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ABSTRACT

Machine Learning Methods in Personalized Medicine

Using Electronic Health Records

Peng Wu

The theme of this dissertation focuses on methods for estimating personalized treatment using

machine learning algorithms leveraging information from electronic health records (EHRs). Cur-

rent guidelines for medical decision making largely rely on data from randomized controlled trials

(RCTs) studying average treatment effects. However, RCTs are usually conducted under specific

inclusion/exclusion criteria, they may be inadequate to make individualized treatment decisions

in real-world settings. Large-scale EHR provides opportunities to fulfill the goals of personalized

medicine and learn individualized treatment rules (ITRs) depending on patient-specific character-

istics from real-world patient data. On the other hand, since patients’ electronic health records

(EHRs) document treatment prescriptions in the real world, transferring information in EHRs to

RCTs, if done appropriately, could potentially improve the performance of ITRs, in terms of pre-

cision and generalizability. Furthermore, EHR data domain usually consists text notes or similar

structures, thus topic modeling techniques can be adapted to engineer features.

In the first part of this work, we address challenges with EHRs and propose a machine learning

approach based on matching techniques (referred as M-learning) to estimate optimal ITRs from

EHRs. This new learning method performs matching method instead of inverse probability weight-

ing as commonly used in many existing methods for estimating ITRs to more accurately assess



individuals’ treatment responses to alternative treatments and alleviate confounding. Matching-

based value functions are proposed to compare matched pairs under a unified framework, where

various types of outcomes for measuring treatment response (including continuous, ordinal, and dis-

crete outcomes) can easily be accommodated. We establish the Fisher consistency and convergence

rate of M-learning. Through extensive simulation studies, we show that M-learning outperforms

existing methods when propensity scores are misspecified or when unmeasured confounders are

present in certain scenarios. In the end of this part, we apply M-learning to estimate optimal

personalized second-line treatments for type 2 diabetes patients to achieve better glycemic control

or reduce major complications using EHRs from New York Presbyterian Hospital (NYPH).

In the second part, we propose a new domain adaptation method to learn ITRs in by incorpo-

rating information from EHRs. Unless assuming no unmeasured confounding in EHRs, we cannot

directly learn the optimal ITR from the combined EHR and RCT data. Instead, we first pre-train

“super” features from EHRs that summarize physicians’ treatment decisions and patients’ observed

benefits in the real world, which are likely to be informative of the optimal ITRs. We then augment

the feature space of the RCT and learn the optimal ITRs stratifying by these features using RCT

patients only. We adopt Q-learning and a modified matched-learning algorithm for estimation. We

present theoretical justifications and conduct simulation studies to demonstrate the performance of

our proposed method. Finally, we apply our method to transfer information learned from EHRs of

type 2 diabetes (T2D) patients to improve learning individualized insulin therapies from an RCT.

In the last part of this work, we report M-learning proposed in the first part to learn ITRs using

interpretable features extracted from EHR documentation of medications and ICD diagnoses codes.

We use a latent Dirichlet allocation (LDA) model to extract latent topics and weights as features

for learning ITRs. Our method achieves confounding reduction in observational studies through



matching treated and untreated individuals and improves treatment optimization by augmenting

feature space with clinically meaningful LDA-based features. We apply the method to extract

LDA-based features in EHR data collected at NYPH clinical data warehouse in studying optimal

second-line treatment for T2D patients. We use cross validation to show that ITRs outperforms

uniform treatment strategies (i.e., assigning insulin or another class of oral organic compounds to

all individuals), and including topic modeling features leads to more reduction of post-treatment

complications.
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CHAPTER 1. BACKGROUND AND OVERVIEW 1

Chapter 1

Background and Overview

Medical research is increasingly focusing on personalized treatment for an individual patient, which

will gradually replace “one-size-fits-all” strategy in traditional medical practice. This transition is

partially fueled by the recent advances in modern technologies that provide medical professionals

and researchers with large-scale personal data (e.g. clinical measurements, biomarkers, pre-existing

or developing conditions available in electronic health records). Selection of treatment strategy can

be tailored towards each individual patient according to their person-specific characteristics, which

is an important and beneficial move towards personalization of medical practice. The primary goal

in this work is to merge statistical modeling techniques with machine learning algorithms to discover

optimal individualized treatment rules (ITRs) applicable to various study designs and primary

outcomes, including randomized experiments and observational studies with continuous or discrete

outcomes. We will review how to achieve the goal of personalized medicine by assigning optimized

ITRs to individual patients, existing methods for estimating ITRs, and introduce matching and

propensity score based methods for observational studies. In addition, we will discuss critical

issues of statistical analysis of electronic health records (EHRs), and demonstrate the utility of
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our methods through case studies of a real world RCT data and EHRs extracted from New York

Presbyterian Hospital (NYPH) and Columbia University Medical Center (CUMC). Lastly we will

discuss topic modeling techniques in extracting latent topics in EHR data and engineering features.

1.1 Personalized Medicine and Individualized Treatment Rule

Personalized medicine calls for a paradigm shift from the universal strategy that assigns the same

treatment to all patients affected by a disorder to selecting treatment strategies that optimize in-

dividual patient’s health outcomes according to individual characteristics (Hamburg and Collins,

2010; Collins and Varmus, 2015). Improvements in technologies for collecting personal data, accom-

panied with developments of machine learning and statistical methods to analyze these data, hold

promise to enable healthcare providers to prescribe the right therapy to the right patient at the

right time (Collins and Varmus, 2015; Chakraborty and Moodie, 2013). By treating each patient

with the optimal individualized treatment, patients can potentially gain enhanced clinical benefits,

experience less side effects, and be more adherent to treatments (Chakraborty and Moodie, 2013).

It is of interest to learn effective individualized treatment rules (ITRs) to reflect real world evidence

using data collected in practical clinical settings (e.g., electronic health records, EHRs).

1.2 Q-learning and O-learning Methods

Over the past decade, a body of literature on how to accurately and efficiently estimate optimal

individualized medical treatment using semiparametric methods and machine learning methods is

growing in popularity (Murphy et al., 2007; Lavori and Dawson, 2004; Chakraborty and Moodie,

2013). Previously proposed machine learning approaches including Q-learning (Qian and Murphy,
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2011), Outcome-weighted learning (O-learning) (Zhao et al., 2012) and augmented O-learning (Liu

et al., 2018) provide valuable tools to effectively estimate simple and informative ITRs.

Q-learning was first proposed by Watkins (1989) as a form of reinforcement learning, in which

“Q” represents “quality of action” (Watkins and Dayan, 1992; Watkins, 1989). Murphy, Qian et

al. (2007, 2011) (Murphy et al., 2007; Qian and Murphy, 2011) implemented regression-based Q-

learning to determine optimal ITR in each stage of a sequential multiple assignment randomized

trials (SMARTs). The Q-function related to clinical outcomes is first approximated by a regression

model and then maximized in each stage to select the optimal ITR. The ITR estimated using

this regression-based approach may be sensitive to incorrect model assumptions in the estimation

process, especially in high-dimensional feature space setting. Zhang et al. (2012) (Zhang et al., 2012)

proposed an alternative approach referred as augmented inverse probability weighting (AIPW) to

alleviate model misspecification and improve robustness. The method involves propensity score

estimation which will be reviewed in the next section.

1.3 Methods for Observational Studies

Several methods discussed in the previous section mainly focus on randomized experiments. For

observational studies, since treatments are not assigned randomly, without proper adjustments one

cannot estimate an ITR with causal interpretation. Common practice to adjust for confounding

due to observed covariates in the context of ITR estimation includes inverse probability weighting

by propensity scores (i.e., the conditional probability of being assigned to a treatment given a

subject’s baseline covariates (Rosenbaum and Rubin, 1983)) or with additional augmentation in

double robust estimation (Zhang et al., 2012, 2013). There are several potential limitations with
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inverse probability weighted approaches. First, the approach requires a sophisticated model for

estimating the propensity scores which often depends on some parametric and semiparametric

models, and therefore subject to model misspecification; even if machine learning approach is used

for this estimation such as classification and regression trees (CART), results can be sensitive

to extreme weights and high variability of weights (Lee et al., 2010, 2011; Austin and Stuart,

2015). For example, the weights for observations with a very low propensity of being assigned to

a particular observed treatment might be very unstable (Austin, 2011).Thus sensitivity analysis

related to influential observations is recommended in the context of IPW approaches (Ellis et al.,

2013). Second, it has been empirically observed that estimation of ITRs may be numerically

unstable when treatment assignment is not balanced within some subgroups (Liu et al., 2018).

Third, when the distribution of propensity scores have poor overlap between treatment arms, the

inverse weighting approaches may perform inadequately due to imprecise propensity estimates and

thus sensitive to misspecification (Crump et al., 2009).

Instead, a more robust and practically useful approach is based on matching. Matching has been

shown to be a simple and effective adjustment in various empirical studies especially when model

assumptions such as linearity is not be satisfied (Stuart and Green, 2008). Stuart (2010)(Stuart,

2010) provided a comprehensive review of matching methods for causal inference. In particular, they

reviewed nearest neighborhood matching, subclassification, and full matching. Each of these meth-

ods has their own advantage in different practical applications. For example, ratio matching using

nearest neighbor can ensure multiple good matching individuals from control group (or comparison

treatment group) for an individual treated subject, especially when one treatment assignment is

rare (Smith, 1997). Nearest neighbor matching with replacement is useful when treatment assign-

ment is imbalanced and matching with replacement can reduce bias and avoid the order issue in
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matching the treated units (Stuart, 2010; Dehejia and Wahba, 1999). Full matching, which can be

considered as a complicated form of subclassification, has beneficial effects in optimizing average

similarity between treated and control subjects within each matching set and makes good use of as

many observations as possible (Stuart, 2010; Hansen, 2004; Stuart and Green, 2008).

In addition, propensity scores can also be incorporated to adjust for confounding in observational

studies through matching or combination of weighting, matching and regression, and hence enable

less model-dependent causal inference (Imai and Ratkovic, 2014; Ho et al., 2007). (Antonelli et al.,

2018) proposed a doubly robust matching method by matching on both the propensity score and

the prognostic score (Hansen, 2008) which is defined as the expected outcome for a subject under

control treatment given his or her feature variables. They showed double robustness of this method,

especially when dealing with confounding issues in high-dimensional feature space setting (Antonelli

et al., 2018). Stuart et al. provided several guidance about matching methods for practical use: (1)

one key issue is to determine whether a certain set of features included for matching is appropriate

according to ignorability assumption; (2) similarity measure plays a crucial role in matching and one

can choose similarity measure best suited for a particular application. For instance, Mahalanobis

distance or exact matching within propensity score calipers could be utilized to achieve close balance

on a small set of features (Stuart, 2010), and many data-driven similarity measures have been

proposed to accommodate categorical or ordinal feature variables (Boriah et al., 2008).

Compared to IPW-based methods which rely on whether or not the propensity score is pre-

cisely and accurately estimated (Austin, 2011; Rubin, 2004), matching-based methods require less

model specification and can be nonparametric (Ho et al., 2007). IPW-based methods ensure differ-

ent treatment groups have similar distribution of confounders at the population level, while some

matching methods ensure balanced distribution at subgroup level and provide more flexible tools to
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control the quality of matching important confounders in subgroups or even on individual subjects.

For example, covariates selection, distance metric and measure of covariates balance can be com-

bined to optimize matching (Sekhon and Grieve, 2012). Since our goal is to achieve personalized

medicine and identify optimal ITRs for subjects with a given set of feature variables, exploring

matching methods to balance subgroup-level distributions is more desirable.

In conclusion, matching methods are important tools to achieve covariates balance and adjust-

ing for confounding in observational studies and holds advantages compared to inverse probability

weighting methods in various applications (Stuart, 2010; Rubin, 2004; Austin, 2011; Ho et al.,

2007). For instance, one can identify matching subjects to guarantee numerical stability, especially

when some subgroup rarely experience one particular treatment. All existing methods for estimat-

ing optimal ITR using observational studies involve various forms of inverse probability weighting,

and none leverages the advantage of matching. In this dissertation, we will develop novel methods

for ITR estimation that make use of the flexible and power general framework of matching appli-

cable to both randomized experiment and observational studies. Matched learning may perform

better especially when the treatment assignment is not balanced in some subgroups of RCT or in

observational studies where researchers do not have control over treatment assignment mechanism.

1.4 Case Study: Electronic Health Records (EHR)

In recent years, the use of EHR is continuously growing among clinical researchers with access to

large-scale clinical data warehouses and databases (Weiskopf and Weng, 2013; Weiskopf et al., 2013).

EHR data resources contain massive information which may allow researchers to answer clinical

questions at the subject-level, including the estimation of ITRs (Wang et al., 2016). Notwithstand-
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ing EHR providing massive valuable healthcare information on large patient population, addressing

research problems relying on EHR might face potential challenges since EHR data is not collected

for research oriented studies in the first place, but primarily for billing or other clinical purposes

(Haneuse and Daniels, 2016).

Hripcsak and Albers (2013) summarized several critical issues in clinical research using EHR

data: completeness, accuracy, complexity, and bias (Hripcsak and Albers, 2013). In EHR, missing

data is commonly seen and patients with sufficient complete clinical information may comprise

only a small portion. The incompleteness in EHR data is typically related to selection bias in

healthcare practice, which can be casted as a missing data problem. In order to properly address

the issue, assumptions on the missing data mechanism or selection process should be taken careful

consideration (Haneuse and Daniels, 2016; Little and Rubin, 2014). One simple method to handle

missing data is to run “complete case analysis” by omitting the records with missing information,

which requires strong assumption coined as missing completely at random (MCAR)(Little and

Rubin, 2014) that often does not hold for EHR data. In EHR context, some variables might provide

partial information on the missingness of the others, that is to say, using imputation to handle

missingness is valid under the assumption of missing at random (MAR) (Wells et al., 2013; Rubin

et al., 1995). Accuracy is another important issue for EHR research since EHR is almost never error

free due to complexities in electronic-based data collection, integration and management process

(Hogan and Wagner, 1997). Furthermore, complicated hierarchies of EHR data and temporal

attributes carry different levels of uncertainty which might require both medical domain knowledge

and statistical insights to better characterize patient information in EHR (Hripcsak and Albers,

2013; Tao et al., 2011). In contrast to selection bias, confounding bias has drawn extensive attention

in literature (Pearl, 2009; Bareinboim and Pearl, 2016). The non-experimental feature of EHR data
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collection brings major difficulties to making inferences and drawing valid conclusions (Wang et al.,

2016; Hripcsak et al., 2011). As mentioned in previous section, methods on propensity scores,

subclassification, and matching are emerging to deal with various biases in EHR (Haneuse and

Daniels, 2016). In this dissertation, we will compare effectiveness of several alternative methods

applied to EHR collected at NYPH and CUMC clinical data warehouse (CDW).

1.5 Topic Modeling in EHR data

EHR data contains rich patient level features to build effective ITRs. Some information in EHRs

is documented in the form of text notes or similar structure that enable researchers to use topic

modeling techniques to better extract the information. Topic modeling techniques including latent

semantic analysis (LSA) (Landauer et al., 1998), probabilistic latent semantic analysis (pLSA)

(Hofmann, 1999) have been widely used to represent features in a lower dimensional space. LSA

is a well-known approach that maps count type data of documents to a reduced latent semantic

space based on Singular Value Decomposition (SVD) while pLSA improves LSA in a statistical way

that relies on a mixture decomposition (Hofmann, 1999). Furthermore, latent Dirichlet allocation

(LDA) is proposed as another generative probabilistic model, which overcomes some disadvantages

of pLSA such as generalizability to new documents and overfitting problems (Blei et al., 2003).

The rest of this dissertation is organized as follows. In Chapter 2, we introduce our pro-

posed matching-based learning method (M-learning) to estimate ITR. We show the advantages of

M-learning over two existing methods through simulation studies and apply it in a real world obser-

vational study. In Chapter 3, we propose a new framework in transferring information learned from

observational study in ITR estimation to randomized clinical trial. Moreover, we extend M-learning
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in Chapter 2 integrating with kernel method. In Chapter 4, we present a topic model based feature

extraction approach in two domains in EHR data and apply M-learning for ITR estimation using

the engineered features. We conclude this dissertation with limitations and future directions.
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Chapter 2

Matched Learning for Personalized

Treatment

2.1 Overview

Machine learning approaches provide valuable tools to estimate individualized treatment rules

(ITRs) and dynamic treatment rules (DTRs) due to their powerful computing capabilities. Previ-

ously proposed machine learning approaches include Q-learning (Watkins and Dayan, 1992; Qian

and Murphy, 2011), outcome weighted learning (O-learning) (Zhao et al., 2012), robust O-learning

(AOL) (Kang et al., 2014; Liu et al., 2018) and subgroup identification methods(Fu et al., 2016).

Most of these existing methods focus on analyzing randomized clinical trial (RCT) data. How-

ever, the ITRs estimated from RCTs may be inadequate to assist individualized treatment decision

making in real-world settings due to stringent inclusion/exclusion criteria of RCTs, a lack of gen-

eralizability, and a lack of evidence for long-term outcomes.

Large-scale electronic health records (EHRs) provide new opportunities to learn ITRs using
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real-world patient data. In recent years, access to clinical data warehouses and databases continues

to grow and an increasing trend of using EHRs for scientific research is observed (Weiskopf and

Weng, 2013; Hripcsak and Albers, 2013; Hripcsak et al., 2016). As exclusive evidence generated

from clinical trials is inadequate due to a lack of external validity, EHRs can serve as an important

complement to evidence-based research for personalized medicine. For instance, a broad range

of real-world medication use patterns not captured by RCTs were observed in EHRs (Hripcsak

et al., 2016). Furthermore, as compared to RCTs, using EHRs to learn ITRs has benefits such

as containing information on a large population over relatively longer time frames that reflects

patients’ care management and disease course in more realistic settings.

However, EHRs are not collected for research purposes and conducting research with EHRs

encounters great challenges. Critical issues including confounding bias and selection bias have been

discussed: completeness, accuracy, complexity, and bias (Hripcsak and Albers, 2013; Haneuse,

2016). In the context of estimating ITRs, common practice to adjust for confounding is inverse

probability weighting (IPW) of propensity scores with or without augmentation to achieve double

robustness (Zhang et al., 2012, 2013). The IPW approach needs a sophisticated model to estimate

propensity scores with high accuracy. Machine learning methods are thus proposed to predict

propensity scores (Lee et al., 2010, 2011; Austin and Stuart, 2015), but they may result in extreme

weights with high variability. In addition, the IPW approaches may not adequately balance covari-

ate distributions between treatment groups, especially when the distribution of propensity scores

has less overlap between treatment arms (Crump et al., 2009).

On the other hand, matching has been successfully used to estimate population average treat-

ment effects, including ratio matching (Smith, 1997), nearest neighbor matching (Dehejia and

Wahba, 1999), and full matching (Stuart, 2010; Hansen, 2004). However, to the best of our knowl-



CHAPTER 2. MATCHED LEARNING FOR PERSONALIZED TREATMENT 12

edge, there is no method to leverage advantages of matching to estimate personalized treatment

rules and apply to observational data such as EHRs.

