Breast Cancer Res Treat*. 2015;149(3):569-575. doi:10.1007/s10549-014-3254-6
- 37. Goldberg M, Cohn BA, Houghton LC, et al. Early Life Growth and Benign Breast Disease. *Am J Epidemiol.* 2019;In press. doi:10.1093/aje/kwz126 [Epub ahead of print].
- Downing NL, Longhurst CA, Goel V V., Kaelber DC, Sutherland SM. Electronic Health Record– Enabled Research in Children Using the Electronic Health Record for Clinical Discovery. *Pediatr Clin North Am.* 2016;63(2):251-268. doi:10.1016/j.pcl.2015.12.002
- 39. Kelsey JL, Gammon MD, John EM. Reproductive factors and breast cancer. *Epidemiol Rev.* 1993;15(1):36-47. doi:10.1093/oxfordjournals.epirev.a036115
- 40. Hsieh CC, Trichopoulos D, Katsouyanni K, Yuasa S. Age at menarche, age at menopause, height and obesity as risk factors for breast cancer: associations and interactions in an international case-control study. *Int J cancer*. 1990;46(5):796-800. doi:10.1002/ijc.2910460508
- 41. Bodicoat DH, Schoemaker MJ, Jones ME, et al. Timing of pubertal stages and breast cancer risk: the Breakthrough Generations Study. *Breast Cancer Res.* 2014;16(1):R18. doi:10.1186/bcr3613
- 42. Lee Y, Styne D. Influences on the onset and tempo of puberty in human beings and implications for adolescent psychological development. *Horm Behav.* 2013;64(2):250-261. doi:10.1016/j.yhbeh.2013.03.014
- 43. Martinson HA, Lyons TR, Giles ED, Borges VF, Schedin P. Developmental windows of breast cancer risk provide opportunities for targeted chemoprevention. *Exp Cell Res.* 2013;319:1671-1678. doi:10.1016/j.yexcr.2013.04.018
- 44. Macias H, Hinck L. Mammary gland development. *Wiley Interdiscip Rev Dev Biol*. 2012;1(4):533-557. doi:10.1002/wdev.35
- 45. Oh H, Bodelon C, Palakal M, et al. Ages at menarche- and menopause-related genetic variants in relation to terminal duct lobular unit involution in normal breast tissue. *Breast Cancer Res Treat.* 2016;158(2):341-350. doi:10.1186/s40945-017-0033-9.
- 46. Russo J, Russo IH. Development of the human breast. *Maturitas*. 2004;49:2-15. doi:10.1055/s-0033-1343989
- 47. Novotny R, Daida Y, Morimoto Y, Shepherd J, Maskarinec G. Puberty, body fat, and breast density in girls of several ethnic groups. *Am J Hum Biol*. 2011;23(3):359-365. doi:10.1002/ajhb.21145
- 48. Gaskins AJ, Pereira A, Quintiliano D, et al. Dairy intake in relation to breast and pubertal

development in Chilean girls. *Am J Clin Nutr*. 2017;105(5):1166-1175. doi:10.3945/ajcn.116.150359

- 49. Denholm R, De Stavola B, Hipwell JH, et al. Pre-natal exposures and breast tissue composition: findings from a British pre-birth cohort of young women and a systematic review. *Breast Cancer Res.* 2016;18(1):102. doi:10.1186/s13058-016-0751-z
- 50. Lilge L, Terry MB, Walter J, et al. Non-invasive optical spectroscopic monitoring of breast development during puberty. *Breast Cancer Res.* 2017;19(1):12. doi:10.1186/s13058-017-0805-x
- 51. Juul A, Bang P, Hertel NT, et al. Serum insulin-like growth factor-I in 1030 healthy children, adolescents, and adults: relation to age, sex, stage of puberty, testicular size, and body mass index. *J Clin Endocrinol Metab.* 1994;78(3):744-752. doi:10.1210/jcem.78.3.8126152
- 52. Juul A, Dalgaard P, Blum WF, et al. Serum Levels of Insulin-Like Growth Factor (IGF)-Binding Protein-3 (IGFBP-3) in Healthy Infants, Children, and Adolescents: The Relation to IGF-I, IGF-II, IGFBP-1, IGFBP-2, Age, Sex, Body Mass Index, and Pubertal Maturation. *J Clin Endocrinol Metab.* 1995;80(8):2534-2542. doi:10.1210/jcem.80.8.7543116
- 53. Collaborative Group on Hormonal Factors in Breast Cancer. Familial breast cancer: collaborative reanalysis of individual data from 52 epidemiological studies including 58 209 women with breast cancer and 101 986 women without the disease. *Lancet.* 2001;358(9291):1389-1399. doi:10.1016/S0140-6736(01)06524-2
- 54. Terry MB, Keegan THM, Houghton LC, et al. Pubertal development in girls by breast cancer family history: the LEGACY girls cohort. *Breast Cancer Res.* 2017;19(1):69. doi:10.1186/s13058-017-0849-y
- 55. Terry MB, Phillips K-A, Daly MB, et al. Cohort Profile: The Breast Cancer Prospective Family Study Cohort (ProF-SC). *Int J Epidemiol*. 2016;45(3):683-92. doi:10.1093/ije/dyv118
- 56. Dite GS, MacInnis RJ, Bickerstaffe A, et al. Testing for Gene-Environment Interactions Using a Prospective Family Cohort Design: Body Mass Index in Early and Later Adulthood and Risk of Breast Cancer. *Am J Epidemiol.* 2017;185(6):487-500. doi:10.1093/aje/kww241
- 57. John EM, Terry MB, Keegan THM, et al. The LEGACY Girls Study: Growth and development in the context of breast cancer family history. *Epidemiology*. 2016;27(3):438-48. doi:10.1097/EDE. 000000000000456
- 58. Euling SY, Herman-Giddens ME, Lee PA, et al. Examination of US Puberty-Timing Data from 1940 to 1994 for Secular Trends: Panel Findings. *Pediatrics*. 2008;121(Supplement 3):S172-S191. doi:10.1542/peds.2007-1813D
- 59. Herman-Giddens ME, Kaplowitz PB, Wasserman R. Navigating the recent articles on girls' puberty in Pediatrics: what do we know and where do we go from here? *Pediatrics*. 2004;113(4):911-917. doi:10.1542/peds.113.4.911
- 60. Biro FM, Greenspan LC, Galvez MP, et al. Onset of Breast Development in a Longitudinal Cohort. *Pediatrics*. 2013;132(6):1019-27. doi:10.1542/peds.2012-3773
- Aksglaede L, Sørensen K, Petersen JH, Skakkebæk NE, Juul A. Recent Decline in Age at Breast Development: The Copenhagen Puberty Study. *Pediatrics*. 2009;123(5):e932-9. doi:10.1542/peds.2008-2491
- 62. Biro FM, Huang B, Crawford PB, et al. Pubertal correlates in black and white girls. *J Pediatr*. 2006;148(2):234-240. doi:10.1136/bjsm.2008.054692
- 63. Baird J, Fisher D, Lucas P, Kleijnen J, Roberts H, Law C. Being big or growing fast: systematic

review of size and growth in infancy and later obesity. *BMJ*. 2005;331(7522):929. doi:10.1136/bmj.38586.411273.E0

- 64. Ong KK, Loos RJF. Rapid infancy weight gain and subsequent obesity: systematic reviews and hopeful suggestions. *Acta Paediatr*. 2006;95(8):904-908. doi:10.1080/08035250600719754
- 65. Monteiro POA, Victora CG. Rapid growth in infancy and childhood and obesity in later life a systematic review. *Obes Rev.* 2005;6(2):143-154. doi:10.1111/j.1467-789X.2005.00183.x
- 66. Monasta L, Batty GD, Cattaneo A, et al. Early-life determinants of overweight and obesity: a review of systematic reviews. *Obes Rev.* 2010;11(10):695-708. doi:10.1111/j.1467-789X.2010.00735.x
- 67. Huen KF, Leung S, Lau J, Cheung A, Leung NK, Chiu MC. Secular trend in the sexual maturation of Southern Chinese girls. *Acta Paediatr Int J Paediatr*. 1997;86(10):1121-1124. doi:10.1111/j.1651-2227.1997.tb14820.x
- 68. Weaver LT. How did babies grow 100 years ago? *Eur J Clin Nutr.* 2011;65(1):3-9. doi:10.1038/ejcn.2010.257
- 69. Terry MB, Forman MR. Empowering Pediatricians to Prevent Chronic Disease Across Generations. *Pediatrics*. 2016;138(Supplement):S92-S94. doi:10.1542/peds.2015-4268M
- 70. Romundstad PR, Vatten LJ, Nilsen TIL, et al. Birth size in relation to age at menarche and adolescent body size: Implications for breast cancer risk. *Int J Cancer*. 2003;105(3):400-403. doi:10.1002/ijc.11103
- 71. Sloboda DM, Hart R, Doherty DA, Pennell CE, Hickey M. Age at Menarche: Influences of Prenatal and Postnatal Growth. *J Clin Endocrinol Metab.* 2007;92(1):46-50. doi:10.1210/jc.2006-1378
- 72. Adair LS. Size at Birth Predicts Age at Menarche. *Pediatrics*. 2001;107(4):e59. doi:10.1542/peds.107.4.e59
- 73. Maisonet M, Christensen KY, Rubin C, et al. Role of Prenatal Characteristics and Early Growth on Pubertal Attainment of British Girls. *Pediatrics*. 2010;126(3):e591-e600. doi:10.1542/peds.2009-2636
- 74. Workman M, Kelly K. Heavier birth weight associated with taller height but not age at menarche in US women born 1991-1998. *Am J Hum Biol.* 2017;29(5). doi:10.1002/ajhb.22999
- 75. Wang Y, Dinse GE, Rogan WJ. Birth weight, early weight gain and pubertal maturation: A longitudinal study. *Pediatr Obes*. 2012;7(2):101-109. doi:10.1111/j.2047-6310.2011.00022.x
- 76. dos Santos Silva I, De Stavola BL, Mann V, Kuh D, Hardy R, Wadsworth MEJ. Prenatal factors, childhood growth trajectories and age at menarche. *Int J Epidemiol.* 2002;31(2):405-412. doi:10.1093/ije/31.2.405
- 77. Flom JD, Cohn BA, Tehranifar P, et al. Earlier age at menarche in girls with rapid early life growth: cohort and within sibling analyses. *Ann Epidemiol.* 2017;27(3):187-193.e2. doi:10.1016/j.annepidem.2017.01.004
- 78. Ghirri P, Bernardini M, Vuerich M, et al. Adrenarche, pubertal development, age at menarche and final height of full-term, born small for gestational age (SGA) girls. *Gynecol Endocrinol*. 2001;15(2):91-97. doi:10.1080/gye.15.2.91.97
- 79. Boyne MS, Thame M, Osmond C, et al. Growth, body composition, and the onset of puberty: Longitudinal observations in afro-Caribbean children. *J Clin Endocrinol Metab.* 2010;95(7):3194-3200. doi:10.1210/jc.2010-0080

- 80. Olivo-Marston S, Graubard BI, Visvanathan K, Forman MR. Gender-specific differences in birthweight and the odds of puberty: NHANES III, 1988-94. *Paediatr Perinat Epidemiol.* 2010;24(3):222-231. doi:10.1111/j.1365-3016.2010.01097.x
- Kubo A, Deardorff J, Laurent CA, et al. Associations Between Maternal Obesity and Pregnancy Hyperglycemia and Timing of Pubertal Onset in Adolescent Girls: A Population-Based Study. *Am J Epidemiol.* 2018;187(7):1362-1369. doi:10.1093/aje/kwy040
- 82. Lawn RB, Lawlor DA, Fraser A. Associations between Maternal Prepregnancy Body Mass Index and Gestational Weight Gain and Daughter's Age at Menarche. *Am J Epidemiol*. 2018;187(4):677-686. doi:10.1093/aje/kwx308
- 83. Boynton-Jarrett R, Rich-Edwards J, Fredman L, et al. Gestational Weight Gain and Daughter's Age at Menarche. *J Womens Heal*. 2011;20(8):1193-1200. doi:10.1089/jwh.2010.2517
- Küpers LK, L'Abée C, Bocca G, Stolk RP, Sauer PJJ, Corpeleijn E. Determinants of Weight Gain during the First Two Years of Life--The GECKO Drenthe Birth Cohort. *PLoS One*. 2015;10(7):e0133326. doi:10.1371/journal.pone.0133326
- 85. Yermachenko A, Dvornyk V. Nongenetic Determinants of Age at Menarche: A Systematic Review. *Biomed Res Int.* 2014;2014:1-14. doi:10.1155/2014/371583
- 86. Karapanou O, Papadimitriou A. Determinants of menarche. *Reprod Biol Endocrinol.* 2010;8:115. doi:10.1186/1477-7827-8-115
- 87. Dunger DB, Ahmed ML, Ong KK. Early and late weight gain and the timing of puberty. *Mol Cell Endocrinol.* 2006;254-255:140-145. doi:10.1016/j.mce.2006.04.003
- 88. Villamor E, Jansen EC. Nutritional Determinants of the Timing of Puberty. *Annu Rev Public Heal*. 2016;37(1):33-46. doi:10.1146/annurev-publhealth-031914-122606
- 89. Juul F, Chang VW, Brar P, Parekh N. Birth weight, early life weight gain and age at menarche: a systematic review of longitudinal studies. *Obes Rev.* 2017;18(11):1272-1288. doi:10.1111/obr.12587
- 90. Biro FM, Greenspan LC, Galvez MP. Puberty in girls of the 21st century. *J Pediatr Adolesc Gynecol*. 2012;25(5):289-294. doi:10.1016/j.jpag.2012.05.009
- 91. Must A, Phillips SM, Naumova EN, et al. Recall of early menstrual history and menarcheal body size: after 30 years, how well do women remember? *Am J Epidemiol*. 2002;155(7):672-679. doi:10.1093/aje/155.7.672
- 92. Hui LL, Wong MY, Lam TH, Leung GM, Schooling CM. Infant growth and onset of puberty: prospective observations from Hong Kong's "Children of 1997" birth cohort. *Ann Epidemiol*. 2012;22(1):43-50. doi:10.1016/j.annepidem.2011.10.003
- 93. Wan W, Deng X, Archer KJ, Sun SS. Pubertal pathways and the relationship to anthropometric changes in childhood: The Fels longitudinal study. *Open J Pediatr.* 2012;2(2). doi:10.4236/ojped.2012.22020
- 94. Moher D, Liberati A, Tetzlaff J, Altman DG, Altman D. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. *PLoS Med.* 2009;6(7):e1000097. doi:10.1371/journal.pmed.1000097
- 95. Menarche, menopause, and breast cancer risk: individual participant meta-analysis, including 118 964 women with breast cancer from 117 epidemiological studies. *Lancet Oncol.* 2012;13(11):1141-1151. doi:10.1016/s1470-2045(12)70425-4

- 96. Luijken J, van der Schouw YT, Mensink D, Onland-Moret NC. Association between age at menarche and cardiovascular disease: A systematic review on risk and potential mechanisms. *Maturitas*. 2017;104:96-116. doi:10.1016/j.maturitas.2017.07.009
- 97. Charalampopoulos D, McLoughlin A, Elks CE, Ong KK. Age at menarche and risks of all-cause and cardiovascular death: A systematic review and meta-analysis. *Am J Epidemiol.* 2014;180(1):29-40. doi:10.1093/aje/kwu113
- 98. Boden JM, Fergusson DM, Horwood LJ. Age of menarche and psychosocial outcomes in a new zealand birth cohort. *J Am Acad Child Adolesc Psychiatry*. 2011;50(2):132-140. doi:10.1016/j.jaac.2010.11.007
- 99. Toffol E, Koponen P, Luoto R, Partonen T. Pubertal timing, menstrual irregularity, and mental health: Results of a population-based study. *Arch Womens Ment Health*. 2014;17(2):127-135. doi:10.1007/s00737-013-0399-y
- 100. Marshall WA, Tanner JM. Variations in pattern of pubertal changes in girls. *Arch Dis Child*. 1969;44(235):291-303. doi:10.1136/adc.44.235.291
- 101. Li W, Liu Q, Deng X, Chen Y, Liu S, Story M. Association between Obesity and Puberty Timing: A Systematic Review and Meta-Analysis. Int J Env Res Public Heal. 2017;14(10). doi:10.3390/ijerph14101266
- 102. Wagner I V, Sabin MA, Pfaffle RW, et al. Effects of obesity on human sexual development. *Nat Rev Endocrinol.* 2012;8(4):246-254. doi:10.1038/nrendo.2011.241
- 103. Marcovecchio ML, Chiarelli F, Loredana Marcovecchio μ Francesco Chiarelli M. Obesity and Growth during Childhood and Puberty. *World Rev Nutr Diet Basel*. 2013;106:135-141. doi:10.1159/000342545
- 104. Burt Solorzano CM, McCartney CR. Obesity and the pubertal transition in girls and boys. *Reproduction*. 2010;140(3):399-410. doi:10.1530/rep-10-0119
- 105. National Heart, Lung and BI. Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies. https://www.nhlbi.nih.gov/health-pro/guidelines/in-develop/cardiovascular-riskreduction/tools/cohort. Published 2014. Accessed January 1, 2017.
- 106. Wells G, Shea B, O'Connell D, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. http://www.ohri.ca/programs/clinical\_epidemiology/oxford.asp. Accessed November 25, 2018.
- 107. Christensen KY, Maisonet M, Rubin C, et al. Progression through puberty in girls enrolled in a contemporary british cohort. *J Adolesc Heal*. 2010;47(3):282-289. doi:10.1016/j.jadohealth.2010.02.005
- Vandeloo MJAM, Bruckers LM, Janssens JP. Effects of lifestyle on the onset of puberty as determinant for breast cancer. *Eur J Cancer Prev.* 2007;16(1):17-25. doi:10.1097/01.cej.0000220635.38847.6e
- Kubo A, Ferrara A, Laurent CA, et al. Associations Between Maternal Pregravid Obesity and Gestational Diabetes and the Timing of Pubarche in Daughters. *Am J Epidemiol*. 2016;184(1):7-14. doi:10.1093/aje/kww006
- 110. Institute of Medicine. *Weight Gain During Pregnancy: Reexamining the Guidelines*. (Rasmussen K, Yaktine A, eds.). Washington, D.C.: National Academies Press; 2009. doi:10.17226/12584
- 111. Mariansdatter SE, Ernst A, Toft G, et al. Maternal Pre-pregnancy BMI and Reproductive Health of Daughters in Young Adulthood. *Matern Child Health J*. 2016;20(10):2150-2159.

doi:10.1007/s10995-016-2062-5

- 112. Windham GC, Bottomley C, Birner C, Fenster L. Age at menarche in relation to maternal use of tobacco, alcohol, coffee, and tea during pregnancy. *Am J Epidemiol*. 2004;159(9):862-871. doi:10.1093/aje/kwh117
- 113. Windham GC, Zhang L, Longnecker MP, Klebanoff M. Maternal smoking, demographic and lifestyle factors in relation to daughter's age at menarche. *Paediatr Perinat Epidemiol.* 2008;22(6):551-561. doi:10.1111/j.1365-3016.2008.00948.x
- 114. Rubin C, Maisonet M, Kieszak S, et al. Timing of maturation and predictors of menarche in girls enrolled in a contemporary British cohort. *Paediatr Perinat Epidemiol*. 2009;23(5):492-504. doi:10.1111/j.1365-3016.2009.01055.x
- 115. Keim SA, Branum AM, Klebanoff MA, Zemel BS. Maternal body mass index and daughters' age at menarche. *Epidemiology*. 2009;20(5):677-681. doi:10.1097/EDE.0b013e3181b093ce
- 116. Terry MB, Ferris JS, Tehranifar P, Wei Y, Flom JD. Birth weight, postnatal growth, and age at menarche. *Am J Epidemiol*. 2009;170(1):72-79. doi:10.1093/aje/kwp095
- 117. Shrestha A, Olsen J, Ramlau-Hansen CH, Bech BH, Nohr EA. Obesity and age at menarche. *Fertil Steril*. 2011;95(8):2732-2734. doi:10.1016/j.fertnstert.2011.02.020
- 118. Deardorff J, Berry-Millett R, Rehkopf D, Luecke E, Lahiff M, Abrams B. Maternal pre-pregnancy BMI, gestational weight gain, and age at menarche in daughters. *Matern Child Heal J*. 2013;17(8):1391-1398. doi:10.1007/s10995-012-1139-z
- 119. Biro FM, Deardorff J. Identifying opportunities for cancer prevention during preadolescence and adolescence: puberty as a window of susceptibility. *J Adolesc Heal*. 2013;52(5 Suppl):S15-20. doi:10.1016/j.jadohealth.2012.09.019
- 120. Peralta-Carcelen M, Jackson DS, Goran MI, Royal SA, Mayo MS, Nelson KG. Growth of adolescents who were born at extremely low birth weight without major disability. *J Pediatr*. 2000;136(5):633-640. doi:10.1067/mpd.2000.104291
- 121. Delemarre-van de Waal HA, van Coeverden SC, Engelbregt MT. Factors affecting onset of puberty. *Horm Res.* 2002;57 Suppl 2:15-18. doi:10.1159/000058095
- 122. Veening MA, van Weissenbruch MM, Roord JJ, de Delemarre-van Waal HA. Pubertal development in children born small for gestational age. *J Pediatr Endocrinol Metab*. 2004;17(11):1497-1505.
- 123. Semiz S, Kurt F, Kurt DT, Zencir M, Sevinç Ö. Factors affecting onset of puberty in Denizli province in Turkey. *Turk J Pediatr.* 2009;51(1):49-55.
- 124. Papadimitriou A, Kanakis G, Douros K, et al. Constitutional advancement of growth is associated with early puberty in girls. *Horm Res Paediatr*. 2011;76(4):273-277. doi:10.1159/000330005
- 125. Hernández MI, Martíez-Aguayo A, Cavada G, et al. Accelerated early pubertal progression, ovarian morphology, and ovarian function in prospectively followed low birth weight (LBW) girls. *J Pediatr Endocrinol Metab.* 2013;26(3-4):223-230. doi:10.1515/jpem-2012-0345
- 126. Kale A, Deardorff J, Lahiff M, et al. Breastfeeding Versus Formula-Feeding and Girls' Pubertal Development. *Matern Child Health J*. 2014;19(3):519-527. doi:10.1007/s10995-014-1533-9
- 127. Bhargava SKK, Ramji S, Srivastava U, et al. Growth and sexual maturation of low birth weight children: a 14 year follow up. *Indian Pediatr*. 1995;32(9):963-970.

- 128. Powls A, Botting N, Cooke RWI, Pilling D, Marlow N. Growth impairment in very low birthweight children at 12 years: Correlation with perinatal and outcome variables. *Arch Dis Child Fetal Neonatal Ed.* 1996;75(3):152-157. doi:10.1136/fn.75.3.F152
- 129. Bacallao J, Amador M, Hermelo M. The relationship of birthweight with height at 14 and with the growing process. *Nutrition*. 1996;12(4):250-254. doi:10.1016/S0899-9007(96)90851-5
- 130. Ford GW, Doyle LW, Davis NM, Callanan C. Very Low Birth Weight and Growth Into Adolescence. *Arch Pediatr Adolesc Med*. 2000;154(8):778. doi:10.1001/archpedi.154.8.778
- 131. IJzerman R, van Weissenbruch MM, Voordouw JJ, et al. The association between birth weight and capillary recruitment is independent of blood pressure and insulin sensitivity: a study in prepubertal children. *J Hypertens*. 2002;20(10):1957-1963.
- 132. Hack M, Schluchter M, Cartar L, Rahman M, Cuttler L, Borawski E. Growth of Very Low Birth Weight Infants to Age 20 Years. *Pediatrics*. 2003;112(1):e30-e38. doi:10.1542/peds.112.1.e30
- 133. van Weissenbruch MM, Delemarre-van de Waal HA. Early influences on the tempo of puberty. *Horm Res.* 2006;65(SUPPL. 3):105-111. doi:10.1159/000091514
- 134. Chaudhari S, Otiv M, Hoge M, Pandit A, Mote A. Growth and Sexual Maturation of Low Birth Weight Infants at Early Adolescence. *Indian Pediatr.* 2008;45(3):191-198.
- 135. Finstad SE, Emaus A, Potischman N, et al. Influence of birth weight and adult body composition on 17β-estradiol levels in young women. *Cancer Causes Control*. 2009;20(2):233-242. doi:10.1007/s10552-008-9238-2
- 136. Orden AB, Vericat A, Apezteguia MC, Apezteguía MC. Age at menarche in urban Argentinian girls: association with biological and socioeconomic factors. *Anthropol Anzeiger*. 2011;68(3):309-322. doi:10.1127/0003-5548/2011/0109
- 137. Zacharias L, Rand WM, Wurtman RJ. A prospective study of sexual development and growth in American girls: the Statistics of Menarche. *Obestetrical Gynecol Surv.* 1976;31(4):325-337.
- 138. Billewicz WZ, Fellowes HM, Thomson AM. Menarche in Newcastle upon Tyne girls. *Ann Hum Biol.* 1981;8(4):313-320.
- 139. Frisancho AR, Fields S, Smith SL. Small-for-Gestational-Age Associated with Short Stature During Adolescence. *Am J Hum Biol.* 1994;6(3):305-309. doi:10.1002/ajhb.1310060305
- St. George IM, Williams S, Silva PA, St George IM, Williams S, Silva PA. Body size and the menarche: the Dunedin Study. *J Adolesc Heal*. 1994;15(7):573-576. doi:10.1016/1054-139X(94)90141-O
- Leger J, Levy-Marchal C, Bloch J, et al. Reduced final height and indications for insulin resistance in 20 year olds born small for gestational age: regional cohort study. *Bmj.* 1997;315(7104):341-347. doi:10.1136/bmj.315.7104.341
- 142. Tenhola S, Martikainen A, Rahiala E, Herrgârd E, Halonen P, Voutilainen R. Serum lipid concentrations and growth characteristics in 12-year-old children born small for gestational age. *Pediatr Res.* 2000;48(5):623-628. doi:10.1203/00006450-200011000-00012
- Saigal S, Stoskopf BL, Streiner DL, Burrows E. Physical growth and current health status of infants who were of extremely low birth weight and controls at adolescence. *Pediatrics*. 2001;108(2):407-415. doi:10.1542/peds.108.2.407
- 144. Miller FJ, Billewicz WZ, Thomson AM. Growth from birth to adult life of 442 Newcastle upon Tyne children. *Br J Prev Soc Med.* 1972;26(4):224-230. doi:10.1136/jech.26.4.224

- 145. Westwood M, Kramer MS, Munz D, Lovett JM, Watters G V. Growth and development of full-term nonasphyxiated small-for-gestational-age newborns: follow-up through adolescence. *Pediatrics*. 1983;71(3):376-382.
- 146. Schulte S, Wolfle J, Schreiner F, et al. Birthweight Differences in Monozygotic Twins Influence Pubertal Maturation and Near Final Height. *J Pediatr*. 2016;170:282-288. doi:10.1016/j.jpeds.2015.12.020
- 147. Fledelius HC. Inhibited Growth and Development as Permanent Features of Low Birth Weight: A Longitudinal Study of Eye Size, Height, Head Circumference, Interpupillary Distance and Exophthalmometry, as Measured at Age of 10 and 18 Years. *Acta Paediatr Jpn.* 1982;71(4):645-650.
- 148. Prapas N, Bela E, Prapas I, Papanikolaou N, Prapas N, Papanikolaou N. Menarche in Greece (compared study of the population of Crete and Thrace). *Acta Eur Fertil*. 1989;20(5):315-319. doi:10.1177/0192513X12437708
- 149. Roberts DF, Wood W, Chinn S. Menarcheal age in Cumbria. Ann Hum Biol. 1986;13(2):161-170.
- 150. Stark O, Peckham CS, Moynihan C. Weight and age at menarche. *Arch Dis Child*. 1989;64(3):383-387. doi:10.1136/adc.64.3.383
- 151. Moisan J, Meyer F, Gingras S. A nested case-control study of the correlates of early menarche. *Am J Epidemiol.* 1990;132(5):953-961. doi:10.1093/oxfordjournals.aje.a115738
- 152. Jahanfar S, Lye M-S, Krishnarajah I. Genetic and environmental effects on age at menarche, and its relationship with reproductive health in twins. *Indian J Hum Genet*. 2013;19(2):245. doi:10.4103/0971-6866.116127
- 153. Krzyzanowska M, Mascie-Taylor CGN, Thalabard JC, Krzyżanowska M, Mascie-Taylor CGN, Thalabard JC. Biosocial correlates of age at menarche in a British cohort. *Ann Hum Biol.* 2016;43(3):235-240. doi:10.3109/03014460.2015.1059890
- 154. Bosch AM, Willekens FJ, Baqui AH, Van Ginneken JKS, Hutter I. Association between age at menarche and early-life nutritional status in rural Bangladesh. *J Biosoc Sci.* 2008;40(2):223-237. doi:10.1017/S0021932007002490
- 155. Trentham-Dietz A, Nichols HB, Remington PL, et al. Correlates of age at menarche among sixth grade students in Wisconsin. *WMJ*. 2005;104(7):65-69.
- 156. Gavela-Perez T, Garces C, Navarro-Sanchez P, et al. Earlier menarcheal age in Spanish girls is related with an increase in body mass index between pre-pubertal school age and adolescence. *Pediatr Obes.* 2015;10(6):410-415. doi:10.1111/ijpo.277
- 157. Cho GJ, Park HT, Shin JH, et al. Age at menarche in a Korean population: secular trends and influencing factors. *Eur J Pediatr.* 2010;169(1):89-94. doi:10.1007/s00431-009-0993-1
- 158. Chevalley T, Bonjour JP, Ferrari S, Rizzoli R. Pubertal timing and body mass index gain from birth to maturity in relation with femoral neck BMD and distal tibia microstructure in healthy female subjects. *Osteoporos Int.* 2011;22(10):2689-2698. doi:10.1007/s00198-011-1531-3
- 159. Opdahl S, Nilsen TIL, Romundstad PR, Vanky E, Carlsen SM, Vatten LJ. Association of size at birth with adolescent hormone levels, body size and age at menarche: Relevance for breast cancer risk. *Br J Cancer*. 2008;99(1):201-206. doi:10.1038/sj.bjc.6604449
- 160. Szwed A, Kosińska M, Kosinska M. Biological maturity at birth, the course of the subsequent ontogenetic stages and age at menarche. *HOMO- J Comp Hum Biol.* 2012;63(4):292-300. doi:10.1016/j.jchb.2012.01.003

- 161. D'Aloisio AA, DeRoo LA, Baird DD, et al. Prenatal and infant exposures and age at menarche. *Epidemiology*. 2013;24(2):277-284. doi:10.1097/EDE.0b013e31828062b7
- 162. Sørensen K, Juul A, Christensen K, et al. Birth size and age at menarche: A twin perspective. *Hum Reprod.* 2013;28(10):2865-2871. doi:10.1093/humrep/det283
- 163. Wells JC, Yao P, Williams JE, Gayner R. Maternal investment, life-history strategy of the offspring and adult chronic disease risk in South Asian women in the UK. *Evol Med Public Heal*. 2016;2016(1):133-145. doi:10.1093/emph/eow011
- Kelly Y, Zilanawala A, Sacker A, Hiatt R, Viner R. Early puberty in 11-year-old girls: Millennium Cohort Study findings. Arch Dis Child. 2017;102(3):232-237. doi:10.1136/archdischild-2016-310475
- 165. Epplein M, Novotny R, Daida Y, Vijayadeva V, Onaka AT, Marchand L Le. Association of maternal and intrauterine characteristics with age at menarche in a multiethnic population in Hawaii. *Cancer Causes Control.* 2010;21(2):259-268. doi:10.1007/s10552-009-9457-1
- 166. Wehkalampi K, Hovi P, Dunkel L, et al. Advanced pubertal growth spurt in subjects born preterm: the Helsinki study of very low birth weight adults. *J Clin Endocrinol Metab.* 2011;96(2):525-533. doi:10.1210/jc.2010-1523
- 167. Aurino E, Schott W, Penny ME, Behrman JR. Birth weight and prepubertal body size predict menarcheal age in India, Peru, and Vietnam. *Ann N Y Acad Sci.* 2017:107-116. doi:10.1111/nyas.13445
- 168. Reagan PB, Salsberry PJ, Fang MZ, Gardner WP, Pajer K. African-American/white differences in the age of menarche: Accounting for the difference. *Soc Sci Med.* 2012;75(7):1263-1270. doi:10.1016/j.socscimed.2012.05.018
- 169. Dossus L, Kvaskoff M, Bijon A, et al. Determinants of age at menarche and time to menstrual cycle regularity in the French E3N cohort. *Ann Epidemiol.* 2012;22(10):723-730. doi:10.1016/j.annepidem.2012.07.007
- 170. Meulenijzer E, Vyncke K, Labayen I, et al. Associations of early life and sociodemographic factors with menarcheal age in European adolescents. *Eur J Pediatr*. 2015;174(2):271-278. doi:10.1007/s00431-014-2376-5
- 171. Behie AM, O'Donnell MH. Prenatal smoking and age at menarche: Influence of the prenatal environment on the timing of puberty. *Hum Reprod.* 2015;30(4):957-962. doi:10.1093/humrep/dev033
- 172. Cooper C, Kuh D, Egger P, Wadsworth M, Barker D. Childhood growth and age at menarche. *Br J Obs.* 1996;103(8):814-817.
- 173. Koziel S, Jankowska EA. Effect of low versus normal birthweight on menarche in 14-year-old Polish girls. *J Paediatr Child Health.* 2002;38(3):268-271. doi:10.1046/j.1440-1754.2002.00793.x
- 174. Labayen I, Ortega FB, Moreno LA, et al. The effect of early menarche on later body composition and fat distribution in female adolescents: Role of birth weight. *Ann Nutr Metab.* 2009;54(4):313-320. doi:10.1159/000242441
- 175. Tam CS, de Zegher F, Garnett SP, Baur LA, Cowell CT. Opposing influences of prenatal and postnatal growth on the timing of menarche. *J Clin Endocrinol Metab.* 2006;91(11):4369-4373. doi:10.1210/jc.2006-0953
- 176. Morris DH, Jones ME, Schoemaker MJ, Ashworth A, Swerdlow AJ. Determinants of age at menarche in the UK: analyses from the Breakthrough Generations Study. *Br J Cancer*.

2010;103(11):1760-1764. doi:10.1038/sj.bjc.6605978

- 177. Blell M, Pollard TM, Pearce MS. Predictors of age at menarche in the Newcastle thousand families study. *J Biosoc Sci.* 2008;40(4):563-575. doi:10.1017/S0021932007002696
- 178. Persson I, Ahlsson F, Ewald U, Tuvemo T, Qingyuan M, Proos L. Influence of perinatal factors on the onset of puberty in boys and girls: implications for interpretation of link with risk of long term diseases. *Am J Epidemiol*. 1999;150(7):747-755. doi:10.1093/oxfordjournals.aje.a010077
- 179. Ruder EH, Hartman TJ, Rovine MJ, Dorgan JF. Birth characteristics and age at menarche: results from the dietary intervention study in children (DISC). *Cancer Causes Control.* 2010;21(9):1379-1386. doi:10.1007/s10552-010-9565-y
- 180. Oh CM, Oh IH, Choi KS, Choe BK, Yoon TY, Choi JM. Relationship between body mass index and early menarche of adolescent girls in Seoul. *J Prev Med Public Heal*. 2012;45(4):227-234. doi:10.3961/jpmph.2012.45.4.227
- 181. Zhang Z, Hartman TJ. Birth weight is associated with age at menarche in US girls. *Clin Pediatr* (*Phila*). 2014;53(1):82-85. doi:10.1177/0009922812470969
- 182. Amador M, Bacallao J, Hermelo M. Body mass index at different ages and its association with height at age 14 and with the whole growing process. *Nutrition*. 1996;12(6):416-422. doi:10.1016/S0899-9007(96)00097-4
- 183. Benefice E, Garnier D, Simondon KB, et al. Relationship between stunting in infancy and growth and fat distribution during adolescence in Senegalese girls. *Eur J Clin Nutr.* 2001;55(1):50-58. doi:10.1038/sj.ejcn.1601121
- 184. German A, Shmoish M, Hochberg Z. Predicting pubertal development by infantile and childhood height, BMI, and adiposity rebound. *Pediatr Res.* 2015;78(4):445-450. doi:10.1038/pr.2015.129
- 185. Aydin BK, Devecioglu E, Kadioglu A, et al. The relationship between infancy growth rate and the onset of puberty in both genders. *Pediatr Res.* 2017;82(6):940-946. doi:10.1038/pr.2017.194
- 186. Thomas F, Renaud F, Benefice E, de Meeus T, Guegan JF. International variability of ages at menarche and menopause: patterns and main determinants. *Hum Biol.* 2001;73(2):271-290. doi:10.1353/hub.2001.0029
- 187. Petersen ML, Sinisi SE, van der Laan MJ. Estimation of Direct Causal Effects. *Epidemiology*. 2006;17(3):276-284. doi:10.1097/01.ede.0000208475.99429.2d
- Berkey CS, Gardner JD, Frazier AL, Colditz GA, Lindsay Frazier A, Colditz GA. Relation of childhood diet and body size to menarche and adolescent growth in girls. *Am J Epidemiol.* 2000;152(5):446-452. doi:10.1093/aje/152.5.446
- 189. Salsberry PJ, Reagan PB, Pajer K. Growth Differences by Age of Menarche in African American and White Girls. *Nurs Res.* 2009;58(6):382-390. doi:10.1097/NNR.0b013e3181b4b921
- Mesa JMM, Martínez J, Araújo C, et al. Growth patterns in early childhood and the onset of menarche before age twelve. *Rev Saude Publica*. 2010;44(2):249-260. doi:10.1590/s0034-89102010000200004
- 191. Salgin B, Norris SA, Prentice P, et al. Even transient rapid infancy weight gain is associated with higher BMI in young adults and earlier menarche. *Int J Obes*. 2015;39(6):939-944. doi:10.1038/ijo.2015.25
- 192. Keyes KM, Smith GD, Susser E. On sibling designs. *Epidemiology*. 2013;24(3):473-474. doi:10.1097/EDE.0b013e31828c7381

- 193. Cole TJ. Presenting information on growth distance and conditional velocity in one chart: Practical issues of chart design. *Stat Med.* 1998;17(23):2697-2707. doi:10.1002/(SICI)1097-0258(19981215)17:23<2697::AID-SIM36>3.0.CO;2-O
- 194. Cole TJ. Modeling postnatal exposures and their interactions with birth size. *J Nutr*. 2004;134(1):201-204. doi:10.1093/jn/134.1.201
- 195. Wills AK, Strand BH, Glavin K, Silverwood RJ, Hovengen R. Regression models for linking patterns of growth to a later outcome: infant growth and childhood overweight. *BMC Med Res Methodol*. 2016;16:41. doi:10.1186/s12874-016-0143-1
- 196. Tu Y-K, Tilling K, Sterne JAC, Gilthorpe MS. A critical evaluation of statistical approaches to examining the role of growth trajectories in the developmental origins of health and disease. *Int J Epidemiol.* 2013;42(5):1327-1339. doi:10.1093/ije/dyt157
- 197. Haworth CMA, Plomin R, Carnell S, Wardle J. Childhood obesity: Genetic and environmental overlap with normal-range BMI. *Obesity*. 2008;16(7):1585-1590. doi:10.1038/oby.2008.240
- 198. Godfrey KM, Barker DJ. Fetal programming and adult health. *Public Health Nutr.* 2007;4(2b):611-624. doi:10.1079/PHN2001145
- 199. Russo J, Russo I. Biological and molecular bases of mammary carcinogenesis. *Lab Invest.* 1987;57(2):112-37.
- 200. Adami H-O, Persson I, Ekbom A, Wolk A, Ponten J, Trichopoulos D. The aetiology and pathogenesis of human breast cancer. *Mutat Res Mol Mech Mutagen*. 1995;333(1-2):29-35. doi:10.1016/0027-5107(95)00128-X
- 201. Russo J, Russo IH. Cellular basis of breast cancer susceptibility. Oncol Res. 1999;11(4):169-178.
- 202. Russo J, Russo IH. Development pattern of human breast and susceptibility to carcinogenesis. *Eur J Cancer Prev.* 1993;2 Suppl 3:85-100.
- 203. Howell KR, Powell TL, Campus AM. Effects of maternal obesity on placental function and fetal development. *Reproduction*. 2017;153(3):R97-R108. doi:10.1530/REP-16-0495.
- 204. Shalitin S, Phillip M. Role of obesity and leptin in the pubertal process and pubertal growth A review. *Int J Obes.* 2003;27(8):869-874. doi:10.1038/sj.ijo.0802328
- 205. Dundar B, Pirgon O, Sangun O, Doguc DK. Elevated Leptin Levels in Nonobese Girls With Premature Thelarche. *J Investig Med.* 2013;61(6):984-988. doi:10.2310/JIM.0b013e31829cbe20
- 206. Gavela-Pérez T, Navarro P, Soriano-Guillén L, Garcés C. High Prepubertal Leptin Levels Are Associated With Earlier Menarcheal Age. *J Adolesc Heal*. 2016;59(2):177-181. doi:10.1016/j.jadohealth.2016.03.042
- 207. Zambrano E, Ibáñez C, Martínez-Samayoa PM, Lomas-Soria C, Durand-Carbajal M, Rodríguez-González GL. Maternal Obesity: Lifelong Metabolic Outcomes for Offspring from Poor Developmental Trajectories During the Perinatal Period. *Arch Med Res.* 2016;47(1):1-12. doi:10.1016/j.arcmed.2016.01.004
- 208. Pinkney J, Streeter A, Hosking J, Mohammod M, Jeffery A, Wilkin T. Adiposity, chronic inflammation, and the prepubertal decline of sex hormone binding globulin in children: Evidence for associations with the timing of puberty (earlybird 58). *J Clin Endocrinol Metab.* 2014;99(9):3224-3232. doi:10.1210/jc.2013-3902
- 209. Catalano PM, Shankar K. Obesity and pregnancy: Mechanisms of short term and long term adverse consequences for mother and child. *BMJ*. 2017;360:j1. doi:10.1136/bmj.j1

- 210. Hanson M, Godfrey KM, Lillycrop KA, Burdge GC, Gluckman PD. Developmental plasticity and developmental origins of non-communicable disease: theoretical considerations and epigenetic mechanisms. *Prog Biophys Mol Biol.* 2011;106(1):272-280. doi:10.1016/j.pbiomolbio.2010.12.008
- 211. Jayasinghe Y, Cha R, Horn-Ommen J, O'Brien P, Simmons PS. Establishment of normative data for the amount of breast tissue present in healthy children up to two years of age. *J Pediatr Adolesc Gynecol*. 2010;23(5):305-311. doi:10.1016/j.jpag.2010.03.002
- 212. Chellakooty M, Schmidt IM, Haavisto AM, et al. Inhibin A, inhibin B, follicle-stimulating hormone, luteinizing hormone, estradiol, and sex hormone-binding globulin levels in 473 healthy infant girls. *J Clin Endocrinol Metab.* 2003;88(8):3515-3520. doi:10.1210/jc.2002-021468
- 213. Kuiri-Hanninen T, Sankilampi U, Dunkel L, Kuiri-Hänninen T, Sankilampi U, Dunkel L. Activation of the hypothalamic-pituitary-gonadal axis in infancy: minipuberty. *Horm Res pædiatrics*. 2014;82(2):73-80. doi:10.1159/000362414
- 214. Schmidt IM, Chellakooty M, Haavisto AM, et al. Gender difference in breast tissue size in infancy: correlation with serum estradiol. *Pediatr Res.* 2002;52(5):682-686. doi:10.1203/00006450-200211000-00012
- 215. Rerkasem K, Rattanatanyong P, Rerkasem A, et al. Higher Alu methylation levels in catch-up growth in twenty-year-old offsprings. *PLoS One*. 2015;10(3):e0120032. doi:10.1371/journal.pone.0120032
- 216. Temple IK, Clayton-Smith J, Mackay DJG. Chapter 9. Imprinting Disorders of Early Childhood. In: Michels KB, ed. *Epigenetic Epidemiology*. Springer Science & Business Media; 2012.
- 217. Esteller M. Epigenetics in cancer. *N Engl J Med.* 2008;358(11):1148-1159. doi:10.1056/NEJMra072067
- 218. Gluckman PD, Hanson MA, Cooper C, Thornburg KL. Effect of in utero and early-life conditions on adult health and disease. *N Engl J Med.* 2009;359(1):61-73. doi:10.1056/NEJMra0708473
- 219. Vickers MH. Early life nutrition, epigenetics and programming of later life disease. *Nutrients*. 2014;6(6):2165-2178. doi:10.3390/nu6062165
- 220. Cousminer DL, Berry DJ, Timpson NJ, et al. Genome-wide association and longitudinal analyses reveal genetic loci linking pubertal height growth, pubertal timing and childhood adiposity. *Hum Mol Genet.* 2013;22(13):2735-2747. doi:10.1093/hmg/ddt104
- 221. Day FR, Thompson DJ, Helgason H, et al. Genomic analyses identify hundreds of variants associated with age at menarche and support a role for puberty timing in cancer risk. *Nat Genet*. 2017;49(6):834-841. doi:10.1038/ng.3841
- 222. Ong KK, Northstone K, Wells JCK, et al. Earlier mother's age at menarche predicts rapid infancy growth and childhood obesity. *PLoS Med.* 2007;4(4):e132. doi:10.1371/journal.pmed.0040132
- 223. Hernández-Díaz S, Schisterman EF, Hernán MA. The Birth Weight "Paradox" Uncovered? *Am J Epidemiol.* 2006;164(11):1115-1120. doi:10.1093/aje/kwj275
- 224. Munthali RJ, Kagura J, Lombard Z, Norris SA. Early Life Growth Predictors of Childhood Adiposity Trajectories and Future Risk for Obesity: Birth to Twenty Cohort. *Child Obes*. 2017;13(5):chi.2016.0310. doi:10.1089/chi.2016.0310
- 225. Adair LS, Fall CHD, Osmond C, et al. Associations of linear growth and relative weight gain during early life with adult health and human capital in countries of low and middle income: Findings from five birth cohort studies. *Lancet.* 2013;382(9891):525-534. doi:10.1016/S0140-6736(13)60103-8

- 226. Freedman DS, Khan LK, Serdula MK, Dietz WH, Srinivasan SR, Berenson GS. Relation of age at menarche to race, time period, and anthropometric dimensions: the Bogalusa Heart Study. *Pediatrics*. 2002;110(4):e43. doi:10.1542/peds.110.4.e43
- 227. Weaver LT. Rapid growth in infancy: balancing the interests of the child. *J Pediatr Gastroenterol Nutr.* 2006;43(4):428-432. doi:10.1097/01.mpg.0000235977.59873.e0
- 228. Ong KK. Catch-up growth in small for gestational age babies: good or bad? *Curr Opin Endocrinol Diabetes Obes*. 2007;14(1):30-34. doi:10.1097/MED.0b013e328013da6c
- 229. Ben-Shlomo Y. A life course approach to chronic disease epidemiology: conceptual models, empirical challenges and interdisciplinary perspectives. *Int J Epidemiol*. 2002;31(2):285-293. doi:10.1093/ije/31.2.285
- Sagedal L, Øverby N, Bere E, et al. Lifestyle intervention to limit gestational weight gain: the Norwegian Fit for Delivery randomised controlled trial. BJOG An Int J Obstet Gynaecol. 2017;124(1):97-109. doi:10.1111/1471-0528.13862
- 231. Willcox J, Wilkinson S, Lappas M, et al. A mobile health intervention promoting healthy gestational weight gain for women entering pregnancy at a high body mass index: the txt4two pilot randomised controlled trial. *BJOG An Int J Obstet Gynaecol*. February 2017. doi:10.1111/1471-0528.14552
- 232. Haschke F, Ziegler EE, Grathwohl D. Fast growth of infants of overweight mothers: can it be slowed down? *Ann Nutr Metab.* 2014;64 Suppl 1:19-24. doi:10.1159/000360505
- 233. Johnson RH, Chien FL, Bleyer A. Incidence of Breast Cancer With Distant Involvement Among Women in the United States, 1976 to 2009. *JAMA*. 2013;309(8):800. doi:10.1001/jama.2013.776
- 234. Xue F, Michels KB. Intrauterine factors and risk of breast cancer: a systematic review and metaanalysis of current evidence. *Lancet Oncol.* 2007;8(12):1088-1100. doi:10.1016/S1470-2045(07)70377-7
- 235. Lof M, Hilakivi-Clarke L, Sandin S, Weiderpass E. Effects of pre-pregnancy physical activity and maternal BMI on gestational weight gain and birth weight. *Acta Obs Gynecol Scand*. 2008;87. doi:10.1080/00016340802012288
- 236. Colbert LH, Graubard BI, Michels KB, Willett WC, Forman MR. Physical Activity during Pregnancy and Age at Menarche of the Daughter. *Cancer Epidemiol Biomarkers Prev.* 2008;17(10):2656-2662. doi:10.1158/1055-9965.EPI-08-0194
- 237. Aghaee S, Laurent CA, Deardorff J, et al. Maternal Gestational Weight Gain, Obesity and the Timing of Pubertal Onset in Daughters. *Am J Epidemiol*. 2019. doi:10.1093/aje/kwz068 [Epub ahead of print]
- 238. Morris NM, Udry JR. Validation of a self-administered instrument to assess stage of adolescent development. *J Youth Adolesc*. 1980;9(3):271-280. doi:10.1007/BF02088471
- 239. Terry MB, Goldberg M, Schechter S, et al. Comparison of Clinical, Maternal, and Self Pubertal Assessments: Implications for Health Studies. *Pediatrics*. 2016;128(1):e20154571.
- 240. Petersen AC, Crockett L, Richards M, Boxer A. A self-report measure of pubertal status: Reliability, validity, and initial norms. *J Youth Adolesc*. 1988;17(2):117-133. doi:10.1007/BF01537962
- 241. Kuczmarski RJ, Ogden CL, Guo SS, et al. 2000 CDC Growth Charts for the United States: methods and development. *Vital Health Stat 11*. 2002;(246):1-190. http://www.ncbi.nlm.nih.gov/pubmed/12043359. Accessed October 26, 2017.

- 242. Hiatt RA, Stewart SL, Hoeft KS, et al. Childhood Socioeconomic Position and Pubertal Onset in a Cohort of Multiethnic Girls: Implications for Breast Cancer. *Cancer Epidemiol Biomarkers Prev.* 2017;26(12):1714-1721. doi:10.1158/1055-9965.epi-17-0496
- 243. Vanderweele TJ, Knol MJ. A Tutorial on Interaction. *Epidemiol Methods*. 2014;3(1):33-72. doi:10.1515/em-2013-0005
- 244. Walton KA, Murray LJ, Gallagher AM, Cran GW, Savage MJ, Boreham C. Parental recall of birthweight: a good proxy for recorded birthweight? *Eur J Epidemiol.* 2000;16(9):793-796. doi:10.1023/A:100762503050
- 245. Liu J, Tuvblad C, Li L, Raine A, Baker LA. Medical record validation of maternal recall of pregnancy and birth events from a twin cohort. *Twin Res Hum Genet*. 2013;16(4):845-860. doi:10.1017/thg.2013.31
- 246. Johnson TS, Engstrom JL, Warda JA, Kabat M, Peters B. Reliability of length measurements in full-term neonates. *J Obstet Gynecol Neonatal Nurs*. 1998;27(3):270-276. doi:10.1111/j.1552-6909.1998.tb02649.x
- 247. Johnson TS, Engstrom JL, Haney SL, Mulcrone SL. Reliability of three length measurement techniques in term infants. *Pediatr Nurs*. 1999;25(1):13-17.
- 248. Heerman WJ, Bian A, Shintani A, Barkin SL. Interaction between maternal prepregnancy body mass index and gestational weight gain shapes infant growth. *Acad Pediatr*. 14(5):463-470. doi:10.1016/j.acap.2014.05.005
- 249. Li N, Liu E, Guo J, et al. Maternal Prepregnancy Body Mass Index and Gestational Weight Gain on Offspring Overweight in Early Infancy. Lee JE, ed. *PLoS One*. 2013;8(10):e77809. doi:10.1371/journal.pone.0077809
- 250. Terry MB, Wei Y, Esserman D, McKeague IW, Susser E. Pre- and postnatal determinants of childhood body size: cohort and sibling analyses. *J Dev Orig Health Dis.* 2011;2(02):99-111. doi:10.1017/S2040174411000067
- 251. Hilakivi-Clarke L, Onojafe I, Raygada M, Cho E, Clarke R, Lippman ME. Breast cancer risk in rats fed a diet high in n-6 polyunsaturated fatty acids during pregnancy. *J Natl Cancer Inst.* 1996;88. doi:10.1093/jnci/88.24.1821
- 252. Petridou E, Katsouyanni K, Hsieh CC, Antsaklis A, Trichopoulos D. Diet, pregnancy estrogens and their possible relevance to cancer risk in the offspring. *Oncology*. 1992;49. doi:10.1159/000227025
- 253. Faupel-Badger JHRNM, Hoover RN, Potischman N, Roberts JM, Troisi R. Pregnancy weight gain is not associated with maternal or mixed umbilical cord estrogen and androgen concentrations. *Cancer Causes Control.* 2009;20(2):263-267. doi:10.1007/s10552-008-9235-5
- 254. Logan CA, Bornemann R, Koenig W, et al. Gestational Weight Gain and Fetal-Maternal Adiponectin, Leptin, and CRP: results of two birth cohorts studies. *Sci Rep.* 2017;7(41847). doi:10.1038/srep41847
- 255. Rifas-Shiman SL, Fleisch A, Hivert M-F, Mantzoros C, Gillman MW, Oken E. First and second trimester gestational weight gains are most strongly associated with cord blood levels of hormones at delivery important for glycemic control and somatic growth. *Metabolism.* 2017;69:112-119. doi:10.1016/j.metabol.2017.01.019
- 256. Mudd LM, Evenson KR. Review of impacts of physical activity on maternal metabolic health during pregnancy. *Curr Diab Rep.* 2015;15(2):6. doi:10.1007/s11892-014-0572-3
- 257. Bradbury AR, Patrick-Miller L, Schwartz L, et al. Psychosocial Adjustment in School-age Girls With

a Family History of Breast Cancer. Pediatrics. 2015;136(5):927-937. doi:10.1542/peds.2015-0498

- 258. Houghton LC, Knight JA, De Souza MJ, et al. Comparison of methods to assess onset of breast development in the LEGACY Girls Study: methodological considerations for studies of breast cancer. *Breast Cancer Res.* 2018;20(1):33. doi:10.1186/s13058-018-0943-9
- 259. Kaplowitz PB. Link between body fat and the timing of puberty. *Pediatrics*. 2008;121 Suppl:S208-17. doi:10.1542/peds.2007-1813F
- 260. Centers for Disease Control and Prevention. A SAS Program for the WHO Growth Charts (ages 0 to < 2 years). https://www.cdc.gov/nccdphp/dnpao/growthcharts/resources/sas-who.htm. Published 2017. Accessed November 19, 2017.</p>
- 261. Centers for Disease Control and Prevention. A SAS Program for the 2000 CDC Growth Charts (ages 0 to <20 years). https://www.cdc.gov/nccdphp/dnpao/growthcharts/resources/sas.htm. Published 2016. Accessed November 19, 2017.
- 262. de Onis M, Garza C, Onyango AW, Borghi E. Comparison of the WHO Child Growth Standards and the CDC 2000 Growth Charts. *J Nutr.* 2018;137(1):144-148. doi:10.1093/jn/137.1.144
- 263. Ong KK, Petry CJ, Emmett PM, et al. Insulin sensitivity and secretion in normal children related to size at birth, postnatal growth, and plasma insulin-like growth factor-I levels. *Diabetologia*. 2004;47(6):1064-1070. doi:10.1007/s00125-004-1405-8
- 264. Johnson L, van Jaarsveld CHM, Llewellyn CH, Cole TJ, Wardle J. Associations between infant feeding and the size, tempo and velocity of infant weight gain: SITAR analysis of the Gemini twin birth cohort. *Int J Obes (Lond)*. 2014;38(7):980-987. doi:10.1038/ijo.2014.61
- 265. Emmett PM, Jones LR. Diet and growth in infancy: relationship to socioeconomic background and to health and development in the Avon Longitudinal Study of Parents and Children. *Nutr Rev.* 2014;72(8):483-506. doi:10.1111/nure.12122
- 266. Kramer MS, Moodie EEM, Dahhou M, Platt RW. Breastfeeding and infant size: Evidence of reverse causality. *Am J Epidemiol*. 2011;173(9):978-983. doi:10.1093/aje/kwq495
- 267. Ronque ERV, Werneck AO, Bueno MRO, Cyrino ES, Stanganelli LCR, Arruda M. Tracking of body adiposity indicators from childhood to adolescence: Mediation by BMI. *PLoS One.* 2018;13(2):1-11. doi:10.1371/journal.pone.0191908
- 268. Evensen E, Wilsgaard T, Furberg AS, Skeie G. Tracking of overweight and obesity from early childhood to adolescence in a population-based cohort the Tromsø Study, Fit Futures. *BMC Pediatr.* 2016;16(1):1-11. doi:10.1186/s12887-016-0599-5
- 269. Weuve J, Tchetgen Tchetgen EJ, Glymour MM, et al. Accounting for bias due to selective attrition: The example of smoking and cognitive decline. *Epidemiology*. 2012;23(1):119-128. doi:10.1002/(SICI)1099-1077(199709/10)12:5<467::AID-HUP908>3.0.CO;2-X
- 270. Novotny R, Daida YG, Grove JS, Acharya S, Vogt TM. Formula feeding in infancy is associated with adolescent body fat and earlier menarche. *Cell Mol Biol (Nosiy-le-grand)*. 2003;49(8):1289-1293.
- 271. Kwok MK, Leung GM, Lam TH, Schooling CM. Breastfeeding, childhood milk consumption, and onset of puberty. *Pediatrics*. 2012;130(3):e631-9. doi:10.1542/peds.2011-3697
- 272. Dewey KG. Growth Characteristics of Breast-Fed Compared to Formula-Fed Infants. *Biol Neonate*. 1998;74(2):94-105. doi:10.1159/000014016
- 273. Yan J, Liu L, Zhu Y, Huang G, Wang PP. The association between breastfeeding and childhood

obesity: a meta-analysis. BMC Public Health. 2014;14:1267. doi:10.1186/1471-2458-14-1267

- 274. Gillman MW. Commentary: breastfeeding and obesity--the 2011 Scorecard. Int J Epidemiol. 2011;40(3):681-684. doi:10.1093/ije/dyr085
- 275. Kramer MS, Matush L, Vanilovich I, et al. Effects of prolonged and exclusive breastfeeding on child height, weight, adiposity, and blood pressure at age 6.5 y: evidence from a large randomized trial. *Am J Clin Nutr.* 2007;86(6):1717-1721. doi:10.1093/ajcn/86.5.1717
- 276. Daniels L, Mallan KM, Fildes A, Wilson J. The timing of solid introduction in an "obesogenic" environment: A narrative review of the evidence and methodological issues. *Aust N Z J Public Health*. 2015;39(4):366-373. doi:10.1111/1753-6405.12376
- 277. DiMaggio DM, Cox A, Porto AF. Updates in Infant Nutrition. *Pediatr Rev.* 2017;38(10):449-462. doi:10.1542/pir.2016-0239
- 278. Parkin DM, Khlat M. Studies of cancer in migrants: rationale and methodology. *Eur J Cancer*. 1996;32A(5):761-771. doi:10.1016/0959-8049(96)00062-7
- 279. John EM. Migration History, Acculturation, and Breast Cancer Risk in Hispanic Women. *Cancer Epidemiol Biomarkers Prev.* 2005;14(12):2905-2913. doi:10.1158/1055-9965.EPI-05-0483
- 280. Hilakivi-Clarke L, Clarke R, Onojafe I, Raygada M, Cho E, Lippman M. A maternal diet high in n 6 polyunsaturated fats alters mammary gland development, puberty onset, and breast cancer risk among female rat offspring. *Proc Natl Acad Sci USA*. 1997;94. doi:10.1073/pnas.94.17.9372
- 281. Widen E, Ripatti S, Cousminer DL, et al. Distinct variants at LIN28B influence growth in height from birth to adulthood. *Am J Hum Genet*. 2010;86(5):773-782. doi:10.1016/j.ajhg.2010.03.010
- 282. Cousminer DL, Widén E, Palmert MR. The genetics of pubertal timing in the general population. *Curr Opin Endocrinol Diabetes Obes*. 2016;23(1):57-65. doi:10.1097/MED.00000000000213
- 283. Kuiri-Hänninen T, Haanpää M, Turpeinen U, et al. Postnatal Ovarian Activation Has Effects in Estrogen Target Tissues in Infant Girls. *J Clin Endocrinol Metab.* 2013;98(12):4709-4716. doi:10.1210/jc.2013-1677
- 284. Forman MR, Cantwell MM, Ronckers C, Zhang Y. Through the Looking Glass at Early-Life Exposures and Breast Cancer Risk. *Cancer Invest.* 2005;23(7):609-624. doi:10.1080/07357900500283093
- 285. Ogland B, Nilsen ST, Forman MR, Vatten LJ. Pubertal development in daughters of women with pre-eclampsia. *Arch Dis Child*. 2011;96(8):740-743. doi:10.1136/adc.2009.178434
- Schooling CM, Houghton LC, Terry MB. Potential Intervention Targets in Utero and Early Life for Prevention of Hormone Related Cancers. *Pediatrics*. 2016;138(Supplement):S22-S33. doi:10.1542/peds.2015-4268E
- 287. Berkey CS, Frazier AL, Gardner JD, Colditz GA. Adolescence and breast carcinoma risk. Cancer. 1999;85(11):2400-2409. doi: 10.1002/(sici)1097-0142(19990601)85:11<2400::aidcncr15>3.0.co;2-o
- 288. Copeland KC, Chernausek S. Mini-Puberty and Growth. *Pediatrics*. 2016;138(1):e20161301. doi:10.1542/peds.2016-1301
- 289. Löfqvist C, Andersson E, Gelander L, et al. Reference Values for IGF-I throughout Childhood and Adolescence: A Model that Accounts Simultaneously for the Effect of Gender, Age, and Puberty. *J Clin Endocrinol Metab.* 2001;86(12):5870-5876. doi:10.1210/jcem.86.12.8117

- 290. Kiviranta P, Kuiri-Hänninen T, Saari A, Lamidi M-L, Dunkel L, Sankilampi U. Transient Postnatal Gonadal Activation and Growth Velocity in Infancy. *Pediatrics*. 2016;138(1):e20153561. doi:10.1542/peds.2015-3561
- 291. Werner H, Weinstein D, Bentov I. Similarities and differences between insulin and IGF-I: structures, receptors, and signalling pathways. *Arch Physiol Biochem*. 2008;114(1):17-22. doi:10.1080/13813450801900694
- 292. Friedrich N, Wolthers OD, Arafat AM, et al. Age- and sex-specific reference intervals across life span for insulin-like growth factor binding protein 3 (igfbp-3) and the igf-i to igfbp-3 ratio measured by new automated chemiluminescence assays. *J Clin Endocrinol Metab.* 2014;99(5):1675-1686. doi:10.1210/jc.2013-3060
- 293. Boere-Boonekamp MM, Vlasblom E, L'Hoir MP, et al. Relationship between socioeconomic status and weight gain during infancy: The BeeBOFT study. *PLoS One*. 2018;13(11):e0205734. doi:10.1371/journal.pone.0205734
- 294. Key TJ, Appleby PN, Reeves GK, et al. Insulin-like growth factor 1 (IGF1), IGF binding protein 3 (IGFBP3), and breast cancer risk: pooled individual data analysis of 17 prospective studies. *Lancet Oncol.* 2010;11(6):530-542. doi:10.1016/S1470-2045(10)70095-4
- 295. Lukanova A, Toniolo P, Akhmedkhanov A, et al. A cross-sectional study of IGF-I determinants in women. *Eur J Cancer Prev.* 2001;10(5):443-452. doi:10.1097/00008469-200110000-00008
- 296. Vidal AC, Murtha AP, Murphy SK, et al. Maternal BMI, IGF-I Levels, and Birth Weight in African American and White Infants. *Int J Pediatr*. 2013;2013:1-7. doi:10.1155/2013/191472
- 297. Elhddad ASA, Lashen H. Fetal growth in relation to maternal and fetal IGF-axes: a systematic review and meta-analysis. *Acta Obstet Gynecol Scand*. 2013;92(9):997-1006. doi:10.1111/aogs.12192
- 298. Ong K, Kratzsch J, Kiess W, Costello M, Scott C, Dunger D. Size at birth and cord blood levels of insulin, insulin-like growth factor I (IGF-I), IGF-II, IGF-binding protein-1 (IGFBP-1), IGFBP-3, and the soluble IGF-II/mannose-6-phosphate receptor in term human infants. The ALSPAC Study Team. Avon Longitudinal Stu. *J Clin Endocrinol Metab.* 2000;85(11):4266-4269. doi:10.1210/jcem.85.11.6998
- 299. Skalkidou A, Petridou E, Papathom E, Salvanos H, Chrousos G, Trichopoulos D. Birth size and neonatal levels of major components of the IGF system: Implications for later risk of cancer. *J Pediatr Endocrinol Metab.* 2002;15(9):1479-1486. doi:10.1515/JPEM.2002.15.9.1479
- 300. Chellakooty M, Juul A, Boisen KA, et al. A prospective study of serum insulin-like growth factor I (IGF-I) and IGF-binding protein-3 in 942 healthy infants: Associations with birth weight, gender, growth velocity, and breastfeeding. *J Clin Endocrinol Metab.* 2006;91(3):820-826. doi:10.1210/jc.2005-0950
- 301. Madsen AL, Larnkjær A, Mølgaard C, Michaelsen KF. IGF-I and IGFBP-3 in healthy 9month old infants from the SKOT cohort: Breastfeeding, diet, and later obesity. *Growth Horm IGF Res.* 2011;21(4):199-204. doi:10.1016/j.ghir.2011.05.003
- 302. Ong K, Kratzsch J, Kiess W, Dunger D. Circulating IGF-I levels in childhood are related to both current body composition and early postnatal growth rate. J Clin Endocrinol Metab. 2002;87(3):1041-1044. doi:10.1210/jcem.87.3.8342
- 303. Fall CHD, Pndit AN, Law CM, et al. Size at birth and plasma insulin-like growth factor-1 concentrations. *Arch Dis Child*. 1995;73(4):287-293. doi:10.1136/adc.73.4.287
- 304. Garnett S, Cowell CT, Bradford D, et al. Effects of Gender, Body Composition and Birth Size on

IGF-I in 7- and 8-Year-Old Children. *Horm Res Paediatr.* 2003;52(5):221-229. doi:10.1159/000023465

- 305. Estourgie-van Burk GF, Bartels M, Boomsma DI. A twin-sibling study on early growth and hormone levels in adolescents. *Behav Genet.* 2015;45(3):283-293. doi:10.1007/s10519-014-9697-z
- 306. Thankamony A, Ong KK, Ahmed ML, Ness AR, Holly JM, Dunger DB. Higher levels of IGF-I and adrenal androgens at age 8 years are associated with earlier age at menarche in girls. *J Clin Endocrinol Metab.* 2012;97(5):E786-90. doi:10.1210/jc.2011-3261
- 307. Cole TJ, Ahmed ML, Preece MA, Hindmarsh P, Dunger DB. The relationship between Insulin-like Growth Factor 1, sex steroids and timing of the pubertal growth spurt. *Clin Endocrinol (Oxf)*. 2015;82(6). doi:10.1111/cen.12682
- 308. Lofqvist C, Andersson E, Gelander L, et al. Reference values for insulin-like growth factor-binding protein-3 (IGFBP-3) and the ratio of insulin-like growth factor-I to IGFBP-3 throughout childhood and adolescence. *J Clin Endocrinol Metab.* 2005;90(3):1420-1427. doi:10.1210/jc.2004-0812
- 309. Jaspers M, de Meer G, Verhulst FC, Ormel J, Reijneveld SA. Limited validity of parental recall on pregnancy, birth, and early childhood at child age 10 years. *J Clin Epidemiol.* 2010;63(2):185-191. doi:10.1016/j.jclinepi.2009.05.003
- 310. Rice F, Lewis A, Harold G, et al. Agreement between maternal report and antenatal records for a range of pre and peri-natal factors: the influence of maternal and child characteristics. *Early Hum Dev.* 2007;83(8):497-504. doi:10.1016/j.earlhumdev.2006.09.015
- 311. Chin HB, Baird DD, McConnaughey DR, Weinberg CR, Wilcox AJ, Jukic AM. Long-term recall of pregnancy-related events. *Epidemiology*. 2017;28(4):575-579. doi:10.4102/ajlm.v4i1.277.Use
- 312. Drake P, Driscolll AK, Mathews TJ. *Cigarette Smoking during Pregnancy: United States, 2016. NCHS Data Brief, No 305.* Hyattsville, MD; 2018. https://www.cdc.gov/nchs/data/databriefs/db305.pdf.
- 313. Susser E, Eide MG, Begg M. Invited commentary: The use of sibship studies to detect familial confounding. *Am J Epidemiol*. 2010;172(5):537-539. doi:10.1093/aje/kwq196
- Baron RM, Kenny DA. The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. *J Pers Soc Psychol.* 1986;51(6):1173-1182. doi:10.1037/0022-3514.51.6.1173
- 315. Howe LD, Smith AD, Macdonald-Wallis C, et al. Relationship between mediation analysis and the structured life course approach. *Int J Epidemiol*. 2016;45(4):1280-1294. doi:10.1093/ije/dyw254
- 316. Mendle J, Turkheimer E, Emery RE. Detrimental Psychological Outcomes Associated with Early Pubertal Timing in Adolescent Girls. *Dev Rev.* 2007;27(2):151-171. doi:10.1016/j.dr.2006.11.001
- 317. Woo Baidal JA, Locks LM, Cheng ER, Blake-Lamb TL, Perkins ME, Taveras EM. Risk Factors for Childhood Obesity in the First 1,000 Days. *Am J Prev Med.* 2016;50(6):761-779. doi:10.1016/j.amepre.2015.11.012
- 318. Biro FM, Pajak A, Wolff MS, et al. Age of Menarche in a Longitudinal US Cohort. *J Pediatr Adolesc Gynecol.* 2018;31(4):339-345. doi:10.1016/j.jpag.2018.05.002

# Appendices

## Appendix A Protocol for systematic review on early-life body size and pubertal timing in girls

#### Updated 11/27/2018

Title: Size and growth during early life and pubertal timing in girls: a systematic review

Review team: Mandy Goldberg (primary reviewer) and Sabine Oskar (secondary reviewer)

**Objective:** To systematically review the published literature in order to summarize the literature regarding size and growth during early life and pubertal timing and its implications for breast cancer risk.

- a. Identify studies that have examined the association(s) between maternal body size characteristics, including maternal pre-pregnancy BMI and gestational weight gain, birth size and/or size or growth during infancy (from birth to age 2 years) and the timing of pubertal development in girls
- b. Identify sources of heterogeneity in study-specific estimates

#### Search strategy:

Identify and review all published peer-reviewed studies that meet the criteria below:

#### Eligibility criteria

- Date: Article published between January 1, 1970 and present
- Language: English
- Main outcome is normal breast development, menarche or tempo between these two events

#### Exclusion criteria

- Non-humans
- Males only or both sexes without sex-stratified results
- Study population comprised of children with diseases that would affect pubertal development, such as endocrine disorders, or selected for precocious puberty
- Study population comprised of children with diseases that affect growth, such as pediatric cancers, CF, etc.
- Outcome is central or peripheral precocious puberty (puberty before age 8 years in females)
- Outcome is a pubertal event other than breast development or menarche: adrenarche, pubarche, pubertal growth spurt, etc.
- Body size and/or growth measured after age 2 years only
- Case study/series (N<10, descriptive)

I will also exclude studies if reviews, editorials, discussion papers, or conference abstracts.

Search databases

- PubMed

Search terms

I will conduct the database searches using search terms relating to the outcome, exposure and time period of interest:

# PubMed:

"puberty"[MeSH Terms] OR "puberty"[All Fields] OR pubertal[All Fields] OR "pubertal onset"[All Fields] OR "pubertal development"[All Fields] OR "sexual maturation"[All Fields] OR "pubertal timing"[All Fields] OR "pubertal tempo" [All Fields] OR ("menarche"[MeSH Terms] OR "menarche"[All Fields]) OR ("menstruation"[MeSH Terms] OR "menstruation"[All Fields] OR "menses"[All Fields]) OR ("menstruation"[All Fields] OR "menses"[All Fields]) OR "menses"[All Fields] OR "menses"[All Fields]] OR "menses"[All Fields] OR "menses"[All Fields] OR "menses"[All Fields]] OR "menses]] OR "menses"[All Fields]] OR "menses]] O

# AND

Weight OR height OR length OR "ponderal index" or "body mass index" OR BMI OR obese OR obesity OR overweight OR adiposity OR growth OR "weight gain" OR "height gain"

# AND

mother OR birth OR maternal OR prenatal OR pregnancy OR "in utero" OR fetal OR infant OR infancy OR postnatal OR "early life" OR early-life OR childhood

# Title and abstract screening:

I will conduct the literature searches in PubMed and Google Scholar and download the results into Endnote in order to remove duplicates.

After duplicate removal, I will export the list of studies to Excel. I will screen the titles and abstracts of the identified articles and classify the articles into 3 categories:

- May be eligible; read full paper
- Unclear if eligible; read full paper
- Not eligible

Reasons for exclusion will be documented. A second reviewer (SO) will independently screen the titles and abstracts of a random 10% of the retrieved articles.

# Full paper screening:

One reviewer (MG) will read the full papers for abstracts categorized as "may be eligible" or "unclear if eligible" to determine final eligibility for inclusion based on eligibility and exclusion criteria listed above. Reasons for exclusion will be documented.

# Data Extraction:

One reviewer (MG) will extract the following information for exposures and outcomes of interest from all studies that meet the inclusion criteria: author(s), publication year, study design, sample size, study setting and time frame, age range of participants, exposure assessment, outcome assessment, covariate information, statistical methods, results (effect estimates and confidence intervals), conclusions and sources of bias.

One reviewer (MG) will also search reference lists of included articles and relevant systematic reviews for additional relevant articles.

### Data Quality:

One reviewer (MG) will assess the quality of included studies by using the NIH Quality Assessment Tool for Observational and Cohort Studies and the Newcastle-Ottawa Quality Assessment Scales for Cohort and Case Control Studies.

