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ABSTRACT

Linear Constraints in Optimal Transport

Florian Stebegg

This thesis studies the problem of optimal mass transportation with linear con-

straints – supermartingale and martingale transport in discrete and continuous time.

Appropriate versions of corresponding dual problems are introduced and shown to

satisfy fundamental properties: weak duality, absence of a duality gap, and the ex-

istence of a dual optimal element. We show how the existence of a dual optimizer

implies that primal optimizers can be characterized geometrically through their sup-

port – an infinite dimensional analogue of complementary slackness. In discrete time

martingale and supermartingale transport problems, we utilize this result to establish

the existence of canonical transport plans, that is joint optimizers for large families of

reward functions. To this end, we show that the optimal support coincides for these

families. We additionally characterize these transport plans through order-theoretic

minimality properties, with respect to second stochastic order and convex order, re-

spectively, in the supermartingale and the martingale case. This characterization

further shows that the canonical transport plan is unique.
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1

Introduction

This chapter provides an overview of optimal transport with constraints, and an

outline of the body of the thesis.

1.1 Optimal Transport and Linear Constraints

We will first give a short overview about the common questions in optimal transport.

Let µ and ν be probability measures on the real line and f : R × R → R a reward

function. A Monge transport is a map T : R → R that satisfies ν = µ ◦ T−1. The

Monge optimal transport problem is to find a Monge transport that maximizes the

total reward, ∫
f(x, T (x))µ(dx)

among all such maps.

As this is a difficult optimization problem with a non-convex domain, we consider

the Kantorovich relaxation. A Kantorovich transport of µ and ν is a measure P on

R2 whose first and second marginals are µ and ν, respectively. We will denote the set
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of all such measures by Π(µ, ν). We assume throughout that µ and ν have finite first

moment and observe that Π(µ, ν) is compact, with respect to the weak topology.

The Kantorovich transport problem is to find P ∈ Π(µ, ν) that maximizes the

total reward, given by

P (f) = EP [f(X, Y )],

the expectation of f under P . Observe that P ∈ Π(µ, ν) is a Monge transport if it is

of the form P = µ⊗ δT (x).

When f satisfies the Spence-Mirrlees condition fxy > 0, then the optimal P is

unique and given by the so called Hoeffding-Frechet Coupling P = ((Fµ)−1, (Fν)
−1) ◦

λ[0,1]. It can be characterized through its support: If (x, y), (x′, y′) ∈ supp(P ) and

x < x′, then y ≤ y′. This is called monotonicity.

The Kantorovich transport problem has an associated dual problem which we can

derive as follows:

Let φ ∈ L1(µ) and ψ ∈ L1(ν) such that f(x, y) ≤ φ(x) + ψ(y) on R2. We denote

the collection of all such pairs (φ, ψ) by Dµ,ν(f). Then we have

P (f) = EP [f(X, Y )] ≤ EP [φ(X) + ψ(Y )] = µ(φ) + ν(ψ).

It can be shown that strong duality also holds:

Theorem 1.1.1 (Kellerer). For any measurable f ≥ 0,

sup
P∈Π(µ,ν)

P (f) = inf
φ,ψ

µ(φ) + ν(ψ)

2



and dual optimizers φ̂, ψ̂ exist.

A linear equality constraint in this setup is defined through a family of measurable

functions G on R2. We set P := {P ∈ Π(µ, ν) : P (g) = 0∀g ∈ G} and consider the

objective

P (f) = EP [f(X, Y )].

The classical example for constrained transport problems is Martingale transport,

which is characterized through the set of functions G = {h(x)(y−x) : h ∈ Cb(R)}. For

this constraint we have P = {P ∈ Π(µ, ν) : P is a martingale}. We will denote the

set of martingale transports byM(µ, ν). For the primal problem to be well-defined,

we need M(µ, ν) to be non-empty, which is equivalent to µ and ν being in convex

order, that is µ(g) ≤ ν(g) for all convex functions g.

When f satisfies a Martingale version of the Spence-Mirrlees condition, fxyy >

0, then the optimal P is unique and can be characterized through its support: If

(x, y1), (x, y2), (x′, y′) ∈ supp(P ), and x < x′, y1 < y2, then y′ /∈ (y1, y2).

