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Abstract 
 

Extreme Storm Surge Return Period Prediction Using Tidal Gauge Data and 

Estimation of Damage to Structures from Storm-Induced Wind Speed in 

South Korea 

 

Sang Guk Yum 

 

Global warming, which is one of the most serious consequence of climate change, can be 

expected to have different effects on the atmosphere, the ocean, icebergs, etc. Global warming 

has also brought secondary consequences into nature and human society directly. The most 

negative effect among the several effects of global warming is the rising sea level related to the 

large typhoons which can cause flooding on low-level land, coastal invasion, sea water flow into 

rivers and underground water, rising river level, and fluctuation of sea tides. It is crucial to 

recognize surge level and its return period more accurately to prevent loss of human life and 

property damage caused by typhoons. 

This study researches two topics. The first purpose of this study is to develop a statistical 

model to predict the return period of the storm surge water related to typhoon Maemi, 2003 in 

South Korea. To estimate the return period of the typhoon, clustered separated peaks-over-

threshold simulation (CSPS) has been used and Weibull distribution is used for the peak storm 

surge height’s fitting. The estimated return period of typhoon Maemi’s peak total water level is 

389.11 years (95% confidence interval 342.27 - 476.2 years). 

The second aim is related to the fragility curves with the loss data caused by typhoons. 

Although previous studies have developed various methods to mitigate damages from typhoons, 

the extent of financial loss has not been investigated enough. In this research, an insurance 

company provides their loss data caused by the wind speed of typhoon Maemi in 2003. The loss 



 

 
 

data is very important in evaluating the extent of the damages. In this study, the damage ratio in 

the loss dataset has been used as the main indicator to investigate the extent of the damages. The 

damage ratio is calculated by dividing the direct loss by the insured amount. 

In addition, this study investigates the fragility curves of properties to estimate the 

damage from typhoon Maemi in 2003. The damage ratios and storm induced wind speeds are 

used as the main factor for constructing fragility curves to predict the levels of damage of the 

properties. The geographical information system (GIS) has been applied to produce properties’ 

spatial wind speeds from the typhoon.  With the damage ratios, wind speeds and GIS spatial data, 

this study constructs the fragility curves with four different damage levels (Level I - Level IV). 

The findings and results of this study can be basic new references for governments, the 

engineering industry, and the insurance industry to develop new polices and strategies to cope 

with climate change. 
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Chapter 1  

1  Introduction 

1.1 Climate change and global warming 

Global warming, which is one of the biggest issues of climate change, can affect the 

atmosphere, ocean, icebergs, etc. through various routes. In addition to this, global warming has 

secondary consequences for nature and human society. One of the negative effects among the 

several effects of global warming is sea level rise. Sea level rise can cause flooding on low-level 

land, coastal invasion, sea water flow into rivers and underground water, river level rise, and 

tidal changes and fluctuations of the sea.  

According to recent research regarding hurricanes, the intensity and frequency of 

typhoons and hurricanes caused by global warming are continuously changing. As a 

consequence, natural hazards such as hurricanes could negatively affect natural systems, water 

resources, transportation, and infrastructure facilities. The importance of a highly accurate 

forecasting system for protecting human society has been emphasized. The inaccurate estimation 

of return periods of natural hazards can waste money and time on constructing waterfront 

facilities. Moreover, it could cause tremendous damage to society. The combined effect of sea 

level rise and tropical storms is an even more catastrophic hazard. 
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1.1.1 Sea level rise  

According to the Intergovernmental Panel on Climate Change (IPCC, 2007) [18]’s 

recently released report, the average temperature in the world has increased 0.74°C (0.56°C -

0.92°C) during 1906-2005 [17]. The Fourth Assessment Report (AR4, 2007) by IPCC reported 

that since 1961, the increasing mean sea level over the world is 1.8 (1.3 – 2.3) mm/year. When 

melting icebergs are taken into account, the increasing sea level is 3.1 (2.4 – 3.8) mm/year [17]. 

Moreover, the arctic ice has decreased 2.7% annually since 1978, and the amount of snow in the 

mountains has declined (Kim and Cho, 2013 [27]). As a result, there is growing interest in how 

much sea level will increase, and relevant research is being conducted on how to cope with 

changes in the climate (National Academy of Science, 2012 [36]; Radic and Hock, 2011 [45]; 

Schaeffer et al., 2012 [47]). Most industrial facilities on the Korean Peninsula, such as plants, 

ports, roads, ship yards, and housing are located near the shore. Those topographical 

characteristics make big cities in South Korea especially susceptible to sea level rise. If rising sea 

levels begin to flood big cities, socioeconomic losses will be large. 

 

1.1.2 Sea level rise in the city of Busan in South Korea 

Yoon and Kim, 2012 [56] investigated long-term sea level changes using data from 17 

tidal stations located around the Korean Peninsula with more than 25 years of tide-gauge data. 

Regression analysis was applied to calculate the general rising trend for long-term change (1960-

–2010) in mean sea level (MSL) at each station. The results showed that rising trends of MSL 

around Korea is higher than that of global MSL. The linear rising trend of MSL was relatively 

small along the western coast (on average 1.3mm/year), large along the southern and eastern 

coasts (on average 3.2 and 2.0 mm/year, respectively), and very large around Jeju Island (on 
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average 5.6 mm/year). The rising rate around Jeju Island is about three times higher compared to 

the world’s oceans. According to the AR4, the rate of rising sea level may accelerate after the 

21st century. The trends in rising sea level should be considered when designing coastal 

structures in terms of coastal disaster prevention. Therefore, more accurate predictions of 

variation in sea level and surge height is required in areas affected by climate change. In the 

present study, Busan, a city in South Korea, has been used as a case study. Busan’s rising sea 

level is 1.8mm/year according to a regression analysis based on data from 1960 to 2010 (Yoon 

and Kim, 2012) [56]. This rate of increase is similar with the rate of rising sea level over the 

world.  

 

1.2 Tidal gauge data 

1.2.1 The trend of typhoons in South Korea 

The Korean Peninsula is surrounded by three different seas. This geographical 

characteristic can lead to severe damage to coastal regions. According to the Korea Ocean 

Observing and Forecasting System, Typhoon Maemi in September 2003 had a maximum wind 

speed of 54 m/s, which caused enormous damage to properties ($35 billion) as showed in Table 

1.1. Also, all three highest peaks from tidal gauge stations were recorded in September 2003. 
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Name          Date 
Amount of Damage 

(USD Dollar) 

Max. Wind Speed 

(10 min avg. m/s) 

Rusa 
08/30/2002 – 

09/01/2002 
4.3 B (1

th
) 41 

Maemi 
09/12/2003 – 

09/13/2003 
3.5 B (2

nd
) 54 

Bolaven 
08/25/2012 – 

08/30/2012 
0.9 B (3

th
) 53 

Table 1.1 Largest typhoons in the Korean Peninsula 

The World Meteorological Organization (WMO) categorizes typhoons, or hurricanes, 

based on Table 1.2 below. Typhoons are classified into four levels according to the maximum 

wind speed (10 min sustained) recorded. Note that South Korea and Japan distinguish typhoons 

from tropical storms, classifying storms with a maximum wind speed above 17 m/s as typhoons. 

Intensity 

Class 
 

International 

Category 
 

South Korean and 

Japanese Standard 

Maximum 

Sustained Wind 

Speed 

(10 min mean) 

Class 
 

Tropical 

Depression 

TD: Tropical 

Depression 

TD: Tropical 

Depression 
~ 17.2m/s 2 

Typhoon 

 

TS: Tropical Storm 

TY: Typhoon 

17.2m/s ~ 24m/s 3 

STS: Severe 

Tropical Storm 
25m/s ~ 32m/s 4 

 

Strong 

Typhoon 

 

TY: Typhoon 

 

33m/s ~ 43m/s 

5 
Very Strong 

Typhoon 

 

44m/s ~ 53m/s 

Violent 

Typhoon 

 

54m/s ~ 

Table 1.2 Classification of intensity of typhoons in South Korea, National Typhoon Center [38] 
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According to a typhoon technical report published by the National Typhoon Center, 2011 

[38], for typhoons that do not make landfall, the following criteria must be met for the storm to 

be classified as a typhoon with indirect effects: 

 the storm in question must be between 32°N and 40°N latitude and 120°E and 138°E 

longitude; also the below two criteria define indirect effect typhoon.  

 if the storm is located south of the Korean Peninsula, it must have at least an 8 second 

swell. 

 if located northeast of the Korean Peninsula, it must have maximum wind speed of at 

least 20 m/s (10 min sustained), and at least 100 mm of rain. 

The Korea Ocean Observing and Forecasting System reported that 1,019 typhoons have 

approached the Korean Peninsula, 327 typhoons have significantly impacted it, and 11 typhoons 

have made landfall in South Korea since 1904. Statistically, approximately three typhoons 

impact the Korean Peninsula annually. The most typhoon-heavy months, in descending order, 

are August, July, and September. Also, 66 % of the total number of typhoons occurs in July and 

August. Table 1.3 below shows statistics of typhoons in South Korea. Figure 1.1 shows the 

tracks of typhoons that made landfall in the Korean Peninsula (National Typhoon Center, 2011) 

[38]. The figure only shows the tracks of typhoons from 1977 to 2015. Before 1977, there were 

no systematic methods for tracking typhoons. As seen in Figure 1.1, all typhoons originate in 

South Asia and move northward. Figure 1.2 shows the track of Typhoon Maemi from September 

4 to September 16, 2003. The differently colored dots in the right side figure indicate the 

changing storm status of the typhoon. As seen in Figures 1.1 and 1.2, Typhoon Maemi passed 

south east of Busan and the Korean Peninsula, causing direct damage upon landfall. When the 

typhoon made landfall at Busan, the maximum wind speed (10 min sustained) was 54 m/s. 
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Typhoon Maemi led the insurance industry, the Korean government, and many academic 

researchers to recognize the importance of prevention plans with regards to natural disasters such 

as typhoons. 

Y/M Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Sum 

Sum for  

54 years 

(1952-2015) 

29 15 15 45 67 115 245 351 322 238 152 73 1678 

Sum of landfall 

for 54 years  

(1952-2015) 

0 0 0 0 1 18 65 70 45 5 0 0 206 

Average  

for 54 years 

(1952-2015) 

0.54 0.28 0.46 0.83 1.24 2.13 4.54 6.52 5.96 4.41 2.81 1.35  

Average of 

landfall 

for 54 years 

(1952-2015) 

0.0 0.0 0.0 0.0 0.02 0.33 1.2 1.3 0.87 0.09 0.0 0.0  

Sum of recent  

10 years 

(2007-2016) 

4 3 4 5 12 18 33 43 56 34 16 7 235 

Sum of landfall 

for recent  

10 years  

(2007-2016) 

0 0 0 0 0 0 3 11 7 5 2 0 28 

Average for 

recent  

10 years 

(2007-2016) 

0.4 0.3 0.4 0.5 1.2 1.8 3.3 4.3 5.6 3.4 1.6 0.7  

Average of 

landfall 

for recent 

10 years 

(2007-2016) 

0 0 0 0 0 0 0.3 1.1 0.7 0.5 0.2 0  

Table 1.3 Statistics of typhoons in South Korea, National Typhoon Center [38] 

 



 

 
7 

 

Figure 1.1 Landfall typhoons in South Korea (1977 - 2015), National Typhoon Center [38] 

 

Figure 1.2 Track of Typhoon Maemi in 2003, National Typhoon Center [38] 
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1.2.2 Tidal gauge stations in South Korea 

To reduce the damage caused by typhoons, accurate prediction of storm surge height has 

become critical. Accurate predictions can provide important information when building 

infrastructure on the waterfront to prevent damage from storm surges. In order to reduce damage 

to coastal infrastructure, this study seeks to predict when specific storm surge heights will recur. 

Using sea level heights recorded at tidal gauge observatory stations on the Korean Peninsula, the 

study focuses on Typhoon Maemi, which caused more property damage than any other typhoons 

in South Korea’s history (Table 1.1). South Korea currently operates 17 tidal gauge stations, 

observing and recording sea water levels for more than 25 years. The tidal gauge stations are 

located on the South, West, and East Coasts as shown in Figure 1.3. Seventeen tidal gauge 

stations have observation records over 25 years while 13 of them have been observing for over 

30 years. The tidal gauge station in Busan has recorded for 54 years. 
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Figure 1.3 Location of tidal gauge stations in South Korea 

This study focuses on 16 tidal gauge stations located on the South and West coasts. The 

reason for excluding the tidal gauge stations on the East Coast is that the majority of the 

typhoons do not pass from the East Coast. The tidal data for this study has been referenced from 

the Korea Hydrographic and Oceanographic Agency (KHOA) [28] which allowed the present 

study to use hourly tide data for research purposes.  
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1.2.3 Datum level in tidal gauge station of Busan 

Each tidal gauge station has their own tidal data, according to their tidal patterns and 

location. Korea Hydrographic and Oceanographic Agency (KHOA) computes various elevation 

datums, such as the mean sea level (MSL), mean low water (MLW), mean high water (MHW), 

and approximately higher high water (AHHW), also known as mean higher high water (MHHW) 

for tidal gauge stations in the Korean Peninsula. Those are referenced to the local standard datum, 

which can be used to measure water height. Such datum level is a very important reference for 

planning, design, and construction of harbor and offshore facilities. 

According to KHOA, the mean sea level datum level in Busan’s tidal gauge station is 

64.9 cm below the mean sea level. The below Figure 1.4 illustrates the datum elevation at the 

tidal gauge station in Busan, South Korea: 

 Mean Sea Level (MSL): 64.9 cm  

 Mean Low Water (MLW): 86 cm  

 Mean High Water (MHW): 123.8 cm 

 Approximately Highest High Water (AHHW) or  

 Mean Higher High Water (MHHW): 129.8 cm 
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Figure 1.4 Datum elevations at the tidal gauge station in Busan, South Korea 
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1.2.4 Three highest total water levels at tidal gauge stations in South Korea  

The West coast operates tidal gauge stations in Incheon, Gyeongin, Changwon, Gunsan, 

and Mokpo. The location of each station is shown in the above Figure 1.3. Each station has 

different observation lengths. After collecting hourly sea levels at each station within the 

observation period, this study identified the top three sea level heights measured at each station. 