Copies of these quality assessment tools are available at:

NIH NHLBI Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies: https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools

Newcastle-Ottawa Quality Assessment Scale: http://www.ohri.ca/programs/clinical\_epidemiology/oxford.asp

# Appendix B Supplemental tables for Chapter 2

# Supplemental Table 2.1. Studies of maternal pre-pregnancy BMI, weight and gestational weight gain and the timing of breast development

| Author,<br>Location,<br>Year            | Study<br>Design       | Study<br>Population (N,<br>Age range,<br>Name)                                                                                                                                                                            | Exposure                                                                                                                                       | Exposure<br>source                                                                  | Outcome                                                        | Outcome<br>source                                                                                                                                                                                                                          | Statistical method                                                                                                                                                                                         | Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Covariates                                                                                                                                        |
|-----------------------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Vandeloo,<br>2007,<br>Belgium           | Cross-<br>sectional   | 1146 girls<br>Mean age=12.8<br>years<br>Girls recruited in<br>second year of<br>secondary<br>school from 10<br>centres of<br>Medical School<br>Supervision<br>(MSS) in Belgian<br>Limburg in 1999-<br>2000 school year    | Weight of the<br>mother at the<br>beginning of<br>pregnancy,<br>continuous<br>(units not<br>stated)                                            | Not stated                                                                          | Age at breast<br>development<br>(Tanner<br>stage 2 or<br>more) | Not stated                                                                                                                                                                                                                                 | Cox regression<br>model for age at<br>onset of breast<br>development<br>(RR>1 indicates<br>earlier breast<br>development)                                                                                  | RR = 1.013, 95%<br>CI=1.006, 1.021                                                                                                                                                                                                                                                                                                                                                                                                                                                          | None<br>*Results for<br>maternal pre-<br>pregnancy<br>weight were not<br>shown for<br>multivariable<br>model                                      |
| Maisonet,<br>2010,<br>United<br>Kingdom | Prospective<br>cohort | 2661 singleton<br>girls with<br>consistent<br>pubertal staging<br>and prenatal<br>data<br>Age 8-14 years<br>at follow-up<br>Avon<br>Longitudinal<br>Study of Parent<br>and Children,<br>born April 1991-<br>December 1992 | Maternal<br>pre-<br>pregnancy<br>BMI,<br>categorized:<br>Underweight:<br><18.5<br>Normal:<br>18.5-24.9<br>Overweight:<br>25-29.9<br>Obese: ≥30 | Self-<br>reported<br>pre-<br>pregnancy<br>BMI from<br>mother<br>during<br>pregnancy | Age at<br>transition to<br>Breast<br>Tanner stage<br>≥2 or ≥3  | Breast<br>Tanner<br>stage<br>reported by<br>girls or<br>mothers at<br>repeated<br>pubertal<br>self-<br>assessment<br>s between<br>8-14 years<br>of age<br>*Girls with<br>inconsistent<br>responses<br>were<br>excluded<br>from<br>analyses | Interval-censored<br>parametric survival<br>model for age at<br>transition to breast<br>Tanner stage ≥2<br>or ≥3 assuming a<br>normal distribution<br>(Diff <0 indicates<br>earlier breast<br>development) | Adjusted difference in<br>median age at<br>transition to breast<br>Tanner stage $\geq 2$ :<br>Underweight: Diff=0.14,<br>95% Cl= -0.16, 0.43<br>Normal: referent<br>Overweight: Diff= -0.4,<br>95% Cl= -0.62, -0.25<br>Obese: Diff= -0.70,<br>95% Cl= -1.00, -0.40<br>Breast Tanner stage<br>$\geq 3$ :<br>Underweight: Diff= -<br>0.05, 95% Cl - 0.30,<br>0.20<br>Normal: referent<br>Overweight: Diff= -<br>0.41, 95% Cl= -0.56, -<br>0.25<br>Obese: Diff= -0.50,<br>95% Cl= -0.75, -0.25 | Maternal age at<br>menarche,<br>previous live<br>births, smoking<br>during<br>pregnancy,<br>maternal age at<br>delivery,<br>maternal<br>education |

| Christense<br>n, 2010,<br>United<br>Kingdom | Prospective<br>cohort | 3938 singleton<br>girls with<br>consistent<br>pubertal staging<br>and prenatal<br>data<br>Age 8-14 years<br>at follow-up<br>Avon<br>Longitudinal<br>Study of Parent<br>and Children,<br>born April 1991-<br>December 1992<br>386 girls with<br>maternal BMI<br>data | Maternal<br>pre-<br>pregnancy<br>BMI,<br>categorized:<br><18.5<br>18.5-24.9<br>25-29.9<br>≥30 | Self-<br>reported<br>pre-<br>pregnancy<br>BMI from<br>mother<br>during<br>pregnancy                                    | Breast<br>Tanner stage                                                                                                  | Breast<br>Tanner<br>stage<br>reported by<br>girls or<br>mothers at<br>repeated<br>pubertal<br>self-<br>assessment<br>s between<br>8-14 years<br>of age<br>*Girls with<br>inconsistent<br>responses<br>were<br>excluded<br>from<br>analyses | Ordinal probit<br>models for<br>progression<br>through Tanner<br>stages of breast<br>development, using<br>repeated breast<br>Tanner<br>assessments ( $\beta$ >0<br>indicates increased<br>probability of being<br>in higher Tanner<br>stage - earlier<br>development) | Coefficients from<br>ordinal probit model for<br>progression through<br>breast stages:<br><18.5: $\beta$ = -0.03,<br>SE=0.09, p=0.65<br>18.5-24.9: referent<br>25.0-29.9: $\beta$ =0.11,<br>SE=0.06, p=0.05<br>≥30: $\beta$ = 0.26 SE=0.09,<br>p=0.004<br>Without adjusting for<br>girl's BMI, there was an<br>interaction between<br>girl's age and maternal<br>BMI - "increasing age<br>dampened the effect of<br>overweight maternal<br>BMI" (data not shown) | Age, daughter's<br>BMI, mother's<br>age at<br>menarche, child<br>ethnic<br>background,<br>birth order,<br>interaction<br>between age<br>and daughter's<br>BMI |
|---------------------------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Kubo,<br>2016,<br>United<br>States          | Prospective<br>cohort | Age 12-14 years<br>at follow-up<br>Cohort Study of<br>Young Girls'<br>Nutrition,<br>Environment and<br>Transitions<br>(CYGNET), girls<br>enrolled in 2005-<br>2006 from Kaiser<br>Permanente<br>Northern<br>California at<br>ages 6-8 years                         | Maternal<br>pregravid<br>BMI,<br>categorized:<br><25<br>25-<30<br>≥30                         | Self-<br>reported<br>pre-<br>pregnancy<br>weight and<br>height data<br>from<br>CYGNET<br>baseline<br>questionnair<br>e | Onset of<br>breast<br>development<br>, defined as<br>Tanner stage<br>2 or above,<br>vs. no onset<br>(Tanner<br>stage 1) | Assessed<br>by trained<br>research<br>personnel<br>at annual<br>follow-up<br>visit                                                                                                                                                         | Weibull parametric<br>survival model for<br>age at transition to<br>breast Tanner<br>stage ≥2,<br>accommodating<br>left, right and<br>interval censoring<br>(TR <1 and HR>1<br>indicates earlier<br>breast<br>development)                                             | Time ratios and hazard<br>ratios for transition to<br>breast Tanner stage<br>$\geq$ 2:<br><25: Referent<br>25-<30: TR=0.99, 95%<br>CI= 0.96, 1.02;<br>HR=1.15, 95% CI=<br>0.85, 1.56<br>$\geq$ 30: TR=1.00, 95%<br>CI=0.97, 1.04;<br>HR=0.96 (0.6, 1.39)<br>P for trend = 0.57 for<br>TR; 0.78 for HR                                                                                                                                                            | Race/ethnicity,<br>household<br>income and<br>maternal age at<br>menarche                                                                                     |

|         |             |                              |                  | Self-<br>reported         |                           |                          |                                  |                           |                    |
|---------|-------------|------------------------------|------------------|---------------------------|---------------------------|--------------------------|----------------------------------|---------------------------|--------------------|
|         |             |                              |                  | pre-                      |                           |                          |                                  | Pre-pregnancy BMI,        |                    |
|         |             |                              |                  | pregnancy                 |                           |                          |                                  | continuous:               |                    |
|         |             |                              |                  | weight and                |                           |                          |                                  | Total effect from linear  |                    |
|         |             |                              |                  | height by                 |                           |                          |                                  | regression for age at     |                    |
|         |             |                              |                  | mother on                 |                           |                          |                                  | thelarche:                |                    |
|         |             |                              |                  | questionnair              |                           |                          |                                  | β=-0.77, 95% Cl= -        |                    |
|         |             |                              |                  | e in early                |                           |                          |                                  | 0.93, -0.60               |                    |
|         |             |                              |                  | pregnancy                 |                           |                          |                                  |                           |                    |
|         |             |                              |                  |                           |                           |                          |                                  | Direct effect from linear |                    |
|         |             |                              |                  | GWG                       |                           |                          |                                  | regression for age at     |                    |
|         |             |                              |                  | calculated                |                           |                          |                                  | thelarche, controlling    |                    |
|         |             |                              |                  | from last                 |                           |                          |                                  | for pre-pubertal BMI as   | Maternal age at    |
|         |             |                              |                  | weight                    |                           |                          |                                  | a mediator:               | delivery,          |
|         |             |                              |                  | measured                  |                           |                          |                                  | β=-0.37, 95% CI= -        | daughter's         |
|         |             | 2942 singleton               |                  | by midwives               |                           | _                        |                                  | 0.54, -0.21               | ethnicity, parity, |
|         |             | girls with age at            |                  | from                      |                           | Breast                   |                                  |                           | maternal           |
|         |             | thelarche and                |                  | obstetric                 |                           | Tanner                   |                                  | Gestational weight gain   | smoking during     |
|         |             | data on either               |                  | measures                  | <b>.</b> .                | stage                    |                                  | in kg, continuous:        | pregnancy,         |
|         |             | maternal                     |                  | and first                 | Age at                    | reported by              |                                  | Total effect from linear  | socioeconomic      |
|         |             | prepregnancy                 |                  | measured                  | thelarche                 | parents                  |                                  | regression for age at     | status and         |
|         |             | BMI or GWG                   |                  | weight for                | (Tanner                   | and/or                   | Lincor regression                | thelarche:                | maternal age at    |
|         |             | Age 17 years of              | Motornal         | all women                 | stage ≥2),                | daughters                | Linear regression                | β=-0.28, 95% Cl= -        | menarche.          |
|         |             | Age 17 years at<br>follow-up | Maternal<br>pre- | with at least<br>1 weight | calculated as<br>midpoint | in a series<br>of annual | models for age at thelarche with | 0.42, -0.14               | GWG models         |
|         |             | 10110W-up                    | pregnancy        | measure                   | between last              | questionnai              | multiple imputation              | Direct effect from linear | adjusted for       |
|         |             | Avon                         | BMI,             | prior to 18               | questionnair              | res from 8-              | for missing data                 | regression for age at     | covariates         |
|         |             | Longitudinal                 | continuous       | weeks                     | e with TS1                | 17 years or              | (β<0 indicates                   | thelarche, controlling    | above, plus        |
| Lawn,   |             | Study of Parent              | Continuous       | gestation                 | and first                 | during clinic            | earlier breast                   | for pre-pubertal BMI as   | maternal           |
| 2018,   |             | and Children,                | Gestational      | and 1 after               | questionnair              | visits at                | development -                    | a mediator:               | prepregnancy       |
| United  | Prospective | born April 1991-             | weight gain      | 28 weeks                  | e where                   | 12.5 or 13.5             | difference in                    | β=-0.16, 95% CI=-0.30,    | BMI and            |
| Kingdom | cohort      | December 1992                | in kg            | gestation                 | TS2+                      | years.                   | months)                          | -0.02                     | gestational age.   |

| Kubo,<br>2018,<br>United Reti | je<br>pr<br>m<br>du<br>pr<br>6-<br>br<br>as<br>G<br>K<br>P<br>N<br>C<br>20<br>C<br>K<br>m | ears or more, at<br>ears or more, at<br>east 1 pre-<br>ubertal BMI<br>neasure and<br>nformation on<br>naternal BMI<br>uring<br>regnancy<br>-11 years at<br>reast Tanner<br>ssessment<br>Airls born in<br>caiser<br>Permanente<br>lorthern<br>california in<br>003-2006 with<br>oontinuous<br>PNC<br>nembership<br>prough March | Maternal<br>BMI during<br>pregnancy,<br>categorized<br>as:<br>Underweight:<br><18.5<br>Normal<br>weight: 18.5-<br>24.9<br>Overweight:<br>25-29.9 | measured<br>at time of<br>the a-<br>fetoprotein<br>test (16-18<br>weeks<br>gestation,<br>95%) from<br>medical<br>record. If<br>not<br>available,<br>first weight<br>measured<br>after<br>conception<br>(range 0-16<br>weeks, 5%).<br>BMI<br>calculated<br>using height<br>recorded in<br>medical | Thelarche,<br>defined as<br>transition<br>from breast<br>Tanner stage<br>1 to 2+. Age<br>at thelarche<br>defined as<br>the interval<br>between age<br>at last clinic<br>record with<br>TS1 and age<br>at first clinic | Medical<br>record,<br>assessed<br>by<br>physician<br>using<br>palpation<br>and visual<br>inspection<br>as part of<br>the routine<br>pediatric<br>appointmen | Weibull parametric<br>survival model for<br>age at transition to<br>breast Tanner<br>stage ≥2,<br>accommodating<br>left, right and<br>interval censoring<br>(TR <1 and HR>1<br>indicates earlier<br>breast | Time ratios and hazard<br>ratios for transition to<br>breast Tanner stage<br>$\geq 2$ :<br>Underweight: TR=1.03,<br>95% Cl=1.00, 1.06;<br>HR=0.75, 95% Cl=<br>0.58, 0.97<br>Normal weight:Referent<br>Overweight:TR=0.98,<br>95% Cl=0.97, 0.99;<br>HR=1.21 (1.13, 1.29)<br>Obese:TR=0.97, 95%<br>Cl= 0.96, 0.97;<br>HR=1.39, 95% Cl=<br>1.30, 1.49<br>P for trend <0.0001<br>HR for maternal<br>obesity, adjusting for<br>pre-pubertal BMI =<br>1.22, 95% Cl=1.13,<br>1.31 (other categories | Race/ethnicity,<br>maternal age at<br>delivery,<br>education, parity<br>and maternal<br>smoking during |
|-------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
|                               |                                                                                           | 017                                                                                                                                                                                                                                                                                                                            | Obese: ≥30                                                                                                                                       | record.                                                                                                                                                                                                                                                                                          | TS2+                                                                                                                                                                                                                  | ts                                                                                                                                                          | development)                                                                                                                                                                                               | not shown)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | pregnancy                                                                                              |

| Author,<br>Location,<br>Year          | Study<br>Design        | Study<br>Population (N,<br>Age range,<br>Name)                                                                                 | Exposure                                                                                       | Exposure<br>source                                                                        | Outcome                                                                                                     | Outcome<br>source                                                                                                             | Statistical method                                                                                                                         | Results                                                                                                                                                     | Covariates               |
|---------------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
|                                       |                        | 994 girls with<br>menarche data<br>15-17 years                                                                                 |                                                                                                | Pre-                                                                                      | Age at menarche,                                                                                            |                                                                                                                               | Mean age at<br>menarche by<br>category of                                                                                                  |                                                                                                                                                             |                          |
| Windham,<br>2004,<br>United<br>States | Prospectiv<br>e cohort | Follow-up of<br>subset of<br>California Child<br>Health and<br>Development<br>Studies<br>(pregnancies<br>1959-1966)            | Maternal pre-<br>pregnancy<br>BMI                                                              | pregnancy<br>weight and<br>height<br>obtained<br>from<br>interview<br>during<br>pregnancy | examined<br>continuousl<br>y and in<br>categories:<br>Early: <12y<br>Average:<br>12-13 years<br>Late: >13 y | Recalled by<br>girl at 15-17<br>years<br>(years and<br>months -<br>though 45%<br>of girls only<br>gave year)                  | independent<br>variables using<br>the F test and<br>distribution of<br>early and late<br>menarche<br>using chi-<br>square test.            | Stated in text that<br>mother's prepregnancy<br>body mass index was<br>not related to age at<br>menarche (data not<br>shown)                                | None (data not<br>shown) |
|                                       |                        |                                                                                                                                |                                                                                                |                                                                                           |                                                                                                             |                                                                                                                               | Continuous<br>data<br>summarized<br>using medians,<br>IQ ranges and<br>ranges                                                              |                                                                                                                                                             |                          |
|                                       |                        | 776 girls with<br>menarche data<br>Age 12-14 years                                                                             |                                                                                                |                                                                                           |                                                                                                             |                                                                                                                               | Kaplan-Meier<br>survival<br>probabilities to<br>estimate<br>probability of<br>reaching<br>menarche                                         |                                                                                                                                                             |                          |
| Sloboda,<br>2007,<br>Australia        | Prospectiv<br>e cohort | at follow-up<br>Western<br>Australian<br>Pregnancy<br>(Raine) Cohort,<br>women enrolled<br>during<br>pregnancy in<br>1989-1990 | Pre-<br>pregnancy<br>BMI and<br>weight gain<br>during<br>pregnancy,<br>unclear how<br>assessed | Maternal<br>clinic visits<br>(women<br>enrolled at<br>18 weeks of<br>pregnancy)           | Age at<br>menarche                                                                                          | Self-report<br>on puberty<br>questionnai<br>re or<br>censored at<br>age at last<br>follow-up if<br>no<br>menarche<br>reported | Multivariable<br>Cox regression<br>models to<br>evaluate<br>association<br>between fetal<br>and postnatal<br>growth and age<br>at menarche | Stated in text that<br>maternal pre-pregnancy<br>BMI and weight gain<br>during pregnancy were<br>not associated with age<br>at menarche (data not<br>shown) | Not stated               |

Supplemental Table 2.2. Studies of maternal pre-pregnancy BMI, weight and gestational weight gain and the timing of menarche

|           |           | 1146 girls                                        |                                          |                                           |          |                              |                                |                    |                                                          |
|-----------|-----------|---------------------------------------------------|------------------------------------------|-------------------------------------------|----------|------------------------------|--------------------------------|--------------------|----------------------------------------------------------|
|           |           | Mean age=12.8<br>years                            |                                          |                                           |          |                              |                                |                    |                                                          |
|           |           | Girls recruited in<br>second year of<br>secondary |                                          | Questionnai<br>re, partially<br>completed |          |                              | Cox regression                 |                    |                                                          |
|           |           | school from 10<br>centres of                      | Weight of the<br>mother at the           | by medical<br>team with                   |          | Self-report                  | model for age<br>at onset of   |                    | None                                                     |
| Vandeloo, |           | Medical School<br>Supervision<br>(MSS) in Belgian | beginning of<br>pregnancy,<br>continuous | the<br>remainder<br>completed             |          | with<br>parent's<br>help via | breast<br>development<br>(RR>1 |                    | *Results for materna<br>pre-pregnancy<br>weight were not |
| 2007,     | Cross-    | Limburg in 1999-                                  | (units not                               | by girls and                              | Age at   | questionnai                  | indicates earlier              | RR = 1.015, 95% CI | shown for                                                |
| Belgium   | sectional | 2000 school year                                  | stated)                                  | one parent                                | menarche | re                           | menarche)                      | 1.006-1.025        | multivariable model                                      |

| menarche data maternal age at baseline, mater                                                                                                                                                               |       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 22-33 years at age at menarch                                                                                                                                                                               |       |
| follow-up β (95% CI) from linear maternal marita<br>regression models with status, maternal                                                                                                                 |       |
| Adult follow-up prenatal factors only for education, mate<br>of 3 age at menarche: parity, gestation                                                                                                        |       |
| of 3 age at menarche: parity, gestation<br>Collaborative <20: β=0.13, 95% CI=- age, family inco                                                                                                             |       |
| Perinatal Project 0.10, 0.36 maternal                                                                                                                                                                       |       |
| sites (pregnant 20-26: Referent employment and women enrolled >26: β=-0.09, 95% CI study site.                                                                                                              | d     |
| 1959-1966): 0.34, 0.16                                                                                                                                                                                      |       |
| Pathways to     Prenatal + child       Adulthood Study     β (95% CI) from linear     model adjusted                                                                                                        | for   |
| (PAS), follow-up Maternal pre-<br>of Baltimore site pregnancy Linear prenatal and childhood exposure, mate                                                                                                  |       |
| when subjects BMI, regression for age at menarche: race, maternal a                                                                                                                                         | age   |
| were 27-33 categorized: models for <20: β=0.10, 95% CI=- at baseline, material vears and <20 Maternal AAM examining 0.14, 0.33 age at menarch                                                               |       |
| years and <20 Maternal AAM examining 0.14, 0.33 age at menarch<br>Intergenerational 20-26 report of prenatal factors 20-26: Referent maternal marita                                                        | ,     |
| Pregnancy >26 pre- childhood >26: β= 0.03, 95% Cl=- status, maternal                                                                                                                                        |       |
| Outcome Studypregnancyfactors, and0.22, 0.29education, study(IPOS), follow-upMaternalweightthen prenatal +site, total sibling                                                                               | ,     |
| of Philadelphia weight gain during Self-report childhood *Maternal weight gain age 7, family ind                                                                                                            |       |
| and Providence during pregnancy (in whole combined (β<0 during pregnancy was at age 7,                                                                                                                      |       |
| sites when pregnancy and Age at years) by indicates earlier not crudely associated rooms/person in                                                                                                          |       |
| Prospectiv subjects were (data not measured menarche, adult age at with age at menarche home, BMI at age cohort 22-32 years shown) height continuous participants menarche (data not shown) height at age 7 | ye 7, |

Windham, 2008, United States

| Rubin,<br>2009,<br>United<br>Kingdom | Prospectiv<br>e cohort | 4212 singleton<br>girls with<br>consistent<br>menarche data<br>Age 8-13 years<br>at follow-up<br>Avon<br>Longitudinal<br>Study of Parent<br>and Children,<br>born April 1991-<br>December 1992                                                                               | Maternal pre-<br>pregnancy<br>BMI,<br>categorized<br>into tertiles:<br><21.1<br>21.1-23.4<br>>23.4                                                                    | Self-<br>reported by<br>mother<br>during<br>pregnancy                                                                      | Presence of<br>menarche<br>at 11 year<br>old<br>questionnai<br>re                           | Reported at<br>11-year<br>questionnai<br>re by<br>daughter,<br>mother or<br>both | Multivariable<br>logistic<br>regression for<br>menarche by<br>age 11 years<br>(OR>1<br>indicates earlier<br>menarche)                                      | Adjusted ORs for<br>menarche by age 11:<br><21.1 : Referent<br>21.1-23.4: OR=1.26,<br>95% CI=0.85, 1.87<br>>23.4: OR=1.77, 95%<br>CI=1.22, 2.56<br>Adjusted ORs for<br>menarche by age 11,<br>mediation model<br>adjusted for BMI at 8<br>years:<br><21.1 : Referent<br>21.1-23.4: OR=1.11,<br>95% CI=0.75, 1.66<br>>23.4: OR=1.31, 95%<br>CI=0.89, 1.93                                                                                                                                                                                                                                                                                 | Maternal age at<br>menarche, previous<br>livebirths , maternal<br>smoking in third<br>trimester, girls' race<br>Mediation model<br>additionally adjusts<br>for BMI at 8 years<br>(tertiles) |
|--------------------------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Keim,<br>2009,<br>United<br>States   | Prospectiv<br>e cohort | 597 women with<br>complete<br>menarche and<br>maternal data<br>available<br>22-32 years at<br>follow-up<br>Follow-up in<br>1987-1991 of<br>subset of women<br>from Providence<br>and Philadelphia<br>sites of the CPP<br>cohort (pregnant<br>women enrolled<br>in 1959-1966) | Maternal pre-<br>pregnancy<br>BMI,<br>categorized<br>as:<br>Underweight<br>or normal<br>weight<br>(BMI<25)<br>Overweight<br>(BMI 25.0-<br>29.9)<br>Obese (BMI<br>≥30) | Pre-<br>pregnancy<br>weight self-<br>reported by<br>mother<br>during<br>pregnancy;<br>height<br>measured<br>at first visit | Age at<br>menarche,<br>categorized<br>as: ≤11<br>years<br>12 years<br>13 years<br>14+ years | Self-report<br>during adult<br>interview                                         | Polytomous<br>logistic<br>regression to<br>examine the<br>relationship<br>between<br>daughter's age<br>at menarche<br>and maternal<br>pre-pregnancy<br>BMI | Adjusted ORs for<br>daughter's age at<br>menarche from<br>polytomous logistic<br>regression models with<br>14+ as reference group:<br>$\leq$ 11 years:<br>$\geq$ 30: OR = 3.3, 95%<br>CI=1.1, 10.0<br>25-29.9: OR=1.1, 95%<br>CI=0.6, 2.1<br><25: Referent<br>12 years:<br>$\geq$ 30: OR = 2.7, 95%<br>CI=0.9, 8.3<br>25-29.9: OR=0.8, 95%<br>CI=0.4, 1.5<br><25: Referent<br>13 years:<br>$\geq$ 30: OR = 1.8, 95%<br>CI=0.5, 5.8<br>25-29.9: OR=0.9, 95%<br>CI=0.5, 1.6<br><25: Referent<br>OR for $\leq$ 11 years<br>adjusted for childhood<br>BMI as a mediator= 3.2,<br>95% CI=1.0, 9.8 (data<br>not shown for other<br>categories) | Study site, SES,<br>maternal parity,<br>maternal age at<br>menarche and<br>daughter's race                                                                                                  |

| Terry,<br>2009,<br>United<br>States     | Prospectiv<br>e cohort | 262 women<br>38-46 years at<br>follow-up<br>Follow-up in<br>2001-2006 of<br>subset of women<br>from New York<br>site of the CPP<br>birth cohort (born<br>1959-1963)                                                    | Maternal pre-<br>pregnancy<br>BMI<br>Maternal<br>weight gain<br>(weight<br>grior to birth -<br>reported<br>weight prior to<br>pregnancy)    | Prepregnan<br>cy weight<br>was self-<br>reported<br>during<br>pregnancy,<br>height and<br>weight at<br>the end of<br>pregnancy<br>were<br>measured | Age at<br>menarche,<br>continuous<br>and<br>dichotomize<br>d as: ≤12<br>years<br>>12 years | Self-<br>reported by<br>adult<br>participant                                                                                                                                                                          | Univariate<br>associations<br>using<br>correlation<br>coefficients for<br>continuous<br>variables, chi-<br>square tests<br>and analysis of<br>variance to<br>compare<br>averages<br>across<br>subgroups. | Mean maternal pre-<br>pregnancy BMI by<br>menarche status<br>(p=0.80):<br>≤12 years: 22.57,<br>SE=3.68<br>>12 years: 22.44,<br>SE=3.44<br>Mean gestational weight<br>gain (kg) by menarche<br>status (p=0.80):<br>≤12 years: 10.54,<br>SE=4.99<br>>12 years: 10.71,<br>SE=4.94 | None (multivariable<br>results not shown)                                                                                                |
|-----------------------------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Maisonet,<br>2010,<br>United<br>Kingdom | Prospectiv<br>e cohort | 2661 singleton<br>girls with<br>consistent<br>pubertal data<br>and prenatal<br>data<br>Age 8-14 years<br>at follow-up<br>Avon<br>Longitudinal<br>Study of Parent<br>and Children,<br>born April 1991-<br>December 1992 | Maternal pre-<br>pregnancy<br>BMI,<br>categorized:<br>Underweight:<br><18.5<br>Normal:<br>18.5-24.9<br>Overweight:<br>25-29.9<br>Obese: ≥30 | Self-<br>reported<br>pre-<br>pregnancy<br>weight from<br>mother<br>during<br>pregnancy                                                             | Age at<br>menarche                                                                         | Month and<br>year of<br>menarche,<br>reported<br>girls at<br>pubertal<br>self-<br>assessment<br>s between<br>8-14 years<br>of age. Girls<br>with<br>inconsistent<br>responses<br>were<br>excluded<br>from<br>analyses | Interval-<br>censored<br>parametric<br>survival model<br>for age at<br>menarche<br>assuming a<br>normal<br>distribution (Diff<br><0 indicates<br>earlier<br>menarche)                                    | Adjusted difference for<br>median age at<br>menarche:<br>Underweight: Diff= 0.02,<br>95% Cl=-0.19, 0.24<br>Normal: Referent<br>Overweight: Diff=-0.25,<br>95% Cl=-0.39, -0.12<br>Obese: Diff=-0.13, 95%<br>Cl=-0.34, 0.09                                                      | Maternal age at<br>menarche, previous<br>live births, smoking<br>during pregnancy,<br>maternal age at<br>delivery, maternal<br>education |

|                  |             | 3169 girls<br>(sample size |               |               |            |             |                   |                          |                      |
|------------------|-------------|----------------------------|---------------|---------------|------------|-------------|-------------------|--------------------------|----------------------|
|                  |             | varied by                  |               |               |            |             |                   |                          |                      |
|                  |             | analysis)                  |               |               |            |             |                   | Results from linear      |                      |
|                  |             | <i>,</i>                   |               |               |            |             | Multiple linear   | regression models for    |                      |
|                  |             | Age 17-21 years            |               |               |            |             | regression        | sample with AOM in at    |                      |
|                  |             | at follow-up               |               |               |            |             | analyses were     | least years:             |                      |
|                  |             |                            |               |               |            |             | conducted to      |                          |                      |
|                  |             | 2005 follow-up of          |               |               |            |             | examine the       | Maternal BMI: -7.6, 95%  |                      |
|                  |             | a subset of a              |               |               |            |             | association       | CI=-13.3, -1.8           |                      |
|                  |             | pregnancy                  |               |               |            |             | between           |                          |                      |
|                  |             | cohort in two              |               |               |            | Reported    | maternal          | Maternal BMI, adjusted   |                      |
|                  |             | Danish cities,             |               | Mom           |            | by girls in | prepregnancy      | for offspring BMI        |                      |
|                  |             | Aalborg and                |               | reported      |            | 2005 at 17- | BMI and AOM,      | reported by mother at    |                      |
|                  |             | Odense,                    |               | pre-          |            | 21 years.   | with results      | ages 14-18 years in      |                      |
|                  |             | recruited                  |               | pregnancy     |            | ~50%        | shown as the      | mediation model: 2.9,    | •••                  |
|                  |             | between April              |               | height and    |            | reported    | difference in     | 95% CI=-4.3, 10.1        | Maternal education,  |
|                  |             | 1984-April 1987            | Matanalaa     | weight to     |            | year and    | age at            | Material DNAL is sub-set | marital status,      |
| Charactha        |             | as part of the             | Maternal pre- | doctor at     | A ma at    | month and   | menarche in       | Maternal BMI in subset   | maternal age at      |
| Shrestha,        | Description | "Health Habits             | pregnancy     | first routine | Age at     | the other   | days (d<0         | of offspring with BMI<25 | childbirth, maternal |
| 2011,<br>Denmark | Prospectiv  | for Two"                   | BMI,          | antenatal     | menarche,  | reported    | indicates earlier | at 14-18 years: -8.2,    | smoking during       |
| Denmark          | e cohort    | campaign.                  | continuous    | visit         | continuous | year only.  | menarche)         | 95% CI=-16.1, -0.2       | pregnancy.           |

| 186 | Boynton-<br>Jarrett,<br>2011,<br>United | Retrospect            | 32,218 women<br>from singleton<br>births with<br>information on<br>GWG and age at<br>menarche<br>Average age at<br>report of<br>menarche=34<br>years<br>Women in the<br>NHSII cohort<br>(started in 1989,<br>women born<br>between 1946-<br>1965) whose<br>mothers are in<br>the Nurses'<br>Mothers' Cohort | Gestational<br>weight gain:<br><10lbs<br>10-14 lbs<br>15-19 lbs<br>20-29 lbs<br>30-39 lbs | Reported<br>by mother<br>in<br>categories<br>on<br>guestionnai | Age at<br>menarche,<br>categorized<br>as:<br><11 years<br>11-15<br>vears | Reported<br>by daughter<br>on baseline<br>survey in<br>1989 in<br>categories:<br>≤9, 10, 11,<br>12, 13, 14 | Compared<br>early menarche<br>(<11 years) and<br>late menarche<br>(>15 years) to<br>average (11-15<br>years) in<br>separate<br>logistic<br>regression<br>models.<br>Covariates<br>associated with<br>age at<br>menarche at<br>p<0.10 were<br>included in<br>adjusted<br>models.<br>Tested<br>nonlinear<br>relations<br>between<br>maternal GWG<br>and early and<br>late menarche<br>using cubic<br>splines. For<br>models with<br>evidence of a<br>nonlinear<br>association,<br>categorical<br>indicator<br>variables were<br>used in<br>regression<br>models. Tested<br>for interaction<br>between<br>maternal GWG | Adjusted OR for early<br>menarche (<11 years)<br>vs. average (11-15<br>years):<br><10: OR=1.35, 95%<br>Cl=1.09, 1.67<br>10-14: OR=1.13, 95%<br>Cl=0.98, 1.30<br>15-19: OR=0.98, 95%<br>Cl=0.87, 1.11<br>20-29: Referent<br>30-39: OR=1.10, 95%<br>Cl=0.98, 1.25<br>$\geq$ 40: OR=1.30, 95%<br>Cl=1.08, 1.56<br>p=0.0015<br>Adjusted OR for late<br>menarche (>15 years)<br>vs. average (11-15<br>years):<br><10: OR=1.23, 95%<br>Cl=0.86, 1.68<br>10-14: OR=1.09, 95%<br>Cl=0.99, 1.36<br>20-29: Referent<br>30-39: OR=0.97, 95%<br>Cl=0.81, 1.17<br>$\geq$ 40: OR=0.04<br>Adjusted OR for early<br>menarche (<11 years)<br>vs. average (11-15<br>years), mediation model:<br><10: OR=1.08, 95%<br>Cl=0.71, 1.29<br>p for trend=0.04<br>Adjusted OR for early<br>menarche (<11 years)<br>vs. average (11-15<br>years), mediation model:<br><10: OR=1.31, 95%<br>Cl=0.94, 1.25<br>15-19: OR=0.97, 95%<br>Cl=0.94, 1.25<br>15-19: OR=0.97, 95%<br>Cl=0.97, 1.25<br>$\geq$ 40: OR=1.27, 95%<br>Cl=0.97, 1.25 | Age at baseline in<br>1989 (years),<br>daughter's<br>race/ethnicity, birth<br>weight, gestational<br>age, maternal<br>prepregnancy<br>weight, maternal<br>height, paternal<br>height, paternal<br>height, maternal age<br>at daughter's birth,<br>parental education<br>Mediation model<br>additionally includes<br>maternal activity in<br>pregnancy, child<br>body size at age 5<br>years, childhood<br>physical activity, |
|-----|-----------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| _   | Jarrett,                                | Retrospect ive cohort | mothers are in                                                                                                                                                                                                                                                                                              | 15-19 lbs                                                                                 | categories                                                     | <11 years                                                                | categories:                                                                                                | between                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CI=0.97, 1.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | years, childhood                                                                                                                                                                                                                                                                                                                                                                                                             |

Adjusted OR for late menarche (>15 years) vs. average (11-15 years), mediation model: <10: OR=1.21, 95% Cl=0.86, 1.67 10-14: OR=1.08, 95% Cl=0.88, 1.33 15-19: OR=1.16, 95% Cl=0.98, 1.36 20-29: Referent 30-39: OR=0.98, 95% Cl=0.81, 1.17 ≥40: OR=0.98, 95% Cl=0.72, 1.33 p for trend=0.07

|        |            | Age 10-15 years<br>at first report of<br>pubertal status,<br>followed<br>annually until<br>TS5 or max of 5<br>years | Maternal pre-              |                  |            | Date of<br>menarche<br>reported by<br>daughter on | Univariable<br>linear<br>regression<br>models to<br>examine | Univariable linear<br>regression for age at<br>menarche: |                                    |
|--------|------------|---------------------------------------------------------------------------------------------------------------------|----------------------------|------------------|------------|---------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------|------------------------------------|
|        |            | Adolescent                                                                                                          | pregnancy<br>weight in kg, | Self-report      |            | annual                                            | association                                                 | Pre-pregnancy weight,<br>kg, $\beta$ = -0.02, SE=0.01    | None                               |
|        |            | follow-up of<br>subset of the                                                                                       | continuous                 | by mom<br>during |            | (started in<br>1992 at age                        | maternal factors and age                                    | (p<.05)                                                  | *Maternal pre-<br>pregnancy weight |
| Wang,  |            | North Carolina                                                                                                      | Weight gain                | pregnancy        |            | 10-15, Ŭ                                          | at menarche                                                 | Weight gain during                                       | was included in                    |
| 2012,  |            | Infant Feeding                                                                                                      | during                     | and review       | Age at     | followed for                                      | (β<0 indicates                                              | pregnancy, kg,                                           | multivariable model                |
| United | Prospectiv | Study, infants                                                                                                      | pregnancy in               | of medical       | menarche,  | max of 5                                          | earlier                                                     | $\beta = -0.00, SE=0.02$                                 | but results not                    |
| States | e cohort   | born 1978-1982                                                                                                      | kg, continuous             | records          | continuous | years)                                            | menarche)                                                   | (p≥.05)                                                  | shown                              |

305 term girls

|                        | 2497 girls with<br>complete data<br>for maternal pre-               |                                                       |                                                |                                   |                                                          |                                                                 |                                                                                |                                                                                   |
|------------------------|---------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------|-----------------------------------|----------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
|                        | pregnancy BMI,<br>GWG,<br>daughters'<br>menarche and                | Maternal pre-<br>pregnancy                            |                                                |                                   |                                                          |                                                                 | Adjusted hazard ratios for menarche:                                           |                                                                                   |
|                        | covariates.<br>Excluded girls<br>with menarche<br>before 9 or after | BMI,<br>categorized<br>as:<br>Underweight             |                                                |                                   |                                                          |                                                                 | Maternal BMI:<br><18.5: HR=1.00, 95%<br>CI=0.86-1.16                           |                                                                                   |
|                        | 16.<br>Age 9-16 years<br>at follow-up                               | (<18.5)<br>Normal<br>weight (18.5-<br>24.9)           |                                                |                                   |                                                          |                                                                 | 18.5-25: Referent<br>>25: HR=1.20, 95%<br>CI=1.06, 1.36                        |                                                                                   |
|                        | Daughters of<br>women in 1979                                       | Overweight/ob<br>ese (≥25)                            |                                                |                                   |                                                          |                                                                 | Gestational weight gain:<br>Excessive: HR=1.13,<br>95% CI=1.01-1.27            |                                                                                   |
|                        | National<br>Longitudinal<br>Survey of Youth,                        | Categorized<br>mother's<br>GWG as<br>inadequate       | Self-report<br>by moms in<br>1985 of pre-      |                                   |                                                          | Cox<br>proportional<br>hazard models<br>to estimate             | Adequate: Referent<br>Inadequate: HR=1.09,<br>95% CI=0.96, 1.22                | Maternal BMI<br>models adjusted for                                               |
|                        | prospective<br>study of<br>nationally<br>representative             | (<88%),<br>adequate (88-<br>123%) or                  | pregnancy<br>weight and<br>height. Self-       |                                   | Year and                                                 | associations<br>adjusting for<br>covariates in                  | Alternative<br>categorization of GWG:<br>>40 lbs: HR=1.12, 95%                 | maternal age at<br>menarche, race, log<br>parental income,<br>maternal education, |
|                        | samples born<br>1957-1964.<br>Offspring were                        | excessive<br>(>123%)<br>based on her                  | reported<br>weight gain<br>at delivery         |                                   | months of<br>menstruatio<br>n, reported                  | order to include<br>right censored<br>girls (HR>1               | CI=1.00, 1.25<br>10-40 lbs: Referent<br><10 lbs: HR=1.19, 95%                  | maternal smoking<br>during pregnancy,<br>daughter breastfed                       |
|                        | surveyed<br>biennially from<br>1986-2010 as<br>part of the          | percent of the<br>expected<br>2009 IOM<br>weight gain | and pre-<br>pregnancy<br>weight was<br>used to |                                   | by mothers<br>for girls <14<br>years and<br>girls age 14 | indicates earlier<br>menarche).<br>All analyses<br>weighted for | CI=0.96, 1.47<br>Including GWG,<br>daughter's birthweight or                   | and parity<br>GWG models<br>adjusted for all                                      |
| Prospectiv<br>e cohort | NLSBY Children<br>and Young Adult<br>Survey.                        | recommendati<br>ons for GA<br>and BMI                 | calculated<br>gestational<br>weight gain       | Age at<br>menarche,<br>continuous | and over on<br>biennial<br>surveys                       | complex<br>sampling<br>design                                   | pre-pubertal BMI did not<br>change HR for maternal<br>BMI (results not shown). | + maternal pre-<br>pregnancy BMI                                                  |

Deardorff, 2013, United States

| Mariansda<br>tter, 2016,<br>Denmark | Prospectiv<br>e cohort | 340 girls with<br>menarche data<br>Age 19-21 years<br>at follow-up<br>2008 follow-up of<br>daughters of<br>Danish<br>pregnancy<br>cohort, which<br>enrolled women<br>at 30-week<br>prenatal visit in<br>Aarhus,<br>Denmark in<br>1988-1989                                    | Maternal pre-<br>pregnancy<br>BMI,<br>categorized<br>into tertiles:<br>Low (15.8-20)<br>Middle (20-<br>21.9)<br>High (22.0-<br>37.0) | Pre-<br>pregnancy<br>weight and<br>height self-<br>reported by<br>mother<br>during 30th<br>week of<br>pregnancy                                                                                        | Age at<br>menarche                           | Self-<br>reported by<br>daughters<br>at age 19-<br>21 years.<br>47%<br>reported<br>year and<br>month; 53%<br>reported<br>year only.<br>Month was<br>imputed for<br>girls that<br>reported<br>year only. | Multiple linear<br>regression for<br>age at<br>menarche with<br>maternal BMI<br>tertile as main<br>predictor<br>(Diff<0<br>indicates earlier<br>menarche) | Adjusted difference<br>(95% Cl) in age at<br>menarche in months<br>from linear regression:<br>BMI ≤20: Diff= 1.6, 95%<br>Cl=-2.3, 5.5<br>BMI 20-21.9: Referent<br>BMI≥22: Diff= -4.1, 95%<br>Cl=-8.0, -0.3<br>In sensitivity analysis,<br>daughters of overweight<br>mothers (BMI≥25) had<br>menarche adjusted 5.1<br>(-0.8, 11.0) months<br>earlier than daughter of<br>normal-weight (18.5-<br>24.99) mothers. No<br>difference for<br>underweight daughters. | Maternal smoking<br>during pregnancy,<br>maternal SES based<br>on family annual<br>income in 1988-<br>1989, maternal age,<br>maternal parity |
|-------------------------------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Flam                                |                        | 1126 women<br>with age at<br>menarche data<br>Age 39-49 years<br>at follow-up<br>The Early<br>Determinants of<br>Mammographic<br>Density Study,<br>2008 adult<br>follow-up of<br>female<br>participants in<br>the CHDS and<br>Boston and<br>Providence sites<br>of NCPD bitth | Maternal pre-<br>pregnancy<br>weight and<br>BMI,<br>continuous                                                                       | Maternal<br>pre-<br>pregnancy<br>weight and<br>height<br>reported by<br>mom at first<br>antenatal<br>visit.<br>Gestational<br>weight gain<br>calculated<br>from self-<br>reported<br>pre-<br>pregnancy | Age at menarche,                             | Solf conort                                                                                                                                                                                             | Mean motors-1                                                                                                                                             | Maternal pre-pregnancy<br>weight, kg (mean, SD)<br><12y: 61.39 (10.72)<br>≥12y: 61.17 (10.67)<br>Maternal pre-pregnancy<br>BMI (mean, SD)<br><12y: 23.62 (3.96)<br>≥12y: 23.10 (3.68)<br>Contribute aging                                                                                                                                                                                                                                                       |                                                                                                                                              |
| Flom,<br>2017,<br>United<br>States  | Prospectiv<br>e cohort | of NCPP birth<br>cohorts<br>(pregnancies<br>1959-1966)                                                                                                                                                                                                                        | Gestational<br>weight gain<br>(kg)                                                                                                   | weight and<br>measured<br>weight at<br>delivery                                                                                                                                                        | categorized<br>as:<br><12 years<br>≥12 years | Self-report<br>by woman<br>in<br>adulthood                                                                                                                                                              | Mean maternal<br>characteristics<br>by menarche at<br>12 years                                                                                            | Gestational weight gain,<br>kg (mean, SD)<br><12y: 9.41 (3.74)<br>≥12y: 9.37 (3.98)                                                                                                                                                                                                                                                                                                                                                                             | None                                                                                                                                         |

|         |            | 3935 singleton<br>girls with age at<br>menarche and<br>data on either<br>maternal<br>prepregnancy<br>BMI or GWG<br>Age 17 years at<br>follow-up<br>Avon | Maternal pre-<br>pregnancy<br>BMI, | Self-<br>reported<br>pre-<br>pregnancy<br>weight and<br>height by<br>mother on<br>questionnai<br>re in early<br>pregnancy<br>GWG<br>calculated<br>from last<br>weight<br>measured<br>by<br>midwives<br>from<br>obstetric<br>measures<br>and first<br>measured<br>weight for<br>all women<br>with at least<br>1 weight<br>measure<br>prior to 18 |            | First report<br>of age at<br>menarche,<br>reported by<br>parents<br>and/or<br>daughters<br>in a series<br>of annual<br>questionnai<br>res from 8-<br>17 years or<br>during clinic<br>visits at<br>12.5 or 13.5<br>years.<br>Used age<br>reported by<br>participant<br>or, if age<br>missing,<br>midpoint<br>between<br>last<br>questionnai<br>re with pre-<br>menarche<br>report and | Linear<br>regression<br>models for age<br>at menarche<br>with multiple<br>imputation for<br>missing data | Pre-pregnancy BMI,<br>continuous:<br>Total effect from linear<br>regression for age at<br>menarche:<br>$\beta$ =-0.34, 95% Cl= -0.45,<br>-0.62<br>Direct effect from linear<br>regression for age at<br>menarche, controlling for<br>pre-pubertal BMI as a<br>mediator:<br>$\beta$ =-0.09, 95% Cl= -0.20,<br>0.03<br>Gestational weight gain<br>in kg, continuous:<br>Total effect from linear<br>regression for age at<br>menarche:<br>$\beta$ =-0.17, 95% Cl= -0.26,<br>-0.07<br>Direct effect from linear<br>regression for age at<br>menarche, controlling for<br>pre-pubertal BMI as a<br>mediator: | Maternal age at<br>delivery, daughter's<br>ethnicity, parity,<br>maternal smoking<br>during pregnancy,<br>socioeconomic<br>status and maternal<br>age at menarche.<br>GWG models |
|---------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         |            | follow-up                                                                                                                                               | pregnancy                          | 1 weight measure                                                                                                                                                                                                                                                                                                                                |            | re with pre-<br>menarche                                                                                                                                                                                                                                                                                                                                                             | with multiple imputation for                                                                             | menarche, controlling for pre-pubertal BMI as a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | age at menarche.                                                                                                                                                                 |
|         |            |                                                                                                                                                         | ,                                  |                                                                                                                                                                                                                                                                                                                                                 |            |                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                  |
|         |            | Longitudinal                                                                                                                                            | continuous                         | weeks                                                                                                                                                                                                                                                                                                                                           |            | first                                                                                                                                                                                                                                                                                                                                                                                | (β<0 indicates                                                                                           | β=-0.09, 95% CI=-0.20,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | adjusted for                                                                                                                                                                     |
| Lawn,   |            | Study of Parent                                                                                                                                         |                                    | gestation                                                                                                                                                                                                                                                                                                                                       |            | questionnai                                                                                                                                                                                                                                                                                                                                                                          | earlier breast                                                                                           | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | covariates above,                                                                                                                                                                |
| 2018,   |            | and Children,                                                                                                                                           | Gestational                        | and 1 after                                                                                                                                                                                                                                                                                                                                     | Age at     | re where                                                                                                                                                                                                                                                                                                                                                                             | development -                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | plus maternal                                                                                                                                                                    |
| United  | Prospectiv | born April 1991-                                                                                                                                        | weight gain in                     | 28 weeks                                                                                                                                                                                                                                                                                                                                        | menarche,  | menarche                                                                                                                                                                                                                                                                                                                                                                             | difference in                                                                                            | Inference is similar in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | prepregnancy BMI                                                                                                                                                                 |
| Kingdom | e cohort   | December 1992                                                                                                                                           | kg, continuous                     | gestation                                                                                                                                                                                                                                                                                                                                       | continuous | reported                                                                                                                                                                                                                                                                                                                                                                             | months)                                                                                                  | categorical models.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | and gestational age.                                                                                                                                                             |

| Author,<br>Location,<br>Year         | Study<br>Design       | Study<br>Population (N,<br>Age range,<br>Name)                                                                                                                                                                                                                                                             | Exposure                                                                                                                                         | Exposure<br>source                                             | Outcome                                                                               | Outcome<br>source                                       | Statistical method                                                                                | Results                                                                                                                                                                                                                     | Covariates |
|--------------------------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Bhargava,                            |                       | 116 girls with<br>birthweight<200<br>0g and 100<br>control girls with<br>birthweight<br>≥2500g and 37-<br>41 weeks<br>gestation.<br>Controls were<br>matched by<br>parental height,<br>parental<br>education and<br>SES<br>Age 14 years at<br>follow-up<br>Children born at<br>Safdarjung<br>Hospital, New | LBW:<br><2000g<br>Controls:<br>≥2500g<br>LBW group<br>was further<br>divided into:<br>Preterm:<br>weight<br>appropriate<br>for date<br>SFD: term |                                                                | Breast<br>Development<br>(Breast                                                      | Assessed<br>by study                                    | Comparison of<br>means using t-tests<br>or ANOVA for more<br>than two groups<br>Sexual maturation | "Almost half of LBW<br>girls were B2 at 9.5<br>years compared to<br>28% amongst controls"<br>Median age at B2:<br>Controls: 11.1 years<br>SFD girls: 10.7 years<br>Puberty onset to<br>menarche length<br>similar among all |            |
| 1995,<br>India                       | Prospective<br>cohort | Delhi, between<br>1968-1971                                                                                                                                                                                                                                                                                | but small for<br>date                                                                                                                            | Medical<br>records                                             | Tanner stage<br>2)                                                                    | staff at<br>visits                                      | data evaluated by<br>probit analyses                                                              | groups (data not<br>shown)                                                                                                                                                                                                  | None       |
|                                      |                       | 69 VLBW and 81<br>control girls<br>Age 11-13.5<br>years at follow-<br>up                                                                                                                                                                                                                                   |                                                                                                                                                  |                                                                |                                                                                       |                                                         |                                                                                                   |                                                                                                                                                                                                                             |            |
| Powls,<br>1996,<br>United<br>Kingdom | Prospective<br>cohort | Hospital-based<br>cohort of VLBW<br>children treated<br>at Mersey<br>regional<br>neonatal unit,<br>recruited while in<br>primary school<br>for two previous<br>studies:<br>1. birthweight<br><1251g and born<br>between Jan.<br>1980 and June                                                              | VLBW:<br><1251g or<br><1501g and<br><31 weeks<br>Controls:<br>normal<br>birthweight                                                              | Hospital<br>records for<br>VLBW, not<br>stated for<br>controls | Breast<br>Tanner stage<br>at adolescent<br>visit (Breast<br>development<br>> Stage 1) | Assessed<br>by study<br>staff at<br>adolescent<br>visit | Mann-Whitney U<br>test for stages of<br>puberty                                                   | Number of girls who<br>reached breast Tanner<br>>1:<br>VLBW: 50/69 (72%)<br>Control: 56/81 (68%)<br>Median breast Tanner<br>stage (IQR):<br>VLBW: 2 (1-4)<br>Control: 2 (1-4)<br>(p=0.73)                                   | None       |

# Supplemental Table 2.3. Studies of birth size and the timing of breast development

1981 2. birthweight <1501g and gestation <31 weeks and born between Jan. 1982 and Nov. 1983 Normal birthweight controls matched to age and sex, classmates of cases

|           |             | 130 girls (girls |             |           |              |          |                       |                           |                 |
|-----------|-------------|------------------|-------------|-----------|--------------|----------|-----------------------|---------------------------|-----------------|
|           |             | with missing     |             |           |              |          |                       |                           |                 |
|           |             | length and those |             |           |              |          |                       |                           |                 |
|           |             | with birthweight |             |           |              |          |                       |                           |                 |
|           |             | <2500g were      |             |           |              |          |                       |                           |                 |
|           |             | excluded)        |             |           |              |          |                       |                           |                 |
|           |             |                  |             |           |              |          |                       | Mean and SD of            |                 |
|           |             | Age 13.6-14.5    |             |           |              |          | Pearson correlation   | birthweight in g in girls |                 |
|           |             | years at follow- |             |           |              |          | coefficients relating | by their breast Tanner    |                 |
|           |             | up               |             |           |              |          | birthweight to stage  | stage at 14 years         |                 |
|           |             |                  |             |           |              |          | of sexual             | TS3: Mean=2930g,          |                 |
|           |             | Students in two  |             |           |              |          | development           | SD=286                    |                 |
|           |             | high schools at  |             |           |              |          | (Breast Tanner        | TS4: Mean= 3300g,         |                 |
|           |             | the municipality |             |           |              |          | stage)                | SD=331                    |                 |
|           |             | of Boyeros in    |             |           |              |          |                       | TS5: Mean= 3316g,         |                 |
|           |             | Havana in        |             |           |              |          | Mean birthweight      | SD=395                    |                 |
|           |             | September        |             |           |              |          | by breast Tanner      |                           |                 |
|           |             | 1986, subset of  |             |           |              |          | stage                 | Actual and estimated      |                 |
|           |             | longitudinal     |             |           |              |          |                       | correlations among        |                 |
|           |             | study on height  |             |           |              |          | Path analysis         | birthweight and stage     |                 |
|           |             | and weight that  |             |           |              |          | model relating        | of sexual development     |                 |
|           |             | was initiated in |             |           | Breast       |          | birthweight, height   | in girls from path        |                 |
| Bacallao, |             | Havana in 1972   |             |           | Tanner stage | Assessed | at 14 years and       | analysis model:           | Path model      |
| 1996,     | Prospective | when children    | Birthweight | Obstetric | at entry to  | by study | breast Tanner         | Actual=0.18               | included height |
| Cuba      | cohort      | aged 12 mo.      | in grams    | card      | high school  | staff    | stage                 | Estimated=0.18            | at 14 years     |

| 194 | Ford,<br>2000,<br>Australia                        | Prospective<br>cohort                                       | 39 VLBW, 42<br>LBW and 16<br>NBW girls with<br>pubertal data<br>Age 14 years at<br>follow-up<br>Infants born at<br>Royal Women's<br>Hospital in<br>Melbourne and<br>survived to age<br>14y:<br>VLBW: Infants<br><1000g born<br>between<br>1/1/1977 and<br>3/31/1982<br>LBW: Infants of<br>1000-1499g born<br>in last 18 months<br>of study<br>NBW: infants<br>>2499g<br>randomly<br>selected from<br>births in last 18<br>months of study<br>31 ELBW and 31 | VLBW:<1000<br>g<br>LBW: 1000-<br>1499g<br>NBW:<br>>2499g | Hospital<br>records                                                                                                                     | Breast<br>Tanner stage<br>at visit,<br>dichotomized<br>as >3 | Clinician<br>rating at 14<br>year old<br>visit                          | Comparison of N<br>and % of girls with<br>breast Tanner<br>stage >3 at age<br>14y | N and % of girls with<br>breast TS >3 at 14y:<br>VLBW: 29/39 (74%)<br>LBW: 29/42 (69%)<br>NBW: 12/15 (75%) | None |
|-----|----------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------|
|     | Peralta-<br>Carcelen,<br>2000,<br>United<br>States | Cross-<br>sectional<br>analysis of<br>prospective<br>cohort | Age 12-17.9<br>years at visit<br>ELBW infants<br>(birthweight<br>≤1000g) born<br>between 1978-<br>1984 who had<br>been monitored<br>at least once<br>through<br>Newborn Follow-<br>up Program at<br>the University of<br>Alabama at<br>Birmingham and<br>controls born<br>between 1978                                                                                                                                                                      | ELBW:≤1000<br>g NBW:<br>≥2500g                           | ELBW from<br>medical<br>records<br>(Newborn<br>Follow-Up<br>Program<br>Database),<br>NBW from<br>parent<br>report in<br>adolescenc<br>e | Breast<br>Tanner stage<br>at visit,<br>dichotomized<br>as >3 | Clinician<br>rating at<br>visit,<br>blinded to<br>birthweight<br>status | Comparison of N<br>and % of girls with<br>breast Tanner<br>stage >3 at visit      | Number of girls with<br>breast Tanner stage 4<br>or 5:<br>ELBW: 27/31 (87%)<br>NBW: 30/31 (97%)            | None |

and 1984 at term (>37 weeks) and birthweight ≥2500g, matched to cases by age, race, sex and SES by Hollingshead scale

|             |             | 19 full-term SGA<br>girls and 19<br>normal weight<br>controls girls<br>matched by date<br>of birth                                                                                                                                                                                                                                                                                                  |                                                                                                                                       |         |               |                                                |                     |                                                 |      |
|-------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------|---------------|------------------------------------------------|---------------------|-------------------------------------------------|------|
|             |             | Age 17.5-18.5<br>years at follow-<br>up                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                       |         |               |                                                |                     |                                                 |      |
| Ghirri,     | Prospective | Adolescent<br>follow-up in Italy.<br>Inclusion criteria:<br>1) GA between<br>37-41 weeks; 3)<br>not multiple<br>pregnancy; 4) no<br>intrauterine<br>infections,<br>congenital<br>anomalies,<br>chromosomal<br>alterations; no<br>asphyxia at birth;<br>age at evaluation<br>of final height<br>≥14.5 years; no<br>pubertal<br>retardation; last<br>12 months<br>growth velocity<br>≤0.5 cm; Italian | SGA: birth<br>weight below<br>the third<br>percentile for<br>gestational<br>age<br>NBW:<br>birthweight<br>between<br>25th and<br>75th | Medical | Age at breast | Self-<br>reported by<br>girl when<br>17.5-18.5 | Comparison of       | Age at breast<br>development:<br>SGA: 9.9 years | Nega |
| 2001, Italy | cohort      | origin.                                                                                                                                                                                                                                                                                                                                                                                             | percentile                                                                                                                            | records | development   | years                                          | means using t-tests | NBW: 10.4 years                                 | None |

|                                                           |                                                             |                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                   |                                                                               |                                                                                                                                                                                                                                                                                            |                                                            |                                                                                                                                                                                                                                        | Correlation between<br>birthweight and breast<br>stage adjusted for CA:<br>First measure: r=0.41,<br>p=0.02<br>Second measure:<br>r=0.31, p=0.10                                                       |                                                                      |
|-----------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
|                                                           |                                                             | 35 girls                                                                                                                                                                                                                                                                                                                                           | Birthweight<br>SDS,<br>standardized                                                                                                                                                                                                               |                                                                               | Tanner<br>breast stage<br>at visit                                                                                                                                                                                                                                                         |                                                            | Independent<br>sample t tests for<br>differences in<br>sexual maturation<br>of pubertal children<br>with the tertiles with<br>highest and lowest<br>birth weight                                                                       | Trend towards lower<br>breast stage in girls<br>with highest birthweight<br>(p for highest vs lowest<br>birthweight SDS<br>tertile):<br>First measure: p=0.15<br>Second measure:<br>p=0.07             |                                                                      |
| Delemarre<br>-van de<br>Waal,<br>2002,<br>Netherlan<br>ds | Cross-<br>sectional<br>analysis of<br>prospective<br>cohort | Age 12.3 +/- 1.5<br>years at first visit<br>(both sexes)<br>"Healthy" girls<br>were seen twice<br>in 1 year for<br>longitudinal<br>study of growth<br>and<br>development                                                                                                                                                                           | on<br>birthweight<br>references<br>for<br>gestational<br>age<br>published by<br>Campbell et<br>al, and<br>categorized<br>into tertiles                                                                                                            | Birthweight<br>and<br>birthlength<br>obtained<br>from<br>obstetric<br>records | Chronologica<br>I age<br>adjusted for<br>mean<br>pubertal age,<br>the age at<br>which a<br>certain<br>breast stage<br>is normally<br>reached                                                                                                                                               | Tanner<br>breast<br>stage<br>assessed<br>by study<br>staff | Pearson<br>correlations<br>between birth<br>weight and breast<br>stage adjusted for<br>chronological age<br>(lower CA/pubertal<br>age indicates<br>earlier breast<br>development)                                                      | Trend towards higher<br>CA/pubertal age X100<br>in girls with highest<br>birthweight (p for<br>highest vs lowest<br>birthweight SDS<br>tertile):<br>First measure: p=0.08<br>Second measure:<br>p=0.01 | Age at visit when<br>outcome is<br>chronological<br>age/pubertal age |
| Veening,<br>2004,<br>Netherlan<br>ds                      | Prospective<br>cohort                                       | 12 AGA and 17<br>SGA term infants<br>Mean age 9<br>years at first visit<br>and 11.6 years<br>at second visit<br>Follow-up of<br>SGA and AGA<br>children traced<br>from the<br>database of all<br>pregnancies,<br>deliveries and<br>perinatal events<br>of children born<br>in the VU<br>University<br>Medical Center<br>(registered since<br>1980) | SGA:<br>birthweight<br>below the<br>10th<br>percentile<br>corrected for<br>gestational<br>age (GA),<br>gender and<br>parity using<br>Dutch<br>reference<br>data<br>AGA:<br>birthweight<br>>10th<br>percentile<br>using Dutch<br>reference<br>data | Birthweight<br>and<br>gestational<br>age from<br>register                     | Tanner<br>breast stage<br>at visit<br>For girls in<br>B2 or above,<br>chronological<br>age adjusted<br>for mean<br>pubertal age,<br>the age at<br>which a<br>certain<br>breast stage<br>is normally<br>reached<br>according to<br>reference<br>data of the<br>Dutch<br>nationwide<br>study | Tanner<br>breast<br>stage<br>assessed<br>by study<br>staff | Chi-square test for<br>qualitative<br>variables and<br>Student's t-test for<br>quantitative<br>variables for<br>differences<br>between SGA and<br>AGA groups<br>((lower CA/pubertal<br>age indicates<br>earlier breast<br>development) | Mean (SD)<br>CA/PA*100% in<br>pubertal girls only at<br>second visit (13 girls<br>still B1):<br>SGA (N=13):<br>Mean=94.4, SD=7.1<br>AGA (N=9):<br>Mean=106.4, SD=10.4<br>p=0.004                       | Age at visit when<br>outcome is<br>chronological<br>age/pubertal age |

| Christense<br>n, 2010,<br>United<br>Kingdom | Prospective<br>cohort | 3938 singleton<br>girls with<br>consistent<br>pubertal staging<br>and prenatal<br>data<br>Age 8-14 years<br>at follow-up<br>Avon<br>Longitudinal<br>Study of Parent<br>and Children,<br>born April 1991-<br>December 1992 | Birthweight,<br>categorized<br>as:<br><2500g<br>2500-3999g<br>≥4000g<br>Birthweight,<br>continuous | Medical<br>records | Breast<br>Tanner stage | Breast<br>Tanner<br>stage<br>reported by<br>girls or<br>mothers at<br>repeated<br>pubertal<br>self-<br>assessment<br>s between<br>8-14 years<br>of age<br>*Girls with<br>inconsistent<br>responses<br>were<br>excluded<br>from<br>analyses | Ordinal probit<br>models for<br>progression<br>through Tanner<br>stages of breast<br>development, using<br>repeated breast<br>Tanner<br>assessments (β>0<br>indicates increased<br>probability of being<br>in higher Tanner<br>stage - earlier<br>development) | Birthweight must not<br>have been associated<br>with breast<br>development at P<.05<br>because it was not<br>included in final model<br>(data not shown)<br>Without adjusting for<br>girl's BMI, birthweight<br>still was not a<br>significant predictor of<br>breast development<br>(data not shown) | Age at<br>assessment             |
|---------------------------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
|                                             |                       |                                                                                                                                                                                                                           | Birthlength,                                                                                       |                    |                        | Breast<br>Tanner                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                | Adjusted difference in median age at                                                                                                                                                                                                                                                                  |                                  |
|                                             |                       |                                                                                                                                                                                                                           | continuous                                                                                         |                    |                        | stage<br>reported by                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                | transition to breast<br>Tanner stage ≥2:                                                                                                                                                                                                                                                              |                                  |
|                                             |                       | 1316 singleton,                                                                                                                                                                                                           | SGA: birth                                                                                         |                    |                        | girls or                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                | Birthweight: Diff=0.00,                                                                                                                                                                                                                                                                               |                                  |
|                                             |                       | term girls (37-42                                                                                                                                                                                                         | weight <10th                                                                                       |                    |                        | mothers at                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                | 95% CI=-0.00, 0.00                                                                                                                                                                                                                                                                                    |                                  |
|                                             |                       | weeks gestation)                                                                                                                                                                                                          | percentile of                                                                                      |                    |                        | repeated                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                | Birthlength: Diff= -0.02,                                                                                                                                                                                                                                                                             |                                  |
|                                             |                       | with consistent                                                                                                                                                                                                           | weight for                                                                                         |                    |                        | pubertal                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                | 95% Cl=-0.06, 0.03)                                                                                                                                                                                                                                                                                   |                                  |
|                                             |                       | pubertal staging                                                                                                                                                                                                          | gestational                                                                                        |                    |                        | self-                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                | SGA: Diff=-0.23, 95%                                                                                                                                                                                                                                                                                  | Maternal age at                  |
|                                             |                       | and birth size                                                                                                                                                                                                            | age.                                                                                               |                    |                        | assessment                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                | CI=-0.55, 0.09                                                                                                                                                                                                                                                                                        | menarche,                        |
|                                             |                       | data                                                                                                                                                                                                                      | Referent<br>weight                                                                                 |                    |                        | s between<br>8-14 years                                                                                                                                                                                                                    | Interval-censored                                                                                                                                                                                                                                              | Adjusted difference in                                                                                                                                                                                                                                                                                | previous live<br>birth, maternal |
|                                             |                       | Age 8-14 years                                                                                                                                                                                                            | percentiles                                                                                        |                    |                        | of age                                                                                                                                                                                                                                     | parametric survival                                                                                                                                                                                                                                            | median age at                                                                                                                                                                                                                                                                                         | race or ethnicity,               |
|                                             |                       | at follow-up                                                                                                                                                                                                              | estimated by                                                                                       |                    |                        | or age                                                                                                                                                                                                                                     | model for age at                                                                                                                                                                                                                                               | transition to breast                                                                                                                                                                                                                                                                                  | smoking during                   |
|                                             |                       |                                                                                                                                                                                                                           | weight and                                                                                         |                    |                        | *Girls with                                                                                                                                                                                                                                | transition to breast                                                                                                                                                                                                                                           | Tanner stage ≥3:                                                                                                                                                                                                                                                                                      | pregnancy,                       |
|                                             |                       | Avon                                                                                                                                                                                                                      | gestational                                                                                        |                    |                        | inconsistent                                                                                                                                                                                                                               | Tanner stage ≥2 or                                                                                                                                                                                                                                             | Birthweight: Diff=0.00,                                                                                                                                                                                                                                                                               | maternal                         |
|                                             |                       | Longitudinal                                                                                                                                                                                                              | age data of                                                                                        |                    | Age at                 | responses                                                                                                                                                                                                                                  | ≥3 assuming a                                                                                                                                                                                                                                                  | 95% CI=-0.00, 0.00)                                                                                                                                                                                                                                                                                   | prepregnancy                     |
| Maisonet,                                   |                       | Study of Parent                                                                                                                                                                                                           | singleton                                                                                          |                    | transition to          | were                                                                                                                                                                                                                                       | normal distribution                                                                                                                                                                                                                                            | Birthlength: Diff=-0.02,                                                                                                                                                                                                                                                                              | BMI, maternal                    |
| 2010,                                       |                       | and Children,                                                                                                                                                                                                             | girls from the                                                                                     |                    | Breast                 | excluded                                                                                                                                                                                                                                   | (Diff <0 indicates                                                                                                                                                                                                                                             | 95% CI=-0.06, 0.01                                                                                                                                                                                                                                                                                    | age at delivery,                 |
| United                                      | Prospective           | born April 1991-                                                                                                                                                                                                          | full ALSPAC                                                                                        | Medical            | Tanner stage           | from                                                                                                                                                                                                                                       | earlier breast                                                                                                                                                                                                                                                 | SGA: Diff=-0.17, 95%                                                                                                                                                                                                                                                                                  | maternal                         |
| Kingdom                                     | cohort                | December 1992                                                                                                                                                                                                             | cohort                                                                                             | records            | ≥2 or ≥3               | analyses                                                                                                                                                                                                                                   | development)                                                                                                                                                                                                                                                   | Cl=-0.45, 0.10                                                                                                                                                                                                                                                                                        | education                        |

|          |           | 956 girls with<br>birthweight and<br>Tanner stage<br>data available<br>Age 8-11 years | Birthweight,<br>treated as a<br>continuous<br>variable (per<br>100g)<br>increase and |           |                  | Assessed<br>by<br>NHANES     | Multinomial logistic<br>regression was<br>used to estimate<br>adjusted and<br>unadjusted ORs of<br>being Tanner<br>Stage 2+ for<br>asynchronous<br>maturation vs.<br>Stage 1 for the<br>pubertal pathway.<br>All analyses were<br>weighted by the<br>NHANES sample<br>weights and the<br>stratification and<br>multistage cluster<br>design used in the<br>complex sampling<br>was accounted | Adjusted OR for<br>asynchronous breast<br>development,<br>continuous birthweight<br>(per 100g):<br>OR for B2 vs. B1=1.01,<br>95% Cl=0.96, 1.07<br>OR for B3-5 vs.<br>B1=1.09, 95% Cl=1.02-<br>1.27<br>Adjusted OR for<br>asynchronous breast<br>development,<br>categorized<br>birthweight:<br>OR for B2 vs. B1:<br><2500g: OR=0.87,<br>95% Cl=0.27, 2.79<br>2500-2999g: OR=0.88,<br>95% Cl=0.41, 1.89<br>3000-3499g: Referent<br>3500-3999g: OR=1.11,<br>95% Cl=0.36, 3.40<br>≥4000g: OR=1.25,<br>95% Cl=0.62, 2.55<br>OR for B3-5 vs. B1:<br><2500g: OR=2.26,<br>95% Cl=0.22, 13.13<br>2500-2999g: OR=3.28, |                 |
|----------|-----------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------|------------------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
|          |           | data available                                                                        |                                                                                      |           |                  |                              | •                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |
|          |           | Age 8-11 years                                                                        | increase and                                                                         |           | Descal           | NHANES                       | was accounted                                                                                                                                                                                                                                                                                                                                                                                | 2500-2999g: OR=3.28,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |
| Olivo-   |           | Cross-sectional                                                                       | categorized:<br><2500g                                                               |           | Breast<br>Tanner | physician at<br>clinic visit | for in the<br>computation of                                                                                                                                                                                                                                                                                                                                                                 | 95% CI=0.99, 7.32<br>3000-3499g: Referent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |
| Marston, |           | data from 1988-                                                                       | <2500g<br>2500-2999g                                                                 | Reported  | stage,           | by                           | standard errors,                                                                                                                                                                                                                                                                                                                                                                             | 3500-3999g: OR=1.53,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |
| 2010,    |           | 1994 NHANES                                                                           | 3000-3499g                                                                           | by mother | categorized      | observation                  | confidence                                                                                                                                                                                                                                                                                                                                                                                   | 95% CI=0.49, 4.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Age,            |
| United   | Cross-    | III survey of girls                                                                   | 3500-3999g                                                                           | at home   | as B3-5, B2      | (no                          | interval (CI) and P-                                                                                                                                                                                                                                                                                                                                                                         | ≥4000g: OR=3.18,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | race/ethnicity, |
| States   | sectional | age 8-11 years                                                                        | ≥4000                                                                                | interview | and B1           | palpation)                   | values.                                                                                                                                                                                                                                                                                                                                                                                      | 95%Cl=1.39, 8.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | height and BMI  |

| Case-<br>control | 61 girls with<br>early puberty,<br>defined as<br>breast<br>development<br>before the age of<br>9 years but after<br>the age of 8<br>years<br>100 control girls<br>with onset of<br>puberty after the<br>age of 9 years<br>40 with IPP,<br>defined as<br>breast<br>development<br>before 8 years of<br>age (not eligible<br>for this review)<br>Mean age (SD):<br>Controls: 10.2<br>(1.6)<br>Early puberty:<br>9.2 (0.8)<br>IPP: 7.2 (1.1)<br>Girls evaluated<br>at the Pediatric<br>Endocrinology<br>unit of the Third<br>Department of<br>Pediatrics of the<br>University of<br>Athens, at<br>"Attikon"<br>University<br>Hospital, Athens,<br>Greece | Birth weight,<br>kg<br>Birthlength,<br>cm | Abstracted<br>from<br>personal<br>health book<br>of the<br>patient<br>(usually<br>made by<br>private<br>pediatrician<br>) | 3 groups<br>based on<br>timing of<br>breast<br>development<br>:<br>Controls:<br>healthy girls<br>with onset of<br>puberty after<br>the age of 9<br>years<br>Early<br>puberty: girls<br>with breast<br>development<br>before the<br>age of 9<br>years but<br>after the age<br>of 8 years,<br>as reported<br>by parents<br>IPP: girls<br>with breast<br>development<br>before 8<br>years of age<br>(not eligible<br>for this<br>review) | Onset of<br>breast<br>developme<br>nt was<br>reported by<br>parents and<br>verified by<br>palpation by<br>a physician | Comparison of<br>birthweight and<br>birthlength across 3<br>groups using<br>ANOVA | Mean (SD) birthweight<br>in kg by group:<br>IPP: Mean=3.11kg,<br>SD=0.53<br>Early puberty:<br>Mean=3.06kg,<br>SD=0.41<br>Controls: Mean=3.11,<br>SD=0.53<br>P ≥0.05<br>Mean (SD) of<br>birthlength in cm by<br>group:<br>IPP: Mean=51.18cm,<br>SD=2.29<br>Early puberty:<br>Mean=49.94cm,<br>SD=2.26<br>Controls:<br>Mean=50.02cm,<br>SD=2.42<br>P ≥0.05 | None  |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| CONTION          | Gieece                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GITI                                      |                                                                                                                           | ieview)                                                                                                                                                                                                                                                                                                                                                                                                                               | a priysician                                                                                                          | ANOVA                                                                             | F ≤0.00                                                                                                                                                                                                                                                                                                                                                  | NULLE |

Papadimitr iou, 2011, Greece

|                                    |                    | 305 term girls                                                                                                      |                      |                                  |                                                                                                 |                                                                                  |                                                                                                                                                    |                                                                                                                                                                  |                                                                                                                            |
|------------------------------------|--------------------|---------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
|                                    |                    | Age 10-15 years<br>at first report of<br>pubertal status,<br>followed<br>annually until<br>TS5 or max of 5<br>years |                      |                                  | Breast                                                                                          |                                                                                  | Parametric survival<br>analyses with log<br>normal distribution<br>for age at report of<br>breast Tanner<br>stage >2 or >3                         | Regression coefficient<br>in adjusted log-normal<br>survival analyses of<br>time to Breast Stage<br>>2<br>Birthweight: β=-0.06,<br>95% CI=-0.11, -0.01           | Weight gain<br>(change in Z-<br>score) from 0-6<br>months, 6-12<br>months, 1-2<br>years, 2-5 years,<br>maternal pre-       |
| Wang,<br>2012,<br>United<br>States | Prospective cohort | Adolescent<br>follow-up of<br>subset of the<br>North Carolina<br>Infant Feeding<br>Study, infants<br>born 1978-1982 | Birthweight<br>in kg | Recorded<br>at birth by<br>nurse | Tanner stage<br>at first<br>adolescent<br>report,<br>categorized<br>for analysis<br>as >2 or >3 | Daughter<br>self-report<br>at first<br>adolescent<br>survey<br>when<br>available | (girls were either<br>left or right<br>censored at age of<br>TS report) ( $\beta$ <0<br>indicates earlier<br>age at attainment<br>of breast stage) | Regression coefficients<br>(95% CI) in adjusted<br>log-normal survival<br>analyses of time to<br>Breast Stage >3<br>Birthweight: β=-0.05,<br>95%CI = -0.10, 0.01 | pregnancy<br>weight, maternal<br>age at delivery<br>and race (race<br>for TS>3 model<br>only due to small<br>cell counts). |

| Hernande          |                       | 16 LBW and 25<br>AGA girls, TS2<br>at enrollment<br>and BMI<br>between 10th<br>and 95th<br>percentile and<br>followed for 3<br>years<br>7-12 years at<br>enrollment<br>Age-matched<br>LBW and AGA<br>girls 7-12 years<br>recruited from<br>public schools in<br>Santiago and | AGA - birth<br>weight<br>between the<br>10th and<br>90th<br>percentile for<br>gestational<br>age<br>LBW - birth<br>weight below<br>the 10th<br>percentile for | Birth<br>weight, birth<br>length and<br>gestational<br>age<br>reported by<br>parents and<br>confirm in<br>child's | Breast       | Breast<br>Tanner<br>stage<br>assessed<br>by<br>researchers<br>at biannual | Dichotomous<br>variables were<br>created for Tanner<br>stage progression<br>and for the<br>Ferriman and<br>Gallway scoring<br>and evaluated by<br>means of a logistic<br>regression model<br>using as a<br>measurement of<br>association the<br>change in monthly<br>odds ratios<br>adjusted by the<br>condition of AGA or<br>LBW<br>Differences in<br>breast Tanner<br>stage of the two<br>groups assessed<br>by Kaplan Meier | LBW girls showed<br>slightly faster breast<br>development at first 2<br>years.<br>- At 6 months of follow-<br>up 55% of AGA and<br>23% of LBW were TS2.<br>-After 1 year of follow-<br>up (p<0.05)<br>-59.3% of AGA and<br>34.6% of LBW girls<br>were TS2<br>-40.7% and 57.7%<br>were TS3<br>-7.7% of LBW and<br>none of the AGA girls<br>were in Tanner stage<br>IV<br>-At 2 years of follow-up<br>(p<0.05)<br>-48.3% of AGA and<br>35% of LBW girls were<br>TS4 |       |
|-------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| z, 2013,<br>Chile | Prospective<br>cohort | Concepcion,<br>Chile                                                                                                                                                                                                                                                         | gestational                                                                                                                                                   | health                                                                                                            | Tanner stage | follow-up                                                                 | survival analyses                                                                                                                                                                                                                                                                                                                                                                                                              | - 27.5% of AGA and 55<br>% of SGA were TS5                                                                                                                                                                                                                                                                                                                                                                                                                        | None  |
| CIIIE             | CONDIL                | CITIE                                                                                                                                                                                                                                                                        | age                                                                                                                                                           | control card                                                                                                      | progression  | visits                                                                    | (log rank test)                                                                                                                                                                                                                                                                                                                                                                                                                | /0 UI 3GA WEIE 133                                                                                                                                                                                                                                                                                                                                                                                                                                                | NULLE |

|        |             | 1237 girls       |              |              |              |               |                    |                      |              |
|--------|-------------|------------------|--------------|--------------|--------------|---------------|--------------------|----------------------|--------------|
|        |             |                  |              |              |              | Breast        |                    |                      |              |
|        |             | Age 6-8 years at |              |              |              | Tanner        | Weibull survival   |                      |              |
|        |             | enrollment,      |              |              |              | stage at      | models for age at  |                      |              |
|        |             | followed for 6   |              |              |              | study visit   | onset of breast    |                      |              |
|        |             | years            |              |              |              | assessed      | development, using |                      |              |
|        |             |                  |              |              |              | by clinical   | interval and right |                      |              |
|        |             | BCERP Puberty    |              |              |              | staff         | censoring. 5 years |                      |              |
|        |             | Study, girls age |              |              |              | (biannual     | was used as lower  |                      |              |
|        |             | 6-8 years at     |              |              |              | visits for    | interval bound for |                      |              |
|        |             | enrollment in    | Birthweight, |              |              | Cincinnati,   | girls with breast  |                      |              |
| Kale,  |             | 2004-2007 in 3   | categorized  | Reported     |              | annual        | development at     | HR for breast onset: |              |
| 2014,  |             | sites (New York, | as:          | by primary   | Breast       | visits for CA | baseline (HR>1     | <2500g: HR=0.9, 95%  |              |
| United | Prospective | Cincinnati, Bay  | <2500g       | caregiver at | Tanner stage | and NY        | indicates earlier  | CI=0.7, 1.1          | None (age as |
| States | cohort      | Area)            | ≥2500g       | baseline     | ≥2           | sites)        | breast onset)      | ≥2500g: referent     | time scale)  |

| Author,<br>Location,<br>Year             | Study<br>Design       | Study<br>Population (N,<br>Age range,<br>Name)                                                                                                                                                       | Exposure                                                                                 | Exposure<br>source                                                         | Outcome            | Outcome<br>source                                                    | Statistical method                                    | Results                                                                                                                                                                                                    | Covariates |
|------------------------------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------|----------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|                                          |                       | 230 women with<br>menarche data<br>Age 22 years at<br>follow-up<br>Subset of the<br>Thousand<br>Families in                                                                                          |                                                                                          |                                                                            |                    |                                                                      |                                                       |                                                                                                                                                                                                            |            |
| Miller,<br>1972,<br>United<br>Kingdom    | Prospective cohort    | Newcastle upon<br>Tyne study of<br>babies born in<br>May and June<br>1947 and seen<br>regularly until<br>1962 (15 years<br>of age).                                                                  | Birthweight<br>(kg)                                                                      | Domiciliary<br>midwifery<br>service or<br>maternity<br>hospital<br>records | Age at<br>menarche | Recorded<br>during<br>adolescent<br>visits                           | Mean birthweight<br>by age at<br>menarche             | Mean birthweight (kg)<br>by age at menarche:<br><12 years: 3.07<br>12 years: 3.25<br>13 years: 3.35<br>14: 3.27<br>15+: 3.33                                                                               | None       |
|                                          |                       | 633 girls with menarche data                                                                                                                                                                         |                                                                                          |                                                                            |                    |                                                                      |                                                       |                                                                                                                                                                                                            |            |
| Zacharias,<br>1976,<br>United<br>States  | Prospective<br>cohort | Followed for 10<br>years<br>Girls age 8-10<br>identified in<br>September 1965<br>in Newton, MA<br>via school<br>records and<br>followed for 10<br>years                                              | "Girls born<br>prematurely<br>(birthweight<<br>2500g) and<br>girls born at<br>full term" | Source of<br>birthweight<br>data not<br>stated                             | Age at<br>menarche | Date of<br>menarche<br>recorded to<br>the day                        | Mean age at<br>menarche by<br>birthweight<br>category | Mean (SD) age at<br>menarche by<br>birthweight:<br><2500g: 12.7 years<br>(SD=1.15)<br>≥2500g: 12.83<br>(SD=1.21)<br>*Not statistically<br>different from each<br>other                                     | None       |
| Billewicz,<br>1981,<br>United<br>Kingdom | Prospective<br>cohort | 699 girls with<br>menarche data<br>Age 9-17 years<br>Subset of White<br>Newcastle-upon-<br>Tyne subset of<br>birth cohort, girls<br>born in 1962<br>followed up<br>every 6 months<br>from 9-17 years | Birth weight,<br>continuous                                                              | Birth cohort<br>records                                                    | Age at<br>menarche | Assume<br>provided by<br>girls at<br>biannual<br>follow-up<br>visits | Correlation,<br>comparison of<br>means                | Correlation between<br>birthweight and age at<br>menarche: r=0.007<br>Mean age at menarche<br>in girls with birthweight<br>≤2.5kg: 13.46 years,<br>SD 1.14<br>Mean age at menarche<br>overall: 13.37 years | None       |