In this chapter, we propose a machine learning approach, namely, Matched Learning (M-

learning), to estimate ITRs through matching treated and untreated subjects with an application

to EHRs. M-learning is a general framework that includes O-learning and AOL as special cases.

M-learning introduces matching-based value functions to match individual treatment responses un-

der alternative treatments and alleviate confounding. Various matching functions can be used to

compare outcomes for matched pairs to accommodate different types of data (continuous, discrete,

or ordinal) under a unified framework. The efficiency of M-learning can be improved by a denoise

procedure and double robust matching. The implementation is based on a matched-pairs weighted

support vector machine (SVM). We establish the Fisher consistency and convergence rate of M-

learning and conduct extensive simulation studies. We show that M-learning outperforms existing

methods when propensity scores are misspecified and in certain scenarios when unmeasured con-

founders are present. Lastly, we tackle challenges of EHRs, including confounding by indication,

confounding bias, and selection bias, and apply M-learning to estimate the optimal second-line

treatments for type 2 diabetes (T2D) patients to achieve better glycemic control or reduce major

complications.

2.2 Methodology

2.2.1 Individualized Treatment Rules (ITRs)

Let Hi denote the pre-treatment covariates and let Ai denote the binary treatment assignment

taking values from {−1, 1}. Let Ri denote the clinical outcome post treatment (reward), and
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assume a larger Ri is more desirable (e.g., symptom reduction). An ITR is a decision rule, D(Hi),

that maps the domain of Hi to the treatment choices in {−1, 1}. The value function associated

with D used to evaluate an ITR is defined as the expected post-treatment outcome by following D

to assign treatments, that is, V (D) = ED(Ri).

For RCTs, the assumption that the potential outcomes are independent of treatment assign-

ment given covariates is satisfied, and the treatment assignment probability, denoted by π(a, h) =

Pr(Ai = a|Hi = h), is known by design. O-learning proceeds by re-expressing the value function as

V (D) = E

[
I(Ai = D(Hi))Ri

π(Ai, Hi)

]
, and then aims to maximize the empirical value function defined as

Vn(D) =
1

n

n∑
i=1

I(Ai = D(Hi))Ri
π(Ai, Hi)

. (2.1)

In an observational study, however, treatment propensities π(Ai, Hi) are unknown and need to be

estimated from data. Using the objective function (2.1) and IPW-based methods in observational

studies suffer from instability and increased variance especially when weights are highly variable. In

addition, IPW-based methods do not directly control the balance of covariate distributions between

treatment groups.

2.2.2 Matched Learning (M-learning)

When comparing different treatment responses, matching methods can be designed to ensure bal-

anced distribution at subgroup level and provide more flexible tools to control the matching quality

of important confounders in subgroups or even on individual subjects. For example, covariates

selection, distance metric and measure of covariates balance can be combined to optimize matching

(Sekhon and Grieve, 2012) and identify matching subjects to guarantee numerical stability, espe-

cially when some subgroup of patients rarely receive one particular treatment. Denote the matched
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set for subject i as Mi, which consists of subjects with opposite treatments but similar covariates

as subject i, where similarity is defined under a suitable distance metric. That is, we let

Mi = {j : Aj = −Ai, d(Hj , Hi) ≤ δi} ,

where d(·, ·) is a metric defined in the covariate space and δi is a pre-specified positive threshold to

determine the size of the matched set which may vary across subjects. For example, if we choose

Mi to be the nearest neighbor, then δi is the minimal distance between subject i and any other

subject with the opposite treatment. In some applications, subjects with empty matching sets may

be excluded. In this chapter, we use nearest neighbor in the matching step of M-learning in the

simulations and application, and study its theoretical properties.

M-learning is developed to maximize a matching-based value function defined in (3.1). The

motivation of M-learning is that when two subjects are matched in confounders or propensity

scores of treatments but are observed to receive opposite treatments, the subject with a larger

clinical outcome should be more likely to have received the optimal treatment among two options.

Based on this rationale, one expects that if j ∈ Mi and Rj ≥ Ri, then the optimal ITR for

subject i should more likely to be Aj , and vice versa. Furthermore, the likelihood is expected to

be greater if the difference between Rj and Ri is larger. Specifically, for any given ITR D, define

the matching-based value function as

Vn(D; g) = n−1
n∑
i=1

|Mi|−1
∑
j∈Mi

{
I(Rj ≥ Ri,D(Hi) = −Ai)

+I(Rj ≤ Ri,D(Hi) = Ai)
}
g(|Rj −Ri|), (2.2)

where |Mi| is the size of Mi and g(·) is a monotonically increasing function specified by users to

weight different pairs of subjects. Typical choices of g(·) can be g(x) = 1 or g(x) = x. Furthermore,
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let D(H) = sign(f(H)) for some ITR decision function f , then the matching-based value function

(3.1) is equivalent to

Vn(f ; g) = n−1
n∑
i=1

|Mi|−1
∑
j∈Mi

I(f(Hi)Aisign(Rj −Ri) ≤ 0)g(|Rj −Ri|).

M-learning maximizes Vn(f ; g), or equivalently, minimizes

n−1
n∑
i=1

|Mi|−1
∑
j∈Mi

I(f(Hi)Aisign(Rj −Ri) ≥ 0)g(|Rj −Ri|), (2.3)

in order to identify the optimal ITR.

The objective function (2.3) can be further expanded by allowingMi = i (match subject i with

himself/herself). If in addition we replace Rj in (2.3) by zero (when Rj > 0 for all subjects) or the

smallest observed outcome when negative outcomes are present and choose g(x) = x, M-learning

reduces to the original O-learning in (Zhao et al., 2012). Similarly, if we replace Rj by subject

i’s predicted outcome estimated from a parametric model including only the main effects of Hi,

M-learning reduces to the single-stage AOL in (Liu et al., 2018). Thus, O-learning and single-stage

AOL are special cases of M-learning, where they compare the observed outcome Ri with a constant

or the predicted outcome given Hi averaged across treatments. In contrast, M-learning compares

observed individual outcomes from two subjects in the matched set, where the treatment assignment

is approximately “random” given Hi but the received treatments are opposite. Thus, M-learning

is more informative in taking account of information on patient’s outcome at the individual level

(Ri and Rj), instead of comparing a patient’s outcome with the predicted outcome averaged over

treatments (as done in O-learning or AOL).

Minimizing the matching-based value function (2.3) is not feasible due to the discontinuity of

the indicator function. Similar to O-learning, we replace the zero-one loss by other surrogate loss

functions. In particular, when using the hinge-loss, the objective function to be optimized is the
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loss function for the weighted support vector machine (SVM) with matched pairs:

Vn,φ(f ; g) = n−1
n∑
i=1

|Mi|−1∑
j∈Mi

φ(−f(Hi)Aisign(Rj −Ri))g(|Rj −Ri|) + λn‖f‖HK
, (2.4)

where φ(x) = (1 − x)+, λn is a tuning parameter and HK is a reproducing kernel Hilbert space

(RKHS) with kernel function K(·, ·). The solution to M-learning is obtained by minimizing

Vn,φ(f ; g). In terms of implementation, the dual problem of (4.5) is a quadratic problem which can

be solved by any off-the-shelf quadratic programming packages.

Taking linear ITR decision rules as an example, we describe solution to the quadratic program-

ming problem using Lagrange multipliers. Assume f in Vn,φ(f ; g) is linear and f(h) = 〈β, h〉+ β0

where 〈·, ·〉 denotes the inner product operator and ‖f‖HK
represents ‖f‖2 in Euclidean space. It

is computationally convenient to re-write (4.5) in an equivalent form as

min
1

2
‖β‖2 + C

n∑
i=1

∑
j∈Mi

|Mi|−1g(|Rj −Ri|)ξij ,

subject to: Aisign(Ri −Rj)(〈β,Hi〉+ β0) ≥ (1− ξij), ξij ≥ 0, ∀i and j ∈Mi,

where ξij is a slack variable that represents misclassification error for the jth subject in the matched

set of the ith subject, C is a cost parameter, and |Mi|−1g(|Rj−Ri|) is the individual-specific weight

in a weighted SVM framework.

The Lagrange primal function follows as

1

2
‖β‖2 + C

n∑
i=1

∑
j∈Mi

|Mi|−1g(|Rj −Ri|)ξij

−
n∑
i=1

∑
j∈Mi

αij{Aisign(Ri −Rj)(HT
i β + β0)− (1− ξij)} −

n∑
i=1

∑
j∈Mi

µijξij ,
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where we minimize with respect to β, β0 and ξij . By taking the respective derivatives and setting

them to zero to obtain,

β =
∑n

i=1

∑
j∈Mi

αijAisign(Ri −Rj)Hi,

0 =
∑n

i=1

∑
j∈Mi

αijAisign(Ri −Rj),

αij = C|Mi|−1g(|Rj −Ri|)− µij ,∀i and j ∈Mi.

By substituting above equations into Lagrangian dual function, we obtain

max
n∑
i=1

∑
j∈Mi

αij −
1

2

n∑
i=1

n∑
i′=1

∑
j∈Mi

∑
j′∈Mi′

αijαi′j′AiAi′sign(Ri −Rj)sign(Ri′ −Rj′)〈Hi, Hi′〉

subject to 0 ≤ αij ≤ C|Mi|−1g(|Rj −Ri|) and
∑n

i=1

∑
j∈Mi

αijAisign(Ri −Rj) = 0. In addition,

subject to Karush-Kuhn-Tucker conditions for ∀i and j ∈Mi (Zhao et al., 2012):

αij [Aisign(Ri −Rj)(HT
i β + β0)− (1− ξij)] = 0,

µijξij = 0,

Aisign(Ri −Rj)(HT
i β + β0)− (1− ξij) ≥ 0,

the solution to the primal and dual problem is optimal. It is straightforward to extend the algorithm

to other kernels (e.g., Gaussian kernel) and obtain a nonparametric ITR based on kernel function

K(·, ·) in the RKHS.

2.2.3 Improved M-Learning

To improve the performance of M-learning, we use a de-noise procedure first reported in (Liu et al.,

2018). We replace Ri by a surrogate residualized outcome R̃i = Ri − s(Hi) in Vn(D; g) for any

measurable function of Hi, denoted as s(Hi). These residualized outcomes remove the main effects

of covariates, which improves efficiency of identifying tailoring variables exhibiting quantitative or
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qualitative interaction with treatment. The residuals can be obtained through a regression model

and the value function to be maximized becomes

Vn(D; g) = n−1
n∑
i=1

|Mi|−1
∑
j∈Mi

{
I(R̃j ≥ R̃i,D(Hi) = −Ai)

+I(R̃j ≤ R̃i,D(Hi) = Ai)
}
g(|R̃j − R̃i|).

As shown in (Liu et al., 2018), by removing the main effects of covariates, more stable weights are

used in the weighted SVM to boost efficiency in estimating ITRs.

Furthermore, prognostic scores can be incorporated into M-learning under the framework of

doubly robust matching estimator (DRME) proposed in (Antonelli et al., 2018). The DRME

uses both propensity scores and prognostic scores to construct a matching set M(i, θ), where

θ = (θ1, θ2)
T denotes parameters for the propensity score and prognostic score models:

π(H) = P (A = 1|H) = u1(H
T θ1),m(H) = E(R|A = −1, H) = u2(H

T θ2). (2.5)

(Antonelli et al., 2018) showed that only one of the two models in (2.5) is required to be correctly

specified to ensure consistency of DRME, which achieves double robustness. Applying DRME to

M-learning, both propensity scores and prognostic scores will be included in the matching step to

create informative matched pairs. The doubly robust M-learning is consistent even if one of the

propensity score model or prognostic model is misspecified, and it will be more efficient than regular

M-learning if both models are correctly specified. Note that M-learning can be applied to RCT

data where only prognostic scores need to be included in the matching step to improve efficiency.
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2.3 Theoretical Properties

In this section, we establish the theoretical properties including Fisher consistency, different choices

of g(x) and convergence rate of of M-learning.

2.3.1 Fisher Consistency

Theorem 2.3.1 Under regularity assumptions including maxni=1 δi → 0, and that the density of H

and E[R|H,A = 1] is continuously differentiable in the support of H, it holds that

Vn(f, g)→a.s V (f, g),

where

V (f ; g) = E
{
Ẽ
[
I(f(H)Asign(R̃−R) ≤ 0)g(|R̃−R|)

∣∣∣Ã = −A, H̃ = H
]}

,

Ẽ is the expectation with respect to (R̃, H̃, Ã), an independent copy of (R,H,A). In addition, define

∆g(r, h) = E

[
g(|R− r|)
|R− r|

(R− r)|A = 1, H = h

]
− E

[
g(|R− r|)
|R− r|

(R− r)|A = −1, H = h

]
,

then for any h in the support of H,

sign(f∗(h)) = sign

∫
r

∆g(r, h)dF (r|H = h),

where F (r|H = h) is the distribution of R = r given H = h and f∗ is the optimal function

minimizing V (f ; g).

Proof of Theorem 2.3.1. After some algebra, we can show that the value function is equal to

E

[
I(f(H) > 0)

{
Ẽ[
g(|R̃−R|)
|R̃−R|

(R̃−R)+|Ã = 1, H̃ = H]

+Ẽ[
g(|R̃−R|)
|R̃−R|

(R̃−R)−|Ã = −1, H̃ = H]

}]
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+E

[
I(f(H) ≤ 0)

{
Ẽ[
g(|R̃−R|)
|R̃−R|

(R̃−R)+|Ã = −1, H̃ = H]

+Ẽ[
g(|R̃−R|)
|R̃−R|

(R̃−R)−|Ã = 1, H̃ = H]

}]
.

Hence, the optimal decision function, denoted by f∗(H), should have the same sign as

E

[{
Ẽ[
g(|R̃−R|)
|R̃−R|

(R̃−R)+|Ã = 1, H̃ = H]

+Ẽ[
g(|R̃−R|)
|R̃−R|

(R̃−R)−|Ã = −1, H̃ = H]

}
|H

]

−E

[{
Ẽ[
g(|R̃−R|)
|R̃−R|

(R̃−R)+|Ã = −1, H̃ = H]

+Ẽ[
g(|R̃−R|)
|R̃−R|

(R̃−R)−|Ã = 1, H̃ = H]

}
|H

]

= E

[
Ẽ[
g(|R̃−R|)
|R̃−R|

(R̃−R)|Ã = 1, H̃ = H]
∣∣∣H]

−E

[
Ẽ[
g(|R̃−R|)
|R̃−R|

(R̃−R)|Ã = −1, H̃ = H]
∣∣∣H] .

In other words, if we define

∆g(r, h) = E

[
g(|R− r|)
|R− r|

(R− r)|A = 1, H = h

]
− E

[
g(|R− r|)
|R− r|

(R− r)|A = −1, H = h

]
,

then for any h in the support of H,

sign(f∗(h)) = sign

∫
r

∆g(r, h)dF (r|H = h),

where F (r|H = h) is the distribution of R = r given H = h. �

Here we make a few remarks.

Remark 1. When g(x) = x and r = 0, i.e. ∆g(r, h) = E(R|A = 1, H = h)−E(R|A = −1, H = h),

Theorem 2.3.1 implies that the optimal treatment rule obtained from M-learning is the same as the

optimal rule from O-learning, and thus M-learning is Fisher consistent for the usual optimal ITR.
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Remark 2. When g(x) = 1, we obtain

∆g(r, h) = E [sign(R− r)|A = 1, H = h]− E [sign(R− r)|A = −1, H = h]

= P (R > r|A = 1, H = h)− P (R < r|A = 1, H = h)

−[P (R > r|A = −1, H = h)− P (R < r|A = −1, H = h)]

= 2[P (R > r|A = 1, H = h)− P (R > r|A = −1, H = h)].

Remark 2 suggests that for subjects with H = h, the optimal rule chooses the treatment with a

higher probability of having a greater outcome than the average outcome across treatments. Such

choice of g(x) ensures robustness against outliers of R. When R is an ordinal or binary random

variable, this choice is especially suitable. For example, consider an ordinal outcome with three

levels, then the optimal rule f∗(h) has a desirable property

sign(f∗(h)) = sign[AUC13(h)−AUC23(h)], (2.6)

where AUCjk(h) is the conditional AUC for comparing R = j with R = k for subjects with H = h.

More generally, the function ∆g(r, h) is similar to creating comparisons based on a reference level

r of the outcome. Therefore, for a particular target value r (e.g., the value under a universal “one-

size-fits-all” treatment assignment, or a clinically meaningful level for an ordinal outcome), one can

construct g(x) so that the weights concentrate on the difference from the reference value r.

Remark 3. Lastly, when applied to observational studies, the condition of no unmeasured con-

founders ensures that the optimal rule estimates the treatment with a higher potential outcome,

since ∆g(r, h) = E(R(1)|H = h) − E(R(−1)|H = h), where R(k) denotes the potential outcome

under treatment k.
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2.3.2 Convergence Rate of M-Learning

In this section, we establish the convergence rate of the risk bound for the estimated decision rule.

We consider the nearest neighborhood matching, HK is the RKHS based on a Gaussian kernel

function with bandwidth σn, and assume R and H are bounded. Furthermore, we need the follow-

ing assumptions:

(A.1) The density of H = h with respect to the dominating measure and E(R|A = a,H = h) are

continuously differentiable in H’s support for a = −1 and 1. Moreover, the density of H is bounded

from below on the support of H, denoted by XH .

(A.2) The probability measure has a geometric noise exponent α > 0 as in Definition 2.3 of (Stein-

wart and Scovel, 2007). That is, if let τH be the distance from any H to the decision boundary

{h : f∗(h) = 0}, it holds

E[|f∗(H)| exp{−τ2H/t}] ≤ ctαd/2, t > 0.

(A.3) There exists γ > 0 and r0 > 0 such that |XH ∩ B(h, r)| ≥ γ|B(h, r)| for any h ∈ XH and

0 < r < r0, where B(h, r) is a ball centered at h with radius r, and |A| denotes the volume of set

A in XH .

Condition (A.1) is necessary to ensure the conistency of approximation in the nearest-neighbor

based matching. Condition (A.2) is commonly assumed for SVMs and a similar condition has

been considered for classification problem (c.f., (Steinwart and Scovel, 2007)) and establishing the

learning rate for ITRs (Zhao et al., 2012). When the decision rule is completely separable, the

exponent α can be as large as possible. The third condition (A.3) is used to obtain the convergence

for the nearest-neighbor estimator (Devroye et al., 2013)
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Theorem 2.3.2 Under the above assumptions and letting σn = λ
1/p(1+α)
n , it holds

V (f∗; g)− V (f̂ ; g) = Op

[
1

√
nλβ1n

+
1

λβ2n

{(mn

n

)1/p
+

√
log n

mn

}
+ λα/(1+α)n

]
,

where β1 = p/4 + (1/2− p/8)d/[(1 +α)], β2 = 1/2p(1 +α) + 1/2, and mn is the size of the nearest

neighbor.

Note that the convergence rate will depend on the dimension, the geometric noise exponent

α and the choice of tuning parameter σn. Moreover, we observe that when λn = n−θ with a

constant θ and the size of nearest-neighbor equals to n2/(p+2), the polynomial convergence rate can

be attained.