It is obvious that the heights of the highest measured sea levels are related to the typhoons that 

occurred on the Korean Peninsula. Table 1.4 shows observation lengths for the tidal gauge 

stations located on the West coast and the top three sea water levels recorded of each station, 

respectively.  

  
Years Top three high peaks (cm) Date of the high peak 

West 

coast 

Incheon 18 

987 7/24/2013, 10:00 

981 9/8/2002, 06:00 

980 10/27/2003, 18:00 

Gyeonin 2 

993 9/30/2015, 19:00 

987 9/29/2015, 18:00 

986 10/29/2015, 18:00 

Janghang 14 

798 9/30/2015, 17:00 

796 10/11/2014, 17:00 

794 9/29/2015, 16:00 

Gunsan 37 

805 8/19/1997, 04:00 

799 8/21/1997, 05:00 

797 8/31/2000, 05:00 

Mokpo 61 

544 7/4/2004, 04:00 

544 7/6/2004, 05:00 

538 11/16/2012, 16:00 

Table 1.4 Top three high peak water levels recorded at tidal gauge stations in the West coast 

 

 

 



 

 
13 

The approach used to analyze data from tidal gauge stations on the West coast was 

applied in the same way to analyze data obtained from tidal gauge stations located on the South 

coast. Tables 1.5 and 1.6 below show observation lengths and the top three highest sea levels at 

each station on the South coast. 

  
Years Top three high peaks (cm) Date of the high peak 

South coast 

Busan 54 

211 9/12/2003, 21:00 

190 9/12/2003, 20:00 

188 9/12/2003, 12:00 

New Busan 5 

221 9/18/2012, 10:00 

219 9/17/2012, 09:00 

219 8/11/2014, 21:00 

219 8/11/2014, 22:00 

215 9/17/2012, 10:00 

215 9/18/2012, 22:00 

Gadeok 40 

252 9/17/2012, 10:00 

246 9/17/2012, 09:00 

246 7/16/2987, 00:00 

241 7/16/1987, 01:00 

Masan 37 

265 9/17/2012, 10:00 

264 9/17/2012, 11:00 

244 8/29/2004, 21:00 

244 8/21/2005, 23:00 

Ulsan 55 

133 8/19/2004, 08:00 

120 9/12/2003, 21:00 

129 9/17/2012, 20:00 

Table 1.5 Top three high peak water levels recorded at tidal gauge stations in the South coast 
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Years Top three high peaks (cm) Date of the high peak 

South coast 

Tongyeong 41 

426 9/12/2003, 21:00 

357 9/12/2012, 10:00 

356 9/12/2003, 20:00 

Samcheonpo 2 

352 8/30/2015, 22:00 

350 10/28/2015, 09:00 

350 11/27/2015, 10:00 

350 4/8/2016, 22:00 

347 8/29/2015, 21:00 

Geoje 11 

270 9/17/2012, 09:00 

259 9/17/2012, 10:00 

255 1/4/2006, 09:00 

Gwangyang 6 

479 9/17/2012, 10:00 

443 9/17/2012, 11:00 

441 8/1/2014, 22:00 

Yeosu 52 

440 8/18/1966, 23:00 

430 9/14/1966, 21:00 

129 8/17/1966, 22:00 

Table 1.6 Top three high peak water levels recorded at tidal gauge stations in the South coast (Cont'd) 

 

1.2.5 Tidal gauge station at the City of Busan in South Korea 

Among the tidal gauge stations, there is a station that has observation records covering 

the past 54 years. The station is located on the South coast in Busan, the second largest city in 

South Korea. The position of the station is shown in the above Figure 1.3. Busan is located in the 

southeast of the Korean Peninsula. Because of its geographical location, international trade has 

boomed; as a consequence Busan has the largest port in South Korea. Busan also has the longest 

and widest river in South Korea passing through. It is called Nakdong River. Due to these 

geographical characteristics, Busan has been very vulnerable to natural disasters such as 

typhoons, and the importance of accurately predicting the statistics of future storms has become 

more and more recognized among governmental agencies and other stakeholders. 
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The top three sea level heights at the tidal gauge station in the Busan area are shown in 

the Table 1.7 below.  

 

 

 

Table 1.7 Top three high peak water levels recorded at the tidal gauge station in Busan, South Korea 

 

Considering the top three highest sea level results above, this study analyzed sea level 

history from 1956 to 2016 in Busan. Figures 1.5 and 1.6 show the annual mean and fluctuations 

around the mean during this observation period at Busan's tidal gauge station. 

 

Figure 1.5 Time history of sea level in Busan, South Korea (1956-2016) 
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Years Top three high peak (cm) Date of the high peak 

Busan 54 

211 9/12/2003, 21:00 

190 9/12/2003, 20:00 

188 9/12/2003, 12:00 
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Figure 1.6 Time history of sea level in Busan, South Korea (1962-2015) 

When looking at sea level history in Figure 1.5, the data trend between 1956 and 1961 is 

clearly anomalous. The data recorded during this period appear to have quality control issues, so 

they have been excluded from this study, and only data from 1962 to 2015 have been used, as 

shown in Figure 1.6.  

KHOA provides hourly observed water height at the tidal gauge station. From this hourly 

data, each annual mean is calculated. Plotting mean water level for each year confirms water 

level variation. As seen in Figure 1.6, even if there are different fluctuations between years in the 

plot, the sea level continues to increase. Supposing mean sea level variation as a function of time, 

a linear regression is performed. The resulting coefficient of slope indicates the rate of increase 

(Yoon and Kim, 2012) [56]. Figure 1.6 shows: 
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From the above equation, this study finds that the increasing rate of sea level at the 

Busan’s tidal gauge station is 2.4 mm per year. The difference of mean sea level between 1962 

and 2015 is 16.31 cm. Yoon and Kim, 2012 [56] also conducted similar research to find the 

approximate sea level rise in the Korean Peninsula, but applied a different time period (1960-

2010). Nonetheless, their study calculated similar results (2.9 mm/year). 

As previously mentioned, the reason why Busan has been chosen is that Busan's tidal 

gauge station has one of the longest observation histories, regularly updated to the present. Also, 

due to its topography and concentration of the industrial facilities, the city needs more accurate 

predictions of natural hazards.  

 

1.2.6 Relationship between sea level and typhoons 

This study investigates the relationship between typhoons and sea level. When a storm 

occurs, the height of the surge, which is the difference between the observed sea level height and 

the predicted sea level height, tends to increase. These significant surges can cause major natural 

disasters such as floods. In this study, before calculating the height of the surge, the date and 

time when the top three highest sea level heights were observed and the date and time when the 

typhoon occurred are compared.  

Tables 1.8 and 1.9 show the date and time when the top three sea level heights for each 

tidal gauge station occurred, respectively. Also, the corresponding sea levels at these tidal gauge 

stations associated with typhoon occurrence are presented in Tables 1.8 and 1.9.  
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Location Years Peak Date Typhoon 

Busan 54 

211 9/12/2003, 21:00 Maemi 

190 9/12/2003, 20:00 Maemi 

188 9/12/2003, 12:00 Maemi 

New Busan 5 

221 9/18/2012, 10:00 Sanba 

219 9/17/2012, 09:00 Sanba 

215 9/18/2012, 22:00 Sanba 

Gadeok 40 

252 9/17/2012, 10:00 Sanba 

246 9/17/2012, 09:00 Sanba 

246 7/16/1987, 00:00 Thelma 

Masan 37 

265 9/17/2012, 10:00 Sanba 

264 9/17/2012, 11:00 · 

244 8/29/2004, 21:00 · 

Ulsan 55 

133 8/19/2004, 08:00 Megi 

120 9/12/2003, 21:00 Maemi 

129 9/17/2012, 20:00 Sanba 

Table 1.8 Relation between sea level and typhoons 

 
 
 

Location Years Peak Date Typhoon 

Tongyeong 41 

426 9/12/2003, 21:00 Maemi 

357 9/12/2012, 10:00 Sanba 

356 9/12/2003, 20:00 Maemi 

Samcheonpo 2 

352 8/30/2015, 22:00 · 

350 10/28/2015, 09:00 · 

350 11/27/2015, 10:00 · 

Geoje 11 

270 9/17/2012, 09:00 Sanba 

259 9/17/2012, 10:00 Sanba 

255 1/4/2006, 09:00 · 

Gwangyang 6 

479 9/17/2012, 10:00 Sanba 

443 9/17/2012, 11:00 Sanba 

441 8/1/2014, 22:00 · 

Yeosu 52 

440 8/18/1966, 23:00 · 

430 9/14/1966, 21:00 · 

129 8/17/1966, 22:00 · 

Table 1.9 Relation between sea level and typhoons (Cont'd) 
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As can been seen in Tables 1.8 and 1.9 above, the three high peak sea levels at each tidal 

gauge station are related to the occurrences of typhoons. The date and time of the highest three 

sea level heights observed during Busan’s entire observation period (1963-2015) coincide with 

the date and time when Typhoon Maemi passed from the Busan area in September 2003. Tables 

1.8 and 1.9 also show that the highest three sea level heights at tidal gauge stations located in 

other cities relate strongly with observed typhoons. 

Typhoon Maemi caused damage of $35 billion and many casualties (135 people) in 

Busan and nearby cities (National Typhoon Center, 2011) [38]. Other typhoons such as Thelma, 

Samba, and Megi also caused very significant damage. The amounts of damage are showed in 

Table 1.1.  

 

1.3 Extreme value statistics 

1.3.1 Generalized extreme value (GEV) distribution 

Extreme events are difficult to predict because data points are very few. Predicting the 

probability of extreme events is particularly difficult due to their asymptotic nature. Extreme 

value probability theory deals with to find outlier information such as the maximum or minimum 

value of extreme situations. Examining the tail events in a probability distribution is very 

challenging. However, it is considered to be very important in the civil engineering and 

insurance industries since those industries need to consider low probability high consequence 

events to cope with various extreme situations. For example, bridges, breakwaters, dams, and 

industrial plants which are located near shore or flood areas should account for the low 

probability of extreme events to reflect the consequences of major natural disasters. In this 

research, extreme total high water level caused by typhoons is the main theme. There are various 

probability models to study extreme events. Extreme value theories can be divided into two 
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groups depending on how they are defined. First, the entire interval of interest is divided into a 

number of subintervals. When the maximum value from each subinterval is identified as the 

extreme value for this subinterval, the entirety of these extreme values converges into a 

generalized extreme value distribution. Second, when values that exceed a certain threshold are 

identified as extreme values, these extreme values converge to a generalized Pareto distribution 

(GPD). In the following chapters, the peaks-over-threshold and block maxima methods will be 

used to better understand these two groups of distributions (Coles, 2001) [7]. 

 

1.3.2 Peaks-over-threshold (POT) and block maxima (BM) 

1.3.2.1 Block maxima (BM) method 

One of the available methods for studying extreme values is block maxima. It uses the 

distribution of the maximum extreme values in the following equation, with    in order of 

maximum extreme values: 

                   

n: number of observation in year 

  : independent and identically random variables 

  : annual maximum       

Data is divided into blocks of specific time periods with the highest values within each 

block collectively serving as a sample for extreme values. One limitation of the block maxima 

method is the possibility of losing valuable extreme value data because the approach only takes 

the single largest data value in each block. Therefore, there is a possibility that the second largest 

or highest datum in one block could be larger or second higher than the highest or largest datum 

in another. 
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The other approach is the peak-over-threshold (POT) method. It can address the 

limitations of the block maxima method since the POT method can gather all the data points 

which exceed a certain prescribed threshold. That means that the POT method is not missing 

valuable extreme values compared to the block maxima method even when they occur close to 

each other. But deciding which threshold to select in order to get the best description of the 

extreme data can be challenging (Bommier, 2014) [3]. For example, if the threshold is too high, 

several extreme values might be lost. If it is set too low, values that are not really extremes can 

be considered. 

 

1.3.2.2 Peaks-over-threshold (POT) method 

The Peaks-over-threshold (POT) method has been used in various fields which need to 

study extreme events (Bommier, 2014) [3]. It uses limited data more efficiently by using 

relatively larger or higher values rather than the largest or highest ones. A threshold value is used 

to assort the larger or higher values from all data and the values above the threshold are called 

exceedances. 

All data exceeding threshold value constitute the sample of extreme values. Determining 

the appropriate threshold value, however, requires significant trial and error. If the threshold is 

too high, valuable data may be lost. On the other hand, if the threshold is too low, both 

significant and insignificant data is collected and categorized as extreme values. Moreover, a low 

threshold could bring more bias due to decreased variance. Much research has been conducted 

on optimizing threshold values (Scarrott and Macdonald [51], 2012; Lopeman, 2015 [37]; 

Pickands, 1975 [54]). 
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Pickands, 1975 [54] suggested that the independent time series which exceed enough 

high thresholds would follow a generalized Pareto distribution (GPD) asymptotically. Pickands’s 

POT avoids the inherent drawbacks of BM [54]. Whereas BM identifies only one extreme data 

point within specified time windows, POT isolates all data points that exceed a designated 

threshold. All exceedances above the designated threshold can be explained by the differentiated 

tail data distribution. 

The below equation explains the distribution function   of exceedance above the 

threshold. 

  ( )          |               

  : threshold 

 : random variable 

Also, as shown in the below equation,    can be defined by conditional probabilities. 

  ( )   {

 (   )   ( )

   ( )
             

                                                 

 

    : threshold 

  : random variable 

According to Bommier, 2014 [3], the distribution of exceedances (        
) can be 

generalized by GPD with following assumption: When,       for    , and         , 

         can be described with   is  th exceedance,          .  
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The equation below expresses the GPD: 

  (       )   

{
 
 

 
   (   

(   )

 
)

   

     

     ( 
(   )

 
)          

 

In the above equation,   equals independent and identically random variables,   is the 

scale,   is the shape, and   is the threshold. All values above   are considered tail data (extreme 

values).  