## Supplemental Table 2.4. Studies of birth size and the timing of menarche

| Fledelius,<br>1982, | Prospective           | 34 LBW and 31<br>full-term girls<br>Age 18 years at<br>follow-up<br>Follow-up of<br>subset of<br>'University<br>Hospital of<br>Copenhagen<br>Study 1959-1961<br>on the<br>Significance of<br>Gestation and<br>Delivery for the<br>Health and<br>Development of                                                            | LBW:<br><2000g                                                                                                                                                                                                                                                  | Hospital            | Age at             | Assumed<br>reported by<br>girls at 18<br>year follow- | Comparison of          | Mean age at menarche<br>(years):<br>LBW: 13.5 years |                                                                                        |
|---------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------|-------------------------------------------------------|------------------------|-----------------------------------------------------|----------------------------------------------------------------------------------------|
| Denmark             | cohort                | the Child'                                                                                                                                                                                                                                                                                                                | FT: 3-4000g                                                                                                                                                                                                                                                     | records             | menarche           | up                                                    | mean                   | FT: 13.0 years                                      | None                                                                                   |
|                     |                       | 26 SGA infants<br>and 26 controls.<br>Controls must be<br>singleton with<br>GA between 38-<br>42 weeks and<br>birthweight<br>between 25th<br>and 75th<br>percentiles,<br>matched by sex,<br>race, ethnic<br>origin and SES<br>to SGA infants.<br>Age 13-19 years<br>at follow-up<br>SGA infants born<br>ot Devel Victoria | SGA, defined<br>as<br>birthweight at<br>least 30%<br>less than<br>expected<br>weight by<br>Streeter<br>tables, which<br>is more than<br>2 SD below<br>the mean<br>weight for<br>the nursery<br>of hospital<br>where they<br>were born.<br>Control<br>babies had |                     |                    |                                                       |                        |                                                     | None - matched<br>for age (within 3<br>months), sex,<br>race, ethnic<br>origin and SES |
|                     |                       | at Royal Victoria<br>Hospital,<br>Montreal,                                                                                                                                                                                                                                                                               | birthweight<br>between                                                                                                                                                                                                                                          |                     |                    |                                                       |                        | Mean age at                                         | at birth (mother<br>was a private or                                                   |
| Westwood            |                       | between 1960-                                                                                                                                                                                                                                                                                                             | 25th and                                                                                                                                                                                                                                                        |                     |                    |                                                       |                        | menarche: 12.4 years                                | public patient                                                                         |
| , 1983,<br>Canada   | Prospective<br>cohort | 1966, and<br>matched controls                                                                                                                                                                                                                                                                                             | 75th<br>percentiles                                                                                                                                                                                                                                             | Hospital<br>records | Age at<br>menarche | Self-report                                           | Comparison of<br>means | in SGA girls, 12.7<br>years in controls             | and marital<br>status)                                                                 |

| Roberts,<br>1986,<br>United<br>Kingdom | Cross-<br>sectional   | 1217 girls with<br>birthweight and<br>menarche data<br>School age,<br>range not<br>provided<br>15 schools<br>(junior,<br>secondary<br>grammar,<br>Church of<br>England,<br>Catholic) in<br>Cumbria region,<br>visited in Oct-<br>Nov 1976 | 1217 girls<br>with<br>birthweight<br>and<br>menarche<br>data | School age,<br>range not<br>provided | Birth weight       | Parent<br>report in<br>adolescenc<br>e | Logistic regression,<br>contribution of each<br>variable was<br>measured by the<br>increase in<br>deviance resulting<br>from deleting that<br>variable from the<br>model. Significance<br>assessed by chi-<br>square test | No association<br>between birthweight<br>and age at menarche<br>after controlling for<br>family size and position<br>(data not shown) | Age, family size, position |
|----------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------|--------------------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| Kinguom                                | Sectional             | 3018 girls with<br>data on<br>birthweight,<br>menarche and<br>weight at age 7<br>(girls with<br>gestational age<br><30 and >44<br>weeks were<br>excluded)                                                                                 | uala                                                         | provided                             |                    | e                                      | Square test                                                                                                                                                                                                               | (data not snown)                                                                                                                      | position                   |
| Stark,<br>1989,                        |                       | Age 16 years at<br>follow-up<br>Follow-up of<br>subset of 1958<br>National Child<br>Development<br>Study (NCDS)<br>(birth cohort of<br>all children born<br>in England,<br>Scotland and<br>Wales in one                                   |                                                              | Medical                              |                    | Self-report<br>by girl at 16           | Relative weight                                                                                                                                                                                                           | Birth weight and menarche were not                                                                                                    |                            |
| United<br>Kingdom                      | Prospective<br>cohort | week in March<br>1958)                                                                                                                                                                                                                    | Birth weight                                                 | records<br>(assumed)                 | Age at<br>menarche | year old<br>visit                      | distribution by age at menarche                                                                                                                                                                                           | related (data not shown)                                                                                                              | None                       |

| Prapas,<br>1989,<br>Greece | Cross-<br>sectional        | 2336<br>Age 15-18 years<br>Students from<br>Crete and<br>Thrace, March-<br>May 1988<br>333 cases (girls<br>whose mom<br>reported<br>menarche<br>between 1986<br>baseline visit<br>and 1987 follow-<br>up contact) and<br>333 pre-<br>menarcheal<br>controls,<br>matched to<br>birthdate<br>Girls age 9.5- | Birth weight,<br>categorized<br>(≤2500g,<br>2500-2900g,<br>3000-3400g,<br>3500-3900g,<br>≥4000g | Self-report<br>in<br>adolescenc<br>e   | Age at<br>menarche | Self-report                                                          | Comparison of<br>means by<br>birthweight and<br>residence (F test)           | Mean menarcheal age<br>by birthweight group:<br>Crete:<br>$\leq 2500g: 12.73$<br>2500-2900g: 12.16<br>3000-3400g: 12.31<br>3500-3900g: 12.59<br>$\geq 4000g: 12.49$<br>Thrace:<br>$\leq 2500.2900g: 12.48$<br>3000-3400g: 12.34<br>3500-3900g: 12.42<br>$\geq 4000g: 12.38$<br>Significant correlation<br>(F4, 709=4.860,<br>p<.0001 for Crete and<br>F2, 49=4.183, p<.05)<br>for Thrace | Region<br>(stratified) |
|----------------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------|--------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| Moisan,<br>1990,<br>Canada | Nested<br>case-<br>control | Fifth-grade<br>classes from 122<br>schools in<br>Quebec City,<br>Canada in 1986                                                                                                                                                                                                                           | Birth weight,<br>categorized<br>into quartiles<br>for analysis                                  | Parent<br>report in<br>adolescenc<br>e | Early<br>menarche  | Parent<br>report of<br>menarche<br>at follow-up<br>questionnai<br>re | Logistic regression<br>for early menarche,<br>with exposures in<br>quartiles | No association<br>between birthweight<br>and menarche (data<br>not shown)                                                                                                                                                                                                                                                                                                                | Not shown              |

|                      |                       | 756 girls                                                                                                          |                                                                                                             |                                                                                           |                          |                                                                  |                                        |                                                                                                                                                                   |      |
|----------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------|------------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|                      |                       | Followed up to                                                                                                     | SGA:<br>birthweight<1                                                                                       |                                                                                           |                          |                                                                  |                                        |                                                                                                                                                                   |      |
|                      |                       | 17 years                                                                                                           | Oth                                                                                                         |                                                                                           |                          |                                                                  |                                        |                                                                                                                                                                   |      |
|                      |                       | White<br>participants in<br>the Child Health<br>and<br>Development<br>Studies,<br>evaluated at<br>birth and at 15, | percentile of<br>gestational<br>age<br>AGA:<br>birthweight<br>between<br>11th and<br>99th<br>percentiles of | Gestational<br>age<br>(calculated<br>from<br>information<br>on LMP)<br>and<br>birthweight |                          | Not stated,<br>assumed<br>reported by<br>adolescents<br>at 15-17 | Mean age at                            | Mean (SD) of age at menarche:                                                                                                                                     |      |
| Frisancho,<br>1994,  | Prospective<br>cohort | 16 and 17 years<br>of age                                                                                          | gestational<br>age                                                                                          | measured<br>at birth                                                                      | Age at<br>menarche       | years of<br>age                                                  | menarche in SGA<br>vs. AGA (text only) | SGA: 12.68y (1.21)<br>AGA: 12.78y (1.19)                                                                                                                          | None |
|                      |                       |                                                                                                                    |                                                                                                             |                                                                                           |                          |                                                                  |                                        | Mean birth weight in kg<br>by age at menarche<br>(p=0.91)<br><12 years: 3.35<br>12-13 years: 3.31<br>13-14 years: 3.30<br>>14 years: 3.33<br>Mean BMI at birth by |      |
|                      |                       | 415 girls with menarche data                                                                                       |                                                                                                             |                                                                                           |                          |                                                                  |                                        | age at<br>menarche(p=0.69)<br><12 years: 12.6<br>12-13 years: 12.4<br>13-14 years: 12.4                                                                           |      |
|                      |                       | Followed up to 18 years of age                                                                                     | Birth weight (kg),                                                                                          |                                                                                           | Age at<br>menarche,      |                                                                  |                                        | >14 years: 12.5                                                                                                                                                   |      |
|                      |                       | Follow-up of                                                                                                       | continuous<br>BMI at birth,                                                                                 |                                                                                           | categorized as:          | Self-report<br>when girls                                        |                                        | Birth length in cm<br>(p=0.99)                                                                                                                                    |      |
| St.                  |                       | Dunedin birth                                                                                                      | continuous                                                                                                  |                                                                                           | <12 years                | were 11, 13                                                      |                                        | <12 years: 51.4                                                                                                                                                   |      |
| George,              |                       | cohort, born April                                                                                                 | Birthlength                                                                                                 | 0/                                                                                        | 12-13 years              | and 15                                                           | Mean birthweight                       | 12-13 years: 51.4                                                                                                                                                 |      |
| 1994, New<br>Zealand | Prospective<br>cohort | 1972-March<br>1973                                                                                                 | (cm),<br>continuous                                                                                         | Study<br>records                                                                          | 13-14 years<br>>14 years | years of age                                                     | by age at<br>menarche category         | 13-14 years: 51.4<br>>14 years: 51.5                                                                                                                              | None |
|                      | 0011011               | 1010                                                                                                               | 00111110003                                                                                                 | 1000103                                                                                   | 217 yours                | uge                                                              | menarene category                      | 2 14 yours. 01.0                                                                                                                                                  |      |

| Bhargava,<br>1995,<br>India           | Prospective<br>cohort | 116 girls with<br>birthweight<2000<br>g and 100<br>control girls with<br>birthweight<br>≥2500g and 37-<br>41 weeks<br>gestation.<br>Controls were<br>matched by<br>parental height,<br>parental<br>education and<br>SES<br>Age 14 years at<br>follow-up<br>Children born at<br>Safdarjung<br>Hospital, New<br>Delhi, between<br>1968-1971 | LBW:<br><2000g<br>Controls:<br>≥2500g<br>LBW group<br>was further<br>divided into:<br>Preterm:<br>weight<br>appropriate<br>for date<br>SFD: term<br>but small for<br>date | Medical<br>records                     | Age at<br>menarche | Not<br>specified,<br>assume<br>self-report<br>of<br>menarche<br>at follow-up<br>visits   | Comparison of<br>means using t-tests<br>or ANOVA for more<br>than two groups<br>Sexual maturation<br>data evaluated by<br>probit analyses          | Median age at<br>menarche from probit<br>analyses:<br>Controls: 13.6 years<br>6 months earlier in<br>preterms and 12<br>months earlier in SFD<br>girls (estimates not<br>given)<br>Mean age at menarche                                                                                                                                                                                                                                                       | None stated                                                                                                                                                                                                       |
|---------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cooper,<br>1996,<br>United<br>Kingdom | Prospective<br>cohort | 1471 girls with<br>birthweight, body<br>size at age 7 and<br>menarche data<br>Age 14-15 years<br>at follow-up<br>Follow-up of<br>MRC National<br>Survey of Health<br>and<br>Development<br>studies, birth<br>cohort born first<br>week of March<br>1946                                                                                   | Birth weight,<br>categorized<br>into quintiles<br>for analysis                                                                                                            | Health visit<br>and midwife<br>records | Age at<br>menarche | Month and<br>year of<br>menarche<br>reported by<br>mom when<br>girls were<br>14-15 years | Mean age at<br>menarche by<br>birthweight quintile,<br>tests for trend<br>Weibull survival<br>model for age at<br>menarche with right<br>censoring | by birthweight quintile<br>(F-value for linear trend<br>3.27, p=0.07):<br>Lowest: 12.85y<br>2: 12.81y<br>3:12.93y<br>4:12.84y<br>Highest:13.03y<br>Weibull model:<br>birthweight significantly<br>positively associated<br>with menarche (Chi-<br>sq=18.0, df=4,<br>p<.00001), weight at<br>seven years was<br>inversely associated<br>with age at menarche<br>Earliest age at<br>menarche in those with<br>low birthweight who<br>became heavy at 7<br>years | Weibull model<br>included weight<br>and height at 7<br>years<br>Results similar<br>after adjusting<br>for birth order,<br>birth interval,<br>social class and<br>general<br>educational<br>ability (not<br>shown) |

|             | 69 VLBW and 81                  |                         |                         |          |                   |                                   |                            |      |
|-------------|---------------------------------|-------------------------|-------------------------|----------|-------------------|-----------------------------------|----------------------------|------|
|             | control girls                   |                         |                         |          |                   |                                   |                            |      |
|             | Age 11-13.5                     |                         |                         |          |                   |                                   |                            |      |
|             | years at follow-                |                         |                         |          |                   |                                   |                            |      |
|             | up                              |                         |                         |          |                   |                                   |                            |      |
|             | Hospital-based                  |                         |                         |          |                   |                                   |                            |      |
|             | cohort of VLBW                  |                         |                         |          |                   |                                   |                            |      |
|             | children treated                |                         |                         |          |                   |                                   |                            |      |
|             | at Mersey                       |                         |                         |          |                   |                                   |                            |      |
|             | regional<br>neonatal unit,      |                         |                         |          |                   |                                   |                            |      |
|             | recruited while in              |                         |                         |          |                   |                                   |                            |      |
|             | primary school                  |                         |                         |          |                   |                                   |                            |      |
|             | for two previous                |                         |                         |          |                   |                                   |                            |      |
|             | studies:                        |                         |                         |          |                   |                                   |                            |      |
|             | 1. birthweight                  |                         |                         |          |                   |                                   |                            |      |
|             | <1251g and born                 |                         |                         |          |                   |                                   |                            |      |
|             | between Jan.                    |                         |                         |          |                   |                                   |                            |      |
|             | 1980 and June<br>1981           |                         |                         |          |                   |                                   |                            |      |
|             | 2. birthweight                  |                         |                         |          |                   |                                   |                            |      |
|             | <1501g and                      |                         |                         |          |                   |                                   | Number of girls who        |      |
|             | gestation <31                   |                         |                         |          |                   |                                   | reached menarche           |      |
|             | weeks and born                  |                         |                         |          |                   |                                   | (p=0.7):                   |      |
|             | between Jan.                    |                         |                         |          |                   |                                   | VLBW: 15/69 (22%)          |      |
|             | 1982 and Nov.                   |                         |                         |          |                   |                                   | Control: 20/81 (24%)       |      |
|             | 1983                            | VLBW:                   |                         |          | Assume            |                                   |                            |      |
|             | Normal                          | <1251g or               | Hoopital                |          | self-report<br>of | Chi-square for                    | Median age at<br>menarche: |      |
|             | birthweight<br>controls matched | <1501g and<br><31 weeks | Hospital<br>records for |          | menarche          | number of girls<br>having reached | VLBW: 12.0 y (11.2-        |      |
|             | to age and sex,                 | Controls:               | VLBW, not               |          | by girl at        | menarche by group                 | 12.3)                      |      |
| Prospective | classmates of                   | normal                  | stated for              | Age at   | adolescent        | and median age at                 | Control: 12.0 y (11.2-     |      |
| cohort      | cases                           | birthweight             | controls                | menarche | visit             | menarche by group                 | 12.3)                      | None |

Powls, 1996, United Kingdom

| Leger, | Prospectivo | 133 SGA cases<br>and 152 AGA<br>controls, first<br>person with<br>normal<br>birthweight for<br>GA (25-75th<br>percentile) born<br>immediately after<br>an SGA subject<br>(not matched for<br>sex or GA)<br>Age 16.6-24.5<br>years at follow-<br>up<br>All singleton<br>subjects born<br>SGA and at term<br>during 1971-8<br>were identified<br>from the<br>population-<br>based registry in<br>Hogupoau | SGA: defined<br>as having a<br>birth weight<br>or length (or<br>both) below<br>the third<br>centile of the<br>local<br>standard<br>values.<br>Controls:<br>birthweight<br>for<br>gestational<br>age between<br>25th and | Bith     | Ago at   | Assume       | Difference between<br>groups assessed<br>by Chi-square test,<br>Fisher's exact test<br>and thet as | No significant<br>difference in mean<br>(SD) age at menarche<br>between the two<br>groups:<br>SCA: 12.6 (1.6) |      |
|--------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|--------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------|
| 1997,  | Prospective | Haguenau,                                                                                                                                                                                                                                                                                                                                                                                               | 25th and                                                                                                                                                                                                                | Birth    | Age at   | self-report  | and t test as                                                                                      | SGA: 12.6 (1.6)                                                                                               | None |
| France | cohort      | France                                                                                                                                                                                                                                                                                                                                                                                                  | 75th centile                                                                                                                                                                                                            | registry | menarche | at follow-up | appropriate                                                                                        | AGA: 12.9 (1.7)                                                                                               |      |

|                             |                          | 263 "normal<br>"girls with follow-<br>up data and 229<br>"exposed" girls<br>with menarche<br>data.<br>Record linkage<br>through 18 years<br>Cohorts selected<br>from all<br>singletons born<br>alive at<br>University<br>Hospital of<br>Uppsala from<br>1973-1977<br>whose parents<br>had been born in<br>Sweden and | Groups<br>defined using<br>ICD-7 codes<br>from Medical<br>Birth<br>Registry and<br>Inpatient<br>Registry and<br>through<br>Naegel's<br>formula<br>standardized<br>for GA:<br>Normal<br>children: No<br>registered<br>abnormality<br>in pregnancy<br>or at<br>delivery;<br>Apgar score<br>at 5 minutes;<br>no postnatal<br>abnormality<br>SGA:<br>Diagnosis of<br>birth from<br>Medical Birth<br>Registry, or<br>weight ≤2SD<br>LGA:<br>diagnosis of<br>short for GA:<br>Diagnosis of<br>short for GA |                    |                    | Medical<br>records<br>(routine<br>visits to<br>postnatal<br>child health<br>centers and |                                                                 | Mean age at menarche<br>(SD), p for difference, p<br>for covariance<br>comparing exposed to<br>normal children:<br>Normal: 13.1 y (1.0)<br>SGA: 12.7y (1.1),<br>pdiff=0.032, pcov =<br>0.33<br>LGA: 13.0y (1.1) | Analysis of<br>covariance<br>included<br>maternal age,<br>parity, and<br>parameters from<br>growth curve<br>function from 0-6<br>vears (using |
|-----------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Persson,<br>1999,<br>Sweden | Retrospecti<br>ve cohort | Hospital of<br>Uppsala from<br>1973-1977<br>whose parents                                                                                                                                                                                                                                                            | Short for GA:<br>Diagnosis of<br>short for GA<br>birth or                                                                                                                                                                                                                                                                                                                                                                                                                                            | Medical<br>records | Age at<br>menarche | records<br>(routine<br>visits to<br>postnatal                                           | T-tests and<br>analysis of<br>covariance for age<br>at menarche | normal children:<br>Normal: 13.1 y (1.0)<br>SGA: 12.7y (1.1),<br>pdiff=0.032, pcov =                                                                                                                            | maternal age,<br>parity, and<br>parameters from<br>growth curve                                                                               |

| 213 | Tenhola,<br>2000,<br>Finland | Prospective<br>cohort | 35 SGA girls and<br>35 AGA control<br>girls matched for<br>age and sex<br>Mean age at<br>follow-up:<br>12.2±0.2 years<br>SGA cases and<br>selected controls<br>from all children<br>born at Kuopio<br>University<br>Hospital<br>between April 1,<br>1984 and March<br>31, 1986<br>(excluding July)<br>39 VLBW, 42<br>LBW and 16<br>NBW girls with<br>pubertal data<br>Age 14 years at | SGA: birth<br>weight<br>and/or length<br>and/or<br>ponderal<br>index >2 SD<br>score below<br>the mean for<br>gestational<br>age. (N=20<br>defined by<br>weight, 4 by<br>length, 30 for<br>both and 1<br>by PI)<br>AGA:<br>birthweight,<br>birth length<br>and ponderal<br>index $\ge$ -2 SD<br>score and $\le$ 2<br>SD score of<br>the mean for<br>gestational<br>age. | Birthweight,<br>birth length<br>and<br>gestational<br>age from<br>hospital<br>records | Menarche<br>status at 12 y<br>visit    | Assume<br>reported by<br>girl at clinic<br>visit | Means compared<br>by Wilcoxon<br>matched-pair<br>signed rank test   | Prevalence of<br>menarche at visit: 9/35<br>(25.7%) in both SGA<br>and AGA girls                   | None |
|-----|------------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------|
|     | Ford,<br>2000,<br>Australia  | Prospective<br>cohort | follow-up<br>Infants born at<br>Royal Women's<br>Hospital in<br>Melbourne:<br>VLBW: <1000g<br>born between<br>1/1/1977 and<br>3/31/1982<br>LBW: 1000-<br>1499g born in<br>last 18 months of<br>study<br>-NBW: >2499g<br>randomly<br>selected from<br>births in last 18<br>months of study                                                                                             | VLBW:<1000<br>g<br>LBW: 1000-<br>1499g<br>NBW:<br>>2499g                                                                                                                                                                                                                                                                                                               | Hospital<br>records                                                                   | Menarche<br>status at 14<br>year visit | Self-report<br>by girl                           | Comparison of N<br>and % of girls with<br>no menarche at<br>age 14y | N and % of girls<br>without menarche at<br>14y:<br>VLBW: 6/39 (15%)<br>LBW: 0/42<br>NBW: 1/16 (6%) | None |

| Peralta-<br>Carcelen,<br>2000,<br>United<br>States | Cross-<br>sectional<br>analysis of<br>prospective<br>cohort | 31 ELBW and 31<br>NBW girls<br>Age 12-17.9<br>years at visit<br>ELBW infants<br>(birthweight<br>≤1000g) born<br>between 1978-<br>1984 who had<br>been monitored<br>at least once<br>through<br>Newborn Follow-<br>up Program at<br>the University of<br>Alabama at<br>Birmingham and<br>controls born<br>between 1978<br>and 1984 at term<br>(>37 weeks) and<br>birthweight<br>≥2500g,<br>matched to<br>cases by age,<br>race, sex and<br>SES by<br>Hollingshead<br>scale<br>53 ELBW girls | ELBW:≤1000<br>g NBW:<br>≥2500g                                                 | ELBW from<br>medical<br>records<br>(Newborn<br>Follow-Up<br>Program<br>Database),<br>NBW from<br>parent<br>report in<br>adolescenc<br>e | Age at<br>menarche                                                  | Assume<br>self-report<br>at visit                                 | Comparison of means                                                                                               | Mean age at menarche<br>by birthweight group:<br>ELBW: 11.15 years<br>NBW: 11.45 years                                                                                                                                   | None |
|----------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Saigal,<br>2001,<br>Canada                         | Prospective<br>cohort                                       | and 55 control<br>girls, matched<br>for gender, age<br>and SES to each<br>individual child<br>Age 12-16 years<br>at follow-up<br>Adolescent<br>follow-up of<br>ELBW (501-<br>1000g) born<br>between 1977-<br>1982 to<br>residence of a<br>geographically<br>defined region in                                                                                                                                                                                                              | ELBW: 501-<br>1000g at<br>birth (22%<br>were SGA)<br>Controls:<br>term infants | Medical<br>records for<br>ELBW, not<br>stated for<br>controls                                                                           | Menarche<br>status at<br>adolescent<br>visit and age<br>at menarche | Recorded<br>at<br>adolescent<br>visit, source<br>not<br>specified | ELBW and control<br>participants<br>compared using<br>Student's t test to<br>determine<br>differences in<br>means | No difference in<br>proportion of girls who<br>achieved menarche:<br>ELBW: 90%<br>Control: 91%<br>No difference in mean<br>age at onset of<br>menarche:<br>ELBW: 12 years<br>(SD=1.1)<br>Control: 12.2 years<br>(SD=1.1) | None |

central-west Ontario and term controls were recruited at 8 years of age from a random list through school boards (1977-1981 births)

|                                                                                                                                                                                                                                                                                                                                                                                                   |   |             | 966 girls with<br>complete<br>information on<br>birth<br>characteristics<br>and<br>anthropometry at<br>8 years<br>Age 14-15 years<br>at follow-up<br>Cebu<br>Longitudinal<br>Health and<br>Nutrition Survey,<br>infants born in<br>1984-1984 from<br>women in<br>randomly<br>selected urban | Birthweight,<br>continuous<br>Birth length,<br>continuous<br>4 groups<br>characterize<br>d by birth<br>weight (cut at<br>median, 3kg)<br>and birth<br>length (cut at<br>median,<br>40cm)- | Infant<br>weight and<br>length<br>measured<br>by project<br>staff as<br>soon as<br>births were<br>reported.<br>Length<br>measured<br>using |   | Girl's self-<br>report of<br>month and<br>year of first | Parametric Weibull<br>models to estimate<br>associations<br>between birth<br>characteristics and<br>age at menarche,<br>with premenarcheal<br>girle treated as | Adjusted HR, t-statistic<br>and P-value from<br>Weibull models for age<br>at menarche with<br>continuous exposure:<br>Birthweight: HR=0.77,<br>t=-2.48, p<0.05<br>Birth length: HR=1.08,<br>t=3.54, p<0.01<br>Adjusted HR, t-statistic<br>and P-value from<br>Weibull mediation<br>models for age at<br>menarche with<br>continuous exposure:<br>Birthweight: HR=0.75,<br>t=-2.71, p<0.01<br>Birth length: HR=1.06,<br>t=3.02, p<0.01<br>Adjusted HR, t-statistic<br>and P-value from<br>Weibull models for age<br>at menarche with<br>categorical exposure:<br>Long/light: HR=1.37,<br>t=2.77, p<0.01<br>Short/light: HR=1.17,<br>t=1.42, p≥0.10<br>Short/heavy: Referent<br>Adjusted HR, t-statistic<br>and P-value from<br>Weibull models for age<br>at menarche with<br>categorical exposure:<br>Long/light: HR=1.54,<br>t=3.51, p<0.01<br>Long/light: HR=1.54,<br>t=3.51, p<0.01 | Adjusted<br>continuous<br>model: Maternal<br>age at<br>menarche,<br>maternal age at<br>pregnancy,<br>maternal height,<br>maternal BMI<br>after birth,<br>maternal triceps<br>skinfold<br>thickness during<br>pregnancy,<br>maternal diet<br>score, first<br>pregnancy, SES,<br>gestational age,<br>birthweight and<br>birth length<br>Mediation model<br>additionally<br>includes BMI<br>and sum of<br>skinfolds at age<br>8 years<br>Adjusted<br>categorical<br>model:<br>Gestational age,<br>BMI and<br>skinfolds at 8<br>years, maternal |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                   |   |             | women in                                                                                                                                                                                                                                                                                    | length (cut at                                                                                                                                                                            | Length                                                                                                                                     |   | month and                                               | age at menarche,                                                                                                                                               | Long/light: HR=1.54,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| randomly median, measured year of first with premenarcheal t=3.51, p<0.01 years, maternal selected urban 49cm): using menses girls treated as Long/heavy: HR=1.29, height, maternal                                                                                                                                                                                                               |   |             | ,                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                           |                                                                                                                                            |   |                                                         |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Adair, and rural Long/light custom- from right censored t=2.22, p<0.05 age at                                                                                                                                                                                                                                                                                                                     | , |             | and rural                                                                                                                                                                                                                                                                                   | Long/light                                                                                                                                                                                | custom-                                                                                                                                    |   | from                                                    | right censored                                                                                                                                                 | t=2.22, p<0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | age at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2001, barangays in Long/heavy made Age at interview at (~5%) (HR>1 Short/light: HR=1.29, menarche, total                                                                                                                                                                                                                                                                                          |   | Prochastiva |                                                                                                                                                                                                                                                                                             | • •                                                                                                                                                                                       |                                                                                                                                            | 0 |                                                         |                                                                                                                                                                | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Philippine         Prospective         Metro Cebu,         Short/light         length         menarche,         10-11 and         indicates earlier         t=2.26, p>0.05         energy intake,           s         cohort         Philippines.         Short/heavy         boards.         continuous         14-15 years         menarche)         Short/heavy: Referent         low fat, SES |   |             | '                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                         | •                                                                                                                                          | , |                                                         |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

|             |             | 19 full-term SGA<br>girls and 19<br>normal weight<br>controls girls<br>matched to date<br>of birth of SGA<br>subject                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                       |         |          |                                                |                     |                                     |      |
|-------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------|----------|------------------------------------------------|---------------------|-------------------------------------|------|
|             |             | Age 17.5-18.5<br>years at follow-<br>up                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                       |         |          |                                                |                     |                                     |      |
| Ghirri,     | Prospective | Adolescent<br>follow-up of 19<br>full-term SGA<br>girls and 19<br>matched controls<br>in Italy. Inclusion<br>criteria: 1) GA<br>between 37-41<br>weeks; 3) not<br>multiple<br>pregnancy; 4) no<br>intrauterine<br>infections,<br>congenital<br>anomalies,<br>chromosomal<br>alterations; no<br>asphyxia at birth;<br>age at evaluation<br>of final height<br>≥14.5 years; no<br>pubertal<br>retardation; last<br>12 months<br>growth velocity<br>≤0.5 cm; Italian | SGA: birth<br>weight below<br>the third<br>percentile for<br>gestational<br>age<br>NBW:<br>birthweight<br>between<br>25th and<br>75th | Medical | Age at   | Self-<br>reported by<br>girl when<br>17.5-18.5 | Comparison of       | Age at menarche:<br>SGA: 11.9 years |      |
| 2001, Italy | cohort      | origin.                                                                                                                                                                                                                                                                                                                                                                                                                                                           | percentile                                                                                                                            | records | menarche | years                                          | means using t-tests | NBW: 12.3 years                     | None |

| Koziel,<br>2002,<br>Poland           | Cross-<br>sectional | 1060 singleton<br>girls<br>Age 13.5-14.5<br>years<br>Girls attending<br>7th grace of<br>randomly<br>selected primary<br>schools in<br>Wroclaw,<br>Poland,<br>examined<br>medically during<br>1996-1997 | SGA:<br>birthweight<br>below the<br>10th<br>percentile for<br>gestational<br>age<br>AGA:<br>birthweight<br>≥10th<br>percentile for<br>gestational<br>age | Birth weight<br>recorded to<br>nearest 10g<br>and<br>gestational<br>age<br>measured<br>in weeks<br>from last<br>menstruatio<br>n from<br>booklet of<br>Child<br>Health,<br>routinely<br>filled out by<br>neonatologi<br>st in<br>maternity<br>ward and<br>provided by<br>parents | Menarche<br>status at visit<br>(~14 years of<br>age) | Self-report<br>by girl at<br>13.5-14.5<br>years                                                                                   | Logistic regression<br>with outcome pre-<br>or post-menarche<br>status (OR>1<br>indicates greater<br>likelihood of<br>menarche by 14<br>years) | Adjusted OR for<br>menarche:<br>SGA vs. AGA:<br>OR=2.54, 95%<br>CI=1.22, 5.28                                                                                                                                                                                                                                                                                                                   | Logistic<br>regression<br>adjusted for SES<br>using PC score<br>and BMI at 8<br>years<br>(overweight,<br>normal, lean)                                                                                                                                                                                                                                                    |
|--------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| dos<br>Santos                        |                     | 2008 girls with<br>menarche and<br>early life data<br>Followed up to<br>48 years<br>MRC National<br>Survey of Health<br>and<br>Development                                                             |                                                                                                                                                          |                                                                                                                                                                                                                                                                                  |                                                      | Reported<br>by mother<br>when<br>daughter<br>was 15 or<br>recalled by<br>participant<br>at 48 year-<br>old follow-<br>up visit if | Mean difference in<br>birthweight by<br>menarche group<br>(early: <11.75<br>years, average:<br>11.75-14.25, late:<br>>14.25 years)             | Mean birth weight in kg<br>(SD) by menarche:<br>Early: 3.3 (0.47)<br>Average: 3.3 (0.48)<br>Late: 3.4 (0.52)<br>HR for age at<br>menarche with<br>birthweight in kg as<br>continuous exposure<br>from Weibull models:<br>Univariate model for<br>birthweight, kg:<br>HR=0.96, 95%CI=0.87,<br>1.05<br>Adjusted for growth in<br>infancy: HR=1.17, 95%<br>CI=1.06, 1.36<br>Adjusted for growth in | Growth in<br>infancy model<br>adjusted for rank<br>changes in<br>height from 0-2<br>years<br>Growth in<br>infancy and<br>childhood and<br>BMI profile<br>adjusted for rank<br>changes in<br>height from 0-2<br>years, height<br>rate from 2-4<br>and 4-7 years,<br>rank changes in<br>BMII from 0-2<br>years, BMI rate<br>from 2-6 years<br>*Note: random<br>coefficients |
| Silva,<br>2002,<br>United<br>Kingdom | Prospective cohort  | studies, birth<br>cohort born first<br>week of March<br>1946                                                                                                                                           | Birthweight<br>in kg,<br>continuous                                                                                                                      | Hospital record                                                                                                                                                                                                                                                                  | Age at<br>menarche                                   | not<br>available at<br>15 years<br>(17%)                                                                                          | Multivariable<br>Weibull models for<br>age at menarche                                                                                         | infancy and childhood<br>and BMI profile:<br>HR=1.09, 95% CI-0.87,<br>1.30                                                                                                                                                                                                                                                                                                                      | model for height<br>includes<br>mother's height,<br>mother's age at                                                                                                                                                                                                                                                                                                       |

birth, birth order, father's manual occupation and no. of younger siblings. Model for BMI includes father's manual occupation.

|        |             | 92 VLBW           |           |             |          |             |                    |                      |      |
|--------|-------------|-------------------|-----------|-------------|----------|-------------|--------------------|----------------------|------|
|        |             | females and 107   |           |             |          |             |                    |                      |      |
|        |             | controls with     |           |             |          |             |                    |                      |      |
|        |             | non-missing       |           |             |          |             |                    |                      |      |
|        |             | growth            |           |             |          |             |                    |                      |      |
|        |             | measures and      |           |             |          |             |                    |                      |      |
|        |             | no neurosensory   |           |             |          |             |                    |                      |      |
|        |             | impairments       |           |             |          |             |                    |                      |      |
|        |             | Area 00 waara at  |           |             |          |             |                    |                      |      |
|        |             | Age 20 years at   |           |             |          |             |                    |                      |      |
|        |             | follow-up         |           |             |          |             |                    |                      |      |
|        |             | 20-year follow-   |           |             |          |             |                    |                      |      |
|        |             | up of VLBW        |           |             |          |             |                    |                      |      |
|        |             | (<1500g) infants  |           |             |          |             |                    |                      |      |
|        |             | admitted to       |           |             |          |             |                    |                      |      |
|        |             | Rainbow Babies    |           |             |          |             |                    |                      |      |
|        |             | and Children's    |           |             |          |             |                    |                      |      |
|        |             | Hospital in       |           |             |          |             |                    |                      |      |
|        |             | Cleveland, Ohio   |           |             |          |             |                    |                      |      |
|        |             | between 1977-     |           |             |          |             |                    |                      |      |
|        |             | 1979, controls    |           |             |          |             |                    |                      |      |
|        |             | were NBW          |           |             |          |             |                    |                      |      |
|        |             | children born in  |           |             |          |             |                    |                      |      |
|        |             | 1977-1979,        |           |             |          |             |                    |                      |      |
|        |             | selected at age 8 |           | Hospital    |          |             |                    |                      |      |
| Hack,  |             | years by a        | VLBW:     | records for |          | Assume      | Difference in mean | Mean age at menarche |      |
| 2003,  |             | population        | <1500g    | VLBW, not   |          | reported by | age at menarche    | by group (p=0.55):   |      |
| United | Prospective | sampling          | NBW: born | stated for  | Age at   | girl at 20  | using 2 sample t-  | VLBW: 12.4 years     |      |
| States | cohort      | procedure         | >37 weeks | controls    | menarche | year visit  | tests              | NBW: 12.3 years      | None |

|                     |             | 3,343 girls with<br>information on<br>age at<br>menarche. Girls<br>born preterm or<br>whose mothers<br>were diagnosed<br>with<br>preeclampsia,<br>gestational<br>diabetes, with<br>insufficient<br>perinatal<br>information,<br>congenital<br>malformations<br>and twins were<br>excluded.<br>Age 13-19 years<br>at questionnaire<br>Young-HUNT<br>Study, girls 13-<br>19 years who<br>were residents in<br>Nord Trondelag<br>County in | Birth weight<br>in g, in<br>quintiles<br>Ponderal<br>index (kg/m<br>cubed), in<br>quintiles | Birthweight<br>and birth |            | Self-<br>reported in<br>years and<br>months at<br>13-19<br>years. If<br>month not | Cox proportional<br>hazards model for<br>age at menarche<br>(RR>1 indicates<br>earlier menarche).<br>Exposures were in | Referent<br>Q2 (3130-3390g):<br>RR=0.98, 95%<br>CI=0.87, 1.09<br>Q3 (3400-3620g):<br>RR=0.93, 95%<br>CI=0.83, 1.05<br>Q4 (3630-3980g):<br>RR=0.91, 95%<br>CI=0.81, 1.02<br>Q5 (3900-5330g):<br>RR=0.88, 95%<br>CI=0.79, 0.99<br>p for trend=0.03<br>RR from Cox model for<br>age at menarche with<br>ponderal index as<br>exposure:<br>Q1 (18.09-25.49):<br>Referent<br>Q2 (25.50-26.74):<br>RR=0.90, 95%<br>CI=0.81, 1.01<br>Q3 (26.76-27.92):<br>RR=0.87, 95%<br>CI=0.78, 0.97<br>Q4 (27.93-29.32):<br>RR=0.90, 95%<br>CI=0.81, 1.01<br>Q5 (29.33-39.51):<br>RR=0.93, 95%<br>CI=0.83, 1.04<br>p for trend=0.28<br>1st quintile of PI vs.<br>others, p=0.02<br>(data not shown)<br>RR from Cox model for<br>age at menarche with<br>birth length as | None<br>Stated that<br>adjustment for<br>length of<br>gestation and<br>age at<br>attendance did<br>not substantially<br>influence<br>association (data<br>not shown)<br>In subset with<br>parental data,<br>adjustment for<br>maternal age at<br>menarche and<br>parental height |
|---------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------|------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     |             | Nord Trondelag                                                                                                                                                                                                                                                                                                                                                                                                                          | cubed), in                                                                                  | 0                        |            | years. If                                                                         | earlier menarche).                                                                                                     | age at menarche with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | menarche and                                                                                                                                                                                                                                                                     |
| Romundst            |             | completed a                                                                                                                                                                                                                                                                                                                                                                                                                             | Birth length                                                                                | Medical                  | Age at     | year plus 6                                                                       | also presented for                                                                                                     | Q1 (43-48cm):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | not substantially                                                                                                                                                                                                                                                                |
| ad, 2003,           | Retrospecti | questionnaire in                                                                                                                                                                                                                                                                                                                                                                                                                        | in cm, in                                                                                   | Birth                    | menarche,  | months as                                                                         | test for trend using                                                                                                   | Referent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | alter results                                                                                                                                                                                                                                                                    |
| au, 2003,<br>Norway | ve cohort   | 1996-1997                                                                                                                                                                                                                                                                                                                                                                                                                               | quintiles                                                                                   | Registry                 | continuous | estimate.                                                                         | continuous values.                                                                                                     | Q2 (49cm): RR=1.06,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (data not shown)                                                                                                                                                                                                                                                                 |

RR from Cox model for

95% CI=0.93, 1.21 Q3 (50cm): RR=1.02, 95% CI=0.90, 1.14 Q4 (51cm): RR=0.96, 95% CI=0.85,1.09 Q5 (52-58cm): RR=0.96, 95% CI=0.86, 1.08 p for trend=0.03

|                 |             | 994 girls with menarche data  |                     |                    |                                                   |                             |                                       | Frequency of early and<br>late menarche by<br>birthweight:<br><2500g: Early<br>menarche = 14.9% |      |
|-----------------|-------------|-------------------------------|---------------------|--------------------|---------------------------------------------------|-----------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------|------|
|                 |             | 15-17 years                   |                     |                    | Age at<br>menarche,                               |                             | Mean age at<br>menarche by            | Late menarche = 27.7%                                                                           |      |
|                 |             | Follow-up of                  |                     |                    | examined                                          | Recalled by                 | category of                           | ≥2500g: Early                                                                                   |      |
|                 |             | subset of<br>California Child |                     |                    | continuously<br>and in                            | girl at 15-17<br>vears      | independent<br>variables using the    | menarche = 15.6%<br>Late menarche =                                                             |      |
|                 |             | Health and                    |                     |                    | categories:                                       | (years and                  | F test and                            | 23.6%                                                                                           |      |
| Windham,        |             | Development                   | Birthweight,        | ))//aimht          | - Early: <12y                                     | months -                    | distribution of early                 | p=0.81                                                                                          |      |
| 2004,<br>United | Prospective | Studies<br>(pregnancies       | categorized: <2500g | Weight<br>measured | <ul> <li>Average:</li> <li>12-13 years</li> </ul> | though 45%<br>of girls only | and late menarche<br>using chi-square | Mean age at menarche                                                                            |      |
| States          | cohort      | 1959-1966)                    | ≥2500g              | at birth           | - Late: >13 y                                     | gave year)                  | test.                                 | by birthweight:                                                                                 | None |

<2500g: Mean=13.08 years ≥2500g: Mean=12.95 years p=0.49

|                                        |                     | 59 girls with menarche data                                                        |                      |                        |                     |                           |                                                    |                                                                                            |               |
|----------------------------------------|---------------------|------------------------------------------------------------------------------------|----------------------|------------------------|---------------------|---------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------|---------------|
|                                        |                     | Age 10-13 years                                                                    |                      |                        |                     |                           |                                                    |                                                                                            |               |
| Trentham-<br>Dietz,<br>2005,<br>United | Graag               | Cross-sectional<br>study of sixth-<br>grade female<br>students in<br>Reedsburg, WI | Distancialst         | Deported               | Menarche            | Self-report               | Analysis of<br>variance models<br>comparing least- | Mean (SD) birthweight<br>in kg by menstrual<br>status (p=0.17):<br>Menstruating: 3.4 (0.1) |               |
| States                                 | Cross-<br>sectional | area school<br>district in 1999                                                    | Birthweight<br>in kg | Reported<br>by parents | status at<br>survey | by girl at<br>10-13 years | squares means<br>adjusted for age                  | Not Menstruating: 3.6<br>(0.1)                                                             | Age at survey |

|                            |                       |                                                                                                                                                                                                            |                                                                                                                                                                          |                                                              |                                                                                                                                                           |                                                                                                           |                                                                                                                                                                                                         | Mean (SD) of<br>birthweight by<br>menarche group<br>(p=0.27 from ANOVA):<br>Early: 3.3kg (0.37)<br>Average: 3.42kg (0.54)<br>Late: 3.31kg (0.46)<br>Median (range) of PI<br>(g/cm3) by menarche<br>group (p=0.43 from<br>Kruskal-Wallis):<br>Early: 2.75 (2.07-3.29)<br>Average: 2.79 (1.93-<br>3.84)<br>Late: 2.80 (2.36-3.39)<br>Median (range) of birth<br>length in cm by<br>menarche group<br>(p=0.047 from Kruskal-<br>Wallis):<br>Early: 49.0 (45.5-54.0) |                           |
|----------------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
|                            |                       |                                                                                                                                                                                                            | Pirthwoight                                                                                                                                                              |                                                              |                                                                                                                                                           |                                                                                                           |                                                                                                                                                                                                         | Average: 49.5 (44.0-<br>57.5)<br>Late: 48.0 (43.0-53.0)                                                                                                                                                                                                                                                                                                                                                                                                          |                           |
|                            |                       | 149 term girls<br>with birth,<br>anthropometry<br>and menarche<br>data<br>Age 15 years at                                                                                                                  | Birthweight<br>in kg<br>Ponderal<br>index (weight<br>in g/height in<br>cm cubed)<br>Birthlength in<br>cm<br>Birth size<br>groups                                         |                                                              |                                                                                                                                                           |                                                                                                           | ANOVA and<br>Kruskal Wallis to<br>compare<br>characteristics by<br>menstrual group<br>Pearson's<br>correlation and<br>Spearman's rho<br>test to assess                                                  | No correlation between<br>birth length or<br>birthweight and age at<br>menarche (data not<br>shown)<br>Average age at<br>menarche by birth size<br>group, adjusted for BMI<br>Z-score at 8 years:                                                                                                                                                                                                                                                                |                           |
| Tam,<br>2006,<br>Australia | Prospective<br>cohort | follow-up<br>2004 follow-up of<br>subset of birth<br>cohort (infants<br>born at term (37-<br>42 weeks) at<br>Nepean<br>Hospital, Penrith,<br>in western<br>Sydney between<br>August 1989 and<br>April 1990 | defined by<br>birth weight<br>cut at<br>median<br>(3325g) and<br>birth length<br>cut at<br>median<br>(49.3cm):<br>Long/light<br>Long/heavy<br>Short/Light<br>Short/heavy | Weight and<br>length at<br>birth from<br>hospital<br>records | Age at<br>menarche,<br>categorized<br>into 3 groups<br>based on<br>SD:<br>Early: <11.5<br>years<br>Average:<br>11.5-13.7<br>years<br>Late: >13.7<br>years | Self-report<br>by girls at<br>15 years<br>(attained<br>menarche,<br>month and<br>year of first<br>period) | correlations<br>between birth size<br>and age at<br>menarche<br>Comparison of<br>menarche in birth<br>size group using<br>analysis of<br>covariance with<br>BMI z score at 8<br>years as a<br>covariate | Long/Light: 12.0 y,<br>SD=0.3<br>Long/Heavy: 12.5 y,<br>SD=0.1<br>Short/Light: 12.6y,<br>SD=0.1<br>Short/Heavy: 13.0,<br>SD=0.3<br>Girls who were long<br>and light at birth and<br>with a BMI z-score >0<br>at 8 years had earliest                                                                                                                                                                                                                             | BMI Z-score at 8<br>years |

menarche. Among all birth size groups, higher BMI at age 8 was associated with earlier menarche.

| van<br>Weissenbr<br>uch et al,<br>2006,<br>Netherlan<br>ds | Prospective<br>cohort | 17 term SGA<br>and 12 term<br>AGA girls<br>Latest visit:<br>- SGA mean<br>14.6 +/-1.2<br>- AGA mean<br>14.7 +/-1.2<br>Follow-up of<br>SGA and AGA<br>children traced<br>from the<br>database of all<br>pregnancies,<br>deliveries and<br>perinatal events<br>of children born<br>in the VU<br>University<br>Medical Center<br>(registered since<br>1980) | SGA:<br>birthweight<br>below the<br>10th<br>percentile<br>corrected for<br>gestational<br>age (GA),<br>gender and<br>parity<br>AGA:<br>birthweight<br>>10th<br>percentile<br>using Dutch<br>reference<br>data               | Birthweight,<br>gestational<br>age<br>abstracted<br>from<br>register      | Age at<br>menarche,<br>continuous | Not stated,<br>assumed<br>reported by<br>parents or<br>adolescents<br>at follow-up<br>visits                                  | Differences<br>between SGA and<br>AGA groups were<br>tested by chi-<br>square test for<br>qualitative<br>variables and<br>Student's t-test for<br>quantitative<br>variables                                        | By second follow-up,<br>8/9 girls born AGA<br>reached menarche with<br>mean age of 12.7 (1.5<br>years). 10/10 SGA<br>girls reached menarche<br>at mean age of 12.6<br>(1.5) years. Age at<br>menarche was not<br>statistically different<br>between the two<br>groups.<br>EBW predicted age at                                                                                                                                                                                                                                           | None                                                                                                                                                                            |
|------------------------------------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sloboda,<br>2007,<br>Australia                             | Prospective<br>cohort | 776 girls with<br>menarche data<br>Age 12-14 years<br>at follow-up<br>Western<br>Australian<br>Pregnancy<br>(Raine) Cohort,<br>women enrolled<br>during<br>pregnancy in<br>1989-1990                                                                                                                                                                     | Expected<br>birthweight<br>ratio (EBW):<br>ratio of<br>observed<br>birth weight<br>appropriate<br>for maternal<br>height, sex,<br>nulliparity,<br>and<br>gestational<br>age<br>IUGR<br>defined as<br>EBW<10th<br>percentile | EBW<br>calculated<br>using data<br>from study<br>visit/medica<br>I record | Age at<br>menarche                | Self-report<br>on puberty<br>questionnai<br>re or<br>censored at<br>age at last<br>follow-up if<br>no<br>menarche<br>reported | Continuous data<br>summarized using<br>medians, IQ ranges<br>and ranges<br>Multivariable Cox<br>regression models<br>to evaluate<br>association<br>between fetal and<br>postnatal growth<br>and age at<br>menarche | menarche (p=.02) and<br>girls with an EBW<br>below the median had<br>a significantly earlier<br>menarche compared<br>with girls with an EBW<br>above the median<br>(HR=1.29, 95% CI<br>1.04, 1.59)<br>Age at menarche<br>stratified by EBW and<br>BMI at 8 years:<br>EBW<1 & BMI $\geq$ 16.3:<br>Median age at<br>menarche = 12.5yrs,<br>IQ range 12.1-13.2,<br>Range 9.4-14.4<br>EBW $\geq$ 1 & BMI $\geq$ 16.3:<br>Median age at<br>menarche = 12.8yrs,<br>IQ range 12.2-13.6,<br>Range 9.8-14.6<br>EBW<1 & BMI<16.3:<br>Median age at | Cox model<br>adjustment not<br>stated.<br>By using EBW<br>as a measure,<br>adjusted<br>birthweight for<br>maternal age,<br>height, parity,<br>infant sex and<br>gestational age |

menarche = 13.0yrs, IQ range 12.6-14.2, Range 10.6-14.6 EBW≥1 & BMI<16.3: Median age at menarche = 13.2yrs, IQ range 12.8-14.4, Range 11.0-14.2

| Vandeloo,<br>2007,<br>Belgium     | Cross-<br>sectional   | 1146 girls<br>Mean age=12.8<br>years<br>Girls recruited in<br>second year of<br>secondary<br>school from 10<br>centres of<br>Medical School<br>Supervision<br>(MSS) in Belgian<br>Limburg in 1999-<br>2000 school year<br>255 girls<br>Age 12-16 years<br>at follow-up | Length at<br>birth                                                                        | Questionnai<br>re, partially<br>completed<br>by medical<br>team with<br>the<br>remainder<br>completed<br>by girls and<br>one parent | Age at<br>menarche                | Self-report<br>with<br>parent's<br>help via<br>questionnai<br>re | Cox regression<br>model for age at<br>onset of breast<br>development<br>(RR>1 indicates<br>earlier menarche)                     | RR = 0.974, 95% Cl<br>0.945,1.004                                                            | None<br>*Results for birth<br>length were not<br>shown for<br>multivariable<br>model |
|-----------------------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Bosch,<br>2008,<br>Banglades<br>h | Prospective<br>cohort | 2001 follow-up of<br>320 girls in three<br>villages in rural<br>Bangladesh,<br>originally<br>enrolled in a<br>study of infection<br>disease at <5<br>years in 1988-<br>1989                                                                                            | Baby's<br>relative size<br>at birth,<br>dichotomized<br>as:<br>small<br>normal or<br>tall | Recalled by<br>mother<br>during<br>adolescent<br>visit<br>(relatively<br>small,<br>normal or<br>relatively<br>tall)                 | Age at<br>menarche,<br>continuous | Reported<br>by girl at<br>adolescent<br>visit                    | Univariate Cox<br>proportional<br>hazards models<br>with age at<br>menarche as<br>outcome (β>0<br>indicates earlier<br>menarche) | β from Cox model:<br>Small: β = -0.323, SE<br>= 0.240, p≥0.05<br>Normal or Tall:<br>Referent | None                                                                                 |

|                                    |   |                       |                                                                                                                                                                                             |                                                                                          |                    |                                                                                                                                                   |                                                                                               |                                                                                                                                                                                                                                            | Mean (SD) birthweight<br>in kg by menarche<br>group:<br>Early: 3.35 (0.57)<br>Average: 3.39 (0.52)<br>Late: 3.43 (0.43)<br>Oprobit coeff = 0.094,<br>95% Cl= -0.17, 0.36                                                                                                          |      |
|------------------------------------|---|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|                                    |   |                       | 276 women with<br>menarche data<br>Age 49-51 years<br>at follow-up<br>1997 follow-up of<br>subset of                                                                                        |                                                                                          |                    | Age at                                                                                                                                            |                                                                                               |                                                                                                                                                                                                                                            | Mean (SD) birth weight<br>standardized for<br>gestational age by<br>menarche group:<br>Early: 0.11 (1.27)<br>Average: 0.02 (1.07)<br>Late : 0.05 (1.00)<br>Oprobit coeff = -0.02,<br>95% Cl= -0.14, 0.10<br>p=0.03 for interaction<br>between standardized<br>weight at age 9 and |      |
| Blell,<br>2008,<br>Uniter<br>Kingd | d | Prospective<br>cohort | Newcastle<br>Thousand<br>Families birth<br>cohort,<br>prospective<br>study of all 1142<br>children born in<br>May and June<br>1947 to mothers<br>resident in<br>Newcastle-upon-<br>Tyne, UK | Birthweight<br>in kg<br>Birthweight<br>standardized<br>for<br>gestational<br>age and sex | Midwife<br>records | menarche<br>categorized<br>into 3 groups<br>based on<br>SD:<br>Early: <11.4<br>years<br>Average:<br>11.41-14.49<br>years<br>Late: >14.49<br>years | Age at<br>menarche<br>in years<br>and months<br>recalled by<br>women at<br>age 49-51<br>years | Multivariable<br>ordinal logistic<br>regression with a<br>probit link was<br>used to investigate<br>relations between<br>explanatory<br>variables and<br>categorical age at<br>menarche (Oprobit<br>coeff<0 indicates<br>earlier menarche) | standardized birth<br>weight. Girls who were<br>youngest at menarche<br>were born heavy for<br>their gestational age<br>and were heavy at age<br>9. Those with latest<br>menarche were also<br>born heavy for their<br>gestational age but<br>were light for their age<br>at 9.   | None |

| Prospective | 113 girls (34<br>PTSGA, 15<br>FTSGA, 29<br>PTAGA, 35<br>controls)<br>Age 12 years a<br>follow-up<br>Prospective<br>cohort of all<br>infants weighing<br><2000g<br>discharged from<br>a neonatal<br>special care unit<br>from October<br>1987-April 1989<br>and followed up<br>until age 12<br>years. Full-term<br>neonates born in<br>the same<br>hospital during<br>the same period<br>with birthweight<br>>2500 g were<br>enrolled as<br>controls | 4 groups<br>based on<br>gestational<br>age and<br>birthweight<br>(Singh<br>criteria):<br>PTSGA:<br>Preterm<br>small for<br>gestational<br>age<br>FTSGA:<br>Full term<br>small for<br>gestational<br>age PTAGA:<br>Preterm<br>appropriate<br>for<br>gestational<br>age<br>FTAGA: Full<br>term<br>appropriate<br>for<br>gestational<br>age | Birthweight<br>and<br>gestational<br>age from<br>hospital<br>records | Age at menarche | Date of<br>menarche<br>reported by<br>mothers<br>when girls<br>were 12<br>years old | Descriptive   | Mean age at menarche<br>(range) by group:<br>PTSGA: 12.5 (10.4-<br>13.8)<br>FTSGA: 12.7 (8.8-14.3)<br>PTAGA: 12.5 (10.4-<br>14.0)<br>FTAGA: 12.8 (10.8-<br>14.5) | None |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------|-------------------------------------------------------------------------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| conoft      | controis                                                                                                                                                                                                                                                                                                                                                                                                                                            | age                                                                                                                                                                                                                                                                                                                                      | records                                                              | menarche        | years old                                                                           | analysis only | 14.5)                                                                                                                                                            | None |

Chaudhari , 2008, India

| Opdahl,<br>2008,<br>Norway           | Prospective<br>cohort | 262 singleton,<br>term girls<br>Age 12.7-15.5<br>years at follow-<br>up<br>2001-2002<br>follow-up of<br>subset of<br>Norwegian birth<br>cohort (1985-<br>1986). 10% of<br>random sample<br>of all women<br>were followed<br>along with<br>another group of<br>women at risk for<br>giving birth to an<br>SGA child<br>(previous LBW<br>child or perinatal<br>death, cigarette<br>smoking at<br>conception, pre-<br>pregnancy<br>weight<50kg,<br>chronic renal<br>disorder or<br>hypertension)<br>4212 singleton<br>girls with<br>consistent<br>menarche data | Birthweight<br>in tertiles:<br><3200g<br>3200-3700g<br>≥3700g<br>Ponderal<br>index (g/cm<br>cubed) in<br>tertiles:<br><2.63<br>2.63-2.85<br>≥2.85<br>Birth length<br>in tertiles:<br><49cm<br>49-51cm<br>≥51 cm | Birthweight<br>(g) and<br>birthlength<br>(crown to<br>heel, to<br>nearest half<br>cm)<br>measured<br>at birth | Age at menarche                                                | Reported<br>by girl at<br>adolescent<br>visit<br>(assumed)                       | Median age at<br>menarche for each<br>birth size group<br>estimated by<br>Kaplan-Meier<br>analyses and<br>multivariable<br>analysis performed<br>using Cox<br>regression | Median (95% CI) age<br>at menarche from<br>Kaplan-Meier by tertile<br>of exposure:<br>Birth weight (p=0.001):<br><3200g: 12.58, 95%<br>CI=12.32, 12.84<br>3200-3700g: 13.25,<br>95% CI=12.94, 13.56<br>$\geq$ 3700g: 13.33, 95%<br>CI=12.97, 13.70<br>Ponderal index<br>(p=0.099)<br><2.63: 12.83, 95%<br>CI=12.63, 13.14<br>2.63-2.85: 13.08, 95%<br>CI=12.68, 13.65<br>Birth length(p<0.0001):<br><49cm: 12.50, 95%<br>CI=12.26, 12.74<br>49-51cm: 13.08, 95%<br>CI=12.94, 13.22<br>$\geq$ 51cm: 13.33, 95%<br>CI=12.95, 13.72 | None<br>Stated in results<br>that adjusted for<br>potentially<br>confounding<br>factors (BMI,<br>gestational age,<br>age in<br>adolescence,<br>maternal age at<br>menarche,<br>residential area)<br>did not alter<br>results (data not<br>shown) |
|--------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Rubin,<br>2009,<br>United<br>Kingdom | Prospective cohort    | Age 8-13 years<br>at follow-up<br>Avon<br>Longitudinal<br>Study of Parent<br>and Children,<br>born April 1991-<br>December 1992                                                                                                                                                                                                                                                                                                                                                                                                                              | Birth weight<br>in kg                                                                                                                                                                                           | Medical<br>records                                                                                            | Presence of<br>menarche at<br>11 year old<br>questionnair<br>e | Reported at<br>11-year<br>questionnai<br>re by<br>daughter,<br>mother or<br>both | Multivariable<br>logistic regression<br>for menarche by<br>age 11 years<br>(OR>1 indicates<br>earlier menarche)                                                          | Birth weight in kg was<br>not associated with<br>menarche in univariate<br>analyses at p≤0.20<br>(data not shown)                                                                                                                                                                                                                                                                                                                                                                                                                | None                                                                                                                                                                                                                                             |

| Labayen,<br>2009,<br>Spain | Cross-<br>sectional | 788 girls with<br>complete data<br>Age 13-18.5<br>years<br>2002 survey of<br>Spanish<br>adolescents<br>(AVENA study).<br>Individuals from<br>public and<br>private<br>secondary<br>schools and<br>technical<br>colleges were<br>included in the<br>nationally<br>representative<br>sample (multi-<br>staged, random,<br>stratified by town<br>of origin, SES,<br>sex and age)<br>1562 girls, 306<br>with menarche | Birthweight<br>Z-score,<br>continuous,<br>calculated<br>with use of<br>sex- and<br>gestational<br>age-specific<br>percentiles<br>for this<br>population<br>SGA: BW <<br>10th<br>percentile for<br>gestational<br>age (6.7%)<br>AGA: BW<br>between<br>10th and<br>90th<br>percentile<br>(54.3%)<br>LGA: BW ><br>90th<br>percentile for<br>gestational<br>age (36.8%) | Birth weight<br>and<br>gestational<br>age from<br>health<br>booklets<br>(Issued at<br>birth where<br>pediatrician<br>s record<br>infant's<br>growth) | Age at<br>menarche,<br>continuous<br>and<br>categorized<br>as:<br><12 years<br>≥12 years | Self-report<br>by<br>adolescent<br>of age at<br>menarche,<br>calculated<br>from year of<br>first period | Linear regression<br>analysis was used<br>to assess<br>associations<br>between BW Z-<br>score and age of<br>menarche (β<0<br>indicates earlier<br>menarche) | Multivariable models<br>for association<br>between BW Z-score<br>and age at menarche:<br>Unadjusted: $\beta$ =0.228,<br>95% CI=0.087, 0.368<br>Adjusted: $\beta$ =0.45, 95%<br>CI=0.287, 0.623<br>Low risk for early<br>menarche (<12 years)<br>in girls born LGA from<br>logistic regression<br>model (OR=0.63, 95%<br>CI 0.45-0.89, p=.009,<br>other results not<br>shown) | Age, SES,<br>physical activity,<br>body fat<br>percentage |
|----------------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| Semiz,<br>2009,<br>Turkey  | Cross-<br>sectional | Age 6-16.5 years<br>Cross-sectional<br>school-based<br>study of<br>schoolchildren in<br>grades 1-8 in<br>primary schools<br>in the Denizli<br>province<br>between March-<br>May 2005                                                                                                                                                                                                                              | Birth weight                                                                                                                                                                                                                                                                                                                                                        | Reported<br>by parents                                                                                                                               | Age at<br>menarche,<br>continuous                                                        | Reported<br>by girl at<br>visit                                                                         | Comparison of<br>menarcheal age to<br>gestational age and<br>birth weight using<br>Chi-square test.                                                         | No statistically<br>significant difference<br>was found between<br>gestational age, birth<br>weight and menarcheal<br>age (p>0.05, data not<br>shown)                                                                                                                                                                                                                        | None                                                      |

| Keim,<br>2009,<br>United<br>States | Prospective | 597 women with<br>complete<br>menarche and<br>maternal data<br>available<br>22-32 years at<br>follow-up<br>Follow-up in<br>1987-1991 of<br>subset of women<br>from Providence<br>and Philadelphia<br>sites of the CPP<br>cohort (pregnant<br>women enrolled<br>in 1959-1966) | SGA vs. not,<br>unclear how<br>defined                                                     | Birthweight<br>and<br>gestational<br>age<br>measured<br>at birth                                                              | Age at<br>menarche,<br>categorized<br>as: ≤11<br>years<br>12 years<br>13 years<br>14+ years | Self-report<br>during adult<br>interview                                                                                                                                                                            | Polytomous logistic<br>regression to<br>examine the<br>relationship<br>between daughter's<br>age at menarche<br>and maternal pre-<br>pregnancy BMI,<br>SGA examined as<br>a mediator | SGA status (N, %) by<br>menarche group:<br>≤11 years: SGA=35<br>(29%); Not SGA=86<br>(71%)<br>12 years: SGA=42<br>(27%); Not SGA=116<br>(73%)<br>13 years: SGA=36<br>(24%); Not SGA=111<br>(76%)<br>14+ years: SGA 39<br>(23%); Not SGA=132<br>(77%)<br>SGA did not mediate<br>association between<br>maternal obesity and<br>age at menarche,<br>although stated in text<br>that SGA status was<br>associated with<br>daughter's age at<br>menarche in models<br>that included maternal<br>BMI and other<br>covariates (ORs<br>ranged from 0.8-1.2)<br>Size at birth (Mean, | None |
|------------------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Ong,<br>2009,<br>United<br>Kingdom | Prospective | 2715 singleton<br>girls with age at<br>menarche data<br>Mean age at<br>follow-up: 12.9<br>years (IQR 12.8-<br>13.0)<br>Avon<br>Longitudinal<br>Study of Parent<br>and Children,<br>born April 1991-<br>December 1992                                                         | Birthweight<br>in kg,<br>continuous<br>BMI at birth<br>Birthlength in<br>cm,<br>continuous | Birth weight<br>as recorded<br>in delivery<br>room, birth<br>length<br>measured<br>by staff<br>within 24<br>hours of<br>birth | Age at<br>menarche,<br>categorized<br>as:<br><12<br>12-13<br>>13                            | Reported<br>by girl at<br>adolescent<br>visit (~13<br>years of<br>age). Some<br>missing<br>data on age<br>at first<br>menstruatio<br>n were<br>imputed<br>from similar<br>data<br>collected at<br>11 year<br>visit. | Means (SD) of<br>early-life measures<br>by age at<br>menarche group                                                                                                                  | SD) by girls' age at<br>menarche:<br>Birthweight (kg) (P for<br>trend=0.04):<br><12: 3.38 (0.02)<br>12-13: 3.36 (0.02)<br>>13: 3.42 (0.01)<br>Birthlength (cm) (P for<br>trend=0.2):<br><12: 50.4 (0.1)<br>12-13: 50.3 (0.1)<br>>13: 50.5 (0.1)<br>BMI at birth (P for<br>trend=0.2):<br><12: 13.3 (0.1)<br>12-13: 13.4 (0.1)                                                                                                                                                                                                                                                | Age  |

| Terry,<br>2009,<br>United Prospec<br>States cohort | 1959-1963) `                                                                                                                                                                                                                                                                                                                                                                                                               | Birthweight<br>in kg<br>Birth length<br>in cm     | Measured<br>by study<br>staff                                     | Age at<br>menarche,<br>continuous<br>and<br>dichotomized<br>as: ≤12<br>years<br>>12 years | Self-<br>reported by<br>adult<br>participant                                                                                         | associations using<br>correlation<br>coefficients for<br>continuous<br>variables, chi-<br>square tests and<br>analysis of<br>variance to<br>compare averages<br>across subgroups<br>Multivariable linear<br>regression models<br>using age for age<br>at menarche (β<0<br>indicates earlier<br>menarche). | Univariable: $\beta$ =-0.34,<br>95% Cl= -0.80, 0.12<br>Adjusted $\beta$ =-0.68, 95%<br>Cl=-1.59, 0.22<br>Average age at<br>menarche was lower<br>for higher-birthweight<br>babies only among<br>girls of lower weight at<br>age 7 years<br>$\beta$ for birth length in cm<br>from linear regression<br>model:<br>Adjusted $\beta$ =0.02, 95%<br>Cl -0.18, 0.22 | Fully adjusted<br>parsimonious<br>model includes<br>birth weight,<br>percentile<br>change in weight<br>from 0-4 months,<br>4-12 months, 1-7<br>years, birth<br>length, percentile<br>change in height<br>from 0-4 months,<br>4-12 months and<br>1-7 years, family<br>SES at age 7,<br>maternal age at<br>menarche |
|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Karaolis-<br>Danckert,<br>2009, Prospec            | 87 term<br>singleton girls<br>with<br>birthweight>2500<br>g, height at 6<br>and 13 years of<br>age and at least<br>5 measures<br>between these<br>ages,<br>anthropometrics<br>at 24 months,<br>complete data<br>on maternal<br>characteristics<br>and age at<br>menarche<br>At least 13 years<br>of age<br>Subset of the<br>DONALD<br>(Dortmund<br>National and<br>Anthropometric<br>Longitudinally<br>ive Designed) Study | Birthweight,<br>categorized<br>as:<br>≥2500-3000q | Standardize<br>d document<br>given to all<br>pregnant<br>women in | Age at menarche.                                                                          | Girls or<br>their<br>parents are<br>asked if<br>menarche<br>occurred<br>since<br>previous<br>visit, and if<br>so, which<br>month and | Linear mixed-<br>effects regression<br>models (PROC<br>MIXED) were used<br>to construct<br>longitudinal models<br>of age at menarche<br>(β<0 indicates<br>earlier age at                                                                                                                                  | Adjusted $\beta$ from linear<br>regression model:<br>2500-3000g: $\beta$ =-0.49,<br>SE=0.29, p=0.1<br>$\geq$ 3000g: Referent<br>Adjusted $\beta$ from<br>pathway linear<br>regression model:<br>2500-3000g: $\beta$ =-0.68,<br>SE=0.29, p=0.02                                                                                                                 | Rapid weight<br>gain from 0-4<br>months,<br>maternal<br>overweight &<br>BMI SDS score<br>1 year before<br>ATO in pathway<br>model<br>Noted that<br>adjustment for<br>gestational age<br>did not change<br>results (data not                                                                                       |

|          |                 |             | 204 women                                                                                                                                                                                                                                                                  |                                                |                                    |                     |                         |                                                                                                                      |                                                                                                                                                      |                     |
|----------|-----------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------|---------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
|          |                 |             | Age 25-35 years                                                                                                                                                                                                                                                            |                                                |                                    |                     |                         |                                                                                                                      |                                                                                                                                                      |                     |
|          |                 |             | Norwegian<br>EBBA-I study,<br>2000-2002.<br>Eligibility criteria<br>included self-<br>reported regular<br>menstruation,<br>not taking<br>hormonal<br>contraceptives,<br>no pregnancy or<br>lactation over<br>previous 6<br>months and no<br>history of<br>endocrinological | Birthweight,<br>categorized                    |                                    |                     |                         |                                                                                                                      | Mean (SD) age at<br>menarche by<br>birthweight tertile                                                                                               |                     |
|          | Espetvedt       |             | (eg diabetes,<br>hypo/hyperthyroi                                                                                                                                                                                                                                          | into tertiles:<br><3220g                       |                                    |                     | Self-report<br>by       | Mean age at<br>menarche by                                                                                           | (p=0.06):<br><3200g: 12.96y (1.3)                                                                                                                    |                     |
|          | Finstad, 2009,  | Cross-      | dism),                                                                                                                                                                                                                                                                     | ≥3220 and <3530g                               | Personal<br>health                 | Age at<br>menarche, | participant<br>in       | birthweight tertile<br>with p value from                                                                             | ≥3200g to <3530g:<br>12.98 (1.3)                                                                                                                     |                     |
| <b>,</b> | 2009,<br>Norway | sectional   | gynecological or<br>chronic disorders                                                                                                                                                                                                                                      | <3530g<br>≥3530g                               | records                            | continuous          | adulthood               | one-way ANOVA                                                                                                        | ≥3530g: 13.40 (1.5)                                                                                                                                  | None                |
| 5        |                 |             | 140 girls who<br>were seen at all<br>scheduled visits<br>between birth<br>and 11 years                                                                                                                                                                                     |                                                |                                    |                     |                         | Multiple regression<br>analyses to<br>examine the rela-                                                              |                                                                                                                                                      |                     |
|          |                 |             | At least 11 years at follow-up                                                                                                                                                                                                                                             |                                                |                                    |                     |                         | tionships among<br>child's growth and<br>body composition                                                            |                                                                                                                                                      |                     |
|          |                 |             | Vulnerable<br>Windows Cohort<br>Study, pregnant<br>women were<br>recruited in<br>1992-1993 at<br>University                                                                                                                                                                | Birthweight,<br>g, continuous<br>Birth length, | Weight and<br>crown heel<br>length |                     | Menstrual               | and the stage of<br>puberty with<br>outcomes and<br>predictors in<br>standardized form,<br>so that the<br>regression | Correlations between<br>the size at birth and<br>growth of Afro-<br>Caribbean girls and<br>age at menarche at<br>age 11 years:<br>Birth weight: 0.05 |                     |
|          | Boyne,          |             | Hospital of the West Indies,                                                                                                                                                                                                                                               | cm,<br>continuous                              | measured<br>within 24              |                     | history was<br>taken at | coefficients were<br>effectively                                                                                     | BMI at birth: 0.02<br>Birth length: 0.05                                                                                                             |                     |
|          | 2010,           | Prospective | Kingston, Jamaic                                                                                                                                                                                                                                                           |                                                | hours of                           | Age at              | each visit              | correlation                                                                                                          | p≥0.05 for all                                                                                                                                       |                     |
|          | Jamaica         | cohort      | a for birth cohort.                                                                                                                                                                                                                                                        | BMI at birth                                   | delivery                           | menarche            | (biannual)              | coefficients.                                                                                                        | correlations                                                                                                                                         | Age at clinic visit |

| 234 | Epplein,<br>2010,<br>United                       | Cross-                | 348 girls with<br>birthweight data<br>whose<br>race/ethnicity<br>was White,<br>Asian or<br>Polynesian<br>Age 9-18 years<br>at visit<br>First visit for the<br>Female<br>Adolescent<br>Maturation<br>(FAM) Study,<br>cohort of girls<br>age 9-14 in<br>2000-2001<br>enrolled from KP<br>Hawaii followed<br>up in 2002-2003<br>and 2004-2005<br>and new<br>participants aged<br>12-18 in 2005- | Birthweight,<br>continuous<br>and in<br>categories:<br>Low:<br>≤2500g<br>Normal:<br>2500-4000g<br>High:                                                                                                                                                                                                                   | Hawaii<br>State<br>Department<br>of Health<br>birth record<br>database<br>on birth<br>weight<br>(75% of<br>participants<br>), parent<br>recall for<br>those<br>without | Age at             | Self-<br>reported by<br>daughters<br>through<br>August<br>2008. If pre-<br>menarche,<br>censored at<br>age at last                                                                                                    | Cox proportional<br>hazards model for<br>age at menarche<br>with age as the<br>time scale (HR>1<br>indicates earlier                                     | Adjusted HR for<br>menarche:<br><2500g: HR=1.28, 95%<br>CI=0.75, 2.18<br>2500-4000g: Referent<br>≥4000g): HR= 1.08,<br>95% CI=0.53, 2.20<br>Continuous: HR=1.00<br>(1.00, 1.00)<br>Adjusted HR for<br>menarche, mediation<br>model:<br><2500g: HR=1.17, 95%<br>CI=0.69, 2.00<br>2500-4000g: Referent<br>≥4000g: HR= 1.01,<br>95% CI=0.49, 2.07<br>Continuous: HR=1.00 | Age,<br>race/ethnicity<br>and gestational<br>age<br>Mediation model<br>also includes<br>waist                                                                                                                                     |
|-----|---------------------------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4   | States<br>Maisonet,<br>2010,<br>United<br>Kingdom | Prospective<br>cohort | 2007<br>1316 singleton,<br>term girls (37-42<br>weeks gestation)<br>with consistent<br>pubertal staging<br>and birth size<br>data<br>Age 8-14 years<br>at follow-up<br>Avon<br>Longitudinal<br>Study of Parent<br>and Children,<br>born April 1991-<br>December 1992                                                                                                                         | ≥4000g<br>Birth weight<br>(kg),<br>Gestational<br>age, birth<br>length (cm)<br>SGA = birth<br>weight <10th<br>percentile of<br>weight for<br>gestational<br>age.<br>Referent<br>weight<br>percentiles<br>estimated by<br>weight and<br>gestational<br>age data of<br>singleton<br>girls from the<br>full ALSPAC<br>cohort | Medical<br>records                                                                                                                                                     | Age at<br>menarche | Month and<br>year of<br>menarche,<br>reported<br>girls at<br>pubertal<br>self-<br>assessment<br>s between<br>8-14 years<br>of age. Girls<br>with<br>inconsistent<br>responses<br>were<br>excluded<br>from<br>analyses | Interval-censored<br>parametric survival<br>model for age at<br>menarche<br>assuming a normal<br>distribution (Diff <0<br>indicates earlier<br>menarche) | (1.00, 1.00)<br>Adjusted difference for<br>menarche:<br>Birthweight: Diff = 0.00,<br>95% Cl= -0.00,00<br>Birth length: Diff =<br>0.00, 95% Cl= -0.03,<br>0.04<br>SGA vs. non-SGA: Diff<br>= -0.05, 95% Cl= -0.29,<br>0.19                                                                                                                                             | circumference<br>Maternal age at<br>menarche,<br>previous live<br>birth, maternal<br>race or ethnicity,<br>smoking during<br>pregnancy,<br>maternal<br>prepregnancy<br>BMI, maternal<br>age at delivery,<br>maternal<br>education |

|                                       |                                                   |                                                                                                                                                                                                                                                                                                     |                          |                                                                   |                 |                                                  |                                                                        | β from linear<br>regression for age at<br>menarche in months<br>for birthweight:<br>Univariable (per 500g<br>increase): β = 0.31,<br>95% CI=0.19, 0.43<br>Multivariable (per 500g<br>increase): β = 1.24,<br>95% CI=1.10, 1.37                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------------------------------------------|-----------------|--------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Morris.                               | Cross-<br>sectional                               | 81,606 women<br>with age at<br>menarche<br>information<br>(excluded those<br>with history of<br>BC, menarche<br>>20 years,<br>menarche at 3-4<br>years, and older<br>siblings - only 1<br>woman per<br>family included)<br>16-98 years at<br>baseline (median<br>46)<br>Breakthrough<br>Generations |                          | Birth weight<br>in grams or<br>lbs and oz<br>self-<br>reported on |                 | Self-report<br>on baseline                       | Linear regression<br>to assess<br>differences in age<br>at menarche in | Mean age at menarche<br>in years by childhood<br>weight at 7 years:<br>A little or much thinner<br>than peers:<br><3099g: 13.01y<br>3100-3399g: 13.15y<br>≥3400g: 13.17y<br>p for trend: <.0001<br>About the same as<br>peers:<br><3099g: 12.52y<br>3100-3399g: 12.61y<br>≥3400g: 12.68y<br>p for trend: <.0001<br>A little or much heavier<br>than peers:<br><3099g: 11.99y<br>3100-3399g: 12.05y<br>≥3400g: 12.17y<br>p for trend: <.0001<br>In subgroup analyses,<br>birthweight had a<br>positive association<br>with menarcheal age in<br>first- and second-born | Stated that<br>univariable<br>results were<br>similar after<br>adjustment for<br>SES and birth<br>year (not shown)<br>Also stated that<br>effect of<br>birthweight<br>remained<br>significant after<br>adjustment for<br>gestation length<br>Multivariable<br>model adjusted<br>for maternal age<br>at birth, ethnicity,<br>weight at 7<br>years, height at<br>7 years,<br>childhood<br>aversise |
| Morris,<br>2010,<br>United<br>Kingdom | sectional<br>analysis of<br>prospective<br>cohort | Generations<br>Study Cohort<br>(women >16 and<br>above in the UK)                                                                                                                                                                                                                                   | Birth weight, continuous | reported on<br>baseline<br>questionnai<br>re                      | Age at menarche | questionnai<br>re, reported<br>in whole<br>years | at menarche in<br>months (β<0<br>indicates earlier<br>menarche.        | women (p for trend<br><.001) but not for<br>women of a higher birth<br>order                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | exercise,<br>number of<br>siblings and birth<br>order.                                                                                                                                                                                                                                                                                                                                           |

236

|        |             |                                 |               |                          |                 |                            |                                        | (SD) by menarche<br>group:<br>Early: 3298.47 (496.89)<br>Average: 3411.39<br>(479.61)<br>Late: 3497.90 (545.38)<br>Overall p-value 0.16 |                |
|--------|-------------|---------------------------------|---------------|--------------------------|-----------------|----------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------|
|        |             |                                 |               |                          |                 |                            |                                        | Mean birthlength in cm<br>(SD) by menarche                                                                                              |                |
|        |             |                                 |               |                          |                 |                            |                                        | group:                                                                                                                                  |                |
|        |             |                                 |               |                          |                 |                            |                                        | Early: 50.76 (3.0)                                                                                                                      |                |
|        |             |                                 |               |                          |                 |                            |                                        | Average: 51.06 (2.68)                                                                                                                   |                |
|        |             |                                 |               | Self-report              |                 |                            |                                        | Late: 51.59 (3.01)                                                                                                                      |                |
|        |             |                                 |               | at adult                 |                 |                            |                                        | Overall p-value 0.36                                                                                                                    |                |
|        |             |                                 |               | follow-up of             |                 |                            |                                        | O factor concertions to al                                                                                                              |                |
|        |             |                                 |               | birthweight              |                 | A go ot                    |                                        | β from unadjusted<br>linear regression                                                                                                  |                |
|        |             |                                 |               | (pounds,<br>oz),         |                 | Age at<br>menarche         |                                        | results in subset with                                                                                                                  |                |
|        |             |                                 |               | birthlength              |                 | reported to                |                                        | maternal age at                                                                                                                         |                |
|        |             |                                 |               | (nearest                 |                 | nearest day                |                                        | menarche (N=161):                                                                                                                       |                |
|        |             |                                 |               | tenth of                 |                 | (imputed to                |                                        | Birth weight in                                                                                                                         |                |
|        |             |                                 |               | inch) and                |                 | 15th if                    |                                        | quartiles:                                                                                                                              |                |
|        |             |                                 |               | gestational              |                 | month only)                |                                        | Q1: β=-0.52, 95% CI= -                                                                                                                  |                |
|        |             |                                 |               | age (in<br>weeks, plus   |                 | and<br>ascertained         |                                        | 1.07, 0.03<br>Q2: β=-0.44, 95% Cl=-                                                                                                     |                |
|        |             |                                 |               | term or                  |                 | annually in                |                                        | 0.97, 0.08                                                                                                                              |                |
|        |             |                                 |               | preterm)                 |                 | original                   |                                        | Q3: β=-0.59, 95% Cl= -                                                                                                                  |                |
|        |             | 278 girls with                  |               | with                     |                 | DISC study.                |                                        | 1.16, 0.02                                                                                                                              |                |
|        |             | birth and                       |               | birthweight              |                 | Also self-                 | One-way ANOVA                          | Q4: Referent                                                                                                                            |                |
|        |             | menarche data                   |               | data                     |                 | reported in                | analyses were                          | Trend test: p=0.12                                                                                                                      |                |
|        |             |                                 |               | supplement               |                 | whole years                | used to compare                        | Continuous (per 500g):                                                                                                                  |                |
|        |             | Age 25-29 years                 |               | ed by                    |                 | at adult                   | differences in mean                    | β=0.20, 95% CI=-0.01,                                                                                                                   |                |
|        |             | at follow-up                    |               | maternal<br>questionnai  |                 | follow-up.<br>In analysis, | birth weight, birth<br>length, and     | 0.40                                                                                                                                    |                |
|        |             | Data from                       |               | re report in             |                 | adolescent                 | gestational age,                       | β from adjusted linear                                                                                                                  |                |
|        |             | female                          |               | 3rd year of              |                 | data was                   | between menarche                       | regression results in                                                                                                                   |                |
|        |             | participants in                 |               | original                 | Age at          | used for                   | groups.                                | subset with maternal                                                                                                                    |                |
|        |             | the original DISC               |               | study                    | menarche,       | 250 girls                  |                                        | age at menarche                                                                                                                         |                |
|        |             | study (1988-                    |               | (maternal                | continuous      | and adult                  | Birth characteristics                  | (N=161):                                                                                                                                |                |
|        |             | 1997) with data supplemented by | Birth weight, | report of<br>birthweight | and categorized | recalled<br>data for 34    | were treated as<br>predictor variables | Birth weight in<br>quartiles:                                                                                                           |                |
|        |             | the DISC Follow-                | birth length  | used for 23              | as: Early:      | girls that                 | (continuous and                        | Q1: β=-0.38, 95% Cl= -                                                                                                                  |                |
|        |             | Up Study                        | and           | women who                | ≤11.75 years    | were                       | quartiles) with age                    | 0.87, 0.11                                                                                                                              | Intervention   |
|        |             | (conducted in                   | gestational   | did not                  | Average:        | missing                    | at menarche in                         | Q2: β=-0.35, 95% Cl= -                                                                                                                  | group, race,   |
| uder,  |             | 2006-2008,                      | age as        | report                   | 11.76–13.74     | data from                  | years as the                           | 0.82, 0.12                                                                                                                              | BMI-for-age-   |
| 010,   |             | when women                      | continuous    | birthweight              | years           | original                   | dependent variable                     | Q3: β=-0.55, 95% CI= -                                                                                                                  | percentile,    |
| Inited | Prospective | were 25-29                      | variables and | at adult                 | Late: ≥13.75    | data                       | in linear regression                   | 1.07, -0.04                                                                                                                             | mother's age a |
| States | cohort      | years of age)                   | as quartiles  | follow-up).              | years           | collection.                | models.                                | Q4: Referent                                                                                                                            | menarche       |

Mean birthweight in g (SD) by menarche

Trend test: p=0.24 Continuous (per 500g): β=0.14, 95% CI=-0.04, 0.32

Birthweight in quartiles and as continuous variable was positively associated with age at menarche (p<.01). With covariate adjustment, women in the lowest quartile of birthweight experienced menarche 0.51 years earlier compared to women in the highest quartile of birth weight (95% CI: -0.88, -0.14; p<0.01, ptrend<0.01). Modeling birthweight as a continuous variable with covariate adjustment also indicated that the adjusted birth weight effect was statistically significant (p<0.01) with each 500 g increase in birth weight associated with a 0.21 year delay in age at menarche.