This constraint on the optimization domain formally appears as a Lagrange mul-

tiplier in the dual problem. That is, we consider functions φ(x)+ψ(y)+h(x)(y−x) ≥

f(x, y). Assuming that these functions are sufficiently integrable (in a sense to be

made precise), we have for P ∈M(µ, ν)

P (f) = EP [f(X, Y )] ≤ EP [φ(X) + ψ(Y ) + h(X)(Y −X)] = µ(φ) + ν(ψ).

An analogue of Theorem 1.1.1 can then be established.
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Generalizations of the Martingale transport problem allow for inequality con-

straints, multiple fixed marginal measures or even continuous time marginals. Estab-

lishing solutions to the above described problems in these settings is the content of

this thesis.

1.2 Thesis Outline

The results in this thesis are separated into three chapters that correspond to the

articles [71, 72, 53]. The chapters are generally self-contained and introduce their

respective prerequisites. The following paragraphs give abstracts of all chapters:

Canonical Supermartingale Couplings. Two probability distributions µ and ν

in second stochastic order can be coupled by a supermartingale, and in fact by many.

We aim to characterize a canonical choice. To this end, we construct and investigate

two couplings which arise as optimizers for constrained Monge-Kantorovich optimal

transport problems where only supermartingales are allowed as transports. Much

like the Hoeffding-Fréchet coupling of classical transport and its symmetric counter-

part, the antitone coupling, these can be characterized by order-theoretic minimality

properties, as simultaneous optimal transports for certain classes of reward (or cost)

functions, and through no-crossing conditions on their supports; however, our two

couplings have asymmetric geometries. Remarkably, supermartingale optimal trans-

port decomposes into classical and martingale transport in several ways.

Multiperiod Martingale Transport. We consider a multiperiod optimal transport

problem where distributions µ0, . . . , µn are prescribed and a transport corresponds

4



to a scalar martingale X with marginals Xt ∼ µt. We introduce particular couplings

called left-monotone transports; they are characterized equivalently by a no-crossing

property of their support, as simultaneous optimizers for a class of bivariate transport

cost functions with a Spence–Mirrlees property, and by an order-theoretic minimality

property. Left-monotone transports are unique if µ0 is atomless, but not in general.

In the one-period case n = 1, these transports reduce to the Left-Curtain coupling

of Beiglböck and Juillet. In the multiperiod case, the bivariate marginals for dates

(0, t) are of Left-Curtain type, if and only if µ0, . . . , µn have a specific order property.

The general analysis of the transport problem also gives rise to a strong duality result

and a description of its polar sets. Finally, we study a variant where the intermediate

marginals µ1, . . . , µn−1 are not prescribed.

Robust Pricing and Hedging around the Globe. We consider the martin-

gale optimal transport duality for càdlàg processes with given initial and terminal

laws. Strong duality and existence of dual optimizers (robust semi-static superhedging

strategies) are proved for a class of payoffs that includes American, Asian, Bermudan,

and European options with intermediate maturity. We exhibit an optimal superhedg-

ing strategy for which the static part solves an auxiliary problem and the dynamic

part is given explicitly in terms of the static part. In the case of finitely supported

marginal laws, solving for the static part reduces to a semi-infinite linear program.

5
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2

Canonical Supermartingale Couplings

This chapter is based on the article [71] of the same title, authored by Marcel Nutz

and Florian Stebegg. It is published in Annals of Probability.

2.1 Introduction

Let µ and ν be probability measures on the real line. A measure P on R2 whose first

and second marginals are µ and ν, respectively, is called a coupling (or transport) of µ

and ν, and the set of all such measures is denoted by Π(µ, ν). We shall be interested

in couplings that are supermartingales; that is, if (X, Y ) denotes the identity on R2,

then EP [Y |X] ≤ X P -a.s. Thus, we assume throughout that µ and ν have a finite

first moment, and denote by S(µ, ν) the set of supermartingale couplings. A classical

result of Strassen (cf. Proposition 2.2.1) shows that S(µ, ν) is nonempty if and only