Proof of Theorem 2.3.2. For convenience of notation, we use ‖ · ‖n to denote the norm in the

RKHS and omit g in the definition of the loss function, i.e., denote Ln(f ; g) as Ln(f). We use c

to denote a constant that is independent of n in the following proof. The M-learning algorithm

estimates the decision function f as f̂ that minimizes (4.5), which can be rewritten as

Ln(f) ≡ Pn

[∫
I(d(H̃,H) < δn)φ(−f(H)Asign(R̃−R))g(|R̃−R|)dP̃n∫

I(d(H̃,H) < δn)dP̃n

]
+ λn‖f‖2n.

Here, P̃n and P̃ to be used later refer to the measures with respect to an independent copy of

random variables, (R̃, Ã, H̃). We further define

Qn(R,A,H; f) =

∫
I(d(H̃,H) < δn)φ(−f(H)Asign(R̃−R))g(|R̃−R|)dP̃n∫

I(d(H̃,H) < δn)dP̃n

and

Q(R,A,H; f) = Ẽ
[
φ(−f(H)Asign(R̃−R))g(|R̃−R|)

∣∣∣H̃ = H
]
.

Clearly, Ln(f) = PnQn(R,A,H; f) + λn‖f‖2n.
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Let Lφ(f) = E[Q(R,A,H; f)]. From the general property of the weighted hinge-loss as shown

in Theorem 3.2 of (Zhao et al., 2012), we have

V (f∗; g)− V (f̂ ; g) ≤ c
{
Lφ(f̂)− Lφ(f∗)

}
.

Therefore, it is sufficient to obtain a bound for the right-hand side. First, since Lφn(f̂) ≤ Lφn(0),

we obtain λn‖f̂‖2n ≤ 1. Let f0n be the minimizer of Lφ(f) + λn‖f‖2n over f ∈ HK . Therefore,

Lφ(f̂)− Lφ(f∗)

≤ E
[
Q(R,A,H; f̂)

]
− E [Q(R,A,H; f0n)] + E [Q(R,A,H; f0n)]− V (f∗)

≤ −(Pn −P)
[
Q(R,A,H; f̂)−Q(R,A,H; f0n)

]
+Pn

[
Q(R,A,H; f̂)

]
−Pn [Q(R,A,H; f0n)]

+E [Q(R,A,H; f0n)]− V (f∗)

≤ sup
f :‖f‖n≤λ−1/2

n

∣∣∣(Pn −P)Q(R,A,H; f)
∣∣∣

+Pn

[
Q(R,A,H; f̂)−Qn(R,A,H; f̂)

]
−Pn [Q(R,A,H; f0n)−Qn(R,A,H; f0n)]

+Ln(f̂)− λn‖f̂‖2n − Ln(f0n)

+E [Q(R,A,H; f0n)] + λn‖f0n‖2n − V (f∗)

≤ sup
f :‖f‖n≤λ−1/2

n

∣∣∣(Pn −P)Q(R,A,H; f)
∣∣∣ (I)

+ sup
R,A,H

∣∣∣Q(R,A,H; f̂)−Qn(R,A,H; f̂)
∣∣∣ (II)

+ sup
R,A,H

∣∣∣Q(R,A,H; f0n)−Qn(R,A,H; f0n)
∣∣∣ (III)

+E [Q(R,A,H; f0n)] + λn‖f0n‖2n − V (f∗). (IV)

We refer the terms in the right-hand side as (I), (II), (III) and (IV) in turn.

For term (I), we compute the bracket covering number of some finite balls in HK . First, from
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Theorem 3.1 in (Steinwart and Scovel, 2007), the entropy number for the unit ball in HK , denoted

by On, satisfies

logN (ε,On, ‖ · ‖∞) ≤ cσ−(1−p/4)dn ε−p

for a constant c depending on p and d, so it yields

logN[](ε,On, ‖ · ‖L2(P )) ≤ cσ−(1−p/4)dn ε−p.

Thus, we obtain

logN[](ε,
{
f : f ∈ Hσn , ‖f‖n ≤ λ−1/2n )

}
, ‖ · ‖L2(P )) ≤ cσ−(1−p/4)dn ε−p(1/λn)p/2.

Note that Q(R,A,H; f) is Lipschitz continuous with respect to f in the sense that

∣∣∣Q(R,A,H; f1)−Q(R,A,H; f2)
∣∣∣ ≤ c|f1(H)− f2(H)|,

where c is a constant bounding g(|R− R̃|). Therefore, we obtain

logN[](ε,
{
Q(R,A,H; f) : ‖f‖n ≤ λ−1/2n

}
, ‖ · ‖L2(P )) ≤ cσ−(1−p/4)dn ε−p/λp/2n .

According to Theorem 2.14.2 in (Van Der Vaart and Wellner, 1996), we obtain that term (I) is

bounded by

Op(1)

{
n−1/2

∫ c

0

√
1 + logN[](ε,

{
Q(R,A,H; f) : ‖f‖n ≤ λ−1/2n

}
, ‖ · ‖L2(P ))dε

}

= Op(1)n−1/2σ−(1/2−p/8)dn /λp/4n .

For term (II), since ‖f̂‖n ≤ λ
−1/2
n , Theorem 4.48 in (Steinwart and Christmann, 2008), implies

that f̂ is differentiable with derivative bounded by cσ−1n ‖f̂‖n = cσ
−1/2
n λ

−1/2
n . Using the uniform

convergence rate result for nearest-neighbor estimators (Devroye et al., 2013; Jiang, 2017) and

assumptions (A.1)-(A.3), we obtain that term (II) is bounded by

Op(1)(σnλn)−1/2

[(mn

n

)1/p
+

√
p log n

mn

]
.
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The same bound holds for term (III). Finally, the last term is the approximation error as de-

fined in (Steinwart and Christmann, 2008) but with a different definition of the loss function as

Q(R,A,H; f). We can follow exactly the same argument in Theorem 2.7 of (Steinwart and Christ-

mann, 2008) to obtain its upper bound as c(σ−pn λn + σαpn ) for any positive α.

In conclusion, we have shown

Lφ(f̂)− Lφ(f∗)

≤ Op(1)

[
n−1/2

σ
(1/2−p/8)d
n λ

p/4
n

+ (σnλn)−1/2

{(mn

n

)1/p
+

√
log n

mn

}
+ σ−pn λn + σαpn

]
.

By choosing σn = λ
1/p(1+α)
n , we obtain the result in Theorem 2.3.2.

As a remark, the tail probability, P (|V (f∗; g)− V (f̂ ; g)| ≥ t) where t > 0, can also be obtained

under similar arguments. Theorem 2.3.2 provides a stochastic bound for term (I). One can obtain

the bound of the tail probability for this term using the tail bound for empirical processes (Chapter

2.14, (Van Der Vaart and Wellner, 1996)). Then the tail probability, P (|V (f∗; g) − V (f̂ ; g)| ≥ t),

will follow. �

2.4 Simulation Studies

We conducted extensive simulation studies to compare M-learning with Q-learning and single-stage

AOL as improved O-learning (Liu et al., 2018). Data were simulated under an observational study

design where treatment assignment depends on pre-treatment variables H. Simulation settings and

analyses we considered include: (1) No unmeasured confounder and the propensity score model

given H is correctly specified in the analyses; (2) No unmeasured confounder but the propensity

score model is misspecified; and (3) Unmeasured confounders are present and some components of

H are not observed and not included in the analyses.
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In these simulations, one-to-one matching with replacement was used and features were matched

using shortest Euclidean distance function (one nearest-neighbor). The tuning parameters for AOL

and M-learning (including choice of kernel as linear or Gaussian, inverse radius, and cost C) were

selected by three-fold cross validation. The value function corresponding to the estimated optimal

rule was computed on a large independent testing set with a sample size of 10, 000 using empirical

average. Q-learning was fit with a linear model including feature variables and their interaction

with treatment as covariates. We varied sample size of training data from 100 to 1, 000 and repeated

the simulations 100 times.

We first considered continuous responses in two settings:

S1 : R = 2H3 −H4 +A(H1 −H2) + 6sign(H1) +N(0, 1)

and

S2 : R = 1 + 2H1 +H2 + 0.5H3 +A(H2 +H2
1 − 1) + 6sign(H1) +N(0, 1).

Uncorrelated feature variables Hk with standard normal distributions were simulated. Since het-

erogeneity and clustering effects are observed in the real-world patient population (e.g., Figure 2.5

of NYPH EHRs in Appendix A), we considered the distribution of reward outcomes to be clustered

in strata depending on the first feature variable H1. The true optimal treatment decision boundary

is linear in setting S1, and nonlinear in setting S2. The true optimal value is 1.20 in S1 and 2.29

in S2. In the continuous response scenario, g(x) = x was used for M-learning. In setting S1 and

S2, M-learning and doubly robust M-learning by stratifying on prognostic scores (referred to as

“M-learning Stratified” in Figure 2.1 and 2.2) were considered. For the latter, prognostic scores

were obtained using random forest. Prognostic factors used in the matching step were created by

dichotomizing the prognostic scores based on the median split.
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In the first set of simulations, distribution of A depends on H and no unmeasured confounder

is present. Clinical response outcomes were simulated under setting S1 and S2, and the true

propensity model was specified as P (A = 1|H) = expit(1 + 2H1 +H2). In this case, H1 and H2 are

observed confounders. The propensity scores were estimated through a logistic regression model

with treatment as binary outcome and features H1, H2 as linear predictors. On average, 64% of

subjects received an active treatment and 36% received a control treatment. Simulation results are

presented in the top panel of Figure 2.1. For setting S1, Q-learning has the best performance since

the linear function is the true optimal treatment separation boundary. Doubly robust M-learning

performs similarly as Q-learning with larger sample size. It is clear that doubly robust M-learning

improves efficiency. For S2 with a nonlinear boundary, both M-learning and doubly robust M-

learning achieve a higher empirical value than AOL and Q-learning. In this case Q-learning and

AOL lose efficiency because they do not capture the information in prognostic scores, even though

the propensity scores were consistently estimated.

In the second set of simulations, the true propensity score model was specified as P (A = 1|H) =

expit(1 + exp(H2)). The propensity scores were estimated through a logistic regression model with

linear predictors, and thus the model was misspecified. On average, 88% of subjects received

one treatment and 12% received the other. Simulation results are presented in the bottom panel

of Figure 2.1. In both setting S1 and S2, the results suggest that M-learning is more robust to

misspecified propensity model compared to Q-learning and O-learning. The best performance is

achieved by the doubly robust M-learning, where the estimated value function is very close to the

true optimal value with a large sample size. Matching using prognostic scores in doubly robust

M-learning has protected against deteriorated performance when the propensity score model is

misspecified.
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Figure 2.1: Value comparison of four methods with propensity scores correctly specified (top panel) and

misspecified (bottom panel). The numbers at the top of each subfigure are mean values.
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In the third set of simulations, we considered presence of unmeasured confounders. The clinical

outcomes were simulated as

S3 : R = 2H3 −H4 +A(H1 −H2 +X) + 6sign(H1) +N(0, 1)

and

S4 : R = 1 + 2H1 +H2 + 0.5H3 +A(H2 +H2
1 +X − 1) + 6sign(H1) +N(0, 1)

where P (A = 1|H,X) = expit(1 + R(−1) − R(1) + 2X + H1) and X is an unmeasured confounder

(not included in any analysis in any method) and R(−1), R(1) are potential outcomes under each

treatment.

After introducing unmeasured confounding, the true optimal value function is 1.37 in S3 and

2.61 in S4. From Figure 2.2, we see that in S3 with a linear decision boundary, Q-learning performs

the best. Doubly robust M-learning has a higher mean value than M-learning. Matching-based

methods have an advantage over AOL. Specifically, the value function of ITR estimated by AOL

has a large variability, especially when the sample size is small. In S4 with nonlinear decision

boundary, two M-learnings much outperform AOL and Q-learning. In this case, the unmeasured

confounder has a greater impact on AOL and Q-learning than M-learning.

We also examine M-learning with ordinal outcomes and report results in Appendix A.1. For

linear decision boundary, since ordinal outcomes were generated by discretizing a continuous out-

come, M-learning does not give an advantage over Q-learning and AOL. For nonlinear boundary,

M-learning using matching function g(x) = 1 and g(x) = x both achieves a higher value than

Q-learning and AOL.
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(b) Setting S4: unmeasured confounders present

Figure 2.2: Value comparison of four methods in the presence of unmeasured confounders. The numbers

at the top of each subfigure are mean values.

2.5 Applications

We apply various methods to a large clinical data warehouse (CDW) at New York Presbyterian

Hospital (NYPH). NYPH CDW is one of the earliest pioneer CDWs in the United States developed

25 years ago, long before the wide adoption of EHRs and informatics methods. The database

encompasses about 4.5 million patients in the New York City population, making it a useful data

source for research and supports new research initiatives including eMERGE (Gottesman et al.,

2013) and precision medicine initiative. The details of the informatics technology of NYPH CDW

is described in Figure 2.3.

Our research goal is to optimize treatment sequence for T2D patients based on their person-

specific characteristics. Current treatment guideline recommends metformin (MET) as the first

line treatment for T2D patients (Diabetes Control and Complications Trial Research Group, 1993).
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Figure 2.3: Flowchart of EHR data processing procedures

Literature reveals barriers of timely insulin initiation in clinical practice when patients do not

achieve adequate glycemic control by using metformin alone, and the optimal sequence of treatments

for insulin therapy versus second-line oral hypoglycemic agents (OHA) largely remains unknown

(American Diabetes Association, 2014). In this work, we aim to estimate the optimal second-line

treatment for T2D patients who received MET as the first-line treatment using real-world EHRs.

Targeting the second-line treatments (metformin + insulin versus metformin + SFU, where SFU

refers to oral agent sulfonylureas that includes glyburide and glipizide) partially reduces confounding

by indication, where treatment uncertainty is present in real-world practice.

We excluded subjects with extreme baseline HbA1c values (greater than 10%), and used a new-

user cohort design (Ray, 2003). Such design is often used in other studies of EHRs to properly

capture time-varying confounding and early treatment responses. Specifically, the study design is

illustrated in Figure 2.4. Subjects who started a second-line treatment (new users) are anchored at

the treatment initiation (index date), and information before and after index date will be analyzed.
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Figure 2.4: T2D EHR Study Design

Subjects were included in the analyses if they had MET as the first-line treatment, had insulin or

SFU as the second-line treatment, and had at least one observation post index date. The median

baseline period was around one year and the median follow up time post second-line treatment was

about 18 months.

In the following sections 2.5.1 and 2.5.2, we describe details of patient records extraction and

feature extraction.

2.5.1 T2D Patient EHRs

Quality of the information collected in the EHRs is essential for learning treatment strategies

from EHRs. The current design of NYPH CDW uses the cutting-edge informatics technologies

and utilizes a quality control process that helps accuracy of feature extraction/curation (e.g., all

data have been normalized using the medical entities dictionary to facilitate semantic informa-

tion retrieval). Several studies were launched to investigate data quality including completeness,

correctness, concordance, plausibility, and currency (Weiskopf and Weng, 2013; Fort et al., 2014),

where recent EHRs in NYPH CDW were deemed to possess better completeness and accuracy

(Weiskopf and Weng, 2013; Hripcsak et al., 2016). The main domains of the information in EHRs

include demographics, in-patient and out-patient medication prescriptions, ICD-9 diagnosis codes,
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and laboratory tests, which were longitudinally documented in the CDW. In order to be more com-

patible with other observational databases as part of the Observational Health Data Sciences and

Informatics (OHDSI, https://ohdsi.org/), clinical data warehouse at NYPH has been recently

converted to the OMOP Common Data Model version 5.0 to support real-world evidence genera-

tion using scalable observational data. The quality of these EHR data was found to be suitable for

studying treatment pathways of common diseases including T2D (Hripcsak et al., 2016).

Patients aged 18 or older who had at least one T2D diagnosis between 1/1/2008 to 12/31/2012

and were prescribed with metformin were included in the analysis. There were 1,279 patients

who had a second-line treatment in the CDW EHRs during the 5 year window. Medication pre-

scriptions, laboratory tests, demographics, and ICD-9 diagnosis codes from over 50, 000 patients

were extracted. The details of data pre-processing procedures and intermediate datasets are in the

flowchart in Figure 2.3. Figure 2.5 displays a heatmap of representative patients with 17 feature

variables extracted from the CDW EHRs, among which ICD diagnosis and co-medication counts

were derived from over 8, 000 unique variables. To explore patient heterogeneity, features were

standardized and a hierarchical clustering analysis with Euclidean distance clustered patients into

3 groups: (1) a moderately ill group with a slow rate of change in glycemic measures (HbA1c,

glucose) and a regular, frequent documentation pattern; (2) a moderately ill group with slow pro-

gression but a less frequent measurement pattern, less co-morbidity and non-diabetic medications;

and (3) a fast progression group with less measurements. The cluster membership was included as

a feature variable to construct the ITR.

https://ohdsi.org/
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Figure 2.5: Heatmap of 17 extracted feature variables from EHRs of representative T2D patients in NYPH

CDW.
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2.5.2 Handling Challenges of the Analyses of EHRs

Three major challenges need to be addressed when conducting clinical research using EHR data

(Haneuse, 2016). In our context, these issues are: confounding bias due to factors associated

with treatment selection (i.e., insulin versus SFU) and outcome; selection bias due to missing post

second-line treatment outcome (some patients had no follow up HbA1c test records and thus were

not included in the analyses), and presence of missing feature variables. EHRs provide information

that not only reflects patient’s health status but also the healthcare process, shedding lights on

how data are recorded (Hripcsak and Albers, 2013).

To extract such information, descriptive analysis in Figure 2.6 indicates that distinct measure-

ment patterns of glucose tests are present for different treatments. For example, the measurement

process of glucose tests shows a high discriminant power (y-axis, histogram on the side) between

patients who received insulin as a second-line treatment (MET+insulin) and those who received

glyburide or glipizide (MET+SFU); this information is thus useful for creating propensity scores

and matching. The temporal process of measurement time intensity patterns is also highly discrim-

inant (x-axis, histogram on the top) and useful for computing treatment propensities. Figure A.1

shows a similar discriminant power for HbA1c tests.

We constructed feature variables of lab measurement patterns by discretizing a two-dimensional

feature space of lab test values versus gap time between two consecutive measurements in Figure 2.6,

A.1. Indicators of subgroup membership based on low, medium, and high quartiles were created.

For example, the first subgroup indicates subject with a “low glucose value and short measurement

gap”. In addition, we constructed features informative of treatment response such as initial lab test

values and rate of change of lab values before treatment initiation from longitudinal records of four
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Figure 2.6: Glucose values and measurement intensity (Time 0: time at first line treatment (MET)

prescription)
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major tests: HbA1c, glucose, high density lipoprotein (HDL) and low density lipoprotein (LDL).

The initial test values and rates of change were estimated from a linear mixed effects model. These

features are also potential prognostic factors associated with post index date HbA1c levels, and are

used to create prognostic scores.