Birthlength was not associated with age at menarche when modeled in quartiles or as a continuous variable (data not shown)

| Cho,<br>2010,<br>South<br>Korea        | Cross-<br>sectional   | 620 girls with<br>menarche data<br>Age 10-19 years<br>Girls born<br>between 1986<br>and 1995<br>participating in<br>the 2005 Korean<br>National Health<br>and Nutrition<br>Survey<br>(KHANES)<br>115 women with<br>body size data at<br>birth (96 at 1<br>year)                                                                                                                                                                                        | Birthweight<br>in kg                                                                 | Reported<br>by mothers<br>on self-<br>administere<br>d<br>questionnai<br>re                                              | Menarche<br>status at visit                                                                  | Self-report<br>by girls                                                                                                              | Exposures<br>compared between<br>premenarcheal and<br>menarcheal girls<br>using ANCOVA,<br>controlling for age<br>and chi-square test<br>when variables<br>were continuous<br>and categorical                                                                                                                                                                                                                            | Mean birthweight by<br>menarche status from<br>ANCOVA (p = 0.328):<br>Premenarcheal girls:<br>3.25kg (SD=0.39)<br>Menarcheal girls: 3.20<br>kg (SD=0.24)                                                                                                                                                                                                                                                                                    | Age  |
|----------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Chevalley,<br>2011,<br>Switzerlan<br>d | Prospective<br>cohort | Mean age 20.4<br>at follow-up of pre-<br>pubertal girls<br>participating in<br>an RCT of<br>calcium-enriched<br>foods and bone<br>mass growth<br>(enrolled at<br>mean 7.9 years,<br>followed up to<br>20.4 years.<br>Exclusion criteria<br>at enrollment<br>were ratio of<br>weight/height<br><3rd or >97th<br>percentile,<br>physical signs of<br>puberty, chronic<br>disease,<br>malabsorption,<br>bone disease<br>and regular use<br>of medication) | Body weight,<br>standing<br>height and<br>BMI at birth<br>(converted to<br>Z-scores) | Obtained<br>retrospectiv<br>ely at<br>baseline<br>from<br>questionnai<br>res sent to<br>parents and<br>pediatrician<br>s | Age at<br>menarche,<br>continuous<br>and<br>dichotomized<br>at the<br>median (12.9<br>years) | Self-<br>reported by<br>daughter at<br>interview at<br>visits (8.9<br>years, 10<br>years, 10<br>years, 12.4<br>years, 16.4<br>years) | Univariate linear<br>regression analysis<br>examining<br>association<br>between BMI Z-<br>score at birth and 1<br>year or change in<br>BMI Z-score from<br>birth to 1 year and<br>age at menarche Z-<br>score. Differences<br>in anthropometric<br>characteristics<br>between earlier<br>and later menarche<br>(dichotomized at<br>the median)<br>assessed by<br>unpaired t-tests or<br>by Wilcoxon signed<br>rank test. | Mean (SD) of birth<br>characteristics by<br>median age at<br>menarche:<br>Weight (kg), p=0.995:<br>Earlier: 3.2 (0.4)<br>Later: 3.2 (0.4)<br>Standing height (cm),<br>p=0.680<br>Earlier: 49.4 (2.2)<br>Later: 49.2 (1.9)<br>BMI, p=0.706<br>Earlier: 13.0 (1.2)<br>Later: 13.1 (1.3)<br>$\beta$ for age at menarche<br>Z-score predicted by<br>BMI at birth Z-score):<br>$\beta$ = -0.07, 95% CI= -<br>0.259, 0.120), R-<br>squared = 0.01 | None |

|     | Orden,<br>2011,<br>Argentina | Cross-<br>sectional   | 1221 girls<br>Age 9-15 years<br>Cross-sectional<br>study of 1221<br>school girls in<br>Santa Rosa,<br>Argentina,<br>carried out in<br>Sept-Nov 2009<br>(public and<br>private schools<br>selected from<br>neighborhoods)<br>21 VLBW SGA | Birth weight               | Parent<br>report in<br>adolescenc<br>e | Menarche at<br>study visit<br>(status quo<br>method).<br>Girls were<br>grouped at<br>age at visit:<br>9-11, 12, 13<br>and 14-15<br>years | Self-report<br>by girl (Girls<br>reported<br>age at<br>menarche,<br>but most<br>specified<br>age in<br>years so<br>status quo<br>method was<br>used) | Anthropometric<br>differences<br>between pre- and<br>post-menarcheal<br>girls were<br>compared by the<br>Mann-Whitney test.<br>Logistic binary<br>regression was<br>used to model the<br>association<br>between menarche<br>and independent<br>variables. | Mean difference in<br>birthweight between<br>pre- and<br>postmenarcheal girls<br>according to age<br>groups (prem-postm):<br>9-11: Birth weight diff =<br>-17.8, p=0.858<br>12 : Birth weight diff =<br>38.3, p=0.624<br>13: Birth weight diff =<br>0.1, p=0.999<br>14-15: Birth weight diff<br>= -4.6, p=0.963<br>Birth weight included in<br>initial logistic<br>regression model with<br>anthropometric<br>measures, p>.05<br>(results not shown, not<br>included in final model) | None for<br>differences,<br>logistic<br>regression<br>adjusted for age,<br>subscapular/trici<br>pital index (STI)<br>and<br>anthropometric<br>Z-scores at visit |
|-----|------------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| N   |                              |                       | girls, 44 VLBW<br>AGA girls and 92                                                                                                                                                                                                      | VLBW SGA:<br>Infants       |                                        |                                                                                                                                          |                                                                                                                                                      |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                 |
| 239 |                              |                       | control girls<br>(matched to                                                                                                                                                                                                            | weighing<br><1500g at      |                                        |                                                                                                                                          |                                                                                                                                                      |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                 |
|     |                              |                       | VLBW by age,                                                                                                                                                                                                                            | birth and                  |                                        |                                                                                                                                          |                                                                                                                                                      |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                 |
|     |                              |                       | sex and birth<br>hospital)                                                                                                                                                                                                              | birthweight<br><-2SD based |                                        |                                                                                                                                          |                                                                                                                                                      |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                 |
|     |                              |                       | Mean age 22.5                                                                                                                                                                                                                           | on Finnish<br>standards    |                                        |                                                                                                                                          |                                                                                                                                                      |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                 |
|     |                              |                       | years at follow-                                                                                                                                                                                                                        | Stanuarus                  |                                        |                                                                                                                                          |                                                                                                                                                      |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                 |
|     |                              |                       | up                                                                                                                                                                                                                                      | VLBW AGA:<br>Infants       |                                        |                                                                                                                                          |                                                                                                                                                      |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                 |
|     |                              |                       | Helsinki Study of                                                                                                                                                                                                                       | weighing                   |                                        |                                                                                                                                          |                                                                                                                                                      |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                 |
|     |                              |                       | Very Low                                                                                                                                                                                                                                | <1500g at                  |                                        |                                                                                                                                          |                                                                                                                                                      |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                 |
|     |                              |                       | Birthweight<br>Adults.                                                                                                                                                                                                                  | birth and<br>birthweight   |                                        |                                                                                                                                          |                                                                                                                                                      |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                 |
|     |                              |                       | longitudinal                                                                                                                                                                                                                            | ≥-2SD based                |                                        |                                                                                                                                          |                                                                                                                                                      |                                                                                                                                                                                                                                                           | Mean (SD) age at                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                 |
|     |                              |                       | follow-up of                                                                                                                                                                                                                            | on Finnish                 |                                        |                                                                                                                                          |                                                                                                                                                      |                                                                                                                                                                                                                                                           | menarche by group:                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                 |
|     |                              |                       | subjects born<br>preterm at                                                                                                                                                                                                             | standards                  |                                        |                                                                                                                                          |                                                                                                                                                      |                                                                                                                                                                                                                                                           | VLBW SGA (N=21):<br>12.6 (1.8)                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                 |
|     |                              |                       | VLBW (<1500g)                                                                                                                                                                                                                           | Controls:                  |                                        |                                                                                                                                          |                                                                                                                                                      | Age at menarche,                                                                                                                                                                                                                                          | VLBW AGA (N=44):                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                 |
|     |                              |                       | between 1978-<br>1985 and treated                                                                                                                                                                                                       | Term infants<br>with       |                                        |                                                                                                                                          |                                                                                                                                                      | corrected for gestational age at                                                                                                                                                                                                                          | 12.2 (1.2)<br>Controls (N=92): 12.5                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                 |
|     |                              |                       | in the Neonatal                                                                                                                                                                                                                         | birthweight                |                                        |                                                                                                                                          |                                                                                                                                                      | birth, were                                                                                                                                                                                                                                               | (1.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                 |
|     | Wehkalam                     | _                     | ICU of Children's                                                                                                                                                                                                                       | ≥-2SD based                |                                        |                                                                                                                                          | Self-                                                                                                                                                | compared between                                                                                                                                                                                                                                          | Not statistically                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                 |
|     | pi, 2011,<br>Finland         | Prospective<br>cohort | Hospital of<br>Helsinki                                                                                                                                                                                                                 | on Finnish<br>standards    | Hospital<br>records                    | Age at<br>menarche                                                                                                                       | reported by<br>women                                                                                                                                 | VLBW and control<br>subjects                                                                                                                                                                                                                              | different from each<br>other                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Gestational age<br>at birth                                                                                                                                     |
|     |                              | conort                | HOIGHIN                                                                                                                                                                                                                                 | Standalus                  | 1000103                                |                                                                                                                                          | women                                                                                                                                                | 500,000                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                 |

University Hospital and controls who were not SGA (birthweight>-2 SD)

|                           |                     | 273 girls with<br>menarche data<br>Age 17-21 years<br>Outpatient clinic<br>cards of<br>"Vitamed"<br>general<br>outpatient clinic<br>in the city of<br>Poznan and<br>cross-sectional<br>research on girls<br>from the | Birthweight,<br>continuous,<br>and<br>categorized<br>as:<br>Low:<2500g<br>Appropriate:<br>2500-4000g<br>High:>4000g<br>Also<br>birthweight<br>for GA:<br>SGA:<br>birthweight<br><10th<br>percentile for<br>gestational<br>age<br>AGA:<br>birthweight<br>10-90<br>percentile<br>LGA<br>birthweight<br>>90th |                         |                    | Self-report<br>by girl at<br>visit. Only<br>girls 17 and<br>above<br>included<br>since latest<br>age at<br>menarche<br>was 17 | Kaplan-Meier<br>method log-rank | Birthweight<br>(categorized as low,<br>appropriate, high) was<br>associated with age at<br>menarche (log rank<br>test, p<.000001). Girls<br>with low birthweight<br>had latest age at<br>menarche.<br>No variation in age at |      |
|---------------------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Szwed,<br>2012,<br>Poland | Cross-<br>sectional | research on girls                                                                                                                                                                                                    | birthweight                                                                                                                                                                                                                                                                                                | Outpatient clinic cards | Age at<br>menarche | menarche                                                                                                                      |                                 |                                                                                                                                                                                                                              | None |

| Reagan,<br>2012,<br>United<br>States | Prospective<br>cohort | 2337 girls born<br>between 1978-<br>1998 with<br>menarche data<br>(pre-menarche<br>girls excluded)<br>Age 12-32 in<br>2010<br>Subset of U.S.<br>National<br>Longitudinal<br>Surveys of Youth<br>Child-Mother file<br>(1979-2010<br>waves). 78% of<br>eligible sample<br>included | Birthweight<br>in kg | Reported<br>by mother<br>during first<br>interview<br>after child's<br>birth.<br>Reported in<br>lbs and oz<br>and<br>converted<br>to kg. | Age at<br>menarche                | Reported<br>by mothers<br>when girls<br>were 8-14 y<br>or by girls<br>at 14y and<br>above.<br>Reported<br>year and<br>month of<br>menarche,<br>used to<br>calculate<br>age | OLS regression<br>with age at<br>menarche as<br>outcome and 2-<br>stage IV analysis<br>for age at<br>menarche with<br>maternal smoking<br>during pregnancy,<br>maternal pre-<br>pregnancy BMI and<br>GWG used as IVs | β for age at menarche<br>for birthweight (kg):<br>OLS model: β=1.80,<br>95% CI=0.63, 2.97<br>2-stage least squares<br>model: β=3.00, 95%<br>CI= 1.53, 4.48                                                                          | Childhood BMI<br>Z-score, percent<br>poverty (0-5<br>years)*White,<br>Percent<br>poverty*African<br>American,<br>Maternal age at<br>menarche,<br>African-<br>American.<br>2-stage results<br>used pre-<br>pregnancy BMI,<br>high GWG and<br>maternal<br>smoking as IV |
|--------------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                      |                       | 305 term girls<br>Age 10-15 years<br>at first report of<br>pubertal status,<br>followed<br>annually until<br>TS5 or max of 5<br>years                                                                                                                                            |                      |                                                                                                                                          |                                   | Date of<br>menarche<br>reported by<br>daughter on<br>annual                                                                                                                | Univariate linear<br>model for age at<br>menarche.<br>Multivariable-<br>adjusted                                                                                                                                     | Univariable linear<br>regression model for<br>birthweight, kg: $\beta$ = -<br>0.04, SE=0.15, p>.05<br>Regression coefficient<br>in adjusted log-normal<br>survival analyses of<br>time to menarche<br>Birthweight : $\beta$ =-0.06, | Birthweight,<br>weight gain<br>(change in Z-                                                                                                                                                                                                                          |
| Wang,<br>2012,<br>United<br>States   | Prospective cohort    | Adolescent<br>follow-up of<br>subset of the<br>North Carolina<br>Infant Feeding<br>Study, infants<br>born 1978-1982                                                                                                                                                              | Birthweight<br>in kg | Recorded<br>at birth by<br>nurse                                                                                                         | Age at<br>menarche,<br>continuous | surveys<br>(started in<br>1992 at age<br>10-15,<br>followed for<br>max of 5<br>years)                                                                                      | parametric survival<br>analyses with log<br>normal distribution<br>for age at<br>menarche (β<0<br>indicates earlier<br>menarche)                                                                                     | 95% CI= -0.10, -0.03<br>Early menarche group<br>had highest weight Z-<br>score starting at birth,<br>but lines really start to<br>diverge after age 1                                                                               | score) from 0-6<br>months, 6-12<br>months, 1-2<br>years, 2-5 years,<br>maternal pre-<br>pregnancy<br>weight and race.                                                                                                                                                 |

|                    |             | 144 girls with<br>menarche data<br>Average age<br>12.8 years (SD<br>0.4) for early<br>menarche group<br>and 12.7 (SD |                                 |                            |                         |                          | T-test to compare<br>mean birthweight<br>between early and<br>average/late<br>menarche group | Mean (SD) for<br>birthweight in kg and t-<br>test by menarche<br>group:<br>Early: 3.1 (0.4)<br>Avg/late: 3.2 (0.4)<br>p=0.29<br>OR for early menarche<br>for birthweight (results<br>from model with main<br>exposure of BMI<br>quartile at age 7):<br>Q1: Referent<br>Q2: OR=0.65, 95%<br>CI=0.17, 2.60 |                                    |
|--------------------|-------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------------|-------------------------|--------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
|                    |             | 0.5) for late<br>menarche group                                                                                      | Birthweight                     |                            |                         |                          | Multiple logistic regression for early                                                       | Q3: OR=0.44, 95%<br>CI=0.13, 1.47                                                                                                                                                                                                                                                                        |                                    |
|                    |             | Survey                                                                                                               | in kg and<br>categorized        | Mathan                     | Age at<br>menarche,     |                          | menarche with<br>Wald test for trend.                                                        | Q4: OR=0.79, 95%<br>CI=0.25, 2.55                                                                                                                                                                                                                                                                        |                                    |
|                    |             | conducted<br>among grade 4                                                                                           | into quartiles<br>for analysis: | Mother<br>report on        | dichotomized<br>as:     |                          | Main exposure was<br>BMI (or change in                                                       | P for trend: 0.55<br>*Results were similar                                                                                                                                                                                                                                                               | BMI quartile at 7                  |
| 01.0040            |             | students from                                                                                                        | Q1:<2.98                        | questionnai                | Early: ≤12              | Age at                   | BMI) at ages 7, 8,                                                                           | when models adjusted                                                                                                                                                                                                                                                                                     | years, ever                        |
| Oh, 2012,<br>South | Cross-      | one middle<br>school in Seoul                                                                                        | Q2:2.98-3.18<br>Q3:3.18-3.38    | re when<br>child in 7th    | years<br>Average or     | menarche<br>reported by  | and 9 years.<br>Birthweight was an                                                           | for BMI or change in<br>BMI in other childhood                                                                                                                                                                                                                                                           | breastfed,<br>maternal age at      |
| Korea              | sectional   | in Nov-Dec 2008                                                                                                      | Q4: ≥3.38                       | grade                      | late: >12               | girl or mom              | adjustment factor.                                                                           | periods                                                                                                                                                                                                                                                                                                  | menarche                           |
|                    |             | 96,493 women                                                                                                         |                                 | Birthweight                |                         | 5                        | ,                                                                                            |                                                                                                                                                                                                                                                                                                          | Birth cohort,                      |
|                    |             | with data on age                                                                                                     |                                 | self-                      |                         |                          |                                                                                              |                                                                                                                                                                                                                                                                                                          | Father's income                    |
|                    |             | at menarche                                                                                                          |                                 | reported by                |                         |                          |                                                                                              |                                                                                                                                                                                                                                                                                                          | index,<br>Population of            |
|                    |             | from 8-19 years (23.7% missing                                                                                       |                                 | participant<br>in          |                         |                          |                                                                                              |                                                                                                                                                                                                                                                                                                          | birth place, fetal                 |
|                    |             | birthweight data                                                                                                     |                                 | adulthood,                 |                         |                          |                                                                                              |                                                                                                                                                                                                                                                                                                          | number, number                     |
|                    |             | and 29.3%                                                                                                            |                                 | recorded in                |                         |                          |                                                                                              | β (95% CI) for age at                                                                                                                                                                                                                                                                                    | of siblings,                       |
|                    |             | missing                                                                                                              | Birthweight                     | grams or                   |                         | Self-                    |                                                                                              | menarche in months                                                                                                                                                                                                                                                                                       | maternal                           |
|                    |             | birthlength data)                                                                                                    | was                             | using                      |                         | reported in              |                                                                                              | from adjusted model:                                                                                                                                                                                                                                                                                     | smoking during                     |
|                    |             | 40-65 years at                                                                                                       | categorized<br>for full-term    | categories<br>"low",       |                         | first two<br>questionnai |                                                                                              | Birthweight (p for trend <.0001):                                                                                                                                                                                                                                                                        | pregnancy,<br>breastfeeding        |
|                    |             | baseline                                                                                                             | women:                          | "medium",                  |                         | res, with                |                                                                                              | Low: Referent                                                                                                                                                                                                                                                                                            | exposure,                          |
|                    |             |                                                                                                                      | Low:<2500g                      | "high"                     |                         | age from 8-              |                                                                                              | Medium: β=0.61, 95%                                                                                                                                                                                                                                                                                      | suffered from                      |
|                    |             | E3N cohort,                                                                                                          | Medium:                         | -                          |                         | 19 in full               | Association                                                                                  | CI=0.09, 1.13                                                                                                                                                                                                                                                                                            | food deprivation                   |
|                    |             | French women                                                                                                         | 2500-4000g                      | Birthlength                |                         | years and                | between pre- and                                                                             | High: β=1.51, 95%                                                                                                                                                                                                                                                                                        | during WWII,                       |
|                    |             | ages 40-65                                                                                                           | High: >4000g                    | self-                      |                         | additional               | postnatal factors                                                                            | CI=0.87, 2.16                                                                                                                                                                                                                                                                                            | premature birth,                   |
|                    |             | years at<br>baseline, insured                                                                                        | Birthlength                     | reported by<br>participant |                         | categories<br>for never  | and age at<br>menarche was                                                                   | Birthlength (p for trend                                                                                                                                                                                                                                                                                 | birthweight, birth<br>length, body |
|                    |             | with the Mutuelle                                                                                                    | was                             | in                         |                         | menstruate               | assessed by                                                                                  | <.0001):                                                                                                                                                                                                                                                                                                 | silhouette at                      |
|                    | Prospective | Generale de                                                                                                          | categorized:                    | adulthood,                 |                         | d or                     | multivariable-                                                                               | Low: Referent                                                                                                                                                                                                                                                                                            | menarche,                          |
| _                  | cohort      | l'Education                                                                                                          | Low: <48cm                      | recorded in                |                         | menstruate               | adjusted linear                                                                              | Medium:β= -1.05, 95%                                                                                                                                                                                                                                                                                     | passive smoking                    |
| Dossus,            | (cross-     | Nationale, a                                                                                                         | Medium: 48-                     | cm or using                | Age at                  | d at ≤7 or               | regression (β<0                                                                              | Cl= -1.50, -0.59                                                                                                                                                                                                                                                                                         | during childhood,                  |
| 2012,<br>France    | sectional   | national health                                                                                                      | 51cm<br>High: >51cm             | categories<br>"low".       | menarche,<br>continuous | ≥20 years<br>(excluded)  | indicates earlier<br>menarche)                                                               | High: β= -1.84, 95%<br>CI= -2.45, -1.24                                                                                                                                                                                                                                                                  | frequency of<br>indoor exposure    |
| Flance             | analysis)   | insurance plan                                                                                                       | nign. >ərdii                    | iow,                       | continuous              | (excluded)               | menarche)                                                                                    | 01= -2.40, -1.24                                                                                                                                                                                                                                                                                         |                                    |

covering mostly teachers and recruited June 1990-Nov 1991 "medium", "high" to passive smoking during childhood, extraschool physical activity at 8-15 years, walking activity at 8-15 years

|                     |           | 33,501 women<br>with age at<br>menarche, early-<br>life and race<br>information<br>Age 35-59 years |                    | Self-report<br>by<br>participant<br>at baseline<br>in lbs/ozs<br>(age 35-59<br>years).<br>Women<br>were given<br>a prepaid |                         | Age at<br>menarche,<br>recalled in<br>years by<br>participant<br>during CATI<br>interview at<br>baseline.<br>For women<br>who did not<br>know age, it<br>was<br>estimated | Polytomous logistic<br>regression to<br>estimate rela-<br>tive risk ratios<br>(RRRs) with 95%<br>confidence<br>intervals (cis) for<br>each early-life<br>exposure in<br>association with<br>very early (≤10<br>years), early (11 | Polytomous logistic<br>regression results for<br><2500g vs ≥2500g as<br>referent, rRR (95% Cl):<br>≤10y: OR=1.28, 95%<br>Cl=1.09, 1.50<br>11y: OR=1.09, 95%<br>Cl=0.96, 1.24<br>12-13y: Referent<br>14y: OR=1.02, 95%<br>Cl=0.90, 1.16<br>≥15y: OR=1.08, 95%<br>Cl= 0.94, 1.25 | Race/ethnicity,<br>participant's birth<br>decade,<br>childhood family<br>income, and<br>interaction<br>between race<br>and birth<br>decade.<br>Additional model<br>(full results not |
|---------------------|-----------|----------------------------------------------------------------------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     |           | at baseline                                                                                        |                    | phone card<br>and                                                                                                          | Categorized as:         | from grade<br>in school                                                                                                                                                   | years), late (14<br>years), and very                                                                                                                                                                                             | Additional adjusted                                                                                                                                                                                                                                                            | shown) also adjusted for                                                                                                                                                             |
| DiAlaiaia           |           | Sister Study                                                                                       | Birthweight,       | encouraged                                                                                                                 | ≤10 years               | (n=77) or                                                                                                                                                                 | late (≥15 years)                                                                                                                                                                                                                 | model result for low                                                                                                                                                                                                                                                           | preterm birth,                                                                                                                                                                       |
| D'Aloisio,<br>2013, |           | participants, age<br>35-59 years at                                                                | categorized<br>as: | to call their<br>mother/relat                                                                                              | 11 years<br>12-13 years | timing<br>relatives to                                                                                                                                                    | menarche relative<br>to typical ages at                                                                                                                                                                                          | birth weight and very<br>early menarche,                                                                                                                                                                                                                                       | multiple birth,<br>and maternal                                                                                                                                                      |
| United              | Cross-    | baseline (2003-                                                                                    | <2500              | ives for                                                                                                                   | 14 years                | others                                                                                                                                                                    | menarche (12–13                                                                                                                                                                                                                  | rRR=1.33, 95%                                                                                                                                                                                                                                                                  | factors during                                                                                                                                                                       |
| States              | sectional | 2009)                                                                                              | <2300<br>≥2500q    | assistance.                                                                                                                | ≥15 years               | (n=63)                                                                                                                                                                    | vears)                                                                                                                                                                                                                           | CI=1.08-1.63                                                                                                                                                                                                                                                                   | pregnancy                                                                                                                                                                            |

|                    |            |                                                                                                                                           |                                                                       |                                                             |                     |                                               |                                                                                                                                         | Adjusted HR from<br>population Cox model<br>in 3466 twin girls:<br>BW-SDS: HR=0.962,<br>95% CI=0.928-0.998                                                                     |                                                 |
|--------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------|---------------------|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
|                    |            |                                                                                                                                           |                                                                       |                                                             |                     |                                               |                                                                                                                                         | Birthweight, birth length<br>and GA were not<br>individually associated<br>with age at menarche<br>( $P \ge 0.15$ , data not<br>shown)                                         |                                                 |
|                    |            | 2505 twin pairs<br>were included<br>(733 female MZ,<br>625 female<br>dizygotic and<br>1147 opposite-<br>sex dizygotic)<br>Age 12-22 years | Sex-specific<br>BW standard<br>deviation<br>scores (BW-<br>SDS)       | Danish                                                      |                     |                                               | Marginal Cox<br>proportional hazard<br>survival models<br>with cluster-<br>corrected estimates<br>of the SEs for<br>estimates of effect | Paired analysis:<br>Overall: BW-SDS<br>HR=1.01, 95%<br>CI=0.91, 1.12<br>MZ twins: BW-SDS<br>HR=0.94, 95%<br>CI=0.81, 1.10<br>DZ twins: BW-SDS<br>HR=1.07, 95%<br>CI=0.93, 1.24 |                                                 |
|                    |            | at survey<br>Subset of 1994<br>survey sent to all<br>known twins                                                                          | adjusted for<br>gestational<br>age were<br>calculated<br>according to | Medical<br>Birth<br>Registry<br>(sex, birth<br>order, birth |                     | Age at<br>menarche<br>in months<br>and years, | on population level<br>Random effects<br>survival models for<br>correlation within                                                      | Girls discordant by<br>more than 1 BW-SDS:<br>HR=1.05, 95%<br>CI=0.93, 1.19                                                                                                    | Population                                      |
| Sorensen,<br>2013, |            | born in Denmark<br>from 1973-1982<br>(Danish Twin                                                                                         | the twin BW<br>reference by<br>Glinianaia et                          | length, birth<br>weight,<br>gestational                     | Age at<br>menarche, | self-<br>reported on<br>1994                  | twins (timereg<br>package, based on<br>standard frailty                                                                                 | Girls discordant by<br>more than 2 BW-SDS:<br>HR=1.04, 95% CI=                                                                                                                 | model Cox<br>model adjusted<br>for birth cohort |
| Denmark            | Twin study | Register)                                                                                                                                 | al, 2000                                                              | age)                                                        | continuous          | survey                                        | modeling)                                                                                                                               | 0.87, 1.23                                                                                                                                                                     | and zygosity                                    |

| Deardorff,<br>2013,<br>United<br>States | Prospective<br>cohort | 2497 girls with<br>complete data<br>for maternal pre-<br>pregnancy BMI,<br>GWG,<br>daughters'<br>menarche and<br>covariates.<br>Excluded girls<br>with menarche<br>before 9 or after<br>16.<br>Age 9-16 years<br>at follow-up<br>Daughters of<br>women in 1979<br>National<br>Longitudinal<br>Survey of Youth,<br>prospective<br>study of<br>nationally<br>representative<br>samples born<br>1957-1964.<br>Offspring were<br>surveyed<br>biennially from<br>1986-2010 as<br>part of the<br>NLSBY Children<br>and Young Adult<br>Survey. | Birthweight                                                                                                                                                                         | Reported<br>by mother<br>during first<br>interview<br>after child's<br>birth.<br>Reported in<br>Ibs and oz<br>and<br>converted<br>to kg.    | Age at<br>menarche,<br>continuous | Year and<br>months of<br>menstruatio<br>n, reported<br>by mothers<br>for girls <14<br>years and<br>girls age 14<br>and over on<br>biennial<br>surveys | Distribution of<br>covariates by 4<br>menarche groups<br>(9-11 years, 12<br>years, 13 years,<br>14-16 years, right<br>censored as<br>separate category)<br>Cox proportional<br>hazard models to<br>estimate<br>associations<br>adjusting for<br>covariates in order<br>to include right<br>censored girls. | Birthweight described<br>only as difference in<br>means by age at<br>menarche; was<br>included as a mediator<br>for maternal BMI and<br>GWG models.<br>Mean birthweight in g<br>by age at menarche:<br>9-11y: 3240.9g<br>12y: 3295.3<br>13y: 3378.9g<br>14-16y: 3273.2g<br>P=0.04<br>Right censored girls:<br>3294.3g                                       | None                                                                                                                  |
|-----------------------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Hernande<br>z, 2013,<br>Chile           | Prospective<br>cohort | 16 LBW and 25<br>AGA girls, TS2<br>at enrollment<br>and BMI<br>between 10th<br>and 95th<br>percentile and<br>followed for 3<br>years<br>7-12 years at<br>enrollment<br>Age-matched<br>LBW and AGA                                                                                                                                                                                                                                                                                                                                       | AGA - birth<br>weight<br>between the<br>10th and<br>90th<br>percentile for<br>gestational<br>age<br>LBW - birth<br>weight below<br>the 10th<br>percentile for<br>gestational<br>age | Birth<br>weight, birth<br>length and<br>gestational<br>age<br>reported by<br>parents and<br>confirm in<br>child's<br>health<br>control card | Age at<br>menarche                | Assume<br>reported by<br>girls at<br>biannual<br>follow-up<br>visits                                                                                  | Differences in<br>menarche of the<br>two groups<br>assessed by<br>Kaplan Meier<br>survival analyses<br>(log rank test)                                                                                                                                                                                     | "The mean age at<br>menarche was $12.1 \pm$<br>0.8 years (AGA) vs.<br>$12.4 \pm 0.1.1$ years<br>(LBW). Log-rank test<br>for equality of survivor<br>functions (p = 0.2).<br>AGA and LBW girls<br>had similar age at<br>menarche even after<br>adjustment for<br>maternal age at<br>menarche (p = 0.067)<br>and rate of progression<br>from B2 to menarche." | Menarche<br>results adjusted<br>for maternal age<br>at menarche and<br>rate of<br>progression from<br>B2 to menarche. |

|                                            |            | 400 side (64 <b>N</b> 7                                                                                                        |             |                                                       |                    |                                            |                                                                                                          |                                                                                                                |               |
|--------------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------------------------------------------|--------------------|--------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------|
|                                            |            | 193 girls (54 MZ<br>pairs, 34 DZ<br>pairs, 17 females<br>from opposite-<br>sex twin pairs                                      |             |                                                       |                    |                                            |                                                                                                          |                                                                                                                |               |
|                                            |            | Age 16-63 years<br>(mean 31.52)                                                                                                |             |                                                       |                    |                                            |                                                                                                          |                                                                                                                |               |
|                                            |            | Twins born<br>between 1945<br>and 1988<br>identified<br>through the Iran<br>Twin Registry in<br>2000 and twins<br>born between |             | Not<br>specified<br>(assume<br>self or                |                    |                                            | Descriptive<br>analysis and<br>computation of<br>variance and co-<br>variance; genetic<br>analysis using | Birthweight was not<br>associated with age at<br>menarche (p=0.830)<br>(data not shown)                        |               |
| Jahanfar,<br>2013, Iran<br>and<br>Malaysia | Twin study | 1951 and 1993<br>drawn from the<br>Malaysian Twin<br>Registry<br>database                                                      | Birthweight | parent<br>report to<br>zygosity<br>questionnai<br>re) | Age at<br>menarche | Self-report<br>in<br>adulthood<br>in years | Falconer's formula<br>for estimation of<br>heritability and<br>MLA analysis of<br>twin data              | Birthweight was not<br>associated specifically<br>with early or late<br>menarche (p=0.925)<br>(data not shown) | Not specified |

girls 7-12 years recruited from public schools in Santiago and Concepcion, Chile

|     | Zhang,<br>2014,<br>United<br>States | Cross-<br>sectional   | 652,<br>nonpregnant<br>girls age 8-15<br>years with<br>complete data.<br>Pre-menarcheal<br>girls were<br>excluded, as<br>were races other<br>than Mexican<br>American, non-<br>Hispanic black<br>and non-<br>Hispanic white<br>Age 8-15 years<br>NHANES 2003-<br>2006<br>195 girls | Birthweight,<br>continuous<br>and<br>categorized<br>as:<br>Low:<br><2500g<br>Normal:<br>2500-4000g<br>High:<br>>4000g | Birthweight<br>reported to<br>nearest<br>ounce by<br>parent/guar<br>dian in<br>adolescenc<br>e           | Age at<br>menarche,<br>continuous | Self-report<br>by girl in<br>adolescenc<br>e; pre-<br>menarcheal<br>girls<br>excluded | Multiple linear<br>regression models<br>(PROC<br>SURVEYREG)<br>were used to<br>evaluate the<br>associations<br>between age at<br>menarche and birth<br>weight as both<br>continuous and<br>categorical<br>predictor variables<br>( $\beta$ <0 indicates<br>earlier menarche) | Adjusted $\beta$ for age at<br>menarche in months:<br>Per 500g increase in<br>birthweight: $\beta$ =-0.005,<br>95% Cl= -0.061, 0.052<br>Low: $\beta$ =-0.24, 95% Cl=<br>-0.60, 0.12<br>Normal: Referent<br>High: $\beta$ =-0.32, 95%<br>Cl=-0.68, 0.03 | Survey cycle,<br>race, maternal<br>smoking status<br>when pregnant<br>and BMI-for-age<br>percentile |
|-----|-------------------------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| 247 | Gavela-<br>Perez,<br>2015,<br>Spain | Prospective<br>cohort | Age 13-16 years<br>at follow-up<br>Randomly<br>selected 6-8<br>year-old<br>Caucasian girls<br>in the Four<br>Provinces Study<br>(random cluster<br>sampling in<br>schools). Girls<br>with chronic<br>diseases<br>including<br>precocious<br>puberty were<br>excluded.              | Weight at<br>birth z-score<br>by<br>gestational<br>age                                                                | Birthweight<br>and<br>gestational<br>age<br>reported on<br>questionnai<br>re<br>(assuming<br>by parents) | Age at<br>menarche                | Self-report<br>at ages 13-<br>16 years                                                | Spearman<br>correlation<br>analyses between<br>weight at birth Z-<br>score and age at<br>menarche                                                                                                                                                                            | Correlation between<br>weight at birth Z-score<br>and age at menarche =<br>-0.010 (P≥0.05)                                                                                                                                                             | None                                                                                                |

| Meulenijze<br>r, 2015,<br>multiple<br>countries | Cross-      | 1069 girls with<br>valid data on<br>early-life factors<br>and menarche<br>Age 12.5-17.5<br>years<br>HELENA-CSS<br>(Healthy<br>Lifestyle in<br>Europe by<br>Nutrition in<br>Adolescence<br>cross-sectional | Birthweight<br>in kg,<br>continuous<br>Ponderal<br>index (g/m3),<br>continous<br>and in<br>quintiles<br>Birthlength in<br>cm, | Birthweight,<br>birth length,<br>gestational<br>age and<br>duration of<br>breastfeedi<br>ng reported<br>on parental<br>questionnai | Age at<br>menarche,<br>dichotomized<br>for analysis<br>as below<br>median (≤12)<br>or above | Menarche<br>status and<br>year of<br>onset self-<br>reported by | Multivariable linear<br>regression for age<br>at menarche (β<0<br>indicates earlier                               | β from adjusted linear<br>model for age at<br>menarche:<br>Birthweight (kg), log-<br>transformed: β=1.28,<br>SE=0.44, p=0.01<br>Ponderal index (g/m3),<br>log-transformed :<br>β=0.17, SE=0.51,<br>p=0.75<br>Ponderal index,<br>quintiles:<br>Q1: β=-0.15, SE=0.11,<br>p=0.19<br>Q2: β=-0.08, SE=0.11,<br>p=0.37<br>Q4: β=-0.11, SE=0.11,<br>p=0.31<br>Q5: referent<br>Birthlength (cm), log-<br>transformed: β=3.09, | Center, BMI Z-<br>score and age of |
|-------------------------------------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| in Europe                                       | sectional   | study)                                                                                                                                                                                                    | continuous                                                                                                                    | re.                                                                                                                                | median (>12)                                                                                | girls                                                           | menarche)                                                                                                         | SE=1.26, p=0.01                                                                                                                                                                                                                                                                                                                                                                                                       | adolescent                         |
| Behie &<br>O'Donnell,                           |             | 1493 girls with<br>complete data<br>Age 12-13 years<br>at follow-up<br>K-cohort from<br>Growing Up in<br>Australia, the<br>Longitudinal<br>Study of                                                       | Pirthwoight                                                                                                                   | Birthweight<br>reported by<br>parents at<br>initial data<br>collection<br>point, when<br>girls wore                                |                                                                                             | Reported                                                        | Cox proportional<br>hazard models,<br>with age at<br>menarche or last<br>follow-up for right<br>censored girls as | HR (95% CI) for age at menarche:                                                                                                                                                                                                                                                                                                                                                                                      | Maternal age at<br>menarche, BMI   |
| 2015,                                           | Longitudina | Study of<br>Australian                                                                                                                                                                                    | Birthweight in grams,                                                                                                         | girls were<br>3-4 years                                                                                                            | Age at                                                                                      | by parents<br>(year and                                         | the outcome (HR>1 indicates earlier                                                                               | Birthweight: HR=0.86,                                                                                                                                                                                                                                                                                                                                                                                                 | at 8-9 years,<br>maternal          |
| Australia                                       | I           | Children (LSAC)                                                                                                                                                                                           | continuous                                                                                                                    | old                                                                                                                                | menarche                                                                                    | month)                                                          | menarche)                                                                                                         | 95% CI= 0.75-0.97                                                                                                                                                                                                                                                                                                                                                                                                     | smoking                            |

| Wells,<br>2016,<br>United<br>Kingdom             | Cross-<br>sectional | 58 women<br>Age 18-30 years<br>(mean=22.6)<br>South Asian<br>women in central<br>London, UK,<br>recruited near<br>universities.<br>Inclusion criteria<br>= age 18-30<br>years,<br>gestational age<br>37+ weeks, and<br>four South Asian<br>grandparents.<br>Excluded twins,<br>smokers,<br>pregnant/lactatin<br>g women, weight<br>instability (>3kg<br>change in 3<br>months), and<br>medical<br>conditions<br>known to impact<br>body<br>composition or<br>metabolism | Birthweight<br>SDS,<br>adjusted for<br>gender and<br>gestational<br>age, using<br>UK 1990<br>reference<br>data | Birthweight<br>and<br>gestational<br>age self-<br>reported by<br>participants<br>(asked to<br>contact<br>their<br>mothers) | Age at<br>menarche,<br>continuous | Self-report<br>in<br>adulthood                      | Linear regression<br>model to<br>investigate<br>association<br>between BW SDS<br>and age at<br>menarche (β<0<br>indicates earlier<br>menarche) | Linear regression<br>model of age at<br>menarche, including<br>birthweight SDS and<br>gestational age:<br>Birthweight SDS:<br>β=0.49, 95% CI 0.14,<br>0.84 | First-generation<br>migrant status<br>and gestational<br>age |
|--------------------------------------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| Krzyzano<br>wska,<br>2016,<br>United<br>Kingtdom | Prospective         | 4483 girls with<br>menarche data,<br>excluded<br>minorities<br>Age 16 years at<br>follow-up<br>16-year follow-<br>up of girls in the<br>1958 British<br>National Child<br>Development<br>Study (NCDS),<br>birth cohort of all<br>children born in<br>England, Wales<br>and Scotland the<br>week of March<br>3-9, 1958                                                                                                                                                   | Birthweight<br>in grams                                                                                        | Medical<br>records                                                                                                         | Age at<br>menarche,<br>continuous | Recalled in<br>years by<br>girls at age<br>16 years | Univariable and<br>multivariable<br>Interval censored<br>Cox models, using<br>Icens function in<br>Epi package in R                            | Birthweight was not<br>associated with age at<br>menarche (p>0.10) in<br>univariable analysis<br>(data not shown)                                          | None                                                         |

|            | 13 female MZ<br>twin pairs<br>Age 13.2-15.8<br>years at follow-<br>up<br>Adolescent<br>follow-up of 30<br>pairs (13 female)<br>of MZ twins that<br>underwent<br>selective<br>fetoscopic laser<br>coagulation for<br>TTTS (twin-to-<br>twin transfusion<br>syndrome) | Smaller vs.<br>larger co-<br>twin at birth,<br>based on<br>birthweight<br>- Concordant<br>birthweight<br>pairs defined<br>as<br>birthweight<br>difference<br>< 1SDS<br>- Discordant<br>birthweight<br>pairs defined<br>as<br>birthweight<br>difference ><br>1 SDS<br>* In<br>discordant<br>pairs, the<br>smaller twin<br>met the |         |                     |                                               | Intra-twin<br>differences<br>calculated as the<br>data of the initially<br>larger twin<br>subtracted from the<br>data of initially<br>smaller co-twin<br>Sign test used to<br>compare intra-pair<br>values for<br>measurements on<br>ordinal scale (i.e.<br>Tanner stage<br>Paired t-test or<br>Wilcoxon test for<br>ratio scales | In 77% of girls (10/13),<br>the initially smaller twin<br>experienced menarche<br>before the co-twin<br>(median age at<br>menarche 12.1 vs<br>13.0)<br>In 7/8 discordant<br>female pairs, the<br>initially smaller twin<br>experienced menarche<br>first (median 12.4 vs 13<br>years)<br>Note: sign test showed<br>that progression<br>through tanner stages<br>was different for initially<br>smaller and larger twin<br>(P=.021, 9 positive<br>differences, 1 negative<br>difference, 4 ties - not<br>stratified by sex. The |      |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|            | during<br>pregnancy and<br>had an intra-twin<br>birthweight                                                                                                                                                                                                         | criterion for<br>SGA<br>(birthweight<br><2 SD for                                                                                                                                                                                                                                                                                | Medical | Age at<br>menarche, | Reported<br>by parents<br>and<br>participants | Intra-twin<br>correlations using<br>Pearson's r,<br>Spearman's rho                                                                                                                                                                                                                                                                | initially smaller twin<br>also started pubertal<br>maturation first in 63%<br>(19/30 pairs) also not                                                                                                                                                                                                                                                                                                                                                                                                                           |      |
| Twin study | difference                                                                                                                                                                                                                                                          | GA)                                                                                                                                                                                                                                                                                                                              | records | continuous          | at follow-up                                  | and Kendall's tau-b                                                                                                                                                                                                                                                                                                               | stratified by sex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | None |

Schulte, 2016, Germany

|                  |             |                                     |                       | Birthweight<br>assessed<br>from birth<br>certificate if<br>available. If<br>not,<br>information<br>from other |            |                      |                                      |                                        | Fully adjusted:<br>Country, HAZ at |
|------------------|-------------|-------------------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------|------------|----------------------|--------------------------------------|----------------------------------------|------------------------------------|
|                  |             |                                     |                       | health<br>records was                                                                                         |            |                      |                                      |                                        | 8 years, BMIZ at<br>8 years, First |
|                  |             |                                     |                       | used as                                                                                                       |            |                      |                                      |                                        | child, maternal                    |
|                  |             |                                     |                       | long as it                                                                                                    |            |                      |                                      |                                        | height, maternal                   |
|                  |             |                                     |                       | was<br>recorded                                                                                               |            |                      |                                      |                                        | age at girl's birth,<br>maternal   |
|                  |             |                                     |                       | within 1                                                                                                      |            |                      |                                      |                                        | education, urban                   |
|                  |             |                                     |                       | week of                                                                                                       |            |                      |                                      |                                        | location at 1                      |
|                  |             |                                     |                       | birth. If                                                                                                     |            |                      |                                      |                                        | year, SES at 8                     |
|                  |             | 2001 cirlo with                     |                       | none,                                                                                                         |            |                      |                                      |                                        | years, binary                      |
|                  |             | 2001 girls with<br>birthweight data |                       | mother's<br>report of                                                                                         |            |                      |                                      |                                        | indicators of<br>girls' previous   |
|                  |             | birtiwoigin data                    |                       | birthweight                                                                                                   |            |                      |                                      |                                        | day consumption                    |
|                  |             | 12 years at                         |                       | was used.                                                                                                     |            |                      |                                      |                                        | of fruits and                      |
|                  |             | follow-up                           |                       | Birthweight<br>from                                                                                           |            |                      |                                      | HR (95% CI) for<br>birthweight Z-score | vegetables, meat and fish, eggs,   |
|                  |             | Young Lives                         |                       | medical                                                                                                       |            |                      |                                      | from Weibull models:                   | legumes, and                       |
|                  |             | cohort of Indian,                   |                       | record                                                                                                        |            |                      | Weibull survival                     |                                        | milk and dairy at                  |
|                  |             | Peruvian and                        | Birthweight           | (source 1 or                                                                                                  |            | Self-                | models estimated                     | Adjusted for country                   | 8 years,                           |
| Aurino           |             | Vietnamese girls<br>born in 2001-   | Z-score<br>calculated | 2) for 44%                                                                                                    |            | reported in          | rate of menarche                     | only: HR=1.05, 95%                     | difference in<br>BMIZ between 1    |
| Aurino,<br>2017, |             | 2002, recruited                     | using WHO             | of sample<br>(52% India,                                                                                      |            | years by<br>girls in | by ~12 years; pre-<br>menarche girls | CI=0.97,1.13                           | and 8 years,                       |
| India,           |             | at ~1 year and                      | international         | 66% Peru,                                                                                                     | Age at     | 2013, when           | were censored                        | Fully adjusted model:                  | difference in                      |
| Peru,            | Prospective | followed up to 12                   | reference             | 18%                                                                                                           | menarche,  | ~12 year of          | (HR>1 indicates                      | HR=0.88, 95%                           | HAZ between 1                      |
| Vietnam          | cohort      | years                               | standards             | Vietnam)                                                                                                      | continuous | age                  | earlier menarche)                    | CI=0.81-0.95                           | and 8 years                        |

|                           |                    |                                                                                                        |                             |                   |                                                         |                             |                                                                                                                                       | Birthweight not<br>associated with<br>menarche in<br>univariable models<br>(data not shown)                                                                                                                                            |                                                                                           |
|---------------------------|--------------------|--------------------------------------------------------------------------------------------------------|-----------------------------|-------------------|---------------------------------------------------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
|                           |                    |                                                                                                        |                             |                   |                                                         |                             |                                                                                                                                       | Logistic regression, OR<br>for early menarche<br>(<12y):<br>Adjusted for percentile<br>rank change in weight<br>and length:<br>Birthweight (kg)<br>OR=1.30, 95%<br>CI=0.74, 2.31<br>Birthlength(cm):<br>OR=1.07, 95%<br>CI=0.95, 1.21) |                                                                                           |
|                           |                    |                                                                                                        |                             |                   |                                                         |                             |                                                                                                                                       | Adjusted for birthlength<br>and conditional growth<br>in weight and length:<br>Birthweight (kg)<br>OR=0.80, 95%<br>CI=0.52, 1.24<br>Birthlength(cm):<br>OR=1.00, 95%                                                                   |                                                                                           |
|                           |                    | 1126 women<br>with age at<br>menarche data<br>Age 39-49 years<br>at follow-up                          |                             |                   |                                                         |                             |                                                                                                                                       | CI=0.92, 1.08)<br>Linear regression, β for<br>menarche:<br>Adjusted for percentile<br>rank change in weight                                                                                                                            |                                                                                           |
|                           |                    | The Early<br>Determinants of<br>Mammographic<br>Density Study,<br>2008 adult<br>follow-up of<br>female |                             |                   |                                                         |                             | Multivariable<br>logistic regression<br>for early menarche<br>(<12 y), GEE<br>models and linear<br>random effect<br>models for age at | and length:<br>Birthweight (kg) $\beta$ =-<br>0.23, 95% Cl= -0.59,<br>0.12<br>Birthlength(cm): $\beta$ =-<br>0.06, 95% Cl= -0.13,<br>0.01                                                                                              | Adjusted for<br>birthweight,<br>birthlength,<br>maternal age at<br>menarche and           |
| Flom,                     |                    | participants in<br>the CHDS and<br>Boston and<br>Providence sites<br>of NCPP birth                     | Birthweight<br>in kilograms |                   | Age at<br>menarche,<br>continuous<br>and<br>categorized | Self-report                 | menarche<br>(continuous) using<br>percentile rank<br>change, conditional<br>growth and pattern                                        | Adjusted for birthlength<br>and conditional growth<br>in weight and length:<br>Birthweight (kg)<br>$\beta$ =0.19, 95% CI= -0.13,<br>0.51                                                                                               | either percentile<br>rank change or<br>conditional<br>growth in height<br>and weight from |
| 2017,<br>United<br>States | Prospective cohort | cohorts<br>(pregnancies<br>1959-1966)                                                                  | Birthlength in<br>cm        | Measured at birth | as:<br><12 years<br>≥12 years                           | by woman<br>in<br>adulthood | models (β<0 or<br>OR>1 indicates<br>earlier menarche).                                                                                | 0.51<br>Birthlength(cm): β=-<br>0.04 (-0.10, 0.02)                                                                                                                                                                                     | 0-4 months, 4-12<br>months, and 1-4<br>years                                              |

| Workman<br>& Kelly,<br>2017,<br>United<br>States | Cross-<br>sectional   | 342 girls with<br>complete data<br>on height,<br>birthweight and<br>menarche<br>Age 14-16 years<br>Subset of<br>NHANES 2007-<br>2012 (born<br>1991-1998)                                                                                                                                                                                   | Birthweight<br>in kilograms | Birth weight<br>to near<br>ounce<br>reported by<br>parent<br>during<br>home<br>interview | Age at<br>menarche,<br>continuous        | Self-report<br>by girls in<br>years<br>during<br>health<br>history<br>interview                                                                                                                                                                                                                                      | Two-way<br>correlation between<br>age-adjusted<br>height, birthweight,<br>age at menarche<br>and indicators of<br>family SES. Linear<br>regression model<br>for age at<br>menarche.          | Linear regression for<br>birthweight and<br>menarche:<br>Birthweight (kg):<br>Coeff=03 year, $\beta$ =01, p=0.838<br>No association within<br>each birthweight<br>quartile or when SES<br>was included as a<br>covariate (data not<br>shown) | Family SES (not shown)                                                                                                                                                                                                                                                                                               |
|--------------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Kelly,<br>2017,<br>United<br>Kingdom             | Prospective<br>cohort | 5839 singleton<br>girls with<br>menarche status<br>at 11 years<br>Age 11 years at<br>follow-up<br>Girls followed up<br>to 11 years from<br>the Millennium<br>Cohort Study,<br>UK nationally<br>representative<br>prospective<br>cohort study of<br>children born in<br>19,244 families<br>between<br>September 2000<br>and January<br>2002 | Birthweight<br>in kilograms | Reported<br>by mother<br>when<br>daughter<br>was 9<br>months old                         | Menarche at<br>11 year visit<br>(Yes/No) | Mother<br>reported<br>using<br>question<br>adapted<br>question<br>from the<br>Petersen<br>Pubertal<br>Developme<br>nt Scale at<br>11 year<br>visit: "Has<br>she begun<br>to<br>menstruate<br>(we mean<br>started to<br>have her<br>period)?"<br>(Yes/No/Do<br>n't know).<br>Don't know<br>(N=89)<br>were<br>excluded | Logistic regression<br>was used to<br>estimate<br>associations<br>between predictors<br>and menarche<br>status at 11 years<br>with sample<br>weights (OR>1<br>indicates earlier<br>menarche) | OR for menarche at<br>age 11 years (95% CI):<br>Partially adjusted<br>model:<br>Birthweight(kg):<br>OR=0.78, 95% CI=0.6,<br>0.9<br>Adjusted model<br>(mediation):<br>Birthweight(kg):<br>OR=0.71, 95% CI=0.6-<br>0.9                         | Partially<br>adjusted:<br>centered age,<br>income, ethnicity<br>Adjusted<br>(mediation):<br>centered age,<br>income,<br>ethnicity,<br>birthweight, BMI<br>at 7 years,<br>mother's<br>psychological<br>distress, racism<br>in area is<br>fairly/very<br>common, lone<br>parent family,<br>total difficulties<br>score |

| Author,<br>Location,<br>Year | Study<br>Design | Study<br>Population (N,<br>Age range,<br>Name) | Exposure      | Exposure<br>source        | Outcome      | Outcome<br>source | Statistical method                           | Results                                          | Covariates                      |
|------------------------------|-----------------|------------------------------------------------|---------------|---------------------------|--------------|-------------------|----------------------------------------------|--------------------------------------------------|---------------------------------|
|                              |                 | 173 girls with                                 |               |                           |              |                   |                                              |                                                  |                                 |
|                              |                 | birthweight≥2500<br>g                          |               |                           |              |                   |                                              |                                                  |                                 |
|                              |                 | Age 13.6-14.5                                  |               |                           |              |                   | Pearson correlation<br>coefficients relating |                                                  |                                 |
|                              |                 | years                                          |               |                           |              |                   | birthweight to stage<br>of sexual            | Mean (SD) of BMI at 1                            |                                 |
|                              |                 | Students in two                                |               |                           |              |                   | development                                  | year in girls by their<br>breast Tanner stage at |                                 |
|                              |                 | high schools at<br>the municipality            |               |                           |              |                   | (Breast Tanner<br>stage)                     | 14 years<br>TS3: 17.18 (1.72)                    |                                 |
|                              |                 | of Boyeros in                                  |               |                           |              |                   | • /                                          | TS4: 17.85 (2.13)                                |                                 |
|                              |                 | Havana in<br>September                         |               |                           |              |                   | Mean birthweight<br>by breast Tanner         | TS5: 20.18 (2.62)<br>p = 0.000                   |                                 |
|                              |                 | 1986, subset of longitudinal                   |               | Calculated<br>from weight |              |                   | stage                                        | Actual and estimated                             |                                 |
|                              |                 | study on height                                |               | and height                |              |                   | Path analysis                                | correlations among                               | Path model                      |
|                              |                 | and weight that<br>was initiated in            |               | measured                  | Breast       |                   | model relating                               | BMI at 1 year and                                | included BMI at                 |
| Amador,                      |                 | Havana in 1972                                 |               | at study<br>enrollment    | Tanner stage | Assessed          | birthweight, height at 14 years and          | stage of sexual<br>development in girls:         | 1, 4, 6, 12 and<br>14 years and |
| 1996,                        | Prospective     | when children                                  |               | at 1 year of              | at entry to  | by                | breast Tanner                                | Actual=0.43                                      | height at 14                    |
| Cuba                         | cohort          | aged 12 mo.                                    | BMI at 1 year | age                       | high school  | researchers       | stage                                        | Estimated = 0.39                                 | years                           |

## Supplemental Table 2.5. Studies of infant size or growth and timing of breast development

|                  |             |                                 |                          |                  |                          |                          |                                         | Percent distribution of<br>breast Tanner stage by<br>year (p value):<br>1996 (NS):<br>Stunted: B1 64.5%, B2<br>32.3%, B3 3.2%, B4<br>0%, B5 0%<br>Non-Stunted: B1<br>54.4%, B2 35.6%, B<br>9.4%, B4 0%, B5 0% |      |
|------------------|-------------|---------------------------------|--------------------------|------------------|--------------------------|--------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|                  |             |                                 |                          |                  |                          |                          |                                         | 1997 (NS):                                                                                                                                                                                                    |      |
|                  |             | 400 sists                       |                          |                  |                          |                          |                                         | Stunted: B1 27.6%, B2                                                                                                                                                                                         |      |
|                  |             | 406 girls<br>measured from      |                          |                  |                          |                          |                                         | 25.0%, B3 32.9%, B4<br>14.5%, B5 0%                                                                                                                                                                           |      |
|                  |             | 1995-1999                       |                          |                  |                          |                          |                                         | Not Stunted: B1 32.7%,                                                                                                                                                                                        |      |
|                  |             |                                 |                          |                  |                          |                          |                                         | B2 27.4%, B3 28.6%,                                                                                                                                                                                           |      |
|                  |             | Mean age                        | Stunted vs.              |                  |                          |                          |                                         | B4 10.2%, B5 1.1%                                                                                                                                                                                             |      |
|                  |             | 11.4±0.5 years<br>in 1995 and   | Not Stunted:<br>Stunting |                  |                          |                          |                                         | 1998 (NS, p=0.07)                                                                                                                                                                                             |      |
|                  |             | 15.4±0.5 years                  | defined as at            |                  |                          |                          |                                         | Stunted: B1 12.3%, B2                                                                                                                                                                                         |      |
|                  |             | in 1999                         | least one                |                  |                          |                          |                                         | 23.1%, B3 29.2%, B4                                                                                                                                                                                           |      |
|                  |             |                                 | length                   |                  |                          |                          |                                         | 33.8%, B5 1.5%                                                                                                                                                                                                |      |
|                  |             | Adolescent                      | measuremen               |                  |                          |                          |                                         | Not Stunted: B1 12.5%,                                                                                                                                                                                        |      |
|                  |             | follow-up of girls              | t done in                |                  |                          |                          |                                         | B2 24.6%, B3 32.4%,                                                                                                                                                                                           |      |
|                  |             | that were part of               | 1983-1984                |                  |                          |                          |                                         | B4 20.7%, B5 9.8%                                                                                                                                                                                             |      |
|                  |             | the district health             | (between 6-              |                  |                          |                          |                                         |                                                                                                                                                                                                               |      |
|                  |             | and nutrition                   | 18 months of             | Height for       |                          |                          |                                         | 1999 (NS):                                                                                                                                                                                                    |      |
|                  |             | examination                     | age) below -             | age from         |                          | Assessed                 | Distribution of                         | Stunted: B1 2.9%, B2                                                                                                                                                                                          |      |
|                  |             | from 0-4 years of               | 2 Z-scores of            | health and       |                          | by                       | breast Tanner                           | 7.4%, B3 10.3%, B4                                                                                                                                                                                            |      |
| Benefice,        |             | age in 1983-<br>1984 in Niakhar | the<br>NCHS/WHO          | nutrition        | Breast                   | researchers<br>at visits | stage at each                           | 39.7%, B5 39.7%<br>Not Stunted: B1 5.7%,                                                                                                                                                                      |      |
| ,                | Prospective | district of                     | reference                | examination      |                          |                          | adolescent visit by                     | B2 5.3%, B3 16.7%, B4                                                                                                                                                                                         |      |
| 2001,<br>Senegal | cohort      | Senegal                         | (1983)                   | study<br>records | Tanner stage<br>at visit | every 6<br>months        | stunting status, P-<br>value from ANOVA | 30.8%, B5 41.4%                                                                                                                                                                                               | None |
| Genegal          | CONDIL      | Ucheyai                         | (1303)                   | 1000103          |                          | monuis                   |                                         | 00.070, 00 41.470                                                                                                                                                                                             |      |

|                 |             |                                                                                                                                                                                                                         | Gain in<br>weight,<br>height and<br>BMI<br>measured<br>from 0-6<br>months, 6-24<br>months and<br>2-8 years.                                                                                                                                                     |                                                                                                    |                                      |                                                                                          |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                          |                     |
|-----------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
|                 |             | 140 girls who<br>were seen at all<br>scheduled visits<br>between birth<br>and 11 years<br>Age 11 years at<br>follow-up<br>Vulnerable<br>Windows Cohort<br>Study, pregnant<br>women were<br>recruited in<br>1992-1993 at | 2-8 years.<br>Growth was<br>defined as<br>the amount<br>by which the<br>size at the<br>end of the<br>time interval<br>exceeded<br>that which<br>would have<br>been<br>predicted by<br>linear<br>regression<br>using the<br>measuremen<br>ts available<br>at the | Weight and<br>crown heel<br>length<br>measured<br>within 24<br>hours of<br>delivery;<br>height and |                                      | Breast<br>Tanner<br>stage<br>assessed<br>every 6<br>months<br>starting at<br>age 8 years | Multiple regression<br>analyses to<br>examine the rela-<br>tionships among<br>child's growth and<br>body composition<br>and the stage of<br>puberty with<br>outcomes and<br>predictors in<br>standardized form,<br>so that the | Correlations between<br>the size at birth and<br>growth of Afro-<br>Caribbean girls their<br>stage of breast<br>development at age 11<br>years:<br>Weight:<br>0-6 months: 0.15<br>6m-2y: 0.12<br>BMI:<br>0-6 months: 0.13<br>6m-2y: 0.15 |                     |
| Boyne,<br>2010, | Prospective | University<br>Hospital of the<br>West Indies,<br>Kingston,Jamaic                                                                                                                                                        | beginning of<br>the interval<br>(conditional<br>measures,                                                                                                                                                                                                       | weight<br>measured<br>by trained<br>study staff                                                    | Breast<br>Tanner stage<br>at 11 year | by trained<br>nurses<br>(visual only,<br>no                                              | regression<br>coefficients were<br>effectively<br>correlation                                                                                                                                                                  | Height:<br>0-6 months: 0.11<br>6m-2y: 0.02<br>P≥.05 for all                                                                                                                                                                              |                     |
| Jamaica         | cohort      | a for birth cohort.                                                                                                                                                                                                     | uncorrelated)                                                                                                                                                                                                                                                   | at visits                                                                                          | visit                                | palpation)                                                                               | coefficients.                                                                                                                                                                                                                  | correlations                                                                                                                                                                                                                             | Age at clinic visit |

|                                         |                    |                                                                                                                                                             |                                                                                                                                                                                             |                                                                                                                 |                                                               |                                                                                                                                                        |                                                                                                                    | Adjusted difference for<br>age at entry to breast<br>Tanner stage $\geq$ 2:<br>Weight SDS change 0-<br>2 mo: Diff = -0.22, 95%<br>CI=-0.35,-0.09<br>Weight SDS change 2-<br>9 mo: Diff = -0.05, 95%<br>CI=-0.16,0.05<br>Weight SDS change 9-<br>20 mo: Diff = -0.25,<br>95% CI=-0.39,-0.11<br>Weight SDS change 0-<br>20 mo: Diff = -0.19 (-<br>0.29,-0.10), p = 0.00                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                        |
|-----------------------------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                         |                    | 1316 singleton,<br>term girls (37-42<br>weeks gestation)<br>with consistent<br>pubertal staging<br>and birth size<br>data<br>Age 8-14 years<br>at follow-up | Weight-for-<br>age SD<br>scores and<br>BMI SDS<br>calculated<br>using girls'<br>1990 British<br>growth<br>reference.<br>Assessed<br>change in<br>weight and<br>BMI SDS for<br>each interval | Health<br>records<br>(weight and<br>length<br>measured<br>at 2,9, and<br>20 months<br>by health<br>professional |                                                               | Breast<br>Tanner<br>stage<br>reported by<br>girls or<br>mothers at<br>repeated<br>pubertal<br>self-<br>assessment<br>s between<br>8-14 years<br>of age | Interval-censored<br>parametric survival<br>model for age at<br>transition to breast                               | Adjusted difference for<br>age at entry to breast<br>Tanner stage ≥3:<br>Weight SDS change 0-<br>2 mo: Diff = -0.13, 95%<br>CI=-0.24, -0.02<br>Weight SDS change 2-<br>9 mo: Diff = -0.13, 95%<br>CI=-0.22, -0.04)<br>Weight SDS change 9-<br>20 mo: Diff = -0.18,<br>95%CI=-0.30, -0.06<br>Weight SDS change 0-<br>20 months: Diff=-0.19,<br>95% CI=-0.27, -0.11<br>Adjusted difference for<br>age at entry to breast<br>Tanner stage ≥2:<br>BMI SDS change 0-2<br>mo: Diff = -0.09, 95%<br>CI=-0.18, -0.00<br>BMI SDS change 2-9<br>mo: Diff = -0.02, 95%<br>CI= -0.10, 0.07<br>BMI SDS change 9-20 | Maternal age at<br>menarche,<br>previous live<br>birth, maternal<br>race or ethnicity,<br>smoking during<br>pregnancy,<br>maternal<br>prepregnancy<br>BMI, maternal<br>age at delivery,<br>maternal<br>education,<br>bisthesisht bisth |
| Maisonet,<br>2010,<br>United<br>Kingdom | Prospective cohort | Avon<br>Longitudinal<br>Study of Parent<br>and Children,<br>born April 1991-<br>December 1992                                                               | of interest (0-<br>2 months, 2-<br>9 months, 9-<br>20 months<br>and 0-20<br>months)                                                                                                         | s as part of<br>routine<br>infant<br>health<br>surveillance<br>program)                                         | Age at<br>transition to<br>Breast<br>Tanner stage<br>≥2 or ≥3 | inconsistent<br>responses<br>were<br>excluded<br>from<br>analyses                                                                                      | Tanner stage ≥2 or<br>≥3 assuming a<br>normal distribution<br>(Diff <0 indicates<br>earlier breast<br>development) | mo: Diff = -0.10, 95%<br>CI=-0.19,-0.00<br>BMI SDS change 0-20<br>months: Diff=-0.10,<br>95% CI=-0.18, -0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | birthweight, birth<br>length and<br>weight or BMI<br>SDS change in<br>prior previous<br>interval                                                                                                                                       |

Adjusted difference for age at entry to breast Tanner stage ≥3: BMI SDS change 0-2 mo: Diff = -0.04, 95% CI=-0.11,0.04 BMI SDS change 2-9 mo: Diff = -0.07, 95% CI=-0.14,0.01 BMI SDS change 9-20 mo: Diff = -0.08, 95% CI=-0.17, -0.00 BMI SDS change 0-20 months: Diff=-0.10, 95% CI=-0.17, -0.03

| at first report of<br>pubertal status,<br>followedeach<br>observationweight of<br>child atRegression coefficient<br>in adjusted log-normal<br>survival analyses of<br>survival analyses of<br>survival analyses of<br>time to Breast Stageweight gain<br>(change in Z-<br>score) from C<br>months, 6-12<br>months, 1-22<br>yearsRegression coefficient<br>in adjusted log-normal<br>survival analyses of<br>time to Breast Stageweight gain<br>(change in Z-<br>score) from C<br>months, 6-12<br>breast Tannerweight gain<br>in adjusted log-normal<br>survival analyses of<br>score) from C<br>time to Breast Stageweight gain<br>(change in Z-<br>score) from C<br>months, 6-12<br>months, 6-12<br>months, 1-22<br>breast TannerRegression coefficient<br>in adjusted log-normal<br>survival analyses of<br>score) from C<br>months, 6-12<br>months, 6-12<br>months, 1-22<br>weight gain 0-6<br>pregancy<br>maternal pre-<br>follow-up of<br>follow-up of<br>charts) in<br>subset of theRegression coefficient<br>in adjusted log-normal<br>survival analyses of<br>promoths<br>breast Stage<br>breast Tannerweight gain 0-6<br>stage >2 or >3<br>months: β=-0.02, 95%<br>maternal pre-<br>pregnancy<br>weight, mate<br>adolescent<br>subset of the |        |             | pubertal status,<br>followed<br>annually until<br>TS5 or max of 5<br>years<br>Adolescent<br>follow-up of<br>subset of the | observation<br>time using<br>LMSGrowth<br>software and<br>data from the<br>CDC 2000<br>growth<br>charts) in<br>time intervals | child at<br>follow-up<br>visits at 6<br>weeks, 3<br>months, 6<br>months, 1<br>year, 1.5<br>years, 2<br>years, 3 | Tanner stage at first | self-report<br>at first | analyses with log<br>normal distribution<br>for age at report of<br>breast Tanner<br>stage >2 or >3<br>(girls were either<br>left or right<br>censored at age of | in adjusted log-normal<br>survival analyses of<br>time to Breast Stage<br>>3<br>Weight gain 0-6<br>months: $\beta$ =-0.02, 95%<br>CI=-0.05, 0.01<br>Weight gain 6-12<br>months: $\beta$ = -0.05, 95% | (change in Z-<br>score) from 0-6<br>months, 6-12<br>months, 1-2<br>years, 2-5 years,<br>maternal pre-<br>pregnancy<br>weight, maternal<br>age at delivery |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |             |                                                                                                                           |                                                                                                                               | , ,                                                                                                             |                       |                         | 1 / 4                                                                                                                                                            | ,                                                                                                                                                                                                    | and race (race                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |             | 0                                                                                                                         | -                                                                                                                             | ,                                                                                                               |                       | ,                       |                                                                                                                                                                  |                                                                                                                                                                                                      | for TS>3 model                                                                                                                                            |
| United Prospective Study, infants months years of for analysis when age at attainment $\beta$ = -0.03, 95% Cl=- only due to s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Inited | Prospective | Study, infants                                                                                                            | months                                                                                                                        | years of                                                                                                        | for analysis          | when                    | age at attainment                                                                                                                                                | β= -0.03, 95% CI=-                                                                                                                                                                                   | only due to small                                                                                                                                         |
| States cohort born 1978-1982 - 1-2 years age. as >2 or >3 available of breast stage) 0.07, 0.00 cell counts).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | tates  | cohort      | born 1978-1982                                                                                                            | - 1-2 years                                                                                                                   | age.                                                                                                            | as >2 or >3           | available               | of breast stage)                                                                                                                                                 | 0.07, 0.00                                                                                                                                                                                           | cell counts).                                                                                                                                             |

| Hui, 2012,<br>Hong Prospectiv |        | Sex-specific<br>growth<br>trajectories<br>for weight<br>from birth to<br>12 months<br>from latent<br>class<br>analyses:<br>TI: below<br>average<br>birthweight,<br>slow weight<br>gain in first<br>year<br>TII: below<br>average<br>birthweight,<br>stable weight<br>gain in first<br>year<br>TIII: average<br>birth weight,<br>fast weight<br>gain in first<br>year<br>TIV: average<br>birthweight,<br>stable weight<br>gain in first<br>year<br>TIV: average<br>birthweight,<br>stable weight<br>gain in first<br>year<br>TV: high<br>birthweight,<br>fast weight<br>gain in first | Weight<br>measureme<br>nts from<br>medical<br>record<br>linkage to<br>well-baby<br>checks.<br>Used<br>measure<br>closest to 1<br>month, 3<br>months and<br>12 months<br>to<br>interpolate<br>weight at<br>these exact<br>ages. Used<br>latent class<br>analysis to<br>construct<br>sex-specific<br>weight<br>growth<br>trajectories<br>from birth to | Age at<br>pubertal<br>onset,<br>defined as<br>the earliest<br>age when<br>breast<br>Tanner stage<br>2 was | Link to the<br>Student<br>Health<br>Service<br>record,<br>where<br>Tanner<br>stage was<br>assessed<br>by a doctor<br>visually on<br>a biannual<br>basis from | Multivariable<br>interval-censored<br>survival analysis to<br>examine<br>association<br>between infant<br>growth<br>(trajectories) and<br>age at pubertal<br>onset (TR<0<br>indicates earlier | Time ratio (95% CI) for<br>age at pubertal onset,<br>unadjusted model:<br>TI: TR=1.020, 95%<br>CI=1.006, 1.034<br>TII: TR=1.005, 95%<br>CI=0.992,1.018<br>TIII: TR=1.001, 95%<br>CI=0.987,1.015<br>TIV: Referent<br>TV: TR=0.992, 95%<br>CI=0.977-1.006<br>Time ratio (95% CI) for<br>age at pubertal onset,<br>mediation model<br>including height and<br>BMI in childhood:<br>TI: TR=0.982, 95%<br>CI=0.969-0.996<br>TII: TR=0.91, 95%<br>CI=0.998-1.025<br>TIV: Referent<br>TV: TR=1.020, 95%<br>CI=1.006-1.035<br>Sobel test for | None (none<br>changed effect<br>estimates by<br>5%)<br>Mediation<br>models adjusted<br>for body size in<br>childhood<br>(closest to age |
|-------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Kong cohort                   | cohort | year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12 months.                                                                                                                                                                                                                                                                                                                                           | recorded                                                                                                  | age 7 years                                                                                                                                                  | development)                                                                                                                                                                                  | mediation p<0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7)                                                                                                                                      |

|                  |                       | 659 girls with<br>complete data<br>Followed up to<br>age 15.5 years                                                            |                         |                               |                   |                                    |                                                                                                         | Height SDS<br>significantly inversely<br>associated with age at<br>thelarche started at<br>age 15 months (r=-0.2,<br>p=0.0001). The<br>correlation strength<br>increased with age.           |      |
|------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------------|-------------------|------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|                  |                       | National<br>Institutes of<br>Health Study of<br>Early Child Care<br>and Young<br>Development<br>(SECCYD),<br>children enrolled |                         |                               |                   |                                    | Pearson's product-<br>moment correlation<br>coefficients used to<br>determine the<br>linear association | BMI SDS was<br>significantly correlated<br>with thelarche age<br>starting at 36 months<br>(r=-0.27, p=0.001). At<br>15 months, correlation<br>coefficient is inverse<br>but not significant. |      |
| German,<br>2015, |                       | at 1 year of age<br>in 1991 and<br>followed<br>prospectively                                                                   | Height and              | Measured<br>by<br>researchers | Age at breast     | Breast<br>Tanner<br>assessed<br>by | between<br>auxological<br>parameters and<br>age at stages of                                            | Pubertal progression<br>through the Tanner<br>stages did not correlate                                                                                                                       |      |
| United<br>States | Prospective<br>cohort | until 15.5 years<br>of age                                                                                                     | BMI SDS at<br>15 months | at study<br>visits            | Tanner stage<br>2 | researchers<br>annually            | pubertal<br>development                                                                                 | with height or BMI at any age.                                                                                                                                                               | None |

| 2017. Retrospecti birth to 5 years in height age 5 and Physician weight and BMI development (not height weight | Aydin, |                          | 84 girls<br>6-9 years<br>Children<br>approaching<br>pubertal age with<br>medical records<br>at the Well Child<br>Clinic of Istanbul<br>University<br>Faculty of<br>Medicine from | Height,<br>weight and<br>BMI SDS<br>according to<br>national<br>standards for<br>each visit<br>between 1<br>and 60<br>months of<br>age<br>Change in<br>BMI SDS for<br>each 3-6<br>month<br>interval<br>between 0<br>and 36<br>months<br>Accelerated<br>weight gain<br>(AWG) =<br>gain in<br>weight $\ge 0.67$<br>SDS<br>Accelerated<br>height gain<br>(AHG): gain | Height and<br>weight<br>measured<br>by trained<br>nurses at<br>child visits<br>at ages 1,<br>2, 3, 4, 5, 6,<br>9, 12, 15<br>and 18<br>months and<br>every 6<br>months until<br>4 years of<br>age, with a<br>final visit at | Breast<br>Tanner stage<br>at visit,<br>assessed by<br>visual<br>inspection |                         | Repeated mixed<br>measures model<br>used to examine<br>longitudinal<br>anthropometric<br>data between<br>prepubertal and<br>pubertal children.<br>Multivariable<br>logistic regression<br>models to examine<br>associations<br>between pubertal<br>signs and<br>accelerated early<br>growth, adjusted<br>for BW SDS<<br>gestational age,<br>current age, height, | "Girls with breast<br>development had<br>higher weight and BMI<br>SDS values than the<br>girls without breast<br>development starting at<br>9 months of age, but<br>differences only<br>reached statistical<br>significance at 18<br>months of age for<br>weight SDS and BMI<br>SDS (P=0.05 and<br>P=0.05) and at the<br>study visit for weight,<br>height and BMI SDS<br>(P=0.001, P=0.01, and<br>P=0.002). Additionally,<br>girls with breast<br>development were<br>more likely to have<br>AWG between 6 and<br>15 months of age<br>(p=0.05)"<br>Note: most analyses<br>used "first pubertal<br>sign" as the outcome,<br>which was a mixture of<br>breast and pubic hair | Mixed models<br>included<br>anthropometric<br>measures at all<br>visits.<br>Logistic model<br>for AWG<br>adjusted for BW<br>SDS gestational<br>age, current age, |
|----------------------------------------------------------------------------------------------------------------|--------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Turkey ve cohort of age ≥0.67 SDS years. palpation. assessment SDS included here) and BMI SDSs.                | 2017,  | Retrospecti<br>ve cohort | birth to 5 years of age                                                                                                                                                          | in height                                                                                                                                                                                                                                                                                                                                                         | age 5<br>years.                                                                                                                                                                                                            | and                                                                        | Physician<br>assessment | weight and BMI                                                                                                                                                                                                                                                                                                                                                   | development (not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | height, weight                                                                                                                                                   |

| Author,<br>Location,<br>Year | Study<br>Design       | Study<br>Population (N,<br>Age range,<br>Name) | Exposure               | Exposure<br>source      | Outcome                 | Outcome<br>source      | Statistical method              | Results                                    | Covariates                         |
|------------------------------|-----------------------|------------------------------------------------|------------------------|-------------------------|-------------------------|------------------------|---------------------------------|--------------------------------------------|------------------------------------|
|                              |                       | 67 girls<br>Followed up to                     |                        |                         |                         |                        |                                 |                                            |                                    |
|                              |                       | 18 years<br>Harvard                            |                        |                         |                         |                        |                                 |                                            |                                    |
|                              |                       | Longitudinal                                   |                        |                         |                         |                        |                                 |                                            |                                    |
|                              |                       | Studies of Child<br>Health and                 |                        |                         |                         |                        |                                 |                                            | None                               |
|                              |                       | Development,<br>females born in                |                        |                         |                         | Not                    |                                 |                                            | *Results for<br>height at 1-2      |
|                              |                       | the 1930s and                                  |                        |                         |                         | specified,             |                                 |                                            | year and BMI 1-                    |
|                              |                       | 1940s to women who were                        |                        |                         |                         | assume<br>self-        |                                 | Correlation for BMI                        | 2 years in<br>multivariable        |
|                              |                       | enrolled during their first                    |                        | Calculated<br>from      |                         | reported by<br>girl at |                                 | from 1-2 years and age at menarche = -0.08 | linear regression<br>model are not |
|                              |                       | trimester of                                   |                        | measured                |                         | annual                 | Pearson correlation             | (p>.05)                                    | shown                              |
| Berkey,                      |                       | pregnancy while<br>obtaining                   | BMI at 1-2<br>years    | height and<br>weight at |                         | follow-up<br>visit     | between age at<br>menarche with | Correlation for height                     | (assuming these<br>variables were  |
| 2000,                        |                       | prenatal care at                               |                        | semi-                   | Age at                  | (reported to           | BMI, height and                 | from 1-2 years and age                     | removed during                     |
| United<br>States             | Prospective<br>cohort | the Boston<br>Lying-In Hospital                | Height at 1-2<br>vears | annual<br>visits        | menarche,<br>continuous | nearest<br>month)      | diet measures in<br>childhood.  | at menarche: -0.35<br>(p<0.05)             | stepwise<br>algorithm)             |