if µ and ν are in convex-decreasing (or second stochastic) order, denoted µ ≤cd ν

and defined by the requirement that µ(φ) ≤ ν(φ) for any convex and decreasing

function φ, where µ(φ) :=
∫
φ dµ. Given µ ≤cd ν, there are typically infinitely

7



many supermartingale couplings. Our question: are there some special, “canonical”

choices? The aim of this paper is to introduce and describe two such couplings, called

the Increasing and the Decreasing Supermartingale Transport and denoted
→
P and

←
P ,

respectively. They have remarkable properties that are, in several ways, analogous

to the Hoeffding–Fréchet and Antitone couplings which can be considered canonical

choices in Π(µ, ν) but typically are not supermartingales. As will be apparent from

the structure of the analysis, the study undertaken can also be seen as a model

problem of optimal transport under inequality constraints.

Synopsis

The couplings
→
P and

←
P will be characterized in three different ways: an order-

theoretic minimality property, optimality for a specific class of transport reward (or

cost) functions, and a geometric property of the support stating that certain paths

do or do not intersect.

Let us begin with the order-theoretic characterization. To explain the idea, sup-

pose that µ consists of finitely many atoms at x1, . . . , xn ∈ R, then a coupling of µ

and ν can be defined by specifying a “destination” measure for each atom. We know

from Strassen’s result that the convex-decreasing order plays a special role, so it is

natural to rank all possible destination measures for the first atom (as allowed by

the given marginal ν and the supermartingale constraint) according to that order.

A minimal element Sν(µ|x1) called the shadow will be shown to exist; essentially,

it maximizes the barycenter of the destination measure and minimizes the variance.
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The procedure can be iterated after subtracting Sν(µ|x1) from ν, and that determines

a supermartingale coupling of µ and ν. Depending on the order in which the atoms

are processed, the coupling will have a very different structure. Two obvious choices

are the increasing and the decreasing order of the xk, and that gives rise to
→
P and

←
P

(the arrows representing the order of processing). In the general, continuum version

of the construction, we instead specify the destination of µ|(−∞,x] and µ|[x,∞) for each

x ∈ R. The following is taken from Theorem 2.6.7 in the body of the paper; the

precise definition of the shadow can be found in Lemma 2.6.2.

Theorem 2.1.1. There exists a unique measure
→
P on R2 which transports µ|(−∞,x]

to its shadow Sν(µ|(−∞,x]) for all x ∈ R. Similarly, there exists a unique measure
←
P

which transports µ|[x,∞) to Sν(µ|[x,∞)) for all x ∈ R. Moreover, these two measures

are elements of S(µ, ν).

While the shadow construction illuminates the local order-theoretic nature of the

couplings, it does not reveal the global geometric structure that is apparent in Fig-

ures 2.1 and 2.2 (rendered on page 10). The figures show simulations of
→
P and

←
P

for piecewise uniform marginals and discrete marginals; the mass is transported from

the x-axis (top) to the y-axis (bottom).

The Monge–Kantorovich optimal transport problem is a framework that enables

a geometric description for its optimal transports, and thus it is desirable to rep-

resent
→
P and

←
P as corresponding solutions. More precisely, we shall introduce the

9



Increasing Supermartingale Transport
→
P

x

y

µ

ν

Figure 2.1: Simulations of the Increasing Supermartingale Transport. We observe
an interval of Left-Curtain kernels (black/continuous) on the left and an interval of
Antitone kernels (gray/dashed) on the right. The destinations of the right interval
are on both sides of the destinations of the left one.

Decreasing Supermartingale Transport
←
P

x

y

µ

ν

Figure 2.2: Simulations of the Decreasing Supermartingale Transport. We observe
an interval of Right-Curtain kernels on the left, followed by an interval of Hoeffding–
Fréchet kernels and another interval of Right-Curtain kernels. The destinations of
these intervals preserve the original order.
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supermartingale optimal transport problem

sup
P∈S(µ,ν)

P (f) (2.1.1)

where transports are required to be supermartingales, and then
→
P ,

←
P will be opti-

mizers for reward functions f satisfying certain geometric properties. To make the

connection with other texts on optimal transport, notice that P (f) = EP [f(X, Y )]

in our notation, and that f can be seen as a cost function by a change of sign. We

shall say that f : R2 → R is supermartingale Spence–Mirrlees if

f(x2, ·)− f(x1, ·) is strictly decreasing and strictly convex for all x1 < x2. (2.1.2)

If f is smooth, this can be expressed through the cross-derivatives conditions fxy < 0

and fxyy > 0; the first one is the negative of the classical Spence–Mirrlees condition

and the second is the so-called martingale Spence–Mirrlees condition. The following

is a slightly simplified statement of Corollary 2.9.4.