When calculating return level, which is exceeded once every   years ( -year return 

periods   ), the below equation describes the probability of exceedance over a threshold. 

     |     [   (
   

 
)]

    

 

                   : random variable 

 : scale 

   : shape 

         : threshold 

If the exceedances above threshold are rare events (number of observations per year), we 

can expect  (   ), which is the probability of an exceedance above a threshold, would follow 

Poisson distribution. The mean of exceedance per unit time ( ̂) describes the Poisson distribution.  

 (    )  
 

 
 

                   : rare events (number of observations per year) 

Here,   can be estimated by dividing number of exceedances above the threshold by the 

number of years in the observation period. 
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Combining the POT and Poisson processes with GPD allows us to describe the 

conditional probability of the extreme values that exceed the designated threshold. The equation 

below defines the conditional probability (Lopeman and Deodatis, 2015) [33], [34], [35], [36]: 

 ( | )   
 (     )

 ( )
 

When Bayes’ theorem is applied to the role of GPD in conditional probability, we can 

rewrite the equation above as follows: 

  ( )   
 (     )

  (     )
 

 : independent and identically random variables (exceedance values)       

 

1.4 Outline and objective  

The purpose of this dissertation is two-fold: the first objective is to the estimate the return 

period in years of typhoon-induced high water levels in South Korea. The second objective is to 

calculate exceedance probabilities of damage by developing empirical fragility curves with 

respect to maximum wind speed induced by typhoons in the Korean Peninsula. This research 

adopts and further develops Lopeman and Deodatis’s (2015) [33], [34], [35], [36] clustered 

separated peaks-over-threshold method (CSPS). CSPS provides statistical analysis of extreme 

values in long time series of natural phenomenon that can assume extreme values. Such an 

analysis can provide guidelines for coping with natural disasters in the Korean Peninsula, 

especially on the south coast of South Korea before they occur. Second, this dissertation 

continues by constructing fragility curves for buildings subjected to typhoon-induced maximum 

wind speeds. It uses for the first time data provided by an insurance company in South Korea of 

actual damages caused by Typhoon Maemi. The established fragility curves delineate 
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exceedance probabilities for various damage stages as a function of maximum wind speed. The 

findings from this research provide a realistic method to predict economic losses associated with 

typhoons and corresponding models to manage emergency situations arising from natural 

disasters for governmental agencies, insurance companies, and the construction industry in South 

Korea. Although this dissertation focuses on a specific region and city in the Korean Peninsula, 

the introduced probabilistic methodologies can be applied to other coastal regions in South 

Korea and around the world. 
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Chapter 2 

2 Data processing and statistical model for determining 

return periods of typhoons in the Busan area 

 

2.1 Literature review 

2.1.1 Studies regarding Typhoon Maemi  

Previous research has attempted to find approaches to reduce damages from natural 

disasters in South Korea. Most of these studies had focused on storm characteristics, such as 

storm track, rainfall, radius, wind field data, etc., and damages caused. Typically, they create 

synthetic storms predicting storm paths and estimate the extent of the associated damages. 

Kang, 2005 [20] investigated the inundation and overflow caused by Maemi at one 

location near the coast. The study used a site survey and interviews from residents in the 

damaged area and found that inundation happened once the storm surge increased the water level 

by 80%. Using a numerical model, Hur et al., 2006 [14], [15] estimated storm surges in the 

Busan area caused by the most serious typhoons, such as Sarah, Thelma, and Maemi. The study 

compared the storm surge heights of the most serious typhoons at several points near Busan and 

found that Typhoon Maemi brought the highest storm surge compared to that of other typhoons. 

They then simulated storm surges to investigate tidal characteristics at Busan’s coast. They 

created virtual typhoons to compare with the corresponding tracks of Sarah, Thelma, and Maemi. 

When the virtual typhoons followed the track of Typhoon Maemi, the simulated storm surge 



 

 
27 

height was higher than the surge heights produced when virtual typhoons followed the tracks of 

Sarah and Thelma.  

Lee et al., 2008 [30] used atmospheric pressure and wind profiles of Typhoon Maemi, 

and introduced a multi-nesting grid storm surge model to simulate storm surges. To check their 

model’s performance, they used numerical methods to test tidal calibration, the influence of open 

boundary conditions, and typhoon path. The study resulted in two findings: First, the location of 

the typhoon center was the most critical factor in calculating storm surges. Second, the track of 

the typhoon was a secondary, but still important, factor in storm surge prediction. The limitation 

of this research was that only recorded storm tracks were used, meaning that the simulation could 

not calculate storm surges from any other possible track. Like Lee et al., 2008 [30], Chun et al., 

2008 [4] used a numerical model to simulate the storm surge of Typhoon Maemi, but used data 

from the coastal area of Masan, a city near Busan which was also damaged by the storm. The 

numerical model was combined with moving boundary conditions to explain the wave run-up. 

The study compared the predicted inundation area and depth with an actual site survey and found 

that the two were reasonably well correlated.  

Kim and Suh, 2018 [22] created 25,000 random storms by modifying an automatic 

generation tool, Tropical Cyclone Risk Model (TCRM). They simulated surge elevations for 

each randomly generated storm. The tracks of these random, simulated storms had similar 

patterns to those of actual typhoons in South Korea. While past research on Typhoon Maemi has 

used such input data as atmospheric pressure, wind field, radius of typhoon, storm speed, latitude, 

and longitude, tidal gauge data, etc., no research has estimated return period using tidal gauge 

data. For instance, Kim and Suh’s [22] study does not perform surge modeling and frequency 

analysis in the time domain. Although Chun et al., 2008 [4] provided valuable information 
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regarding the predicted inundation area and depth by numerical models, they did not consider 

tidal fluctuation which,  if combined with the increased water level, would have given them 

different predicted inundation areas and depths. 

 

2.1.2 Return period estimates of Hurricane Sandy, 2012, United States 

While no research exists currently on the estimation of period return for typhoons, 

research does exist for the return period of hurricanes. Lopeman and Deodatis, 2015 [33], [34], 

[35], [36] used tidal gauge data to estimate the return period of Hurricane Sandy 2012. Other 

research on Sandy had also used tidal gauge data. For example, Talke et al., 2014 [52] studied 

the storm surge hazard in the New York harbor using tidal gauge data over a 37-year period. This 

research showed that the pattern of the storm surge hazard has been changing due to sea level 

rise caused by climate change and other possible meteorological factors. However, Talke et al. 

[52] did not estimate the specific return period of Hurricane Sandy. 

Lin et al., 2010 [32], on the other hand, did estimate the return period of storm surges 

related to tropical cyclones in the NYC area. The estimated water level return period of Sandy in 

Lower Manhattan was found to be 500 years within a 95% confidence interval (approximately 

400-700 years). Lin et al., 2012 [31] conducted a similar analysis using computational fluid 

dynamics Monte Carlo Simulations combining the randomness of the tidal phase angle. The 

result for the return period was 1,000 years with a 90% confidence interval of 750-1,050 years. 

Lin et al.’s study from 2010 [32] is considered less accurate than the 2012 [31] study because it 

did not consider different possibilities of surge height at different time windows within the tidal 

cycle. 
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Hall and Sobel, 2013 [13] developed an alternative method to estimate Sandy return 

periods. The study proposed that the track of Sandy was the primary reason for the damage in 

Lower Manhattan and other parts of NYC. Specifically, they argued that damage occurred due to 

Sandy’s perpendicular impact angle with respect of the shore as it passed to the south of the 

Manhattan port. The study analyzed other hurricanes’ tracks and concluded that the impact angle 

was the most critical factor in accounting for the damage caused by Sandy and other hurricanes 

of similar intensity. The return period of Hurricane Sandy’s water level was estimated to be 714 

years within a 95% confidence interval (435-1,429 years).  

Zervas, 2013 [57] estimated the return period for extreme events using data from 

National Oceanographic and Atmospheric Administration (NOAA). NOAA has provided water 

level data to estimate return periods, recording the monthly mean water level at the tidal gauge 

station at Battery Park, New York. Zervas [57] used the GEV distribution and the Maximum 

Likelihood (MLE) method to estimate the return period for the highest observed water level. The 

GEV distribution showed that the return period for Sandy’s peak water level was 3,500 years. 

However, sensitivity analysis suggested that the estimated results were too high given the GEV 

fit’s sensitivity to the range of years used in the analysis. Once Sandy was excluded, the return 

period was 60,000 years. The difference in results suggests that the GEV distribution of the 

yearly maximum water level is not a realistic method for estimating extreme events for the New 

York Harbor area.  

Building on past research, Lopeman and Deodatis 2015 [33], [34], [35], [36] estimated 

the return period for Sandy using tidal gauge data, the first researchers to do so, in order to 

estimate the total water level return period in New York Harbor. Lopeman and Deodatis [33], 

[34], [35], [36] proposed the clustered separated peaks-over-threshold simulation (CSPS) method 
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to be used and to separate tide fluctuation, surge, and sea level rise (only the surge being truly 

random). Lopeman and Deodatis calculated the return period of Sandy to be 103 years with a 95% 

confidence interval (38-452 years) [33], [34], [35], [36]. 

The differences in the results of past studies are due to the fact that different data and 

different assumptions were used in each one. The present study applies methods used in previous 

studies on Hurricane Sandy to estimate the return period of Typhoon Maemi and in the process 

establishes a new model. 

 

2.2 Surge data 

2.2.1 Storm surge data collection method 

The Korea Hydrographic and Oceanographic Agency (KHOA) makes observed data 

regarding water height at designated observation stations available to the public. To determine 

the height of the surge (i.e., the difference between the observed and the predicted sea level 

height), the predicted sea level height is necessary.  

The followed equation explain the relationship among observed water level, predicted 

water level, tidal fluctuation height, and residual (surge) at time   . 

         

i = 1, 2, … , n (n is the time series of the input dataset). 

    is the predicted water height at time     

    is the observed water height    

    is the residual (surge) water height  

In this study, a standard harmonic analysis is performed to calculate the predicted sea 

level height based on hourly data.  
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2.2.2 Separation of tidal gauge data (Harmonic analysis) 

Harmonic analysis is used to separate the observed data: 

 First, harmonic analysis is used to estimate the tidal components from the total sea water 

level data, allowing residuals to be isolated so that surge data can be calculated once sea 

level rise is estimated 

 Second, the estimated constituents are used to predict tidal fluctuations in the years 

simulated via Monte Carlo. 

For the estimation of tidal components, the R package TideHarmonics by Stephenson [50] 

was used. The details of the estimation procedure are presented below: 

Consider the time series  ( )  of total water levels with   denoting time in hours. The  

representation of the tidal component with   harmonic constituents is given by: 

  ̂( )     ∑      

 

   

(
 

   
(      ))   

where    is the angular frequency of the  -th component in degrees per hour. The      

parameters to be estimated are: the amplitudes   , the phase lags    in degrees, and the mean 

sea level  . 

To account for long astronomical cycles (LAC), nodal correction functions for both the 

amplitude and phase are used. With these corrections, the tidal component takes the following 

form: 

  ̂   ( )     ∑     ( )   

 

   

(
 

   
(         ( )    ))   
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where   ( ) and   ( ) represent the nodal corrections for the amplitude and phase, respectively. 

In this new formulation, the amplitude and phase parameters to be estimated are denoted by    

and    (in degrees). Finally,    is the reference signal with respect to which the phase lag    is 

calculated and is set to refer to the origin    . 

The summation term in  ̂   ( ) can be alternatively written as: 

∑       ( )     

 

   

(
 

   
(      ( )    ))   

∑       ( )     (
 

   
(      ( )    ))  

 

   

 

where           (  ) and           (  ).  

What is gained with this new representation is a linear function with respect to the 

parameters      and      that need to be estimated; hence, a linear regression can be used. The 

full algorithm is given in the following Table 2.1: 
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Algorithm: Harmonic analysis of sea-level height. 

Input: Sea level time series  ( ), indexed by time in hours. 

Number of tidal harmonic components  . 

Angular frequency     of each harmonic constituent  . 

Nodal corrections (  ( )   ( )) for amplitude and phase for each harmonic 

component  . (These are provided by in the R package TideHarmonics.) 

Output: Estimated tidal component   ̂   ( ). 

1. Set  ̂      ( ), where   ( )   is the entire sea level time series. 

2. Run zero-intercept linear regression on  ( )   ̂ against the following      

variables: 

        ( )     (
 

   
(      ( )    ))   

        ( )     (
 

   
(      ( )    ))   

for          Denote the respective coefficient estimates as  ̂    and  ̂   , for 

       . 

3. For each          set: 

a.  ̂  √         ; 

b.  ̂        (
    

    
). 

4. The estimated tidal component is given by: 

  ̂   ( )   ̂   ∑  ̂   ( )   

 

   

(
 

   
(     ̂    ( )    ))  

Table 2.1 Harmonic analysis of tidal and sea-level data 
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Given the large timespan covered by the data,      harmonic tidal constituents are 

estimated, and a constant mean sea level   is assumed across the 54 years of data available. 

 

2.2.3 Observed, predicted and residual water level 

A harmonic analysis is conducted using the observed sea level data at Busan's tidal gauge 

station, which has the longest observation length among the tidal gauge stations operating in 

South Korea. Because observed sea level height is usually different from predicted sea level 

height, Figure 2.1 displays the height of observed sea level in blue, as calculated through 

harmonic analysis, predicted sea level height is in green, and surge height is in red. 

 

Figure 2.1 Observed, predicted, and residual water level in Busan, South Korea, 2003 

2003/09/12/21:00, 211 cm 
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As seen in Figure 2.1, the highest total water level coincided with the highest surge level 

during Typhoon Maemi. Figure 2.2 shows that the observed (in blue), predicted (in green), and 

surge height (in red) on the specified date (9/12/2003, 21:00) when the highest sea level occurred 

at the Busan tidal gauge station. Given a total water height of 211 cm, the surge height is 

calculated as 73.35 cm.  