## Supplemental Table 2.6. Studies of infant size or growth and timing of menarche

| A A F (a a a a b a) = (0.00) a (0.00) a (0.00) | Ð | Prospective | 966 girls with<br>complete<br>information on<br>birth<br>characteristics<br>and<br>anthropometry at<br>8 years<br>Age 14-15 years<br>at follow-up<br>Cebu<br>Longitudinal<br>Health and<br>Nutrition Survey,<br>infants born in<br>1984-1984 from<br>women in<br>randomly<br>selected urban<br>and rural<br>barangays in<br>Metro Cebu,<br>Philippines. | 7 groups<br>characterize<br>d by birth<br>weight (cut at<br>median,<br>3kg), birth<br>length (cut at<br>median,<br>49cm) and<br>postnatal<br>growth to 6<br>months (fast<br>vs. slow,<br>defined as a<br>weight<br>and/or length<br>increment<br>above/below<br>the sample<br>median,<br>respectively):<br>Long/light/slo<br>w<br>Long/heavy/s<br>low<br>Long/heavy/f<br>ast<br>Short/light/fa<br>st<br>Short/light/fa | Measured<br>by project<br>staff soon<br>after birth<br>and at 6<br>month visit | Age at<br>menarche,<br>continuous | Girl's self-<br>report of<br>month and<br>year of first<br>menses<br>from<br>interview at<br>10-11 and<br>14-15 years | Parametric Weibull<br>models to estimate<br>associations<br>between birth<br>characteristics and<br>age at menarche,<br>with premenarcheal<br>girls treated as<br>right censored<br>(~5%) (HR>1<br>indicates earlier<br>menarche) | Multivariable results<br>(HR and t-statistic from<br>Weibull) from 7-group<br>model with<br>Short/Heavy at birth as<br>reference group:<br>Long/Light/Slow: 1.33<br>(1.61), $p \ge .10$<br>Long/Light/Fast: 1.78<br>(4.16), $p < .01$<br>Long/Heavy/Slow: 1.28<br>(1.68), $p < .10$<br>Long/Heavy/Fast: 1.46<br>(2.87), $p < .01$<br>Short/Light/Slow: 1.24<br>(1.40), $p \ge .10$<br>Short/Light/Fast: 1.40<br>(2.80), $p < .01$ ) | Gestational age,<br>BMI at 8 years,<br>Skinfold<br>thickness at 8<br>years, Mother's<br>height, Mother's<br>age at<br>menarche, Total<br>energy intake at<br>8 years, Low fat<br>(<10%)<br>consumption at a<br>years, SES |
|------------------------------------------------|---|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|------------------------------------------------|---|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

Adair, 2001, Philippine s

|                    |             | 406 girls<br>measured from<br>1995-1999                        |                                          |                                      |                            |                                        |                                    | Percent distribution of<br>menarche status by<br>year (p value):<br>1996 (NS):<br>Stunted: 100% pre-<br>menarche<br>Non-Stunted: 98.8%<br>pre, 1.3% post |      |
|--------------------|-------------|----------------------------------------------------------------|------------------------------------------|--------------------------------------|----------------------------|----------------------------------------|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|                    |             | Mean age                                                       | Stunted vs.<br>Not Stunted:              |                                      |                            |                                        |                                    | 1997 (NS):<br>Stunted: 97.4% pre,                                                                                                                        |      |
|                    |             | 11.4±0.5 years in 1995 and                                     | Stunting defined as at                   |                                      |                            |                                        |                                    | 2.6% post<br>Not Stunted: 97.4%                                                                                                                          |      |
|                    |             | 15.4±0.5 years in<br>1999                                      | least one<br>length                      |                                      |                            |                                        |                                    | pre, 2.6% post                                                                                                                                           |      |
|                    |             | Adolescent                                                     | measuremen<br>t done in                  |                                      |                            | Self-                                  |                                    | 1998 (NS, p=0.08)<br>Stunted: 93.8% pre,                                                                                                                 |      |
|                    |             | follow-up of girls<br>that were part of<br>the district health | 1983-1984<br>(between 6-<br>18 months of | Hoight for                           |                            | reported by<br>girls every 6<br>months |                                    | 6.2% post<br>Not Stunted: 85.9%                                                                                                                          |      |
|                    |             | and nutrition<br>examination from                              | age) below -<br>2 Z-scores of            | Height for<br>age from<br>health and |                            | over 4-year                            | Distribution of menarche status at | pre, 14.1% post<br>1999 (NS):                                                                                                                            |      |
| Denefier           |             | 0-4 years of age                                               | the                                      | nutrition                            | December (                 | follow-up. If<br>girls did not         | each adolescent                    | Stunted: 61.2% pre,                                                                                                                                      |      |
| Benefice,<br>2001, | Prospective | in 1983-1984 in<br>Niakhar district                            | NCHS/WHO                                 | examination<br>study                 | Presence of<br>menarche at | understand,<br>their mother            | visit by stunting status, P-value  | 38.8% post<br>Not Stunted: 63.3%                                                                                                                         |      |
| Senegal            | cohort      | of Senegal                                                     | (1983)                                   | records                              | each visit                 | was asked.                             | from t-test                        | pre, 36.1% post                                                                                                                                          | None |

| dos<br>Santos<br>Silva, |                       | 2008 girls with<br>menarche and<br>early life data<br>Followed up to<br>48 years<br>MRC National<br>Survey of Health<br>and<br>Development<br>studies, birth | Growth in<br>infancy,<br>defined as<br>the<br>difference in<br>ranks<br>between the<br>height at 2<br>years<br>estimated by<br>the random<br>coefficients<br>model and<br>birthweight<br>and grouped<br>into tertiles<br>for analysis<br>Growth in<br>body<br>composition,<br>defined as<br>the<br>difference in<br>ranks<br>between the<br>BMI at 2<br>years<br>estimated by<br>the random<br>coefficients<br>model and<br>birthweight | Hospital<br>record for<br>birthweight<br>or height<br>and weight<br>measured<br>by study<br>staff at |                    | Reported<br>by mother<br>when<br>daughter<br>was 15 or<br>recalled by<br>participant<br>at 48 year-<br>old follow-<br>up visit if<br>not | Mean difference in<br>rank change or<br>absolute measure<br>by menarche group<br>(early: <11.75<br>years, average:<br>11.75-14.25, late:<br>>14.25 years)<br>Multivariable<br>Weibull models for<br>age at menarche,<br>using standardized<br>rank change in<br>height or BMI from<br>random coefficient<br>model in tertiles as | Mean height at age 2 in<br>cm (SD) by menarche:<br>Early: 85.7 (4.5)<br>Average: 84.8 (4.8)<br>Late: 83.7 (4.7)<br>Mean BMI at age 2<br>(SD) by menarche:<br>Early: 17.5 (2.1)<br>Average: 17.7 (2.5)<br>Late: 17.6 (2.3)<br>HR for age at<br>menarche from Weibull<br>models (first tertile is<br>the reference for all):<br>Rank change in length<br>0-2 years, model 1:<br>Second: HR=1.20, 95%<br>CI 1.02, 1.42<br>Third: HR=1.60, 95%<br>CI 1.28, 1.87<br>p for trend<0.001<br>Rank change in length<br>0-2 years, mediation<br>model<br>Second: HR=1.01, 95%<br>CI 0.86, 1.24<br>Third: HR=1.04, 95%<br>CI 0.74, 1.36<br>p for trend=0.74<br>Rank change in BMI 0-<br>2 years, model 1:<br>Second: HR=1.21, 95%<br>CI 0.97, 1.44<br>Third: HR=1.34, 95%<br>CI 1.07, 1.57<br>p for trend=0.01<br>Rank change in BMI 0-<br>2 years, mediation<br>model:<br>Second: HR=1.21, 95%<br>CI 1.07, 1.57<br>p for trend=0.01 | Length model 1:<br>Birthweight<br>Length<br>mediation model:<br>Birthweight,<br>height rate from<br>2-4 years, height<br>rate from 4-7<br>years, BMI rank<br>changes from 0-<br>2 years, BMI rate<br>from 2-6 years<br>BMI model 1:<br>Birthweight, rank<br>changes in<br>height from 0-2<br>years, height<br>rate from 2-4<br>years, height<br>rate from 4-7<br>years<br>BMI mediation<br>model:<br>Birthweight,<br>length rank<br>changes from 0-<br>2 years, height<br>rate from 2-4<br>years, beight<br>rate from 2-4<br>years, height<br>rate from 2-4<br>years, beight<br>rate from 2-4<br>years, beight<br>rate from 2-4<br>years, height<br>rate from 2-4<br>years, height<br>rate from 2-4<br>years, height<br>rate from 2-4<br>years, beight<br>rate from 2-4<br>years, beight<br>rate from 2-4<br>years, height<br>rate from 2-4<br>years, beight<br>rate from 2-6<br>years |
|-------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2002,                   | Droopoetice           | cohort born first                                                                                                                                            | and grouped                                                                                                                                                                                                                                                                                                                                                                                                                             | follow-up                                                                                            | A re ot            | available at                                                                                                                             | predictor (HR>1                                                                                                                                                                                                                                                                                                                  | Third: HR=1.41, 95%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | for BMI includes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| United<br>Kingdom       | Prospective<br>cohort | week of March<br>1946                                                                                                                                        | into tertiles<br>for analysis                                                                                                                                                                                                                                                                                                                                                                                                           | (2,4,6,7,<br>years)                                                                                  | Age at<br>menarche | 15 years<br>(17%)                                                                                                                        | indicates earlier<br>menarche)                                                                                                                                                                                                                                                                                                   | CI 1.16, 1.74<br>p for trend<0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | father's manual occupation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

|           |             |                 |               |          |          |                           | Continuous data<br>summarized using<br>medians, IQ ranges<br>and ranges |                         |            |
|-----------|-------------|-----------------|---------------|----------|----------|---------------------------|-------------------------------------------------------------------------|-------------------------|------------|
|           |             |                 |               |          |          |                           | Kaplan-Meier                                                            |                         |            |
|           |             | 776 girls with  |               |          |          |                           | survival                                                                |                         |            |
|           |             | menarche data   |               |          |          |                           | probabilities to                                                        |                         |            |
|           |             |                 |               |          |          |                           | estimate probability                                                    |                         |            |
|           |             | Age 12-14 years |               |          |          |                           | of reaching                                                             |                         |            |
|           |             | at follow-up    |               |          |          | Self-report<br>on puberty | menarche                                                                |                         |            |
|           |             | Western         |               |          |          | questionnai               | Multivariable Cox                                                       |                         |            |
|           |             | Australian      |               |          |          | re or                     | regression models                                                       |                         |            |
|           |             | Pregnancy       |               |          |          | censored at               | to evaluate                                                             | Stated in text that BMI |            |
|           |             | (Raine) Cohort, |               |          |          | age at last               | association                                                             | at 1 year and height at |            |
|           |             | women enrolled  |               |          |          | follow-up if              | between fetal and                                                       | 1 and 2 years were not  |            |
| Sloboda,  |             | during          | BMI at 1 year | Measured |          | no                        | postnatal growth                                                        | associated with age at  |            |
| 2007,     | Prospective | pregnancy in    | Height at 1   | at study | Age at   | menarche                  | and age at                                                              | menarche (data not      |            |
| Australia | cohort      | 1989-1990       | and 2 years   | visits   | menarche | reported                  | menarche                                                                | shown)                  | Not stated |

|                 |             |                                                             |                                                         |                                                          |                     |                                                    |                                                                              | Size at 2 months<br>(Mean, SD) by girls'<br>age at menarche (p<br>trend):<br>Weight (kg) (P for<br>trend=0.9):<br><12: 4.81 (0.02)<br>12-13: 4.78 (0.02)<br>>13Y: 4.81 (0.02) |                                                           |
|-----------------|-------------|-------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------|---------------------|----------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
|                 |             |                                                             |                                                         |                                                          |                     |                                                    |                                                                              | Length (cm) (P for<br>trend=0.6):<br><12: 56.9 (0.1)<br>12-13: 56.7(0.1)<br>>13Y: 56.9 (0.1)                                                                                  |                                                           |
|                 |             |                                                             |                                                         |                                                          |                     |                                                    | Means (SD) of<br>early-life measures<br>by age at                            | BMI (P for trend=0.9):<br><12: 14.8 (0.04)<br>12-13: 14.9(0.1)<br>>13Y: 14.9 (0.1)                                                                                            |                                                           |
|                 |             |                                                             | Weight,<br>length and<br>BMI Z-scores<br>at birth, 2, 9 |                                                          |                     |                                                    | menarche group; P<br>for trend, adjusted<br>for age.<br>Multiple regression  | Size at 9 months:<br>Weight (kg) (P for<br>trend=<.001):<br><12 : 8.91 (0.04)<br>12-13: 8.76 (0.04)                                                                           |                                                           |
|                 |             |                                                             | and 19<br>months were<br>calculated<br>using British    | Birth weight<br>as recoded<br>in delivery<br>room, birth |                     |                                                    | models were<br>performed to test<br>the linear<br>associations               | >13: 8.73 (0.03)<br>Length (cm) (P for<br>trend=0.1):                                                                                                                         |                                                           |
|                 |             | 2715 singlaton                                              | 1990 growth<br>reference<br>and actual<br>age at        | length<br>measured<br>by staff,<br>weight and            |                     | Reported<br>by girl at                             | between infant<br>body size, infant<br>weight gain and<br>infant length gain | <12: 71.5(0.1)<br>12-13: 71.2 (0.1)<br>>13: 71.2 (0.1)<br>BMI (P for                                                                                                          | Age and<br>mother's<br>education.                         |
|                 |             | 2715 singleton<br>girls with age at<br>menarche data        | measuremen<br>t<br>Infancy                              | length at<br>ages 2, 9<br>and 19<br>months               |                     | adolescent<br>visit (~13<br>years of<br>age). Some | with age at<br>menarche (<12, 12-<br>13 or 13+) as a<br>continuous           | trend=0.007):<br><12 :17.5 (0.1)<br>12-13: 17.3(0.1)                                                                                                                          | Multivariable<br>model adjusted<br>for mother's           |
|                 |             | Mean age at<br>follow-up: 12.9<br>years (IQR 12.8-<br>13.0) | weight gain<br>and length<br>gain were<br>calculated as | extracted<br>from local<br>child health<br>database      |                     | missing<br>data on age<br>at first<br>menstruatio  | variable.<br>The effect of<br>conditional infancy                            | >13: 17.3 (0.1)<br>Size at 19 months:<br>Weight (kg) (P for                                                                                                                   | education,<br>smoking in<br>pregnancy, birth<br>order and |
|                 |             | Avon                                                        | the<br>difference in                                    | (collected as part of                                    | Age at<br>menarche, | n were<br>imputed                                  | weight gain<br>between birth-9<br>months on                                  | trend=<.001):<br><12: 11.58 (0.06)                                                                                                                                            | breastfeeding                                             |
| Ong,            |             | Longitudinal<br>Study of Parent                             | weight or<br>length Z-                                  | routine<br>infant                                        | categorized<br>as:  | from similar<br>data                               | menarche <12                                                                 | 12-13: 11.40 (0.06)<br>>13: 11.31 (0.04)                                                                                                                                      | Logistic regression                                       |
| 2009,<br>United | Prospective | and Children,<br>born April 1991-                           | score<br>between                                        | health<br>surveillance                                   | <12<br>12-13        | collected at<br>11 year                            | years were<br>analyzed by logistic                                           | Length (cm) (P for                                                                                                                                                            | model included<br>birthweight SD                          |
| Kingdom         | cohort      | December 1992                                               | those ages.                                             | program)                                                 | >13                 | visit.                                             | regression.                                                                  | trend=<.001):                                                                                                                                                                 | score.                                                    |

<12: 83.0(0.2) 12-13: 83.0 (0.2) >13: 82.5 (0.1)

BMI (P for trend=0.09): <12:16.9 (0.1) 12-13: 16.7 (0.1) >13: 16.7 (0.1)

Girls with earlier menarche showed faster rates of weight gain between ages 0-2 months (p for trend=0.006) and 2-9 months (p for trend<.0001), but not from 9-19 months (p>.05) (Figure 1A).

Girls with earlier menarche had faster rate of length gain from 2-9 months (P=0.006) and 9-19 months (P=0.004), but not from 0-2 months (Figure 1B).

In multivariable models, weight gain from 0-2 months and 2-9 months were still significantly associated with menarche group.

Associations between infancy length gain and menarche were largely explained by infancy weight gain (p≥.05 when adjusted for infancy weight gain).

OR from logistic regression model for menarche <12 years: Change in weight SDS 0-9 months: OR=1.34, 95% CI 1.21, 1.49

|     |                                     |                    |                                                                      |                                                             |                                                              |                                               |                                              |                                                                                                                                                        | Mean weight at 4<br>months in kg by<br>menarche status<br>(p=0.99):<br>≤12 years: 6.13 (0.75)<br>>12 years: 6.13 (0.81)                                                                                                                              |                                                                                                                                                                                           |
|-----|-------------------------------------|--------------------|----------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |                                     |                    |                                                                      |                                                             |                                                              |                                               |                                              |                                                                                                                                                        | Mean weight at 12<br>months in kg by<br>menarche status<br>(p=0.39):<br>≤12 years: 9.67 (1.17)<br>>12 years: 9.55 (1.02)                                                                                                                             |                                                                                                                                                                                           |
|     |                                     |                    |                                                                      |                                                             |                                                              |                                               |                                              |                                                                                                                                                        | Mean length at 4<br>months in cm by<br>menarche status<br>(p=0.80):<br>≤12 years: 61.72 (3.0)<br>>12 years: 61.63 (2.68)                                                                                                                             |                                                                                                                                                                                           |
| 270 |                                     |                    |                                                                      |                                                             |                                                              |                                               |                                              |                                                                                                                                                        | Mean length at 12<br>months in cm by<br>menarche status<br>(p=0.89):<br>≤12 years: 73.74<br>(3.08)<br>>12 years: 73.80 (3.13)                                                                                                                        | Partially adjusted<br>model for weight<br>change, 0-4<br>months:                                                                                                                          |
|     |                                     |                    | 262 women<br>38-46 years at                                          | Weight and<br>length at 4m<br>and 12m                       | Measured<br>by study                                         |                                               |                                              | Univariate<br>associations using<br>correlation<br>coefficients for<br>continuous<br>variables, chi-<br>square tests and<br>analysis of<br>variance to | $\beta$ for 10-percentile<br>change in weight from<br>0-4 months from linear<br>regression model:<br>Partially adjusted<br>$\beta$ =0.04, 95% CI= -0.04,<br>0.13<br>Fully adjusted<br>parsimonious model:<br>$\beta$ =-0.01, 95% CI= -<br>0.13, 0.10 | birthweight<br>Partially adjusted<br>model for weight<br>change, 4-12<br>months:<br>birthweight and<br>weight change<br>from 0-4 months<br>Fully adjusted<br>parsimonious<br>model: Birth |
|     |                                     |                    | Follow-up in 2001-2006 of subset of women                            | Within-cohort<br>percentile<br>rank change<br>in height and | staff at<br>visits and<br>interpolated<br>at 4<br>months, 12 | Age at<br>menarche,<br>continuous<br>and      |                                              | compare averages<br>across subgroups<br>Multivariable linear<br>regression models                                                                      | β for 10-percentile<br>change in weight from<br>4-12 months from<br>linear regression                                                                                                                                                                | weight,<br>percentile<br>change in<br>weight, birth<br>length, percentile                                                                                                                 |
|     | Terry,<br>2009,<br>United<br>States | Prospective cohort | from New York<br>site of the CPP<br>birth cohort (born<br>1959-1963) | weight from<br>0-4 months<br>and 4-12<br>months             | months and<br>7 years<br>using cubic<br>splines              | dichotomized<br>as: ≤12<br>years<br>>12 years | Self-<br>reported by<br>adult<br>participant | using age for age<br>at menarche (β<0<br>indicates earlier<br>menarche).                                                                               | model:<br>Partially adjusted β=-<br>0.09, 95% Cl= -0.19,<br>0.01                                                                                                                                                                                     | change in height,<br>family SES at<br>age 7, maternal<br>age at menarche                                                                                                                  |

Fully adjusted parsimonious model: β=-0.15, 95% CI= -0.27, -0.02

 $\beta$  for 10-percentile change in height from 0-4 months from linear regression model: Fully adjusted parsimonious model:  $\beta$ =0.00, 95% CI= -0.12, 0.13

 $\beta$  for 10-percentile change in height from 4-12 months from linear regression model: Fully adjusted parsimonious model:  $\beta$ = 0.08, 95% CI= -0.04, 0.20

|             | 87 term,<br>singleton girls<br>with<br>birthweight>2500<br>g, height<br>measurements<br>at 6 and 13            |                                                                                               |                                                                                           |                                   |                                                                                  |                                                                                                                                         |                                                                                                                                                          |                                                                                                  |
|-------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
|             | years of age and<br>at least 5<br>measures                                                                     | Weight gain<br>from 0-2<br>years,                                                             |                                                                                           |                                   |                                                                                  |                                                                                                                                         | Adjusted β from linear<br>regression model:<br>Rapid weight gain from                                                                                    |                                                                                                  |
|             | between these<br>ages,<br>anthropometrics<br>at 24 months,                                                     | defined by<br>difference in<br>SDS-score:<br>- Rapid: SDS                                     |                                                                                           |                                   |                                                                                  |                                                                                                                                         | 0-2 years (>0.67SDS<br>vs normal weight gain):<br>β=-0.82, SE=0.25,<br>p=0.002                                                                           |                                                                                                  |
|             | complete data on<br>maternal<br>characteristics<br>and age at                                                  | >0.67<br>- Normal:<br>SDS≤0.67                                                                |                                                                                           |                                   |                                                                                  |                                                                                                                                         | Adjusted β from<br>pathway linear<br>regression model:                                                                                                   |                                                                                                  |
|             | menarche<br>At least 13 years<br>of age                                                                        | Sex- and<br>age-<br>independent<br>SDS scores                                                 | Birthweight<br>abstracted<br>from                                                         |                                   |                                                                                  |                                                                                                                                         | Rapid weight gain from<br>0-2 years (>0.67SDS<br>vs normal weight gain):<br>$\beta$ =-0.60, SE=0.26,                                                     | Maternal<br>overweight and<br>birthweight                                                        |
|             | Subset of the<br>DONALD<br>(Dortmund<br>National and<br>Anthropometric                                         | were<br>calculated by<br>using the<br>German<br>reference<br>surveys for                      | standardize<br>d document<br>given to all<br>pregnant<br>women in<br>Germany,             |                                   | Girls or<br>their<br>parents are<br>asked if<br>menarche                         | Linear mixed-<br>effects regression<br>models (PROC                                                                                     | p=0.02<br>Interaction between<br>birthweight and rapid<br>weight gain:<br>Low birthweight and<br>rapid weight gain                                       | Pathway model<br>additionally<br>adjusted for BMI<br>SD score 1 year<br>before ATO               |
| Prospective | Longitudinally<br>Designed) Study<br>started in 1985<br>(40-50 infants<br>age 3-6 mos<br>enrolled<br>annually) | weight and<br>BMI and then<br>internally<br>standardized<br>to this data<br>by age and<br>sex | weight at<br>age 2 years<br>measured<br>to nearest<br>0.1kg by<br>study staff<br>at visit | Age at<br>menarche,<br>continuous | occurred<br>since<br>previous<br>visit, and if<br>so, which<br>month and<br>year | MIXED) were used<br>to construct<br>longitudinal models<br>of age at menarche<br>( $\beta$ <0 indicates<br>earlier age at<br>menarche). | rapid weight gain<br>experienced menarche<br>1.68 years (SE=0.35)<br>earlier than children<br>with a bwt ≥3000g and<br>normal weight gain<br>(referent). | Noted that<br>adjustment for<br>gestational age<br>did not change<br>results (data not<br>shown) |

Karaolis-Danckert, 2009, Germany

|          | Prospective | 2,667 non-<br>Hispanic white<br>(1448) and<br>African-American<br>girls (1219) born<br>before 1998 who<br>were at least 8<br>years of age by<br>2006 interview<br>and had reported<br>age of<br>menarche.<br>Followed up to<br>20 years<br>1986-2006<br>waves of the<br>Children of the<br>NLSY79<br>(National<br>Longitudinal<br>study of Youth,<br>women born<br>between 1957-<br>1064) | Estimated<br>BMI and<br>height at 2<br>years of age,<br>calculated<br>from<br>longitudinal<br>statistical<br>techniques<br>as<br>polynomial<br>functions of<br>age for each<br>race-timing<br>group | Height and<br>weight at<br>each follow-<br>up,<br>measured<br>by<br>interviewer<br>(75%) or<br>reported by | Age at<br>menarche in<br>months,<br>which was<br>categorized<br>into 3 groups<br>based on<br><25th<br>percentile,<br>2575th<br>percentile and >75th<br>percentile for<br>race:<br>- Early:<br><141 months<br>for White<br>girls, <133<br>months for<br>African<br>American<br>girls<br>- Middle:<br>141-157<br>months for<br>White girls,<br>133-152<br>months for<br>African<br>American<br>girls<br>- Late: >157<br>months for<br>White girls,<br>>152 months<br>for White girls,<br>>152 months<br>for African<br>American<br>girls | Year and<br>month of<br>menarche<br>reported by<br>mothers of<br>girls 8-13<br>years and<br>daughters<br>at 14 years<br>and older at<br>biennial<br>intoniouro | Estimates from<br>random coefficient<br>models were used<br>to predict height<br>and BMI by age<br>and age relative to<br>menarche for girls<br>in each race-timing<br>group. The<br>standard errors of<br>these estimates<br>were used to<br>construct 95% Cis<br>around height and<br>BMI for each age.<br>These CIs were<br>used to identify at<br>which ages<br>significant<br>differences in<br>predicted height<br>and BMI occurred<br>across race-timing | Predicted BMI (95%<br>CI) as a function of<br>chronological age by<br>race-timing group:<br>African American girls<br>at 2 years<br>Early: 17.4 (17.0, 17.7)<br>Middle: 16.7 (16.5,<br>17.0)<br>Late: 16.6 (16.3, 16.8)<br>White girls at 2 years<br>Early: 16.3 (16.0, 16.6)<br>Middle: 16.3 (16.1,<br>16.5)<br>Late: 16.2 (16.0, 16.5)<br>Predicted Height (in)<br>(95% CI) as a function<br>of chronological age by<br>race-timing group:<br>African American girls<br>at 2 years<br>Early: 32.6 (32.3, 32.9)<br>Middle: 32.3 (32.2,<br>32.5)<br>Late: 32.3 (32.1, 32.6)<br>White girls at 2 years<br>Early: 32.5 (32.3, 32.7)<br>Middle: 32.4 (32.3,<br>32.6) | Height or BMI at<br>other time points<br>(3, 4, 5, 6, 7, 8<br>and 20 upper) |
|----------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| States c | cohort      | 1964)                                                                                                                                                                                                                                                                                                                                                                                     | group                                                                                                                                                                                               | mom or girl                                                                                                | girls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | interviews                                                                                                                                                     | groups.                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Late: 32.6 (32.4, 32.8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | and 20 years)                                                               |

|        |             |                 |               |              |             |                    |                      | Adjusted PR for weight-for-age Z-score |                 |
|--------|-------------|-----------------|---------------|--------------|-------------|--------------------|----------------------|----------------------------------------|-----------------|
|        |             |                 |               |              |             |                    |                      | at 19.4 months:                        |                 |
|        |             |                 |               |              |             |                    |                      | ≤0: Referent                           |                 |
|        |             |                 |               |              |             |                    |                      | 0.01-1: PR=1.43, 95%                   |                 |
|        |             |                 |               |              |             |                    |                      | CI=1.16, 1.77                          |                 |
|        |             |                 |               |              |             |                    |                      | 1.01-2: PR=1.54, 95%                   |                 |
|        |             |                 | Weight and    |              |             |                    |                      | CI= 1.20, 1.98                         |                 |
|        |             |                 | height Z-     |              |             |                    |                      | ≥2: PR=1.53, 95% CI=                   |                 |
|        |             |                 | scores from   |              |             |                    |                      | 0.97, 2.37                             |                 |
|        |             |                 | 1984 at       |              |             |                    |                      |                                        |                 |
|        |             |                 | average 19.4  |              |             |                    |                      | Adjusted PR for height-                |                 |
|        |             |                 | months)       |              |             |                    |                      | for-age Z-score at 19.4                |                 |
|        |             |                 | calculated    |              |             |                    |                      | months:                                |                 |
|        |             |                 | based on      |              |             |                    |                      | ≤0: Referent                           |                 |
|        |             |                 | 2006 WHO      |              |             |                    |                      | 0.01-1: PR=1.24, 95%                   |                 |
|        |             |                 | curves and    |              |             |                    |                      | Cl=1.02, 1.52                          |                 |
|        |             |                 | categorized   |              |             |                    |                      | 1.01-2: PR=1.35, 95%                   |                 |
|        |             |                 | as ≤0, 0.01-  |              |             |                    |                      | CI=0.98,1.86                           |                 |
|        |             |                 | 1, 1.01-2,    |              |             |                    |                      | ≥2: PR=1.48, 95%                       |                 |
|        |             |                 | and >2.       |              |             |                    |                      | CI=0.77, 2.84                          |                 |
|        |             |                 | Growth from   |              |             |                    |                      | Adjusted PR for                        |                 |
|        |             |                 | 0-19.4        |              |             |                    |                      | weight-for-height Z-                   |                 |
|        |             |                 | months was    |              |             |                    |                      | score at 19.4 months:                  |                 |
|        |             |                 | assessed as   |              |             |                    |                      | ≤0: Referent                           |                 |
|        |             |                 | the change    |              |             |                    |                      | 0.01-1: PR=1.39, 95%                   |                 |
|        |             |                 | in Z-score    |              |             |                    |                      | CI=1.09, 1.78                          |                 |
|        |             |                 | between time  |              |             |                    |                      | 1.01-2: PR=1.53, 95%                   |                 |
|        |             |                 | periods, with |              |             |                    |                      | CI=1.18, 1.99                          |                 |
|        |             |                 | the           |              |             |                    |                      | ≥2: PR=1.49, 95%                       |                 |
|        |             |                 | birthweight   |              |             |                    |                      | CI=0.99, 2.07                          |                 |
|        |             |                 | Z-score       |              |             |                    |                      |                                        |                 |
|        |             |                 | calculated    |              |             |                    |                      | Adjusted PR for                        |                 |
|        |             | 2083 women      | using         |              |             |                    |                      | change in weight-for-                  |                 |
|        |             | with menarche   | Williams      |              |             |                    |                      | age Z-score from birth-                |                 |
|        |             | data            | curve.        |              |             |                    |                      | 19.1 months:                           |                 |
|        |             |                 | Change in     |              |             |                    |                      | Catch-down: Referent                   |                 |
|        |             | Age 23-24 years | Z-scores      |              |             |                    |                      | Normal: PR=1.27,                       | Family income,  |
|        |             | at follow-up    | were defined  | Weight       |             |                    | Multivariable-       | 95% CI=0.91, 1.78                      | skin color,     |
|        |             |                 | as catch-     | measured     | •           |                    | adjusted Poisson     | Rapid: PR=1.75, 95%                    | smoking during  |
|        |             | 2004-2005       | down          | at birth,    | Age at      | 0.11               | regression with a    | Cl=1.27, 2.43                          | pregnancy, pre- |
|        |             | follow-up of    | (≤0.67),      | height and   | menarche in | Self-report        | robust variance      |                                        | gestational     |
| Maar   |             | women from the  | normal (-     | weight       | years,      | by                 | estimative to obtain | Inference for change in                | maternal BMI    |
| Mesa,  | Descention  | 1982 Pelotas    | 0.669-0.669)  | measured     | categorized | participant        | prevalence ratios    | weight Z-score is the                  | and             |
| 2010,  | Prospective | Birth Cohort    | and catch-up  | at follow-up | as <12 and  | in<br>advitte a ad | (PR>1 indicates      | same across                            | breastfeeding   |
| Brazil | cohort      | Study           | (≥0.67).      | visits.      | ≥12 years   | adulthood          | early menarche)      | birthweight tertiles.                  | duration        |

|         |             |                            | Gain in<br>weight,<br>height and<br>BMI<br>measured<br>from 0-6<br>months, 6-24<br>months and<br>2-8 years. |                      |          |             |                                  |                           |                     |
|---------|-------------|----------------------------|-------------------------------------------------------------------------------------------------------------|----------------------|----------|-------------|----------------------------------|---------------------------|---------------------|
|         |             |                            | Growth was defined as                                                                                       |                      |          |             |                                  |                           |                     |
|         |             |                            | the amount                                                                                                  |                      |          |             |                                  | Correlations between      |                     |
|         |             | 140 girls who              | by which the                                                                                                |                      |          |             |                                  | the size at birth and     |                     |
|         |             | were seen at all           | size at the                                                                                                 |                      |          |             |                                  | growth of Afro-           |                     |
|         |             | scheduled visits           | end of the                                                                                                  |                      |          |             |                                  | Caribbean girls and       |                     |
|         |             | between birth              | time interval<br>exceeded                                                                                   |                      |          |             | Multiple regression              | age at menarche at        |                     |
|         |             | and 11 years               | that which                                                                                                  |                      |          |             | analyses to<br>examine the rela- | age 11 years:             |                     |
|         |             | At least 11 years          | would have                                                                                                  |                      |          |             | tionships among                  | Height:                   |                     |
|         |             | at follow-up               | been                                                                                                        | Weight and           |          |             | child's growth and               | 0-6 months: 0.02          |                     |
|         |             |                            | predicted by                                                                                                | crown heel           |          |             | body composition                 | 6m-2y: -0.02              |                     |
|         |             | Vulnerable                 | linear                                                                                                      | length               |          |             | and the stage of                 | 2                         |                     |
|         |             | Windows Cohort             | regression                                                                                                  | measured             |          |             | puberty with                     | Weight:                   |                     |
|         |             | Study, pregnant            | using the                                                                                                   | within 24            |          |             | outcomes and                     | 0-6 months: -0.11         |                     |
|         |             | women were                 | measuremen                                                                                                  | hours of             |          |             | predictors in                    | 6m-2y: -0.08              |                     |
|         |             | recruited in               | ts available                                                                                                | delivery;            |          |             | standardized form,               | DMI                       |                     |
|         |             | 1992-1993 at<br>University | at the<br>beginning of                                                                                      | height and<br>weight |          | Menstrual   | so that the<br>regression        | BMI:<br>0-6 months: -0.16 |                     |
|         |             | Hospital of the            | the interval                                                                                                | measured             |          | history was | coefficients were                | 6m-2y: -0.11              |                     |
| Boyne,  |             | West Indies,               | (conditional                                                                                                | by trained           |          | taken at    | effectively                      | 011 Zy. 0.11              |                     |
| 2010,   | Prospective | Kingston, Jamaic           | measures,                                                                                                   | study staff          | Age at   | each visit  | correlation                      | P≥.05 for all             |                     |
| Jamaica | cohort      | a for birth cohort.        | uncorrelated)                                                                                               | at visits            | menarche | (biannual)  | coefficients.                    | correlations              | Age at clinic visit |

|                        | 1316 singleton,                         | Weight-for-<br>age SD<br>scores and<br>BMI SDS<br>calculated |                              |          | Month and<br>year of    |                                            | Adjusted difference for<br>weight change models<br>and age at menarche:<br>Weight SDS change 0-<br>2 mo: Diff = -0.07 (-<br>0.17,0.03), p = 0.15<br>Weight SDS change 2-<br>9 mo: Diff = -0.19 (-<br>0.27,-0.11), p = 0.00<br>Weight SDS change 9-<br>20 mo: Diff = -0.14 (-<br>0.24,-0.03), p = 0.01<br>Weight SDS change 0-<br>20 mo: Diff = -0.19 (-<br>0.26,-0.12), p = 0.00 | Maternal age at<br>menarche,<br>previous live |
|------------------------|-----------------------------------------|--------------------------------------------------------------|------------------------------|----------|-------------------------|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
|                        | term girls (37-42 weeks gestation)      | using girls'<br>1990 British                                 | Health                       |          | menarche,<br>reported   |                                            | Adjusted difference for                                                                                                                                                                                                                                                                                                                                                          | birth, maternal race or ethnicity,            |
|                        | with consistent                         | growth                                                       | records                      |          | girls at                |                                            | BMI change models                                                                                                                                                                                                                                                                                                                                                                | smoking during                                |
|                        | pubertal staging<br>and birth size      | reference.                                                   | (weight and<br>length        |          | pubertal<br>self-       |                                            | and age at menarche:<br>BMI SDS change 0-2                                                                                                                                                                                                                                                                                                                                       | pregnancy,<br>maternal                        |
|                        | data                                    | Assessed                                                     | measured                     |          | assessment              |                                            | mo: Diff = -0.04 (-                                                                                                                                                                                                                                                                                                                                                              | prepregnancy                                  |
|                        | Age 8-14 years                          | change in<br>weight and                                      | at 2,9, and<br>20 months     |          | s between<br>8-14 years |                                            | 0.10,0.03), p = 0.26<br>BMI SDS change 2-9                                                                                                                                                                                                                                                                                                                                       | BMI, maternal age at delivery,                |
|                        | at follow-up                            | BMI SDS for                                                  | by health                    |          | of age. Girls           | Interval-censored                          | mo: Diff = -0.09 (-0.15,-                                                                                                                                                                                                                                                                                                                                                        | maternal                                      |
|                        | Avon                                    | each interval<br>of interest (0-                             | professional<br>s as part of |          | with<br>inconsistent    | parametric survival<br>model for age at    | 0.03), p = 0.00<br>BMI SDS change 9-20                                                                                                                                                                                                                                                                                                                                           | education,<br>birthweight, birth              |
|                        | Longitudinal                            | 2 months, 2-                                                 | routine                      |          | responses               | menarche                                   | mo: Diff = $0.02$ (-                                                                                                                                                                                                                                                                                                                                                             | length and                                    |
| Maisonet,              | Study of Parent                         | 9 months, 9-                                                 | infant                       |          | were                    | assuming a normal                          | 0.09,0.05), p = 0.61                                                                                                                                                                                                                                                                                                                                                             | weight or BMI                                 |
| 2010,<br>United Prospe | and Children,<br>ctive born April 1991- | 20 months<br>and 0-20                                        | health<br>surveillance       | Age at   | excluded<br>from        | distribution (Diff <0<br>indicates earlier | BMI SDS change 0-20<br>mo: Diff = -0.07 (-0.13,-                                                                                                                                                                                                                                                                                                                                 | SDS change in<br>prior previous               |
| Kingdom cohort         | December 1992                           | months)                                                      | program)                     | menarche | analyses                | menarche)                                  | 0.01, p = $0.03$                                                                                                                                                                                                                                                                                                                                                                 | interval                                      |

|                     |                       |                                                                                                                           |                                                                                                      |                                                                                         |                                                                    |                                                                                                |                                                                                                                                                       | Linear regression of<br>BMI at 1 year Z-score<br>predicting age at<br>menarche Z-score:<br>$\beta$ = -0.026, 95% CI=-<br>0.237, 0.184, R-<br>squared = 0.01                         |      |
|---------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|                     |                       |                                                                                                                           |                                                                                                      |                                                                                         |                                                                    |                                                                                                |                                                                                                                                                       | Linear regression of<br>change in BMI Z-score<br>from birth to 1 year<br>predicting age at<br>menarche Z-score:<br>$\beta$ = -0.048, 95% CI=-<br>0.328, 0.232, R-<br>squared = 0.01 |      |
|                     |                       | 115 women with<br>body size data at<br>birth (96 at 1<br>year)                                                            |                                                                                                      |                                                                                         |                                                                    |                                                                                                |                                                                                                                                                       | Mean (SD) of<br>anthropometric<br>characteristics at 1<br>year by median age at                                                                                                     |      |
|                     |                       | Mean age 20.4<br>at follow-up<br>Follow-up of pre-                                                                        |                                                                                                      |                                                                                         |                                                                    |                                                                                                |                                                                                                                                                       | menarche (12.9 years):<br>Weight (kg), p=0.408:<br>Earlier: 9.1 (0.9)<br>Later: 9.3 (1.0)                                                                                           |      |
|                     |                       | pubertal girls<br>participating in<br>an RCT of<br>calcium-enriched<br>foods and bone<br>mass growth<br>(enrolled at      |                                                                                                      |                                                                                         |                                                                    |                                                                                                | Univariate linear<br>regression analysis<br>examining<br>association<br>between BMI Z-                                                                | Standing height (cm),<br>p=0.819<br>Earlier: 73.9 (3.2)<br>Later: 74.0 (3.6)<br>BMI, p=0.317<br>Earlier: 16.7 (1.1)<br>Later: 17.0 (1.6)                                            |      |
|                     |                       | mean 7.9 years,<br>followed up to<br>20.4 years.<br>Exclusion criteria<br>at enrollment<br>were ratio of<br>weight/height | Body weight,<br>standing<br>height and                                                               | Obtained                                                                                |                                                                    |                                                                                                | score at birth and 1<br>year or change in<br>BMI Z-score from<br>birth to 1 year and<br>age at menarche Z-<br>score. Differences<br>in anthropometric | Mean (SD) of gain in<br>anthropometric<br>characteristics from<br>birth-1 year by median<br>age at menarche:<br>Weight (kg), p=0.506:                                               |      |
| Chevalley,<br>2011. |                       | <3rd or >97th<br>percentile,<br>physical signs of<br>puberty, chronic<br>disease,<br>malabsorption,<br>bone disease       | BMI at birth<br>and 1 year<br>(converted to<br>Z-scores)<br>and change<br>in Z-score or<br>body size | retrospectiv<br>ely at<br>baseline<br>from<br>questionnai<br>res sent to<br>parents and | Age at<br>menarche,<br>continuous<br>and<br>dichotomized<br>at the | Self-<br>reported by<br>daughter at<br>interview at<br>visits (8.9<br>years, 10<br>years, 12.4 | characteristics<br>between earlier<br>and later menarche<br>(dichotomized at<br>the median)<br>assessed by<br>unpaired t-tests or                     | Earlier: 6.0 (0.8)<br>Later: 6.1 (1.0)<br>Standing height (cm),<br>p=0.810<br>Earlier: 24.7 (2.6)<br>Later: 24.9 (3.9)<br>BMI, p=0.907                                              |      |
| Switzerlan<br>d     | Prospective<br>cohort | and regular use<br>of medication)                                                                                         | from birth to<br>1 year                                                                              | pediatrician<br>s                                                                       | median (12.9<br>years)                                             | years, 12.4<br>years, 16.4<br>years)                                                           | by Wilcoxon signed rank test.                                                                                                                         | Earlier: 3.8 (1.6)<br>Later: 3.9 (1.9)                                                                                                                                              | None |

|         |             | 305 term girls                        | Change in<br>weight gain<br>Z-score<br>(age- and<br>sex-specific<br>weight z-<br>scores | Weight<br>recorded by<br>nurse at<br>birth.<br>Nurse<br>measured |            |                         |                                          | Univariable linear<br>regression results:<br>Weight gain 0-6<br>months: $\beta$ =-0.06,<br>SE=0.07, p>0.05<br>Weight gain 6-12<br>months: $\beta$ =-0.26,<br>SE=0.12, p<0.05<br>Weight gain 1-2 years:<br>$\beta$ =-0.28, SE=0.13,<br>p<0.05 |                                 |
|---------|-------------|---------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------|------------|-------------------------|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
|         |             | Age 10-15 years<br>at first report of | calculated at<br>each                                                                   | weight of<br>child at                                            |            |                         |                                          | Regression coefficient                                                                                                                                                                                                                       |                                 |
|         |             | pubertal status, followed annually    | observation<br>time using                                                               | follow-up<br>visits at 6                                         |            | Date of menarche        | Univariate linear model for age at       | in adjusted log-normal<br>survival analyses of                                                                                                                                                                                               |                                 |
|         |             | until TS5 or max of 5 years           | LMSGrowth software and                                                                  | weeks, 3<br>months, 6                                            |            | reported by daughter on | menarche.<br>Multivariable-              | time to menarche<br>Weight gain 0-6                                                                                                                                                                                                          | Birthweight,<br>weight gain     |
|         |             |                                       | data from the                                                                           | months, 1                                                        |            | annual                  | adjusted                                 | months: β=-0.03, 95%                                                                                                                                                                                                                         | (change in Z-                   |
|         |             | Adolescent<br>follow-up of            | CDC 2000<br>growth                                                                      | year, 1.5<br>years, 2                                            |            | surveys<br>(started in  | parametric survival<br>analyses with log | CI=-0.05, -0.02<br>Weight gain 6-12                                                                                                                                                                                                          | score) from 0-6<br>months, 6-12 |
|         |             | subset of the                         | charts) in                                                                              | years, 3                                                         |            | 1992 at age             | normal distribution                      | months: $\beta$ = -0.05, 95%                                                                                                                                                                                                                 | months, 1-2                     |
| Wang,   |             | North Carolina                        | time intervals                                                                          | years, 4                                                         |            | 10-15,                  | for age at                               | Cl = -0.08, -0.03                                                                                                                                                                                                                            | years, 2-5 years,               |
| 2012,   |             | Infant Feeding                        | 0-6 months                                                                              | years and 5                                                      | Age at     | followed for            | menarche (β<0                            | Weight gain 1-2 years:                                                                                                                                                                                                                       | maternal pre-                   |
| United  | Prospective | Study, infants                        | 6-12 months                                                                             | years of                                                         | menarche,  | max of 5                | indicates earlier                        | β= -0.04, 95% CI= -                                                                                                                                                                                                                          | pregnancy                       |
| States  | cohort      | born 1978-1982                        | 1-2 years                                                                               | age.                                                             | continuous | years)                  | menarche)                                | 0.06, -0.01                                                                                                                                                                                                                                  | weight and race.                |
|         |             | 659 girls with                        |                                                                                         |                                                                  |            |                         |                                          | Height SDS                                                                                                                                                                                                                                   |                                 |
|         |             | complete data                         |                                                                                         |                                                                  |            |                         |                                          | significantly inversely                                                                                                                                                                                                                      |                                 |
|         |             | E alla constante da la                |                                                                                         |                                                                  |            |                         |                                          | associated with age at                                                                                                                                                                                                                       |                                 |
|         |             | Followed up to                        |                                                                                         |                                                                  |            |                         |                                          | menarche started at                                                                                                                                                                                                                          |                                 |
|         |             | age 15.5 years                        |                                                                                         |                                                                  |            |                         |                                          | age 54 months (r=-<br>0.16, p=0.014). At 15                                                                                                                                                                                                  |                                 |
|         |             | National                              |                                                                                         |                                                                  |            |                         |                                          | months, correlation                                                                                                                                                                                                                          |                                 |
|         |             | Institutes of                         |                                                                                         |                                                                  |            |                         |                                          | coefficient is inverse                                                                                                                                                                                                                       |                                 |
|         |             | Health Study of                       |                                                                                         |                                                                  |            |                         |                                          | but not significant. The                                                                                                                                                                                                                     |                                 |
|         |             | Early Child Care                      |                                                                                         |                                                                  |            |                         |                                          | correlation strength                                                                                                                                                                                                                         |                                 |
|         |             | and Young                             |                                                                                         |                                                                  |            |                         |                                          | increased with age.                                                                                                                                                                                                                          |                                 |
|         |             | Development                           |                                                                                         |                                                                  |            |                         | Pearson's product-                       |                                                                                                                                                                                                                                              |                                 |
|         |             | (SECCYD),                             |                                                                                         |                                                                  |            |                         | moment correlation                       | BMI SDS was                                                                                                                                                                                                                                  |                                 |
|         |             | children enrolled                     |                                                                                         |                                                                  |            | <b>A a a u a i a c</b>  | coefficients used to                     | significantly correlated                                                                                                                                                                                                                     |                                 |
|         |             | at 1 year of age<br>in 1991 and       |                                                                                         | Measured                                                         |            | Assuming<br>reported by | determine the<br>linear association      | with menarche age starting at 54 months                                                                                                                                                                                                      |                                 |
| German, |             | followed                              |                                                                                         | by                                                               |            | child at                | between                                  | (r=-0.16, p=0.016). At                                                                                                                                                                                                                       |                                 |
| 2015,   |             | prospectively                         | Height and                                                                              | researchers                                                      |            | annual                  | auxological                              | 15 months, correlation                                                                                                                                                                                                                       |                                 |
| United  | Prospective | until 15.5 years                      | BMI SDS at                                                                              | at study                                                         | Age at     | follow-up               | parameters and                           | coefficient is inverse                                                                                                                                                                                                                       |                                 |
| States  | cohort      | of age                                | 15 months                                                                               | visits                                                           | menarche   | visits                  | age at menarche.                         | but not significant.                                                                                                                                                                                                                         | None                            |

| Salgin,<br>2015,<br>South | Prospective           | 922 girls of black<br>South African<br>origin included in<br>menarche<br>analysis<br>Followed up to<br>age 18 years<br>Birth to Twenty,<br>prospective birth<br>cohort of<br>singleton births<br>between late<br>April 1990-early<br>June 1990 in<br>Johannesburg-<br>Soweto, South | Infancy<br>weight gain<br>calculated as<br>change in<br>weight SDS<br>from birth to<br>1 year.<br>Catch-up<br>growth<br>defined as<br>gain in<br>weight SDS<br>>0.67.<br>Catch-down<br>growth<br>defined as<br>weight<br>SDS<-0.67.<br>Others<br>categorized<br>as "no rapid | Birthweight<br>extracted<br>from<br>hospital<br>record,<br>weight and<br>length<br>measured<br>by study<br>staff at<br>home visits<br>at age 1 | Age at menarche, | Reported in<br>full years by<br>female<br>subjects<br>and their<br>parents<br>annually<br>from age 9 | Data were<br>analyzed for<br>normality using the<br>Kolmogorov-<br>Smirnov test and<br>log-transformed to<br>a normal<br>distribution to allow<br>use of analysis of<br>variance to assess<br>differences in age<br>at menarche<br>between girls with<br>different patterns of<br>weight gain during<br>infancy. Mean<br>values for age at<br>menarche were<br>adjusted for | Mean (SD) age at<br>menarche by infancy<br>weight gain pattern<br>(p<0.001):<br>Catch-up: 12.5 (0.1)<br>No rapid change: 12.6<br>(0.1)<br>Catch down: 13.1 (0.1)<br>Association persisted<br>after adjustment for<br>smoking during<br>pregnancy, birth order,<br>gestational age,<br>formula-milk feeding<br>and household SES | Smoking during<br>pregnancy, birth<br>order,<br>gestational age,<br>formula-milk<br>feeding and |
|---------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| ,                         | Prospective<br>cohort |                                                                                                                                                                                                                                                                                     | •                                                                                                                                                                                                                                                                            |                                                                                                                                                |                  |                                                                                                      | adjusted for covariates.                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                               | feeding and household SES                                                                       |

|                                     |                    |                                                                                       |                                                          |                                        |                                   |                                              |                                                                              | Mean (SD) of BMI Z-<br>score at 1 year by<br>menarche status at<br>visit:<br>Full sample<br>(p=<0.001):<br>Pre-menarche: -0.08<br>(1.28) |      |
|-------------------------------------|--------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------|-----------------------------------|----------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------|
|                                     |                    |                                                                                       |                                                          |                                        |                                   |                                              |                                                                              | Menarche: 0.13 (1.21)<br>India (p=<0.001):<br>Pre-menarche: -<br>0.99(1.07)<br>Menarche: -0.64 (1.00)                                    |      |
|                                     |                    |                                                                                       |                                                          |                                        |                                   |                                              |                                                                              | Peru (p=0.242):<br>Pre-menarche: -<br>0.78(1.20)<br>Menarche: 0.88 (1.13)                                                                |      |
|                                     |                    |                                                                                       |                                                          |                                        |                                   |                                              |                                                                              | Vietnam (p=0.031):<br>Pre-menarche: -<br>0.47(0.88)<br>Menarche: -0.33 (0.94)                                                            |      |
|                                     |                    |                                                                                       |                                                          |                                        |                                   |                                              |                                                                              | Mean (SD) of Height Z-<br>score at 1 year by<br>menarche status at<br>visit:<br>Full sample                                              |      |
|                                     |                    | 0004                                                                                  |                                                          |                                        |                                   |                                              |                                                                              | (p=<0.001):<br>Pre-menarche: -1.11<br>(1.20)<br>Menarche: -0.79 (1.19)                                                                   |      |
|                                     |                    | 2001 girls with<br>birthweight data<br>12 years at<br>follow-up                       |                                                          |                                        |                                   |                                              |                                                                              | India:<br>Pre-menarche : -<br>1.06(1.32)<br>Menarche: -0.72 (1.28)                                                                       |      |
| Aurino,                             |                    | Young Lives<br>cohort of Indian,<br>Peruvian and<br>Vietnamese girls<br>born in 2001- | BMI and<br>height Z-<br>score at 1<br>year<br>calculated | Assumed<br>height and                  |                                   | Self-<br>reported in<br>years by             | Difference in mean                                                           | Peru (p=<0.001):<br>Pre-menarche: -<br>1.18(1.18)<br>Menarche: -0.92 (1.28)                                                              |      |
| 2017,<br>India,<br>Peru,<br>Vietnam | Prospective cohort | 2002, recruited<br>at ~1 year and<br>followed up to 12<br>years                       | using WHO<br>international<br>reference<br>standards     | weight<br>measured<br>at<br>enrollment | Age at<br>menarche,<br>continuous | girls in<br>2013, when<br>~12 year of<br>age | BMI and height Z-<br>scores at 1 year by<br>menarche status<br>using t-tests | Vietnam (p=<0.001):<br>Pre-menarche: -<br>1.06(1.16)<br>Menarche: -0.70 (1.04)                                                           | None |

percentile rank change in weight, 0-4 months:  $\beta$ =-0.09, 95% Cl= -0.15, -0.04

10-unit increase in percentile rank change in weight 4-12 months:  $\beta$ =-0.09, 95% CI= -0.15, -0.02

10-unit increase in percentile rank change in height, 0-4 months:  $\beta$ =-0.04, 95% CI= -0.10, 0.01

10-unit increase in percentile rank change in height, 4-12 months:  $\beta$ =-0.05, 95% Cl= - 0.11, 0.01

Inference was similar when conditional growth or growth pattern models were used and in sibling subset.

## Supplemental Table 2.7. NIH quality assessment of included studies

| Article                         | 1.<br>Rese<br>arch<br>quest<br>ion | 2.<br>Study<br>popula<br>tion | 3.<br>Partici<br>pation<br>rate                    | 4. Subject selection              | 5.<br>Sam<br>ple<br>size | 6.<br>Temp<br>oralit<br>y | 7.<br>Timefr<br>ame                                                       | 8.<br>Levels<br>of<br>Exposur<br>e | 9.<br>Exposure<br>assessm<br>ent         | 10.<br>Repea<br>t<br>expos<br>ure<br>assess<br>ment | 11. Outcome<br>assessment                                    | 12.<br>Outcome<br>blinded | 13. Loss to<br>follow-up                                            | 14.<br>Confoundin<br>g |
|---------------------------------|------------------------------------|-------------------------------|----------------------------------------------------|-----------------------------------|--------------------------|---------------------------|---------------------------------------------------------------------------|------------------------------------|------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------|---------------------------|---------------------------------------------------------------------|------------------------|
| Miller et al,<br>1972           | Yes                                | Yes                           | Yes                                                | Yes                               | No                       | Yes                       | Yes                                                                       | Yes                                | Yes                                      | NA                                                  | Unclear                                                      | Unclear                   | No, ~60% of<br>original<br>cohort was<br>followed up<br>at 22 years | No                     |
| Zacharias<br>et al, 1976        | Yes                                | Yes                           | Yes<br>(62%)                                       | Yes                               | No                       | Uncle<br>ar               | Yes                                                                       | No                                 | Unclear                                  | NA                                                  | Yes                                                          | No                        | Yes, 7%<br>were lost                                                | No                     |
| Billewicz<br>et al, 1981        | No                                 | Yes                           | Yes                                                | Yes                               | No                       | Yes                       | Yes                                                                       | Yes                                | Yes                                      | NA                                                  | Yes, self-<br>report but<br>based on<br>regular<br>follow-up | No                        | Yes                                                                 | No                     |
| Fledelius,                      |                                    |                               | Not                                                |                                   |                          |                           |                                                                           |                                    |                                          |                                                     | •                                                            |                           |                                                                     |                        |
| 1982<br>Westwood<br>et al, 1983 | Yes                                | No<br>Yes                     | stated                                             | Not stated                        | <u>No</u>                | Yes<br>Yes                | Yes                                                                       | No                                 | Yes                                      | NA                                                  | Yes, clearly<br>defined but<br>based on<br>recall            | No<br>No                  | Not stated                                                          | No No                  |
| Roberts et al, 1986             | Yes                                | Yes                           | Unkno<br>wn -<br>respon<br>se rate<br>not<br>given | Yes                               | No                       | No                        | Unclea<br>r -<br>don't<br>have<br>age<br>breakd<br>own of<br>subjec<br>ts | Not                                | Yes, but<br>based on<br>parent<br>recall | NA                                                  | No - mix of<br>recall and<br>status quo                      | No                        | NA                                                                  | No                     |
| Stark, 1989                     | Yes                                | Yes                           | Not<br>provid<br>ed                                | Yes                               | No                       | Yes                       | Yes                                                                       | Not<br>clear                       | Yes                                      | NA                                                  | Yes, self-<br>report                                         | No                        | Not stated                                                          | No                     |
| Prapas et<br>al, 1989           | No                                 | No                            | Unkno<br>wn -<br>respon<br>se rate<br>not<br>given | Unknown -<br>details not<br>given | No                       | No                        | Yes                                                                       | Yes                                | Yes, but<br>based on<br>recall           | NA                                                  | Yes, but<br>based on<br>recall<br>Yes, but                   | No                        | NA                                                                  | No                     |
| Moisan et<br>al, 1990           | Yes                                | Yes                           | Yes                                                | Yes                               | No                       | Yes                       | Yes                                                                       | Yes                                | Yes, but<br>based on                     | NA                                                  | based on<br>recall                                           | No                        | Yes                                                                 | No                     |

|                        |     |       |              |                                                                                            |                                                                                 |     |                                                                 |     | parent<br>recall |    |                                                          |               |                                                                                                                                               |                                                                                                                                              |
|------------------------|-----|-------|--------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----|-----------------------------------------------------------------|-----|------------------|----|----------------------------------------------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Frisancho              |     | Not   | Not          |                                                                                            |                                                                                 |     |                                                                 |     |                  |    |                                                          |               |                                                                                                                                               |                                                                                                                                              |
| et al, 1994            | Yes | clear | stated       | Not stated                                                                                 | No                                                                              | Yes | Yes                                                             | No  | Yes              | NA | Unclear                                                  | Unclear       | Not stated                                                                                                                                    | No                                                                                                                                           |
| St. George             |     |       |              |                                                                                            |                                                                                 |     |                                                                 |     |                  |    | Yes, but<br>based on                                     |               |                                                                                                                                               |                                                                                                                                              |
| et al, 1994            | Yes | Yes   | Yes          | Yes                                                                                        | No                                                                              | Yes | Yes                                                             | Yes | Yes              | NA | recall                                                   | No            | Yes                                                                                                                                           | No                                                                                                                                           |
|                        |     |       |              |                                                                                            | Yes -<br>powe<br>r<br>calcul<br>ation<br>given<br>for<br>anthr<br>opom<br>etric |     | Yes,<br>though<br>unclea<br>r if all<br>girls<br>had            |     |                  |    |                                                          |               |                                                                                                                                               |                                                                                                                                              |
| Bhargava               |     |       | Not          |                                                                                            | analy                                                                           |     | outco                                                           |     |                  |    |                                                          | Not           |                                                                                                                                               |                                                                                                                                              |
| et al, 1995            | Yes | Yes   | stated       | Yes                                                                                        | ses                                                                             | Yes | me                                                              | No  | Yes              | NA | Yes                                                      | stated        | Not stated                                                                                                                                    | No                                                                                                                                           |
| Cooper et<br>al, 1996  | Yes | Yes   | Yes          | Yes                                                                                        | No                                                                              | Yes | Yes                                                             | Yes | Yes              | NA | Yes, but<br>based on<br>maternal<br>recall               | No            | No, response<br>for menarche<br>question<br>71%.<br>Compared<br>responders<br>and non-<br>responders<br>for early-life<br>characteristic<br>s | Birth order<br>adjusted<br>for, not birth<br>length.<br>Mutually<br>adjusted<br>regression<br>for<br>birthweight<br>and weight<br>at 7 years |
| Powls et al, 1996      | Yes | Yes   | Not          | Unknown<br>where 60<br>controls that<br>were not part<br>of original<br>study came<br>from | No                                                                              | Yes | Could<br>have<br>misse<br>d<br>earlier<br>pubert<br>al<br>onset | No  | Yes              | NA | Yes                                                      | Not<br>stated | S<br>Not stated                                                                                                                               | No                                                                                                                                           |
| Bacallao               | 165 | 165   | Not          | nom                                                                                        | INU                                                                             | 165 | UNSEL                                                           | NU  | 165              | NA | 165                                                      | Sidieu        | NUL SIALEU                                                                                                                                    | INU                                                                                                                                          |
| et al, 1996            | Yes | Yes   | stated       | Not stated                                                                                 | No                                                                              | Yes | Yes                                                             | Yes | Yes              | NA | Unclear                                                  | Unclear       | Not stated                                                                                                                                    | No                                                                                                                                           |
| Amador et              |     |       | Not          |                                                                                            | -                                                                               |     |                                                                 |     |                  | -  |                                                          |               |                                                                                                                                               | -                                                                                                                                            |
| al, 1996               | Yes | Yes   | stated       | Not stated                                                                                 | No                                                                              | Yes | Yes                                                             | Yes | Yes              | NA | Unclear                                                  | Unclear       | Not stated                                                                                                                                    | No                                                                                                                                           |
| Leger et<br>al, 1997   | Yes | Yes   | Yes<br>(58%) | Yes                                                                                        | No                                                                              | Yes | Yes                                                             | No  | Yes              | NA | Not stated                                               | No            | No (33<br>lost%)                                                                                                                              | No                                                                                                                                           |
| Persson et<br>al, 1999 | Yes | Yes   | Yes          | Yes                                                                                        | No                                                                              | Yes | Yes                                                             | Yes | Yes              | NA | No - no<br>description of<br>why so much<br>missing from | Yes           | No                                                                                                                                            | No                                                                                                                                           |

#### medical record

| Tenhola et<br>al, 2000        | Yes | Yes                       | Yes                 | Yes                                                            | No | Yes                          | Yes if<br>focus<br>is<br>early<br>menar<br>che                  | No  | Yes, but<br>did not<br>look at<br>differenc<br>es based<br>on<br>weight/h<br>eight<br>independ<br>ently | NA | Not stated | Not<br>stated               | Not stated<br>how many<br>participated<br>in 5y and 12y<br>follow-ups               | No                                                                           |
|-------------------------------|-----|---------------------------|---------------------|----------------------------------------------------------------|----|------------------------------|-----------------------------------------------------------------|-----|---------------------------------------------------------------------------------------------------------|----|------------|-----------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Berkey et<br>al, 2000         | Yes | Yes                       | Not<br>stated       | Yes                                                            | No | Yes                          | Yes                                                             | Yes | Yes                                                                                                     | NA | Yes        | Not<br>stated               | Yes, loss to<br>follow-up<br>close to 50%                                           | No - no<br>adjustment<br>for size at<br>birth;<br>adjusted for<br>later size |
| Ford et al,<br>2000           | Yes | Yes                       | Yes                 | Yes                                                            | No | Yes                          | Yes                                                             | No  | Yes                                                                                                     | NA | Yes        | Not<br>stated               | Depended<br>on the group<br>(30% loss in<br>NBW, 8% in<br>VLBW)                     | No                                                                           |
| Peralta-<br>Carcelen,<br>2000 | Yes | Yes                       | Yes                 | Yes                                                            | No | Only<br>for<br>case<br>group | Could<br>have<br>misse<br>d<br>earlier<br>pubert<br>al<br>onset | No  | Exposure<br>measure<br>d<br>different<br>for cases<br>and<br>controls                                   | NA | Yes        | Yes for<br>breast<br>Tanner | NA (cross-<br>sectional)                                                            | No                                                                           |
| Saigal,<br>2001               | Yes | Yes                       | Not<br>provid<br>ed | No (ELBW<br>and controls<br>recruited at<br>different<br>time) | No | Yes                          | Yes                                                             | No  | Unclear<br>how<br>exposure<br>assessed<br>in<br>controls                                                | NA | Unclear    | No                          | Yes (86-91%<br>follow-up)                                                           | No                                                                           |
| Adair,<br>2001                | Yes | Yes                       | Yes                 | Yes                                                            | No | Yes                          | Yes                                                             | Yes | Yes                                                                                                     | NA | Yes        | No                          | No (69% of<br>cohort were<br>interviewed<br>for 14-15<br>year<br>questionnair<br>e) | Yes                                                                          |
| Ghirri,<br>2001               | Yes | No -<br>not<br>enoug<br>h | Not<br>stated       | Yes                                                            | No | Yes                          | Yes                                                             | No  | Yes                                                                                                     | NA | Yes        | No                          | NA                                                                                  | No                                                                           |

| Benefice,<br>2001                     | Yes | details<br>given<br>about<br>selecti<br>on of<br>study<br>groups | Yes,<br>though<br>not at<br>all<br>visits | Yes                                                                                                                        | No | Yes | Longer<br>follow-<br>up<br>neede<br>d for<br>menar<br>che | No                                                                                                       | Yes                                                                                                                                | Yes | Yes                                                                                                        | No        | ~70% of<br>initial cohort<br>were found<br>again in<br>1995 | No                                                                                        |
|---------------------------------------|-----|------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----|-----|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----|------------------------------------------------------------------------------------------------------------|-----------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Koziel &<br>Jankowsk                  |     |                                                                  |                                           |                                                                                                                            |    |     |                                                           |                                                                                                          |                                                                                                                                    |     |                                                                                                            |           |                                                             |                                                                                           |
| a et al,<br>2002                      | Yes | Yes                                                              | Not<br>stated                             | Yes                                                                                                                        | No | Yes | Yes                                                       | No                                                                                                       | Yes                                                                                                                                | NA  | Yes                                                                                                        | No        | NA                                                          | No                                                                                        |
| dos<br>Santos<br>Silva et al,<br>2002 | Yes | Yes                                                              | Yes                                       | Yes                                                                                                                        | No | Yes | Yes                                                       | Yes,<br>though<br>could<br>have<br>looked<br>at infant<br>growth<br>as<br>continu<br>ous<br>exposur<br>e | Yes,<br>though<br>some<br>infants<br>had more<br>measure<br>s than<br>others to<br>contribut<br>e to<br>random<br>effects<br>model | Yes | No - 17% of<br>participants<br>had<br>menarche<br>recalled in<br>adulthood<br>instead of in<br>adolescence | No        | Yes (84%<br>followed)                                       | Yes                                                                                       |
| Delemarre<br>-van de<br>Waal,         |     |                                                                  | Not                                       |                                                                                                                            |    |     | Not                                                       |                                                                                                          |                                                                                                                                    |     |                                                                                                            |           |                                                             |                                                                                           |
| 2002                                  | Yes | No                                                               | stated                                    | Not stated                                                                                                                 | No | Yes | clear                                                     | Yes                                                                                                      | Yes                                                                                                                                | NA  | Yes                                                                                                        | Not clear | Not provided                                                | No                                                                                        |
| Hack,<br>2003                         | Yes | Yes                                                              | Not<br>stated                             | No, VLBW<br>and controls<br>recruited<br>differently                                                                       | No | Yes | Yes                                                       | No                                                                                                       | Unclear<br>how<br>assessed<br>for<br>controls                                                                                      | NA  | Unclear how assessed                                                                                       | No        | No, 64% of<br>controls<br>followed and<br>78% of<br>cases   | No                                                                                        |
| Romundst<br>ad et al,<br>2003         | Yes | Yes                                                              | Yes                                       | Yes, though<br>exclusion of<br>perinatal<br>conditions<br>that may<br>influence<br>birth weight<br>could affect<br>results | No | Yes | Yes                                                       | Yes                                                                                                      | Yes                                                                                                                                | NA  | Yes, though<br>some<br>misclassificat<br>ion could be<br>introduced<br>due to<br>missing data<br>on months | No        | Yes (90%)                                                   | No.<br>Gestational<br>age<br>controlled<br>for, and<br>parental<br>height in a<br>subset. |

details

| Windham<br>et al, 2004            | Yes        | Yes        | Yes                                                          | Yes, though<br>picked based<br>on earlier<br>inclusion | No       | Yes        | Yes                                                                                                     | No        | Yes                      | NA       | Yes - though<br>digit<br>preference | No      | Not provided                                                         | No                                                                              |
|-----------------------------------|------------|------------|--------------------------------------------------------------|--------------------------------------------------------|----------|------------|---------------------------------------------------------------------------------------------------------|-----------|--------------------------|----------|-------------------------------------|---------|----------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Veening et<br>al, 2004            | Yes        | Yes        | Not<br>provid<br>ed                                          | Yes                                                    | No       | Yes        | Yes                                                                                                     | No        | Yes                      | NA       | Yes                                 | Unclear | Not provided                                                         | No                                                                              |
| Trentham-<br>Dietz et al,<br>2005 | Yes        | Yes        | Yes                                                          | Yes                                                    | No       | No         | Limite<br>d<br>numbe<br>r of<br>girls<br>with<br>menar<br>che                                           | Yes       | No -<br>parent<br>recall | NA       | Yes                                 | No      | NA                                                                   | No                                                                              |
| van<br>Weissenbr<br>uch et al,    | Vee        | Vaa        | Not<br>provid                                                | Vec                                                    | No       | Vaa        | Vee                                                                                                     | No        | Vec                      | NIA      | Vec                                 | Unalgor |                                                                      |                                                                                 |
| 2006<br>Tam et al,<br>2006        | Yes<br>Yes | Yes<br>Yes | ed<br>Yes                                                    | Yes                                                    | No<br>No | Yes<br>Yes | Yes                                                                                                     | No<br>Yes | Yes                      | NA<br>NA | Yes                                 | Unclear | No; 156/215<br>were<br>interviewed<br>at age 15                      | No; only<br>BMI Z-<br>score at 8<br>years<br>controlled<br>for.                 |
| Sloboda et<br>al, 2007            | Yes        | Yes        | Details<br>not<br>provid<br>ed in<br>this<br>public<br>ation | Yes                                                    | No       | Yes        | Yes,<br>though<br>more<br>details<br>about<br>age at<br>censor<br>could<br>have<br>been<br>provid<br>ed | Yes       | Yes                      | NA       | Yes                                 | No      | No; 55% of<br>original<br>cohort of<br>girls included<br>in analysis | Yes                                                                             |
| <u>ai, 2007</u>                   | 163        | 163        | allon                                                        | 163                                                    |          | 163        | eu                                                                                                      | 163       | 163                      |          | 163                                 |         |                                                                      | No - all<br>variables<br>associated<br>in univariate<br>analyses<br>thrown into |
| Vandeloo<br>et al, 2007           | Yes        | Yes        | Yes                                                          | Yes                                                    | No       | Yes?       | Unclea<br>r                                                                                             | Yes       | Unclear                  | NA       | Unclear<br>Yes - but                | Unclear | NA                                                                   | same<br>model<br>No -                                                           |
| Blell et al,<br>2008              | Yes        | Yes        | No                                                           | Yes                                                    | No       | Yes        | Yes                                                                                                     | Yes       | Yes                      | NA       | based on<br>recall when<br>50 years | No      | Yes                                                                  | univariable<br>models<br>shown only                                             |

|     | Bosch et<br>al, 2008     | Yes | Yes | Yes                                                             | Yes                                  | No                                                 | Yes | Yes                                                     | No            | No -<br>parent<br>recall<br>(small,<br>normal,<br>tall) | No | Yes                                                                                                  | No | Yes - LTFU<br>right around<br>20%                                                             | No                                           |
|-----|--------------------------|-----|-----|-----------------------------------------------------------------|--------------------------------------|----------------------------------------------------|-----|---------------------------------------------------------|---------------|---------------------------------------------------------|----|------------------------------------------------------------------------------------------------------|----|-----------------------------------------------------------------------------------------------|----------------------------------------------|
|     | Chaudhari<br>et al, 2008 | Yes | Yes | Not<br>stated                                                   | Yes                                  | No                                                 | Yes | Unclea<br>r - %<br>with<br>menar<br>che<br>not<br>given | No            | Yes                                                     | NA | Yes - based<br>on parent<br>report                                                                   | No | Not stated                                                                                    | No                                           |
|     | Opdahl et<br>al, 2008    | Yes | Yes | Yes<br>Details<br>not<br>provid                                 | Yes                                  | No                                                 | Yes | Yes                                                     | Yes           | Yes                                                     | NA | Yes                                                                                                  | No | No                                                                                            | No                                           |
|     | Windham<br>et al, 2008   | Yes | Yes | ed in<br>this<br>public<br>ation<br>Details                     | No - selected<br>for birth<br>weight | No                                                 | Yes | Yes                                                     | Yes           | Yes                                                     | NA | Yes - adult<br>recall                                                                                | No | Not stated                                                                                    | Yes                                          |
| 288 | Salsberry<br>et al, 2009 | Yes | Yes | not<br>provid<br>ed in<br>this<br>public<br>ation               | Yes                                  | No                                                 | Yes | Yes                                                     | Yes           | Yes                                                     | NA | Yes - mix of<br>parent and<br>self-recall                                                            | No | Yes (90% of<br>eligible<br>sample<br>included)                                                | No                                           |
|     | Rubin et<br>al, 2009     | Yes | Yes | Yes,<br>though<br>eligilibi<br>lity<br>criteria<br>not<br>clear | Yes                                  | No                                                 | Yes | Yes - if<br>early<br>menar<br>che is<br>focus           | Yes           | Yes                                                     | NA | Yes, but<br>based on<br>different<br>percentage<br>of<br>questionnair<br>e completion<br>at each age | No | Yes - ~80%<br>of<br>participants<br>completed at<br>least one<br>puberty<br>questionnair<br>e | Only in pre-<br>pregnancy<br>BMI<br>analysis |
|     | Labayen<br>et al, 2009   | Yes | Yes | Details<br>not<br>provid<br>ed in<br>this<br>public<br>ation    | Yes                                  | Yes -<br>samp<br>le<br>size<br>need<br>ed<br>given | Yes | Yes                                                     | Yes           | Yes                                                     | NA | Yes, but<br>reported to<br>nearest year<br>only                                                      | No | NA, but less<br>than 80%<br>included in<br>analyses due<br>to missing<br>data                 | No                                           |
|     | Semiz et<br>al, 2009     | Yes | Yes | Not<br>stated                                                   | Yes                                  | Yes -<br>target<br>samp<br>le<br>size<br>given     | No  | Age<br>range<br>sufficie<br>nt, but<br>unclea<br>r how  | Not<br>stated | Not<br>stated                                           | NA | Unclear                                                                                              | No | NA, but<br>unclear why<br>degree of<br>missing data<br>so high                                | No                                           |