We constructed patterns of laboratory measurements to handle challenges in the analyses of

EHRs (e.g., confounding bias and selection bias). Extracted features encompass information from

five domains (Figure 2.3): demographics, medication prescription, ICD diagnosis codes, laboratory

test values, and lab test measurement patterns. Propensity scores were estimated using two distinct

logistic regression models for lab measurement pattern features and demographics covariates. The

matching step in M-learning was performed using extracted features from lab test values and

rates of change (HbA1c, glucose, HDL, LDL, BMI), ICD counts, and two propensity scores. In

addition, to improve efficiency and perform doubly robust matching, we also included a prognostic

score estimated from a linear regression model in the matching step. Mahalanobis distance was the

matching similarity measure and one nearest-neighbor was used to select matched pairs. To address

selection bias in missing post-treatment outcomes, we used the IPW method and constructed a

logistic regression model predicting whether a subject had any post treatment lab measure to

compute the weights. To handle incompleteness in features, imputation with chained equations

was used (Buuren and Groothuis-Oudshoorn, 2011).

2.5.3 Analysis Results

Our final EHR data for learning optimal ITR consists of 740 patients, among whom 292 (39%)

received insulin as the second-line treatment while 448 (61%) received SFU. The outcome is the

HbA1c level (%) at 6 month post second-line treatment initiation estimated from a linear mixed
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effect model with subject-specific random intercepts and random slopes. Feature variables for

learning optimal ITR include initial lab test values (HbA1c, glucose, HDL, LDL, BMI) and rate

of change of measurements before index date, demographic variables, the cluster membership esti-

mated from a subset of features (Figure 2.5), counts of other non-glycemic medications and counts

of positive ICD diagnosis codes. Two-fold cross validation was used to estimate the value function

of fitted ITRs.

We divided our cohort to two groups according to the initial HbA1c level (high baseline HbA1c

group: >= 8.5 and low baseline HbA1c group: < 8.5) and analyzed the groups separately to

further reduce patient heterogeneity. We compared the cross-validated value function of doubly

robust M-learning to non-personalized universal rules, Q-learning, and AOL. In the rest of this

section, we refer doubly robust M-learning as M-learning and AOL as O-learning for simplicity.

The results are displayed in Figure 2.7 and Table 2.1. In the low baseline group, there were 380

patients in total (240 received SFU, 140 received insulin). For universal rules, the IPW-adjusted

mean HbA1c level is 7.99 for those treated by SFU and is 8.05 for insulin. M-learning achieves

the best glycemic control among all methods (lowest post-treatment HbA1c at 6 month) with a

median and mean of 7.85 that is much lower than both universal rules. Q-learning does not provide

much improvement compared to universal rules and its estimated post-treatment HbA1c is slightly

smaller than assigning SFU to all. In the high baseline group, there were 152 patients who received

insulin and 208 received SFU. The universal rules for HbA1c level in SFU group is 8.90 and in

insulin group is 9.21. O-learning and M-learning have very similar performance and both reduce

the average post-treatment HbA1c level to 8.57, again much lower than universal rules.

By examining M-learning in all patients using a linear kernel in the low baseline group, we

identified several features that are most informative in determining the optimal treatment: pre-
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treatment rate of change of BMI, initial value of glucose and LDL at the index date, co-medication

count, patient cluster membership and race. These feature variables can be considered by healthcare

practitioner when recommending second-line treatment for T2D patients. There were 263 (69%) of

the 380 patients predicted to have “MET + SFU” as the optimal choice and 117 (31%) with “MET

+ Insulin” as the optimal choice. Of the 240 patients who were prescribed SFU as the second-

line treatment, majority of times (66%) medication was also the predicted optimal treatment in

terms of lowering HbA1c level. In contrast, among the 140 patients who were prescribed insulin,

only 36 (26%) were optimal. In the high baseline group, the important features we identified are

initial value of HDL, age, sex and patient cluster membership. 294 (82%) of the 360 patients were

recommended to “MET + SFU”. Of the 208 patients who were prescribed SFU, 168 (81%) also

had as the predicted optimal treatment. Among the 152 patients who received insulin treatment,

only 26 (17%) were optimal. These results seem to suggest that some patients who received insulin

as the second-line treatment might be better treated with SFU.

However, (Bianchi and Del Prato, 2011) suggested that tight glycemic control need to be studied

carefully in different group of T2D patients to determine the balance of its negative and positive

effect and treatment personalization should be recommended considering multiple factors such as

risk of complications (e.g. cardiovascular events). Given a low rate of insulin predicted to be opti-

mal among patients who were treated with insulin, we explored whether insulin could be prescribed

based on other considerations such as risk of complications in addition to achieving glycemic con-

trol. We estimated the optimal ITR that reduces major complications of T2D measured by three

ICD diagnosis counts including essential hypertension, hyperlipidemia and hypercholesterolemia as

ordinal outcomes (0, 1, 2, 3). M-learning was implemented with g(x) = x. The results are dis-

played in Figure 2.8 and Table 2.2. In the low baseline group, O-learning is moderately better than
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M-learning with an average count of 0.72. Based on M-learning, SFU was predicted to be optimal

for 274 (72%) patients. Among patients who indeed received SFU, 175 (73%) were predicted to

be optimal with regarding to reducing complications while 41 (29%) of the patients who received

insulin were predicted to be optimal. In the high baseline group, M-learning performs the best with

an average value of 0.84. Further investigation shows that insulin was predicted to be the optimal

choice for 234 (65%) patients. In this group, among 152 patients who indeed received insulin, 106

(70%) were predicted to be optimal with regard to reducing complications, while only 80 (38%) of

the patients who received SFU were predicted to be optimal.

In conclusion, the optimal ITRs outperform universal rules in all groups for both outcomes.

M-learning performs better than Q-learning in all cases and better than O-learning in most cases.

In addition, the proportion of patients treated by insulin and with insulin predicted to be optimal

is higher when considering reducing complications as the outcome as compared to controlling for

HbA1c (from 17% to 70% in the high baseline group). This result suggests that the rationale to

prescribe insulin might be also based on concerns of complications especially when the baseline

HbA1c is high (greater than 8.5%).

2.6 Discussion

We have proposed a machine learning approach based on matching, M-learning, to estimate the

optimal ITR from observational data. We show that M-learning is a general approach that includes

O-learning and some of its derivatives as special case and it satisfies Fisher consistency. A general

matching function is proposed to analyze continuous or discrete outcomes where in some cases

the objective function maximizes a certain function of AUC. The choice of g(·) function provides
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Table 2.1: Cross-validated Empirical Value Function for

HbA1c

High Baseline Group
Universal rules: MET + SFU: 8.90, MET + Insulin: 9.21

ITR Method Mean (Std) Median (Q1, Q3)

Q-Learning 8.72 (0.124) 8.70 (8.64, 8.75)
O-learning 8.57 (0.038) 8.57 (8.54, 8.60)
M-Learning 8.57 (0.045) 8.57 (8.55, 8.59)

Low Baseline Group
Universal rules: MET + SFU: 7.99, MET + Insulin: 8.05

ITR Method Mean (Std) Median (Q1, Q3)

Q-Learning 7.94 (0.083) 7.94 (7.88, 7.99)
O-learning 7.87 (0.061) 7.88 (7.83, 7.91)
M-Learning 7.85 (0.068) 7.85 (7.82, 7.90)

Table 2.2: Cross-validated Empirical Value Function for the

Number of Major Complications

High Baseline Group
Universal rules: MET + SFU: 0.94, MET + Insulin: 0.89

ITR Method Mean (Std) Median (Q1, Q3)

Q-Learning 0.88 (0.078) 0.88 (0.83, 0.93)
O-Learning 0.86 (0.050) 0.87 (0.83, 0.90)
M-Learning 0.84 (0.068) 0.83 (0.80, 0.88)

Low Baseline Group
Universal rules: MET + SFU: 0.89, MET + Insulin: 1.00

ITR Method Mean (Std) Median (Q1, Q3)

Q-Learning 0.81 (0.063) 0.81 (0.76, 0.85)
O-Learning 0.72 (0.033) 0.72 (0.70, 0.74)
M-Learning 0.73 (0.032) 0.73 (0.71, 0.75)
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a flexible tool to weight outcome measures: g(x) = 1 gives the most robust estimation which

only concerns with the ranking of outcomes; while other robust choices can prevent sensitivity to

outliers of Ri’s. Moreover, multivariate outcomes can be incorporated in the M-learning framework

by creating suitable g function. The matching function g(x) can be selected from a pool of non-

decreasing functions to estimate the optimal ITRs in a data-driven way, which may lead to a better

post treatment response.

M-learning has a few advantages over O-learning or other IPW-based methods. It does not rely

on the validity of propensity score models and no inverse weighting is involved. Thus instability

can be avoided when there are extremely small weights. The choice ofMi in M-learning is flexible

and can include a large suite of matching tools including nearest neighbor, metrics defined on

a dimension-reduced space determined by propensity scores or prognostic scores, yielding double

robustness. For example, methods based on greedy matching or optimal matching algorithm are

available to be implemented in M-learning. Different calipers can also be specified for individual

subject and hence allow more “personalization”. This strategy will introduce more flexibility but

at the price of some computational complexity.

The choice of matching variables is important in M-learning. The performance of M-learning

may be affected by the presence of high-dimensional features in the matching step. We suggest a

dimension reduction approach to match on a lower dimensional space consisting of propensity score,

prognostic score, and/or cluster membership of patients. We also included some key covariates

as part of the matching criteria. A more general practical guide during the matching step is:

first, choose major confounders according to domain knowledge or preliminary studies to achieve

covariates balance; second, construct several propensity scores to reduce the dimensionality of the

space of matching covariates; and third, include prognostic scores in order to improve robustness
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and efficiency. In the EHR analysis here, we considered this general guideline and constructed

domain-wise propensity scores as well as prognostic scores, and matching was performed based

on these scores. Other variable selection techniques can be considered, for example, to estimate

propensity and prognostic scores by penalized regression.

Single-stage M-learning can be generalized to multi-stage setting by changing the value function

V (D) to a corresponding matching-based value function involving multiple stages and applying the

backward learning methods (Liu et al., 2018). In each stage, M-learning will have the flexibility

to choose different matching function and matched features. Furthermore, an extension to handle

efficacy and safety outcomes (e.g., glycemic control and risk of complications) simultaneously when

learning ITR is desirable. Here we only considered choosing between two treatment options. M-

learning is ready to be generalized to more than two treatments by, for example, adopting one-

versus-one or one-versus-all strategies for multicategory learning (Allwein et al., 2001). Lastly,

our analyses were restricted to EHRs from those who had at least one second-line T2D treatment

documented at a single academic medical center. It would be of interest to examine the performance

of our methods on other EHR databases.
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Chapter 3

Domain Adaption Transfer Learning

3.1 Overview

Personalized medicine based on individualized treatment rules or recommendations (ITRs) has been

proposed as an alternative to population based strategy (Hamburg and Collins, 2010; Collins and

Varmus, 2015). Personalized treatment decision making becomes closer to reality than before, due

to recent advances in modern technologies that produce a large amount of patient-specific data. In

particular, patients’ electronic health records (EHRs), which contain medical history, laboratory

measures, and disease diagnosis for a large number of patients over years, provide rich information

about each patient’s comorbiditiy, treatment history and outcomes in a real-world setting. How to

incorporate such real-world evidence to learn ITRs remains an important and challenging research

question in the modern era of personalized medicine.

Recent development of statistical and machine learning methods for optimizing ITRs aims to

assist healthcare providers to prescribe the right therapy to the right patient at the point of care

(Chakraborty and Moodie, 2013; Collins and Varmus, 2015). Patients can have improved clin-
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ical benefits and adherence to the treatment with the prescribed optimal individualized therapy

(Chakraborty and Moodie, 2013). For healthcare providers and industry, it is of interests to revolu-

tionize personalized treatment by estimating individualized treatment rules (ITRs). These methods

include regression-based approaches that estimate the conditional mean of treatment outcomes or

their contrasts given treatments and patient’s feature variables, to name a few, Q-learning (Qian

and Murphy, 2011; Chakraborty and Moodie, 2013), A-learning (Murphy, 2003) and G-computation

(Lavori and Dawson, 2004; Moodie et al., 2007). Alternatively, one can directly optimize a value

function or its equivalence to learn optimal ITRs. These methods include outcome-weighted learn-

ing (O-learning, (Zhao et al., 2012)), a doubly-robust version of O-learning (Liu et al., 2018) and

more recently, matching-based M-learning (Wu et al., 2019).

Many existing methods are developed in the context of randomized controlled trials (RCTs), for

which the estimated ITRs are known to be consistent. However, although RCTs have high internal

validity, they are usually conducted under specific inclusion/exclusion criteria, which potentially

limits the generalizability of the resulting ITRs to a broader real-world patient population. In fact,

some findings of treatment efficacy in clinical trials may not be directly translated to a general

patient population in the real world clinical setting with the same condition (Haynes, 1999). On

the other hand, real-world data such as EHRs document medical practices in a real-world setting.

Therefore, in order to improve the generalizability of the ITRs, it is desirable to incorporate the

EHR evidence when learning the ITRs in clinical trials. However, due to the presence of unmeasured

confounding in the EHR data and the potential differences between the trial and EHR patients,

how to effectively incorporate the EHR data poses a challenging issue.

In this chapter, we propose a novel method to improve learning ITRs from RCTs borrowing

evidence from EHRs. First, we pre-train two “super” feature mappings from the EHR data: one is
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a probability feature that estimates the propensity of physician’s choice of a given treatment being

the same as the optimal treatment for an EHR patient; the other is a benefit feature that reflects

the observed benefit in the real world under the optimal treatment. Since the prescribed treatments

in the EHR data are likely to be at least beneficial (e.g., better than random assignment) (Wallace

et al., 2016), the “super” features learned in the EHRs can be potentially informative of the optimal

ITRs for real world patients as well as RCT patients. Next, we augment the feature space of the

clinical trial data by these two features when learning final ITRs using only trial patients. To

enhance the signal from super features, we propose stratified learning to estimate the optimal ITRs

separately within each stratum defined by the super features. Particularly, we apply Q-learning

and a modified M-learning to estimate the optimal ITRs in each stratum.

We provide theoretical justification of several advantages of the proposed method. First, since

the final optimal ITRs are estimated using the RCT data, they remain valid due to the virtue

of randomization regardless of whether EHR super features are used. Second, since the super

features are informative of the treatment benefit and optimal ITRs, our learning method, which

is based on stratifying by super features, should yield more precise estimation of ITRs compared

to the methods without these features. Finally, the included super features are learned using the

EHR data so they are very likely to be correlated with the actual optimal treatments for the EHR

population. Thus, even if the trial population may be different from the EHR population, the

optimal ITRs from our method, which are partially directed by the super features, are potentially

more generalizable to the EHR population. As a note, the proposed method falls into a general

framework of transfer learning in machine learning community, which refers to domain adaptation

by allowing different assumptions in different domains with a single task in hand (Pan and Yang,

2010). Reweighting or data transformation methods are commonly used techniques to handle
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challenges in domain adaptation (Zhang et al., 2013). However, our method does not rely on

any weighting or transformation, but instead, extracts most informative features to improve ITR

estimation in RCTs.

We conduct simulation studies to demonstrate performance of the domain adaptation learn-

ing compared to the methods without using information from the EHRs. Lastly, we apply our

method to derive super features from EHRs of type 2 diabetes (T2D) patients to improve learning

individualized insulin therapies from a T2D randomized trial, DURABLE study (Fahrbach et al.,

2008). We show that directly applying ITRs learned from one domain to the other performs even

worse than universal treatment strategy, while proposed domain adaptation leads to improvement

in value function. We conclude the chapter with discussions and future extensions.

3.2 Method to Improve ITRs by Borrowing Evidence from EHRs

3.2.1 Learning the optimal ITR using RCT data

Let X denote the features collected prior to treatment and let A denote the binary treatment

assignment coded as {−1, 1}. Let Ri denote the clinical outcome after treatment. Assume a larger

R corresponds to better treatment outcome (e.g., reduction in symptoms). An ITR is a decision

rule, denoted as D(X), which maps the feature space to the treatment decision space. The value

function associated with D used to evaluate an ITR is defined as the expected post-treatment

outcome by following D to assign treatments, that is, V (D) = ED(R), where ED refers to the

expectation under a probability distribution with A = D(X). When the treatment assignment

mechanism is known (e.g., for a RCT), this expectation can be equivalently expressed as

V (D) = E

[
R

π(A,X)
I{A = D(X)}

]
,
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where π(a, x) is the randomization probability for A = a given X = x. Thus, the goal of learning

the optimal ITR is to find D(·) that maximizes V (D). The corresponding empirical value function

using n i.i.d. observations collected from a RCT can be expressed as

Vn(D) =
1

n

n∑
i=1

I{Ai = D(Xi)}Ri
π(Ai, Xi)

. (3.1)

There are many statistical and machine learning methods developed to estimate the optimal

ITR. They can all be unified into maximizing some surrogates of Vn(D), in which different weights

and loss functions are used to replace R and I(A = D(X)), respectively. For example, in terms of

the surrogate weight for R, Q-learning replaces R by the estimated treatment benefit based on a

regression model (Qian and Murphy, 2011), doubly-robust O-learning replaces R by a doubly-robust

augmented residual of R−E(R|X) (Liu et al., 2018), and M-learning uses R subtract the averaged

outcomes from matched subjects who receive opposite treatment as the weight (Wu et al., 2019).

For the surrogate loss function, both doubly-robust O-learning and M-learning use the hinge-loss

to replace the zero-one loss in Vn(D).

3.2.2 Domain adaptation to improve learning ITRs

Now suppose that in addition to the RCT, we also observe the data from patients in the EHRs, which

include feature variables, received treatments, and outcomes. Our goal is to extract information

from the EHR data to be included in learning the optimal ITR from the trial data. We refer

this information extraction as “domain adaptation” from EHR to the RCT and this framework is

illustrated in Figure 3.1.

Due to the presence of unmeasured confounding in EHRs, we cannot directly learn the optimal

ITR from the combined EHR and RCT data. Instead, we pre-train useful feature mappings from
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EHRs to augment the feature space of RCT. Since physicians’ treatment decisions documented

in the EHRs are likely to carry clinical insights and deemed to be beneficial to a patient among

available options, they are likely closer to being optimal than random assignments (as in RCT).

Thus, features that can summarize physicians’ prescription patterns are informative of the optimal

treatment for a patient. Furthermore, because physicians may prescribe a treatment based on

many considerations including efficacy, risk of complications and cost, their prescription patterns

may not be sufficient when the goal is to learn an ITR to maximize efficacy. The observed benefit

under the optimal treatment in the EHRs captured by an efficacy outcome similar to RCT is also

useful.

Therefore, in the first step of domain adaptation, we capture additional information available

in the EHRs but not in the RCTs (i.e., a physician’s judgment of beneficial treatment and patient’s

observed benefits). We create feature mappings predictive of optimal ITRs and observed benefits

referred to as “super” features. Specifically, we pre-train an ITR to determine each EHR patient’s

optimal treatment by machine learning algorithms described in Section 3.3. The first super feature

is an optimal treatment propensity measure denoted as H1, defined as the probability that a

physician prescribes a particular treatment a0 as the most beneficial choice estimated from all

EHR patients who have received optimal treatments predicted by an algorithm (either predicted

optimal is a0 or −a0). This variable captures the concordance between clinician-based optimal

treatment assignment documented in the EHRs and algorithm-based optimal treatment computed

by the ITRs. To construct this feature, we learn an ITR using a common set of features in EHR and

RCT, say, Xc and methods in Section 3.3. Next, we fit a classification model (e.g., by random forest

classifier or logistic regression) to estimate the probability of a0 being optimal given Xc among the

subset of EHR patients who received optimal treatments as predicted by the ITRs. For information
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transfer, we apply the fitted model to RCT patients and obtain their predicted optimal treatment

propensity measure as the first super feature.