 

Figure 2.2 Observed (green), predicted (blue), and residual (red) water level, Typhoon Maemi, 2003 
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2.3 Threshold and target rate selection  

For a given target annual rate, which is the number of the events (storms) per year, the 

algorithm proposed by Lopeman, 2015 [37] (shown in Figure 2.3) computes the threshold such 

that the given rate (within some tolerance) approximates the resulting yearly number of 

exceedance clusters. As mentioned in chapter 1.3, having the proper threshold is very important 

since too high a threshold can lose valuable tail data, and too low a threshold can include data 

that is likely to happen and therefore not does not qualify as extreme. An exceedance cluster is 

given by a set of consecutive surge observations that lie above the threshold. Hence, rather than 

choosing an "ideal" threshold according to some criteria, the algorithm finds the threshold that 

forces a previously chosen target rate. We can set such a target rate to be equal to the average 

rate observed over a given period or, more generally, to a value that we find reasonable given 

past data. 

The algorithm uses iterative updates of the threshold to allow a computationally intensive, 

but not exhaustive, exploration of all the possible threshold values from its minimum (i.e., 

minimum observed surge height) to its maximum value (i.e., maximum observed surge height). 

In particular, the algorithm first sets the threshold to zero centimeters, and then iteratively 

overwrites it according to the following steps:  

1. At a given iteration with a certain threshold, the resulting exceedance clusters are 

identified and the resulting annual storm rate computed. 

2. If the resulting annual storm rate is close enough to the chosen target, then the 

threshold from the previous iteration is the result and the algorithm is stopped. 

3. If the resulting annual storm is not close enough to the chosen target 
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o … but is smaller than the target rate, then the threshold from the previous iteration 

is the result and the algorithm is stopped. 

o … but is greater than the target rate, then a vector collecting the maximum peak 

height of the clusters is built and sorted in descending order. The threshold 

updated by setting it equal to the C-th element of this vector, where C is the 

closest integer to the product of 54 (the number of years covered by the dataset) 

with the target rate. This updated threshold is used in the next iteration of 

algorithm and steps 1 through 3 are repeated. 
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Figure 2.3 Flowchart of threshold algorithm proposed by Lopeman, 2015 [37]  
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Figure 2.4 Iterative process using the threshold selection 
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Figure 2.5 Iterative process using the threshold selection (Cont'd) 
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Figure 2.6 Iterative process using the threshold selection (Cont'd) 

As shown in Figures 2.4, 2.5, and 2.6, the convergence of the threshold algorithm is 

pretty fast for all the different target rates selected (3, 5, 10) and the number of iterations needed 

for convergence ranges from 3 (target rate = 3) to 5 (target rate = 10). 
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Figure 2.7 Various thresholds considered 

Figure 2.7 displays the threshold of 31.2 cm (Target rate: 3.5, number of clusters: 189) in 

red, the threshold of 30.54 cm (Target rate: 4, number of clusters: 217) in blue, the threshold of 

29.56 cm (Target rate: 4.5, number of clusters: 246) in purple, the threshold of 29.15 cm (Target 

rate: 5, number of clusters: 274) in green, the threshold of 28.33 cm (Target rate: 6, number of 

clusters: 324) in sky-blue, and the threshold of 26.53 cm (Target rate: 8, number of clusters: 431) 

in orange. As expected, as the target rate increases, the threshold decreases and as the threshold 

decreases, the number of clusters increases. 

 



 

 
43 

2.4 Clustering of the storm surge data 

2.4.1 Relationship among target rate, threshold and clusters 

As shown in Figures 2.4, 2.5, and 2.6, the convergence of the threshold algorithm is rapid 

for all the different target rates that have been tested, namely 3, 5, and 10 storm per years: the 

number of iterations needed for convergence ranges from 3 (target rate = 3) to 5 (target rate = 10). 

As expected, the lower the target rate, the lower the number of clusters (storm events) per year 

and the higher the threshold. If a certain target rate is desired, the strategy is to increase the 

threshold (excluding all observations below the threshold) until the target rate (in terms of storms 

per year) is achieved. For example, if the desired target annual rate is 3 storms, the algorithm will 

converge in 3 iterations and set the threshold level to 32.01 cm; this results in an average of 3 

storms per year, for a total of 164 storm events (clusters) over the 54-year timespan covered by 

the data. Conversely, if the desired target rate is set to 10 storms per year, the chosen threshold is 

significantly lower (25.43 cm), and the total number of storm events more than triples (539 storm 

events clusters). Figures 2.8, 2.9, and 2.10 show the stages of the clustering surges (target rate: 5, 

threshold: 29.15 cm, number of clusters: 274). Figure 2.8 indicates only the number of surges 

because of the difficulty of visually indicating all surge dates and times. 
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Figure 2.8 Complete set of data before any threshold application from Busan tidal gauge station 

 

 

Figure 2.9 Surges above the threshold (29.15 cm) before clustering from Busan tidal gauge station 
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Figure 2.10 Surges above the threshold (29.15 cm) after clustering from Busan tidal gauge station 

Figures 2.11 and 2.12 show the stages of the clustering surges for target rate: 3, threshold: 

32.01 cm, number of clusters: 164. 
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Figure 2.11 Surges above the threshold (32.01 cm) before clustering from Busan tidal gauge station 

 

 

Figure 2.12 Surges above the threshold (32.01 cm) after clustering from Busan tidal gauge station 

Figures 2.13 and 2.14 indicate the results of target rate: 10, threshold: 25.43 cm, number 

of clusters: 164. 
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Figure 2.13 Surges above the threshold (25.43 cm) before clustering from Busan tidal gauge station 

 

Figure 2.14 Surges above the threshold (25.43 cm) after clustering from Busan tidal gauge station 
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2.5 The relationship between storm surge parameters 

2.5.1  Storm surge parameters 

Storm surges are characterized by four major parameters:  

 peak time 

 peak surge height 

 duration 

 rise ratio  

Peak time follows a gamma distribution because peaks over threshold (POT) produces a 

Poisson process of exceedance occurrence, and the waiting times of consecutive exceedances in 

a Poisson process are, by definition, exponentially distributed (Lopeman and Deodatis, 2015) 

[33], [34], [35], [36]. 

For the peak time (interarrival times), we use a gamma (exponential) distribution, 

because: 

 the gamma (exponential) distribution converts the arrival process of the storm peaks 

into a Poisson process (assuming that the arrival maxima of exceedance clusters 

(storm peaks) are regulated by a Poisson process which is a common 

assumption/convention of the POT method). 

For peak height, a generalized Pareto distribution (GPD) is typically used because some 

results (representation theorems) from extreme value statistics indicate that, if the cluster 

maxima follow a Poisson process, then the intensity (height) of the cluster peaks follows a GPD 

distribution (Lopeman and Deodatis, 2015 [33], [34], [35], [36]; Zhong et al., 2014 [59]). 

However, a Weibull distribution is applied to peak storm surge heights in this study because it 

better fits the data (especially with regards to the right tail). 
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The rise ratio which does not appear to be evenly distributed along the interval [0, 1] 

follows a beta distribution. A beta distribution was used because: 

 the rise ratio is by definition between 0 and 1, and the beta distribution is commonly 

used to model continuous random variables that take values between 0 and 1 

(Lopeman and Deodatis, 2015) [33], [34], [35], [36]. 

Duration follows a lognormal distribution which was used for the following two reasons 

(Lopeman and Deodatis, 2015) [33], [34], [35], [36]: 

 it models a continuous and positive random variable (the duration, by definition, is 

positive). 

 it is quite flexible as it has two parameters, so it can fit the data better than other 

distributions with just one parameter. For example, the exponential distribution 

models a positive random variable, but it has only one parameter. 

 

2.5.2  The relationship between storm surge parameters 

Figures 2.15, 2.16, and 2.17 indicate that there is no evident relationship between the rise 

ratio and the other two variables, duration and exceedance. However, the peak exceedance and 

the cluster duration appear to have a liner relationship. 
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Figure 2.15 Relationship between exceedance and duration 

  

 

Figure 2.16 Relationship between exceedance and rise ratio 
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Figure 2.17 Relationship between duration and rise ratio 
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Chapter 3 

3 Storm surge simulation and estimation of the return 

period of Typhoon Maemi 

3.1 Simulation 

 

3.1.1 Fitting the statistical model in this study to the actual surge data 

After finding the threshold resulting from a given target rate, interarrival times, rise ratios, 

peak height, and cluster duration are computed for each exceedance cluster. These calculations 

are grouped by season and then used to estimate the parameters of the statistical model via 

maximum likelihood. In particular, for each season, interarrival times are fitted with an 

exponential distribution; rise ratios are fitted with a beta distribution; peak height is fitted with a 

Weibull distribution where the Weibull location parameter is equal to the threshold. A detailed 

description of the methodological aspects is provided in what follows. 
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Maximum likelihood estimation 

Assume an independent and identically distributed data sample (       ) is observed 

from a population with a distribution of interest parametrized by an unknown variable  , which 

the study wants to estimate. The maximum likelihood estimator  ̂    is defined as: 

 ̂   (       )           
∏ (     )

 

   

   

where  (    )  denotes the probability density function of the distribution of interest, 

parametrized by   .  The distributions of interest for the data in this study are chosen as follows: 

               ( ), where    denotes the interarrival time between the peak of the 

   -th cluster and the peak of the  -th cluster. This distributional assumption is 

equivalent to assuming that a Poisson process governs the surge peak arrivals. 

        (   ), where    denotes the rise ratio of the  -th cluster. 

       (      ), where     denotes the generalized Pareto distribution,     

denotes the peak surge height of the  -th cluster, and    is the selected threshold. 

For the exponential distribution (i.e., interarrival times), the exact solutions of the 

maximization problem stated above can be derived in closed form. For the GPD distribution (i.e., 

peak exceedances) and the beta distribution (i.e., rise ratios), the problem is solved numerically. 

A full description of the estimation algorithm is detailed below Table 3.1. 
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Algorithm: Maximum likelihood estimation for interarrival times, rise ratios, and peak 

exceedances. 

Input: Observed interarrival times         of the clusters’ surge peaks. 

Observed rise ratios        . 

Observed peak surge heights        . 

Number of clusters  . 

Threshold rate   . 

Output: Maximum likelihood estimates of the model parameters: 

 ̂     ̂     ̂     ̂     ̂   . 

Compute the MLE estimate  ̂    for the exponential interarrival rate    as: 

 ̂     (∑  

 

   

)

  

  

Compute the MLE estimates  ̂    and  ̂    for the Beta parameters   and  , by solving the 

following first order equations numerically: 

 ( ( ̂      ̂   )   ( ̂   ))   ∑      

 

   

    

 ( ( ̂      ̂   )   ( ̂   ))   ∑    (    ) 

 

   

    

where  (   ) denotes the digamma function. 

Compute the MLE estimates  ̂    and  ̂    for the GPD parameters   and   (for more 

details on this estimation, see documentation provided by ismev package.) 

Return the MLE estimates  ̂     ̂     ̂     ̂     ̂   . 

Table 3.1 Maximum likelihood estimation for interarrival times, rise ratios, and peak exceedances 
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Figure 3.1 Generalized Pareto distribution (GPD) at target rate 5 
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Figure 3.2 Various fits of distributions for cold season at target rate 5 

 
Figure 3.3 Various fits of distributions for warm season at target rate 5 
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Figure 3.1 shows that the GPD cumulative distribution function (estimated by maximum-

likelihood) and the empirical distribution function (dots). Each dot represents the observed 

proportion of exceedances below a certain height in a given season (blue color: cold season, red 

color: warm season), while the corresponding value on the fitted line (of the same season) gives 

the probability that the exceedances are below that height according to the estimated GPD 

distribution. 

Figures 3.2 and 3.3 indicate that the Gamma and Weibull distributions fitted to the data 

for the cold and warm seasons via maximum likelihood better than the GPD. According to the 

minimum square error (MSE), the Gamma and Weibull distributions provide the best fit to the 

data in each season and for a variety of target rates. This confirms the graphical considerations 

suggested by the plots. 

 

3.1.2 Monte Carlo simulation 

After determining the distribution parameters of the statistical model, a time series of 

total water level activity can be simulated up to any desired future horizon. 

 

3.1.2.1 Peak Times 

The first step of the simulation is the generation of the two alternating semiannual 

Poisson processes that regulate the peak times for each season. The simulation of the Poisson 

process is done, as usual, by simulating the exponentially distributed interarrival times under the 

estimated rates: each peak time is the sum of the interarrival times between the peaks that 

preceded it. According to our definition of seasons, the warm season has 183 days, and the cold 

season an average of 182.25 days due to leap years. Hence, to simulate N years, the Poisson 

process for the warm season is simulated for N times 183 days, while that of the cold season for 
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N times 182.25 days. Because the simulation results are contained in two vectors of peak times, 

the study uses a stitching procedure to build the final vector of peak times throughout the year. 

The final vector is made of 2*N semiannual blocks that reflect the physical alternation of seasons, 

and is built as follows: 

 The first block is established by all the simulated warm peak times within the first 

183 days; 

 The second block is established by all the simulated cold peak times within the first 

182.25 days, rescaled to take into account that 183 days have already been simulated 

for the first warm season; 

 the third block is established by all the simulated warm peak times between the 184
th

 

day and the 368
th

 day, rescaled to take into account that one year has already been 

simulated (i.e., first warm season and first cold season); 

 and so on. 

This procedure is used until all the N warm seasons and N cold seasons have been 

stitched together. 

 

3.1.2.2 Rise ratios and Peak heights 

Every peak time in the final vector generated using the Poisson stitching process is 

associated to an exceedance cluster; hence, the study can now simulate as many rise ratios and 

peak heights as the number of peak times in the final vector. For each exceedance cluster, its rise 

ratio and peak height are sampled from the Beta and Weibull distributions using the parameters 

that were previously estimated for the corresponding exceedance’s season. 
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3.1.2.3 Duration and removal of overlapping clusters 

For duration, the study regresses the duration variance of the peak height via linear least 

squares (LLS). For the duration mean, a linear regression is run using peak height except in cases 

of heteroscedastic data. In case of heteroscedastic data, weighted linear least squares (WLLS) is 

run. For instance, when the target rate is set to four storms per year, the variance of the cluster 

duration increases with the peak height only in the warm season. Hence, WLLS is used for the 

warm season data and LLS for the cold season data. For each exceedance cluster, the mean and 

variance of the duration is computed as a lognormal random variable at its simulated peak height. 