| Keim et al,<br>2009            | Yes | Yes                                  | Details<br>not<br>provid<br>ed in<br>this<br>public<br>ation | No - selected<br>for birth<br>weight              | No  | Yes | Yes                                         | Yes                                                                                  | Yes | NA | Yes, but<br>recalled in<br>adulthood                                                                             | No            | Not stated                                                                     | Yes                                                                                      |
|--------------------------------|-----|--------------------------------------|--------------------------------------------------------------|---------------------------------------------------|-----|-----|---------------------------------------------|--------------------------------------------------------------------------------------|-----|----|------------------------------------------------------------------------------------------------------------------|---------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| 2000                           | 103 | 103                                  | aton                                                         | weight                                            | 110 | 103 | Yes -<br>though<br>50%<br>still             | 103                                                                                  | 103 |    |                                                                                                                  | 110           | Not stated                                                                     | No -<br>unclear if<br>infant<br>growth<br>association                                    |
| Ong et al,                     |     |                                      | Not                                                          |                                                   |     |     | pre-<br>menar                               |                                                                                      |     |    | Yes, but use<br>of imputed                                                                                       |               |                                                                                | s adjusted<br>for birth                                                                  |
| 2009                           | Yes | Yes                                  | stated                                                       | Yes                                               | No  | Yes | che                                         | Yes                                                                                  | Yes | NA | data                                                                                                             | No            | Not stated                                                                     | weight                                                                                   |
| Terry et al,                   |     |                                      | Yes,<br>among<br>those                                       |                                                   |     |     |                                             | Not for<br>materna<br>I<br>measur<br>e, yes<br>for birth<br>and<br>infancy<br>measur |     |    | Yes, but<br>based on                                                                                             |               | No, high loss<br>to follow-up,<br>but those lost<br>didn't differ<br>by most   |                                                                                          |
| 2009                           | Yes | Yes                                  | traced                                                       | Yes                                               | Yes | Yes | Yes                                         | es                                                                                   | Yes | NA | adult recall                                                                                                     | No            | measures                                                                       | Yes                                                                                      |
| Karaolis-<br>Danckert,<br>2009 | Yes | Yes                                  | Not<br>stated                                                | Yes, but<br>excluded low<br>birthweight<br>babies | No  | Yes | Yes                                         | No                                                                                   | Yes | NA | Yes, but pre-<br>menarche<br>girls may<br>have been<br>excluded.<br>Also mixture<br>of parent and<br>self-report | No            | Not clearly<br>stated, but<br>appears to<br>be>20%<br>based on<br>missing data | No<br>(maternal<br>factors;<br>birthweight<br>always<br>adjusted for<br>later<br>growth) |
| Espetvedi<br>Finstad,          |     |                                      | Not                                                          |                                                   |     |     |                                             |                                                                                      |     |    | Yes, but<br>recalled in                                                                                          |               | NA (cross-                                                                     |                                                                                          |
| 2009                           | Yes | Yes                                  | stated                                                       | Yes                                               | No  | Yes | Yes                                         | Yes                                                                                  | Yes | NA | adulthood                                                                                                        | No            | sectional)                                                                     | No                                                                                       |
| Mesa,<br>2010                  | Yes | Yes                                  | Not                                                          | Yes                                               | No  | Yes | Yes                                         | Yes                                                                                  | Yes | NA | Yes, but<br>recalled in<br>adulthood                                                                             | No            | No                                                                             | Yes, though<br>no<br>adjustment<br>for birth<br>size                                     |
| Boyne,<br>2010                 | Yes | No -<br>age<br>range<br>not<br>clear | Not<br>stated                                                | Yes                                               | No  | Yes | Unclea<br>r - age<br>of<br>partici<br>pants | Yes                                                                                  | Yes | NA | Unclear how outcome was assessed                                                                                 | Not<br>stated | No, high loss<br>to follow-up,<br>but those lost<br>didn't differ              | No                                                                                       |

analyz ed

|                            |            |     |                           |                                                                                  |          |                                   | not<br>stated,<br>unclea<br>r if any<br>were<br>censor<br>ed |     |                                                            |          |                                                                  |     | by most<br>measures                      |                                                                                                                                                   |
|----------------------------|------------|-----|---------------------------|----------------------------------------------------------------------------------|----------|-----------------------------------|--------------------------------------------------------------|-----|------------------------------------------------------------|----------|------------------------------------------------------------------|-----|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Epplein,<br>2010           | Yes        | Yes | Not<br>stated             | No - some<br>girls were<br>selected 5-7<br>years after<br>initial<br>recruitment | No       | Only<br>for<br>linke<br>d<br>data | Yes                                                          | Yes | Mixture<br>of recall<br>and<br>record<br>data              | NA       | Yes                                                              | No  | NA (cross-<br>sectional)                 | No                                                                                                                                                |
| Maisonet,                  | Vac        | Vec | Depen<br>ds on<br>analysi | Yes, but<br>excluded<br>preterm<br>babies and<br>many without<br>infancy         | No       | Yee                               | Unclea<br>r -<br>mean<br>age of<br>partici<br>pants<br>not   | Yee | Vac                                                        | NA       | Yes, but<br>mixture of<br>parent/daugh                           | No  | Not provided                             | Ver                                                                                                                                               |
| 2010<br>Christense         | Yes        | Yes | s<br>Yes                  | measures<br>Yes                                                                  | No<br>No | Yes                               | given<br>Yes                                                 | Yes | Yes<br>Yes, but<br>self-                                   | NA<br>NA | ter report<br>Yes, but<br>mixture of<br>parent/daugh             | No  | Not provided                             | Yes                                                                                                                                               |
| n, 2010<br>Morris,<br>2010 | Yes<br>Yes | Yes | Not<br>stated             | Not stated                                                                       | No       | No                                | Yes                                                          | Yes | report<br>Yes, but<br>self-<br>report                      | NA       | ter report<br>Yes, but self-<br>report                           | No  | Not provided<br>NA (cross-<br>sectional) | Yes<br>Yes, though<br>adjusted for<br>later size in<br>multivariabl<br>e model                                                                    |
| Ruder, 2010                | Yes        | Yes | Not                       | Not stated                                                                       | No       | No                                | Yes                                                          | Yes | No, use<br>of self-<br>report<br>and<br>maternal<br>report | NA       | No, mix of<br>prospective<br>and<br>retrospective<br>data        | No  | Not stated                               | No                                                                                                                                                |
| Olivo-<br>Marston,<br>2010 | Yes        | Yes | Not<br>stated             | Yes                                                                              | No       | No                                | Yes                                                          | Yes | Yes, but<br>maternal<br>report                             | NA       | Yes, clinician<br>assessment<br>(though<br>without<br>palpation) | Yes | NA (cross-<br>sectional)                 | No, didn't<br>have<br>information<br>on<br>gestational<br>age or<br>parent<br>characteristi<br>cs.<br>Adjusted for<br>height and<br>BMI at visit. |

| Cho, 2010                    | Yes | Yes | Not<br>stated       | Yes                                                                          | No | No  | Yes | Yes | Yes, but<br>maternal<br>report                             | NA | Yes, but self-<br>report                                                             | No      | NA (cross-<br>sectional)                                                                      | No                                                                  |
|------------------------------|-----|-----|---------------------|------------------------------------------------------------------------------|----|-----|-----|-----|------------------------------------------------------------|----|--------------------------------------------------------------------------------------|---------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| Shrestha, 2011               | Yes | Yes | Yes                 | Yes                                                                          | No | Yes | Yes | Yes | Yes                                                        | NA | Self-report,<br>~50% to<br>nearest year<br>only and<br>50% with<br>month and<br>year | No      | No, 72% of<br>participants<br>were asked<br>follow-up<br>information<br>on age at<br>menarche | Yes                                                                 |
| Boynton-<br>Jarrett,<br>2011 | Yes | Yes | Not<br>provid<br>ed | Yes                                                                          | No | No  | Yes | Yes | Yes, but<br>maternal<br>report                             | NA | Yes, but self-<br>report in<br>categories                                            | No      | NA (cross-<br>sectional)                                                                      | Yes, though<br>adjusted for<br>variables<br>later in life<br>course |
| Chevalley,<br>2011           | Yes | Yes | Not<br>provid<br>ed | Yes                                                                          | Мо | Yes | Yes | Yes | No, use<br>of<br>maternal/<br>pediatrici<br>an report      | NA | Yes, but self-<br>report                                                             | No      | Not provided                                                                                  | No                                                                  |
| Orden,<br>2011               | Yes | Yes | Not<br>provid<br>ed | Unclear how<br>schools were<br>selected                                      | No | No  | Yes | Yes | Yes, but<br>maternal<br>report                             | NA | Yes, but<br>status quo                                                               | No      | NA (cross-<br>sectional)                                                                      | No                                                                  |
| Papadimitr<br>iou, 2011      | Yes | No  | Not<br>provid<br>ed | Unclear how<br>controls were<br>selected                                     | No | Yes | Yes | Yes | Yes                                                        | NA | Unclear is<br>physician<br>palpation<br>was<br>assessed in<br>all groups             | Unclear | NA (cross-<br>sectional)                                                                      | No                                                                  |
| Wehkalam<br>pi, 2011         | Yes | Yes | Not<br>provid<br>ed | Ye                                                                           | No | Yes | Yes | No  | Yes                                                        | NA | Yes, but self-<br>report                                                             | No      | Not stated,<br>but less than<br>80% of<br>original<br>cohort<br>included in<br>analyses       | No                                                                  |
| Szwed, 2012                  | Yes | No  | Not<br>provid<br>ed | Not stated                                                                   | No | Yes | Yes | Yes | Yes                                                        | NA | No, excluded<br>girls <17<br>years                                                   | No      | NA (cross-<br>sectional)                                                                      | No                                                                  |
| Reagan,<br>2012              | Yes | Yes | Not<br>provid<br>ed | No (African-<br>American<br>and white<br>samples<br>selected<br>differently) | No | Yes | Yes | Yes | Yes,<br>maternal<br>report<br>but near<br>time of<br>birth | NA | No, mix of<br>parent report<br>and self-<br>report                                   | No      | Yes, though<br>only 78%<br>included in<br>analyses due<br>to missing<br>data                  | Yes, though<br>also<br>adjusted for<br>pre-pubertal<br>BMI          |
| Wang,<br>2012                | Yes | Yes | Not<br>provid<br>ed | Yes, but<br>convenience<br>sample                                            | No | Yes | Yes | Yes | Yes, but<br>maternal<br>exposure<br>s were                 | NA | No, mix of<br>parent report<br>and self-<br>report                                   | No      | No, 30% lost<br>to follow-up                                                                  | Yes, though<br>no<br>adjustment<br>for                              |

|                    |     |     |                     |                                |     |     |                                 |               | self-<br>reported                                                              |      |                                                            |                                                                |                                                                                          | length/heig<br>ht                |
|--------------------|-----|-----|---------------------|--------------------------------|-----|-----|---------------------------------|---------------|--------------------------------------------------------------------------------|------|------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------|
| Oh, 2012           | Yes | Yes | Yes                 | Yes                            | No  | No  | Yes                             | Yes           | Yes, but<br>maternal<br>report                                                 | NA   | No, mix of<br>parent report<br>and self-<br>report         | No                                                             | NA (cross-<br>sectional)                                                                 | No                               |
|                    |     |     |                     |                                |     |     |                                 |               |                                                                                |      |                                                            | Unclear<br>(doctors<br>may<br>have had<br>access to<br>earlier |                                                                                          |                                  |
| Hui, 2012          | Yes | Yes | Yes                 | Yes                            | No  | Yes | Yes                             | Yes           | Yes                                                                            | NA   | Yes                                                        | records)                                                       | Yes                                                                                      | Yes                              |
| Dossus,            |     |     | No                  |                                |     |     |                                 |               | Yes, but<br>self-<br>report.<br>Excluded<br>pre-term<br>for<br>birthweig<br>ht |      | Yes, but self-<br>report.<br>Excluded<br>early and<br>late |                                                                |                                                                                          | Yes, though<br>could be<br>over- |
| 2012               | Yes | Yes | (20%)               | Yes                            | No  | No  | Yes                             | Yes           | analysis                                                                       | NA   | menarche                                                   | No                                                             | Not provided                                                                             | adjusted                         |
| D'Aloisio,<br>2013 | Yes | Yes | Not<br>provid<br>ed | Yes                            | No  | No  | Yes                             | Yes           | Yes, but<br>self-<br>report                                                    | NA   | Yes, but self-<br>report                                   | No                                                             | NA (cross-<br>sectional)                                                                 | Yes                              |
| Sorensen,          | 163 | 163 | eu                  | 163                            | INO | NO  | 163                             | 163           | Тероп                                                                          | INA. | Yes, but self-                                             | NO                                                             | sectional                                                                                | Yes by                           |
| 2013               | Yes | Yes | Yes                 | Yes                            | No  | Yes | Yes                             | Yes           | Yes                                                                            | NA   | report                                                     | No                                                             | NA                                                                                       | design                           |
| Deardorff,<br>2013 | Yes | Yes | Not<br>provid<br>ed | Yes                            | No  | Yes | Yes                             | Yes           | Yes, but<br>self-                                                              | NA   | Yes, but self-                                             | No                                                             | Not reported,<br>though only<br>64%<br>included in<br>analyses due<br>to missing<br>data | Yes                              |
| 2013               | res | res | eu                  | res                            | INO | res | res                             | res           | report                                                                         | NA   | report                                                     | INU                                                            | No, only                                                                                 | res                              |
| Hernande           |     |     | Not<br>provid       |                                |     |     | Neede<br>d<br>longer<br>follow- |               |                                                                                |      | Unclear how outcome was                                    |                                                                | 41/71<br>(57.8%)<br>completed 3<br>years of                                              |                                  |
| z, 2013            | Yes | Yes | ed                  | Yes                            | No  | Yes | up                              | No            | Yes                                                                            | NA   | assessed                                                   | Unclear                                                        | follow-up                                                                                | No                               |
| Jahanfar,<br>2013  | Yes | Yes | Not<br>provid<br>ed | Yes                            | No  | No  | Yes                             | Not<br>stated | Not<br>stated                                                                  | NA   | Yes, but self-<br>report                                   | No                                                             | NA (cross-<br>sectional)                                                                 | No                               |
| Kale, 2014         | Yes | Yes | Not<br>provid<br>ed | No<br>(differences<br>by site) | No  | Yes | Yes                             | No            | Yes, but<br>maternal<br>report in<br>adolesce<br>nce                           | NA   | Yes                                                        | Unclear                                                        | Not reported                                                                             | No                               |

Ş

|     | Zhang &<br>Hartman,<br>2014   | Yes | Yes | Not<br>provid<br>ed | No -<br>excluded all<br>pre-<br>menarche<br>girls | No | No  | Yes                                         | Yes | Yes, but<br>maternal<br>report in<br>adolesce<br>nce | NA | Yes, but self-<br>report                     | No      | NA (cross-<br>sectional)                       | No,<br>adjusted for<br>adolescent<br>body size in<br>all analyses    |
|-----|-------------------------------|-----|-----|---------------------|---------------------------------------------------|----|-----|---------------------------------------------|-----|------------------------------------------------------|----|----------------------------------------------|---------|------------------------------------------------|----------------------------------------------------------------------|
|     | Gavela-<br>Perez,             |     |     | Not<br>provid       |                                                   |    |     |                                             |     | Yes, but<br>maternal<br>report in<br>adolesce        |    | Yes, but self-                               |         |                                                |                                                                      |
|     | 2015                          | Yes | Yes | ed                  | Yes                                               | No | Yes | Yes                                         | Yes | nce                                                  | NA | report                                       | No      | Yes                                            | No                                                                   |
|     | Meulenijze<br>r, 2015         | Yes | No  | Not<br>provid<br>ed | Not provided                                      | No | No  | Yes                                         | Yes | Yes, but<br>maternal<br>report in<br>adolesce<br>nce | NA | Yes, but self-<br>report                     | No      | NA (cross-<br>sectional)                       | No                                                                   |
|     | German, 2015                  | Yes | Yes | Not<br>provid<br>ed | Not provided                                      | No | Yes | Yes                                         | Yes | Yes                                                  | NA | Yes                                          | Unclear | No (71%<br>followed up<br>through 15.5<br>y)   | No                                                                   |
|     | Salgin,<br>2015               | Yes | Yes | Not<br>provid<br>ed | Yes                                               | No | Yes | Yes                                         | No  | Yes                                                  | NA | Yes                                          | No      | No (68%<br>followed up<br>through 18<br>years) | Yes                                                                  |
| 293 | Behie &<br>O'Donnell,<br>2015 | Yes | Yes | Not<br>provid<br>ed | Not provided                                      | No | Yes | Yes,<br>though<br>a lot of<br>censor<br>ing | Yes | Yes, but<br>parent<br>report                         | NA | Yes, but<br>parent report                    | No      | No (61%<br>included in<br>analysis)            | No,<br>adjusted for<br>adolescent<br>body size in<br>all analyses    |
|     | Wells,<br>2016                | Yes | Yes | No<br>(30%)         | Yes                                               | No | No  | Yes                                         | Yes | Yes, but<br>self-<br>report                          | NA | Yes, but self-<br>report                     | No      | NA (cross-<br>sectional)                       | No                                                                   |
|     | Mariansda<br>tter, 2016       | Yes | Yes | Yes                 | Yes                                               | No | Yes | Yes                                         | Yes | Yes, but<br>self-<br>report                          | NA | Yes, but self-<br>report                     | No      | Yes (83%)                                      | No                                                                   |
|     | Krzyzano<br>wska,<br>2016     | Yes | Yes | Yes                 | Yes                                               | No | Yes | Yes                                         | Yes | Yes                                                  | NA | Yes, but self-<br>report                     | No      | Not stated                                     | No                                                                   |
|     | Schulte,<br>2016              | Yes | Yes | Not<br>provid<br>ed | Yes                                               | No | Yes | Yes                                         | No  | Yes                                                  | NA | Yes, but mix<br>of parent and<br>self-report | No      | Not stated                                     | By design                                                            |
|     | Kubo,<br>2016                 | Yes | Yes | Not<br>provid<br>ed | Yes                                               | No | Yes | Yes                                         | Yes | Yes, but<br>self-<br>report                          | NA | Yes                                          | Unclear | Yes                                            | Yes                                                                  |
|     | Aydin,<br>2017                | Yes | Yes | No<br>(31.4<br>%)   | Yes                                               | NO | Yes | Early<br>breast<br>develo<br>pment<br>only  | Yes | Yes                                                  | NA | Yes                                          | Unclear | NA<br>(retrospectiv<br>e)                      | No<br>(maternal<br>factors;<br>birthweight<br>always<br>adjusted for |

| Aurino,<br>2017             | Yes | Yes | Not<br>provid<br>ed | Yes (by country) | No | Yes | Yes,<br>early<br>menar<br>che<br>only | Yes | No,<br>different<br>sources<br>of<br>birthweig<br>ht<br>informati<br>on | NA   | Yes, but self-<br>report     | No      | Yes (5.2%)                | Yes, though<br>no<br>birthlength,<br>gestational<br>age or<br>maternal<br>body size<br>data |
|-----------------------------|-----|-----|---------------------|------------------|----|-----|---------------------------------------|-----|-------------------------------------------------------------------------|------|------------------------------|---------|---------------------------|---------------------------------------------------------------------------------------------|
| Flom,                       | Maa | N   | N                   | N                | NL | N   | N                                     | Maa | M                                                                       | N1.0 | Yes, but self-               | NL-     | \$ <b>4</b>               | Maa                                                                                         |
| 2017                        | Yes | Yes | Yes                 | Yes              | No | Yes | Yes                                   | Yes | Yes                                                                     | NA   | report                       | No      | NA                        | Yes                                                                                         |
| Workman<br>& Kelly,<br>2017 | Yes | Yes | Not<br>provid<br>ed | Yes              | No | No  | Yes                                   | Yes | Yes, but<br>self-<br>report                                             | NA   | Yes, but self-<br>report     | No      | NA (cross-<br>sectional)  | No                                                                                          |
| Kelly,<br>2017              | Yes | Yes | Not<br>provid<br>ed | Yes              | No | Yes | Yes,<br>early<br>menar<br>che<br>only | Yes | Yes, but<br>self-<br>report                                             | NA   | Yes, but<br>mother<br>report | No      | Not provided              | No                                                                                          |
| Lawn et al,<br>2018         | Yes | Yes | Not<br>provid<br>ed | Yes              | No | Yes | Yes                                   | Yes | Yes                                                                     | NA   | Yes, but self-<br>report     | No      | No but no<br>difference   | Yes                                                                                         |
| Kubo et al,<br>2018         | Yes | Yes | Yes                 | Yes              | No | Yes | Yes                                   | Yes | Yes                                                                     | NA   | Yes                          | Unclear | NA<br>(retrospectiv<br>e) | Yes                                                                                         |

| Article                  | 1.<br>Representativ<br>eness of the<br>exposed<br>cohort    | 2. Selection of<br>the non-<br>exposed cohort  | 3.<br>Ascertainment<br>of exposure | 4.<br>Demonstratio<br>n that<br>outcome of<br>interest was<br>not present<br>at start of<br>study | 5.<br>Comparability<br>of cohorts on<br>the basis of<br>design or<br>analysis                             | 6.<br>Assessme<br>nt of<br>outcome | 7. Follow-up<br>long<br>enough for<br>outcomes to<br>occur | 8. Adequacy<br>of follow-up<br>for cohorts<br>(modified for<br>adequacy of<br>response rate<br>for cross-<br>sectional<br>studies) | Total score<br>(Max 9) |
|--------------------------|-------------------------------------------------------------|------------------------------------------------|------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| Miller et al,<br>1972    | Representativ<br>e (1)                                      | Same as<br>exposed (1)                         | Medical records<br>(1)             | Yes (1)                                                                                           | No analytic controls (0)                                                                                  | Not clear<br>(0)                   | Yes (1)                                                    | 60% followed<br>up, no<br>comparison<br>provided (0)                                                                               |                        |
| Zacharias et<br>al, 1976 | Volunteers (0)                                              | Same as<br>exposed (1)                         | Unclear (0)                        | Yes (1)                                                                                           | No analytic controls (0)                                                                                  | Self-report?<br>(0)                | Yes (1)                                                    | Subjects loss to<br>follow-up less<br>than 20% (1)                                                                                 |                        |
| Billewicz et al,<br>1981 | Limited<br>description<br>provided (0)                      | Same as<br>exposed (1)                         | Unclear (0)                        | Yes (1)                                                                                           | No analytic controls (0)                                                                                  | Self-report<br>(0)                 | Yes (1)                                                    | Subjects loss to<br>follow-up less<br>than 20% (1)                                                                                 |                        |
| Fledelius et<br>al, 1982 | Details not provided (0)                                    | Details not<br>provided (0)                    | Hospital record (1)                | Yes (1)                                                                                           | Not enough<br>information to<br>determine(0)                                                              | Self-report<br>(0)                 | Yes(1)                                                     | Not provided                                                                                                                       |                        |
| Westwood et<br>al, 1983  | Somewhat<br>representative<br>(1)                           | Drawn from<br>same community<br>as exposed (1) | Hospital record<br>(1)             | Yes (1)                                                                                           | Matched on<br>factors like SES<br>and race (1),<br>but no<br>statistical<br>controls                      | Self-report<br>(0)                 | Yes (1)                                                    | Significant<br>number of<br>subjects lost<br>(70%),<br>comparison<br>provided of<br>those studied<br>vs. not studied<br>(1)        |                        |
| Roberts et al,<br>1986   | Somewhat<br>representative<br>(1)                           | Drawn from<br>same community<br>as exposed (1) | Parent self-<br>report (0)         | No (0)                                                                                            | Controlled for<br>birth order and<br>family size (1),<br>no control for<br>birth length or<br>parent size | Self-report                        | Unclear (no<br>age range,<br>given, 0)                     | No response<br>rate given (0)                                                                                                      |                        |
| Stark, 1989              | Representativ<br>e (1)                                      | Same as<br>exposed (1)                         | Records (1)                        | Yes (1)                                                                                           | Comparable on<br>design, no<br>analytic<br>controls (1)                                                   | Self-report<br>(0)                 | Yes (1)                                                    | Loss to follow-<br>up rate not<br>provided (0)                                                                                     |                        |
| Prapas et al,<br>1989    | Students, not<br>clearly defined<br>who<br>participated (0) | Same as<br>exposed (1)                         | Self-report (0)                    | No (0)                                                                                            | Limited design<br>or analytic<br>controls (0)                                                             | Self-report<br>(0)                 | Yes (1)                                                    | No response<br>rate given (0)                                                                                                      |                        |

## Supplemental Table 2.8. Newcastle-Ottawa Scale quality assessment of included studies

| Frisancho et<br>al, 1994  | Details not provided (0)                                                 | Same as<br>exposed (1)                                                                       | Records (1)                                | Yes (1) | No analytic controls (0)                                                                                | Unclear (0)                                                                                     | Yes (1)                                                                                                   | Not provided<br>(0)                                                                                                                                | 4   |
|---------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------|---------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| St. George et<br>al, 1994 | Somewhat<br>representative<br>(1)                                        | Same as<br>exposed (1)                                                                       | Records (1)                                | Yes (1) | No analytic controls (0)                                                                                | Self-report                                                                                     | Yes (1)                                                                                                   | Subjects loss to<br>follow-up less<br>than 20% (1)                                                                                                 | 6   |
| Bhargava et<br>al, 1995   | No description;<br>unclear if all<br>LBW infants<br>were selected<br>(0) | Same as<br>exposed (1)                                                                       | Hospital record<br>(1)                     | Yes (1) | Matched on<br>parental height,<br>education and<br>SES (1), not<br>analytic<br>controls                 | Self-report<br>(0)                                                                              | Unclear (not<br>clear how<br>many were<br>right<br>censored<br>and actually<br>followed to<br>age 14) (0) | Loss to follow-<br>up not shown<br>(0)                                                                                                             | 4   |
| Cooper et al,<br>1996     | Representativ<br>e (1)                                                   | Same as<br>exposed (1)                                                                       | Health visitor or<br>midwife record<br>(1) | Yes (1) | Controlled for<br>birth order and<br>SES, not for<br>birth length,<br>other early-life<br>variables (1) | Maternal<br>report (0)                                                                          | Yes(1)                                                                                                    | Response rate<br>for this analysis<br>(71%), did<br>compare<br>responders with<br>non-responders<br>(1)                                            | 7   |
| Powls et al,<br>1996      | Details not<br>provided (0)                                              | Some were<br>same as<br>exposed, details<br>on other sources<br>of controls not<br>clear (0) | Hospital record<br>(1)                     | Yes (1) | Matched on<br>age, sex and<br>school (1), no<br>analytic<br>controls                                    | Clinical<br>rating for<br>breast<br>developme<br>nt (1), self-<br>report for<br>menarche<br>(0) | No(0) - for<br>menarche                                                                                   | Response rate<br>not given (0)                                                                                                                     | 3-4 |
| Bacallao et al,<br>1996   | Details not<br>provided,<br><2500g were<br>excluded (0)                  | Same as<br>exposed (1)                                                                       | Obstetric card                             | Yes (1) | No analytic controls (0)                                                                                | Unclear (0)                                                                                     | Yes (1)                                                                                                   | Follow-up rate                                                                                                                                     | 4   |
| Bacallao et al,<br>1996   | Details not<br>provided,<br><2500g were<br>excluded (0)                  | Same as<br>exposed (1)                                                                       | Obstetric card                             | Yes (1) | No analytic controls (0)                                                                                | Unclear (0)                                                                                     | Yes (1)                                                                                                   | Follow-up rate                                                                                                                                     | 4   |
| Leger et al,<br>1997      | Representativ<br>e (1)                                                   | Same as<br>exposed (1)                                                                       | Birth registry (1)                         | Yes (1) | Design<br>comparable, no<br>analytic<br>controls (1)                                                    | Unclear (0)                                                                                     | Yes (1)                                                                                                   | 67% followed<br>(0)                                                                                                                                | 6   |
| Persson et al,<br>1999    | Representativ<br>e (1)                                                   | Same as<br>exposed (1)                                                                       | Hospital record<br>(1)                     | Yes (1) | Comparable<br>based on<br>design (1),<br>limited analytic<br>controls(0)                                | Medical<br>record (1)                                                                           | Yes(1)                                                                                                    | Menarche data<br>missing for<br>many<br>participants, no<br>description of<br>differences<br>between those<br>with and<br>without<br>menarche data | 7   |

### in medical record (0)

| Tenhola et al,<br>2000              | Representativ<br>e (1)                                                                                                                     | Same as<br>exposed (1)                  | Hospital record<br>(1)                                          | Yes (1) | Comparable<br>based on<br>design (1),<br>limited analytic<br>controls(0)                                                             | Self-report<br>(0)                                                                    | No(0) - for<br>menarche | ~25% of SGA<br>subjects did not<br>participate, did<br>not differ from<br>those that did<br>based on birth<br>measures(1)        | 6   |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----|
| Berkey et al,<br>2000               | Selected -<br>"likely to<br>maintain<br>residence near<br>Boston and<br>committed to<br>having their<br>child in a long<br>term study" (0) | Same as<br>exposed (1)                  | Measured by<br>doctor (1)                                       | Yes (1) | Comparable on<br>design,<br>inappropriate<br>analytic control<br>for later growth,<br>unclear<br>averaging of<br>measures(1)         | Self-report<br>(0)                                                                    | Yes(1)                  | Almost 50%<br>loss to follow-<br>up; did not<br>differ by birth<br>size (0)                                                      | 5   |
| Ford et al,<br>2000                 | Selected<br>survivors (0)                                                                                                                  | Same as<br>exposed (1)                  | Hospital record                                                 | Yes (1) | VLBW group<br>older than other<br>groups, no<br>analytic<br>controls (0)                                                             | Self-report                                                                           | Yes(1)                  | Loss to follow-<br>up differed by<br>group, 30% in<br>NBW (0)                                                                    | 4   |
| Peralta-<br>Carcelen et<br>al, 2000 | Selected<br>survivors (0)                                                                                                                  | Drawn from a<br>different source<br>(0) | Medical record<br>for cases, recall<br>for controls (0)         | No (0)  | Matched on<br>age, sex, race<br>and SES (1),<br>no analytic<br>controls                                                              | Self-report<br>for<br>menarche<br>(0), clinician<br>assessment<br>for breast<br>TS(1) | Yes(1)                  | 82.6%<br>response rate<br>for cases, not<br>given for<br>controls (0)                                                            | 2-3 |
| Saigal et al,<br>2001               | Selected<br>survivors (0)                                                                                                                  | Drawn from a<br>different source<br>(0) | Medical records<br>for cases, not<br>stated for<br>controls (0) | Yes (1) | Matched on<br>age, sex and<br>SES (1), no<br>analytic<br>controls                                                                    | Self-report<br>(0)                                                                    | Yes (1)                 | >80% follow-up<br>rate for cases<br>and controls (1)                                                                             | 4   |
| Adair, 2001                         | Representativ<br>e (1)                                                                                                                     | Same as<br>exposed (1)                  | Measured by study staff (1)                                     | Yes (1) | Comparable on<br>design and<br>adjusted for<br>appropriate<br>confounders.<br>Results shown<br>with and<br>without<br>adjustment for | Self-report<br>(0)                                                                    | Yes (1)                 | Response rate<br>for 14-15 year<br>follow-up 69%,<br>did compare<br>characteristics<br>of those lost<br>with<br>participants (1) | 8   |

### characteristics at 8 years (2)

| Ghirri, 2001                   | No description;<br>unclear if all<br>SGA infants<br>were selected<br>(0) | Same as<br>exposed (1)                  | Hospital record<br>(1)                                          | Yes (1) | Comparable on<br>design, no<br>analytic<br>controls (1)                                                                                                             | Self-<br>report(0)           | Yes(1)                  | Response rates<br>not given(0)                                                                                          | 5 |
|--------------------------------|--------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------|---|
| Benefice,<br>2001              | Representativ<br>e (1)                                                   | Same as<br>exposed (1)                  | Measured by study staff (1)                                     | Yes (1) | Comparable on<br>design, no<br>analytic<br>controls (1)                                                                                                             | Self-report<br>(0)           | No(0) - for<br>menarche | Yes, coverage<br>at least 80% for<br>most visits,<br>differences<br>examined (1)                                        | 6 |
| Koziel &<br>Jankowska,<br>2002 | Representativ<br>e (1)                                                   | Same as exposed (1)                     | Birth records (1)                                               | Yes (1) | Comparable on<br>design,<br>controlled for<br>SES only and<br>BMI at 14 years<br>(1)                                                                                | Self-<br>report(0)           | Yes(1)                  | Response rate<br>details not<br>stated (0)                                                                              | 6 |
| dos Santos<br>Silva, 2002      | Representativ<br>e (1)                                                   | Same as<br>exposed (1)                  | Birth records (1)                                               | Yes (1) | Comparable on<br>design, control<br>for maternal<br>factors in<br>random<br>coefficient<br>model, no<br>information on<br>birth length or<br>gestational age<br>(1) | Self-<br>report(0)           | Yes(1)                  | Yes, 84%<br>follow-up,<br>differences<br>assessed(1)                                                                    | 7 |
| Hack, 2003                     | Selected (0)                                                             | Drawn from a<br>different source<br>(0) | Birth records for<br>exposed, unclear<br>for non-exposed<br>(0) | Yes (1) | Ascertained<br>and followed<br>differently, no<br>analytic<br>controls (0)                                                                                          | Assume<br>self-report<br>(0) | Yes (1)                 | Follow-up 78%<br>of cases and<br>64% for<br>controls, did<br>compare those<br>that were and<br>were not<br>followed (0) | 2 |

| Romundstad,<br>2003           | Representativ<br>e (1)                           | Same as<br>exposed (1) | Medical records<br>(1) | Yes (1) | Exclusion of<br>prenatal<br>conditions<br>could bias low<br>birthweight<br>group. Did<br>control for<br>gestational age<br>and maternal<br>factors in a<br>subset (1) | Self-<br>report(0) | Yes(1)  | Yes, 90%<br>response (1)                                                                                                            | 7 |
|-------------------------------|--------------------------------------------------|------------------------|------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------|---|
| Delemarre-                    |                                                  |                        |                        |         | Details not<br>provided, no                                                                                                                                           |                    |         |                                                                                                                                     |   |
| van de Waal,                  | No description                                   | Same as                | Medical records        |         | analytic                                                                                                                                                              | Clinical           |         | Not provided                                                                                                                        |   |
| 2002                          | (0)                                              | exposed (1)            | (1)                    | No (0)  | controls (0)                                                                                                                                                          | report (1)         | No (0)  | (0)                                                                                                                                 | 3 |
| Windham,<br>2004              | Representativ<br>e (1)                           | Same as<br>exposed (1) | Measured at birth (1)  | Yes (1) | Comparable on<br>design, some<br>analytic<br>controls (1)                                                                                                             | Self-<br>report(0) | Yes(1)  | Yes, 80%<br>response,<br>comparison of<br>those that did<br>and did not<br>participate (1)                                          | 7 |
|                               |                                                  |                        |                        |         | Comparable on                                                                                                                                                         |                    |         |                                                                                                                                     |   |
| Veening,                      | Details not                                      | Same as                | Medical records        |         | design, no<br>analytic                                                                                                                                                | Clinical           |         | Yes, 90%                                                                                                                            |   |
| 2004                          | provided (0)                                     | exposed (1)            | (1)                    | Yes (1) | controls (1)                                                                                                                                                          | report (1)         | Yes (1) | follow-up (1)                                                                                                                       | 7 |
| Trentham-                     | Representativ                                    | Same as                | Parent self-           |         | Cross-sectional<br>study, no<br>analytic                                                                                                                              | Self-              |         | Cross-sectional<br>study, 60%<br>response rate                                                                                      |   |
| Dietz, 2005                   | e (1)                                            | exposed (1)            | report (0)             | No (0)  | controls (0)                                                                                                                                                          | report(0)          | No(0)   | (0)                                                                                                                                 | 2 |
| van<br>Weissenbruch<br>, 2004 | Details not<br>provided (0)                      | Same as<br>exposed (1) | Medical records<br>(1) | Yes (1) | Comparable on<br>design, no<br>analytic<br>controls (1)                                                                                                               | Not stated<br>(0)  | Yes (1) | Not stated (0)                                                                                                                      | 5 |
| Tam, 2006                     | Unclear is<br>subset is<br>representative(<br>0) | Same as<br>exposed (1) | Medical records        | Yes (1) | Limited analytic control (1)                                                                                                                                          | Self-<br>report(0) | Yes(1)  | No, 72.5%<br>followed up at<br>15 years, no<br>description of<br>whether those<br>followed were<br>different than<br>those lost (0) | 5 |
| Sloboda,                      | Representativ                                    | Same as                | Medical records        |         | EBW controlled<br>for several<br>maternal<br>factors, not<br>clear what<br>other factors<br>were adjusted<br>for in analyses                                          | Self-              |         | 55% of original<br>girls in this<br>analysis, no<br>description of<br>differences<br>between those<br>lost and those                |   |
| 2007                          | e (1)                                            | exposed (1)            | (1)                    | Yes (1) | (1)                                                                                                                                                                   | report(0)          | Yes (1) | participated (0)                                                                                                                    | 6 |

| Vandeloo,<br>2007  | Representativ<br>e (1) | Same as<br>exposed (1)                                      | Unclear (0)                                                                                 | No (0)  | Design and<br>modeling<br>strategy not<br>clear (0)                                             | Not clear<br>(0)                | Not clear (0)                                           | Participation<br>rate 100% (1)                                                                                                         | 3      |
|--------------------|------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------|-------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------|
| Blell, 2008        | Representativ<br>e (1) | Same as<br>exposed (1)                                      | Medical records (1)                                                                         | Yes (1) | Comparable on<br>design, no<br>analytic<br>controls (1)                                         | Self-report<br>(0)              | Yes (1)                                                 | ~50%<br>participation,<br>those who<br>participated<br>differed from<br>those lost (0)                                                 | 6      |
| Bosch, 2008        | Representativ<br>e (1) | Same as<br>exposed (1)                                      | Parent self-<br>report (0)                                                                  | Yes (1) | Comparable on<br>design, no<br>analytic<br>controls (1)                                         | Self-<br>report(0)              | Yes(1)                                                  | 20% LTFU, no<br>comparison of<br>those lost vs.<br>those<br>participated (0)                                                           |        |
| Chaudhari,<br>2008 | Representativ<br>e (1) | Same as<br>exposed (1)                                      | Medical records<br>(1)                                                                      | Yes (1) | Design<br>comparable, no<br>analytic<br>controls (1)                                            | Parent-<br>report (0)           | Not clear (0)                                           | Not provided<br>(0)                                                                                                                    | 5      |
| Opdahl, 2008       | Representativ<br>e (1) | Same as<br>exposed (1)                                      | Measured at<br>birth (1)                                                                    | Yes (1) | Design<br>comparable,<br>limited analytic<br>controls (1)                                       | Self-report<br>(0)              | Yes (1)                                                 | 77.6% of girls<br>attended<br>adolescent<br>follow-up; not<br>comparison of<br>those that did<br>and did not<br>participate (0)        | 6      |
| Windham,<br>2008   | Representativ<br>e (1) | Selection criteria<br>for adult follow-<br>up different (0) | Parent self-<br>report (0)                                                                  | Yes (1) | Controlled for<br>maternal<br>factors in<br>analysis (1)                                        | Self-<br>report(0)              | Yes(1)                                                  | Not provided                                                                                                                           | 4      |
| Salsberry,<br>2009 | Representativ<br>e (1) | Same as<br>exposed (1)                                      | Mix of parent<br>report and study<br>measurement (0)                                        | Yes (1) | Design<br>comparable,<br>limited analytic<br>controls (1)                                       | Self or<br>parent<br>report (0) | Yes (1)                                                 | 90% of eligible<br>girls included<br>(1)<br>~80%                                                                                       | 6      |
| Rubin, 2009        | Representativ<br>e (1) | Same as<br>exposed (1)                                      | Medical records<br>for birth weight<br>(1), self-report<br>for pre-<br>pregnancy BMI<br>(0) | Yes (1) | Design<br>comparable,<br>analytic<br>controls only in<br>logistic<br>regression<br>analysis (1) | Self or<br>parent<br>report (0) | Yes for early<br>menarche,<br>not for full<br>range (1) | completed at<br>least one<br>puberty<br>questionnaire;<br>compared<br>differences<br>between non-<br>responders and<br>respondents (1) | 6 or 7 |
| Labayen,<br>2009   | Representativ<br>e (1) | Same as<br>exposed (1)                                      | Health booklet<br>(1)                                                                       | No (0)  | Design<br>comparable,<br>controlled for<br>factors later in<br>life (1)                         | Self-report<br>(0)              | Yes(1)                                                  | <80% included<br>due to large<br>amount of<br>missing data<br>(0)                                                                      | 5      |

|                                | Representativ          | Same as                                                     | Parent self-                                                               |         | Not enough information to                                                                                    | Self-<br>report(0) for<br>menarche,<br>clinical<br>assessment<br>for breast<br>Tanner but<br>unclear how<br>it was used<br>in analysis |                                                                                                    | NA, but<br>response rate                                                                                                                                    |        |
|--------------------------------|------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------|---------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Semiz, 2009                    | e (1)                  | exposed (1)                                                 | report (0)                                                                 | No (0)  | determine(0)                                                                                                 | (0)                                                                                                                                    | Yes(1)                                                                                             | not given (0)                                                                                                                                               | 3      |
| Keim, 2009                     | Representativ<br>e (1) | Selection criteria<br>for adult follow-<br>up different (0) | Parent self-<br>report (0)                                                 | Yes (1) | Controlled for<br>maternal<br>factors in<br>analysis (1)                                                     | Self-report<br>in<br>adulthood<br>(1)                                                                                                  | Yes (1)                                                                                            | Not provided<br>(0)                                                                                                                                         | 5      |
| Ong, 2009                      | Representativ<br>e (1) | Same as<br>exposed (1)                                      | Medical records<br>(1)                                                     | Yes (1) | Design<br>comparable,<br>more analytic<br>controls<br>needed (1)                                             | Self-report<br>(0)                                                                                                                     | 50% of girls<br>still did not<br>reach<br>menarche;<br>unclear how<br>included if<br><13 years (0) | Participation<br>rate at visit not<br>given.<br>Examined<br>differences<br>between girls in<br>analysis (70%)<br>and singleton<br>girls not<br>included (0) | 5      |
| Terry, 2009                    | Representativ<br>e (1) | Same as<br>exposed (1)                                      | Parent report for<br>maternal weight,<br>medical records<br>for others (1) | Yes (1) | Design<br>comparable<br>and adequate<br>controls (1)                                                         | Self-<br>report(0)                                                                                                                     | Yes(1)                                                                                             | Low follow-up,<br>but differences<br>examined (0)                                                                                                           | 5 or 6 |
| Karaolis-<br>Danckert,<br>2009 | Representativ<br>e (1) | Same as<br>exposed (1)                                      | Medical records (1)                                                        | Yes (1) | Design<br>comparable,<br>more analytic<br>controls<br>needed (1)                                             | Self-<br>report(0)                                                                                                                     | Yes(1)                                                                                             | Not provided<br>(0)                                                                                                                                         | 6      |
| Espetvedt<br>Finstad, 2009     | Selected (0)           | Same as<br>exposed (1)                                      | Medical records<br>(1)                                                     | No (0)  | Exclusion<br>criteria could be<br>associated with<br>birthweight,<br>more analytic<br>controls<br>needed (0) | Self-<br>report(0)                                                                                                                     | Yes(1)                                                                                             | Participation<br>rate not<br>provided (0)                                                                                                                   | 3      |
| Mesa, 2010                     | Representativ<br>e (1) | Same as<br>exposed (1)                                      | Measured by study staff (1)                                                | Yes (1) | Design<br>comparable,<br>more analytic<br>controls<br>needed (1)                                             | Self-<br>report(0)                                                                                                                     | Yes(1)                                                                                             | 22.6% lost to<br>follow-up, some<br>comparison<br>provided (0)                                                                                              | 6      |

| Boyne, 2010                | Representativ<br>e (1)                                           | Same as<br>exposed (1) | Measured by study staff (1)         | Yes (1) | Design<br>comparable,<br>more analytic<br>controls<br>needed (1)                                        | Self-report<br>for<br>menarche,<br>measured<br>for breast<br>developme<br>nt but<br>unclear how<br>assessed<br>(0) | Unclear (0) -<br>no mention<br>of censored<br>data | Low follow-up,<br>but differences<br>examined (0)                                       | 5 |
|----------------------------|------------------------------------------------------------------|------------------------|-------------------------------------|---------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------|---|
| Epplein, 2010              | Representativ<br>e (1)                                           | Same as<br>exposed (1) | Recall and<br>record linkage<br>(0) | No (0)  | Design<br>comparable,<br>more analytic<br>controls<br>needed (1)                                        | Self-report<br>(0)                                                                                                 | Yes(1)                                             | Participation<br>rate not<br>provided (0)                                               | 4 |
| Maisonet,<br>2010          | Representativ<br>e (1)                                           | Same as<br>exposed (1) | Medical records                     | Yes (1) | Design<br>comparable,<br>appropriate<br>controls (2)                                                    | Self and<br>parent-<br>report (0)                                                                                  | Unclear (0)                                        | Detail not<br>provided, but<br>few girls with<br>infancy<br>measures (0)                | 6 |
| Christensen,<br>2010       | Representativ<br>e (1)                                           | Same as<br>exposed (1) | Maternal report                     | Yes (1) | Design<br>comparable,<br>appropriate<br>controls (2)                                                    | Self and<br>parent-<br>report (0)                                                                                  | Yes (1)                                            | Compared<br>characteristics<br>of respondents<br>vs non-<br>respondents (1)             | 7 |
| Morris, 2010               | Volunteers (0)                                                   | Same as<br>exposed (1) | Recalled in adulthood (0)           | No (0)  | Potential<br>survivorship<br>bias in design,<br>some analytic<br>controls (1)                           | Self-report<br>(0)                                                                                                 | Yes (1)                                            | NA,<br>participation<br>rate not<br>provided (0)                                        | 3 |
| Ruder, 2010                | Not stated, but<br>likely not<br>representative<br>since RCT (0) | Same as exposed (1)    | Recalled (0)                        | Yes (1) | Original cohort<br>excluded<br>extremes of<br>height and<br>weight, limited<br>analytic<br>controls (1) | Self-<br>report(0)                                                                                                 | Yes(1)                                             | Not provided                                                                            | 4 |
| Olivo-<br>Marston,<br>2010 | Representativ<br>e (1)                                           | Same as<br>exposed (1) | Parent recall (0)                   | No (0)  | Design<br>comparable,<br>limited analytic<br>controls (1)                                               | Clinical<br>rating for<br>breast<br>developme<br>nt (1)                                                            | Yes (1)                                            | NA,<br>participation<br>rate not<br>provided and a<br>lot of missing<br>data for TS (0) | 5 |
| Cho, 2010                  | Representativ<br>e (1)                                           | Same as<br>exposed (1) | Parent recall (0)                   | No (0)  | Design<br>comparable,<br>limited analytic<br>controls (1)                                               | Self-report<br>(0)                                                                                                 | Yes (1)                                            | NA,<br>participation<br>rate not<br>provided (0)                                        | 4 |

| Shrestha,<br>_2011 | Not stated (0)                      | Same as<br>exposed (1) | Self-report (0)                                   | Yes (1) | Design<br>comparable,<br>controlled for<br>maternal<br>factors (2)                        | Self-<br>report(0)                 | Yes(1)  | 72% of girls<br>completed<br>follow-up<br>survey, did not<br>compare those<br>that did and did<br>not participate<br>(0)                                          | 5        |
|--------------------|-------------------------------------|------------------------|---------------------------------------------------|---------|-------------------------------------------------------------------------------------------|------------------------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|                    |                                     |                        |                                                   |         | Design<br>comparable,                                                                     |                                    |         |                                                                                                                                                                   |          |
|                    |                                     |                        |                                                   |         | controlled for                                                                            |                                    |         |                                                                                                                                                                   |          |
| Boynton-           | Selected -                          | Same as                | Maternal recall                                   | No (0)  | maternal                                                                                  | Self-report                        | Voc (1) | Not provided                                                                                                                                                      | 1        |
| Jarrett, 2011      | nurses (0)                          | exposed (1)            | (0)                                               | NO (U)  | factors (2)<br>Exposure                                                                   | (0)                                | Yes (1) | (0)                                                                                                                                                               | 4        |
| Chevalley,<br>2011 | Selected -<br>RCT<br>volunteers (0) | Same as<br>exposed (1) | Maternal/pediatri<br>cian report (0)              | Yes (1) | source not<br>clear, no<br>analytic<br>controls (0)                                       | Self-report<br>(0)                 | Yes (1) | Not provided<br>(0)                                                                                                                                               | 3        |
|                    |                                     |                        |                                                   | , ,     | Cross-sectional study, no                                                                 |                                    |         | NÁ,<br>participation                                                                                                                                              |          |
|                    | Not provided                        | Same as                | Maternal recall                                   |         | analytic                                                                                  | Self-report                        |         | rate not                                                                                                                                                          |          |
| Orden, 2011        | (0)                                 | exposed (1)            | (0)                                               | No (0)  | controls (0)                                                                              | (0)                                | Yes (1) | provided (0)                                                                                                                                                      | 2        |
|                    |                                     |                        |                                                   | ••      | Matched, no                                                                               |                                    | • •     | • • • •                                                                                                                                                           |          |
| Wehkalampi,        | Selected -                          | Same as                | Hospital records                                  | N/ ///  | analytic                                                                                  | Self-report                        |         | Not provided                                                                                                                                                      | -        |
| 2011               | survivors (0)                       | exposed (1)            | (1)                                               | Yes (1) | controls (1)<br>More                                                                      | (0)                                | Yes (1) | (0)                                                                                                                                                               | 5        |
| Szwed, 2012        | Not provided<br>(0)                 | Same as<br>exposed (1) | Medical records<br>(1)                            | No (0)  | recruitment<br>details needed,<br>no analytic<br>controls (0)                             | Self-report<br>(0)                 | Yes (1) | NA,<br>participation<br>rate not<br>provided (0)                                                                                                                  | 3        |
| _ Reagan, 2012     | Representativ<br>e (1)              | Same as<br>exposed (1) | Maternal report<br>(0)                            | Yes (1) | Appropriate<br>selection,<br>controlled for<br>pre-pubertal<br>BMI in all<br>analyses (1) | Maternal<br>and self-<br>report(0) | Yes(1)  | 78% of those<br>eligible were<br>included in this<br>analysis, but<br>compared<br>those that did<br>and did not<br>participate and<br>found no<br>differences (1) | 6        |
| Wang, 2012         | Selected<br>(volunteers)            | Same as<br>exposed (1) | Study measures,<br>except for<br>maternal BMI (1) | Yes (1) | Appropriate<br>analytic<br>controls, but<br>excluded<br>preterm (1)                       | Maternal<br>and self-<br>report(0) | Yes (1) | 70% of cohort<br>was follow-up,<br>though N for<br>analyses was<br>much smaller.<br>Compared<br>those that were<br>and were not<br>followed-up                    | 6        |
|                    |                                     | 5.00000(1)             |                                                   |         | P. 0.0.111 (1)                                                                            |                                    |         |                                                                                                                                                                   | <u> </u> |

# with minimal differences (1).

| Oh, 2012           | Not provided<br>(0)             | Same as<br>exposed (1) | Maternal recall<br>(0) | No (0)  | Cross-sectional<br>study, limited<br>analytic<br>controls (0)                                    | Maternal<br>and self-<br>report(0) | Yes (1) | 93% agreed to<br>participate,<br>though only<br>60% were<br>included in<br>analyses due to<br>missing data<br>(1) | 3 |
|--------------------|---------------------------------|------------------------|------------------------|---------|--------------------------------------------------------------------------------------------------|------------------------------------|---------|-------------------------------------------------------------------------------------------------------------------|---|
| Hui, 2012          | Representativ<br>e (1)          | Same as<br>exposed (1) | Medical records<br>(1) | Yes (1) | Representative<br>cohort,<br>appropriate<br>covariates,<br>though did<br>exclude pre<br>term (2) | Clinical<br>report (1)             | Yes (1) | 88% of cohort<br>members were<br>included in<br>analysis (1)                                                      | 9 |
| Dossus, 2012       | Representativ<br>e (1)          | Same as<br>exposed (1) | Self-report (0)        | No (0)  | Excluded pre-<br>term in<br>birthweight<br>analysis, may<br>have over-<br>adjusted<br>models (0) | Self-report<br>(0)                 | Yes (1) | Approximately<br>80% did each<br>questionnaire,<br>those included<br>didn't differ<br>from those<br>excluded (1)  | 4 |
| D'Aloisio,<br>2013 | Selected (0)                    | Same as<br>exposed (1) | Self-report (0)        | No (0)  | Cross-sectional<br>study,<br>appropriate<br>controls (1)                                         | Self-report<br>(0)                 | Yes (1) | Participation<br>rate not<br>provided (0)                                                                         | 3 |
| Sorensen,<br>2013  | Representativ<br>e of twins (1) | Same as<br>exposed (1) | Medical records (1)    | No (0)  | Appropriate (2)                                                                                  | Self-report<br>(0)                 | Yes (1) | 86.2%<br>response rate<br>(1)                                                                                     | 8 |
| Deardorff,<br>2013 | Representativ<br>e (1)          | Same as<br>exposed (1) | Self-report (0)        | Yes (1) | Appropriate (2)                                                                                  | Self-report<br>(0)                 | Yes (1) | Loss to follow-<br>up not reported,<br>but 35.5% not<br>included due to<br>missing data<br>(0)                    | 6 |
| Hernandez,<br>2013 | Representativ<br>e (1)          | Same as<br>exposed (1) | Self-report (0)        | Yes (1) | Cohorts<br>comparable,<br>limited analytic<br>controls (1)                                       | Not clear<br>(0)                   | No (0)  | >40% LTFU,<br>though not<br>different in<br>baseline<br>characteristics                                           | 5 |

|              |                |             |                   |         | 0 1 /                      |             |                | <b>N</b> 1 A         |   |
|--------------|----------------|-------------|-------------------|---------|----------------------------|-------------|----------------|----------------------|---|
|              |                |             |                   |         | Cohorts comparable.        |             |                | NA,<br>participation |   |
| Jahanfar,    | Representativ  | Same as     |                   |         | limited analytic           | Self-report |                | rate not             |   |
| ,            |                |             | Not provided (0)  | No (0)  | ,                          |             | Vac (1)        |                      | 4 |
| 2013         | e of twins (1) | exposed (1) | Not provided (0)  | NO (U)  | controls (1)               | (0)         | Yes (1)        | provided (0)         | 4 |
|              |                |             |                   |         | Appropriate,<br>only crude |             |                |                      |   |
|              |                |             |                   |         | analyses for               |             |                | Loss to follow-      |   |
|              | Representativ  | Same as     |                   |         | birthweight                | Clinical    |                | up not reported      |   |
| Kale, 2014   | e (1)          | exposed (1) | Self-report (0)   | Yes (1) | presented (1)              | report (1)  | Yes (1)        | (0)                  | 6 |
| Kale, 2014   | e (1)          | exposed (1) | Sell-Tepolt (0)   | 165(1)  | Cohorts                    | Teport (T)  | 165(1)         | Cross-sectional      | 0 |
| Zhang &      |                |             |                   |         | comparable,                |             |                | study, response      |   |
| Hartman,     | Representativ  | Same as     | Maternal report   |         | limited analytic           | Self-report |                | rate not             |   |
| 2014         | e (1)          | exposed (1) | (0)               | No (0)  | controls (1)               | (0)         | Yes (1)        | reported (0)         | 4 |
| 2014         | e (1)          | exposed (1) | (0)               | 140 (0) | Cohorts                    | (0)         | 163 (1)        | Teponed (0)          | 4 |
|              |                |             |                   |         | comparable,                |             |                |                      |   |
| Gavela-      | Representativ  | Same as     | Maternal report   |         | limited analytic           | Self-report |                | 96% follow-up        |   |
| Perez, 2015  | e (1)          | exposed (1) | (0)               | Yes (1) | controls (1)               | (0)         | Yes (1)        | rate (1)             | 6 |
| 1 0102, 2010 | 0(1)           |             | (0)               | 103 (1) |                            | (0)         | 103(1)         | Cross-sectional      | 0 |
|              |                |             |                   |         |                            |             |                | study, response      |   |
|              |                |             |                   |         |                            |             |                | rate not             |   |
|              |                |             |                   |         | Cohorts                    |             |                | reported, 42%        |   |
|              |                |             |                   |         | comparable,                |             |                | excluded due to      |   |
| Meulenijzer, | Representativ  | Same as     | Maternal report   |         | limited analytic           | Self-report |                | missing data         |   |
| 2015         | e (1)          | exposed (1) | (0)               | No (0)  | controls (1)               | (0)         | Yes (1)        | (0)                  | 4 |
|              |                |             |                   |         |                            |             |                | 71% followed,        |   |
|              |                |             |                   |         | Cohort                     |             |                | no comparison        |   |
|              |                |             |                   |         | comparable,                |             |                | of those that        |   |
| German,      | Not provided   | Same as     | Measured by       |         | limited analytic           | Clinical    |                | were and were        |   |
| 2015         | (0)            | exposed (1) | researchers (1)   | Yes (1) | controls (1)               | report (1)  | Yes (1)        | not followed (0)     | 6 |
|              |                |             |                   |         |                            |             |                | 69% followed,        |   |
|              |                |             |                   |         |                            |             |                | no comparison        |   |
|              |                |             | Hospital          |         |                            |             |                | of those that        |   |
|              | Representativ  | Same as     | record/study      |         |                            | Self-report |                | were and were        |   |
| Salgin, 2015 | e (1)          | exposed (1) | measures (1)      | Yes (1) | Appropriate (2)            | (0)         | Yes (1)        | not followed (0)     | 7 |
|              |                |             |                   |         | Cohorts                    |             |                |                      |   |
|              |                |             |                   |         | comparable,                |             |                | 61% included in      |   |
|              | Representativ  | Same as     | _                 |         | limited analytic           | Parent      | Yes, for early | analysis, no         |   |
| Behie, 2015  | e (1)          | exposed (1) | Parent report (0) | Yes (1) | controls (1)               | report (0)  | menarche (1)   | comparison (0)       | 5 |
|              |                |             |                   |         | Exclusion                  |             |                |                      |   |
|              |                |             |                   |         | criteria could be          |             |                |                      |   |
|              |                |             |                   |         | associated with            |             |                |                      |   |
|              |                |             |                   |         | birthweight,               |             |                |                      |   |
|              | Selected       |             |                   |         | more analytic              | <b>.</b>    |                |                      |   |
| Malla 0040   | (volunteers)   | Same as     | 0                 |         | controls                   | Self-report |                | 30% response         | ~ |
| Wells, 2016  | (0)            | exposed (1) | Self-report (0)   | No (0)  | needed (0)                 | (0)         | Yes (1)        | rate (0)             | 2 |
|              |                |             |                   |         |                            |             |                |                      |   |

| Mariansdatter<br>, 2016  | Representativ<br>e (1)                   | Same as<br>exposed (1) | Self-report (0)                                  | Yes (1) | Cohorts<br>comparable,<br>limited analytic<br>controls (1)                               | Self-report<br>(0)     | Yes (1)                                 | 83% follow-up<br>rate,<br>differences<br>examined (1)                                                                                                                         | 6  |
|--------------------------|------------------------------------------|------------------------|--------------------------------------------------|---------|------------------------------------------------------------------------------------------|------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Krzyzanowsk<br>a, 2016   | Representativ<br>e (1)                   | Same as<br>exposed (1) | Medical record (1)                               | Yes (1) | Cohorts<br>comparable,<br>limited analytic<br>controls (1)                               | Self-report<br>(0)     | Yes (1)                                 | Not provided<br>(0)                                                                                                                                                           | 6  |
| Schulte, 2016            | Selected, twin<br>pairs with<br>TTTS (0) | Same as<br>exposed (1) | Medical record (1)                               | Yes (1) | Control by design (2)                                                                    | Self-report<br>(0)     | Yes (1)                                 | Not provided<br>(0)                                                                                                                                                           | 6  |
| Kubo, 2016               | Representativ<br>e (1)                   | Same as<br>exposed (1) | Self-report (0)                                  | Yes (1) | Cohorts<br>comparable,<br>limited analytic<br>controls (1)                               | Clinical<br>report (1) | Yes (1)                                 | Follow-up rate<br>not provided.<br>86.7% of girls<br>included in<br>analysis<br>(missing data<br>excluded), no<br>difference<br>between those<br>included and<br>excluded (1) | 7  |
| Aydin, 2017              | Volunteers (0)                           | Same as<br>exposed (1) | Medical record                                   | No (0)  | Cohorts<br>comparable,<br>limited analytic<br>controls (1)                               | Clinical<br>report (1) | Early breast<br>development<br>only (1) | Participation<br>rate low (0)                                                                                                                                                 | 5  |
| Aurino, 2017             | Representativ<br>e (1)                   | Same as<br>exposed (1) | Mix of medical<br>record and self-<br>report (0) | Yes (1) | Cohorts<br>comparable,<br>limited analytic<br>controls (1)                               | Self-report            | Early<br>menarche<br>only (1)           | Only 5.2% lost<br>to follow-up, no<br>difference in<br>exposure (1)                                                                                                           | 6  |
| Flom, 2017               | Representativ<br>e (1)                   | Same as<br>exposed (1) | Medical record<br>(1)                            | Yes (1) | Appropriate (2)                                                                          | Self-report<br>(0)     | Yes (1)                                 | 86.3% of traced<br>women<br>participated (1)                                                                                                                                  | 8  |
| Workman &<br>Kelly, 2017 | Representativ<br>e (1)                   | Same as<br>exposed (1) | Self-report (0)                                  | No (0)  | Cohorts<br>comparable,<br>limited analytic<br>controls (1)                               | Self-report<br>(0)     | Yes (1)                                 | Participate rate<br>not provided.<br>88% included in<br>analysis<br>(missing<br>excluded), girls<br>excluded more<br>likely to be non-<br>Hispanic black<br>(1)               | 5_ |
| Kelly, 2016              | Representativ<br>e (1)                   | Same as<br>exposed (1) | Maternal report<br>(0)                           | Yes (1) | Cohorts<br>comparable,<br>analytic<br>controls not<br>appropriate for<br>birthweight (1) | Mother<br>report (0)   | Early<br>menarche<br>only (1)           | Not provided<br>(0)                                                                                                                                                           | 5  |

| Lawn et al,<br>2018<br>Kubo et al,<br>2018 | Representativ<br>e (1)<br>Representativ<br>e (1) | Same as<br>exposed (1)<br>Same as<br>exposed (1) | Self-report and<br>medical record<br>(1)<br>Medical record<br>(1) | Yes (1)<br>Yes (1)                       | Cohorts<br>comparable,<br>appropriate<br>controls (2)<br>Cohorts<br>comparable,<br>appropriate<br>controls (2)                 | Self-report<br>(0)<br>Medical<br>record (1) | Yes (1)<br>Yes (1)                                                     | No difference<br>between those<br>that were and<br>were not lost to<br>follow-up in<br>early-life data<br>(1)<br>N/A<br>(retrospective<br>cohort) (1) | 8                      |
|--------------------------------------------|--------------------------------------------------|--------------------------------------------------|-------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
|                                            |                                                  |                                                  |                                                                   | Case-Contro                              | l Studies                                                                                                                      |                                             |                                                                        |                                                                                                                                                       |                        |
| Article                                    | 1. Is the case<br>definition<br>adequate?        | 2.<br>Representative<br>ness of the<br>cases     | 3. Selection of<br>Controls                                       | 4. Definition of Controls                | 5.<br>Comparability<br>of cases and<br>controls on<br>the basis of<br>the design or<br>analysis                                | 6.<br>Ascertain<br>ment of<br>exposure      | 7. Same<br>method of<br>ascertainme<br>nt for cases<br>and<br>controls | 8.Non-<br>Response rate                                                                                                                               | Total score<br>(Max 9) |
| Moisan et al,<br>1990                      | Yes, self-<br>report (0)                         | All girls with<br>menarche in<br>cohort (1)      | Nested from cohort (1)                                            | No reported<br>menarche (1)              | Cases and<br>controls are<br>from same<br>source<br>population<br>(nested). (1)<br>Unclear if<br>analyses were<br>adjusted (0) | Self-report<br>(0)                          | Yes (1)                                                                | High response<br>rate in both<br>groups (1)                                                                                                           | 5                      |
| Papadimitriou<br>, 2011                    | Yes, self-<br>report (0)                         | Potential for selection bias (0)                 | Details not<br>provided (0)                                       | Breast<br>development<br>after age 9 (1) | Unclear if<br>cases and<br>controls are<br>comparable<br>based on<br>design (0)                                                | Medical<br>records (1)                      | Unclear (0)                                                            | Not provided<br>(0)                                                                                                                                   | 2                      |

### Appendix C Additional background information for Chapter 3

| Exposure of Interest                                           | Primary Exposures of Interest Definition                                                                                                                                                                                                                                                                                                                                                                                              | Scale                                                                                                     |
|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Maternal pre-pregnancy<br>BMI                                  | BMI of mother before pregnancy with LEGACY daughter,<br>calculated from the maternal report of height and usual<br>weight before pregnancy with LEGACY daughter.                                                                                                                                                                                                                                                                      | Continuous<br>Categorical:<br><18.5, 18.5 to<br><25, 25 to<br><30, ≥30                                    |
| Maternal weight gain<br>during pregnancy                       | Amount of weight gained during pregnancy with LEGACY daughter as reported by mother at baseline                                                                                                                                                                                                                                                                                                                                       | Categorical:<br>< 10 lbs, 10-<br>14 lbs, 15-19<br>lbs, 20-29 lbs,<br>30-39 lbs, 40-<br>49 lbs, ≥50<br>lbs |
| Gestational weight gain<br>adequacy per 2009 IOM<br>guidelines | Based on the maternal report of pre-pregnancy BMI and<br>gestational weight gain, created categories based on<br>modified 2009 IOM guidelines (based on collection of<br>gestational weight gain in LEGACY) for singleton and<br>multiple pregnancies (see <b>Appendix C.2</b> ):<br>-Inadequate<br>-Adequate<br>-Excessive                                                                                                           | Categorical                                                                                               |
| Recreational physical<br>activity during<br>pregnancy          | Recreational physical activity during pregnancy as reported<br>by mother at baseline:<br>-Inactive, no walking or other regular exercise<br>-Mostly inactive, equivalent to walking about half a mile or<br>less every day<br>-Somewhat active, equivalent to walking about 1 mile<br>every day<br>-Active, equivalent to walking about 2 miles every day<br>-Highly active, equivalent to walking about 3 or more miles<br>every day | Categorical                                                                                               |
| Physical activity at home during pregnancy                     | Physical activity level at home during pregnancy as<br>reported by mother at baseline:<br>-Mostly sitting<br>-Active housework most of the time with little sitting<br>-Heavy manual work at home                                                                                                                                                                                                                                     | Categorical                                                                                               |
| Physical activity at work<br>during pregnancy                  | Physical activity level at work during pregnancy as<br>reported by mother at baseline:<br>-Not working<br>-Mostly sitting and standing<br>-Mostly walking with some sitting and standing<br>-Mostly heavy labor with some walking and standing and<br>little sitting                                                                                                                                                                  | Categorical                                                                                               |
| Birth weight in kg                                             | Birth weight of the daughter as reported by mother at baseline. Birthweight was reported in grams or in lbs/oz and converted to kilograms.                                                                                                                                                                                                                                                                                            | Continuous<br>Categorical:<br><2.5kg, 2.5 to<br><3kg, 3 to                                                |

Appendix C.1. Early-life exposure constructs

|                                                         |                                                                                                                                                                                                                                  | <3.5kg, 3.5 to<br><4kg, ≥4kg             |
|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| Birthlength in cm                                       | Birthlength of the daughter as reported by mother at baseline. Birthlength was reported in centimeters or inches and converted to centimeters.                                                                                   | Continuous<br>Categorical<br>(quartiles) |
|                                                         | Additional Early-life Factors                                                                                                                                                                                                    |                                          |
| Gestational age in weeks                                | Weeks or months that pregnancy lasted as reported by LEGACY mom at baseline.                                                                                                                                                     | Continuous<br>Categorical:               |
|                                                         | Pregnancy length reported in months was converted to weeks (Conversion to weeks = [length in months*4] + 4, i.e. 9 months = 40 weeks).                                                                                           | <37 weeks vs.<br>≥37 weeks               |
|                                                         | For those that did not know the pregnancy length, some<br>reported the number of days born before or after the due<br>date. Gestational age in weeks was then calculated<br>assuming that the due date corresponded to 40 weeks. |                                          |
| Birth order                                             | Birth order of the LEGACY daughter based on the number<br>of reported prior pregnancies lasting at least 6 months and<br>resulting in a live birth by LEGACY mom at baseline                                                     | Continuous<br>Categorical:               |
|                                                         |                                                                                                                                                                                                                                  | First-born vs.                           |
| Multiple pregnancy                                      | Singleton vs. multiple pregnancy, based on maternal report<br>at baseline                                                                                                                                                        | Dichotomous                              |
| Gestational diabetes                                    | Diabetes or high blood sugar during pregnancy as reported by mother at baseline                                                                                                                                                  | Dichotomous                              |
| Gestational<br>hypertension or<br>toxemia/pre-eclampsia | Hypertension or high blood pressure or toxemia or pre-<br>eclampsia during pregnancy as reported by mother at<br>baseline                                                                                                        | Dichotomous                              |
| Maternal age at birth                                   | Mom's age in years at birth of LEGACY daughter                                                                                                                                                                                   | Continuous                               |
|                                                         |                                                                                                                                                                                                                                  | Categorical:<br><30, 30-39,<br>≥40       |

| Appendix C.2. 2009 Institute of Medicine recommendations for total weight gain during pregnancy by pre- |
|---------------------------------------------------------------------------------------------------------|
| pregnancy BMI and modified range used to define adequate gestational weight gain for LEGACY             |

|                                                 | Singleton          | Gestation          | Multiple Gestation |                    |  |
|-------------------------------------------------|--------------------|--------------------|--------------------|--------------------|--|
|                                                 |                    | Range used to      |                    | Range used to      |  |
|                                                 | IOM                | define adequate    | IOM                | define adequate    |  |
| Pre-pregnancy                                   | recommended        | weight gain in lbs | recommended        | weight gain in lbs |  |
| BMI                                             | weight gain in lbs | in LEGACY          | weight gain in lbs | in LEGACY          |  |
| Underweight                                     |                    |                    | No                 | Not included (set  |  |
| (<18.5 kg/m²)                                   | 28-40              | 30-39.9            | recommendation     | to missing, n=2)   |  |
| Normal weight<br>(18.5-24.9 kg/m <sup>2</sup> ) | 25-35              | 20-39.9            | 37-54              | >30                |  |
| Overweight                                      |                    |                    |                    |                    |  |
| (25.0-29.9 kg/m <sup>2</sup> )                  | 15-25              | 15-29.9            | 31-50              | 30-49.9            |  |
| Obese                                           |                    |                    |                    |                    |  |
| (≥30 kg/m²)                                     | 11-20              | 10-19.9            | 25-42              | 20-39.9            |  |

Appendix C.3. Advantages and disadvantages of the methods for modeling breast development in LEGACY

|                                                                | Advantages                                                                                                                                     | Disadvantages                                                                                                                                                                                                         |
|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Study subset                                                   |                                                                                                                                                |                                                                                                                                                                                                                       |
|                                                                | Increased precision<br>No bias resulting from subgroup                                                                                         | Measurement error on the<br>outcome for girls that already<br>reached puberty at baseline,<br>which is related to age (Recalled<br>age at pubertal events is older as                                                 |
|                                                                | selection                                                                                                                                      | girls are further from puberty)                                                                                                                                                                                       |
| Full cohort                                                    | Can control for more confounding factors in larger sample size                                                                                 | Cannot assess mediation by pre-<br>pubertal body size                                                                                                                                                                 |
|                                                                | Not selecting directly on age or outcome, which could result in bias                                                                           | Measurement error on the<br>outcome for girls for girls that<br>already reached puberty at<br>baseline, which is related to age<br>(Recalled age at pubertal events<br>is older as girls are further from<br>puberty) |
| Subset with pre-pubertal<br>BMI available                      | Can examine mediation by pre-<br>pubertal BMI                                                                                                  | Less precision than using full cohort                                                                                                                                                                                 |
|                                                                | Limited bias due to recall of<br>outcome since limiting to (mostly)<br>prospective data                                                        |                                                                                                                                                                                                                       |
|                                                                | Not selecting based on observed<br>outcome (if selecting all girls                                                                             | Less precision                                                                                                                                                                                                        |
|                                                                | reported to be pre-pubertal at<br>baseline, those with early<br>development would be more likely<br>to be excluded which could induce<br>bias) | Potential for selection bias if<br>younger girls at baseline differ<br>from full cohort in characteristics<br>related to pubertal timing                                                                              |
| Subset with prospective data based on age cut-off at baseline  | Can examine mediation by pre-                                                                                                                  | Able to control for fewer<br>confounders due to small cell<br>counts in subset                                                                                                                                        |
|                                                                |                                                                                                                                                | Less precision                                                                                                                                                                                                        |
|                                                                | Limited measurement error on the outcome as 1) clinical breast TS is considered the gold standard for                                          | Potential for selection bias if girls<br>that are more developed are less<br>likely to agree to participate in<br>clinical TS measures                                                                                |
|                                                                | assessing breast development and<br>2) inter-rater reliability for clinical<br>TS in LEGACY is very high                                       | May not be generalizable to other LEGACY sites                                                                                                                                                                        |
| Subset with clinical breast<br>Tanner stage data               | Not selecting based on observed outcome                                                                                                        | Able to control for fewer<br>confounders due to small cell<br>counts in subset                                                                                                                                        |
| Modeling option                                                |                                                                                                                                                |                                                                                                                                                                                                                       |
| Option 1:<br>- Girls with breast<br>development at first visit | No additional assumptions are made regarding pubertal timing                                                                                   | Does not take advantage of<br>collected data on age at breast<br>development                                                                                                                                          |

| are left censored at first<br>visit age<br>- Girls with breast<br>development during follow-<br>up are interval censored<br>(age at last visit with no<br>development, age at first<br>visit with development)<br>- Girls without breast<br>development at last visit<br>are right censored at age<br>of last report of no<br>development | The only option that is not a<br>mixture of PDS and Tanner (since<br>only PDS has recalled age)                                                                                                                                                                                                                | Must use parametric model with<br>all types of censoring patterns<br>Cannot accommodate left and<br>interval censoring and left<br>truncation<br>Percentage of left censored girls<br>differs between Tanner and PDS<br>models (higher for PDS) |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Option 2:                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                | Cannot accommodate left and<br>interval censoring and left<br>truncation                                                                                                                                                                        |
| - Recalled age at breast<br>development is imputed as<br>though it were observed<br>for left censored girls<br>- Girls with breast                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                | Semi-parametric Cox model<br>cannot accommodate interval<br>censoring                                                                                                                                                                           |
| development during follow-<br>up are interval censored<br>(age at last visit with no<br>development, age at first                                                                                                                                                                                                                         | Use of recalled age allows for a<br>more precise estimate of the age<br>at breast development for left<br>censored girls and takes                                                                                                                                                                             | Percentage of left censored girls<br>differs between Tanner and PDS<br>models (higher for PDS)                                                                                                                                                  |
| visit with development)<br>- Girls without breast<br>development at last visit                                                                                                                                                                                                                                                            | advantage of this data<br>Can be directly compared with                                                                                                                                                                                                                                                        | Could be bias from<br>measurement error on the<br>outcome by using recalled age                                                                                                                                                                 |
| are right censored at age<br>of last report of no<br>development                                                                                                                                                                                                                                                                          | Option 1 to determine the influence<br>that use of recalled age has on the<br>results                                                                                                                                                                                                                          | for left censored girls (recalled<br>age increases with time from<br>development)                                                                                                                                                               |
| <b>Option 3</b> :<br>- Recalled age at breast<br>development is imputed as<br>though it were observed<br>for left censored girls<br>- Midpoint of interval is<br>imputed as though it were<br>observed for interval<br>censored girls                                                                                                     | Use of recalled age allows for a<br>more precise estimate of the age<br>at breast development for left<br>censored girls and takes<br>advantage of this data<br>Since only using right censored<br>data, can run both a parametric<br>Weibull model or a semi-<br>parametric Cox proportional<br>hazards model | Could be bias from<br>measurement error on the<br>outcome by using recalled age<br>for left censored girls (recalled<br>age increases with time from<br>development)<br>Makes additional assumption                                             |
| - Girls without breast<br>development at last visit<br>are right censored at age<br>of last report of no<br>development                                                                                                                                                                                                                   | With a semi-parametric Cox<br>model, can accommodate left<br>truncation (i.e. allow everyone to<br>be at risk starting at age 5)                                                                                                                                                                               | about the timing of breast<br>development for interval<br>censored girls (which may not be<br>appropriate over long intervals).                                                                                                                 |

|                                                | Not affected by the length of the interval for interval censored   | Could be bias from measurement error on the                                                                             |
|------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
|                                                | Schema is consistent for left censored and interval censored girls | outcome by using recalled age<br>for both left and interval<br>censored girls (recalled age<br>increases with time from |
| Option 4:                                      | <b>.</b>                                                           | development, so would expect                                                                                            |
| - Recalled age at breast                       | Since only using right censored                                    | this would matter more for left                                                                                         |
| development is imputed as                      | data, can run both a parametric                                    | censored girls)                                                                                                         |
| though it were observed                        | Weibull model or a semi-                                           |                                                                                                                         |
| for left censored girls and                    | parametric Cox proportional                                        | Recalled age is based on PDS,                                                                                           |
| interval censored girls - Girls without breast | hazards model                                                      | so makes more sense to use thi<br>on a PDS model. Tanner mode                                                           |
| development at last visit                      | With a semi-parametric Cox                                         | may be more sensitive to bias                                                                                           |
| are right censored at age                      | model, can accommodate left                                        | from measurement error since it                                                                                         |
| of last report of no                           | truncation (i.e. allow everyone to                                 | may use reports of recalled age                                                                                         |
| development                                    | be at risk starting at age 5)                                      | at a later follow-up visit                                                                                              |

Appendix C.4. Comparison and interpretation of the different methods for modeling breast development in LEGACY

| Comparison                                                                      | If Similar:                                                                                               | If Different:                                                                                                                                                                                                                                                                |
|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                 |                                                                                                           | Possible selection bias in terms of who has pre-pubertal data                                                                                                                                                                                                                |
| Full cohort vs. subset<br>with pre-pubertal data                                | Use of subset with pre-<br>pubertal data does not affect<br>inference                                     | Could be due to smaller amount of bias on<br>outcome in subset with pre-pubertal data -<br>look at difference in age distribution                                                                                                                                            |
|                                                                                 |                                                                                                           | Likely due to use of retrospective data                                                                                                                                                                                                                                      |
|                                                                                 | Inclusion of older girls does not bias the effect estimate                                                | Possible selection bias in terms of who is<br>in the prospective cohort                                                                                                                                                                                                      |
| Full cohort vs.<br>"prospective" subset                                         | Confounding did not drive estimates for young cohort                                                      | Possible confounding in "prospective"<br>cohort since can adjust for fewer variables<br>with smaller sample size                                                                                                                                                             |
|                                                                                 |                                                                                                           | Likely due to use of mother-reported data                                                                                                                                                                                                                                    |
|                                                                                 |                                                                                                           | Possible selection bias in terms of who has clinical Tanner data                                                                                                                                                                                                             |
| Full cohort vs. subset<br>with clinical Tanner                                  | Measurement error of the<br>outcome does not drive<br>association                                         | Possible confounding in subset with clinical<br>Tanner since can adjust for fewer variables<br>with smaller sample size                                                                                                                                                      |
|                                                                                 |                                                                                                           | Could be due to measurement error of the<br>outcome when using recalled data. Would<br>expect a likely bias towards the null<br>(heavier girls more likely to have early<br>puberty and be left censored; since BMI<br>likely on causal pathway, could bias<br>towards null) |
| Modeling Option 1 vs.<br>Modeling Option 2                                      | Use of recalled age for left<br>censored girls does not affect<br>inference - can use either<br>model     | Could compare these modeling options<br>again in subset of girls that were not<br>overweight and see if difference is smaller<br>in this subgroup                                                                                                                            |
| Modeling Option 2 vs.<br>Modeling Option 3                                      | Use of midpoint for interval<br>censored girls does not affect<br>inference - can use either<br>model     | Assumption that puberty occurred at midpoint of interval may not be valid - use Option 2                                                                                                                                                                                     |
| Modeling Option 2/3 vs.<br>Modeling Option 4                                    | Use of recalled age for<br>interval censored girls does<br>not affect inference - can use<br>either model | Likely due to measurement error in recalled age or possible wide interval - do sensitivity analyses to explore                                                                                                                                                               |
| Option 1: Breast Tanner                                                         | Exposure-outcome                                                                                          | Exposure may be associated with<br>differential reporting of breast development<br>based on method.                                                                                                                                                                          |
| models vs Breast PDS<br>models                                                  | association is robust to use of PDS or Tanner                                                             | Consider adjusting estimates for sensitivity and specificity of measure                                                                                                                                                                                                      |
| Option 3 or 4:<br>Parametric Weibull<br>model vs. semi-<br>parametric Cox model | Assumption of Weibull<br>distribution is reasonable                                                       | Weibull distribution may not be a good fit<br>for the data - consider other distributions                                                                                                                                                                                    |