The second super feature is a benefit feature (denoted as H2), which measures EHR patient’s

observed gain or loss on an outcome under the optimal treatment. That is, H2 is the expected

difference in outcome when a subject receives the optimal treatment compared to non-optimal

treatment. To obtain H2, we first fit a random forest regression model for outcomes under optimal

treatment to estimate E(R|A = a∗, Xc) = m1(Xc), using the subset of EHR patients who received

the optimal treatments a∗. Similarly, we fit a model for outcomes under non-optimal treatment,

E(R|A = −a∗, Xc) = m2(Xc), using subjects who received non-optimal treatments. The second

super feature is the predicted benefit H2 = m̂1(Xc)− m̂2(Xc).

In the second step of domain adaptation learning, we estimate the final optimal ITRs from RCT

patients in the augmented feature space (original RCT features and EHR super features H). One

approach is to learn optimal ITRs using the combined features from (H1, H2) and X. However,

directly including super features into the feature set and using the same tuning parameter in the

ITR learning may not distinguish their importance from the original RCT features so may weaken

their effects. To amplify the signals of the super features, we can treat them separately as important

predictive variables through stratification. More specifically, using one of the super features or both

to stratify patients into multiple strata, we learn optimal ITRs separately within each stratum.

The procedure of our method can be summarized in Algorithm 1.

The algorithms (Q-learning and M-learning) to learning the ITRs in RCT and EHR are de-

scribed in Section 3.3.
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Algorithm 1 The Algorithm for Domain Adaptation Learning

Step 0. Use machine learning methods (Q-learning or M-learning) in Section 3.3 to pre-train ITRs

from EHR patients to predict optimal treatment with common features Xc available in RCT and

EHR.

Step 1. Construct H1 and H2 from EHR patients by:

1a. Learn H1 = P (A = a0|Xc) by random forest classification among EHR patients who

received optimal treatments predicted by ITRs obtained in Step 0, where a0 is a pre-specified

treatment.

1b. Learn H2 = E(R|A = a∗, Xc) − E(R|A = −a∗, Xc) using random forest regression

separately for EHR patients who received optimal treatments and non-optimal treatments,

where a∗ denotes the optimal treatment predicted by ITRs in Step 0.

1c. Predict H1, H2 on RCT patients.

Step 2. Learn final ITRs from RCT using algorithms in Section 3.3 by:

1. using all RCT subjects and features (X,H1, H2); OR

2. stratify RCT subjects by H1 and/or H2 and learn separate ITR in each strata.

3.2.3 Justification of domain adaptation learning

Essentially, the proposed domain adaptation learning obtains the optimal ITR as

D∗ = max
D

E

[
R̃I{A = D(X)}

π(A,X)

∣∣∣H] ,
where R̃ is the surrogate outcome for R depending on which learning method is used. Note that

R̃ = E[R|A = 1, X,H] − E[R|A = −1, X,H] in Q-learning, R̃ = R in the original O-learning,

R̃ = R−E[R|X,H] in an augmented doubly-robust O-learning, and it is R(a)−E[R|A = −a,X,H]

in M-learning where a is the treatment actually received. Correspondingly, let D̂∗ be the estimated

ITR using empirical data as given in the chapter. Let D0 be the optimal ITR that maximizes

E[ŘI(A = D(X))/π(A,X)] without super features, where Ř is similar to R̃ except that the former

is calculated without stratifying by H but the latter with, and let D̂0 be its estimator.

Case I. When there is no structural assumption on D(x), since H is a function of X, it is clear
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Figure 3.1: Schematics of Proposed Domain Adaptation from EHR to RCT

that D∗(x) maximizes V (D). Thus, both D∗(x) and D0 yield the same optimal rule. Furthermore,

following the same derivation as in (Liu et al., 2018), we have

V (D̂∗)− V (D∗) ≤ (ER̃2)αan + bn

and

V (D̂0)− V (D∗) ≤ (EŘ2)αan + bn,

where α is a constant depending on the underlying distribution and the dimension of X, and an

and bn are constants depending on n and the geometric noise index in the underlying distribution.

Since R̃ is obtained and centered in each stratum but Ř is not, we expect

ER̃2 ≤ EŘ2,

and we conclude that the domain adaptation ITR, D̂∗ leads to a more efficient value than the ITR
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without H. In addition, when H is more predictive of R, which is likely to hold since H contains

the predictive benefit feature H2 using the EHR data, more efficiency is expected when using the

domain adaptation ITR.

Case II. Suppose that there is a structural assumption on D(x), for instance D(x) is linear when

learning ITRs. Since the domain adaptation ITR is learned in each stratum of H, the class of ITRs

considered in the domain adaptation learning is a stratified (piece-wise) linear rule which is broader

than the non-stratified rules. We thus conclude V (D∗) ≥ V (D0). Furthermore, if the treatment

benefit is more heterogeneous across H, which likely holds because H contains H2, then the gain

of the value from the domain adaptation ITR is even more significant.

Case III. Consider that some structural assumption is placed on the ITRs, for example, linear in

feature variables. We notice that D∗ maximizes

max
D

E
[{
R(1)(X)−R(−1)(X)

}
I{D(X) = 1}

∣∣∣H] ,
where R(1) and R(−1) denote the potential outcomes for treatment 1 and −1 in the trial population,

respectively. In the EHR population, the treatments may act similarly in terms of qualitative effects

(sign of the treatment effect), but the magnitude of the treatment effects (benefits) may not be

as large as what is seen in the trial population which is well managed and performed under ideal

conditions. As such, it is reasonable to assume that the potential outcomes for the EHR population,

denoted by R̃(a), a = 1,−1, satisfy

R(1)(X)−R(−1)(X) =
(
R̃(1) − R̃(−1)

)
g(X), (3.2)

where g(X) > 0 and it reflects the heterogeneous ratios of the treatment effects across subgroups

between the two population. Hence, the domain adaptation optimal rule maximizes

max
D

E
[
g(X)

{
R̃(1) − R̃(−1)

}
I(D(X) = 1)

∣∣∣H] .



CHAPTER 3. DOMAIN ADAPTION TRANSFER LEARNING 56

On the other hand, the EHR super features, H, are highly associated with the treatment effects

in the EHR population. That is, g(X) is highly correlated with H. We conclude that the domain

adaptation optimal rule approximately maximizes

max
D

E
[{
R̃(1) − R̃(−1)

}
I(D(X) = 1)

∣∣∣H] .
In other words, the domain adaptation rule leads to an approximately best linear rule maximizing

the value as if treatment outcomes were obtained from the EHR population. In contrast, without

using EHR features, D0 maximizes

E
[
g(X)

{
R̃(1) − R̃(−1)

}
I{D(X) = 1}

]
.

We note that such a rule is not only driven by the treatment effects in the EHR population, but

also depends on the magnitude of g(X). For example, if some group has a large g(X), the optimal

rule D0 is likely to be the optimal linear rule for this particular group but not generalizable to

others. We conclude that domain adaptation ITRs are more generalizable to the EHR population

than ITR from RCT features alone. In summary, we obtain the following conclusions:

(1) If ITRs are learned nonparametrically, the domain adaptation rule leads to the optimal treat-

ment rule with a more efficient value estimation as compared to the optimal rule without the EHR

super features H.

(2) If ITRs are learned in some restrictive class (e.g., linear rules), the domain adaptation rule

always leads to a higher value than the one without H; moreover, it can be more generalizable to

the EHR population when this population has different magnitudes of treatment effects compared

to the trial population.

Remarks: The above conclusion (1) shows that since H are constructed from common features

in RCT and EHR, if the ITRs are learned nonparametrically from RCTs, we may not expect to
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obtain a higher value function than not using H (especially with a large sample). However, by

carefully constructing H to be predictive of optimal rules and observed outcomes from an external

source (EHRs), the precision of value estimation can be improved. Moreover, from conclusions (2)

and (3), when estimating parametric ITRs, including H will lead to a higher value and precision,

and a greater generalizability (under assumptions).

3.3 Algorithms for Estimating ITRs

In Algorithm 1, the pre-training step 0 and the final stratified learning step 2 require some method

to estimate the optimal ITRs. In this section, we describe two learning algorithms that are imple-

mented in our numeric studies.

The first learning algorithm is Q-learning, one of the popular methods for estimating ITRs. We

first fit a predictive model (e.g., random forest regression) with R as output and A and X as inputs.

Next, the optimal treatment is selected as a∗ = arg max{a=1,−1} f̂(X, a) where f̂ is the predicted

mean of R.

The second learning algorithm is M-learning (Wu et al., 2019) with an improvement we develop

in this work. This choice of algorithm is based on the fact that it is a general method including O-

learning as a special case. In this method, a matching function is introduced to estimate individual

treatment responses under alternative treatment assignment. Furthermore, doubly-robust matching

through using prognostic scores in M-learning can further improve efficiency of ITR estimation and

it is expected to perform better especially when the treatment assignment is imbalanced as often

for observational studies. In the original work (Wu et al., 2019), the matched set can be empty; to

avoid this situation, we modify their approach by introducing a soft-matching method, where all
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possible pairs are used but weighted differently according to their feature similarities or prognostic

scores. More specifically, in matched learning (Wu et al., 2019), the value function is re-expressed

in a matching-based alternative form as

Vn(D;u) = n−1
n∑
i=1

|Mi|−1
∑
j∈Mi

[
I{Rj ≥ Ri,D(Xi) = −Ai}

+I{Rj ≤ Ri,D(Xi) = Ai}
]
u(|Rj −Ri|), (3.3)

where Mi is a matching set for subject i that consists of subjects with similar covariates defined

under a suitable distance metric but opposite treatments. The function u(·) is a monotonically

increasing function to weight different subjects’ outcomes and in our implementation, we choose

u(x) = x. The rationale of (3.3) is that for two subjects who are matched in confounders or

propensity scores of treatments but are observed to receive different treatments, the subject with

a higher outcome should be more likely to have received the optimal treatment. Equivalently, the

objective function can be expressed as

n−1
n∑
i=1

|Mi|−1
∑
j∈Mi

I(f(Xi)Aisign(Rj −Ri) ≤ 0)|Rj −Ri|.

A disadvantage of the above matching function is that only a limited number of pairs of subjects

are used. To improve this limitation while accounting for dissimilarity in confounding variables of

subject pairs measured by a suitable distance (e.g., Euclidean or Mahalanobis distance in the feature

space), a kernel weighted objective function can be defined as

Vn(f) = n−2
n∑
i=1

n∑
j=1

I(Ai 6= Aj)kan{s(Xi, Xj)}

I{f(Xi)Aisign(Rj −Ri) ≥ 0}u(|Rj −Ri|), (3.4)

where kan(·) is a kernel function with bandwidth an. For example, with Gaussian kernel kan{s(Xi, Xj)} =
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exp(−an‖Xi, Xj‖2), where ‖ · ‖ denotes some suitable distance function. Note that in (3.4), subject

pairs with different treatments and more similar feature variables or confounding variables and

larger difference in clinical outcomes will receive higher weights. Kernel M-learning thus extracts

information from all possible pairs but adjusts their contribution to the objective function based

on their similarity in confounding variables and differences in clinical outcomes. To solve the opti-

mization problem based on Vn(f) in (3.4), one can replace the zero-one loss by other surrogate loss

function. Specifically, when replacing by the hinge-loss, the optimization problem is transformed

to a weighted support vector machine (SVM) for kernel-weighted pairs:

Ln(f) = n−2
n∑
i=1

∑
{j:Ai 6=Aj}

φ {−f(Xi)Aisign(Rj −Ri)}

kan{s(Xi, Xj)}u(|Rj −Ri|) + λn‖f‖XK
, (3.5)

where φ(x) = (1 − x)+, λn is a tuning parameter and XK is a reproducing kernel Hilbert

space (RKHS) with kernel function K(·, ·). The dual problem of (3.5) is a quadratic programming

problem which can be solved by quadratic programming packages (e.g., through a weighted SVM

with matched pairs) similar to (Wu et al., 2019).

We describe solution to the quadratic problem of weighted SVM for kernel-weighted pairs in

(3.5) using Lagrange multipliers and take linear ITR decision rules as an example. Assume f is

linear in Vn(f) and f(x) = 〈β, x〉 + β0 where 〈·, ·〉 denotes the inner product operator and ‖f‖XK

represents ‖f‖2 in Euclidean space. Equivalently, it is convenient to re-write (5) as

min
1

2
‖β‖2 + C

n∑
i=1

∑
{j:Ai 6=Aj}

kan{s(Xi, Xj)}u(|Rj −Ri|)ξij ,

subject to: Aisign(Ri −Rj)(〈β,Xi〉+ β0) ≥ (1− ξij), ξij ≥ 0,∀i and j ∈ {j : Ai 6= Aj},
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where C is a “cost” parameter, ξij is a slack variable that denotes a small portion of misclassification

error for the jth subject which is matched with the ith subject and kan{s(Xi, Xj)}u(|Rj − Ri|) is

the sample weight in a SVM framework (Wu et al., 2019).

The Lagrange primal function is

1

2
‖β‖2 + C

n∑
i=1

∑
{j:Ai 6=Aj}

kan{s(Xi, Xj)}u(|Rj −Ri|)ξij

−
n∑
i=1

∑
{j:Ai 6=Aj}

αij{Aisign(Ri −Rj)(XT
i β + β0)− (1− ξij)} −

n∑
i=1

∑
{j:Ai 6=Aj}

µijξij

where we minimize with respect to β, β0 and ξij . By taking the respective derivatives and setting

them to zero to obtain,

β =
∑n

i=1

∑
{j:Ai 6=Aj} αijAisign(Ri −Rj)Xi,

0 =
∑n

i=1

∑
{j:Ai 6=Aj} αijAisign(Ri −Rj),

αij = Ckan{s(Xi, Xj)}u(|Rj −Ri|)− µij , ∀i and j ∈ {j : Ai 6= Aj}.

By substituting above equations into Lagrangian dual function, we obtain

max

n∑
i=1

∑
{j:Ai 6=Aj}

αij−
1

2

n∑
i=1

n∑
i′=1

∑
{j:Ai 6=Aj}

∑
{j′:Ai′ 6=Aj′}

αijαi′j′AiAi′sign(Ri−Rj)sign(Ri′−Rj′)〈Xi, Xi′〉

subject to 0 ≤ αij ≤ Ckan{s(Xi, Xj)}u(|Rj − Ri|) and
∑n

i=1

∑
{j:Ai 6=Aj} αijAisign(Ri − Rj) = 0.

In addition, subject to Karush-Kuhn-Tucker conditions for ∀i and j ∈ {j : Ai 6= Aj} (Zhao et al.,

2012): 

αij [Aisign(Ri −Rj)(XT
i β + β0)− (1− ξij)] = 0,

µijξij = 0,

Aisign(Ri −Rj)(XT
i β + β0)− (1− ξij) ≥ 0,
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the solution to the primal and dual problem is optimal. It is not difficult to extend the solution

using other kernels (e.g., Gaussian kernel) and obtain a nonparametric ITR decision rule based on

kernel function K(·, ·) in the RKHS.

3.4 Simulation Studies

In this section, we generated two separate domains of data source to mimic a scenario involving

data from both an RCT and EHR. To accommodate treatment benefit heterogeneity across patient

populations observed in real-world data, we considered the underlying true optimal ITR with a

piece-wise linear tree structure. Specifically, outcome data were simulated as

C1 : R = η(X) + φ(X) ∗A+ ε, ε ∼ N(0, 0.25),

where φ(X) = 0.5I(X1 +X2 > 0)− 0.5I(X1 +X2 <= 0)[1 + I(X2 <= −0.5)] +X2
3 −X2

2 , feature

variables Xk were generated from a standard normal distribution, and η(X) = X1 − 0.5X2. Here,

η(X) is the main effect, and the sign of φ(X) defines the true optimal ITR. The true treatment

propensity model in the observational study was specified as P (A = 1|X) = expit(1 + 2X1 + X2)

and the treatment assignment probability for RCT was 0.5.

To accommodate heterogeneity between RCT and EHR patients and unobserved tailoring vari-

able, we considered two scenarios:

(i) All features are observed but X1 has a different distribution in RCT where X1 is restricted to

[−0.4, 0.4];

(ii) Same as (i) but with an additional feature variable X3 as an unobserved tailoring.

Scenarios (i) and (ii) mimic randomized trials where subjects are recruited from subpopulations un-

der certain restrictive inclusion criteria, while the EHR data represent the more general real-world
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patient population.

We compared four strategies of learning ITRs, one using RCT information alone and three

domain adaptation learning:

(S1) Using RCT data and RCT features only;

(S2) Augment the RCT feature set by EHR super features H1, H2 (section 2.2);

(S3) Include H1 in the feature set and stratify by H2;

(S4) Include H2 in the feature set and stratify by H1.

The super feature H1 was estimated from a random forest classification model and H2 from

a random forest regression model. To speed up computation, the tuning parameter an in kernel

M-learning was chosen so that the matched pairs with distance less than an was fixed to be a

proportion of pairs (e.g., 25%) (Liu et al., 2017). In S3, we stratified the training dataset and

testing set based on a median split of the average predicted benefit H2 and included H1 as an extra

feature variable in learning ITR. Similarly, in S4, we stratified the data by the predicted optimal

probability H1 (median split) and included H2 as an additional feature. We considered stratifying

by both H1 and H2 in a simulation in Appendix B.

Q-learning and kernel M-learning were performed under each strategy. In Q-learning, linear

regression was used to fit the linear rule and random forest regression was used to fit the nonpara-

metric rule. In M-learning, weighted SVM with a linear kernel or Gaussian kernel was used. The

tuning parameters for the latter (e.g., cost parameter, bandwidth for Gaussian kernel) were selected

by two-fold cross validation. The value function of the estimated optimal rule was computed on a

large independent testing set (sample size of 10, 000) generated from the general population (EHR)

without restricting X1 or restricted population (RCT) while other procedures remain the same.

We repeated the simulations 100 times.
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Simulation results for M-learning with fitted nonparametric ITRs evaluated on both general

(red) and restricted testing population (blue) are summarized in Figure 3.2. The optimal empirical

value function is 1.48. When testing on the general population, adding super features directly

reduces variability in scenario (i) and also improves value to 1.26 from the original value of 1.10.

Domain adaptation by stratification also performs better than without considering super features

in both (i) and (ii), which is consistent with our theoretical justification given in Section 3.2.3 (Case

I). When testing on the restricted distribution (RCT), adding super features directly achieves the

highest mean value in both scenarios (i) and (ii) (Figure 2a and 2b). The value functions evaluated

on the general population are lower than the restricted population, demonstrating that optimal rule

fitted from the restricted RCT population may not achieve the same effect in the general population.

However, the difference between populations is smaller for the domain adaptation rules, showing

that they may be more generalizable.

In another set of analyses, we fitted linear rules to scenarios (i) and (ii), which are misspecified in

these settings since the true underlying optimal decision function has a piece-wise linear structure.