Because the duration of an exceedance cluster depends only on its peak height and the 

peak heights are simulated independently, some overlapping exceedance clusters may occur. To 

solve this problem, all the clusters are checked for overlapping, and every time an overlap is 

found, one of the two overlapping clusters is randomly selected and discarded. 

Note that, in general, a lower threshold will yield a higher annual rate, which in turn will result in 

more frequent surge events and thus more opportunities for overlap. If the threshold – or rather, 

the target rate – is properly selected, the removal of overlapping clusters will affect the annual 

storm rate only marginally. 

 

3.1.2.4 Final outcome 

The outcome of the Monte Carlo simulations is a set of exceedance clusters that span N 

years. Each exceedance cluster is characterized by a surge peak happening at a certain time and 

with a certain height, and by a rise ratio and duration. Other measures of interest (e.g., first date 

of the cluster, the surge level at a specific hour during a specific storm event, etc.) can be then 

computed using for these four parameter statistics. 
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Figure 3.4 Simulation of peaks following the GPD over 500 years 

 

Figure 3.5 Simulation of peaks following the GPD over 100 years 
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Figure 3.6 Simulation of peaks following the Gamma distribution over 100 years 

 

Figure 3.7 Simulation of peaks following the Weibull distribution over 100 years 
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After estimating the distribution parameters of the statistical model, we can simulate a 

time series of total water level activity up to any desired future horizon. Figure 3.4 above shows 

the simulation with target rate (annual rate) of 5 and 10,000 years using GPD. Also, Figures 3.5, 

3.6, and 3.7 show the simulations using GPD, Gamma, and Weibull distribution with target rate 

(annual rate) 5 and 100 years for comparison.  

In Figures 3.5, 3.6, and 3.7, Monte Carlo simulations of the peaks are compared with the 

observed peaks (for the given target rate and chosen threshold) over the 54 years covered by the 

dataset. Each simulated peak is characterized by the peak time and the peak height; the times are 

obtained by sampling the interarrival times from the estimated exponential distribution, while the 

peak heights are sampled from the estimated Weibull distribution.  

For instance, assume that we want to simulate peaks for the next 100 years. Then we 

proceed as follows: 

1. We first sample the interarrival times          from an exponential distribution with 

the rate that we previously estimated via maximum likelihood. Recall that, in general, 

the interarrival time    denotes the time elapsed between the (   )-th and the  -th 

simulated peak. We simulate as many interarrival time as needed to cover the 

timespan of interest—that is, we simulate the interarrival times until       .  

2. Next, we compute the arrival times of the simulated peaks. In particular, the arrival 

time    of the i-th peak is computed as the sum of the interarrival times between all 

the peaks that precede the  -th—that is,       
 
   . 

3. Finally, we simulate the peak heights         from a Weibull distribution with the 

parameters that we previously estimated by maximum likelihood. 
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At the end of this procedure, we will have      pairs (     )    of peak times and peak 

heights that fully charaterize the simulated peaks. Note that, in the first two steps of this 

procedure, we are simulating a Poisson Process of peak arrivals. It should also be noted that what 

is described above is a simplified version of the actual procedure that we implemented, as we 

also took into account different seasons (cold vs. warm). However, this simplified version 

provides a good understanding of the main steps we followed when running Monte Carlo 

simulations of peaks. 

 

3.1.3 Bootstrapping process 

Given the complex relationship between exceedance clusters and the return period 

estimates, the study deploys bootstrapping for this last phase of the analysis. The bootstrap 

estimation procedure of the return period works as follows: 

 200 bootstrap simulations are created: each simulation is obtained by resampling the 

original input dataset through replacement of the total water level of the simulated 

clusters. Hence, each bootstrap simulation is a vector of total water levels with as 

many coefficients as the number of exceedance clusters that have been simulated.  

 Each simulation is stored in a column of a matrix, in descending order, with all total 

water levels smaller than the N-th greatest water level of that simulation removed. As 

a result, the study produces a matrix with 200 columns and N rows, where each 

column is given by the first N water levels of a bootstrap simulation. Finally, each 

row of this matrix is stored in ascending order. 

 The     percent confidence interval for the     return level can be extracted from 

the matrix by selecting the levels at row   with columns         and     (  

   ), respectively. 
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 In a similar but slightly more complicated fashion, the     percent confidence 

interval for the return period of a storm with a given total water level   can be built as 

follows: 

o find the first row   such that the water level on column     (     ) is 

smaller than  ; 

o find the first row   such that the water level on column         is greater 

than  ; 

o the confidence interval of interest is (   )  

 

3.2 Estimation of Typhoon Maemi return period 

For a better understanding of estimation return period, an example is provided below. 

Suppose that N years are simulated with 14 storms with different random peaks. To estimate the 

return period of a storm with peak height 29 cm, the following question must be asked: over N 

simulated years, how many times was a storm with peak of at least 29 cm observed? Suppose the 

answer is 14 time over the simulated N years. Hence, the return period of this storm is N/14 

years. Similarly, to estimate the return period of a storm with peak height 73 cm, the following 

question must be asked: over the N simulated years, how many times was a storm with peak that 

of at least 73 cm observed? Suppose the answer is 1 times for the simulated N years. Hence, the 

return period of this storm is N/1 years. 
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Figure 3.8 and Table 3.2 show the above example. As seen in Figure 3.8, 14 times every 

N simulated years, the return period of 29 cm is  
 

  
 . Similarly, 13 times every N simulated 

years , the return period of 30 cm is  
 

  
; 11 times every N simulated years, the return period of 32 

cm is  
 

  
; 10 times every N simulated years, the return period of 35 cm is  

 

  
; and 1 time every N 

simulated years, the return period of 73 cm is  
 

 
. 

 

Figure 3.8 Randomly selected peak heights 
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Peak height (cm) Return period (years) Peak height (cm) Return period (years) 
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Table 3.2 Return period of randomly selected peak heights (N = 1000 years) 

In Table 3.2, the return periods are calculated when N = 1000 years and the results shown 

in Figure 3.9. 
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Figure 3.9 Return period of each randomly selected peak heights 

The calculation for the return period estimation is based on the total water level rather 

than on the surge level. Hence, for each simulated storm event (i.e., exceedance cluster), the 

study computes the maximum total water level during that event. To do so, the study computes 

the total water for each hour of the surge event by adding the following components: 

 the Mean Sea Level; 

 the Tidal Fluctuation: this (deterministic) component is computed using the tidal 

components estimated with the harmonic analysis; 

 the Surge level. 
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The maximum total water level of each simulated cluster is then computed by taking the 

maximum total water level among all the hourly total water levels computed for that cluster. 

Once sorted in descending order, each simulated water level is associated with a return period of 

 

 
 years (i = number of storm peaks over the designated threshold). 

 

3.2.1 Typhoon Maemi return period results at the tidal gauge station in Busan, South 

Korea    

When simulating N=50,000 years using a Weibull distribution, the estimated 95% 

bootstrap confidence interval of Typhoon Maemi with a TWL of 211 cm is 389.11 years (95% 

CI: 342.47 - 476.2 years). Similarly, the 95% bootstrap confidence interval for the 100 -year 

return level is [198.29, 199.58] cm. The point estimate is 198.85 cm.  

Note that only extreme events are being considered, that is, typhoons whose surge is 

above the threshold. If MSL, tide, and SLR are added to the threshold, the threshold is around 

153 cm. Anything below is not considered "extreme” by this study. Return periods for total water 

levels below 100 cm were not calculated because only return periods for extreme events were 

considered.  

As seen in Figure 3.10, 50,000 years are used to generate the return level, but only return 

periods up to 500 years plotted. As shown in the plots, the width of the confidence intervals is 

still narrow, but it is eventually increasing in time. 
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Figure 3.10 Return period curve for total water levels at the tidal gauge station, the city of Busan, South Korea 

 

3.3 Conclusions 

In Chapters 2 and 3, this study used tidal gauge station data in the city of Busan, South 

Korea, to estimate total water level return periods. Clustered separated peak-over-threshold 

simulation (CSPS) was used to estimate the return periods. Typhoon Maemi recorded the highest 

total water level (211 cm) at a tidal gauge station in South Korea’s history. The return period of 

the total water level of Typhoon Maemi was estimated as 389 years (95% CI: 342.47-476.2 

years). The results are significant because there are no existing studies estimating return periods 

using tidal gauge data in South Korea. The results could provide important guidelines for the 

insurance industry, the construction industry, and regional governments in order to obtain a 

better understanding of the damage caused by natural disasters.  
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Chapter 4 

4 Fragility curves from storm-induced wind 

4.1 Introduction 

The severity of windstorms and the damage they cause has rapidly increased. Hurricane 

Katrina in 2005 devastated and paralyzed the Gulf Coast, causing 108 billion USD worth of 

damage, making it the costliest recorded natural disaster in U.S. history. Hurricane Ike in 2008 

and Sandy in 2012 caused about 29.5 billion USD and 71.4 billion USD, respectively (Blake et 

al., 2007) [2]. Super typhoon Yolanda (also known as Typhoon Haiyan) in 2013 caused similar 

damage in South Asia. After it made landfall, Southeast Asia and Philippines recorded damages 

of about 2.86 billion USD. However, it should be noted that in all these storms, not all of the 

damage is caused by the wind. Actually in most cases, the majority of the damage is caused by 

the storm surge. 

Governments, insurance companies, and the construction industry have developed risk 

management models to cope with the risk from natural disasters at regional and national levels. 

Such risk models for windstorm-induced loss are important to insurance companies because 

these models can estimate the value of potential loss from natural disasters, such as probable 

maximum loss, limit of liability, and exceedance of loss reinsurance. Those values are important 

when deciding how to designate catastrophe zones and how to share and allocate risk (Cummins 

et al., 1999 [9]; Kim et al., 2016 [24]). 

Risk assessment models are comprised of four components: hazard, vulnerability, 

exposure, and damage. Hazard values represent the intensity of windstorm in terms of wind 
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speed. The hazard curve provides the occurrence probability of different vales of the wind speed. 

Exposure provides information about the property possibly affected. Vulnerability provides the 

damage potential as a function of the intensity of the hazard, and damage is the total loss, 

including liability coverage.  

Fragility curves are the best way to manage financial risk from windstorms. Fragility 

curves, using vulnerability functions, express the correlation between damage ratios, wind speed, 

and damage states (Khanduri and Morrow, 2003) [19]. Since vulnerability functions are based on 

damage values, the quality and accuracy of damage data is critical.  

 

4.1.1 Outline and objective  

The main purpose of this research is to develop empirical fragility curves of damaged 

properties. An insurance company has provided loss data from Typhoon Maemi. The quality and 

quantity of the data allows for the construction of reliable fragility curves. Each curve is 

generated based on damage ratios, wind speed, and damage level (Damage I – Damage IV) using 

the following: 

 Data collection 

Loss data on Typhoon Maemi is provided by an insurance company in South Korea and 

limited to the City of Busan. Wind speed (defined as 10 min sustained maximum) is 

provided by the Korea Meteorological Administration. 

 Data sorting 

Because the original data from the insurance company is in Korean, all data is translated 

into English. Critical information, such as address, damage loss, value of insured property, 

etc., has been extracted from the dataset.  
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 Geographic Information System (GIS) 

This research uses GIS to express the longitude and latitude of each property and 

construct a map of the damage state and wind speed at each property. 

 Fragility curves 

Empirical fragility curves as proposed by Shinozuka, et al., 2000 [49] are developed from 

the provided (details in the next chapter), and the range of each damage state is 

determined by the distribution of the damage ratio. Finally, the exceedance probability of 

wind speed for each damage state is calculated. 

 

4.2 Literature review 

4.2.1 Studies regarding windstorm-induced damage in South Korea 

Previous research on damages caused by typhoons in South Korea mainly focused on the 

characteristics of typhoons. Ku et al., 2008 [29] developed a prediction model using storm-

induced rainfall data, and Park et al., 2011 [40] and Park et al., 2012 [41] utilized typhoon wind 

field and strong wind speed to predict the area and extent of damages. Shin et al., 2013. [48] 

estimated typhoon paths associated with property damage based on the forward movement speed 

and direction of typhoons. 

Kim et al., 2015 [25] identified the hurricane indicators, such as hurricane wind speed, 

building age, and building area, associated with damage. This study used Hurricane Ike, 2012 

claim payout data from the Texas Windstorm Insurance Association. Based on the data, Kim et 

al., 2015 [25] established metrics to investigate the critical factors in the damage caused. 

Damage ratio was used as the dependent variable, and wind speed, building age, building area 

were selected for independent variables. Through Spearman correlation, they found maximum 
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wind speed and building age have a positive relationship with damage ratio. Building area, on 

the other hand, has a negative relationship with damage ratio. Although the findings from this 

study identified the most critical indicators of damage caused by hurricanes, they only used 

commercial building damage data and wind speed, among various hurricane characteristics. Also, 

only one case (Hurricane Ike) was used for the study. In 2016, Kim et al., 2016 [24] conducted 

similar research using the same data, but applied more independent variables in their metrics, 

such as appraised building value, surge zone, side of hurricane track, and distance from shore. 

They found that the appraised building value and the right side of the hurricane track have a 

positive relationship with damage ratio; surge zones and distance from shore line have a negative 

relationship with the damage ratio. However, the study, like Kim et al, 2015 [25], focused solely 

on commercial property damage and Hurricane Ike. 

 Another approach to predict and estimate damage caused by typhoons was investigated 

by Kim et al., 2018 [23]. They used the tracks of typhoons in the Korean Peninsula to estimate 

property vulnerability. Critical typhoons were categorized into Type 1 and Type 2, according to 

their path and location of landfall. Typhoons that made landfall on the west coast on the Korean 

Peninsula were categorized as Type 1, while typhoons that made landfall on the southern coast 

were grouped as Type 2. Rainfall, radius, maximum wind speed, forward movement speed, and 

number of land areas with decreased slope due to development were deployed as independent 

variables, using loss ratio as the dependent variable. The variables were applied to Type 1 and 

Type 2 to compare which variable was the most critical factor in damages cause by typhoons. 