### Appendix D Supplemental tables for Chapter 3

|                                                                               | BMI <18.5<br>(N=47) | BMI 18.5-24.9<br>(N=676) | BMI 25-29.9<br>(N=179) | BMI ≥30<br>(N=96) |
|-------------------------------------------------------------------------------|---------------------|--------------------------|------------------------|-------------------|
| Early-life characteristics                                                    | \$ <i>1</i>         | , <i>č</i>               | · · ·                  |                   |
| Maternal age at birth (Mean±SD)                                               | 30.8 ± 5.9          | 32.4 ± 5.2               | 32.4 ± 5.6             | 31.5 ± 6.0        |
| Maternal height, m (Mean±SD)                                                  | 1.7 ± 0.1           | 1.6 ± 0.1                | 1.6 ± 0.1              | 1.6 ± 0.1         |
| Maternal pre-pregnancy weight, kg (Mean±SD)                                   | 49.9 ± 4.8          | $58.6 \pm 5.9$           | 72.8 ± 8.0             | 92.6 ± 14.5       |
| Gestational weight gain (n, %)                                                |                     |                          |                        |                   |
| <10 lbs                                                                       | 2 (4.3)             | 6 (0.9)                  | 4 (2.2)                | 15 (15.6)         |
| 10-14 lbs                                                                     | 3 (6.4)             | 19 (2.8)                 | 14 (7.8)               | 5 (5.2)           |
| 15-19 lbs                                                                     | 6 (12.8)            | 46 (6.8)                 | 20 (11.2)              | 12 (12.5)         |
| 20-29 lbs                                                                     | 10 (21.3)           | 221 (32.7)               | 53 (29.6)              | 26 (27.1)         |
| 30-39 lbs                                                                     | 11 (23.4)           | 188 (27.8)               | 45 (25.1)              | 17 (17.7)         |
| 40-49 lbs                                                                     | 7 (14.9)            | 101 (14.9)               | 24 (13.4)              | 10 (10.4)         |
| ≥50 lbs                                                                       | 6 (12.8)            | 84 (12.4)                | 17 (9.5)               | 6 (6.3)           |
| Missing                                                                       | 2 (4.3)             | 11 (1.6)                 | 2 (1.1)                | 5 (5.2)           |
| Gestational weight gain adequacy based on the 2009 OM guidelines $(n, \%)$    |                     |                          |                        |                   |
| nadequate (below guidelines)                                                  | 20 (42.6)           | 79 (11.7)                | 20 (11.2)              | 13 (13.5)         |
| Adequate (within guidelines)                                                  | 11 (23.4)           | 417 (61.7)               | 73 (40.8)              | 18 (18.8)         |
| Excessive (above guidelines)                                                  | 12 (25.5)           | 164 (24.3)               | 83 (46.4)              | 58 (60.4)         |
| Missing                                                                       | 4 (8.5)             | 16 (2.4)                 | 3 (1.7)                | 7 (7.3)           |
| Maternal recreational physical activity during pregnancy (N, %)               |                     |                          |                        |                   |
| nactive, no walking or other regular exercise                                 | 4 (8.5)             | 70 (10.4)                | 27 (15.1)              | 25 (26.0)         |
| Mostly inactive, equivalent to walking about half a mile<br>or less every day | 10 (21.3)           | 131 (19.4)               | 56 (31.3)              | 27 (28.1)         |
| Somewhat active, equivalent to walking about 1 mile every day                 | 11 (23.4)           | 169 (25.0)               | 32 (17.9)              | 10 (10.4)         |
| Active, equivalent to walking about 2 miles every day                         | 18 (38.3)           | 255 (37.7)               | 62 (34.6)              | 33 (34.4)         |
| Highly active, equivalent to walking about 3 or more<br>niles every day       | 4 (8.5)             | 50 (7.4)                 | 2 (1.1)                | 1 (1.0)           |
| Missing                                                                       | 0 (0.0)             | 1 (0.2)                  | 0 (0.0)                | 0 (0.0)           |
| Maternal physical activity at home during pregnancy<br>(N, %)                 |                     |                          |                        |                   |
| Mostly sitting                                                                | 4 (8.5)             | 129 (19.1)               | 39 (21.8)              | 28 (29.2)         |
| Mostly walking and standing, with some sitting                                | 18 (38.3)           | 265 (39.2)               | 78 (43.6)              | 36 (37.5)         |
| Active housework most of the time with little sitting                         | 24 (51.1)           | 275 (40.7)               | 62 (34.6)              | 30 (31.3)         |
| Heavy manual work at home                                                     | 0 (0.0)             | 4 (0.6)                  | 0 (0.0)                | 1 (1.0)           |
| Vissing                                                                       | 1 (2.1)             | 3 (0.4)                  | 0 (0.0)                | 1 (1.0)           |

Supplemental Table 3.1. Descriptive characteristics of the LEGACY Girls Study cohort by maternal pre-pregnancy body mass index

| (N, %)                                                                                             |                   |                   |                |                |
|----------------------------------------------------------------------------------------------------|-------------------|-------------------|----------------|----------------|
| Not working                                                                                        | 13 (27.7)         | 120 (17.8)        | 41 (22.9)      | 28 (29.2)      |
| Mostly sitting and standing                                                                        | 13 (27.7)         | 282 (41.7)        | 74 (41.3)      | 35 (36.5)      |
| Mostly walking with some sitting and standing                                                      | 20 (42.6)         | 244 (36.1)        | 60 (33.5)      | 28 (29.2)      |
| Mostly heavy labor with some walking and standing and little sitting                               | 1 (2.1)           | 29 (4.3)          | 4 (2.2)        | 4 (4.2)        |
| Missing                                                                                            | 0 (0.0)           | 1 (0.2)           | 0 (0.0)        | 1 (1.0)        |
| Maternal physical activity during pregnancy, 2nd trimester (N, %)                                  |                   |                   |                |                |
| Stayed the same                                                                                    | 32 (68.1)         | 489 (72.3)        | 133 (74.3)     | 64 (66.7)      |
| Substantially increased                                                                            | 2 (4.3)           | 36 (5.3)          | 10 (5.6)       | 6 (6.3)        |
| Substantially decreased                                                                            | 13 (27.7)         | 151 (22.3)        | 36 (20.1)      | 26 (27.1)      |
| Gestational diabetes during pregnancy with LEGACY daughter (N, %)                                  |                   |                   |                |                |
| Yes                                                                                                | 4 (8.5)           | 32 (4.7)          | 19 (10.6)      | 19 (19.8)      |
| No                                                                                                 | 42 (89.4)         | 636 (94.1)        | 158 (88.3)     | 74 (77.1)      |
| Missing                                                                                            | 1 (2.1)           | 8 (1.2)           | 2 (1.1)        | 3 (3.1)        |
| Gestational hypertension, toxemia or pre-eclampsia during pregnancy with LEGACY daughter (N, $\%)$ |                   |                   |                |                |
| Yes                                                                                                | 2 (4.3)           | 30 (4.4)          | 20 (11.2)      | 20 (20.8)      |
| No                                                                                                 | 44 (93.6)         | 636 (94.1)        | 157 (87.7)     | 73 (76.0)      |
| Missing                                                                                            | 1 (2.1)           | 10 (1.5)          | 2 (1.1)        | 3 (3.1)        |
| Type of gestation (N, %)                                                                           |                   |                   |                |                |
| Multiple                                                                                           | 2 (4.3)           | 36 (5.3)          | 5 (2.8)        | 2 (2.1)        |
| Singleton                                                                                          | 45 (95.7)         | 635 (93.9)        | 173 (96.7)     | 92 (95.8)      |
| Missing                                                                                            | 0 (0.0)           | 5 (0.7)           | 1 (0.6)        | 2 (2.1)        |
| Birth order (Mean±SD)                                                                              | 1.5 ± 0.7         | $1.7 \pm 0.9$     | 1.9 ± 1.0      | 2.1 ± 1.2      |
| Birth order, dichotomized (N, %)                                                                   |                   |                   |                |                |
| First-born                                                                                         | 29 (61.7)         | 324 (47.9)        | 78 (43.6)      | 30 (31.3)      |
| Not first-born                                                                                     | 18 (38.3)         | 347 (51.3)        | 100 (55.9)     | 64 (66.7)      |
| Missing                                                                                            | 0 (0.0)           | 5 (0.7)           | 1 (0.6)        | 2 (2.1)        |
| Gestational age in weeks (Mean±SD)                                                                 | 39.1 ± 1.9        | $39.0 \pm 2.2$    | 39.1 ± 2.0     | 39.0 ± 1.6     |
| Gestational age, categorized (N, %)                                                                |                   |                   |                |                |
| <37 weeks                                                                                          | 4 (8.5)           | 89 (13.2)         | 18 (10.1)      | 8 (8.3)        |
| ≥37 weeks                                                                                          | 43 (91.5)         | 585 (86.5)        | 161 (89.9)     | 87 (90.6)      |
| Missing                                                                                            | 0 (0.0)           | 2 (0.3)           | 0 (0.0)        | 1 (1.0)        |
| Intrauterine smoke exposure (N, %)                                                                 |                   |                   |                |                |
| Yes                                                                                                | 2 (4.3)           | 7 (1.0)           | 6 (3.4)        | 4 (4.2)        |
| No                                                                                                 | 45 (95.7)         | 669 (99.0)        | 173 (96.7)     | 92 (95.8)      |
| Missing                                                                                            | 0 (0.0)           | 0 (0.0)           | 0 (0.0)        | 0 (0.0)        |
| Birthweight, g (Mean±SD)                                                                           | 3173.4 ±<br>624.8 | 3264.3 ±<br>584.3 | 3368.7 ± 562.3 | 3430.0 ± 525.0 |

### Maternal physical activity at work during pregnancy

| Birthweight, categorized (N, %)                                       |                 |                |                |                |
|-----------------------------------------------------------------------|-----------------|----------------|----------------|----------------|
| <2500g                                                                | 3 (6.4)         | 59 (8.7)       | 11 (6.2)       | 4 (4.2)        |
| 2500-2999g                                                            | 9 (19.2)        | 130 (19.2)     | 23 (12.9)      | 14 (14.6)      |
| 3000-3499g                                                            | 24 (51.1)       | 252 (37.3)     | 66 (36.9)      | 36 (37.5)      |
| 3500-3999g                                                            | 8 (17.0)        | 182 (26.9)     | 56 (31.3)      | 26 (27.1)      |
| ≥4000g                                                                | 3 (6.4)         | 50 (7.4)       | 19 (10.6)      | 16 (16.7)      |
| Missing                                                               | 0 (0.0)         | 3 (0.4)        | 4 (2.2)        | 0 (0.0)        |
| Birthlength, cm (Mean±SD)                                             | $50.3 \pm 3.4$  | 50.5 ± 3.7     | 50.5 ± 3.7     | 51.1 ± 2.9     |
| Birthlength categorized (N, %)                                        |                 |                |                |                |
| <48.25                                                                | 3 (6.4)         | 78 (11.5)      | 17 (9.5)       | 7 (7.3)        |
| 48.25-50.74                                                           | 18 (38.3)       | 174 (25.7)     | 53 (29.6)      | 27 (28.1)      |
| 50.75-53.24                                                           | 15 (31.9)       | 144 (21.3)     | 31 (17.3)      | 17 (17.7)      |
| ≥53.25                                                                | 7 (14.9)        | 199 (29.4)     | 55 (30.7)      | 32 (33.3)      |
| Missing                                                               | 4 (8.5)         | 81 (12.0)      | 23 (12.9)      | 13 (13.5)      |
| Ponderal index at birth, kg/m <sup>3</sup> (Mean±SD)                  | 25.5 ± 3.8      | 25.6 ± 5.3     | 26.7 ± 8.5     | $25.6 \pm 4.0$ |
| Ponderal index at birth, categorized (N, %)                           |                 |                |                |                |
| <22.98                                                                | 12 (25.5)       | 163 (24.1)     | 35 (19.6)      | 23 (24.0)      |
| 22.98-25.21                                                           | 10 (21.3)       | 147 (21.8)     | 40 (22.4)      | 15 (15.6)      |
| 25.22-28.11                                                           | 11 (23.4)       | 144 (21.3)     | 33 (18.4)      | 30 (31.3)      |
| ≥28.12                                                                | 10 (21.3)       | 141 (20.9)     | 48 (26.8)      | 15 (15.6)      |
| Missing                                                               | 4 (8.5)         | 81 (12.0)      | 23 (12.9)      | 13 (13.5)      |
| Baseline characteristics                                              |                 |                |                |                |
| Age at baseline (Mean±SD) <sup>a</sup>                                | 10.2 ± 2.3      | $10.0 \pm 2.4$ | 9.9 ± 2.3      | 9.6 ± 2.5      |
| BMI-for-age percentile at baseline, $(Mean \pm SD)^a$                 | $38.0 \pm 29.6$ | 46.2 ± 29.0    | 60.5 ± 30.1    | 71.6 ± 29.2    |
| <b>BMI-for-age percentile at baseline</b> , categorized (N, %)a       |                 |                |                |                |
| ≥85th BMI-for-age percentile                                          | 3 (6.4)         | 75 (11.1)      | 48 (26.8)      | 43 (44.8)      |
| <85th BMI-for-age percentile                                          | 44 (93.6)       | 569 (84.2)     | 121 (67.6)     | 47 (49.0)      |
| Missing                                                               | 0 (0.0)         | 32 (4.7)       | 10 (559.0)     | 6 (6.3)        |
| History of breast cancer in a first- or second-degree relative (N, %) |                 |                |                |                |
| BCFH+                                                                 | 23 (48.9)       | 352 (52.1)     | 94 (52.5)      | 46 (47.9)      |
| BCFH-                                                                 | 24 (51.1)       | 324 (47.9)     | 85 (47.5)      | 50 (52.1)      |
| BOADICEA lifetime risk score (Mean±SD)                                | 14.1 ± 4.5      | 14.7 ± 4.8     | $14.9 \pm 4.9$ | $13.5 \pm 3.8$ |
| Study site                                                            |                 |                |                |                |
| Philadelphia                                                          | 5 (10.6)        | 112 (16.6)     | 18 (10.1)      | 15 (15.6)      |
| New York                                                              | 8 (17.0)        | 117 (17.3)     | 33 (18.4)      | 15 (15.6)      |
| Utah                                                                  | 8 (17.0)        | 121 (17.9)     | 26 (14.5)      | 11 (11.5)      |
| Ontario                                                               | 10 (21.3)       | 118 (17.5)     | 24 (13.4)      | 15 (15.6)      |
| Northern California                                                   | 16 (34.0)       | 208 (30.8)     | 78 (43.6)      | 40 (41.7)      |
| Race/ethnicity                                                        |                 |                |                |                |
| Non-Hispanic white                                                    | 24 (51.1)       | 466 (68.9)     | 92 (51.4)      | 45 (46.9)      |
| Non-Hispanic black                                                    |                 |                |                |                |

| Hispanic                                                                    | 6 (12.8)   | 100 (14.8) | 54 (30.2)  | 20 (20.8)  |
|-----------------------------------------------------------------------------|------------|------------|------------|------------|
| Asian/Pacific Islander                                                      | 9 (19.2)   | 67 (9.9)   | 8 (4.5)    | 4 (4.2)    |
| Other or mixed race/ethnicity                                               | 3 (6.4)    | 14 (2.1)   | 7 (3.9)    | 5 (5.2)    |
| Maternal education                                                          |            |            |            |            |
| Some college, vocational or technical school or less                        | 11 (23.4)  | 158 (23.4) | 56 (31.3)  | 48 (50.0)  |
| Bachelor's degree                                                           | 20 (42.6)  | 250 (37.0) | 65 (36.3)  | 28 (29.2)  |
| Graduate degree                                                             | 15 (31.9)  | 253 (37.4) | 54 (30.2)  | 15 (15.6)  |
| Missing                                                                     | 1 (2.1)    | 15 (2.2)   | 4 (2.2)    | 5 (5.2)    |
| Paternal education                                                          |            |            |            |            |
| Some college, vocational or technical school or less                        | 18 (38.3)  | 189 (28.0) | 66 (36.9)  | 53 (55.2)  |
| Bachelor's degree                                                           | 14 (29.8)  | 205 (30.3) | 49 (27.4)  | 20 (20.8)  |
| Graduate degree                                                             | 13 (27.7)  | 255 (37.7) | 48 (26.8)  | 10 (10.4)  |
| Missing                                                                     | 2 (4.3)    | 27 (4.0)   | 16 (8.9)   | 13 (13.5)  |
| Maternal age at menarche (Mean±SD)                                          | 13.4 ± 1.6 | 12.9 ± 1.5 | 12.4 ± 1.5 | 11.7 ± 1.5 |
| Maternal age at menarche, categorized                                       |            |            |            |            |
| <12 years                                                                   | 5 (10.6)   | 98 (14.5)  | 48 (26.8)  | 41 (42.7)  |
| 12-13 years                                                                 | 21 (44.7)  | 384 (56.8) | 96 (53.6)  | 38 (39.6)  |
| ≥14 years                                                                   | 21 (44.7)  | 183 (27.1) | 26 (14.5)  | 12 (12.5)  |
| Missing                                                                     | 0 (0.0)    | 11 (1.6)   | 9 (5.0)    | 5 (5.2)    |
| <sup>a</sup> Age at pilot baseline visit for girls with pilot data $(N-21)$ |            |            |            |            |

<sup>a</sup>Age at pilot baseline visit for girls with pilot data (N=21)

|                                                                            | BCFH+<br>(N=530) | BCFH-<br>(N=501) |
|----------------------------------------------------------------------------|------------------|------------------|
| Early-life characteristics                                                 |                  |                  |
| Maternal age at birth (Mean±SD)                                            | 32.8 ± 5.1       | 31.5 ± 5.7       |
| Maternal height, m (Mean±SD)                                               | 1.6 ± 0.1        | 1.6 ± 0.1        |
| Maternal pre-pregnancy weight, kg (Mean±SD)                                | 64.3 ± 12.9      | 63.7 ± 13.7      |
| Maternal pre-pregnancy BMI (Mean±SD)                                       | 23.8 ± 4.8       | 23.7 ± 5.0       |
| Maternal pre-pregnancy BMI, categorized (N, %)                             |                  |                  |
| <18.5                                                                      | 23 (4.3)         | 24 (4.8)         |
| 18.5 to <25                                                                | 352 (66.4)       | 324 (64.7)       |
| 25 to <30                                                                  | 94 (17.7)        | 85 (17.0)        |
| ≥30                                                                        | 46 (8.7)         | 50 (10.0)        |
| Missing                                                                    | 15 (2.8)         | 18 (3.6)         |
| Gestational weight gain (n, %)                                             |                  |                  |
| <10 lbs                                                                    | 15 (2.8)         | 12 (2.4)         |
| 10-14 lbs                                                                  | 24 (4.5)         | 18 (3.6)         |
| 15-19 lbs                                                                  | 43 (8.1)         | 43 (8.6)         |
| 20-29 lbs                                                                  | 174 (32.8)       | 142 (28.3)       |
| 30-39 lbs                                                                  | 132 (24.9)       | 132 (26.4)       |
| 40-49 lbs                                                                  | 68 (12.8)        | 77 (15.4)        |
| ≥50 lbs                                                                    | 53 (10.0)        | 60 (12.0)        |
| Missing                                                                    | 21 (4.0)         | 17 (3.4)         |
| Gestational weight gain adequacy based on the 2009 IOM guidelines (n, %)   |                  |                  |
| Inadequate (below guidelines)                                              | 77 (14.5)        | 55 (11.0)        |
| Adequate (within guidelines)                                               | 265 (50.0)       | 254 (50.7)       |
| Excessive (above guidelines)                                               | 157 (29.6)       | 160 (31.9)       |
| Missing                                                                    | 31 (5.9)         | 32 (6.4)         |
| Maternal recreational physical activity during pregnancy (N,<br>%)         |                  |                  |
| Inactive, no walking or other regular exercise                             | 74 (14.0)        | 54 (10.8)        |
| Mostly inactive, equivalent to walking about half a mile or less every day | 130 (24.5)       | 105 (21.0)       |
| Somewhat active, equivalent to walking about 1 mile every day              | 105 (19.8)       | 117 (23.4)       |
| Active, equivalent to walking about 2 miles every day                      | 188 (35.5)       | 191 (38.1)       |
| Highly active, equivalent to walking about 3 or more miles every<br>day    | 31 (5.9)         | 26 (5.2)         |
| Missing                                                                    | 2 (0.4)          | 8 (0.4)          |
| Maternal physical activity at home during pregnancy (N, %)                 |                  |                  |
| Mostly sitting                                                             | 98 (18.5)        | 111 (22.2)       |
| Mostly walking and standing, with some sitting                             | 207 (39.1)       | 196 (39.1)       |
| Active housework most of the time with little sitting                      | 219 (41.3)       | 181 (36.1)       |

# Supplemental Table 3.2. Descriptive characteristics of the LEGACY Girls Study cohort by breast cancer family history

| Heavy manual work at home                                                                          | 2 (0.4)        | 3 (0.6)        |
|----------------------------------------------------------------------------------------------------|----------------|----------------|
| Missing                                                                                            | 4 (0.8)        | 10 (2.0)       |
| Maternal physical activity at work during pregnancy (N, %)                                         |                |                |
| material physical activity at work during pregnancy (1, 70)                                        |                |                |
| Not working                                                                                        | 106 (20.0)     | 105 (21.0)     |
| Mostly sitting and standing                                                                        | 222 (41.9)     | 191 (38.1)     |
| Mostly walking with some sitting and standing                                                      | 183 (34.5)     | 174 (34.7)     |
| Mostly heavy labor with some walking and standing and little sitting                               | 17 (3.2)       | 22 (4.4)       |
| Missing                                                                                            | 2 (0.4)        | 9 (1.8)        |
| Maternal physical activity during pregnancy, 2nd trimester (N, %)                                  |                |                |
| Stayed the same                                                                                    | 382 (72.1)     | 355 (70.9)     |
| Substantially increased                                                                            | 26 (4.9)       | 28 (5.6)       |
| Substantially decreased                                                                            | 120 (22.6)     | 111 (22.2)     |
| Missing                                                                                            | 2 (0.4)        | 7 (1.4)        |
| Gestational diabetes during pregnancy with LEGACY daughter (N, %)                                  |                |                |
| Yes                                                                                                | 43 (8.1)       | 35 (7.0)       |
| No                                                                                                 | 479 (90.4)     | 451 (90.0)     |
| Missing                                                                                            | 8 (1.5)        | 15 (3.0)       |
| Gestational hypertension, toxemia or pre-eclampsia during pregnancy with LEGACY daughter (N, $\%)$ |                |                |
| Yes                                                                                                | 39 (7.4)       | 35 (7.0)       |
| No                                                                                                 | 483 (91.1)     | 449 (89.6)     |
| Missing                                                                                            | 8 (1.5)        | 17 (3.4)       |
| Type of gestation (N, %)                                                                           |                |                |
| Multiple                                                                                           | 19 (3.6)       | 26 (5.2)       |
| Singleton                                                                                          | 506 (95.5)     | 464 (92.6)     |
| Missing                                                                                            | 5 (0.9)        | 11 (2.2)       |
| Birth order (Mean±SD)                                                                              | 1.8 ± 0.9      | 1.8 ± 1.0      |
| Birth order, dichotomized (N, %)                                                                   |                |                |
| First-born                                                                                         | 239 (45.1)     | 231 (46.1)     |
| Not first-born                                                                                     | 286 (54.0)     | 259 (51.7)     |
| Missing                                                                                            | 5 (0.9)        | 11 (2.2)       |
| Gestational age in weeks (Mean±SD)                                                                 | 39.0 ± 2.1     | 39.0 ± 2.2     |
| Gestational age, categorized (N, %)                                                                |                |                |
| <37 weeks                                                                                          | 62 (11.7)      | 58 (11.6)      |
| ≥37 weeks                                                                                          | 459 (86.6)     | 434 (86.6)     |
| Missing                                                                                            | 9 (1.7)        | 9 (1.8)        |
| Intrauterine smoke exposure (N, %)                                                                 |                |                |
| Yes                                                                                                | 13 (2.5)       | 6 (1.2)        |
| No                                                                                                 | 513 (96.8)     | 487 (97.2)     |
| Missing                                                                                            | 4 (0.8)        | 8 (1.6)        |
| Birthweight, g (Mean±SD)                                                                           | 3302.3 ± 574.0 | 3294.0 ± 593.6 |

| Birthweight, categorized (N, %)                                     |                |                       |
|---------------------------------------------------------------------|----------------|-----------------------|
| <2500g                                                              | 44 (8.3)       | 34 (6.8)              |
| 2500-2999g                                                          | 86 (16.2)      | 93 (18.6)             |
| 3000-3499g                                                          | 196 (37.0)     | 192 (38.3)            |
| 3500-3999g                                                          | 154 (29.1)     | 125 (25.0)            |
| ≥4000g                                                              | 45 (8.5)       | 49 (9.8)              |
| Missing                                                             | 5 (0.9)        | 8 (1.6)               |
| Birthlength, cm (Mean±SD)                                           | 50.4 ± 3.4     | 50.7 ± 3.8            |
| Birthlength categorized (N, %)                                      |                |                       |
| <48.25                                                              | 57 (10.8)      | 49 (9.8)              |
| 48.25-50.74                                                         | 150 (28.3)     | 127 (25.4)            |
| 50.75-53.24                                                         | 106 (20.0)     | 109 (21.8)            |
| ≥53.25                                                              | 149 (28.1)     | 151 (30.1)            |
| Missing                                                             | 68 (12.8)      | 65 (13.0)             |
| Ponderal index at birth, kg/m <sup>3</sup> (Mean±SD)                | 26.0 ± 6.1     | 25.6 ± 5.5            |
| Ponderal index at birth, categorized (N, %)                         |                |                       |
| <22.98                                                              | 116 (21.9)     | 122 (24.4)            |
| 22.98-25.21                                                         | 121 (22.8)     | 96 (19.2)             |
| 25.22-28.11                                                         | 112 (21.1)     | 113 (22.6)            |
| ≥28.12                                                              | 113 (21.3)     | 105 (21.0)            |
| Missing                                                             | 68 (12.8)      | 65 (13.0)             |
| Baseline characteristics                                            |                |                       |
| Age at baseline (Mean±SD) <sup>a</sup>                              | 10.1 ± 2.5     | $9.8 \pm 2.3$         |
| BMI-for-age percentile at baseline, (Mean±SD) <sup>a</sup>          | 52.1 ± 30.4    | 49.4 ± 30.5           |
| BMI-for-age percentile at baseline, categorized (N, %) <sup>a</sup> |                |                       |
| ≥85th BMI-for-age percentile                                        | 91 (17.2)      | 83 (16.6)             |
| <85th BMI-for-age percentile                                        | 410 (77.4)     | 396 (79.0)            |
| Missing                                                             | 29 (5.5)       | 22 (4.4)              |
| BOADICEA lifetime risk score (Mean±SD)                              | $17.9 \pm 4.7$ | 11.1 ± 0.4            |
| Study site                                                          |                |                       |
| Philadelphia                                                        | 90 (17.0)      | 63 (12.6)             |
| New York                                                            | 80 (15.1)      | 95 (19.0)             |
| Utah                                                                | 78 (14.7)      | 95 (19.0)             |
| Ontario                                                             | 90 (17.0)      | 89 (17.8)             |
| Northern California                                                 | 192 (36.2)     | 159 (31.7)            |
| Race/ethnicity                                                      |                |                       |
| Non-Hispanic white                                                  | 352 (66.4)     | 298 (59.5)            |
| Non-Hispanic black                                                  | 29 (5.5)       | 49 (9.8)              |
| Hispanic                                                            | 100 (18.9)     | 84 (16.8)             |
|                                                                     | ( )            |                       |
| Asian/Pacific Islander                                              | 38 (7.2)       | 50 (10.0)             |
| Asian/Pacific Islander<br>Other or mixed race/ethnicity             | . ,            | 50 (10.0)<br>20 (4.0) |

| Some college, vocational or technical school or less139 (26.2)14 | 8 (29.5)  |
|------------------------------------------------------------------|-----------|
| Bachelor's degree 190 (35.9) 18                                  | 3 (36.5)  |
| Graduate degree 181 (34.2) 16                                    | 5 (32.9)  |
| Missing 20 (3.8) 5                                               | 5 (1.0)   |
| Paternal education                                               |           |
| Some college, vocational or technical school or less168 (31.7)17 | 1 (34.1)  |
| Bachelor's degree 164 (30.9) 13                                  | 4 (26.8)  |
| Graduate degree 166 (31.3) 16                                    | 7 (33.3)  |
| Missing 32 (6.0) 2                                               | 9 (5.8)   |
| Maternal age at menarche (Mean±SD)12.7 ± 1.612                   | 2.7 ± 1.5 |
| Maternal age at menarche, categorized                            |           |
| <12 years 96 (18.1) 10                                           | 4 (20.8)  |
| 12-13 years 281 (53.0) 27                                        | 7 (55.3)  |
| ≥14 years 135 (25.5) 11.                                         | 2 (22.4)  |
| Missing 18 (3.4) 8                                               | 3 (1.6)   |

<sup>a</sup>Age at pilot baseline visit for girls with pilot data (N=21)

Supplemental Table 3.3. Time ratios (TR), hazard ratios (HR) and 95% confidence intervals (CIs) for associations between maternal prepregnancy BMI and GWG, categorized by the 2009 IOM guidelines, and the onset of breast development for the overall cohort and girls age <8 years at baseline

|                                                                            |     |                         | Overall co           | hort                    |                      |     | Girls <8 years at baseline |                      |                         |                      |  |
|----------------------------------------------------------------------------|-----|-------------------------|----------------------|-------------------------|----------------------|-----|----------------------------|----------------------|-------------------------|----------------------|--|
|                                                                            |     | Unadju                  | isted                | Adjus                   | sted <sup>a</sup>    |     | Unadju                     | isted                | Adju                    | sted <sup>b</sup>    |  |
|                                                                            | Ν   | TR (95% CI)             | HR (95%<br>CI)       | TR (95% CI)             | HR (95%<br>Cl)       | Ν   | TR (95% CI)                | HR (95%<br>CI)       | TR (95% CI)             | HR (95%<br>CI)       |  |
| Gestational weight gain<br>adequacy by the modified<br>2009 IOM guidelines |     |                         |                      |                         |                      |     |                            |                      |                         |                      |  |
| Below guidelines                                                           | 132 | 0.994<br>(0.961, 1.027) | 1.05<br>(0.81, 1.36) | 1.003<br>(0.969, 1.038) | 0.98<br>(0.74, 1.29) | 27  | 1.021<br>(0.933, 1.112)    | 0.86<br>(0.45, 1.65) | 1.031<br>(0.949, 1.121) | 0.79<br>(0.42, 1.48) |  |
| Within guidelines                                                          | 513 | Reference               | Reference            | Reference               | Reference            | 130 | Reference                  | Reference            | Reference               | Reference            |  |
| Exceeding guidelines                                                       | 313 | 0.968<br>(0.946, 0.992) | 1.28<br>(1.07, 1.54) | 0.981<br>(0.958, 1.006) | 1.16<br>(0.96, 1.41) | 80  | 0.956<br>(0.907, 1.007)    | 1.38<br>(0.95, 2.02) | 0.969<br>(0.914, 1.028) | 1.27<br>(0.81, 1.98) |  |
| Maternal pre-pregnancy<br>BMI and GWG guidelines                           |     |                         |                      |                         |                      |     |                            |                      |                         |                      |  |
| BMI<25 and did not exceed guidelines                                       | 521 | Reference               | Reference            | Reference               | Reference            | 122 | Reference                  | Reference            | Reference               | Reference            |  |
| BMI<25 and exceeded guidelines                                             | 173 | 0.982<br>(0.955, 1.009) | 1.15<br>(0.93, 1.43) | 0.980<br>(0.953, 1.007) | 1.18<br>(0.94, 1.47) | 40  | 0.915<br>(0.855, 0.979)    | 1.92<br>(1.18, 3.14) | 0.917<br>(0.857, 0.980) | 1.92<br>(1.17, 3.16) |  |
| BMI≥25 and did not exceed guidelines                                       | 124 | 0.977<br>(0.930, 1.026) | 1.20<br>(0.81, 1.77) | 0.989<br>(0.942, 1.037) | 1.10<br>(0.75, 1.61) | 35  | 0.906<br>(0.846, 0.971)    | 2.06<br>(1.26, 3.35) | 0.935<br>(0.870, 1.005) | 1.65<br>(0.99, 2.78) |  |
| BMI≥25 and exceeded guidelines                                             | 140 | 0.942<br>(0.913, 0.972) | 1.59<br>(1.25, 2.03) | 0.957<br>(0.928, 0.988) | 1.41<br>(1.10, 1.82) | 40  | 0.949<br>(0.887, 1.016)    | 1.47<br>(0.90, 2.40) | 0.957<br>(0.889, 1.031) | 1.39<br>(0.80, 2.41) |  |

<sup>a</sup>Adjusted for race (Non-Hispanic white Non-Hispanic black, Hispanic, Asian, Other) and maternal education (some college or less, Bachelor's degree, graduate degree). Model for GWG also adjusted for maternal pre-pregnancy BMI (continuous).

<sup>b</sup>Adjusted for maternal education (some college or less, Bachelor's degree, graduate degree). Model for GWG also adjusted for maternal pre-pregnancy BMI (continuous).

Supplemental Table 3.4. Time ratios (TR), hazard ratios (HR) and 95% confidence intervals (CIs) for associations between maternal physical activity during pregnancy and the onset of breast development with adjustment for GWG for the overall cohort and girls age <8 years at baseline

|                                                                                                                                                                                                                                                                                       | Overall                                                                                    | cohort <sup>a</sup>                                                               | Girls <8                                                                                   | 3 years <sup>b</sup>                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                       | TR (95% CI)                                                                                | HR (95% CI)                                                                       | TR (95% CI)                                                                                | HR (95% CI)                                                                       |
| Recreational physical activity                                                                                                                                                                                                                                                        |                                                                                            |                                                                                   |                                                                                            |                                                                                   |
| Inactive, no walking or other regular<br>exercise<br>Mostly inactive, equivalent to walking<br>about half a mile or less every day<br>Somewhat active, equivalent to<br>walking about 1 mile every day<br>Active or highly active, equivalent to<br>walking 2 miles or more every day | 0.977<br>(0.941, 1.015)<br>1.006<br>(0.976, 1.038)<br>1.010<br>(0.983, 1.038)<br>Reference | 1.20<br>(0.89, 1.63)<br>0.95<br>(0.74, 1.22)<br>0.93<br>(0.75, 1.15)<br>Reference | 0.933<br>(0.873, 0.998)<br>1.012<br>(0.951, 1.077)<br>1.008<br>(0.949, 1.071)<br>Reference | 1.70<br>(1.02, 2.83)<br>0.91<br>(0.56, 1.47)<br>0.94<br>(0.59, 1.51)<br>Reference |
| Physical activity at home                                                                                                                                                                                                                                                             |                                                                                            |                                                                                   |                                                                                            |                                                                                   |
| Mostly sitting                                                                                                                                                                                                                                                                        | 1.013<br>(0.981, 1.046)                                                                    | 0.90<br>(0.70, 1.17)                                                              | 0.974<br>(0.912, 1.041)                                                                    | 1.22<br>(0.74, 2.02)                                                              |
| Mostly walking and standing, with some sitting                                                                                                                                                                                                                                        | Reference                                                                                  | Reference                                                                         | Reference                                                                                  | Reference                                                                         |
| Active housework most of the time with little sitting or heavy manual labor                                                                                                                                                                                                           | 1.019<br>(0.995, 1.044)                                                                    | 0.86<br>(0.70, 1.04)                                                              | 0.994<br>(0.942, 1.048)                                                                    | 1.05<br>(0.70, 1.57)                                                              |
| Physical activity at work                                                                                                                                                                                                                                                             |                                                                                            |                                                                                   |                                                                                            |                                                                                   |
| Not working outside the home                                                                                                                                                                                                                                                          | 1.033<br>(1.003, 1.063)                                                                    | 0.77<br>(0.61, 0.98)                                                              | 1.089<br>(1.021, 1.163)                                                                    | 0.52<br>(0.31, 0.86)                                                              |
| Mostly sitting and standing<br>Mostly walking or heavy labor                                                                                                                                                                                                                          | Reference<br>1.004<br>(0.980, 1.028)                                                       | Reference<br>0.97<br>(0.80, 1.18)                                                 | Reference<br>1.016<br>(0.964, 1.070)                                                       | Reference<br>0.89<br>(0.59, 1.33)                                                 |

<sup>a</sup>Adjusted for race (Non-Hispanic white Non-Hispanic black, Hispanic, Asian, Other), maternal education (some college or less, Bachelor's degree, graduate degree), maternal prepregnancy BMI (continuous) and gestational weight gain (<20lbs, 20-29 lbs, 30-39lbs, 40-49lbs, ≥50lbs).

<sup>b</sup>Adjusted for maternal education (some college or less, Bachelor's degree, graduate degree), maternal pre-pregnancy BMI (continuous) and gestational weight gain (<20lbs, 20-29 lbs, 30-39lbs, 40-49lbs, ≥50lbs).

|                                  |     |                             | Overall co                | hort                        |                           | -   |                             | irls <8 years a           | t baseline                  |                           |
|----------------------------------|-----|-----------------------------|---------------------------|-----------------------------|---------------------------|-----|-----------------------------|---------------------------|-----------------------------|---------------------------|
|                                  |     | Adjusted for weig           |                           | Multivariable               | e-adjusted <sup>b</sup>   |     | Adjusted for<br>length      |                           | Multivariabl                | e-adjusted <sup>c</sup>   |
|                                  | Ν   | TR (95% CI)                 | HR (95%<br>Cl)            | TR (95% CI)                 | HR (95%<br>CI)            | Ν   | TR (95% CI)                 | HR (95%<br>CI)            | TR (95% CI)                 | HR (95%<br>Cl)            |
| Birthweight                      |     |                             |                           |                             |                           |     |                             |                           |                             |                           |
| <2500g                           | 62  | 1.003                       | 0.98                      | 0.989                       | 1.09                      | 17  | 1.057                       | 0.67                      | 1.054                       | 0.66                      |
|                                  | 4   | (0.955, 1.053)              | (0.67, 1.43)              | (0.937, 1.045)              | (0.70, 1.70)              |     | (0.925, 1.210)              | (0.25, 1.77)              | (0.904, 1.229)              | (0.20, 2.21)              |
| 2500-2999g                       | 157 | 1.008                       | 0.94                      | 1.013                       | 0.90                      | 38  | 0.997                       | 1.02                      | 1.012                       | 0.91                      |
| 3000-3499g                       | 345 | (0.975, 1.041)<br>Reference | (0.73, 1.22)<br>Reference | (0.982, 1.046)<br>Reference | (0.69, 1.16)<br>Reference | 91  | (0.927, 1.073)<br>Reference | (0.60, 1.74)<br>Reference | (0.935, 1.100)<br>Reference | (0.49, 1.69)<br>Reference |
| 0                                |     |                             |                           |                             |                           |     |                             |                           |                             |                           |
| 3500-3999g                       | 247 | 1.012                       | 0.91                      | 1.010                       | 0.92                      | 57  | 1.006                       | 0.96                      | 0.993                       | 1.06                      |
| 4000~                            | 79  | (0.988, 1.037)<br>0.981     | (0.75, 1.10)<br>1.16      | (0.986, 1.034)<br>0.997     | (0.76, 1.12)<br>1.03      | 22  | (0.940, 1.076)<br>0.967     | (0.59, 1.56)<br>1.28      | (0.932, 1.058)<br>0.981     | (0.64, 1.74)<br>1.16      |
| ≥4000g                           | 19  | (0.938, 1.025)              | (0.82, 1.64)              | (0.953, 1.043)              | (0.71, 1.48)              | 22  | (0.876, 1.067)              | (0.62, 2.61)              | (0.882, 1.092)              | (0.50, 2.70)              |
|                                  |     | (0.950, 1.025)              | (0.02, 1.04)              | (0.333, 1.043)              | (0.71, 1.40)              |     | (0.070, 1.007)              | (0.02, 2.01)              | (0.002, 1.092)              | (0.50, 2.70)              |
| Per 500g increase                | 890 | 0.996                       | 1.03                      | 1.000                       | 1.00                      | 225 | 0.988                       | 1.09                      | 0.987                       | 1.11                      |
|                                  |     | (0.984, 1.008)              | (0.94, 1.13)              | (0.987, 1.014)              | (0.90, 1.12)              |     | (0.958, 1.020)              | (0.87, 1.37)              | (0.950, 1.026)              | (0.81, 1.50)              |
|                                  |     |                             |                           |                             |                           |     |                             |                           |                             |                           |
| Birthlength                      |     |                             |                           |                             |                           |     |                             |                           |                             |                           |
| <48.25                           | 104 | 1.012                       | 0.91                      | 1.011                       | 0.91                      | 28  | 1.085                       | 0.55                      | 1.051                       | 0.68                      |
|                                  |     | (0.973, 1.052)              | (0.67, 1.24)              | (0.970, 1.054)              | (0.65, 1.28)              |     | (0.980, 1.202)              | (0.26, 1.16)              | (0.951, 1.161)              | (0.31, 1.47)              |
| 48.25-50.74                      | 276 | Reference                   | Reference                 | Reference                   | Reference                 | 64  | Reference                   | Reference                 | Reference                   | Reference                 |
| 50.75-53.24                      | 213 | 0.997                       | 1.03                      | 0.988                       | 1.10                      | 58  | 1.058                       | 0.67                      | 1.028                       | 0.81                      |
|                                  |     | (0.970, 1.025)              | (0.83, 1.27)              | (0.962, 1.015)              | (0.88, 1.37)              |     | (0.983, 1.138)              | (0.39, 1.15)              | (0.961, 1.101)              | (0.47, 1.37)              |
| ≥53.25                           | 297 | 0.994                       | 1.05                      | 0.991                       | 1.08                      | 75  | 1.009                       | 0.93                      | 1.020                       | 0.86                      |
|                                  |     | (0.967, 1.022)              | (0.85, 1.29)              | (0.965, 1.017)              | (0.88, 1.33)              |     | (0.931, 1.094)              | (0.52, 1.68)              | (0.952, 1.093)              | (0.50, 1.48)              |
| Per 1 cm increase                | 890 | 0.998                       | 1.02                      | 0.998                       | 1.02                      | 225 | 1.001                       | 1.00                      | 1.005                       | 0.96                      |
|                                  |     | (0.994, 1.002)              | (0.99, 1.05)              | (0.994, 1.002)              | (0.99, 1.05)              |     | (0.991, 1.009)              | (0.93, 1.07)              | (0.998, 1.013)              | (0.91, 1.02)              |
| Ponderal index                   |     |                             |                           |                             |                           |     |                             |                           |                             |                           |
| <22.98                           | 234 | 1.002                       | 0.98                      | 0.994                       | 1.05                      | 56  | 1.015                       | 0.90                      | 1.009                       | 0.94                      |
|                                  |     | (0.974, 1.032)              | (0.79, 1.23)              | (0.967, 1.023)              | (0.83, 1.32)              |     | (0.946, 1.088)              | (0.54, 1.49)              | (0.943, 1.079)              | (0.55, 1.59)              |
| 22.98-25.21                      | 216 | Reference                   | Reference                 | Reference                   | Reference                 | 57  | Reference                   | Reference                 | Reference                   | Reference                 |
| 25.22-28.11                      | 222 | 1.003                       | 0.98                      | 1.003                       | 0.97                      | 63  | 1.008                       | 0.94                      | 0.993                       | 1.05                      |
| -                                |     | (0.973, 1.033)              | (0.78, 1.24)              | (0.974, 1.034)              | (0.76, 1.24)              |     | (0.948, 1.072)              | (0.60, 1.47)              | (0.939, 1.062)              | (0.62, 1.78)              |
| ≥28.12                           | 218 | 1.009                       | 0.93                      | 1.009                       | 0.93                      | 49  | 0.982                       | 1.14                      | 0.961                       | 1.36                      |
|                                  |     | (0.980, 1.038)              | (0.75, 1.17)              | (0.981, 1.038)              | (0.74, 1.17)              |     | (0.910, 1.059)              | (0.66, 1.96)              | (0.901, 1.026)              | (0.82, 2.25               |
| Per 1 kg/m <sup>3</sup> increase | 890 | 1.000                       | 1.00                      | 1.001                       | 0.99                      | 225 | 0.999                       | 1.01                      | 0.998                       | 1.02                      |
| 5                                | -   | (0.998, 1.003)              | (0.98, 1.02)              | (0.998, 1.003)              | (0.98, 1.01)              |     | (0.996, 1.002)              | (0.99, 1.03)              | (0.996, 1.000)              | (1.00, 1.03)              |

Supplemental Table 3.5. Time ratios (TR), hazard ratios (HR) and 95% confidence intervals (CIs) for associations between size at birth and the onset of breast development for the overall cohort and girls age <8 years at baseline

<sup>a</sup>Mutually adjusted for birthweight and birthlength. Categorical model adjusted for other measure as continuous variable.

<sup>b</sup>Adjusted for race (Non-Hispanic white Non-Hispanic black, Hispanic, Asian, Other), maternal education (some college or less, Bachelor's degree, graduate degree), maternal prepregnancy BMI (continuous), gestational weight gain (<20lbs, 20-29 lbs, 30-39lbs, 40-49lbs, ≥50lbs) and gestational age in weeks.

<sup>c</sup>Adjusted for maternal education (some college or less, Bachelor's degree, graduate degree), maternal pre-pregnancy BMI (continuous), gestational weight gain (<20lbs, 20-29 lbs, 30-39lbs, 40-49lbs, ≥50lbs) and gestational age in weeks.

Supplemental Table 3.6. Time ratios (TR), hazard ratios (HR) and 95% confidence intervals (CIs) for associations between birthweight and birthlength groups and the onset of breast development for the overall cohort and girls age <8 years at baseline

|                                                               |                                                     |                         | Overall co           | hort                    |                                     | Girls <8 years at baseline |                         |                      |                                     |                      |  |
|---------------------------------------------------------------|-----------------------------------------------------|-------------------------|----------------------|-------------------------|-------------------------------------|----------------------------|-------------------------|----------------------|-------------------------------------|----------------------|--|
|                                                               | Adjusted for weight and length<br>only <sup>a</sup> |                         |                      | Multivariable           | Multivariable-adjusted <sup>b</sup> |                            | Adjusted for<br>length  | 0                    | Multivariable-adjusted <sup>c</sup> |                      |  |
|                                                               | Ν                                                   | TR (95% CI)             | HR (95%<br>CI)       | TR (95% CI)             | HR (95%<br>CI)                      | Ν                          | TR (95% CI)             | HR (95%<br>CI)       | TR (95% CI)                         | HR (95%<br>CI)       |  |
| Birthweight & birthlength<br>groups, defined by the<br>median |                                                     |                         | , i                  |                         |                                     |                            |                         | , i                  |                                     |                      |  |
| Long/light                                                    | 164                                                 | 0.973<br>(0.933, 1.016) | 1.23<br>(0.89, 1.71) | 0.976<br>(0.939, 1.014) | 1.22<br>(0.90, 1.66)                | 42                         | 0.990<br>(0.883, 1.110) | 1.07<br>(0.47, 2.44) | 1.015<br>(0.926, 1.111)             | 0.89<br>(0.44, 1.81) |  |
| Long/heavy                                                    | 347                                                 | 0.985 (0.948, 1.023)    | 1.13<br>(0.84, 1.51) | 0.983<br>(0.945, 1.018) | 1.15<br>(0.87, 1.53)                | 91                         | 1.020<br>(0.918, 1.134) | 0.87 (0.41, 1.85)    | 1.038<br>(0.955, 1.128)             | 0.75 (0.40, 1.42)    |  |
| Short/light                                                   | 278                                                 | 0.992 (0.951, 1.035)    | 1.06<br>(0.77, 1.47) | 0.989<br>(0.951, 1.028) | 1.10<br>(0.80, 1.51)                | 70                         | 1.007<br>(0.903, 1.123) | 0.95 (0.43, 2.09)    | 1.024<br>(0.934, 1.123)             | 0.83 (0.41, 1.68)    |  |
| Short/heavy                                                   | 101                                                 | Reference               | Reference            | Reference               | Reference                           | 22                         | Reference               | Reference            | Reference                           | Reference            |  |

<sup>a</sup>Mutually adjusted for birthweight and birthlength. Categorical model adjusted for other measure as continuous variable.

<sup>b</sup>Adjusted for race (Non-Hispanic white Non-Hispanic black, Hispanic, Ásian, Other), maternal education (some college or less, Bachelor's degree, graduate degree), maternal prepregnancy BMI (continuous), gestational weight gain (<20lbs, 20-29 lbs, 30-39lbs, 40-49lbs, ≥50lbs) and gestational age in weeks.

<sup>c</sup>Adjusted for maternal education (some college or less, Bachelor's degree, graduate degree), maternal pre-pregnancy BMI (continuous), gestational weight gain (<20lbs, 20-29 lbs, 30-39lbs, 40-49lbs, ≥50lbs) and gestational age in weeks.

|                                                                                | Sub |                         | h pre-pubertal E<br>h BMI-for-age p | BMI measures, ex<br>ercentile ≥85 | cluding girls        | Girls <8 years at baseline, excluding girls with BMI-for-age percentile ≥85 |                         |                         |                                |                       |  |
|--------------------------------------------------------------------------------|-----|-------------------------|-------------------------------------|-----------------------------------|----------------------|-----------------------------------------------------------------------------|-------------------------|-------------------------|--------------------------------|-----------------------|--|
|                                                                                |     | Multivariabl            | e-adjusted <sup>a</sup>             | Additional ad<br>daughter's       | ,                    |                                                                             | Multivariabl            | e-adjusted <sup>c</sup> | Additional adj<br>daughter's t | ody size <sup>d</sup> |  |
|                                                                                | Ν   | TR (95% CI)             | HR (95% CI)                         | TR (95% CI)                       | HR (95% CI)          | Ν                                                                           | TR (95% CI)             | HR (95% CI)             | TR (95% CI)                    | HR (95%<br>CI)        |  |
| Maternal pre-pregnancy<br>BMI                                                  |     |                         |                                     |                                   |                      |                                                                             |                         |                         |                                | - /                   |  |
| <18.5                                                                          | 25  | 1.031<br>(0.987, 1.077) | 0.77<br>(0.53, 1.12)                | 1.027<br>(0.983, 1.072)           | 0.80<br>(0.55, 1.16) |                                                                             | *Those with             | BMI<18.5 are in<br>num  | i referent group du<br>bers    | ie to small           |  |
| 18.5 to <25                                                                    | 346 | Reference               | Reference                           | Reference                         | Reference            | 141                                                                         | Reference               | Reference               | Reference                      | Reference             |  |
| 25 to <30                                                                      | 70  | 0.975<br>(0.928, 1.024) | 1.25<br>(0.81, 1.92)                | 0.977<br>(0.930, 1.026)           | 1.22<br>(0.79, 1.88) | 34                                                                          | 0.992<br>(0.933, 1.055) | 1.07<br>(0.64, 1.81)    | 1.016<br>(0.954, 1.083)        | 0.87<br>(0.50, 1.51)  |  |
| ≥30                                                                            | 28  | 0.973<br>(0.923, 1.026) | 1.27<br>(0.81, 1.99)                | 0.980<br>(0.930, 1.032)           | 1.19<br>(0.76, 1.87) | 16                                                                          | 0.981<br>(0.898, 1.071) | 1.18<br>(0.56, 2.51)    | 1.008<br>(0.919, 1.017)        | 0.93<br>(0.41, 2.10)  |  |
| Continuous (per kg/m²)                                                         | 469 | 0.996<br>(0.992, 0.999) | 1.04<br>(1.01, 1.07)                | 0.996<br>(0.993, 1.000)           | 1.03<br>(1.00, 1.07) | 191                                                                         | 0.997<br>(0.991, 1.002) | 1.03<br>(0.98, 1.08)    | 0.999<br>(0.993, 1.005)        | 1.01<br>(0.96, 1.06)  |  |
| Recreational physical<br>activity <sup>b</sup>                                 |     |                         |                                     |                                   |                      |                                                                             |                         |                         |                                |                       |  |
| Inactive, no walking or other regular exercise                                 | 50  | 0.975<br>(0.925, 1.028) | 1.24<br>(0.78, 1.98)                | 0.971<br>(0.921, 1.023)           | 1.29<br>(0.81, 2.06) | 22                                                                          | 0.952<br>(0.892, 1.016) | 1.54<br>(0.87, 2.71)    | 0.938<br>(0.883, 0.997)        | 1.78<br>(1.03, 3.08   |  |
| Mostly inactive, equivalent                                                    | 110 | 0.994                   | 1.05                                | 0.992                             | 1.07                 | 47                                                                          | 1.027                   | 0.79                    | 1.022                          | 0.82                  |  |
| to walking about half a mile<br>or less every day                              |     | (0.962, 1.028)          | (0.78, 1.41)                        | (0.959, 1.026)                    | (0.80, 1.44)         |                                                                             | (0.962, 1.100)          | (0.45, 1.40)            | (0.955, 1.093)                 | (0.45, 1.51           |  |
| Somewhat active,<br>equivalent to walking about<br>1 mile every day            | 109 | 1.018<br>(0.984, 1.054) | 0.85<br>(0.63, 1.16)                | 1.014<br>(0.978, 1.052)           | 0.88<br>(0.64, 1.21) | 44                                                                          | 1.019<br>(0.957, 1.086) | 0.85<br>(0.48, 1.47)    | 1.012<br>(0.951, 1.077)        | 0.90<br>(0.51, 1.58   |  |
| Active or highly active,<br>equivalent to walking 2<br>miles or more every day | 200 | Reference               | Reference                           | Reference                         | Reference            | 78                                                                          | Reference               | Reference               | Reference                      | Reference             |  |
| Gestational weight gain <sup>b</sup>                                           |     |                         |                                     |                                   |                      |                                                                             |                         |                         |                                |                       |  |
| <20lbs                                                                         | 71  | 0.987<br>(0.944, 1.032) | 1.12<br>(0.76, 1.66)                | 0.988<br>(0.944, 1.034)           | 1.11<br>(0.75, 1.65) | 26                                                                          | 0.944<br>(0.868, 1.028) | 1.66<br>(0.80, 3.48)    | 0.948<br>(0.873, 1.029)        | 1.64<br>(0.78, 3.42   |  |
| 20-29 lbs                                                                      | 137 | Reference               | Reference                           | Reference                         | Reference            | 63                                                                          | Reference               | Reference               | Reference                      | Reference             |  |
| 30-39 lbs                                                                      | 129 | 0.985<br>(0.951, 1.021) | 1.14<br>(0.83, 1.56)                | 0.986<br>(0.952, 1.022)           | 1.13<br>(0.83, 1.54) | 51                                                                          | 0.917<br>(0.860, 0.977) | 2.17<br>(1.25, 3.76)    | 0.922<br>(0.864, 0.984)        | 2.10<br>(1.18, 3.73)  |  |
| 40-49 lbs                                                                      | 70  | 0.958<br>(0.918, 1.000) | 1.45<br>(1.00, 2.12)                | 0.961<br>(0.919, 1.005)           | 1.42<br>(0.96, 2.09) | 27                                                                          | 0.906<br>(0.843, 0.975) | 2.40<br>(1.25, 4.61)    | 0.903<br>(0.840, 0.971)        | 2.54<br>(1.29, 4.99   |  |
| ≥50 lbs                                                                        | 48  | 0.956<br>(0.911, 1.004) | 1.48<br>(0.96, 2.26)                | 0.958<br>(0.912, 1.007)           | 1.45<br>(0.94, 2.23) | 20                                                                          | 0.927<br>(0.841, 1.023) | 1.96<br>(0.82, 4.66)    | 0.917<br>(0.835, 1.007)        | 2.21<br>(0.94, 5.21   |  |

Supplemental Table 3.7. Time ratios (TR), hazard ratios (HR) and 95% confidence intervals (CIs) for associations between maternal prepregnancy BMI, recreational physical activity during pregnancy and GWG in girls with a BMI less than the 85<sup>th</sup> percentile for age

| Maternal pre-pregnancy<br>BMI and GWG <sup>a</sup> |     |                         |                       |                         |                      |    |                         |                      |                         |                      |
|----------------------------------------------------|-----|-------------------------|-----------------------|-------------------------|----------------------|----|-------------------------|----------------------|-------------------------|----------------------|
| BMI<25 and <30 lbs                                 | 160 | Reference               | Reference             | Reference               | Reference            | 61 | Reference               | Reference            | Reference               | Reference            |
| BMI<25 and ≥30 lbs                                 | 201 | 0.979<br>(0.949, 1.010) | 1.20<br>(0.919, 1.57) | 0.980<br>(0.949, 1.012) | 1.20<br>(0.91, 1.58) | 77 | 0.910<br>(0.853, 0.970) | 2.32<br>(1.32, 4.07) | 0.912<br>(0.856, 0.972) | 2.31<br>(1.31, 4.10) |
| BMI≥25 and <30lbs                                  | 48  | 0.974<br>(0.916, 1.035) | 1.26<br>(0.74, 2.15)  | 0.975<br>0.917, 1.037)  | 1.25<br>(0.73, 2.12) | 28 | 0.940<br>(0.872, 1.013) | 1.73<br>(0.91, 3.31) | 0.965<br>(0.896, 1.040) | 1.38<br>(0.70, 2.72) |
| BMI≥25 and ≥30 lbs                                 | 46  | 0.947<br>(0.898, 0.997) | 1.61<br>(1.02, 2.54)  | 0.953<br>(0.905, 1.005) | 1.51<br>(0.95, 2.39) | 21 | 0.932<br>(0.840, 1.034) | 1.87<br>(0.75, 4.70) | 0.963<br>(0.863, 1.075) | 1.41<br>(0.52, 3.83) |

<sup>a</sup>Adjusted for race (Non-Hispanic white Non-Hispanic black, Hispanic, Asian, Other) and maternal education (some college or less, Bachelor's degree, graduate degree). Model for

GWG also adjusted for maternal pre-pregnancy BMI (continuous). <sup>b</sup>Adjusted for everything in <sup>a</sup> plus daughter's BMI-for-age percentile between age 5-7 years and interaction between BMI-for-age percentile and centered age at BMI measure. <sup>c</sup>Adjusted for maternal education (some college or less, Bachelor's degree, graduate degree). Model for GWG also adjusted for maternal pre-pregnancy BMI (continuous). <sup>d</sup>Adjusted for everything in <sup>b</sup> plus daughter's BMI-for-age percentile between age 5-7 years and interaction between BMI-for-age percentile and centered age at BMI measure.

|                                                    |     | Mother SM               | • • • •              | Mother SM               | •                    |                         | other SMS Mode       | ,                         |
|----------------------------------------------------|-----|-------------------------|----------------------|-------------------------|----------------------|-------------------------|----------------------|---------------------------|
|                                                    | Ν   | TR (95% CI)             | HR (95% CI)          | TR (95% CI)             | HR (95% CI)          | TR (95% CI)             | HR (95% CI)          | Cox model:<br>HR (95% CI) |
| Maternal pre-pregnancy BMI <sup>d</sup>            |     |                         |                      |                         |                      |                         |                      |                           |
| <18.5                                              | 46  | 1.055<br>(1.011, 1.101) | 0.65<br>(0.46, 0.92) | 1.037<br>(0.999, 1.077) | 0.73<br>(0.53, 1.02) | 1.039<br>(1.001, 1.078) | 0.72<br>(0.53, 0.99) | 0.74<br>(0.54, 1.00)      |
| 18.5 to <25                                        | 649 | Reference               | Reference            | Reference               | Reference            | Reference               | Reference            | Reference                 |
| 25 to <30                                          | 174 | 0.993<br>(0.956, 1.032) | 1.06<br>(0.78, 1.44) | 0.986<br>(0.955, 1.018) | 1.13<br>(0.86, 1.49) | 0.986<br>(0.955, 1.018) | 1.13<br>(0.86, 1.48) | 1.16<br>(0.92, 1.47)      |
| ≥30                                                | 90  | 0.967<br>(0.930, 1.006) | 1.30<br>(0.95, 1.79) | 0.968<br>(0.933, 1.003) | 1.33<br>(0.97, 1.81) | 0.968<br>(0.934, 1.003) | 1.32<br>(0.97, 1.80) | 1.34<br>(1.04, 1.74)      |
| Continuous (per kg/m <sup>2</sup> )                | 959 | 0.997<br>(0.994, 0.999) | 1.03<br>(1.01, 1.05) | 0.998<br>(0.995, 1.000) | 1.02<br>(1.00, 1.04) | 0.998<br>(0.995, 1.000) | 1.02<br>(1.00, 1.04) | 1.02<br>(1.01, 1.04)      |
| Gestational weight gaine                           |     |                         |                      |                         |                      |                         |                      |                           |
| <20lbs                                             | 149 | 0.984<br>(0.949, 1.021) | 1.14<br>(0.85, 1.53) | 0.989<br>(0.960, 1.018) | 1.10<br>(0.86, 1.41) | 0.989<br>(0.960, 1.018) | 1.10<br>(0.86, 1.41) | 1.06<br>(0.85, 1.32)      |
| 20-29 lbs                                          | 301 | Reference               | Reference            | Reference               | Reference            | Reference               | Reference            | Reference                 |
| 30-39 lbs                                          | 247 | 0.976<br>(0.948, 1.006) | 1.21<br>(0.96, 1.53) | 0.985<br>(0.959, 1.012) | 1.14<br>(0.90, 1.44) | 0.986<br>(0.959, 1.012) | 1.13<br>(0.90, 1.43) | 1.16<br>(0.96, 1.40)      |
| 40-49 lbs                                          | 138 | 0.975<br>(0.942, 1.008) | 1.23<br>(0.94, 1.61) | 0.987<br>(0.956, 1.018) | 1.12<br>(0.86, 1.47) | 0.987<br>(0.957, 1.018) | 1.12<br>(0.86, 1.46) | 1.11<br>(0.88, 1.40)      |
| ≥50 lbs                                            | 106 | 0.963<br>(0.927, 1.000) | 1.36<br>(1.00, 1.84) | 0.968<br>(0.940, 0.996) | 1.33<br>(1.03, 1.70) | 0.968<br>(0.940, 0.997) | 1.32<br>(1.03, 1.69) | 1.26<br>(1.00, 1.58)      |
| Maternal pre-pregnancy BMI<br>and GWG <sup>d</sup> |     |                         |                      |                         |                      |                         |                      |                           |
| BMI<25 and <30 lbs                                 | 306 | Reference               | Reference            | Reference               | Reference            | Reference               | Reference            | Reference                 |
| BMI<25 and ≥30 lbs                                 | 378 | 0.986<br>(0.961, 1.011) | 1.12<br>(0.92, 1.37) | 0.992<br>(0.969, 1.015) | 1.07<br>(0.88, 1.31) | 0.992<br>(0.970, 1.015) | 1.07<br>(0.88, 1.30) | 1.08<br>(0.91, 1.28)      |
| BMI≥25 and <30lbs                                  | 144 | 0.988<br>(0.945, 1.033) | 1.10<br>(0.77, 1.57) | 0.988<br>(0.953, 1.023) | 1.11<br>(0.82, 1.51) | 0.988<br>(0.954, 1.024) | 1.11<br>(0.82, 1.50) | )<br>(0.88, 1.50)         |
| BMI≥25 and ≥30 lbs                                 | 113 | 0.946<br>(0.911, 0.982) | 1.56<br>(1.16, 2.10) | 0.950<br>(0.918, 0.984) | 1.55<br>(1.15, 2.09) | 0.951<br>(0.919, 0.984) | 1.54<br>(1.14, 2.07) | 1.57<br>(1.21, 2.03)      |

Supplemental Table 3.8. Sensitivity analyses for associations between maternal pre-pregnancy BMI and GWG and the onset of breast development for the overall cohort by modeling strategy using mother-reported Sexual Maturation Scale (SMS)

<sup>a</sup>Girls with maternal report of TS≥2 at first completed growth and development questionnaire were left-censored at age of questionnaire completion. Girls that transitioned from TS1 to TS≥2 during follow-up were interval-censored with the start of the interval defined as the age at last questionnaire were mom reported TS1 and end of the interval defined as age at first questionnaire where mom reported TS≥2. Girls without a maternal report of TS≥2 during follow-up were right censored at age of last questionnaire where mom reported TS≥2. Girls without a maternal report of TS≥2 during follow-up were right censored at age of last questionnaire where mom reported TS1. This is the primary model used in the analyses and shown in Table 3.2. It is included here for easy comparison across models.

<sup>b</sup>Recalled age at breast development imputed as though observed for left-censored girls. Interval and right-censored girls are entered as in Model 1. <sup>c</sup>Recalled age at breast development imputed as though observed for left-censored girls and midpoint of interval imputed as though observed for interval-censored girls. Right-censored girls are entered as in Model 1.

<sup>d</sup>Adjusted for race (Non-Hispanic white Non-Hispanic black, Hispanic, Asian, Other) and maternal education (some college or less, Bachelor's degree, graduate degree).

<sup>e</sup>Adjusted for race (Non-Hispanic white Non-Hispanic black, Hispanic, Asian, Other), maternal education (some college or less, Bachelor's degree, graduate degree) and maternal prepregnancy BMI (continuous).

|                                                        | Mother PDS             | Model 1 <sup>a</sup> | Mother PDS                    | S Model 2 <sup>b</sup>             | Moth                          | ner PDS Mode                       | l 3°                               | Moth                         | ner PDS Mode                       | 4 <sup>d</sup>      |
|--------------------------------------------------------|------------------------|----------------------|-------------------------------|------------------------------------|-------------------------------|------------------------------------|------------------------------------|------------------------------|------------------------------------|---------------------|
|                                                        |                        |                      |                               |                                    |                               |                                    | Cox model:                         |                              |                                    | Cox mode            |
|                                                        | TR                     | HR                   | TR                            | HR                                 | TR                            | HR                                 | HR                                 | TR                           | HR                                 | HR                  |
|                                                        | (95% CI)               | (95% CI)             | (95% CI)                      | (95% CI)                           | (95% CI)                      | (95% CI)                           | (95% CI)                           | (95% CI)                     | (95% CI)                           | (95% CI)            |
| Maternal pre-<br>pregnancy BMI <sup>d</sup>            |                        |                      |                               |                                    |                               |                                    |                                    |                              |                                    |                     |
| <18.5                                                  | 1.039<br>(0.997,1.082) | 0.73<br>(0.52,1.03)  | 1.013<br>(0.975,1.052)        | 0.90<br>(0.65,1.24)                | 1.017<br>(0.979,1.056)        | 0.87<br>(0.63,1.20)                | 0.91<br>(0.68,1.22)                | 1.007<br>(0.966,1.050)       | 0.94<br>(0.67,1.33)                | 0.97<br>(0.74,1.27) |
| 18.5 to <25                                            | Reference              | Reference            | Reference                     | Reference                          | Reference                     | Reference                          | Reference                          | Reference                    | Reference                          | Reference           |
| 25 to <30                                              | 0.989<br>(0.959,1.021) | 1.09<br>(0.84,1.41)  | 0.986<br>(0.957,1.016)        | 1.12<br>(0.88,1.44)                | 0.986<br>(0.958,1.016)        | 1.12<br>(0.88,1.44)                | 1.16<br>(0.95,1.42)                | 0.986<br>(0.957,1.016)       | 1.12<br>(0.88,1.44)                | 1.15<br>(0.96,1.37) |
| ≥30                                                    | 0.981<br>(0.940,1.023) | 1.17<br>(0.83,1.66)  | 0.976<br>(0.938,1.016)        | 1.23<br>(0.88,1.72)                | 0.977<br>(0.940,1.017)        | 1.21<br>(0.87,1.68)                | 1.25<br>(0.98,1.62)                | 0.974<br>(0.935,1.014)       | 1.24<br>(0.89,1.74)                | 1.26<br>(1.00,1.58) |
| Continuous (per kg/m <sup>2</sup> )                    | 0.998<br>(0.995,1.000) | 1.02<br>(1.00,1.04)  | 0.999<br>(0.996,1.001)        | 1.01<br>(0.99,1.04)                | 0.999<br>(0.996,1.001)        | 1.01<br>(0.99,1.04)                | 1.02<br>(1.00,1.03)                | 0.999<br>(0.996,1.001)       | 1.01<br>(0.99,1.04)                | 1.02<br>(1.00,1.03) |
| Gestational weight<br>gain <sup>e</sup>                |                        |                      |                               |                                    |                               |                                    |                                    |                              |                                    |                     |
| <20lbs                                                 | 0.975<br>(0.940,1.012) | 1.23<br>(0.91,1.66)  | 0.989<br>(0.961,1.018)        | 1.10<br>(0.86,1.40)                | 0.989<br>(0.961,1.017)        | 1.10<br>(0.87,1.40)                | 1.05<br>(0.86,1.29)                | 0.990<br>(0.962,1.019)       | 1.09<br>(0.86,1.38)                | 1.04<br>(0.87,1.25) |
| 20-29 lbs                                              | Reference              | Reference            | Reference                     | Reference                          | Reference                     | Reference                          | Reference                          | Reference                    | Reference                          | Reference           |
| 30-39 lbs                                              | 0.975                  | 1.23                 | 0.989                         | 1.10                               | 0.990                         | 1.09                               | 1.11                               | 0.994                        | 1.05                               | 1.06                |
|                                                        | (0.949,1.002)          | (0.99,1.54)          | (0.962,1.017)                 | (0.87 1.39)                        | (0.962 1.017)                 | (0.86,1.38)                        | (0.93,1.33)                        | (0.967,1.023)                | (0.83,1.32)                        | (0.90,1.24)         |
| 40-49 lbs                                              | 0.961                  | 1.39                 | 0.983                         | 1.16                               | 0.982                         | 1.17                               | 1.15                               | 0.984                        | 1.15                               | 1.12                |
| ≥50 lbs                                                | (0.929,0.994)<br>0.956 | (1.06,1.84)<br>1.46  | (0.952,1.014)<br><b>0.971</b> | (0.89,1.51)<br><b>1.28</b>         | (0.952,1.013)<br><b>0.970</b> | (0.90,1.52)<br><b>1.29</b>         | (0.93,1.41)<br>1.22                | 0.953,1.015)<br><b>0.970</b> | (0.88,1.49)<br><b>1.28</b>         | (0.93,1.35)<br>1.17 |
| 230 108                                                | (0.920,0.992)          | (1.06,2.00)          | (0.943,0.999)                 | (1.01,1.64)                        | (0.943,0.999)                 | (1.01,1.64)                        | (0.99,1.51)                        | (0.942,0.999)                | (1.01,1.62)                        | (0.96,1.42)         |
| Maternal pre-<br>pregnancy BMI and<br>GWG <sup>d</sup> |                        |                      |                               |                                    |                               |                                    |                                    |                              |                                    |                     |
| BMI<25 and <30 lbs                                     | Reference              | Reference            | Reference                     | Reference                          | Reference                     | Reference                          | Reference                          | Reference                    | Reference                          | Reference           |
| BMI<25 and ≥30 lbs                                     | 0.982<br>(0.958,1.007) | 1.16<br>(0.95,1.43)  | 0.994<br>(0.970,1.017)        | 1.06<br>(0.86,1.29)                | 0.994<br>(0.971,1.018)        | 1.05<br>(0.86,1.28)                | 1.06<br>(0.91,1.25)                | 0.996<br>(0.972,1.020)       | 1.04<br>(0.85,1.27)                | 1.04<br>(0.90,1.20) |
| BMI≥25 and <30lbs                                      | 0.994<br>(0.957,1.032) | 1.05<br>(0.77,1.43)  | 0.994 (0.962,1.027)           | (0.80,1.28)<br>1.05<br>(0.80,1.38) | 0.995 (0.964,1.028)           | (0.79,1.37)                        | (0.88,1.37)                        | 0.993                        | (0.80,1.21)<br>1.06<br>(0.81,1.39) | (0.90,1.35)         |
| BMI≥25 and ≥30 lbs                                     | 0.948 (0.911,0.986)    | 1.56<br>(1.13,2.15)  | 0.957 (0.922,0.993)           | (0.00,1.00)<br>1.45<br>(1.05,1.99) | 0.957<br>(0.922, .993)        | (0.76,1.07)<br>1.45<br>(1.06,1.98) | (0.00,1.07)<br>1.49<br>(1.16,1.90) | 0.960 (0.924,0.997)          | (0.01,1.00)<br>1.40<br>(1.02,1.91) | 1.38<br>(1.11,1.73) |

### Supplemental Table 3.9. Sensitivity analyses for associations between maternal pre-pregnancy BMI and GWG and the onset of breast development for the overall cohort by modeling strategy using mother-reported Pubertal Development Scale (PDS)

<sup>a</sup>Girls with maternal report of PDS≥2 at first completed growth and development questionnaire were left-censored at age of questionnaire completion. Girls that transitioned from PDS1 to PDS≥2 during follow-up were interval-censored with the start of the interval defined as the age at last questionnaire were mom reported PDS1 and end of the interval defined as age at first questionnaire where mom reported PDS≥2. Girls without a maternal report of PDS≥2 during follow-up were right censored at age of last questionnaire where mom reported PDS≥2. Girls without a maternal report of PDS≥2 during follow-up were right censored at age of last questionnaire where mom reported PDS1.

<sup>b</sup>Recalled age at breast development imputed as though observed for left-censored girls. Interval and right-censored girls are entered as in Model 1.

<sup>c</sup>Recalled age at breast development imputed as though observed for left-censored girls and midpoint of interval imputed as though observed for interval-censored girls. Right-censored girls are entered as in Model 1.

<sup>d</sup>Recalled age at breast development imputed as though observed for left-censored and interval-censored girls. Right-censored girls are entered as in Model 1. <sup>e</sup>Adjusted for race (Non-Hispanic white Non-Hispanic black, Hispanic, Asian, Other) and maternal education (some college or less, Bachelor's degree, graduate degree). <sup>f</sup>Adjusted for race (Non-Hispanic white Non-Hispanic black, Hispanic, Asian, Other), maternal education (some college or less, Bachelor's degree, graduate degree) and maternal prepregnancy BMI (continuous). Supplemental Table 3.10. Comparison of models using mother-reported Sexual Maturation Scale (SMS) vs. Pubertal Development Scale (PDS) for associations between maternal pre-pregnancy BMI and GWG and the onset of breast development in girls <8 years of age

|                                                 |     | Mother SMS           | Model 1 <sup>a</sup> | Mother PDS Model 1 <sup>b</sup> |                   |  |
|-------------------------------------------------|-----|----------------------|----------------------|---------------------------------|-------------------|--|
|                                                 | Ν   | TR (95% CI)          | HR (95% CI)          | TR (95% CI)                     | HR (95% CI)       |  |
| Maternal pre-pregnancy BMI <sup>c</sup>         |     |                      |                      |                                 |                   |  |
| <25                                             | 163 | Reference            | Reference            | Reference                       | Reference         |  |
| 25 to <30                                       | 44  | 0.977 (0.921, 1.037) | 1.19 (0.76, 1.86)    | 0.987 (0.934, 1.044)            | 1.11 (0.71, 1.72) |  |
| ≥30                                             | 29  | 0.927 (0.853, 1.008) | 1.77 (0.96, 3.26)    | 0.944 (0.871, 1.022)            | 1.58 (0.84, 2.98) |  |
| Continuous (per kg/m <sup>2</sup> )             | 236 | 0.995 (0.992, 0.999) | 1.04 (1.01, 1.07)    | 0.996 (0.992, 1.000)            | 1.03 (1.00, 1.06) |  |
| Gestational weight gain <sup>d</sup>            |     |                      |                      |                                 |                   |  |
| <20lbs                                          | 34  | 0.938 (0.869, 1.013) | 1.64 (0.91, 2.94)    | 0.960 (0.894, 1.031)            | 1.40 (0.78, 2.52) |  |
| 20-29 lbs                                       | 74  | Reference            | Reference            | Reference                       | Reference         |  |
| 30-39 lbs                                       | 62  | 0.928 (0.872, 0.986) | 1.78 (1.12, 2.86)    | 0.953 (0.899, 1.010)            | 1.49 (0.93, 2.40) |  |
| 40-49 lbs                                       | 32  | 0.919 (0.854, 0.988) | 1.92 (1.08, 3.40)    | 0.918 (0.863, 0.976)            | 2.02 (1.22, 3.37) |  |
| ≥50 lbs                                         | 29  | 0.923 (0.844, 1.009) | 1.85 (0.93, 3.67)    | 0.942 (0.872, 1.019)            | 1.63 (0.86, 3.10) |  |
| Maternal pre-pregnancy BMI and GWG <sup>c</sup> |     |                      |                      |                                 |                   |  |
| BMI<25 and <30 lbs                              | 67  | Reference            | Reference            | Reference                       | Reference         |  |
| BMI<25 and ≥30 lbs                              | 93  | 0.907 (0.848, 0.970) | 2.11 (1.28, 3.48)    | 0.929 (0.878, 0.983)            | 1.83 (1.15, 2.89) |  |
| BMI≥25 and <30lbs                               | 41  | 0.910 (0.839, 0.987) | 2.05 (1.13, 3.72)    | 0.939 (0.875, 1.008)            | 1.67 (0.94, 2.95) |  |
| BMI≥25 and ≥30 lbs                              | 30  | 0.907 (0.826, 0.996) | 2.11 (1.04, 4.28)    | 0.933 (0.856, 1.016)            | 1.77 (0.88, 3.54) |  |

<sup>a</sup>Girls with maternal report of TS≥2 at first completed growth and development questionnaire were left-censored at age of questionnaire completion. Girls that transitioned from TS1 to TS≥2 during follow-up were interval-censored with the start of the interval defined as the age at last questionnaire were mom reported TS1 and end of the interval defined as age at first questionnaire where mom reported TS≥2. Girls without a maternal report of TS≥2 during follow-up were right censored at age of last questionnaire where mom reported TS≥2. Girls without a maternal report of TS≥2 during follow-up were right censored at age of last questionnaire where mom reported TS1. This is the primary model used in the analyses and shown in Table 3.2. It is included here for easy comparison across models.

<sup>b</sup>Girls with maternal report of PDS>2 at first completed growth and development questionnaire were left-censored at age of questionnaire completion. Girls that transitioned from PDS1 to PDS>2 during follow-up were interval-censored with the start of the interval defined as the age at last questionnaire were mom reported PDS1 and end of the interval defined as age at first questionnaire where mom reported PDS>2. Girls without a maternal report of PDS>2 during follow-up were right censored at age of last questionnaire where mom reported PDS>2. Girls without a maternal report of PDS>2 during follow-up were right censored at age of last questionnaire where mom reported PDS1.

<sup>c</sup>Adjusted for maternal education (some college or less, Bachelor's degree, graduate degree).

<sup>d</sup>Adjusted for maternal education (some college or less, Bachelor's degree, graduate degree) and maternal pre-pregnancy BMI (continuous).