The results are summarized in Figure 3.2c and 3.2d. Both stratification methods lead to a large

improvement in scenario (i), demonstrating our theoretical justification in Section 3.2.3 (Case

II). Furthermore, domain adaptation rules reach a similar value on the general testing (EHR)

population and restricted (RCT) population. Thus, we show that even though domain adaptation

rules are fitted from RCT population, they behave as if learned from the general population with a

better generalizability. This is consistent with our theoretical justification that domain adaptation

learning is more generalizable due to that super features are highly correlated with the optimal

EHR rules (Section 3.2.3, Case III). The results for Q-learning show similar trends (Appendix B.1).

Additional simulation results for kernel M-learning under presence of unmeasured confounders are
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presented in Appendix B.2.
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(a) Scenario (i), nonparametric rule
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(b) Scenario (ii), nonparametric rule
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(c) Scenario (i), linear rule
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(d) Scenario (ii), linear rule

Figure 3.2: Simulation Comparisons for M-learning (evaluated on independent testing sets gen-

erated from general or restricted population; scenario (i) has no latent tailoring variables while

scenario (ii) has a latent tailoring variable not used in learning)

To summarize, domain adaptation learning assisted by EHR super features (by directly includ-

ing H or stratifying by H) improves performance of ITR estimation (a higher value or a smaller
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variability). The improvement is observed when evaluated both on the general population and re-

stricted population. The difference of value between populations is smaller with domain adaptation

than without. The simulations suggest that the information gained from EHR may be transferred

to ITR estimation on the RCT data.

3.5 Applications

3.5.1 Motivating Studies

Our research goal is to optimize insulin therapy for T2D patients based on their individual char-

acteristics from RCT data assisted by real-world clinical practices documented in the EHRs. A

randomized controlled trial, DURABLE, was conducted to compare insulin lispro mix 75/25 (fast-

acting medication) versus insulin glargine (Fahrbach et al., 2008). Over 2, 000 patients were enrolled

in this study from 11 countries between 2005 and 2007. The study was designed to compare safety

and efficacy of two insulin types with a 6-month initiation phase. There were 965 patients ran-

domized to lispro mix and 980 patients to insulin glargine. The primary outcome was hemoglobin

A1C (HbA1c) reduction at the end of study (1 year post treatment) and the enrolled patients had

a median baseline HbA1C of 8.8% (Fahrbach et al., 2008).

In recent years, the use of EHRs is continuously growing among clinical researchers with ac-

cess to large-scale clinical data warehouses and databases (Weiskopf and Weng, 2013). and the

EHR warehouses contain massive information that can be used to assist researchers with medical

decision making (Weiskopf and Weng, 2013). For example, EHRs were used to construct ITRs

from real-world patients (Wang et al., 2016). In this chapter, we extracted EHRs from T2D pa-

tients at New York Presbyterian Hospital (NYPH) clinical data warehouse (CDW). The CDW has
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implemented a well-defined quality control process and studies were launched to investigate data

quality including completeness, correctness, concordance, plausibility, and currency (Weiskopf and

Weng, 2013). Recent EHRs in NYPH CDW were used to learn treatment pathways of various

common diseases including T2D (Hripcsak et al., 2016). The main information contained in the

CDW includes demographics, in-patient and out-patient medication prescriptions, ICD diagnosis

codes and laboratory tests, which are longitudinally documented (Wu et al., 2019).

Subjects were included in the EHR analysis if they had insulin aspart or insulin glargine, and

had at least one observation during one year follow up period post insulin initiation. Literature

reveals insulin aspart and insulin lispro are two comparable rapid-acting analogs with similar profile

which have a shorter duration of action, while insulin glargine is a long-acting medication (Plank

et al., 2002; Raja-Khan et al., 2007). In the EHR data, there were 1, 741 T2D patients on long-

acting insulin glargine and 1, 016 on fast-acting insulin aspart. In domain adaptation, we aim to

borrow information from super features on the optimal treatment strategies between two treatments

(insulin aspart vs. insulin glargine) learned from EHR patients and apply to RCT patients to

improve estimation of ITRs. The RCT data are the primary source for learning ITRs to maintain

consistency of the optimal rule due to the virtue of randomization, while EHRs are auxiliary

information to improve efficiency and accuracy of the ITR learning.

3.5.2 Analysis Results

We applied four strategies S1 - S4 as examined by simulations. Our goal was to estimate an

optimal ITR to select the best second-line T2D treatment (lispro mix vs. insulin glargine). The

outcome measure was reduction in HbA1c level 12 months post insulin initiation. Baseline features

extracted from EHRs include age, gender, race, baseline value and rate of change of HbA1c, glucose,
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SBP, DBP, and BMI estimated from a linear mixed effects model. When creating super features

from the EHR, we used inverse probability weighting (IPW) to adjust for missing outcomes. The

weights were obtained by a logistic regression predicting whether a subject had any post insulin

treatment HbA1c measure. For kernel M-learning, baseline and rate of change of lab test values

and demographics variables were used in creating the matching set.

To explore information available in features from two data sources, in Figure 3.3 we present

the t-Distributed Stochastic Neighbor Embedding (t-SNE) to visualize the feature space. The left

panel shows two dimensional features embedded from t-SNE for EHR patients. The embedded

features show a large overlap between the individuals who received different treatments in both

dimensions. Higher dimensional t-SNE figures suggest similar overlap. Therefore, most subjects

in the EHR can find matched neighbors based on their feature variables for M-learning and few

extreme subjects are present. There is small subgroup of patients who received glargine clustered

in the bottom of the figure. Correctly learning ITRs for these subjects will be useful in information

transfer. The right panel shows two-dimensional features embedded for RCT dataset, labeled by

the median split of prognostic scores estimated from a linear regression model fitted under insulin

glargine group. The red dots represent subjects in high prognostic score group (larger than median)

while blue stars represent subjects in low prognostic score group. Although there is some overlap,

two groups clearly separate into two centers. This suggests that RCT features have some power

in predicting prognostic scores and matching on prognostic scores or include them in the learning

step of ITR estimation could improve efficiency.

When pre-training super features on the EHRs, Q-learning was fitted by random forest regres-

sion while kernel M-learning was performed using weighted SVM and tuning parameters (including

choice of kernel as linear or Gaussian) were chosen from the whole sample. In the next step, we
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Figure 3.3: t-SNE Plot for Features Extracted from CUMC EHRs and DURABLE trial

trained random forest models with inverse propensity weighting on the subgroup of patients who

received the optimal or non-optimal treatment assignment according to the estimated ITRs. The

features included in the models were common subset of baseline features in EHR and RCT cohort

including baseline HbA1c, glucose, SBP, DBP and BMI. Furthermore, we used the trained models

to predict two EHR-defined super features on each RCT subject: predicted probability of lispro

mix being optimal for an individual (H1) and predicted benefit under the optimal treatment (H2).

To shed light on the available information from the EHR-derived super features, Figure 3.4

displays t-SNE embedding of RCT features labeled by dichotomized EHR super features. In the

top panel, subjects cluster into two groups based on the dichotomized optimal benefit (H2) and

optimal probability (H1) features, suggesting likely information gain in estimating ITRs if stratified

by these features. In the lower left panel, embedded RCT features can slightly separate HbA1c

reduction as the treatment outcome. On the lower right panel, adding the EHR-derived probability
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feature (H1), more subjects are further separated in terms of treatment outcome, which suggests

optimal treatment probabilities are informative (“high, optimal” represents RCT patients who

received the EHR-predicted optimal treatment and had high HbA1c reduction; “low, non-optimal”

represents RCT patients who received the EHR-predicted non-optimal treatment and had low

HbA1c reduction).

There were 18 baseline covariates in the RCT cohort along with EHR super features included

to estimate ITRs from 1, 945 patients in the RCT. All covariates were standardized before fitting

the model and the empirical value function of A1c reduction was estimated by 100 times of 3-fold

cross-validation. In strategy S2, Q-learning included super features as additional features and M-

learning included them in matching in addition to a prognostic score. In S3 and S4, the RCT

sample was stratified by one of the two super features and the other was included in the learning

or matching step.

The results are displayed in Table B.1 and Figure 3.5. For the non-personalized universal rules,

HbA1c reduction is 1.827 in those assigned with lispro and 1.672 for glargine. Q-learning does

not provide much improvement compared to the universal rule of lispro and directly incorporating

super features barely helps. In S3 when stratifying by benefit feature, Q-learning tends to have

a higher empirical value but also much increased variance. In S4 stratifying by probability, Q-

learning has a higher value. Kernel M-learning achieves a more significant A1c reduction compared

to Q-learning when including super features directly with a mean value function of 1.836. In

M-learning, both stratification methods (S3 and S4) further improve the mean value function. In

particular, stratifying by probability provides a large improvement with a mean value of 1.849. This

suggests that incorporating EHR-derived super features transfer some useful qualitative information

(optimal treatment probability) to improve performance of ITR estimation in the RCT data source.
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Figure 3.4: t-SNE Plot for Features of a DURABLE trial

The increased variability of value function stratifying by probability is partially due to a higher

within-group variability for subgroups defined by probability than by benefit for several important

covariates (e.g. baseline HbA1c, baseline glucose).
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Furthermore, we compared our results with applying ITRs learned from EHR directly on the

RCT data. In Q-learning, this strategy is worse than the universal rule of assigning all to insulin

glargine. In M-learning, the estimated value function was only around 1.7, which is between the

means of two universal rules.
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Figure 3.5: Empirical Value Function of A1c Reduction in DURABLE Trial with 100 3-fold Cross-

validations

Table 3.1: HbA1c Reduction Comparing domain adaptation Learnings on DURABLE Trial (100

repetitions of 3-fold cross-validation)

One-Size-Fits-All: Lispro: 1.827, Glargine: 1.672

Q-Learning Kernel M-Learning
Strategy∗ Mean (Std) Median Mean (Std) Median

S1 1.828 (0.002) 1.827 1.831 (0.004) 1.830
S2 1.828 (0.002) 1.827 1.836 (0.006) 1.834
S3 1.835 (0.010) 1.832 1.840 (0.008) 1.838
S4 1.830 (0.009) 1.832 1.849 (0.011) 1.849

∗: S1: RCT features only; S2: Augment RCT feature set by two EHR data-derived super features H1, H2; S3: Include
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H1 in the feature set and stratify by H2; S4: Include H2 in the feature set and stratify by H1.

In conclusion, domain adaptation learning contributes to transfer informative feature variables

extracted from EHR domain to RCT domain. Among two super features, stratifying by the qualita-

tive probability feature and including the benefit feature in the covariate set improves performance

more than stratifying by the benefit feature. In contrast, we demonstrated that direct applying

fitted ITRs from EHR on RCT does not necessarily lead to a better value function.

3.6 Discussion

In this chapter, we propose domain adaptation learning to transfer information from observational

studies to randomized experiments. In the framework, super features are pre-trained from EHR

database to carry information and achieve domain adaptation to randomized trials. The probability

feature is shown to be more robust than the benefit feature on the real-world EHRs, since it is

more difficult to estimate benefit of the optimal treatment than assessing direction of treatments

in subgroups. To obtain an efficient benefit feature, other approaches for estimating the contrast

function can also be used (Tian et al., 2014). To further improve performance of domain adaptation,

one may consider iteratively deriving informative features from RCT, validate on EHR and vice

versa.

Our method provides performance gain when the super features learned from EHRs are infor-

mative of treatment responses in RCT. In real-world practice, valuable but unobserved tailoring

variables informative of optimal treatment for real-world patients (e.g., clinician’s insights and ob-

servations on patients) may be present and correlate with observed features in the EHRs. Thus,

EHR super features fitted with observed variables may be informative of these latent factors and
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also predictive of the optimal treatment. The higher this correlation, the more gain on efficiency

and generalizability is expected for domain adaptation learning (e.g., Section 2.3). When the EHR

treatments are not beneficial, our approach may not provide gain in efficiency but still remains

consistent (converges to the true optimal treatment rule) because only RCT data are used for

treatment rule learning. In this case, one may consider subgroups in EHRs for which the ITRs are

beneficial.

The proposed pre-training in step 1 of the Algorithm 1 uses the same pre-treatment covariates

in EHRs and RCT. Thus, one consideration of a good EHR/RCT pair to apply our method is the

breadth of features captured in the EHR. Another consideration is the similar direction of treatment

response in subgroups of two populations. While our work focuses on analysis of existing data, it

can be conjectured to use EHR information when designing future RCTs, for example, recruiting

patients from EHRs (Fraser et al., 2012).

Currently we only considered efficacy outcomes. It is desirable to better extract rich information

on other types of outcomes available in the EHRs (e.g., adverse events and long term outcomes)

to further improve ITRs fitted from the RCT. For example, clinicians prescribing treatments in

real-world practice naturally take into account of both efficacy and risk of complications (Wang

et al., 2018). Training ITRs to mimic this behavior would be beneficial. It is also worthwhile to

examine advanced machine learning techniques to explore other features in the EHRs predictive

of treatment prescriptions (e.g, text mining of physicians’ notes), and consider dynamic treatment

rules with longitudinal records.

The proposed domain adaptation framework is easy to implement in practice by following

three steps in Algorithm 1. The main computational burden is on the analysis of the EHR using

matching-based kernel weighting method, since one needs to create a large number of matched
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pairs and fit weighted support vector machines with many matched pairs. When sample size is

large, kernel weighting matching can be replaced by one-to-one matching (Wu et al., 2019). Lastly,

one limitation of the current method is that when super features are less predictive of optimal

treatment or benefit, stratification in domain adaptation learning may lose power. A more data

adaptive framework to treat super features may be investigated (e.g., tuning the number of strata).
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Chapter 4

Learning Personalized Treatment

Rule Using Topic Modeling Features

4.1 Overview

Personalized treatment decision making has been proposed as a paradigm shift from the universal,

“one-size-fits-all” strategy (Collins and Varmus, 2015) to address substantial heterogeneity between

patients affected by chronic disorders such as type 2 diabetes (T2D) and mental disorders (Fried

and Nesse, 2015). Recently, personalized medicine research is fast growing and greatly facilitated by

large-scale data collection and technological advances in data storage and processing (Collins and

Varmus, 2015). Personalized medicine allows healthcare providers to tailor treatment or treatment

sequences to individual patient accounting for personalized information and patient heterogeneity

(Chakraborty and Moodie, 2013).

One way to personalize medicine is to prescribe treatment using individualized treatment rules

(ITRs) which are mappings from a patient’s feature space (e.g., biomarkers of patient’s health
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status) to the space of potential treatment decisions. Randomized controlled trials (RCTs) are

considered to be of high internal validity due to the virtue of randomizing treatments so that RCTs

are not subject to unmeasured confounding. However, due to their stringent inclusion and exclusion

criteria, RCTs lack generalizability or external validity to a broader and diversified population (Cole

and Stuart, 2010). Studies comparing T2D patient population in EHRs and participants of RCTs

for T2D found a large difference in their distributions (Weng et al., 2014). In contrast, EHRs provide

a complementary resource for learning ITRs in a large real world patient population. Recently, large

scale EHR data has been leveraged to characterize treatment pathways in medical decision making

(Hripcsak et al., 2016). Due to the non-experimental characteristics in retrospectively documented

observational data, it is difficult to infer causality or valid ITRs without employing confounding

and selection bias reduction techniques (Rosenbaum, 2010; Wang et al., 2016). It is beneficial

to integrate medical domain knowledge in feature engineering with valid machine learning and

statistical methods in alleviating biases to better estimate optimal decision rule in observational

studies.

Machine learning methods are commonly used to optimize treatment decisions by estimating

ITRs according to patient level feature variables. Indirect methods such as Q-learning (Watkins

and Dayan, 1992; Qian and Murphy, 2011) and A-learning (Murphy, 2003) fit a regression model

to predict clinical outcome under alternative treatments and derive optimal ITRs by comparing

predicted outcomes. Such methods are subject to model misspecification. Alternatively, outcome

weighted learning (O-learning) and augmented O-learning (Zhao et al., 2012; Liu et al., 2018) are

proposed to directly maximize clinical outcome after treatment. O-learning converts treatment op-

timization to a classification problem without requiring a model to predict the treatment responses.

Tree-based methods use criteria related to testing for treatment by feature variable interaction effect
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to partition patients (Dusseldorp and Van Mechelen, 2014; Laber and Zhao, 2015). Most of these

methods are suitable for estimating ITRs from RCTs and cannot be directly applied to observa-

tional studies without adjusting for various sources of biases. Recently, a matching-based learning

method referred as M-learning (Wu et al., 2019) is proposed to generalize O-learning methods un-

der a unified framework and can be applicable to EHRs. However, M-learning method does not

optimally engineer feature variables from EHRs.

Topic modeling techniques can be adapted to process text notes or similar text-like information

in EHR data including latent semantic analysis (LSA) (Landauer et al., 1998), probabilistic latent

semantic analysis (pLSA) (Hofmann, 1999). Both methods achieve a lower dimension representation

for text information. In addition, latent Dirichlet allocation (LDA), as a generative statistical

model for collections of discrete type of data, has also been adopted to reduce dimension and data

representation (Blei et al., 2003).

In this chapter, we present analyses methods to estimate optimal individualized treatments

from EHR data with two main goals. The first goal is to achieve more effective feature extraction

for identifying optimal ITRs with EHRs. The extracted features should be predictive in selecting

optimal treatment and interpretable to clinical practitioners. The second goal aims at improv-

ing algorithms for treatment optimization and reducing confounding bias in statistical estimation

especially in real world setting such as EHRs. We will use LDA as a type of topic models to an-

alyze medication and condition domain of EHR data to extract features and apply three learning

methods (Q-learning, O-learning and M-learning) to estimate the optimal ITRs depending on a

patient’s personalized characteristics such as demographics and predictive markers augmented by

LDA-based features. We compare the performance of the three learning algorithms with or with-

out augmenting feature space by LDA-based topic features. Additionally, we investigate important
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LDA-based features to provide the interpretation of ITRs using engineered topics in co-medication

and diagnosis domains. The proposed method has the promise of discovering medical knowledge

from observational data to facilitate individualized medical decision making.

4.2 Methodology

4.2.1 Review of Methods for Personalized Treatment

In this section, we review the basic concept and framework for individualized treatment rule and

three methods in learning treatment rule including Q-learning, O-learning and M-learning methods.

Since M-learning has been shown to be superior to the other two in certain cases in observational

studies and our application in the chapter is in the area of electronic health records, we revisit the

key idea and derivation of M-learning in Chapter 2.

4.2.1.1 Individualized Treatment Rule Framework

An individualized treatment rule (ITR) is a decision function that maps patients’ features into

the space of treatment options. In this chapter, we consider single stage decision rules and binary

treatment options. Extension to multiple treatment options can be achieved using methods in

(Zhou et al., 2018). Let Hi denote the feature variables measured prior to treatment and Ri denote

the clinical outcome or reward post treatment and we can assume a larger Ri corresponds to more

desirable treatment effect (e.g., symptom relief). Let T denotes the treatment assignment taking

values of −1 or 1, and let D(Hi) denote an ITR. The value function used to evaluate an ITR

associated with the decision rule D is defined as the expected post-treatment reward:

V (D) = ED(Ri).
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In particular, when the treatment assignment probability is known in an RCT, the value func-

tion in this expectation can be written as V (D) = E
[

R
π(T,H)I{T = D(H)}

]
, where π(t, h) is the

randomization probability for T = t given H = h. In contrast, in an observational study (e.g.