Kim et al., 2018 [23] concluded that the extent of damage of Type 1 typhoons was correlated, in 

descending order, with maximum wind speed, number of land areas with decreased slope, and 

rainfall. However, the critical damage indicators of Type 2 typhoons were correlated, in 
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descending order, with forward movement speed, rainfall, maximum wind speed, and radius. 

Although Kim et al., 2018 [23] found that landfall location could affect the extent of damages 

caused by typhoons, their study did not measure the relationship between each damaged property 

and indicator. 

 

4.2.2 Fragility curves  

Insurance companies recognize the importance of catastrophe loss modeling in 

quantifying and allocating risk within their portfolios. Usually, vulnerability models include 

information related to damage functions, such as building history, floors, occupancy classes, 

locations, building codes, etc.  

Watson and Johnson, 2004 [55] compared and evaluated the combination of windstorm 

damages, vulnerability, and risk. Historically, wind damage data as well as the inventory and 

structural characteristics of properties have been critical factors in developing vulnerability 

functions or fragility curves. These fragility models are empirical and fit the regression curve to 

the historical damage data as a function of damage levels. These models reflect the vulnerability 

of specific types of structures and are widely used in the insurance industry. 

The exceedance probability for each damage ratio is expressed as a function of wind 

speed, and the different curves indicate different damage levels. Fragility curves show that the 

probability of exceeding a particular damage state is 0 % up to a certain critical wind speed 

(vcritical), at which point a certain threshold determined by the damage ratio has been reached.  

Above that threshold, the probability of exceeding a particular damage state increases until 

reaching 100% exceedance probability (meaning the property has totally collapsed) at a certain 

maximum wind speed (vmaximum) (Lopeman and Deodatis, 2015) [33], [34], [35], [36]. From the 
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literature review, the damage ratio (the cost of the damage as a percentage of appraised value of 

the property) as a function of wind speed is used as the main variable. Using wind speed and 

direction, the curves indicate storm intensity by specific type of construction and geographical 

characteristics of the region. Ultimately, fragility curves provide useful tools for predicting the 

possibility of reaching or exceeding different damage states (Hwang, 2013) [17]. 

 

4.2.3 Various characteristics of typhoons related to the extent of damage 

(Possible causes of damage caused by typhoons) 

The severity of typhoons can be measured by maximum wind speed, peak wind duration, 

wind radius, forward motion speed, and motion direction (Dunion et al., 2003 [12]; Vickery et al., 

2006 [53]; Burton, 2010 [5]). There are several studies regarding the extent of damage to 

properties based on various characteristics. Among those characteristics, some researchers have 

argued that maximum wind speed and maximum wind radius are the most critical in estimating 

the damages from typhoons (Watson and Johnson 2004 [55]; Vickery et al., 2006 [53]; Burton, 

2010 [5]). Others (Watson and Johnson, 2004 [55]; Rego and Li, 2009 [46]) have posited that 

forward motion speed is the most important variable since that variable can affect flood volume. 

Slow moving typhoons can cause more property damage due to heavy flooding than fast moving 

typhoons (Rego and Li, 2009) [46]. According to Choi and Fisher, 2003 [6], rainfall is another 

key variable in determining the extent of damage, while built environment, frequency, and 

magnitude have all been considered main factors as well for windstorm damage assessment 

(Khanduri and Morrow, 2003; Kim et al., 2016 [24]; Huang et al., 2001 [16]).  

The National Oceanic and Atmospheric Administration (NOAA) coordinates a hurricane 

observation system which provides the Hurricane Research Division (HRD) real time wind 
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analysis. Wind analysis contains collected wind data from observation stations based on period 

of 4-6 hours during hurricanes. The collected wind data includes maximum wind speeds, forward 

movement, hurricane direction, as well as wind speed direction and duration (Dunion et al., 2003 

[12]; Powell and Houston, 1998 [42]; Powell et at., 1998 [43]; Powell et al., 2010 [44]). This 

wind analysis can be applied to gather information on hurricane intensity and can be combined 

with data from GIS.  

Built vulnerability is also regarded as a critical factor in the damage caused by typhoons 

(Khanduri and Morrow, 2003; Kim et al, 2016 [24]; De Silva et al., 2008 [11]). Khanduri and 

Morrow, 2003 suggested high-rise buildings could incur more damage than other structures. Also, 

flood control facilities (Brody et al, 2008) and the decreased slope of mountains due to 

development are associated with the extent of damages caused by typhoons (Dai et al. 2002 [10]; 

Zhai et al. 2007 [58]; Cui et al. 2009 [8]; Ayalew and Yamagishi 2005 [1]). 

Another important factor in assessing damage is property position in relation to the 

location of the hurricane. Usually, the right side of hurricanes cause more damage than the left 

side in the northern hemisphere (Keim et al., 2007 [21]; Noel et al., 1995 [39]). The reason for 

this difference is that wind intensity and direction in combination with forward movement and 

counterclockwise rotation causes higher wind speed and higher storm surges on the right side, 

thus causing more damage. 
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4.2.4 Line of business 

Appropriate fragility curves are determined by type of line of business. Line of business 

is a well-known term in the insurance industry and is used to group properties or buildings 

according to with similar accounting and property policies. Within the field of civil engineering, 

the term groups buildings according to structure, use, and financial features. Three common lines 

of business within the field are industrial, commercial, and residential (Kim et al., 2017 [26]). 

Most of the literature focuses on residential due to the abundance of loss data compared to other 

lines of business. This study combines all three common lines of business in order to produce a 

robust dataset.   

 

4.2.5 Construction typology and contents 

Empirical fragility curves can be established based on the historical damage recorded for 

specified regions. They do not take into account construction types, materials, loads, etc. For 

instance, masonry walls and structure frame walls would have different damage levels at the 

same wind speeds. In order to account for those variables, empirical fragility curves can be 

combined with engineering-based ones. For example, construction typologies such as materials, 

structure types, load types, etc., can be categorized into several lines of business within a region. 

If each line of business has its own damage ratio, that damage ratio could have its own curve 

representing the vulnerability of each construction typology. Comparing the vulnerability models 

with similar construction typology may prove significant. (Lopeman, 2015) [37]. However, an 

analysis of each construction typology would require more data and is therefore beyond the 

scope of this study as such data was not avoidable. 
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Interior contents could also be considered when creating fragility curves. When insured 

properties are damaged by high wind speed, not only outer structures but also interior contents 

may be damaged. However, while relevant literature does consider the interior contents as part of 

the total damage cost, some researchers do not consider it as damage losses since it is very 

difficult to gauge and analyze. Moreover, at low wind speeds, damages to interior contents are 

not regarded as damage because interior contents are not exposed to storm winds, only to the 

possibility of the flooding. Therefore, they are not included in the calculation of the damage ratio 

in this study. 

 

4.3 Windstorm-induced damage 

4.3.1 Damage data from an insurance company in South Korea 

Investigating damage losses by wind speed is crucial for the insurance industry in 

deciding risk factors and insurance premiums. Primary insurance and reinsurance companies 

should prepare a plan for unexpected damages from extreme natural disasters, such as Typhoon 

Maemi in 2003, Hurricane Katrina in 2004, and the Thailand flood in 2011. Insurance companies 

usually designate catastrophe zones and determine the risk factors for each zone. This work can 

help companies reduce their losses and distribute risk when extreme events happen. 

Vulnerability functions or fragility curves are important tools in designating these 

catastrophe zones. However, lack of data on damage loss is an obstacle in deploying these 

methods. The most accurate and reliable data are the claim payouts and values of insured 

properties. Those values can be used for calculating damage ratios and susceptibility to extreme 

events. Claim payouts are determined by engineers and adjusters from the insurance companies 

after the extreme event. 
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Detailed information regarding the insured properties, such as materials, heights, number 

of floors, age, and location, is critical to evaluate the damage losses. However, it is very difficult 

to collect property information for developing countries since they usually don’t have a 

systematic structure to collect the information. Also, inaccurate and insufficient property 

information hinders the government’s or insurance companies’ ability to plan for extreme 

disasters. Thus, developing fragility curves is used in this study to supplement the limited 

information on damaged properties. 

As shown in Figure 4.1, the orange border indicates the boundary of Busan, and the 

yellow line shows the track of Typhoon Maemi. The damage ratios for each insured property are 

showed in Figure 4.2 with differently sized circles indicating different damage extents.  
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Figure 4.1 Track of Typhoon Maemi 

 

4.3.2 Damage ratio 

This study develops a statistical model to construct fragility curves for wind-induced 

damage. Each curve provides the exceedance probability of the each damage state at a particular 

wind speed. To establish the curves, property damage information caused by Typhoon Maemi is 

utilized. The main purpose of the curves is to provide the probability of certain damage levels as 
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a function of wind speed. The damage ratio is calculated using the claim payout divided by the 

property’s appraised value: 

              
             

                           
 

 

4.3.3 Geographical information system (GIS) based spatial damage distribution 

This study combines the damage ratio (i.e., claim payouts divided by appraised values) 

provided by the insurance company for each insured property with wind speed at each property. 

Wind speed at the location of each property is calculated by ArcGIS using the inverse distance 

weighted (IDW) tool, producing a dataset that includes maximum sustained wind speed and 

direction, as well as gridded data, image data, and GIS shape files—all essential information 

when constructing a wind map in ArcGIS. Figure 4.3 indicates the wind map created by ArcGIS. 

In order to produce the wind map of the damage, the wind speed at each damage property is 

expanded and interpolated using the maximum wind speeds (10 min. sustained) at each wind 

observation station. Different wind speeds in Figure 4.3 are indicated by color (from green to red) 

and contour. Each property’s location (based on the longitude and latitude provided by the 

insurance company) and the extent of damage is marked on the map. 
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Figure 4.2 Spatial distribution of damages 
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Figure 4.3 Wind speed map with spatial distribution of damages 
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4.4 Empirical fragility curves 

This study uses damage data from the insurance company and is limited to the City of 

Busan, South Korea, during Typhoon Maemi. Based on that data, fragility curves are established 

to describe the vulnerability of each property. 

 

4.4.1 Minimum square error (MSE) method 

This study is interested in exploring the relationship between damage to buildings caused 

by typhoons and the corresponding wind speed, in particular, how the probability of exceeding a 

certain damage threshold varies with the maximum wind speed. The study achieves this goal by 

estimating the fragility curves against the wind speed from a dataset of more than 120 

observations of damage ratios and related maximum wind speeds. Following the literature (for 

example, Shinozuka et al., 2000 [49]), this research models the analytical form of fragility curves 

by using the cumulative distribution function of the lognormal distribution and then estimates 

four distinct fragility curves with damage thresholds ranging from low damage to more severe 

lvels. Finally, this study uses two different criteria for the estimation: the first is based on the 

minimum square error (MSE), while the other on the likelihood function. These two approaches 

are described below. 

Assume that this study observes   damage ratios            and related (maximum) 

wind speeds           . These ratios are separated in different groups based on their wind 

speeds. For each group, the fraction of ratios that exceed a given threshold is computed and then 

used as an observation of the fragility curve of interest at that point.  
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All damage ratios are assigned according to their wind speed in the wind interval. The 

wind intervals are 10 – 15 m/s, 15 – 20 m/s, 21 – 25 m/s, 25 – 30 m/s, and above 30 m/s. Each 

wind speed interval has four different damage levels: 0 – 0.003 (damage level I), 0.003 – 0.006 

(damage level II), 0.006 – 0.009 (damage level III), and above 0.009 (damage level IV). For each 

damage state within each wind speed interval, a damage ratio is counted. The percentage of the 

number of damage ratios equal to or larger than each damage state in each wind interval is then 

calculated. The below Table 4.1 and Figure 4.4 shows the results. 

Wind speed interval (m/s) 
10-15 

m/s 

15-20 

m/s 

20-25 

m/s 

25-30 

m/s 

Above 

30 m/s 

Total number of damages 8 50 30 35 3 

Number of damage ratios equal to or 

larger than damage level I 
8 50 30 35 3 

Number of damage ratios equal to or 

larger than damage level II 
6 34 19 26 3 

Number of damage ratios equal to or 

larger than damage level III 
3 18 12 19 2 

Number of damage ratios equal to or 

larger than damage level IV 
3 13 10 14 2 

Percentage of damage ratios  

at damage level I (%) 
100 100 100 100 100 

Percentage of damage ratios  

at damage level II (%) 
75 68 63 74 100 

Percentage of damage ratios  

at damage level III (%) 
38 36 40 54 67 

Percentage of damage ratios  

at damage level IV (%) 
38 26 33 40 67 

Table 4.1 Number of damage ratios and percentage of damage ratios in each different wind speed interval 
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Figure 4.4 Number of damage ratios for each wind speed interval, damage state indicated by color 

For example, the study assigns all damage ratios whose related wind speed is between 15 

and 20 meters per second (m/s) to damage state II. By dividing the number of damage ratios 

equal to or larger than damage state II in the wind speed interval 15 – 20 m/s by the total number 

of damage ratios within the wind speed interval 15 – 20 m/s, the study calculates that 0.68 of 

these ratios are above the threshold for damage state II, 68 % indicating the possibility of 

exceeding damage state II in the wind speed interval. The study can then use 68 % as the 

percentage of damage ratios when calculating the fragility curve for damage state II at an 

average maximum wind speed of 17.5 m/s (that is, the midpoint between 15 and 20 m/s). The 

same method applies to other three curves (damage state I, damage state III, and damage state IV) 

with their respective wind speed interval and probability of exceeding each damage state.  
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Figure 4.5 show the plotting of the exceedance probability of each damage stats in the 

each wind speed interval. 