Supplemental Table 3.11. Comparison of models using mother-reported Sexual Maturation Scale (SMS), mother-reported Pubertal Development Scale (PDS) and clinical Tanner scale for associations between maternal pre-pregnancy BMI and GWG and the onset of breast development in girls from New York and Utah sites with clinical Tanner assessment available

| , ,                                                |     | Mother SMS           | Model 1 <sup>a</sup> | Mother PDS           | Model 1 <sup>b</sup> | Clinical Tanner Model 1 <sup>c</sup> |                   |
|----------------------------------------------------|-----|----------------------|----------------------|----------------------|----------------------|--------------------------------------|-------------------|
|                                                    | Ν   | TR (95% CI)          | HR (95% CI)          | TR (95% CI)          | HR (95% CI)          | TR (95% CI)                          | HR (95% CI)       |
| Maternal pre-pregnancy BMI <sup>d</sup>            |     |                      |                      |                      |                      |                                      |                   |
| <18.5                                              | 16  | 1.033 (0.968, 1.102) | 0.78 (0.47, 1.29)    | 1.027 (0.967, 1.091) | 0.80 (0.48, 1.33)    | 1.008 (0.943, 1.078)                 | 0.93 (0.52, 1.68) |
| 18.5 to <25                                        | 209 | Reference            | Reference            | Reference            | Reference            | Reference                            | Reference         |
| 25 to <30                                          | 52  | 0.958 (0.905, 1.014) | 1.40 (0.89, 2.21)    | 1.000 (0.955, 1.047) | 1.00 (0.68, 1.46)    | 0.972 (0.930, 1.016)                 | 1.28 (0.87, 1.88) |
| ≥30                                                | 25  | 0.971 (0.900, 1.047) | 1.26 (0.70, 2.28)    | 1.012 (0.942, 1.088) | 0.90 (0.50, 1.65)    | 0.993 (0.933, 1.058)                 | 1.06 (0.61, 1.84) |
| Continuous (per kg/m <sup>2</sup> )                | 302 | 0.996 (0.991, 1.001) | 1.03 (0.99, 1.07)    | 0.999 (0.994, 1.004) | 1.01 (0.97, 1.05)    | 0.997 (0.993, 1.001)                 | 1.03 (0.99, 1.07) |
| Gestational weight gain <sup>e</sup>               |     |                      |                      |                      |                      |                                      |                   |
| <20lbs                                             | 59  | 0.993 (0.946, 1.042) | 1.06 (0.73, 1.55)    | 0.958 (0.913, 1.006) | 1.43 (0.96, 2.12)    | 0.969 (0.926, 1.014)                 | 1.32 (0.89, 1.96) |
| 20-29 lbs                                          | 100 | Reference            | Reference            | Reference            | Reference            | Reference                            | Reference         |
| 30-39 lbs                                          | 67  | 0.995 (0.945, 1.048) | 1.04 (0.70, 1.55)    | 0.980 (0.934, 1.027) | 1.19 (0.80, 1.76)    | 0.999 (0.954, 1.045)                 | 1.01 (0.68, 1.51) |
| 40-49 lbs                                          | 44  | 0.988 (0.936, 1.043) | 1.10 (0.72, 1.68)    | 0.948 (0.902, 0.997) | 1.56 (1.04, 2.33)    | 0.996 (0.953, 1.042)                 | 1.03 (0.70, 1.53) |
| ≥50 lbs                                            | 29  | 0.965 (0.894, 1.041) | 1.33 (0.73, 2.41)    | 0.988 (0.908, 1.075) | 1.11 (0.54, 2.26)    | 0.969 (0.882, 1.064)                 | 1.32 (0.58, 3.00) |
| Maternal pre-pregnancy BMI<br>and GWG <sup>d</sup> |     |                      |                      |                      |                      |                                      |                   |
| BMI<25 and <30 lbs                                 | 110 | Reference            | Reference            | Reference            | Reference            | Reference                            | Reference         |
| BMI<25 and ≥30 lbs                                 | 112 | 0.997 (0.958, 1.038) | 1.02 (0.75, 1.40)    | 1.000 (0.964, 1.038) | 1.00 (0.73, 1.36)    | 1.005 (0.962, 1.049)                 | 0.96 (0.65, 1.40) |
| BMI≥25 and <30 lbs                                 | 49  | 0.969 (0.911, 1.031) | 1.28 (0.79, 2.08)    | 1.019 (0.963, 1.079) | 0.85 (0.53, 1.36)    | 0.979 (0.928, 1.033)                 | 1.20 (0.75, 1.92) |
| BMI≥25 and ≥30 lbs                                 | 28  | 0.932 (0.861, 1.009) | 1.73 (0.92, 3.25)    | 0.961 (0.888, 1.040) | 1.39 (0.72, 2.71)    | 0.985 (0.932, 1.042)                 | 1.14 (0.70, 1.85) |

<sup>a</sup>Girls with maternal report of TS≥2 at first completed growth and development questionnaire were left-censored at age of questionnaire completion. Girls that transitioned from TS1 to TS≥2 during follow-up were interval-censored with the start of the interval defined as the age at last questionnaire were mom reported TS1 and end of the interval defined as age at first questionnaire where mom reported TS2. Girls without a maternal report of TS≥2 during follow-up were right censored at age of last questionnaire where mom reported TS2. Girls without a maternal report of TS≥2 during follow-up were right censored at age of last questionnaire where mom reported TS1. This is the primary model used in the analyses. It is included here for comparison across this subset with clinical Tanner data.

<sup>b</sup>Girls with maternal report of PDS>2 at first completed growth and development questionnaire were left-censored at age of questionnaire completion. Girls that transitioned from PDS1 to PDS>2 during follow-up were interval-censored with the start of the interval defined as the age at last questionnaire were mom reported PDS1 and end of the interval defined as age at first questionnaire where mom reported PDS>2. Girls without a maternal report of PDS>2 during follow-up were right censored at age of last questionnaire where mom reported PDS>2. Girls without a maternal report of PDS>2 during follow-up were right censored at age of last questionnaire where mom reported PDS>1.

<sup>a</sup>Girls that were TS $\geq$ 2 as assessed by a trained clinical rater at their first clinic visit with clinical Tanner staging available were left censored at age at visit. Girls that transitioned from TS1 to TS $\geq$ 2 during follow-up were interval-censored with the start of the interval defined as the age at last clinic visit where TS1 as assessed by trained clinical rater and end of the interval defined as age at first clinic visit where TS $\geq$ 2 as assessed by trained clinical rater. Girls without an assessment of TS $\geq$ 2 by a trained clinical rater during follow-up were right censored at age at last visit where TS1 as assessed by trained clinical rater.

<sup>d</sup>Adjusted for maternal education (some college or less, Bachelor's degree, graduate degree).

eAdjusted for maternal education (some college or less, Bachelor's degree, graduate degree) and maternal pre-pregnancy BMI (continuous).

### Appendix E Supplemental tables and figures for Chapter 4

Supplemental Table 4.1. Adjusted time ratios (TR), hazard ratios (HR) and 95% confidence intervals (CIs) for associations between weight-for-age and length-for-age Z-scores at different ages across infancy and the onset of breast development

|                                   | Model 1 <sup>ª</sup> - Weight only |                   | Model 2ª - Le        | ength only        | Model 3 <sup>b</sup> - Weight and Length |                   |
|-----------------------------------|------------------------------------|-------------------|----------------------|-------------------|------------------------------------------|-------------------|
|                                   | TR (95% CI)                        | HR (95% CI)       | TR (95% CI)          | HR (95% CI)       | TR (95% CI)                              | HR (95% CI)       |
| Weight-for-age Z-score, 0 months  | 0.968 (0.943, 0.994)               | 1.30 (1.04, 1.62) |                      |                   | 0.973 (0.946, 1.001)                     | 1.25 (0.99, 1.57) |
| Weight-for-age Z-score, 2 months  | 0.981 (0.963, 0.999)               | 1.16 (1.01, 1.35) | -                    | -                 | 0.999 (0.980, 1.019)                     | 1.01 (0.86, 1.18) |
| Weight-for-age Z-score, 4 months  | 0.976 (0.959, 0.994)               | 1.22 (1.05, 1.41) | -                    | -                 | 0.992 (0.974, 1.010)                     | 1.07 (0.92, 1.25) |
| Weight-for-age Z-score, 6 months  | 0.976 (0.958, 0.994)               | 1.22 (1.05, 1.43) | -                    | -                 | 0.986 (0.966, 1.006)                     | 1.12 (0.95, 1.33) |
| Weight-for-age Z-score, 9 months  | 0.971 (0.952, 0.989)               | 1.28 (1.09, 1.52) | -                    | -                 | 0.983 (0.966, 1.001)                     | 1.15 (0.99, 1.34) |
| Weight-for-age Z-score, 12 months | 0.972 (0.953, 0.992)               | 1.26 (1.07, 1.50) | -                    | -                 | 0.983 (0.967, 0.999)                     | 1.15 (1.01, 1.32) |
| Length-for-age Z-score, 0 months  |                                    |                   | 0.988 (0.945, 1.001) | 1.10 (0.99, 1.22) | 0.992 (0.981, 1.004)                     | 1.06 (0.97, 1.17) |
| Length-for-age Z-score, 2 months  | -                                  | -                 | 0.979 (0.960, 0.999) | 1.19 (1.01, 1.39) | 0.980 (0.959, 1.000)                     | 1.18 (1.00, 1.40) |
| Length-for-age Z-score, 4 months  | -                                  | -                 | 0.963 (0.945, 0.983) | 1.36 (1.16, 1.59) | 0.968 (0.948, 0.989)                     | 1.31 (1.10, 1.55) |
| Length-for-age Z-score, 6 months  | -                                  | -                 | 0.972 (0.954, 0.991) | 1.26 (1.07, 1.47) | 0.979 (0.959, 1.000)                     | 1.19 (1.00, 1.41) |
| Length-for-age Z-score, 9 months  | -                                  | -                 | 0.969 (0.953, 0.986) | 1.30 (1.12, 1.51) | 0.977 (0.960, 0.995)                     | 1.21 (1.04, 1.41) |
| Length-for-age Z-score, 12 months | -                                  | -                 | 0.975 (0.958, 0.993) | 1.23 (1.06, 1.42) | 0.983 (0.966, 1.000)                     | 1.15 (1.00, 1.33) |

\*Z-scores calculated using 2000 CDC growth charts as reference. Estimates for each age are from separate models.

<sup>a</sup>Estimates adjusted for gestational age in weeks, maternal pre-pregnancy BMI and gestational weight gain (BMI<25 and GWG<30lbs, BMI<25 and GWG≥30 lbs, BMI≥25 and GWG≥30), and race/ethnicity (Hispanic, Non-Hispanic Black or Mixed race/ethnicity, Non-Hispanic White, Asian)

# Supplemental Table 4.2. Unadjusted time ratios (TR), hazard ratios (HR) and 95% confidence intervals (CIs) for associations between rates of weight and length gain during infancy and the onset of breast development in the LEGACY Girls Study

|                                                                       | Model 1 <sup>ª</sup> - Weight only |                   | Model 2ª - Le        | ength only        | Model 3 <sup>a</sup> - Weight and Length |                   |
|-----------------------------------------------------------------------|------------------------------------|-------------------|----------------------|-------------------|------------------------------------------|-------------------|
|                                                                       | TR (95% CI)                        | HR (95% CI)       | TR (95% CI)          | HR (95% CI)       | TR (95% CI)                              | HR (95% CI)       |
| Change in weight Z-score,<br>0-12 months<br>Change in length Z-score, | 0.973 (0.952, 0.994)               | 1.32 (1.05, 1.65) | -                    | -                 | 0.983 (0.966, 1.001)                     | 1.14 (0.99, 1.31) |
| 0-12 months                                                           | -                                  | -                 | 0.978 (0.959, 0.997) | 1.19 (1.02, 1.38) | 0.984 (0.966, 1.003)                     | 1.13 (0.97, 1.31) |
| Change in weight Z-score,<br>0-6 months<br>Change in weight Z-score,  | 0.979 (0.960, 0.998)               | 1.18 (1.02, 1.37) | -                    | -                 | 0.985 (0.965, 1.006)                     | 1.12 (0.95, 1.32) |
| 6-12 months                                                           | 0.969 (0.940, 1.000)               | 1.27 (1.00, 1.63) | -                    | -                 | 0.976 (0.948, 1.006)                     | 1.21 (0.95, 1.53) |
| Change in length Z-score,<br>0-6 months<br>Change in length Z-score,  | -                                  | -                 | 0.978 (0.958, 1.000) | 1.18 (1.00, 1.39) | 0.984 (0.962, 1.007)                     | 1.13 (0.95, 1.34) |
| 6-12 months                                                           | -                                  | -                 | 0.985 (0.960, 1.011) | 1.12 (0.92, 1.37) | 0.987 (0.961, 1.013)                     | 1.11 (0.90, 1.36) |
| Change in weight Z-score,<br>0-2 months<br>Change in weight Z-score,  | 0.991 (0.969, 1.014)               | 1.07 (0.90, 1.27) | -                    | -                 | 1.005 (0.983, 1.027)                     | 0.97 (0.82, 1.14) |
| 2-4 months<br>Change in weight Z-score,                               | 0.937 (0.899, 0.977)               | 1.66 (1.19, 2.32) | -                    | -                 | 0.951 (0.911, 0.992)                     | 1.49 (1.05, 2.10) |
| 4-6 months<br>Change in weight Z-score,                               | 0.988 (0.944, 1.035)               | 1.10 (0.76, 1.57) | -                    | -                 | 0.982 (0.926, 1.042)                     | 1.15 (0.72, 1.82) |
| 6-9 months<br>Change in weight Z-score,                               | 0.940 (0.902, 0.979)               | 1.66 (1.18, 2.32) | -                    | -                 | 0.941 (0.902, 0.981)                     | 1.65 (1.16, 2.35) |
| 9-12 months                                                           | 0.998 (0.957, 1.041)               | 1.02 (0.73, 1.43) | -                    | -                 | 0.995 (0.951, 1.042)                     | 1.04 (0.72, 1.51) |
| Change in length Z-score,<br>0-2 months<br>Change in length Z-score,  | -                                  | -                 | 0.986 (0.962, 1.011) | 1.11 (0.93, 1.33) | 0.985 (0.961, 1.009)                     | 1.12 (0.94, 1.35) |
| 2-4 months                                                            | -                                  | -                 | 0.949 (0.915, 0.984) | 1.50 (1.14, 1.99) | 0.960 (0.923, 0.998)                     | 1.38 (1.02, 1.87) |
| Change in length Z-score,<br>4-6 months                               | -                                  | -                 | 1.011 (0.972, 1.051) | 0.92 (0.68, 1.24) | 1.015 (0.977, 1.055)                     | 0.89 (0.66, 1.20) |
| Change in length Z-score,<br>6-9 months                               | -                                  | -                 | 0.974 (0.949, 1.000) | 1.23 (1.00, 1.51) | 0.985 (0.961, 1.009)                     | 1.14 (0.93, 1.39) |
| Change in length Z-score,<br>9-12 months                              | -                                  | -                 | 0.999 (0.962, 1.037) | 1.01 (0.76, 1.36) | 1.014 (0.976, 1.053)                     | 0.89 (0.65, 1.22) |

\*Z-scores calculated using 2000 CDC growth charts as reference

<sup>a</sup>Estimates adjusted for weight and length Z-scores at birth and change in previous intervals.

Supplemental Table 4.3. Adjusted time ratios (TR), hazard ratios (HR) and 95% confidence intervals (CIs) for associations between rates of weight and length gain during infancy and the onset of breast development in the LEGACY Girls Study using the 2006 WHO growth charts as the reference population.

|                                                                       | Model 1 <sup>ª</sup> - Weight only |                   | Model 2ª - Le        | ength only        | Model 3 <sup>a</sup> - Weight and Length |                   |
|-----------------------------------------------------------------------|------------------------------------|-------------------|----------------------|-------------------|------------------------------------------|-------------------|
|                                                                       | TR (95% CI)                        | HR (95% CI)       | TR (95% CI)          | HR (95% CI)       | TR (95% CI)                              | HR (95% CI)       |
| Change in weight Z-score,<br>0-12 months<br>Change in length Z-score, | 0.974 (0.953, 0.996)               | 1.24 (1.03, 1.50) | -                    | -                 | 0.984 (0.966, 1.002)                     | 1.15 (0.98, 1.34) |
| 0-12 months                                                           | -                                  | -                 | 0.983 (0.968, 0.999) | 1.15 (1.01, 1.31) | 0.988 (0.973, 1.003)                     | 1.11 (0.97, 1.26) |
| Change in weight Z-score,<br>0-6 months<br>Change in weight Z-score,  | 0.983 (0.964, 1.002)               | 1.15 (0.98, 1.35) | -                    | -                 | 0.991 (0.972, 1.012)                     | 1.08 (0.91, 1.28) |
| 6-12 months                                                           | 0.967 (0.935, 1.000)               | 1.33 (1.00, 1.78) | -                    | -                 | 0.972 (0.939, 1.006)                     | 1.27 (0.95, 1.71) |
| Change in length Z-score,                                             |                                    |                   |                      |                   |                                          |                   |
| 0-6 months<br>Change in length Z-score,                               | -                                  | -                 | 0.980 (0.964, 0.996) | 1.19 (1.03, 1.36) | 0.983 (0.966, 1.000)                     | 1.16 (1.00, 1.34) |
| 6-12 months                                                           | -                                  | -                 | 0.991 (0.968, 1.014) | 1.08 (0.89, 1.31) | 0.993 (0.971, 1.015)                     | 1.06 (0.88, 1.29) |
| Change in weight Z-score,<br>0-2 months<br>Change in weight Z-score,  | 0.991 (0.971, 1.010)               | 1.08 (0.92, 1.27) | -                    | -                 | 1.005 (0.986, 1.025)                     | 0.96 (0.82, 1.12) |
| 2-4 months                                                            | 0.946 (0.909, 0.985)               | 1.59 (1.13, 2.24) | -                    | -                 | 0.959 (0.919, 0.999)                     | 1.44 (1.00, 2.08) |
| Change in weight Z-score,<br>4-6 months                               | 0.988 (0.933, 1.046)               | 1.11 (0.68, 1.80) | -                    | -                 | 0.991 (0.934, 1.051)                     | 1.08 (0.65, 1.80) |
| Change in weight Z-score,<br>6-9 months                               | 0.937 (0.891 , 0.986)              | 1.77 (1.12, 2.78) | -                    | -                 | 0.944 (0.896, 0.995)                     | 1.68 (1.03, 2.73) |
| Change in weight Z-score,<br>9-12 months                              | 1.008 (0.960, 1.059)               | 0.93 (0.61, 1.42) | -                    | -                 | 0.987 (0.935, 1.042)                     | 1.13 (0.69, 1.83) |
| Change in length Z-score,                                             |                                    |                   |                      |                   |                                          |                   |
| 0-2 months<br>Change in length Z-score,                               | -                                  | -                 | 0.991 (0.971, 1.067) | 1.08 (0.92, 1.26) | 0.989 (0.971, 1.008)                     | 1.09 (0.94, 1.27) |
| 2-4 months                                                            | -                                  | -                 | 0.955 (0.928, 0.984) | 1.48 (1.14, 1.90) | 0.961 (0.932, 0.991)                     | 1.41 (1.08, 1.84) |
| Change in length Z-score,<br>4-6 months                               | -                                  | -                 | 1.010 (0.976, 1.045) | 0.92 (0.69, 1.23) | 1.013 (0.979, 1.048)                     | 0.90 (0.67, 1.20) |
| Change in length Z-score,<br>6-9 months                               | -                                  | -                 | 0.976 (0.948, 1.004) | 1.23 (0.96, 1.59) | 0.985 (0.958, 1.013)                     | 1.15 (0.89, 1.48) |
| Change in length Z-score,<br>9-12 months                              | -                                  | -                 | 1.002 (0.969, 1.036) | 0.99 (0.74, 1.31) | 1.015 (1.006, 1.025)                     | 0.88 (0.64, 1.21) |

\*Z-scores calculated using 2006 WHO growth charts as reference

<sup>2</sup> Estimates adjusted for weight and length Z-scores at birth, change in previous intervals, gestational age in weeks, maternal pre-pregnancy BMI and gestational weight gain (BMI<25 and GWG<30lbs, BMI<25 and GWG<30lbs,

Supplemental Table 4.4. Adjusted time ratios (TR), hazard ratios (HR) and 95% confidence intervals (CIs) for associations between weight-for-length Z-scores and change in weight-for-length Z-scores during infancy and the onset of breast development

|                                                  | 0                    | • •               |
|--------------------------------------------------|----------------------|-------------------|
|                                                  | TR (95% CI)          | HR (95% CI)       |
| Size models <sup>a</sup>                         |                      |                   |
| Weight-for-length Z-score, 0 months              | 0.994 (0.983, 1.004) | 1.05 (0.97, 1.15) |
| Weight-for-length Z-score, 2 months              | 1.002 (0.995, 1.010) | 0.98 (0.93, 1.04) |
| Weight-for-length Z-score, 4 months              | 1.001 (0.993, 1.008) | 1.00 (0.94, 1.05) |
| Weight-for-length Z-score, 6 months              | 0.998 (0.988, 1.008) | 1.02 (0.94, 1.10) |
| Weight-for-length Z-score, 9 months              | 0.997 (0.988, 1.006) | 1.02 (0.95, 1.10) |
| Weight-for-length Z-score, 12 months             | 0.994 (0.985, 1.004) | 1.05 (0.97, 1.13) |
| Growth models <sup>b</sup>                       |                      |                   |
| Change in weight-for-length Z-score, 0-12 months | 1.003 (0.983, 1.023) | 0.98 (0.83, 1.15) |
| Change in weight-for-length Z-score, 0-6 months  | 1.004 (0.985, 1.023) | 0.97 (0.83, 1.13) |
| Change in weight-for-length Z-score, 6-12 months | 1.002 (0.977, 1.027) | 0.99 (0.81, 1.20) |
| Change in weight-for-length Z-score, 0-2 months  | 1.014 (0.998, 1.031) | 0.89 (0.78, 1.02) |
| Change in weight-for-length Z-score, 2-4 months  | 0.999 (0.971, 1.027) | 1.01 (0.81, 1.27) |
| Change in weight-for-length Z-score, 4-6 months  | 0.987 (0.954, 1.020) | 1.11 (0.85, 1.46) |
| Change in weight-for-length Z-score, 6-9 months  | 0.998 (0.973, 1.024) | 1.02 (0.82, 1.25) |
| Change in weight-for-length Z-score, 9-12 months | 1.002 (0.968, 1.038) | 0.98 (0.74, 1.30) |

\*Z-scores calculated using 2000 CDC growth charts as reference

<sup>a</sup>Estimates adjusted for gestational age in weeks, maternal pre-pregnancy BMI and gestational weight gain (BMI<25 and GWG<30lbs, BMI<25 and GWG<30 lbs, BMI<30 lbs, BMI<

<sup>b</sup>Estimates adjusted for weight-for-age Z-score at birth, length-for-age Z-score at birth, change in weight-for-length Z-scores in previous intervals, gestational age in weeks, maternal pre-pregnancy BMI and gestational weight gain

|                                                                      | Excluding preterm <sup>a</sup> |                   | Excluding birth      | weight<2500g <sup>b</sup> | Excluding multiples <sup>c</sup> |                              |
|----------------------------------------------------------------------|--------------------------------|-------------------|----------------------|---------------------------|----------------------------------|------------------------------|
|                                                                      | TR (95% CI)                    | HR (95% CI)       | TR (95% CI)          | HR (95% CI)               | TR (95% CI)                      | HR (95% CI)                  |
| Change in weight Z-score,<br>0-12 months                             | 0.985 (0.968, 1.002)           | 1.14 (0.98, 1.32) | 0.986 (0.969, 1.002) | 1.13 (0.98, 1.30)         | 0.985 (0.969, 1.002)             | 1.13 (0.98, 1.31             |
| Change in length Z-score,<br>0-12 months                             | 0.992 (0.974, 1.009)           | 1.07 (0.93, 1.25) | 0.989 (0.971, 1.008) | 1.09 (0.94, 1.28)         | 0.989 (0.971, 1.007)             | 1.10 (0.94, 1.28             |
| Change in weight Z-score,<br>0-6 months                              | 0.994 (0.974, 1.014)           | 1.05 (0.89, 1.25) | 0.994 (0.975, 1.014) | 1.05 (0.89, 1.24)         | 0.990 (0.971, 1.010)             | 1.09 (0.92, 1.2)             |
| Change in weight Z-score,<br>6-12 months                             | 0.977 (0.949, 1.007)           | 1.21 (0.94, 1.57) | 0.978 (0.951, 1.006) | 1.21 (0.94, 1.55)         | 0.978 (0.950, 1.008)             | 1.21 (0.94, 1.5              |
| Change in length Z-score,<br>0-6 months<br>Change in length Z-score, | 0.978 (0.959, 0.998)           | 1.20 (1.02, 1.42) | 0.977 (0.957, 0.997) | 1.22 (1.03, 1.44)         | 0.981 (0.961, 1.001)             | 1.18 (1.00, 1.3              |
| 6-12 months                                                          | 1.001 (0.975, 1.028)           | 0.99 (0.76, 1.24) | 1.001 (0.974, 1.028) | 1.00 (0.79, 1.26)         | 0.995 (0.969, 1.023)             | 1.04 (0.83, 1.3              |
| Change in weight Z-score,<br>0-2 months                              | 1.000 (0.980, 1.021)           | 1.00 (0.84, 1.18) | 1.000 (0.980, 1.020) | 1.00 (0.85, 1.18)         | 1.003 (0.983, 1.024)             | 0.98 (0.83, 1.3              |
| Change in weight Z-score,<br>2-4 months<br>Change in weight Z-score, | 0.968 (0.929, 1.008)           | 1.32 (0.93, 1.44) | 0.969 (0.931, 1.009) | 1.31 (0.92, 1.44)         | 0.961 (0.925, 0.999)             | 1.40 (1.00, 1.9 <sup>-</sup> |
| 4-6 months<br>Change in weight Z-score,                              | 1.008 (0.954, 1.064)           | 0.94 (0.59, 1.49) | 1.004 (0.952, 1.059) | 0.97 (0.61, 1.53)         | 0.991 (0.939, 1.045)             | 1.09 (0.68, 1.7              |
| 6-9 months<br>Change in weight Z-score,                              | 0.948 (0.903, 0.994)           | 1.62 (1.03, 2.52) | 0.951 (0.909, 0.996) | 1.57 (1.03, 2.39)         | 0.945 (0.902, 0.990)             | 1.66 (1.08, 2.5              |
| 9-12 months                                                          | 1.002 (0.955, 1.050)           | 0.99 (0.64, 1.51) | 1.001 (0.956, 1.047) | 0.99 (0.66, 1.50)         | 1.007 (0.962, 1.054)             | 0.94 (0.63, 1.4              |
| Change in length Z-score,<br>0-2 months                              | 0.983 (0.961, 1.005)           | 1.15 (0.96, 1.38) | 0.985 (0.963, 1.007) | 1.14 (0.95, 1.36)         | 0.986 (0.964, 1.009)             | 1.12 (0.94, 1.3              |
| Change in length Z-score,<br>2-4 months<br>Change in length Z-score, | 0.951 (0.917, 0.986)           | 1.54 (1.13, 2.10) | 0.948 (0.915, 0.982) | 1.58 (1.16, 2.19)         | 0.953 (0.919, 0.988)             | 1.51 (1.10, 2.0              |
| 4-6 months<br>Change in length Z-score,                              | 1.018 (0.980, 1.058)           | 0.86 (0.61, 1.19) | 1.012 (0.974, 1.051) | 0.90 (0.65, 1.26)         | 1.014 (0.975, 1.054)             | 0.89 (0.63, 1.2              |
| 6-9 months<br>Change in length Z-score,                              | 0.985 (0.953, 1.018)           | 1.15 (0.85, 1.54) | 0.982 (0.951, 1.014) | 1.18 (0.88, 1.57)         | 0.983 (0.953, 1.014)             | 1.17 (0.88, 1.5              |
| 9-12 months                                                          | 1.039 (0.996, 1.083)           | 0.71 (0.48, 1.04) | 1.035 (0.996, 1.076) | 0.73 (0.51, 1.05)         | 1.027 (0.987, 1.068)             | 0.79 (0.55, 1.1              |

#### Supplemental Table 4.5. Sensitivity analyses for the associations between rates of weight and length gain during infancy and the onset of breast development excluding infants at increased risk of rapid infant growth

\*Z-scores calculated using 2000 CDC growth charts as reference aN=21 preterm girls excluded. Estimates adjusted for weight and length Z-scores at birth, change in weight and length in previous intervals, gestational age in weeks, maternal pre-pregnancy BMI and gestational weight gain (BMI<25 and GWG<30lbs, BMI<25 and GWG≥30 lbs, BMI≥25 and GWG<30 lbs, BMI≥25 and BMI≥25 and BMI≥25 and BMI≥25 and BMI<30 lbs, BMI≥25 and BMI≥25 and BMI≥25 and BMI<30 lbs, BMI≥25 and BMI<30 lbs, BMI≥25 and BMI<30 lbs, BMI≥25 and BMI<30 lbs, BMI>25 lbs GWG≥30), and race/ethnicity (Hispanic, Non-Hispanic Black or Mixed race/ethnicity, Non-Hispanic White, Asian).

<sup>b</sup>N=13 girls with birthweight <2500g excluded. Estimates are adjusted as described in <sup>a</sup>

°N=13 girls from multiple gestations excluded. Estimates are adjusted as described in <sup>a</sup>

# Supplemental Table 4.6. Adjusted time ratios (TR), hazard ratios (HR) and 95% confidence intervals (CIs) for associations between rates of weight and length gain during infancy and the onset of breast development in girls with a BMI at baseline less than the 85<sup>th</sup> percentile for age

|                                                                       | Model 1 <sup>a</sup> - Weight only |                   | Model 2ª - Le        | ength only        | Model 3 <sup>a</sup> - Weight and Length |                   |
|-----------------------------------------------------------------------|------------------------------------|-------------------|----------------------|-------------------|------------------------------------------|-------------------|
|                                                                       | TR (95% CI)                        | HR (95% CI)       | TR (95% CI)          | HR (95% CI)       | TR (95% CI)                              | HR (95% CI)       |
| Change in weight Z-score,<br>0-12 months<br>Change in length Z-score, | 0.977 (0.956, 0.997)               | 1.23 (1.02, 1.49) | -                    | -                 | 0.991 (0.964, 1.019)                     | 1.08 (0.85, 1.38) |
| 0-12 months                                                           | -                                  | -                 | 0.978 (0.961, 0.996) | 1.21 (1.03, 1.42) | 0.983 (0.961, 1.006)                     | 1.16 (0.95, 1.42) |
| Change in weight Z-score,<br>0-6 months<br>Change in weight Z-score,  | 0.979 (0.958, 1.000)               | 1.20 (0.99, 1.45) | -                    | -                 | 0.988 (0.960, 1.016)                     | 1.11 (0.87, 1.43) |
| 6-12 months                                                           | 0.976 (0.947, 1.005)               | 1.24 (0.95, 1.62) | -                    | -                 | 0.989 (0.955, 1.024)                     | 1.10 (0.81, 1.50) |
| Change in length Z-score,<br>0-6 months<br>Change in length Z-score,  | -                                  | -                 | 0.978 (0.960, 0.997) | 1.21 (1.03, 1.43) | 0.983 (0.961, 1.006)                     | 1.16 (0.95, 1.41) |
| 6-12 months                                                           | -                                  | -                 | 0.985 (0.957, 1.014) | 1.14 (0.88, 1.47) | 0.987 (0.957, 1.017)                     | 1.12 (0.86, 1.47) |
| Change in weight Z-score,<br>0-2 months<br>Change in weight Z-score,  | 0.984 (0.961, 1.008)               | 1.14 (0.93, 1.40) | -                    | -                 | 1.005 (0.978, 1.033)                     | 0.96 (0.76, 1.22) |
| 2-4 months<br>Change in weight Z-score,                               | 0.961 (0.923, 1.000)               | 1.41 (0.99, 1.99) | -                    | -                 | 0.978 (0.938, 1.020)                     | 1.22 (0.84, 1.78) |
| 4-6 months<br>Change in weight Z-score,                               | 0.978 (0.922, 1.038)               | 1.21 (0.72, 2.03) | -                    | -                 | 0.983 (0.927, 1.042)                     | 1.17 (0.69, 1.60) |
| 6-9 months<br>Change in weight Z-score,                               | 0.934 (0.890, 0.981)               | 1.84 (1.18, 2.88) | -                    | -                 | 0.971 (0.924, 1.020)                     | 1.33 (0.82, 2.15) |
| 9-12 months                                                           | 1.017 (0.973, 1.063)               | 0.86 (0.58, 1.28) | -                    | -                 | 1.012 (0.960, 1.068)                     | 0.89 (0.54, 1.48) |
| Change in length Z-score,<br>0-2 months                               | -                                  | -                 | 0.985 (0.961, 1.009) | 1.14 (0.93, 1.40) | 0.983 (0.958, 1.009)                     | 1.16 (0.93, 1.44) |
| Change in length Z-score,<br>2-4 months                               | -                                  | -                 | 0.949 (0.916, 0.983) | 1.59 (1.16, 2.18) | 0.951 (0.916, 0.987)                     | 1.57 (1.12, 2.21) |
| Change in length Z-score,<br>4-6 months                               | -                                  | -                 | 1.029 (0.989, 1.071) | 0.77 (0.54, 1.11) | 1.032 (0.993, 1.074)                     | 0.75 (0.52, 1.08) |
| Change in length Z-score,<br>6-9 months                               | -                                  | -                 | 0.947 (0.924, 0.970) | 1.68 (1.31, 2.15) | 0.952 (0.926, 0.979)                     | 1.59 (1.21, 2.10) |
| Change in length Z-score,<br>9-12 months                              | -                                  | -                 | 1.010 (0.973, 1.048) | 0.92 (0.65, 1.30) | 1.015 (0.978, 1.054)                     | 0.86 (0.60, 1.24) |

\*Z-scores calculated using 2000 CDC growth charts as reference. N=177 girls with a BMI-for-age percentile <85<sup>th</sup> at baseline.

<sup>a</sup>Estimates adjusted for weight and length Z-scores at birth, change in previous intervals, gestational age in weeks, maternal pre-pregnancy BMI and gestational weight gain (BMI<25 and GWG<30lbs, BMI<25 and GWG<30 lbs, BMI<30 lb

|                                       | Subset with BM       | 11 between 5-7ª   | With adjustment for BMI <sup>b</sup> |                   |  |
|---------------------------------------|----------------------|-------------------|--------------------------------------|-------------------|--|
|                                       | TR (95% CI)          | HR (95% CI)       | TR (95% CI)                          | HR (95% CI)       |  |
| Change in weight Z-score, 0-12 months | 0.984 (0.970, 0.997) | 1.15 (1.02, 1.29) | 0.986 (0.971, 1.001)                 | 1.12 (0.99, 1.28) |  |
| Change in length Z-score, 0-12 months | 0.980 (0.963, 0.998) | 1.18 (1.01, 1.37) | 0.981 (0.962, 1.000)                 | 1.17 (1.00, 1.37) |  |
| Change in weight Z-score, 0-6 months  | 0.982 (0.963, 1.002) | 1.16 (0.98, 1.38) | 0.987 (0.968, 1.008)                 | 1.11 (0.94, 1.32) |  |
| Change in weight Z-score, 6-12 months | 0.989 (0.961, 1.018) | 1.14 (0.97, 1.35) | 0.988 (0.958, 1.019)                 | 1.10 (0.85, 1.43) |  |
| Change in length Z-score, 0-6 months  | 0.977 (0.955, 1.000) | 1.21 (1.00, 1.47) | 0.975 (0.953, 0.999)                 | 1.23 (1.01, 1.49) |  |
| Change in length Z-score, 6-12 months | 0.987 (0.959, 1.016) | 1.12 (0.88, 1.42) | 0.988 (0.960, 1.018)                 | 1.10 (0.86, 1.41) |  |
| Change in weight Z-score, 0-2 months  | 0.992 (0.972, 1.013) | 1.06 (0.90, 1.26) | 1.000 (0.975, 1.025)                 | 1.00 (0.82, 1.23) |  |
| Change in weight Z-score, 2-4 months  | 0.964 (0.925, 1.005) | 1.36 (0.96, 1.94) | 0.966 (0.928, 1.007)                 | 1.33 (0.94, 1.90) |  |
| Change in weight Z-score, 4-6 months  | 0.973 (0.915, 1.033) | 1.27 (0.75, 2.13) | 0.975 (0.917, 1.036)                 | 1.24 (0.73, 2.09) |  |
| Change in weight Z-score, 6-9 months  | 0.965 (0.915, 1.017) | 1.37 (0.86, 2.19) | 0.957 (0.906, 1.012)                 | 1.46 (0.89, 2.39) |  |
| Change in weight Z-score, 9-12 months | 1.005 (0.958, 1.054) | 0.96 (0.63, 1.45) | 1.007 (0.955, 1.061)                 | 0.94 (0.60, 1.48) |  |
| Change in length Z-score, 0-2 months  | 0.981 (0.959, 1.005) | 1.17 (0.96, 1.41) | 0.979 (0.955, 1.003)                 | 1.19 (0.98, 1.45) |  |
| Change in length Z-score, 2-4 months  | 0.962 (0.923, 1.002) | 1.39 (0.98, 1.97) | 0.961 (0.921, 1.002)                 | 1.40 (0.98, 2.01) |  |
| Change in length Z-score, 4-6 months  | 1.003 (0.957, 1.052) | 0.97 (0.65, 1.45) | 1.007 (0.962, 1.055)                 | 0.94 (0.64, 1.39) |  |
| Change in length Z-score, 6-9 months  | 0.983 (0.944, 1.024) | 1.16 (0.81, 1.65) | 0.988 (0.949, 1.029)                 | 1.11 (0.78, 1.58) |  |
| Change in length Z-score, 9-12 months | 1.007 (0.959, 1.057) | 0.94 (0.62, 1.44) | 1.014 (0.965, 1.065)                 | 0.89 (0.58, 1.36) |  |

Supplemental Table 4.7. Time ratios (TR), hazard ratios (HR) and 95% confidence intervals (CIs) for associations between rates of weight and length gain during infancy and the onset of breast development with adjustment for daughter's pre-pubertal body size

\*Z-scores calculated using 2000 CDC growth charts as reference. N=185 girls with pre-pubertal BMI data

<sup>a</sup>Estimates adjusted for weight and length Z-scores at birth, change in weight and length in previous intervals, gestational age in weeks, maternal pre-pregnancy BMI and gestational weight gain (BMI<25 and GWG<30lbs, BMI<25 and GWG≥30 lbs, BMI≥25 and GWG<30 lbs, BMI≥25 and GWG<30 lbs, BMI≥25 and GWG≥30), and race/ethnicity (Hispanic, Non-Hispanic Black or Mixed race/ethnicity, Non-Hispanic White, Asian) <sup>b</sup>Estimates adjusted as described in <sup>a</sup> with additional adjustment for BMI-for-age percentile and interaction between BMI-for-age percentile and centered age at BMI measurement.

Supplemental Table 4.8. Adjusted time ratios (TR), hazard ratios (HR) and 95% confidence intervals (CIs) for associations between rates of weight and length gain during infancy and the onset of breast development using inverse probability weighting to adjust for subset selection bias

|                                       | IPW Mo               | odel 1ª           | IPW Model 2 <sup>b</sup> |                   |  |
|---------------------------------------|----------------------|-------------------|--------------------------|-------------------|--|
|                                       | TR (95% CI)          | HR (95% CI)       | TR (95% CI)              | HR (95% CI)       |  |
| Change in weight Z-score, 0-12 months | 0.978 (0.949, 1.008) | 1.18 (0.95, 1.48) | 0.984 (0.960, 1.008)     | 1.15 (0.93, 1.42) |  |
| Change in length Z-score, 0-12 months | 0.989 (0.963, 1.017) | 1.09 (0.88, 1.34) | 0.993 (0.971, 1.016)     | 1.06 (0.87, 1.29) |  |
| Change in weight Z-score, 0-6 months  | 0.983 (0.960, 1.006) | 1.13 (0.96, 1.34) | 0.988 (0.965, 1.011)     | 1.11 (0.92, 1.35) |  |
| Change in weight Z-score, 6-12 months | 0.971 (0.930, 1.014) | 1.25 (0.90, 1.36) | 0.985 (0.949, 1.021)     | 1.14 (0.83, 1.57) |  |
| Change in length Z-score, 0-6 months  | 0.988 (0.955, 1.022) | 1.09 (0.85, 1.40) | 0.987 (0.961, 1.014)     | 1.12 (0.89, 1.39) |  |
| Change in length Z-score, 6-12 months | 0.990 (0.955, 1.027) | 1.08 (0.81, 1.43) | 0.999 (0.967, 1.032)     | 1.01 (0.76, 1.33) |  |
| Change in weight Z-score, 0-2 months  | 0.994 (0.965, 1.024) | 1.04 (0.85, 1.29) | 0.999 (0.975, 1.023)     | 1.01 (0.84, 1.23) |  |
| Change in weight Z-score, 2-4 months  | 0.952 (0.909, 0.998) | 1.44 (1.02, 2.04) | 0.956 (0.919, 0.995)     | 1.47 (1.05, 2.06) |  |
| Change in weight Z-score, 4-6 months  | 1.026 (0.956, 1.101) | 0.83 (0.49, 1.40) | 1.028 (0.952, 1.109)     | 0.79 (0.41, 1.52) |  |
| Change in weight Z-score, 6-9 months  | 0.949 (0.899, 1.002) | 1.54 (0.95, 2.51) | 0.957 (0.910, 1.006)     | 1.51 (0.91, 2.50) |  |
| Change in weight Z-score, 9-12 months | 1.020 (0.967, 1.075) | 0.85 (0.55, 1.32) | 1.027 (0.976, 1.080)     | 0.78 (0.48, 1.26) |  |
| Change in length Z-score, 0-2 months  | 0.992 (0.963, 1.022) | 1.06 (0.86, 1.32) | 0.997 (0.970, 1.026)     | 1.02 (0.81, 1.29) |  |
| Change in length Z-score, 2-4 months  | 0.956 (0.902, 1.013) | 1.40 (0.91, 2.15) | 0.955 (0.910, 1.002)     | 1.49 (0.98, 2.26) |  |
| Change in length Z-score, 4-6 months  | 1.031 (0.978, 1.087) | 0.79 (0.54, 1.18) | 1.021 (0.970, 1.075)     | 0.84 (0.54, 1.30) |  |
| Change in length Z-score, 6-9 months  | 0.955 (0.925, 0.987) | 1.46 (1.11, 1.91) | 0.958 (0.929, 0.989)     | 1.49 (1.12, 1.98) |  |
| Change in length Z-score, 9-12 months | 1.030 (0.987, 1.075) | 0.78 (0.55, 1.11) | 1.036 0.995, 1.077)      | 0.72 (0.49, 1.05) |  |

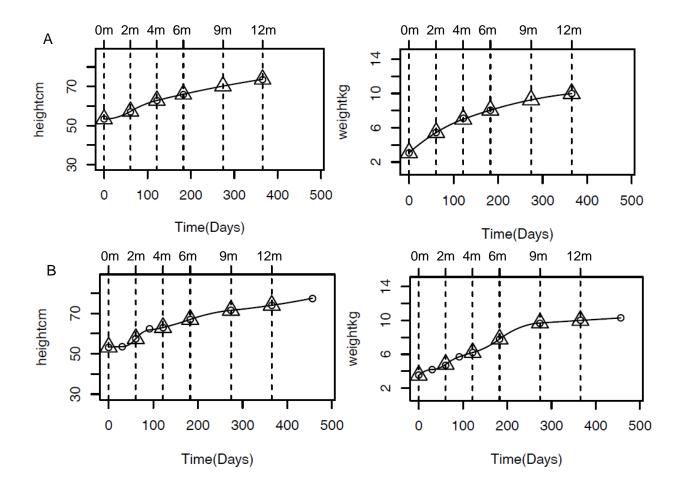
\*Z-scores calculated using 2000 CDC growth charts as reference

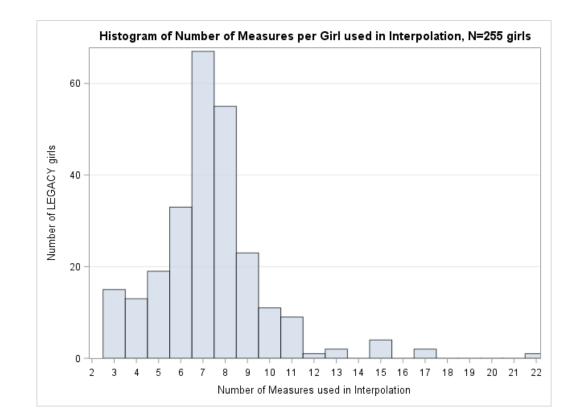
<sup>a</sup>Estimates adjusted for weight and length Z-scores at birth and change in weight and length in previous intervals

<sup>b</sup>Estimates adjusted for weight and length Z-scores at birth, change in weight and length in previous intervals, gestational age in weeks, maternal pre-pregnancy BMI and gestational weight gain

(BMI<25 and GWG<30lbs, BMI<25 and GWG≥30 lbs, BMI≥25 and GWG<30 lbs, BMI≥25 and GWG≥30), and race/ethnicity (Hispanic, Non-Hispanic Black or Mixed race/ethnicity, Non-Hispanic White, Asian)

Supplemental Table 4.9. Sensitivity analyses based on outcome assessment and modeling strategy for the associations between rates of weight and length gain during infancy and the onset of breast development

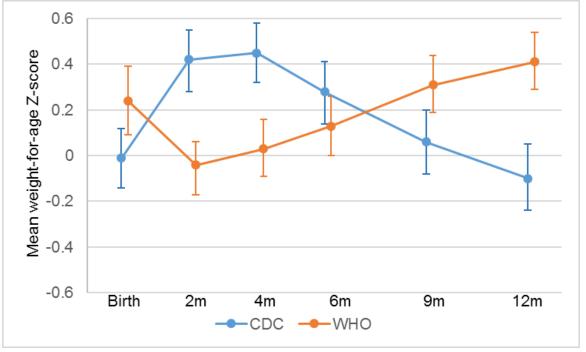

|                                                                       | Excluding inconsistent girls <sup>a</sup> |                   | Model using SMS with recalled data |                   | Model using PDS      |                    |
|-----------------------------------------------------------------------|-------------------------------------------|-------------------|------------------------------------|-------------------|----------------------|--------------------|
|                                                                       | TR (95% CI)                               | HR (95% CI)       | TR (95% CI)                        | HR (95% CI)       | TR (95% CI)          | HR (95% CI)        |
| Change in weight Z-score,<br>0-12 months<br>Change in length Z-score, | 0.988 (0.961, 1.015)                      | 1.12 (0.87, 1.45) | 0.991 (0.977, 1.005)               | 1.09 (0.95, 1.24) | 1.001 (0.988, 1.034) | 0.99 (0.88, 1.12)  |
| 0-12 months                                                           | 0.989 (0.967, 1.012)                      | 1.10 (0.90, 1.36) | 0.993 (0.978, 1.008)               | 1.07 (0.93, 1.22) | 1.004 (0.989, 1.020) | 0.96 (0.83, 1.10)  |
| Change in weight Z-score,<br>0-6 months<br>Change in weight Z-score,  | 0.991 (0.965, 1.017)                      | 1.09 (0.86, 1.39) | 1.005 (0.985, 1.026)               | 0.96 (0.81, 1.13) | 0.995 (0.977, 1.014) | 1.04 (0.88, 1.25)  |
| 6-12 months                                                           | 0.984 (0.951, 1.018)                      | 1.21 (0.94, 1.55) | 0.992 (0.964, 1.021)               | 1.08 (0.83, 1.40) | 1.007 (0.981, 1.033) | 0.94 (0.74, 1.19)  |
| Change in length Z-score,<br>0-6 months<br>Change in length Z-score,  | 0.984 (0.964, 1.005)                      | 1.16 (0.96, 1.40) | 0.978 (0.960, 0.996)               | 1.21 (1.07, 1.52) | 1.005 (0.987, 1.023) | 0.96 (0.81, 1.14)  |
| 6-12 months                                                           | 0.993 (0.965, 1.022)                      | 1.04 (0.83, 1.31) | 1.006 (0.983, 1.030)               | 0.95 (0.77, 1.18) | 1.004 (0.980, 1.028) | 0.97 (0.77, 1.21)  |
| Change in weight Z-score,<br>0-2 months<br>Change in weight Z-score,  | 1.004 (0.977, 1.032)                      | 0.96 (0.75, 1.23) | 1.007 (0.989, 1.026)               | 0.94 (0.81, 1.10) | 1.011 (0.992, 1.030) | 0.90 (0.75, 1.08)  |
| 2-4 months<br>Change in weight Z-score,                               | 0.971 (0.936, 1.007)                      | 1.32 (0.93, 1.89) | 0.985 (0.952, 1.020)               | 1.14 (0.84, 1.54) | 0.982 (0.949, 1.016) | 1.20 (0.85, 1.68)  |
| 4-6 months<br>Change in weight Z-score,                               | 1.011 (0.957, 1.067)                      | 0.90 (0.54, 1.52) | 1.048 (0.990, 1.110)               | 0.66 (0.41, 1.07) | 0.977 (0.930, 1.027) | 1.26 (0.77, 2.06)  |
| 6-9 months                                                            | 0.961 (0.911, 1.014)                      | 1.49 (0.86, 2.56) | 1.015 (0.965, 1.067)               | 0.88 (0.57, 1.36) | 0.992 (0.950, 1.036) | 1.08 (0.70, 1.65)  |
| Change in weight Z-score,<br>9-12 months                              | 0.999 (0.948, 1.054)                      | 1.01 (0.59, 1.72) | 1.007 (0.970, 1.006)               | 0.94 (0.65, 1.35) | 1.000 (0.961, 1.041) | 1.00 (0.68, 11.47) |
| Change in length Z-score,<br>0-2 months                               | 0.989 (0.966, 1.012)                      | 1.11 (0.90, 1.37) | 0.996 (0.976, 1.016)               | 1.04 (0.88, 1.23) | 1.009 (0.991, 1.028) | 0.82 (0.76, 1.10)  |
| Change in length Z-score,<br>2-4 months                               | 0.953 (0.919, 0.987)                      | 1.59 (1.13, 2.23) | 0.958 (0.932, 0.983)               | 1.45 (1.16, 1.83) | 0.984 (0.953, 1.017) | 1.17 (0.85, 1.61)  |
| Change in length Z-score,<br>4-6 months                               | 1.025 (0.989, 1.063)                      | 0.79 (0.55, 1.12) | 0.996 (0.968, 1.026)               | 1.03 (0.80, 1.33) | 1.030 (0.989, 1.073) | 0.75 (0.50, 1.11)  |
| Change in length Z-score,<br>6-9 months<br>Change in length Z-score,  | 0.979 (0.940, 1.019)                      | 1.24 (0.83, 1.87) | 0.990 (0.961, 1.019)               | 1.10 (0.84, 1.42) | 1.000 (0.972, 1.028) | 1.00 (0.76, 1.32)  |
| 9-12 months                                                           | 1.011 (0.973, 1.050)                      | 0.90 (0.61, 1.33) | 1.029 (0.998, 1.025)               | 0.76 (0.56, 1.02) | 1.009 (0.972, 1.049) | 0.91 (0.63, 1.32)  |

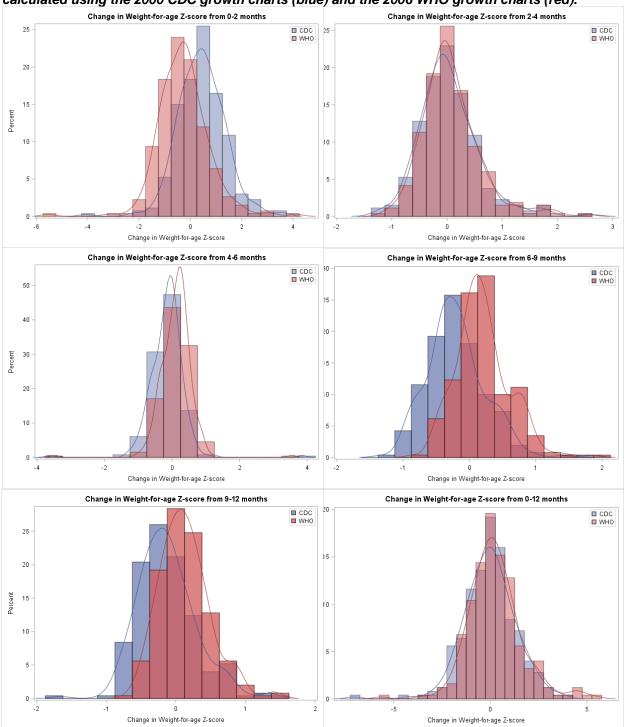

\*Z-scores calculated using 2000 CDC growth charts as reference

Estimates adjusted for weight and length Z-scores at birth, change in weight and length in previous intervals, gestational age in weeks, maternal pre-pregnancy BMI and gestational weight gain (BMI<25 and GWG<30lbs, BMI<25 and GWG<30 lbs, BMI<30 lbs, BMI

<sup>a</sup>N=22 girls excluded

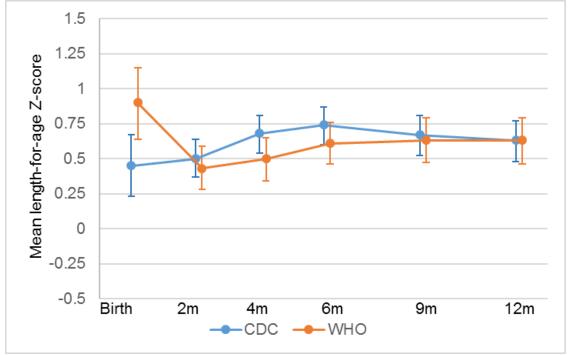
Supplemental Figure 4.1. Examples of individual quadratic spline interpolation of infancy height and weight data. Height and weight data shown for two individuals. Circles represent observed data points. Triangles represent interpolated data points at 0 months, 2 months, 4 months, 6 months, 9 months and 12 months. Individual A had 5 observed data points to contribute to the interpolation. Individual B had 9 observed data points to contribute to the interpolation.



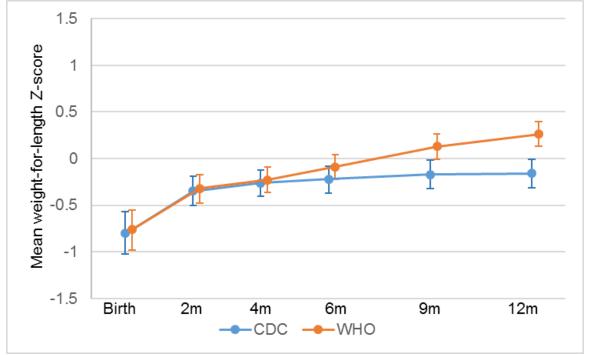





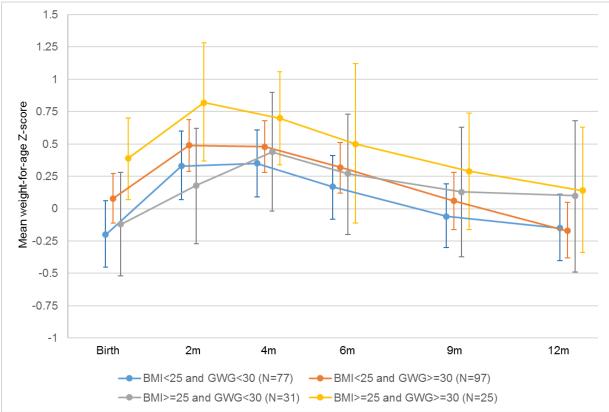




Supplemental Figure 4.3. Mean weight-for-age Z-scores and 95% confidence intervals by age calculated using the 2000 CDC growth charts and the 2006 WHO growth charts. The means are connected by lines to better identify the CDC and WHO patterns. At each age, means and error bars are slightly offset to distinguish the groups from one another.

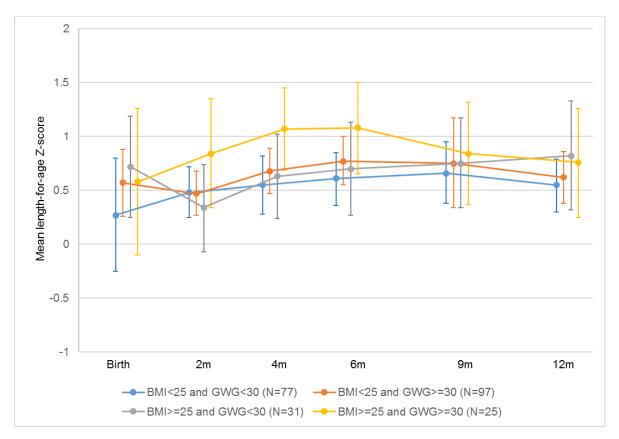





Supplemental Figure 4.4. Histograms of change in weight-for-age Z-scores for each age interval calculated using the 2000 CDC growth charts (blue) and the 2006 WHO growth charts (red).

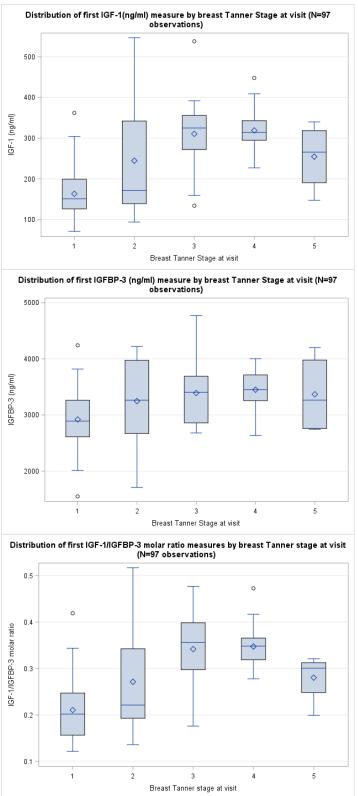

Supplemental Figure 4.5. Mean length-for-age Z-scores and 95% confidence intervals by age calculated using the 2000 CDC growth charts and the 2006 WHO growth charts. The means are connected by lines to better identify the CDC and WHO patterns. At each age, means and error bars are slightly offset to distinguish the groups from one another.



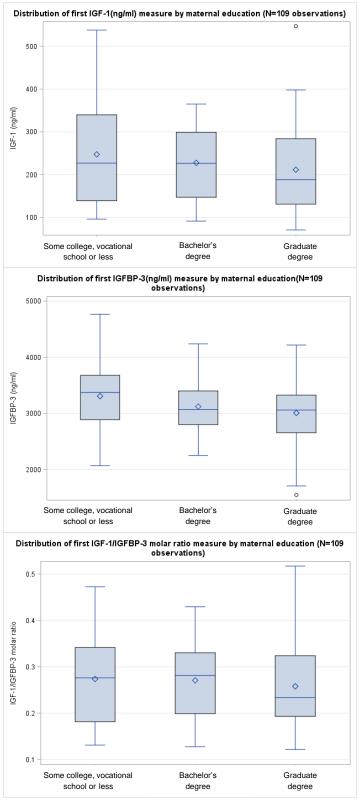

Supplemental Figure 4.6. Mean weight-for-length Z-scores and 95% confidence intervals by age calculated using the 2000 CDC growth charts and the 2006 WHO growth charts. The means are connected by lines to better identify the CDC and WHO patterns. At each age, means and error bars are slightly offset to distinguish the groups from one another.



Supplemental Figure 4.7. Mean weight-for-age Z-scores and 95% confidence intervals through infancy by maternal pre-pregnancy body mass index and gestational weight gain. The means are connected by lines to better identify the different groups. At each age, means and error bars are slightly offset to distinguish the groups from one another. Z-scores were calculated using the 2000 CDC growth charts.




Supplemental Figure 4.8. Mean length-for-age Z-scores and 95% confidence intervals through infancy by maternal pre-pregnancy body mass index and gestational weight gain. The means are connected by lines to better identify the different groups. At each age, means and error bars are slightly offset to distinguish the groups from one another. Z-scores were calculated using the 2000 CDC growth charts.




#### Appendix F Supplemental tables and figures for Chapter 5

Supplemental Figure 5.1. Boxplots of first serum biomarker measures by breast Tanner stage at visit (N=97 girls)



Supplemental Figure 5.2. Boxplot of first IGF-1/IGFBP-3 molar ratio by maternal education (N=109 girls)



|                                                                              | At least 1<br>serum IGF-<br>1/IGFBP-3<br>measure*<br>(N=109) | No serum IGF-<br>1/IGFBP-3<br>measures<br>(N=68) |
|------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------|
| Early-life characteristics                                                   |                                                              |                                                  |
| Maternal age at birth (Mean±SD)                                              | 33.0 ± 6.3                                                   | 33.8 ± 4.8                                       |
| Maternal height, m (Mean±SD)                                                 | 1.6 ± 0.1                                                    | 1.6 ± 0.1                                        |
| Maternal pre-pregnancy weight, kg (Mean±SD)                                  | 63.3 ± 11.1                                                  | 62.0 ± 12.7                                      |
| Maternal pre-pregnancy BMI (Mean±SD)                                         | 23.8 ± 4.2                                                   | 23.5 ± 5.4                                       |
| Maternal pre-pregnancy BMI, categorized (N, %)                               |                                                              |                                                  |
| <18.5                                                                        | 3 (2.8)                                                      | 5 (7.4)                                          |
| 18.5 to <25                                                                  | 71 (65.1)                                                    | 46 (67.7)                                        |
| 25 to <30                                                                    | 23 (21.1)                                                    | 10 (14.7)                                        |
| ≥30                                                                          | 9 (8.3)                                                      | 6 (8.8)                                          |
| Missing                                                                      | 3 (2.8)                                                      | 1 (1.5)                                          |
| Gestational weight gain (n, %)                                               |                                                              |                                                  |
| <10 lbs                                                                      | 5 (4.6)                                                      | 0 (0.0)                                          |
| 10-14 lbs                                                                    | 6 (5.5)                                                      | 1 (1.5)                                          |
| 15-19 lbs                                                                    | 5 (4.6)                                                      | 13 (19.1)                                        |
| 20-29 lbs                                                                    | 33 (30.3)                                                    | 24 (35.3)                                        |
| 30-39 lbs                                                                    | 23 (21.1)                                                    | 15 (22.1)                                        |
| 40-49 lbs                                                                    | 16 (14.7)                                                    | 9 (13.2)                                         |
| ≥50 lbs                                                                      | 17 (15.6)                                                    | 5 (7.4)                                          |
| Missing                                                                      | 4 (3.7)                                                      | 1 (1.5)                                          |
| Gestational weight gain adequacy based on the 2009 IOM guidelines (n, $\%$ ) |                                                              |                                                  |
| Inadequate (below guidelines)                                                | 14 (12.8)                                                    | 15 (22.1)                                        |
| Adequate (within guidelines)                                                 | 54 (49.5)                                                    | 30 (44.1)                                        |
| Excessive (above guidelines)                                                 | 37 (33.9)                                                    | 21 (30.9)                                        |
| Missing                                                                      | 4 (3.7)                                                      | 2 (2.9)                                          |
| Maternal recreational physical activity during pregnancy (N, %)              |                                                              |                                                  |
| Inactive, no walking or other regular exercise                               | 19 (17.4)                                                    | 7 (10.3)                                         |
| Mostly inactive, equivalent to walking about half a mile or less every day   | 26 (23.9)                                                    | 21 (30.9)                                        |
| Somewhat active, equivalent to walking about 1 mile every day                | 19 (17.4)                                                    | 23 (33.8)                                        |
| Active, equivalent to walking about 2 miles every day                        | 36 (33.0)                                                    | 15 (22.1)                                        |
| Highly active, equivalent to walking about 3 or more miles every day         | 7 (6.4)                                                      | 2 (2.9)                                          |
| Missing                                                                      | 2 (1.8)                                                      | 0 (0.0)                                          |
|                                                                              |                                                              |                                                  |

Supplemental Table 5.1. Descriptive characteristics of the LEGACY Girls Study New York site by serum availability (N=177 girls)

| (N, %)                                                                                          |                |            |
|-------------------------------------------------------------------------------------------------|----------------|------------|
| Mostly sitting                                                                                  | 30 (27.5)      | 21 (30.9)  |
| Mostly walking and standing, with some sitting                                                  | 35 (32.1)      | 28 (41.2)  |
| Active housework most of the time with little sitting                                           | 40 (36.7)      | 18 (26.5)  |
| Heavy manual work at home                                                                       | 1 (0.9)        | 1 (1.5)    |
| Missing                                                                                         | 3 (2.8)        | 0 (0.0)    |
| Maternal physical activity at work during pregnancy (N, %)                                      |                |            |
| Not working                                                                                     | 27 (24.8)      | 14 (20.6)  |
| Mostly sitting and standing                                                                     | 46 (42.2)      | 31 (45.6)  |
| Mostly walking with some sitting and standing                                                   | 32 (29.4)      | 20 (29.4)  |
| Mostly heavy labor with some walking and standing and little sitting                            | 2 (1.8)        | 2 (2.9)    |
| Missing                                                                                         | 2 (1.8)        | 1 (1.5)    |
| Maternal physical activity during pregnancy, 2nd trimester (N, %)                               |                |            |
| Stayed the same                                                                                 | 65 (59.6)      | 47 (69.1)  |
| Substantially increased                                                                         | 12 (11.0)      | 4 (5.9)    |
| Substantially decreased                                                                         | 30 (27.5)      | 17 (25.0)  |
| Missing<br>Gestational diabetes during pregnancy with<br>LEGACY daughter (N, %)                 | 2 (1.8)        | 0 (0.0)    |
| Yes                                                                                             | 10 (9.2)       | 8 (11.8)   |
| No                                                                                              | 94 (86.2)      | 60 (88.2)  |
| Missing                                                                                         | 5 (4.6)        | 0 (0.0)    |
| Gestational hypertension, toxemia or pre-eclampsia during pregnancy with LEGACY daughter (N, %) |                |            |
| Yes                                                                                             | 10 (9.2)       | 5 (7.4)    |
| No                                                                                              | 94 (86.2)      | 62 (91.2)  |
| Missing                                                                                         | 5 (4.6)        | 1 (1.5)    |
| Type of gestation (N, %)                                                                        |                |            |
| Multiple                                                                                        | 7 (6.4)        | 4 (5.9)    |
| Singleton                                                                                       | 99 (90.8)      | 64 (94.1)  |
| Missing                                                                                         | 3 (2.8)        | 0 (0.0)    |
| Birth order (Mean±SD)                                                                           | $1.6 \pm 0.7$  | 1.8 ± 1.0  |
| Birth order, dichotomized (N, %)                                                                |                |            |
| First-born                                                                                      | 54 (49.5)      | 30 (44.1)  |
| Not first-born                                                                                  | 52 (47.7)      | 38 (55.9)  |
| Missing                                                                                         | 3 (2.8)        | 0 (0.0)    |
| Gestational age in weeks (Mean±SD)                                                              | $38.9 \pm 2.4$ | 38.7 ± 2.5 |
| Gestational age, categorized (N, %)                                                             |                |            |
| <37 weeks                                                                                       | 16 (14.7)      | 9 (13.2)   |
| ≥37 weeks                                                                                       | 91 (83.5)      | 59 (86.8)  |

## Maternal physical activity at home during pregnancy

| Minsing                                                                       | O(4,0)             | 0 (0 0)        |
|-------------------------------------------------------------------------------|--------------------|----------------|
| Missing                                                                       | 2 (1.8)            | 0 (0.0)        |
| Intrauterine smoke exposure (N, %)                                            | 4 (2 7)            | 1 (1 E)        |
| Yes<br>No                                                                     | 4 (3.7)            | 1 (1.5)        |
|                                                                               | 103 (94.5)         | 67 (98.5)      |
| Missing<br>Birthweight g (MacruSD)                                            | 2 (1.8)            | 0 (0.0)        |
| Birthweight, g (Mean±SD)<br>Birthweight, categorized (N, %)                   | 3232.4 ± 681.3     | 3213.3 ± 618.7 |
| <2500g                                                                        | 13 (11.9)          | 7 (10.3)       |
| 2500-2999g                                                                    | 17 (15.6)          | 11 (16.2)      |
| 3000-3499g                                                                    | 35 (32.1)          | 26 (38.2)      |
| 3500-3999g                                                                    | 34 (31.2)          | 19 (27.9)      |
| ≥4000g                                                                        | 9 (9.0)            | 4 (4.0)        |
| Missing                                                                       | 9 (9.0)<br>1 (0.9) | 1 (1.5)        |
| Birthlength, cm (Mean±SD)                                                     | $51.3 \pm 3.6$     | $49.5 \pm 4.0$ |
| Birthlength categorized (N, %)                                                | $51.5 \pm 5.0$     | 49.3 ± 4.0     |
| <48.25                                                                        | 8 (7.3)            | 8 (11.8)       |
| 48.25-50.74                                                                   | 20 (18.4)          | 25 (36.8)      |
| 50.75-53.24                                                                   | 22 (20.2)          | 11 (16.2)      |
| ≥53.25                                                                        | 32 (29.4)          | 16 (23.5)      |
| Missing                                                                       | 27 (24.8)          | 8 (11.8)       |
| Baseline characteristics                                                      |                    |                |
| Age at baseline (Mean±SD)                                                     | 9.8 ± 2.4          | 9.0 ± 2.3      |
| BMI-for-age percentile at baseline, (Mean±SD)                                 | 63.1 ± 29.0        | 54.5 ± 31.1    |
| BMI-for-age percentile at baseline, categorized (N, %)                        |                    |                |
| ≥85th BMI-for-age percentile                                                  | 31 (28.4)          | 11 (16.2)      |
| <85th BMI-for-age percentile                                                  | 77 (70.6)          | 43 (63.2)      |
| Missing <sup>a</sup>                                                          | 1 (0.9)            | 14 (20.6)      |
| Breast cancer family history in a first- or second-<br>degree relative (N, %) |                    |                |
| BCFH+                                                                         | 44 (40.4)          | 37 (54.4)      |
| BCFH-                                                                         | 65 (59.6)          | 31 (45.6)      |
| BOADICEA lifetime risk score (Mean±SD)                                        | 13.8 ± 4.4         | 13.7 ± 4.0     |
| Race/ethnicity (N, %)                                                         |                    |                |
| Non-Hispanic white                                                            | 43 (39.5)          | 41 (60.3)      |
| Non-Hispanic black                                                            | 14 (12.8)          | 6 (8.8)        |
| Hispanic                                                                      | 43 (39.5)          | 14 (20.6)      |
| Asian/Pacific Islander                                                        | 4 (3.7)            | 6 (8.8)        |
| Other or mixed race/ethnicity                                                 | 5 (4.6)            | 1 (1.5)        |
| Maternal education (N, %)                                                     |                    |                |
| Some college, vocational or technical school or less                          | 37 (33.9)          | 7 (10.3)       |
| Bachelor's degree                                                             | 30 (27.5)          | 28 (41.2)      |
| Graduate degree                                                               | 42 (38.5)          | 33 (48.5)      |
|                                                                               |                    |                |

### Paternal education (N, %)

| Some college, vocational or technical school or less | 29 (26.6)  | 15 (22.1)  |
|------------------------------------------------------|------------|------------|
| Bachelor's degree                                    | 32 (29.4)  | 23 (33.8)  |
| Graduate degree                                      | 36 (33.0)  | 29 (42.7)  |
| Missing                                              | 12 (11.0)  | 1 (1.5)    |
| Maternal age at menarche (Mean±SD)                   | 12.7 ± 1.7 | 12.6 ± 1.5 |
| Maternal age at menarche, categorized (N, %)         |            |            |
| <12 years                                            | 27 (24.8)  | 16 (23.5)  |
| 12-13 years                                          | 55 (50.5)  | 40 (58.8)  |
| ≥14 years                                            | 25 (22.9)  | 12 (17.7)  |
| Missing                                              | 2 (1.8)    | 0 (0.0)    |

\*The participating guardian for 2 girls with serum measures is not the biological mother and early-life data is missing for these girls. <sup>a</sup>More participants without serum samples participated in LEGACY by phone/mail and did not attend in-person clinic visits. They did not give blood or have body measures taken.

# Supplemental Table 5.2. Difference in mean levels of IGF-1, IGFBP-3 and the IGF-1/IGFBP-3 molar ratio by birthweight with and without adjustment for infant weight gain

|                                           | IGF-1 (ng/ml)             |                           | IGFBP-                     | 3 (ng/ml)                  | IGF-1/IGFBP-3 molar<br>ratio* |                       |  |
|-------------------------------------------|---------------------------|---------------------------|----------------------------|----------------------------|-------------------------------|-----------------------|--|
|                                           | Model 1 <sup>a</sup>      | Model 2 <sup>b</sup>      | Model 1 <sup>a</sup>       | Model 2 <sup>b</sup>       | Model 1 <sup>a</sup>          | Model 2 <sup>b</sup>  |  |
|                                           | β (95% CI)                | β (95% CI)                | β (95% CI)                 | β (95% CI)                 | β (95% CI)                    | β (95% CI)            |  |
| Without adjustment for infant weight gain |                           |                           |                            |                            |                               |                       |  |
| Birthweight<br>(per 500g<br>increase)     | -15.64<br>(-42.43, 11.16) | -12.61<br>(-38.37, 13.15) | -29.58<br>(-241.24,182.08) | -32.55<br>(-244.41,179.30) | -0.02<br>(-0.05,0.01)         | -0.01<br>(-0.04,0.01) |  |

#### With adjustment for infant weight gain<sup>c</sup>

| Birthweight | -4.61           | -4.47          | -120.16          | -118.23          | 0.01          | 0.01         |
|-------------|-----------------|----------------|------------------|------------------|---------------|--------------|
| (per 500g   | (-37.49, 28.27) | (-35.55,26.62) | (-378.08,137.75) | (-376.75,140.27) | (-0.03,0.04)  | (-0.02,0.04) |
| increase)   | (01.10, 20.21)  | (00.00,20.02)  | (010.00,101.10)  | (010110,110.21)  | ( 0.00,0.0 1) | ( 0.02,0.01) |

Models include 29 girls with birthweight, infant growth and all covariate data.

\*Molar ratio = IGF-1(ng/ml)\*0.1307 divided by IGFBP-3 (ng/ml)\*0.03478

<sup>a</sup>Adjusted for maternal pre-pregnancy BMI (continuous), weight-for-age or length-for-age Z-score at birth, age at blood draw (centered) and quadratic of age at blood draw (centered)

<sup>b</sup>Adjusted for maternal pre-pregnancy BMI (continuous), weight-for-age or length-for-age Z-score at birth, age at blood draw (centered) and quadratic of age at blood draw (centered), breast Tanner stage at visit (TS1 vs. TS2+) and BMI-for-age percentile at visit (centered)

<sup>°</sup>Change in weight-for-age Z-score from 0-12 months (continuous)

|                                                                            | Square root of IGF-1 (ng/ml) |      |                                | Square root of IGF-1/IGFBP-3<br>molar ratio* |         |                               |
|----------------------------------------------------------------------------|------------------------------|------|--------------------------------|----------------------------------------------|---------|-------------------------------|
|                                                                            | Model 2                      |      | p for                          | Model 2                                      | Model 2 |                               |
|                                                                            | β (SE)                       | P>t  | intx with<br>BCFH <sup>a</sup> | β (SE)                                       | P>t     | intx wit<br>BCFH <sup>1</sup> |
| Maternal pre-pregnancy BMI<br>(per 1 kg/m²) <sup>6</sup>                   | 0.06 (0.007)                 | 0.26 | 0.38                           | 0.00 (0.002)                                 | 0.85    | 0.06                          |
| Maternal recreational physical<br>activity during pregnancy <sup>c</sup>   |                              |      | 0.82                           |                                              |         | 0.16                          |
| Inactive, no walking or other regular exercise                             | -1.04 (0.66)                 | 0.12 |                                | -0.02 (0.02)                                 | 0.21    |                               |
| Mostly inactive, equivalent to walking about half a mile or less every day | -0.50 (0.54)                 | 0.35 |                                | 0.01 (0.01)                                  | 0.70    |                               |
| Somewhat active, equivalent to walking about 1 mile every day              | 0.02 (0.57)                  | 0.97 |                                | 0.00 (0.02)                                  | 0.84    |                               |
| Active or highly active, equivalent to<br>walking about ≥2 miles every day | Reference                    | -    |                                | Reference                                    | -       |                               |
| Gestational weight gain <sup>c</sup>                                       |                              |      | 0.33                           |                                              |         | 0.60                          |
| <20 lbs                                                                    | 0.13 (0.68)                  | 0.85 |                                | 0.01 (0.02)                                  | 0.58    |                               |
| 20-29 lbs                                                                  | Reference                    | -    |                                | Reference                                    | -       |                               |
| 30-39lbs                                                                   | 0.87 (0.53)                  | 0.11 |                                | 0.04 (0.01)                                  | 0.01    |                               |
| 40-49lbs                                                                   | 0.55 (0.63)                  | 0.39 |                                | 0.02 (0.02)                                  | 0.20    |                               |
| ≥50 lbs                                                                    | 0.69 (0.71)                  | 0.33 |                                | 0.01 (0.02)                                  | 0.47    |                               |
| Maternal pre-pregnancy BMI and GWG <sup>b</sup>                            |                              |      | 0.15                           |                                              |         | 0.17                          |
| BMI<25 and <30 lbs                                                         | Reference                    | -    |                                | Reference                                    | -       |                               |
| BMI<25 and ≥30 lbs                                                         | 0.59 (0.55)                  | 0.28 |                                | 0.02 (0.02)                                  | 0.16    |                               |
| BMI≥25 and <30lbs                                                          | 0.49 (0.66)                  | 0.47 |                                | 0.00 (0.02)                                  | 0.91    |                               |
| BMI≥25 and ≥30 lbs                                                         | 1.54 (0.79)                  | 0.05 |                                | 0.04 (0.02)                                  | 0.10    |                               |
| Birthweight (per 500g increase) <sup>d</sup>                               | -0.44 (0.21)                 | 0.04 | 0.08                           | -0.01 (0.01)                                 | 0.11    | 0.42                          |
| Birthlength (per 1cm increase) <sup>d</sup>                                | 0.007 (0.08)                 | 0.93 | 0.16                           | -0.001 (0.002)                               | 0.82    | 0.62                          |
| Growth from 0-12 months <sup>e</sup>                                       |                              |      |                                |                                              |         |                               |
| Change in weight-for-age Z-score                                           | 0.55 (0.43)                  | 0.20 | 0.30                           | 0.03 (0.01)                                  | 0.01    | 0.57                          |
| Change in length-for-age Z-score                                           | 0.08 (0.48)                  | 0.87 | 0.79                           | 0.02 (0.02)                                  | 0.28    | 0.07                          |
| Growth from 0-6 months <sup>e</sup>                                        |                              |      |                                |                                              |         |                               |
| Change in weight-for-age Z-score                                           | 0.05 (0.51)                  | 0.92 | 0.42                           | 0.01 (0.02)                                  | 0.48    | 0.40                          |
| Change in length-for-age Z-score                                           | -0.16 (0.41)                 | 0.70 | 0.73                           | -0.01 (0.01)                                 | 0.59    | 0.55                          |
| Growth from 6-12 months <sup>f</sup>                                       |                              |      |                                |                                              |         |                               |
| Change in weight-for-age Z-score                                           | 1.39 (0.70)                  | 0.05 | 0.27                           | 0.07 (0.02)                                  | 0.002   | 0.42                          |
| Change in length-for-age Z-score                                           | 0.21 (0.55)                  | 0.70 | 0.96                           | 0.03 (0.02)                                  | 0.12    | 0.10                          |

Supplemental Table 5.3. Associations between maternal, birth and infant factors and square-root transformed IGF-1 and IGF-1/IGFBP-3 molar ratio

\*Molar ratio = IGF-1(ng/ml)\*0.1307 divided by IGFBP-3 (ng/ml)\*0.03478

<sup>a</sup>P for interaction from F test from Model 2

<sup>b</sup>Adjusted for age at blood draw (centered) and quadratic of age at blood draw (centered), breast Tanner stage at visit and BMI-for-age percentile at visit (centered) <sup>c</sup>Adjusted for age at blood draw (centered) and quadratic of age at blood draw (centered), breast Tanner stage at

visit, BMI-for-age percentile at visit (centered) and maternal pre-pregnancy BMI

<sup>d</sup>Adjusted for maternal pre-pregnancy BMI (continuous), preterm, age at blood draw (centered) and quadratic of age at blood draw (centered), breast Tanner stage at visit and BMI-for-age percentile at visit (centered) <sup>e</sup>Adjusted for maternal pre-pregnancy BMI (continuous), weight-for-age or length-for-age Z-score at birth, age at blood draw (centered) and quadratic of age at blood draw (centered), breast Tanner stage at visit (TS1 vs. TS2+) and BMI-for-age percentile at visit (centered)

<sup>f</sup>Adjusted for maternal pre-pregnancy BMI (continuous), weight-for-age or length-for-age Z-score at birth, change in weight-for-age or length-for-age Z-score from 0-6 months, age at blood draw (centered) and quadratic of age at blood draw (centered), breast Tanner stage at visit (TS1 vs. TS2+) and BMI-for-age percentile at visit (centered)