EHR data) treatment propensities π(t, h) are usually unknown and need to be estimated from data

using classification models such as logistic regression or random forest (Lee et al., 2010). The value

function can be estimated empirically from data as

Vn(D) =
1

n

n∑
i=1

I(Ti = D(Hi))Ri
π(Ti, Hi)

. (4.1)

Optimal ITRs are estimated from data by maximizing the above empirical value function (4.1).

4.2.1.2 Q-learning and O-learning Methods

There are many machine learning tools to estimate ITRs including Q-learning and O-learning meth-

ods. Q-learning is a reinforcement learning algorithm that plays an important role in estimating

ITRs for multi-stage studies (Qian and Murphy, 2011). In Q-learning methods, regression-based

approach is implemented to approximate R in V (D) by the estimated treatment benefit through a

model R = f̂(H,T ) using H and interactions between H and treatment assignment T as predic-

tors. The optimal ITR selected by Q-learning is expressed as t∗ = maxt∈{1,−1} f̂(H, t) (Wang et al.,

2016). Q-learning indirectly maximizes the value function and may be sensitive to incorrect model

assumptions when feature space is high-dimensional (Zhao et al., 2012; Wang et al., 2016).

O-learning is a class of machine learning methods that directly maximize the expected clinical

reward under a treatment assignment strategy. In the original O-learning, ITR estimation is trans-

formed into a weighted classification problem by minimizing the empirical misclassification rate,

E

[
I(Ti 6= D(Hi))Ri

π(Ti, Hi)

]
(Zhao et al., 2012). Augmented O-learning (AOL) is an improved version
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of O-learning by replacing Ri with a doubly-robust residual of Ri − E[Ri|Hi] (Liu et al., 2018).

Efficiency gain can be guaranteed in the AOL by integrating O-learning with regression-based Q-

learning in a doubly-robust manner (Liu et al., 2018). However, O-learning methods are based on

inverse probability weighting (IPW) of estimated propensities π(Ti, Hi) and may suffer from sev-

eral issues such as instability of weights estimation and imbalance of covariates distribution across

treatment groups (Wu et al., 2019) when applied to observational data.

4.2.1.3 M-learning Method

In this chapter, we focus on M-learning method. M-learning is a matching-based learning method

that also directly maximizes the value function. It generalizes O-learning methods and integrates

them with matching techniques. Specifically, M-learning performs matching to accurately measure

individuals’ treatment responses to alternative treatments, which requires less model specification

and provides more flexibility in controlling confounders in the subgroups (Wu et al., 2019). In

observational studies, π(Ti, Hi) is unknown and confounding bias commonly complicates analyses.

It is well known that IPW-based methods for adjusting for confounding suffer from high variability

especially when weights π(Ti, Hi) are small in subgroups of individuals and lack control over sub-

group propensity score balance (Lee et al., 2011). Thus M-learning that avoids inverse weighting of

π(Ti, Hi) may be more advantageous over IPW-based approaches in the observational studies (Wu

et al., 2019).

The key idea behind M-learning is that when two subjects are matched in terms of confounders

or propensity scores of treatments but receive different treatments, the observed treatment leading

to a larger clinical response should be more likely to be the optimal option. We describe M-learning

method as follows: for any subject i, we first identify a matched setMi, which consists of subjects
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with opposite treatments but similar feature variables as subject i, where similarity is defined under

a suitable distance metric. That is, we let

Mi = {j : Tj = −Ti, d(Hj , Hi) ≤ δi} .

For any given ITR, we define the matching-based preference value function to maximize as

Vn(D;u) = n−1
n∑
i=1

|Mi|−1
∑
j∈Mi

u(|Rj −Ri|)
{
I(Rj ≥ Ri,D(Hi) = −Ti)

+I(Rj ≤ Ri,D(Hi) = Ti)
}
. (4.2)

where |Mi| is the size of the matched set Mi and u(·) is proposed as a monotonically increasing

matching function to weight individual subjects. Common choice of u(·) can be u(x) = 1 or

u(x) = x according to users’ objective. Note that when u(x) = x and we choose one-nearest-

neighbor matching, the value function is weighted by the absolute difference between the clinical

reward in the matched pair, i.e., |Rj −Ri|. Equivalently, value function (4.2) is further written as

Vn(f ;u) = n−1
n∑
i=1

|Mi|−1
∑
j∈Mi

u(|Rj −Ri|)I(f(Hi)Tisign(Rj −Ri) ≤ 0), (4.3)

where D(H) = sign(f(H)) for some decision function. To estimate the optimal ITR in (4.3), it is

equivalent to minimize the loss function

Ln(f ;u) = n−1
n∑
i=1

|Mi|−1
∑
j∈Mi

u(|Rj −Ri|)I(f(Hi)Tisign(Rj −Ri) ≥ 0). (4.4)

Due to the discontinuity of the indicator function in (4.4), we replace the zero-one loss by

alternative loss function for optimization. In this chapter, we use hinge-loss and the optimization

becomes a weighed support vector machine (SVM) problem for matched pairs:

Vφ(f ;u) = n−1
n∑
i=1

|Mi|−1
∑
j∈Mi

u(|Rj −Ri|)φ(−f(Hi)Tisign(Rj −Ri)) + λn‖f‖HK
. (4.5)
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In Vφ(f ;u), φ(x) = max(1−x, 0), λn is a penalty parameter and HK is a reproducing kernel Hilbert

space (RKHS) with kernel function K(·, ·). The solution to the dual problem of (4.5) using any

off-the-shelf quadratic programming packages leads to the minimization of M-learning.

Additionally, the use of idea in doubly robust matching estimator (DRME) (Antonelli et al.,

2018) can improve M-learning. The DRME incorporates both propensity score and prognostic

score in matching setMi. The propensity score model π(H) and prognostic score model m(H) are

defined as

π(H) = P (T = 1|H) = g1(H
′γ1)

and

m(H) = E(R|A = −1, H) = g2(H
′γ2)

where γ1, γ2 denotes parameters for the two models. This extension in M-learning is doubly robust

and is consistent even if one of the two models is misspecified (Wu et al., 2019).

It has been discussed in (Wu et al., 2019) that original O-learning and single-stage AOL are

special cases of M-learning. Unlike O-learning methods which compare observed reward R with a

constant or predicted outcome, M-learning directly compares observed individual rewards from the

two subjects in the matched set Mi. This demonstrates that M-learning methods have advantage

over O-learning methods in ITR estimation leveraging individual information instead of predicted

outcomes averaged across treatments (Wu et al., 2019).

4.2.2 EHR Data

Before introducing topic model as a method for feature extraction, we briefly review the EHR data

that have been used in this work and the issues we have addressed for the analyses. The EHR

data was collected and stored in a large clinical data warehouse (CDW) at New York Presbyterian
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Hospital (NYPH) which contains over 20 years of health information for about 4.5 million patients

(Johnson, 1996) . There are over 115,000 patients who had been diagnosed with type 2 diabetes

(T2D) (Weng et al., 2014). The quality of the EHR data including completeness, correctness,

and plausibility was investigated to ensure suitability for studying treatment sequence of common

diseases (Weiskopf and Weng, 2013; Fort et al., 2014). Current T2D guidelines suggest metformin

(MET) as the preferred first-line medication (Diabetes Control and Complications Trial Research

Group, 1993), but in the real world setting, there is no recommendation of optimal sequence of

treatments on the long-term outcomes in the literature (Bennett et al., 2011).

In this chapter we propose machine learning methods to estimate the optimal second-line treat-

ment of T2D, specifically, we compare Met + insulin versus Met + sulfonylureas (SFU). To match

this goal, we used a new-user design to select our cohort for analyses. Since our goal is to opti-

mize second-line treatments, we included patients who had a first-line treatment and switched to

a second-line treatment of SFU or insulin during 2008 and 2012. Each subject’s observations are

re-aligned at the time of switching (index time 0). A median baseline period of 12-months prior to

the index time was established to extract baseline feature variables. The median follow-up period

post index time to evaluate treatment response is 18-months. The primary outcome is the num-

ber of major complications of T2D after second-line treatment including essential hypertension,

hyperlipidemia and hypercholesterolemia.

Unlike randomized experiment, EHR data are collected in an uncontrolled setting and pose

challenges for inferring causal relationships in research studies. In our analyses, we address three

major issues commonly confronting observational study research including confounding bias, se-

lection bias and missing data. To alleviate confounding bias, we implement matching step in

M-learning on potential confounders (e.g. lab test features), two propensity scores constructed by



CHAPTER 4. LEARNING PERSONALIZED TREATMENT RULE USING TOPIC
MODELING FEATURES 84

two logistic regression models for lab measurement pattern features and demographics predictors

and a doubly-robust prognostic score estimated from a linear regression model. To reduce selection

bias due to missing post second-line treatment outcomes, IPW adjustment was implemented and a

logistic regression model was used to predict the presence of at least one post-treatment measure

during the follow up period. Lastly, missing features were imputed with chained equations.

4.2.3 LDA-Based Features for Co-medication and Diagnosis

In this chapter, we extracted clinically meaningful features from two EHR data domains (i.e. med-

ications and ICD diagnosis codes) using latent Dirichlet allocation model (LDA) as a topic model

based approach. LDA is a three-level hierarchical generative model suitable for analyzing collec-

tions of discrete data and has broad applications from information retrieval to medical informatics

(Blei et al., 2003). When applied to EHRs, it can organize a large number of ICD diagnoses codes,

procedure codes and medication prescription documentations into meaningful topics based on the

correlation among variables. As a generative model, LDA is parameterized by distributions over

topics, where each topic is characterized by a distribution over words in that topic. Thus, LDA

models are highly interpretable.

In our EHR analyses, each patient can be viewed as a “document” in topic modeling applica-

tions. LDA model is adapted here to learn the hidden topics in the domain information for the

collection of patients. In the medication prescription domain, the medication items in the generic

name field except the T2D treatments are the “words” in a “patient’s document”. The latent topics

learned in this domain are referred to as co-medication topics. Similarly, the ICD9 codes in the

diagnosis domain are useful terms to learn topics of patient comorbidities. The number of topics

is fixed for the two domains and the latent topics were learned separately.
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Specifically, the key idea of using LDA to analyze medication prescriptions and ICD codes in

EHRs is that the patient population (collection of “documents”) can be represented as mixture of

multiple latent subgroups or topics and each topic is defined to be a multinomial distribution over

a collection of “vocabulary” of medications or conditions (i.e., terms) (Blei et al., 2003; Blei and

Lafferty, 2009). LDA assumes a probabilistic generative process by which each patient is generated

with K latent topics and each topic is assumed to follow a Dirichlet distribution over V medications

or conditions in the “vocabulary”. We describe the process as follows (Blei et al., 2002). Let C

denote a corpus composed of M patients represented as C = {c1, c2, · · · , cM} .

1. For a patient of N medications or conditions, first a distribution over topics is drawn from

θ ∼ Dir(α),

where the probability density of a k-dimensional Dirichlet variable θ is

p(θ|α) =
Γ(
∑k

i=1 αi)∏k
i=1 Γ(αi)

θα1−1
1 · · · θαk−1

k ,

Γ(x) is the Gamma function, 0 < αi < 1,∀i and
∑k

i=1 θi = 1.

2. For each medication or condition of the patient, a topic x ∈ {1, · · · ,K} is drawn from

x ∼ Mult(θ),

where Mult(θ) is a multinomial distribution characterized by θ and p(x = i|θ) = θi.

3. Given the topic, medications or conditions of the patient are drawn from a conditional multi-

nomial distribution p(w|x;φ), where φ is the parameter of the per-topic distribution over

medications or conditions.
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Several Bayesian inference techniques can be used to approximate the posterior distribution

p(θ, x|w,α,φ) =
p(θ, x,w|α,φ)

p(w|α,φ)

in LDA including variational inference, expectation propagation and Gibbs sampling (Blei et al.,

2003; Geman and Geman, 1984; Minka and Lafferty, 2002). We can obtain the marginal distribution

of a patient as

p(w|α,φ) =

∫
θ
(

N∏
n=1

K∑
xn=1

p(wn|xn;φ)p(xn|θ))p(θ;α)dθ

and take the product of the marginal probabilities of patients to derive the probability of the corpus

(Blei et al., 2003). In LDA, the Dirichlet is drawn for each patient, and within this patient the

multinomial topic distribution over medication or conditions is drawn repeatedly (Blei et al., 2002).

The weights of posterior probabilities or proportions for different topics given patients’ observed

medications and conditions obtained from Bayesian inference are the feature representation in a

reduced dimension (dimension equals to the number of topics). In our application, both clinical

interpretability and topic coherence measure were taken into consideration and 5 topics were used.

The LDA-based features were constructed based on these weights and they were augmented to the

feature space in our analyses in learning the personalized treatments and confounding reduction.

We compared using LDA-based features with using a simple summary feature of a total number of

medications or ICD diagnoses.

4.3 Applications

In this section, we introduce our cohort identification and EHR preprocessing procedures. LDA

model is used in representing the variables in two data domains in the EHR data in a lower

dimension. The learned topics from the LDA model are visualized and association networks are
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built to better interpret the topics. The features we extracted from the latent topics were augmented

to the feature space in machine learning methods in estimating the ITRs.

4.3.1 Cohort Identification

Our cohort includes patients who were older than 18 years and had at least one T2D diagnosis

between 1/1/2008 and 12/31/2012. The analysis was further restricted to those patients who

were prescribed with Metformin as first-line medication (Wu et al., 2019). There were over 1,200

patients who were augmented with at least one second-line treatment. The sunburst plot in Figure

4.1 displays treatment sequence with 2-3 stages for T2D patients in the database. The most inner

circle corresponds to the first-line treatment and the most commonly used first stage treatment is

Metformin, which is consistent with the T2D treatment guideline. Our goal is to select optimal ITRs

to reduce major complications. The ITRs were estimated in terms of lowering major complications

of T2D measured by three ICD diagnosis counts as ordinal outcomes (0, 1, 2, 3).

The EHR data preprocessing flowchart is shown in Figure C.1. Most features were extracted

from four domains: demographics, medication prescriptions, lab test and diagnosis. Several impor-

tant lab tests (e.g. HbA1c, glucose, HDL, LDL, BMI) were summarized by estimated initial test

values and estimated rate of change using linear mixed effect models. Initial test value is a measure

of patient’s illness condition at the baseline of study and rate of change of test value characterize

patient’s progression rate of disease. Lab measurement pattern features were constructed using

the information in the lab test domain (Wu et al., 2019). Lab measurement patterns in EHRs

were shown to reflect patient’s underlying health status as well as EHR documentation biases and

thus informative of adjusting for confounding and matching patients (Pivovarov et al., 2014). In

Figure C.6, the measurement patterns of glucose test and HbA1c in terms of gap days in logarithm
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Figure 4.1: Sunburst plot of treatment sequence for T2D patients*

*: Layer corresponds to stage of treatment, patients with 2-3 stages were shown

scale is different for patients on different second-line treatments, suggesting it can distinguish be-

tween patients who started insulin (MET+insulin) and those who received glyburide or glipizide

(MET+SFU). In Figure C.7, the measurement patterns of one of clinically important lab mea-

sures HbA1c and medications in terms of gap days in logarithm scale are displayed for different

treatment strategies. The difference in these figures further demonstrates the usefulness of these

measurement patterns in personalized treatment. Therefore the lab measurement pattern features

were used as important predictors for computing a balancing propensity score (Wu et al., 2019) in

M-learning. The features capturing temporal measurement patterns were created by discretizing

a two-dimensional space of lab test values versus gap time between consecutive measurements ac-

cording to high, medium, low quartiles (Wang et al., 2016). Additionally, age, race and gender were

also included as demographic variables for matching patients. Spikeplots for important lab tests
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such as glucose and HbA1c and medications among sample patients are shown in Appendix C.2.

These figures capture patient heterogeneity in terms of measurement pattern of lab and medication.

4.3.2 LDA Feature Representation

Topic model with LDA using bag of words is applied to the generic names in co-medications and

condition ICD9 codes prior to second-line treatment initiation (during baseline period) with 5 la-

tent topics respectively. There were over 700 generic medication names and over 2, 800 unique

ICD9 codes in this T2D EHR data. In the co-medication domain, bigram and trigram were created

for compound words in generic names. The number of topics is fixed in our application for inter-

pretability purposes. LDA-based features were constructed as weights for each of the 5 topics per

patient. We use heatmaps with hierarchical clustering to show topic feature weights in all patients.

The similarity metric we used to cluster patients is Hellinger distance (Blei and Lafferty, 2009)

defined as
K∑
k=1

(

√
θ̂d1,k −

√
θ̂d2,k)

2,

where K is the fixed number of topics and θdi,k denotes weight for topic k in each patient. In Figure

4.2a, the heatmap for co-medication topic features suggests that most patients have higher weights

in only one or two topics. Thus, co-medications for most patients comprise of one or two latent

topics. Figure 4.2b shows patterns of ICD diagnosis condition, and a relatively high proportion of

patients have larger weights in the first condition topic, which mainly consists of conditions such

as hypertension, pure hypercholesterolemia, depressive disorder, hyperlipidemia and lumbago.

To understand the learned topics, we present visualization of some of the medication and con-

dition topics in Figure C.3, C.3 and C.3. These topics were found to be informative of predicting

optimal treatments in our subsequent analyses (next section). On the right panel of each sub-figure,
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Figure 4.2: Heatmap of LDA-Features Clustered by Patients

the top 30 most relevant terms (co-medications or conditions) corresponding to the topics are pre-

sented. For example, topic #3 in the co-medication domain is a cluster of medications used to treat

heart disease, high blood pressure and high cholesterol. Figure C.3 shows that this topic contains

5 most relevant prescriptions as aspirin, metoprolol, atorvastatin, enalapril and clopidogrel. In

condition topic #2, the most relevant conditions include hypertension, hypercholesterolem, pain in

limb, atrial fibrillation and hyperlipidemia, which are common co-morbidities of T2D. In condition

topic #5, the top most relevant conditions are benign hypertension, hyperlipidemia, asthma and

obesity.

Based on topics learned from LDA models, we constructed association network for medications

and conditions separately in Figure 4.3 and 4.4. The medications or conditions (nodes in the net-

work) in the same topic with a posterior probability of co-occurring higher than a threshold are

linked by an edge and shown in the figures. The threshold is 1.5% for co-medications and 0.9%
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for conditions for visualization. The edge widths are proportional to posterior probabilities. In

the condition network, mental disorders including anxiety, depressive disorder and schizoaffective

as well as some side effects such as cough, headache and backache are clustered in the rightmost

group. Cardiovascular system related disorders conditions such as old myocardial infarction, mixed

hyperlipidemia, atrial fibrillation and coronary atherosclerosis are connected together in the bot-

tom cluster. Several topic clusters are connected through “bridge conditions/procedures” such as

hypertension, unspecified hyperlipidemia, and flu vaccination which are associated with conditions

in other clusters. In the co-medications network, several anti-diabetic or heart disease medications

are clustered together including Rosuvastatin, Pioglitazone, Warfarin and Sitagliptin. Drugs used

to treat co-morbidities are connected in a group such as Levothyroxine (treat thyroid disease), Es-

omeprazole (treat gastroesophageal reflux disease) and Atenolol (treat high blood pressure and chest

pain). In this co-medications network for T2D, aspirin, as a blood thinner and anti-inflammatory

drug, plays an important role in bridging medications from several clusters since aspirin is often

co-prescribed with other medications.