 

Figure 4.5 Exceedance probability of damage levels in the wind speed intervals 

Following this approach, this study produces   realizations         (with    ) of 

the fragility curve for given wind speeds  ̅   ̅     ̅ . These realizations are estimated by 

finding the lognormal curve that minimizes the MSE with respect to        . Because each 

lognormal curve is univocally identified by two parameters   and  , this amounts to finding the 

values of those parameters that minimize the MSE: 

∑(    ( ̅ )    )
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where     ( ) is the lognormal cumulative distribution function with parameters: 

    ( )   [
ln( )    ( )

 
] 

The resulting algorithm is described in more detail in Table 4.2 below: 

Algorithm: Mean square error (MSE) estimation of fragility curves 

Input: Data: (     )   (     ). 

Damage thresholds:  ̅              ,  ̅damage state      ̅damage state    ,  ̅damage state  V. 

Representative wind speed per group:  ̅   ̅     ̅ . (midpoint values) 

Output:  MSE  MSE. 

For each damage threshold  ̅, do the following: 

1. Assign each damage ratio    to a group based on its wind speed   . 

2. For each group  , compute the fraction    of damage ratios that are above  ̅. 

3. Find the values of  MSE and  MSE that minimize the mean squared error of the 

fragility curve     ( ) from         and at the representative wind speed values 

 ̅   ̅     ̅ . 

4. Plot the fragility curve   MSE   MSE
( )   [

ln( )    ( MSE)

  MSE
], and return  MSE and  MSE. 

Table 4.2 Mean square error (MSE) estimation of fragility curves 

As shown in Figure 4.6 below, the fragility curves calculated using MSE method have 

limitations when it comes to explaining the correlation between curves. First, the curves overlap 

at low wind speeds. At the same time, the fragility curves show the exceedance probability of 

each damage state, except for damage state I, increasing continuously beyond the maximum 
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wind speed of 200 m/s as shown in Figure 4.7. This means that there would be a possibility that 

some properties may not collapse at the wind speed of 200 m/s. 

 

Figure 4.6 Fragility curves simulated by Minimum Square Error (MSE) at wind speed interval 0 – 50 m/s 



 

 
90 

 

Figure 4.7 Fragility curves simulated by Minimum square error (MSE) at wind speed interval 0 – 200 m/s 

 

4.4.2 Maximum likelihood estimation method (MLE) 

Given a family of distributions indexed by some parameters, this study uses maximum 

likelihood estimation (MLE), a method for selecting parameter values under which data are most 

probable. The same damage state intervals used in MSE are used in MLE. A median of each 

damage state interval is selected as the threshold: 0.0015 for damage state I (0 – 0.003), 0.0045 

for damage state II (0.003 – 0.006), 0075 for damage state III (0.006 – 0.009), and 0.01 damage 

state IV (above 0.009). For the purposes of this study, MLE involves choosing the parameters 

that define the lognormal shape of the fragility curve by maximizing the likelihood function 

given the data. To do that, a probability model for the data generation process is specified. In 

particular, assume that, for each damage, the study observes   boolean outcomes         that 

indicate whether the damage is at least moderate or not. Hence, 
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    {
    th damage is at least moderate 

  otherwise.
 

Assume that this study also observes the maximum wind speed (          ) 

associated with each damage. Following Shinozuka et al., 2000 [49], the likelihood function can 

be built as: 

 (   |                   )   ∏[    (  )]
  

 [      (  )]
    

 

 

   

 

where     ( ) is the fragility curve under the lognormal assumption, as previously defined. 

The study estimates each fragility curve by finding the values of the lognormal 

parameters  ML  and  ML that maximize the likelihood function above for the given data 

(     )   (     ). For example, this could be achieved by solving numerically the resulting 

first order conditions: 

 

  
 (   |                   )  

 

  
 (   |                   )       

In practice, the study directly optimizes the likelihood via the Limited-memory Broyden-

Fletcher-Goldfarb-Shanno Algorithm, which is already implemented in R. As with the MSE 

approach, this study repeats this process for each level of damage so as to obtain four different 

fragility curves. Assuming this study observes the damage ratios            together with the 

wind speeds           , the algorithm summarized in Table 4.3 below implements this 

method: 
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Algorithm: Maximum likelihood estimation (MLE) of fragility curves 

Input: Data: (     )   (     ). 

Damage thresholds:  ̅damage state  ,  ̅damage state      ̅damage state    ,  ̅damage state  V. 

Output:  MLE  MLE. 

For each damage threshold  ̅, do the following: 

1. Set      if     ̅ and      if     ̅, for        . 

2. Define the likelihood function  (   |                   ). 

3. Find the values of  MLE and  MLE that optimize the likelihood   via the L-BFGS-B 

under the constraint that   (   ) and for the given data (     )   (     ). 

4. Plot the fragility curve   MLE   MLE
( )   [

ln( )    ( MLE)

  MLE
], and return  MLE and  MLE. 

Table 4.3 Maximum likelihood estimation (MLE) of fragility curves 

Using the above algorithm by Shinozuka et al., 2000 [49], this study simulates and plots 

the fragility curves as shown in Figure 4.8 below. 

We first test Shinozuka's MLE method for fragility curves on simulated data so as to 

assess the validity of our implementation. To generate the synthetic data, we first obtain 

simulated wind speeds that are equally-spaced at plausible intervals. Next, we generate the 

related damages from a linear model with normally distributed errors. Given its simplicity, the 

linear model provides a convenient way to generate damages that increase with wind speed. 

Finally, we rescale the simulated damages so as to obtain damage ratios that are consistent with 

the observed ones. The full procedure is described below: 
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 Compute  ̃               for          so as to obtain simulated wind 

speeds that are equally-spaced at plausible intervals                . 

 Generate the related damages from the linear model  ̃    ̃     , where    is an 

error that follows a standard normal distribution. Hence, for each  , first sample a 

random draw    from a standard normal distribution and then add it to  ̃  to compute 

the related damage  ̃ . 

 Finally, generate the simulated damage ratios by standardizing the simulated damages 

as follows: 

o Compute the standard deviation      of the observed damage ratios (that is, 

the damage ratios from the non-simulated data) and find the smallest damage 

ratio       

o Compute the standard deviation      of the simulated damages  ̃     ̃   and 

find the smallest simulated damage   ̃    

o For each  , generate the  -th simulated damage ratio   ̃  as: 

  ̃  
    

    
 ( ̃     ̃   )           

The normalization in the last step of the procedure above ensures that the simulated 

damage ratios preserve the observed variance of the real damage ratios, which vary from 0 to 1. 

After simulating the data as described above, we classify the simulated damage ratios into four 

damage levels based on the following thresholds: below .005 for Level I, between 0.005 and 

0.015 for Level II, between 0.015 and 0.025 for Level III, and between 0.025 and 0.035 for Level 

IV. For each damage level, we then use Shinozuka's MLE approach to fit a lognormal fragility 

curve to the data ( ̃     )   . The resulting fragility curves capture the simulated data as 

desired and are plotted in Figure 4.8. 
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Finally, we run the same fit using the real wind speeds    and by setting more suitable 

thresholds for the damage ratios. The curves that we fit on the (fully) empirical data are plotted 

in Figures 4.9, 4.10, 4.11, 4.12, and 4.13. 

 

Figure 4.8 Fragility curves simulated according to Shinozuka et al., 2000 method [49] 
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4.5 Discussions 

Fragility curves for Typhoon Maemi 

Typhoon Maemi was the costliest typhoon in the history of South Korea, followed by 

Typhoons Kompas and Bolaven in terms of recorded damage and loss of life. The damage done 

by these three storms was 85.7 % of the total damage and 66 % of the total number of casualties 

from all typhoons in South Korea’s history combined (Kim et al., 2017 [26]). Although these 

three typhoons impacted the entire country, the southern part of the Korean Peninsula was 

especially damaged.  The city of Busan, in particular, suffered 35% of the country’s total damage 

costs and 29% of the total amount of losses caused by Maemi, Kompas, and Bolaven. 

Conducting vulnerability analysis of insured properties according to wind storm damage 

in the city of Busan, this study develops fragility curves for four different damage levels (Level I, 

Level II, Level III, and Level VI). As mentioned earlier, fragility curves provide the probaility of 

reaching or exceeding different damage levels as a function of wind speed. To create those 

curves, the following data was obtained:  

 The value of the insured property  

 The claim payout of the damaged property 

 Wind speeds of Maemi, 2003 at all property locations 

 Definition of damage levels based on wind speed 

The fragility curves follow the likelihood function according to Shinzuka et al.. 2003 as 

written below:  

   ∏  (  ) 
      (  ) 
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 ( ) represents the fragility curve for a given level of damage;    is the wind speed value 

in which   represent the number of damages;    = 1 or 0 depending on whether or not the damage 

ratio exceeds or reaches the state of damage under   ; and N = total number of damage ratios. 

Under the current lognormal assumption,  ( ) takes the following analytical form: 

 ( )    [
   (

 
 )

 
] 

in which   represents the wind speed; and      = standardized normal distribution function. The 

two parameters   and   in the above equation are computed as    and    satisfying the following 

equations to maximize     and hence  : 

     

  
  

    

  
   

The curves show that the probability of each damage level rests at 0, but once each 

damage level meets the threshold of the damage ratio, the exceedance probability as a function of 

the wind speed moves asymptotically toward a probability of 100%. The figures below (Figure 

4.9, 4.10, 4.11, and 4.12) show the exceedance probability of four different damage levels as a 

function of wind speed (wind speed limited to 200 m/s): 

 



 

 
97 

 
Figure 4.9 Fragility curve - Damage level I 

 
Figure 4.10 Fragility curve - Damage level II 
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Figure 4.11 Fragility curve - Damage level III 

 
Figure 4.12 Fragility curve - Damage level IV 
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 Figure 4.13 below shows that the fragility curves from damage state I to damage state IV. 

The curve of damage state I indicates that the probability of at least damage state I (as known as 

the most minor damage) at each wind speed   . Each dot plotted at the top of the horizontal axis 

means    = 1 for exceeding or reaching the state of damage, and each dot plotted at the bottom 

means    = 0 for not exceeding or reaching the state of damage under   . 

 
Figure 4.13 Fragility curves from damage level I to damage level IV 
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Chapter 5 

5 Conclusions 

To effectively plan for extreme events, governments and the insurance industry need 

accurate estimates not only for the return period of storms, but also the vulnerability of 

infrastructure to those storms. This dissertation focuses on the damages related to the surge 

height and wind speed of South Korea’s most severe typhoon, Typhoon Maemi 2003.  t develops 

two new approaches for quantifying natural disaster risk assessment and management. First, 

applying clustered separated peaks-over-threshold (CSPS) to hourly based tidal gauge data, the 

study estimates the return period of total water level for Typhoon Maemi. Second, it uses wind 

speed-induced damage data provided by an insurance company in South Korea to develop 

fragility curves. Ultimately, the exceedance probability of the fragility curves are shown to 

predict the damage levels of properties caused by wind speed. 

 

5.1 Contributions 

In South Korea, much research has been conducted by simulating storm surges based on 

the track of typhoons and other meteorological data such as wind profile, fluid dynamics, and 

atmospheric pressure. However, estimating the return period of storm surges has not been 

investigated, nor has statistical analysis been applied to tidal gauge data. The present study 

addresses that gap in the literature by using tidal gauge data collected at the city of Busan, South 

Korea, during Typhoon Maemi. The storm’s tidal components are separated and their 

relationship with threshold selection, clustering, surge modeling, and seasonal separation 
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analyzed. Those features offer the opportunity to study other aspects of natural disaster risk 

management. The study inputs data on those features into the CSPS developed by Lopeman, 

2015 [37]. But whereas Lopeman [37] used GPD distribution to estimate return period on 

Hurricane Sandy, this study uses a Weibull distribution (with N equal to 50,000 years simulation) 

which proves a better fit with the data on Maemi. Using the Monte Carlo simulation, return 

periods are extrapolated in order to overcome the limited data with regards to time period and 

deployed bootstrapping to generate confidence intervals on return period calculations. The study 

finds that the return period of total water level (211 cm) is 389.11 years with 95% confidence 

interval (342.47 – 476.2 years). The 100 year return period is 198.85 cm and the 95% 

bootstrapping confidence interval is 198.29 – 199.57 cm. 

Previous research regarding windstorm-induces damage focused on variables related to 

particular storm features and possible damage indicators of typhoons. Much of this research used 

hypothetical data in constructing simulations. This study uses a new set of variables such as wind 

speed, threshold, and damage ratios in the form of actual loss data provided by an insurance 

company in South Korea. Applying an exceedance probability approach developed by Shinozuka 

et al. [49], the study constructs fragility curves for Typhoon Maemi.  
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5.2 Future research  

By using historical data and statistical methodology, this two-part study suggests 

practical applications to cope with unexpected natural disasters. The first part focuses on 

predicting return periods of extreme events. While there is existing research on return period for 

hurricanes, no research on return periods currently exist for typhoons in South Korea. Building 

on the various methods and results from Lopeman and Deodatis [33], [34], [35], [36] and other, 

the present study proposes CSPS combined with probability distribution models as a possible 

new approach to estimating return periods. Because CSPS applies to only this one case study in a 

specified region, the method developed may not be applicable to different countries with 

different tidal components. If more cases around the world were collected, a more 

comprehensive statistical analysis would be possible. In particular, generating return periods of 

total water level would be possible where the hourly tidal gauge data is available. Meteorological 

data such as storm track, rainfall, direction, pressure, fluid dynamic, etc., should also be 

considered to better estimate accurate return periods. 

While part one of the study does compare the fit of other distributions such as 

Logmormal, Frechet, Gamma, and GPD, it only uses the Weibull distribution. In the future, 

return periods models combining all possible distributions and comparing the results should be 

studied. Also, threshold selection should be studied more. Although this study does use an 

algorithm to determine threshold selection, more elaborated algorithms for target rate and 

threshold section should be considered in future research.  

Part two of the study focuses on fragility curves and exceedance probability of damage 

levels, but does so only for one typhoon. Therefore, the curves cannot account for all damage 

levels related to wind speed. More case studies are needed. Also needed are curves that combine 
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construction typology and line of business with damage ratios. This two-part study offers two 

models of extreme events in order to highlight the importance of tidal gauge data and damage 

ratios for estimating return periods of storm surges and fragility curves. Because more accurate 

prediction of return period and exceedance probability can help prevent property damage and 

loss of human life, combining these two models should be the goal of future research. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
104 

References 

[1] Lulseged Ayalew and Hiromitsu Yamagishi. The application of GIS-based logistic 

regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, 

Central Japan. Geomorphology, 65(1), 15–31, 2005. 

 

[2] Eric S. Blake, Edward N. Rappaport, and Christopher W. Landsea. The deadliest, 

costliest, and most intense United States tropical cyclones from 1851 to 2006 (and other 

frequently requested hurricane facts). National Oceanic and Atmospheric 

Administration, National Weather Service, National Hurricane Center, Miami, Florida, 

2007. 

 

[3] Esther Bommier. Peaks-Over-Threshold Modelling of Environmental Data. Department 

of Mathsmatics, Uppsala University, 2014. 

 

[4] Jae-Young Chun, Kwang-Ho Lee, Ji-Min Kim, and Do-sam Kim. Inundation Analysis 

on Coastal Zone around Masan Bay by Typhoon Maemi. Journal of Ocean Engineering 

and Technology, 22(3), 8-17, 2008. 

 

[5] Christopher G. Burton. Social vulnerability and hurricane impact modeling. Natural 

Hazards Review, 11(2), 58–68, 2010. 

 

[6] Onelack Choi and Ann Fisher. The impacts of socioeconomic development and climate 

change on severe weather catastrophe losses: Mid-Atlantic Region (MAR) and the US. 

Climatic Change, 58(1), 149–170, 2003. 

 

[7] Stuart Coles. An introduction to statistical modeling of extreme values. Springer, 2001 

 

[8] Baoshan Cui, Chongfang Wang, Wendong Tao, and Zheyuan You. River channel 

network design for drought and flood control: A case study of Xiaoqinghe River basin, 

Jinan City, China. Journal of environmental management, 90(11), 3675–3686, 2009. 

 

[9] J. David Cummins, Christopher M. Lewis, and Richard D. Phillips. Pricing excess-of-

loss reinsurance contracts against cat as trophic loss. University of Chicago Press, 93–

148, 1999. 

 

[10] F.C. Dai, C.F. Lee, and Y.Y. Ngai. Landslide risk assessment and management: An 

overview. Engineering Geology, 64(1), 65–87, 2002 

 

[11] Dakshina G. De Silva, Jamie Brown Kruse, and Yongsheng Wang. Spatial 

dependencies in wind-related housing damage. Natural Hazards, 47(3), 317–330, 2008. 

 

[12] Jason P. Dunion, Christopher W. Landsea, Samuel H. Houson, and Mark D. Powell. A 

reanalysis of the surface winds for Hurricane Donna of 1960. Monthly Weather Review, 

131(9), 2003 



 

 
105 

 

[13] Timothy M. Hall and Adam H. Sobel. On the impact angle of Hurricane Sandy’s New 

Jersey landfall. Geophysical Research Letters, 40(10), 2312–2315, 2013. 

 

[14] Dong-Soo Hur, Gyeong-Seon Yeom, Ji-Min Kim, Do-Sam Kim, and Ki-Sung Bae. 

Storm Surge Characteristics According to the Local Peculiarity in Gyeongnam Coast. 

Journal of Ocean Engineering and Technology, 20(3), 45-53, 2006. 

 

[15] Dong-Soo Hur, Gyeong-Seon Yeom, Ji-Min Kim, Do-Sam Kim, and Ki-Sung Bae. 

Estimation of Storm Surges on the Coast of Busan. Journal of Ocean Engineering and 

Technology, 20(3), 37-44, 2006. 

 

[16] Z. Huang, D.V. Rosowsky, and P.R. Sparks. Hurricane simulation techniques for the 

evaluation of windspeeds and expected insurance losses. Journal of Wind Engineering 

and Industrial Aerodynamic, 89(7), 605–617, 2001. 

 

[17] Yunji Hwang. Stochastic analysis of storm-surge induced infrastructure losses in New 

York City. Ph. D dissertation, Columbia University in the City of New York, 2013. 

 

[18] Intergovernmental Panel on Climate Change (IPCC). Contribution of working group I 

to the fourth assessment report of the intergovernmental panel on Climate change. 

Cambridge University Press, 1-996 2007. 

 

[19] A.C. Khanduri and G.C. Morrow. Vulnerability of buildings to windstorms and 

insurance loss estimation. Journal of Wind Engineering and Industrial Aerodynamics, 

91(4), 455–467, 2003. 

 

[20] Yoon-Koo Kang. Patterns of Water Level Increase by Storm Surge and High Waves on 

Seawall/Quay Wall during Typhoon Maemi. Journal of Ocean Engineering and 

Technology, 19(6), 22-28, 2005. 

 

[21] Barry D. Keim, Robert A. Muller, and Gregory W. Stone. Spatiotemporal patterns and 

return periods of tropical storm and hurricane strikes from Texas to Maine. Journal of 

Climate, 20(14), 3498–3509, 2007. 

 

[22] Hyeon-Jeong Kim and Seung-Won Suh. Improved Hypothetical Typhoon Generation 

Technique for Storm Surge Frequency Analysis on the Southwest Korean Coast. 

Journal of Coastal Research, Special Issue, 85, 516-520, 2018. 

 

[23] Ji-Myong Kim, Kiyoung Son, and Young-Jae Kim. Assessing regional typhoon risk of 

disaster management by clustering typhoon paths. Environment, Development and 

Sustainability, 2018. 

 

[24] J. M. Kim, P. K. Woods, Y. J. Park, and K. Son. Estimating the Texas Windstorm 

Insurance Association (TWIA) claim payout of commercial buildings from Hurricane 

Ike. Natural Hazards, 84, 405-424, 2016 



 

 
106 

 

[25] Ji-Myong Kim, Paul K. Woods, Young Jun Park, Taehui Kim, and Kiyoung Son. 

Predicting hurricane wind damage by claim payout based on Hurricane Ike in Texas. 

Geomatics, Natural Hazards and Risk, 7(5), 1513-1525, 2015. 

 

[26] Ji-Myong Kim, Taehui Kim, and Kiyoung Son. Revealing building vulnerability to 

windstorms through an insurance claim payout prediction model: a case study in South 

Korea. Geomatics, Natural Hazards and Risk, 8(2), 1333-1341, 2017. 

 

[27] Tae-Yun Kim and Kwang-Woo Cho. Forecasting of Sea-level Rise using a Semi-

Empirical Method. Journal of the Korean Society of Marine Environment and Safety, 

19(1), 1-8, 2013. 

 

[28] Korea Hydrographic and Oceanographic Agency. Korea Real Time Database for 

NEAR-GOOS 

 

[29] Hyesun Ku, Sungsu Lee, and Yong-Kyu Lee. Statistical model and characteristics of 

typhoon-induced rainfall around the Korean peninsula. Journal of the Korean Society of 

Hazard Mitigation, 8(5), 45-51, 2008. 

 

[30] Jong-Chan Lee, Jae-Il Kwon, Kwang-Soon Park, and Ki-Cheon Jun. Calculations of 

Storm Surges, Typhoon Maemi. Journal of Korean Society of Coastal and Ocean 

Engineers, 20(1), 93-100, 2008. 

 

[31] Ning Lin, Kerry Emanuel, Michael Oppenheimer, and Erik Vanmarcke. Physically 

based assessment of hurricane surge threat under climate change. Nature Climate 

Change, 2(6), 462–467, 2012. 

 

[32] N. Lin, K. A. Emanuel, J. A. Smith, and E. Vanmarcke. Risk assessment of hurricane 

storm surge for New York City. Journal of Geophysical Research, 115(18), 2010. 

 

[33] Madeleine Lopeman, George Deodatis, and Guillermo Franco. A Critical Comparison 

of Windstorm Vulnerability Models with Application to Extra-Tropical Cyclones in 

Northern Europe. International Conference on Structural Safety and Reliability 

(ICOSSAR), New York, NY, 2013. 

 

[34] M. Lopeman, G. Deodatis, and G. Franco. Clustered Separated Peaksover-threshold 

Simulation—Estimation and uncertainty quantification of Hurricane Sandy’s return 

period. Engineering Mechanics Institute Conference, Stanford, California, 2015. 

 

[35] Madeleine Lopeman, George Deodatis, and Guillermo Franco. Extreme storm surge 

hazard estimation in lower Manhattan. Natural Hazards, 78, 335-391, 2015. 

 

[36] Madeleine Lopeman, George Deodatis, and Guillermo Franco. Storm surge hazard 

estimation on the United States’ Atlantic coast using the clustered separated peaks-



 

 
107 

over-threshold simulation (CSPS) method. International Conference on Risk Analysis, 

Barcelona, Spain, 2015. 

 

[37] Madeleine Lopeman. Extreme Storm Surge Hazard Estimation and Windstorm 

Vulnerability Assessment for Quantitative Risk Analysis. Ph. D dissertation, Columbia 

University in the City of New York, 2015. 

 

[38] National Typhoon Center. Typhoon technical Book. Korea Meteorological 

Administration, National Typhoon Center, 2011. 

 

[39] Jill M. Noel, Andy Maxwell, William J. Platt, and Linda Pace. Effects of Hurricane 

Andrew on cypress (taxodium distichum var. nutans) in south Florida. Journal of Coast 

Research, 21, 184–196, 1994. 

 

[40] J. G. Park, W. S. Jeong, E. B. Kim, and J. S. Kim. A study on possible regional disaster 

prediction for the accompanying high winds in the storm. Asia-Pacific Journal of 

Atmospheric Sciences, 10(1), 306–307, 2011. 

 

[41] J. G. Park, W. S. Jeong, Kim, J. S. Kim, and E. B. Kim. The trend of damage cost 

during Typhoon period affected in the Korean Peninsula. Asian Journal of Atmospheric 

Environment, 5, 152, 2012. 

 

[42] Mark D. Powell and Samuel H. Houston. Surface wind fields of 1995 hurricanes Erin, 

Opal, Luis, Marilyn, and Roxanne at landfall. Monthly Weather Review. 126(5), 1259–

1273, 1998. 

 

[43] Mark D. Powell, Sam H. Houston, Luis R. Amat, and Nirva Morisseau-Leroy. The 

HRD real-time hurricane wind analysis system. Jounal of Wind Engineering and 

Industrial Aerodynamics, 77 and 78, 53–64, 1998. 

 

[44] Mark D. Powell, Shirley Murillo, Peter Dodge, Eric Uhlhorn, John Gamache, Vince 

Cardone, Andrew Cox, Sonia Otero, Nick Carrasco, Bachir Annane, and Russell St. 

Fleur. Reconstruction of Hurricane Katrina’s wind fields for storm surge and wave 

hindcasting. Ocean Engineering, 37(1), 26–36, 2010. 

 

[45] Valentina Radic and Regine Hock. Regionally differentiated contribution of mountain 

glaciers and ice caps to future sea-level rise. Nature Geoscience, 4, 91-94, 2011. 

 

[46] Joao Lima Rego and Chunyan Li. On the importance of the forward speed of hurricanes 

in storm surge forecasting: A numerical study. Geophysical Research Letters, 36(7), 

2009. 

 

[47] Michiel Schaeffer, William Hare, Stefan Rahmstorf, and Martin Vermeer. Long-term 

sea-level rise implied by 1.5°C and 2°C warming levels. Nature Climate Change, 2, 

867-870, 2012. 

 



 

 
108 

[48] H. Shin, W. Lee, G. Byun, J. Kim, K. Jang, and J. Lee. Evaluation of the numerical 

models’ Typhoon track predictability based on the moving speed and direction. Asia-

Pacific Journal of Atmospheric Sciences, 10, 372–373, 2013 

 

[49] Masanobu Shinozuka, M.Q. Feng, Jonghoon Lee, and Toshihiko Naganuma. Statistical 

Analysis of Fragility Curves. Journal of Engineering Mechanics, 126(12), 1224-1231, 

2000. 

 

[50] Alex Stephenson. Harmonic Analysis of Tides, CRAN, 2017 

 

[51] Carl Scarrott and Anna Macdonald. A review of extreme value threshold estimation and 

uncertainty quantification. Statistical journal, 10(1), 33-60, 2012 

 

[52] S. A. Talke, P. Orton, and D. A. Jay. Increasing Storm Tides in New York Harbor, 

1844-2013. Geophysical Research Letters, 2014. 

 

[53] Peter J. Vickery, Peter F. Skerlj, Jason Lin, Lawrence A. Twisdale Jr., Michael A. 

Young, and Francis M. Lavelle. HAZUSMH hurricane model methodology. II: 

Damage and loss estimation. Natural Hazards Review, 7(2), 94–103, 2006. 

 

[54] Pickands. Statistical inference using extreme order statistics. The annuals of statistics, 

3(1), 119-131, 1975 

 

[55] Charles C. Watson Jr. and Mark E. Johnson. Hurricane loss estimation models: 

Opportunities for improving the state of the art. American Meteorological Society, 

85(11), 1713–1726, 2004. 

 

[56] Jong Joo Yoon and Sang Ik Kim. Analysis of Long Period Sea Level Variation on Tidal 

Station around the Korean Peninsula. Journal of Coastal Research, 12(3), 299-305, 

2012.  

 

[57] Chris Zervas. NOAA Technical Report NOS Co-OPS 067: Extreme Water Levels of 

the United States 1893-2010. Technical report, National Oceanic and Atmospheric 

Administration, National Ocean Service, Center for Operational Oceanographic 

Products and Services, Silver Spring, MD, 2013. 

 

[58] Guofang Zhai, Teruki Fukuzono, and Shaburo Ikeda. Multi-attribute evaluation of flood 

management in Japan: A choice experiment approach. Water and Environment Journal, 

21(4), 265–274, 2007.      

 

[59] H. Zhong, P. H. A. J. M. can Gelder, P. J. A. T. M. van Overloop, and W. Wang. 

Application of a fast stochastic storm surge model on estimating the high water level 

frequency in the Lower Rhine Delta. Natural Hazards, 73, 743-759, 2014. 

 