4.3.3 Learning Optimal ITR

In our final analysis cohort, there were 740 subjects in total. The cohort was further divided

into high baseline HbA1c level group and low baseline HbA1c level group according to median

initial HbA1c level of 8.5% to account for patient heterogeneity. There were 380 patients in the

low baseline group among whom 240 (63%) was prescribed SFU as second-line medication and

140 (37%) was prescribed insulin. In the high baseline group, the number of patients received

SFU and insulin were 208 (58%) and 152 (42%) respectively. The outcome Ri used to minimize

the value function (4.4) is count of post-treatment major complications (essential hypertension,
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Figure 4.3: Association Network of Medication Prescriptions Based on Topics in LDA Model

hyperlipidemia and hypercholesterolemia) during the follow up period. We performed 2-fold cross-

validation 100 times, and computed the cross-validated empirical value function under three learning

methods (Q-learning, O-learning and M-learning).

In Table 4.1, we present the previous results in (Wu et al., 2019) with the raw counts from co-

medication and diagnosis domain during the baseline period included as feature variables instead

of using LDA-based features. In Table 4.2, we replaced the raw co-medication count and condition

ICD9 codes count with our extracted LDA-based topic features. Comparing this to the results

excluding LDA-based features, all the three learning methods in both groups improve with lower

values of post-treatment major complications counts. In the two groups, most of the methods

result in a smaller variability. In the high baseline group (see Figure 4.5a), the worst performance

learning method using raw count data is Q-learning. It benefited most from including LDA-based
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Figure 4.4: Association Network of ICD9 Conditions Based on Topics in LDA Model

features. In the low baseline group (see Figure 4.5b), M-learning using LDA-based features achieves

the lowest value function with a mean of 0.71 and the standard deviation of 0.028. In Figure 4.5,

we note that all three ITR learning methods outperform the “one-size-fits-all” strategies to assign

insulin to all subjects or SFU to all. This analysis demonstrates that prescribing treatment based

on each patient’s characteristics reduces the number of major complications compared to universal

treatment prescription.

We identify the important topic features for selecting the optimal treatment by implementing M-

learning with linear kernel SVM including LDA-based features in the cohort of 740 patients. There

were 427 (58%) patients predicted to have “MET + SFU” as the optimal second-line medication
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Figure 4.5: Empirical value function of ICD diagnosis count in EHR data with 100 2-fold cross-

validations (a low value is desirable)

Table 4.1: Cross-validated Empirical Value Function for

the Number of Major Complications Using Raw Count

Data

High Baseline Group

ITR Method Mean (Std) Median (Q1, Q3)

Q-Learning 0.88 (0.078) 0.88 (0.83, 0.93)
O-Learning 0.86 (0.050) 0.87 (0.83, 0.90)
M-Learning 0.84 (0.068) 0.83 (0.80, 0.88)

Low Baseline Group

ITR Method Mean (Std) Median (Q1, Q3)

Q-Learning 0.81 (0.063) 0.81 (0.76, 0.85)
O-Learning 0.72 (0.033) 0.72 (0.70, 0.74)
M-Learning 0.73 (0.032) 0.73 (0.71, 0.75)
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Table 4.2: Cross-validated Empirical Value Function for

the Number of Major Complications Using LDA Fea-

tures

High Baseline Group

ITR Method Mean (Std) Median (Q1, Q3)

Q-Learning 0.77 (0.065) 0.77 (0.73, 0.81)
O-Learning 0.81 (0.045) 0.81 (0.79, 0.84)
M-Learning 0.83 (0.088) 0.81 (0.78, 0.86)

Low Baseline Group

ITR Method Mean (Std) Median (Q1, Q3)

Q-Learning 0.77 (0.048) 0.77 (0.73, 0.80)
O-Learning 0.72 (0.029) 0.72 (0.70, 0.74)
M-Learning 0.71 (0.028) 0.72 (0.70, 0.73)

and 313 (42%) to have “MET + insulin”. We show the absolute value of all the standardized

coefficients in Figure 4.6. Besides race and cluster membership variable (based on hierarchical

clustering analysis for patient heterogeneity using a subset of standardized features), co-medication

topic #3, condition topic #5 and #2 rank as the most important topic features. The most relevant

terms in these three topics are presented in Appendix C.3. Medication topic #3 involves past

prescriptions of drugs used to treat heart diseases and its risk factors, while condition topic #5

and #2 includes major T2D co-morbidities. These results suggest that to recommend optimal

second-line treatments, physicians may focus on past heart disease mediation prescriptions and

past diagnostic history of hypertension, hypercholesterolem, and atrial fibrillation.
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Figure 4.6: Feature Importance in M-learning with a Linear Kernel

4.4 Discussion

In this chapter, we investigate topic modeling with LDA as a feature extraction tool for EHR

data and the use of a matching-based machine learning method for individualized treatment op-

timization. The learned features from LDA can be used in the ITR learning step to improve

interpretability of the ITRs. Compared to treatment rules estimated excluding LDA-based fea-

tures, our method achieves better post treatment clinical outcome and a smaller variability. In

addition, LDA-based features summarize a large number of ICD codes and medications into a few

understandable topics. By examining important topics predictive of optimal treatment, our method

provides an intuitive summary of main useful characteristics a physician needs to focus on when

making personalized medical decisions.
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Chapter 5

Conclusions and Future Direction

5.1 Summary

The overall theme of this work is merging statistical modeling and feature engineering techniques

with machine learning algorithms to assist in personalized medical decision making, leveraging the

information from electronic health records.

Chapter 2 considers a matching-based learning method, referred to as M-learning, to learn per-

sonalized treatment rule from observational data. We show its advantage over existing methods

in several scenarios through extensive simulation studies and a real data application using EHR

from diabetes patients. In Chapter 3, we propose a novel framework using a few learning methods

including an extended version of M-learning to transfer information learned from real-world obser-

vational data to RCT. Two super features are used in this framework. We show the efficacy of this

framework through simulation studies and a data application using both EHR and RCT data of

diabetes study. In Chapter 4, a topic model based method is considered to extract interpretable

features from different domains of EHR data and use learning methods to estimate ITRs. We eval-
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uate the benefit gained from this method by comparing to previous methods without augmenting

the topic model based features using EHR from diabetes patients.

5.2 Limitations

In M-learning proposed in Chapter 2, one-nearest-neighbor matching might result in many repeated

observations in the learning step and only a limited number of pairs of subjects are included.

An extension of M-learning, which is proposed in Chapter 3, resolves this by integrating with

kernel method using a kernel weighted objective function for optimizing. However, there is a

tradeoff between accuracy and computational speed. The computation cost of implementing kernel

M-learning is significantly higher without resort to more efficient algorithms or more powerful

computational resources. Another limitation of the transfer learning in Chapter 3 is that when super

features are less informative of optimal treatment or benefit, stratification in domain adaptation

may not work. In Chapter 4, there is no consensus on optimal measure in selecting number of

topics in LDA model and in our case, a fixed number is used based on clinical interpretability and

topic coherence. The original topic model does not consider correlation between latent topics and

the trend in topics change over time. Lastly, we use EHR data from NYPH clinical data warehouse

and do not evaluate the performance of our proposed methods and framework in other databases.

We believe that investigating performance using EHR data from other hospitals will be helpful,

especially in transfer learning framework.
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5.3 Extensions

In Chapter 2, we focus on single-state M-learning and it can be generalize to multi-stage applying

the backward learning techniques. In addition, more general multi-arm treatment options can be

considered. To improve the performance, data-driven oriented matching functions and suitable

matching variables can be selected when applying our method to satisfy both clinical interpretabil-

ity and precision of ITR estimation. In Chapter 3, our proposed super features and framework

is not difficult to implement. However, there is certain computational burden in searching the

optimal parameter space when running the algorithms. In the future direction, more compu-

tational efficient algorithms should be applied. In particular, a mini-batch version of weighted

SVM can be implemented in our kernel M-learning. Additionally, instead of the original super

features, other features predictive of treatment options in observational studies is worthwhile to

be examined. In Chapter 4, several extensions can be considered. It is desirable to consider a

data-driven method to select the best number of topics in LDA-based feature extraction. It is

of interest to investigate a hierarchical, comprehensive LDA-based feature extraction combining

different domains including medications, conditions and procedures altogether instead of modeling

them separately. Moreover, correlated topic models can be considered to model the correlation

between topics within each medical domain and dynamic topic models might be useful in capturing

the temporal characteristics of the evolution of medical concepts. Hierarchical topic models can

also be used to incorporate existing hierarchical structure of medications or diagnosis into learning

topics. With these specific topic models, more meaningful feature representation can be achieved.

Additionally, we can extend nearest-neighbor matching in M-learning to other optimal matching

techniques such as integrating with kernel method. These extensions will provide more flexibility
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to M-learning, especially for observational studies. Lastly, it is worthwhile to extend our methods

and analyses to OHDSI network by following the format of OMOP Common Data Model (CDM)

(https://www.ohdsi.org/data-standardization/the-common-data-model/).

https://www.ohdsi.org/data-standardization/the-common-data-model/
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Appendix A

Appendices to Chapter 2

A.1 Additional Simulations Evaluating M-learning for Discrete

Outcomes

In this part, ordinal outcomes were generated by discretizing a latent continuous outcome generated

similarly to those in Chapter 2.4. The underlying continuous outcomes were simulated as

S1 : R = 2H3 −H4 +A(H1 −H2) +N(0, 1)

and

S2 : R = 1 + 2H1 +H2 + 0.5H3 +A(H2 +H2
1 − 1) +N(0, 1).

Furthermore, R was discretized into an ordinal clinical response outcome with 4 categories based on

quantiles. In section A3, boxplots comparing value functions of M-learning, AOL and Q-learning

under different sample sizes can be found. The true optimal value is 1.11 in S1 and 2.23 in S2.

In the first set of analyses, the distribution of A depended on H and no unmeasured confounder

is present. Propensity model was specified by P (A = 1|H) = expit(1 + 2H1 + H2) and a logistic
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regression with H1 and H2 as linear covariates was used to estimate propensity scores. In the linear

boundary setting, Q-learning ranks the best and M-learning is slightly worse than AOL. In S2,

M-learning is more robust to outliers and hence performs much better than AOL. The difference

of value function between using g(x) = x or g(x) = 1 is negligible.

In the second set of analyses, we specified propensity score model as P (A = 1|H) = expit(1 +

exp(H2)). A logistic regression with H1 and H2 as linear covariates was used to estimate propensity

scores and thus the model is misspecified. In S1, AOL is better than M-learning in terms of value

function and Q-learning still has a higher value. While in S2, AOL performs much worse than

M-learning since AOL is more sensitive to incorrectly specified propensity score model.

In the third set of analyses, we considered presence of unmeasured confounders. The clinical

outcomes were simulated as

S3 : R = 2H3 −H4 +A(H1 −H2 +X) +N(0, 1)

and

S4 : R = 1 + 2H1 +H2 + 0.5H3 +A(H2 +H2
1 +X − 1) +N(0, 1)

where P (A = 1|H,X) = expit(1 + R(−1) − R(1) + 2X + H1) and X is an unmeasured confounder

(not included in any analysis in any method) and R(−1), R(1) are potential outcomes under each

treatment. The propensity scores were estimated by a linear logistic regression with H1 and H2 as

predictors. The true optimal value in these two settings are 1.34 and 2.52, respectively. All three

methods deteriorate with the introduction of unmeasured confounders in both S1 and S2. In S1,

Q-learning outperforms the other two methods. In S2, M-learning provides satisfactory results: the

value function is close to the true optimal and has a high accuracy of identifying optimal treatment.

In comparison, the other two methods performs much worse even with a large sample size.
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A.2 Additional Figures of Simulations and Real Data Analyses

Below is a brief description of each figure in Appendix A.

Figure A.1: Descriptive analysis of patterns of HbA1c measurement;

Figure A.2: Additional simulation results: value comparison of four methods with propensity

scores correctly specified (top panel) and misspecified (bottom panel);

Figure A.3: Additional simulation results: value comparison of four methods in the presence of

unmeasured confounders.
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Figure A.1: HbA1c values and measurement intensity (Time 0: first stage treatment prescription)
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(c) Setting S1, propensity score model misspecified
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(d) Setting S2, propensity score model misspecified

Figure A.2: Value comparison of four methods with propensity scores correctly specified (top panel) and

misspecified (bottom panel). The numbers at the top of each subfigure are mean values.
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Figure A.3: Value comparison of four methods in the presence of unmeasured confounders. The numbers

at the top of each subfigure are mean values.
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Appendix B

Appendices to Chapter 3

B.1 Additional Simulation Results for Q-learning

In this section, we present simulation results for Q-learning (Figure B.1). In scenario (i), using

RCT feature variables alone achieves a value close to 1.28. Strategy S2 of directly adding super

features reduces variability of value function for Q-learning, but does not improve its mean. This

is consistent with our justification in Case I in Chapter 3 Section 2.3. In scenario (ii) with a latent

tailoring variable, adding super features directly to Q-learning slightly improves the original value

function of 0.98 when without H. If using linear regression instead of random forest regression for

Q-learning (bottom panel), we observe that both stratification methods much improve results with

larger values and smaller variability, which is consistent with our justification in Case II in Chapter

3 Section 2.3.



APPENDIX B. APPENDICES TO CHAPTER 3 119
S
1

S
2

S
3

S
4

S
1

S
2

S
3

S
4

1.0

1.1

1.2

1.3

1.4

1.5

V
a
lu

e
 F

u
n
c
ti

o
n

General testing population 

Restricted testing population

S1: Excluding EHR-derived features 
S2: Including Two EHR-derived features 
S3: Stratified by Benefit 
S4: Stratified by Probability 

(a) Scenario (i), random forest regression
S
1

S
2

S
3

S
4

S
1

S
2

S
3

S
4

0.6

0.7

0.8

0.9

1.0

1.1

1.2

V
a
lu

e
 F

u
n
c
ti

o
n

General testing population 

Restricted testing population

S1: Excluding EHR-derived features 
S2: Including Two EHR-derived features 
S3: Stratified by Benefit 
S4: Stratified by Probability 

(b) Scenario (ii), random forest regression

S
1

S
2

S
3

S
4

S
1

S
2

S
3

S
4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

V
a
lu

e
 F

u
n
c
ti

o
n

General testing population 

Restricted testing population

S1: Excluding EHR-derived features 
S2: Including Two EHR-derived features 
S3: Stratified by Benefit 
S4: Stratified by Probability 

(c) Scenario (i), linear regression
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Figure B.1: Simulation Comparisons for Q-learning (evaluated on independent testing sets gen-

erated from general or restricted population; scenario (i) has no latent tailoring variables while

scenario (ii) has a latent tailoring variable not used in learning)
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B.2 Additional Simulation Results for Unmeasured Confounder

In this section, we present additional simulation results for kernel M-learning under presence of

unmeasured confounders in three settings. In these settings, the outcome model is same as that in

the main text and was evaluated on the general population. In setting 1 and setting 2, the true

treatment assignment model was specified as P (A = 1|X) = expit(1 + 2X1 + X2 + 0.5X3) and

P (A = 1|X) = expit(1 + 2X1 + X2 + 2X3) respectively, where X3 is an unmeasured confounder.

In setting 3, the true treatment assignment model was specified as P (A = 1|X) = expit(1 + 2X1 +

2X2+X3+R(1)−R(−1)) where X2 is an unmeasured confounder that determines potential outcomes

R(1), R(−1) under each treatment and treatment assignment. In addition to the four strategies S1-

S4, we include S5 which represents stratification by both super features H1 and H2 in the first two

settings. Due to relative small sample size for one of the four strata, in setting 3 the result for

stratifying by both super features is not available.

The results are summarized in Table A3. The proportion of patients receiving the optimal

treatment is defined as “success rate”. The value function of proposed approach with stratification

remains to be better than not using any EHR-derived features. In S3 and S4, “success rate” is

higher than S1. However, the performance decreases when the strength of confounding increases in

setting 3 compared to setting 1 and 2. Stratification by both H1 and H2 leads to best performance

in setting 1 and 2 with highest value function and “success rate”.
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Table B.1: Additional Results for Value Function and Success Rate

Setting 1 Setting 2 Setting 3
Strategy∗ Value Success Rate Value Success Rate Value Success Rate

S1 0.75 (0.16) 0.66 (0.04) 0.75 (0.16) 0.66 (0.04) 0.45 (0.32) 0.62 (0.07)
S2 0.71 (0.15) 0.66 (0.04) 0.72 (0.15) 0.66 (0.03) 0.81 (0.16) 0.67 (0.04)
S3 0.84 (0.13) 0.68 (0.03) 0.77 (0.14) 0.66 (0.05) 0.75 (0.14) 0.65 (0.03)
S4 0.83 (0.14) 0.73 (0.04) 0.83 (0.14) 0.73 (0.03) 0.79 (0.13) 0.68 (0.02)
S5 0.90 (0.12) 0.72 (0.03) 0.96 (0.07) 0.74 (0.02) NA NA

∗: S1: RCT features only; S2: Augment RCT feature set by two EHR data-derived super features H1, H2; S3: Include

H1 in the feature set and stratify by H2; S4: Include H2 in the feature set and stratify by H1; S5: Stratify by H1

and H2.
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Appendix C

Appendices to Chapter 4

C.1 EHR Data Preprocessing Flowchart
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Diagnosis

Demographics

Lab	Test	Medication	Prescription

Diabetes	Medications

Metformin	Only

MET	+	Insulin
Lab	Measure	Pattern

ICD-Definde	Comorbidity
Second	Line	Medication

MET	+	SFU

Main	Lab	Test	Value

Estimated	Initial	Test	Value

Estimated	Rate	of	Change

Lab Features

1. Raw Count
2. Topic Model Features

Integrate with Gap Days

Feature Extraction

Final	Dataset	
for	Learning

MET	+	SFU
MET	+	Insulin	
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Figure C.1: EHR Data Preprocessing Chart for Different Domains
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C.2 Measurement Pattern and Medication Figures
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Figure C.2: Sample Patients Lab Tests Spikeplot
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Figure C.3: Sample Patients Medications Spikeplot
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Figure C.5: Sample Patients HbA1c Spikeplot
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Figure C.6: Longitudinal Measurement Pattern (Gap Days) of HbA1c vs. Glucose
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Figure C.7: HbA1c Measurement Pattern vs. Medication (Gap Days)
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C.3 Learned Topics Visualization from LDA Model

Figure C.8: Visualization of Co-medication Topic #3 and Their Most Relevant Terms



APPENDIX C. APPENDICES TO CHAPTER 4 129

Figure C.9: Visualization of Condition Topic #2 and Their Most Relevant Terms
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Figure C.10: Visualization of Condition Topic #5 and Their Most Relevant Terms
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