Theorem 2.1.2. Let f : R2 → R be Borel, supermartingale Spence–Mirrlees and

suppose that there exist a ∈ L1(µ), b ∈ L1(ν) such that

|f(x, y)| ≤ a(x) + b(y), x, y ∈ R.

Then,
→
P is the unique solution of the supermartingale optimal transport problem (2.1.1).

Similarly,
←
P is the unique solution of infP∈S(µ,ν) P (f), or equivalently of (2.1.1) if

11



instead −f is supermartingale Spence–Mirrlees.

Since
→
P and

←
P correspond to the combinations fxy < 0, fxyy > 0 and fxy >

0, fxyy < 0 of known conditions, it is natural to ask for the remaining two combi-

nations, fxy > 0, fxyy > 0 and fxy < 0, fxyy < 0. While the associated optimal

transports also have interesting features, they turn out to depend on the function f

within that class and hence, cannot be called canonical; cf. Section 2.10.

The third characterization of
→
P and

←
P is through their supports. A point (x, y)

in the support can be thought of as a path that the transport is using, and the

conditions are expressed as crossing or no-crossing conditions between the paths of the

transport. While this characterization is an incarnation of the c-cyclical monotonicity

of classical transport, the supermartingale constraint requires a novel distinction of

the origins x into a set M of “martingale points” and their complement. Intuitively,

the supermartingale constraint is binding at points of M and absent elsewhere—this

will be made precise later on (Corollary 2.5.3). Thus, we work with a Borel set

Γ ∈ B(R2) that should be thought of as a support, and a second set M ∈ B(R). We

call the pair (Γ,M)

(i) first-order left-monotone if y1 ≤ y2 whenever x2 /∈M ,

(ii) first-order right-monotone if y2 ≤ y1 whenever x1 /∈M ,

for all paths (x1, y1), (x2, y2) ∈ Γ with x1 < x2. We also need the following properties

of Γ alone: considering three paths (x, y1), (x, y2), (x′, y′) ∈ Γ with y1 < y2, the set

Γ is second-order left-monotone (right-monotone) if y′ /∈ (y1, y2) whenever x < x′

12



(x > x′). The latter two properties are taken from [13] where they are simply called

left- and right-monotonicity, and all four properties are summarized in Figure 2.3.

x1

y2

x2

y1

first-order left

x1

y1

x2

y2

first-order right

x

y1 y2

x′

y′

second-order left

x

y1 y2

x′

y′

second-order right

Figure 2.3: Forbidden configurations in the monotonicity properties

The following result is the summary of Theorem 2.8.1 and Corollary 2.9.6 in the

body of the paper.

Theorem 2.1.3. There exist nondegenerate1 (Γ,M) ∈ B(R2)×B(R) which are first-

order right-monotone and second-order left-monotone such that
→
P is concentrated

on Γ and
→
P |M×R is a martingale. Conversely, if (Γ,M) have those properties and

P ∈ S(µ, ν) is a transport which is concentrated on Γ and P |M×R is a martingale,

then P =
→
P .

The analogous statement, interchanging left and right, holds for
←
P .

With some additional work, these theorems will allow us to explain the geometric

features apparent in Figures 2.1 and 2.2. To that end, let us first recall two pairs of

related couplings.

Our characterizations highlight the analogies between
→
P ,

←
P and the classical

Hoeffding–Fréchet and Antitone couplings PHF , PAT ∈ Π(µ, ν); see, e.g., [75, Sec-

tion 3.1]. Indeed, the latter have a minimality property similar to Theorem 2.1.1, but

1This is a minor notion detailed in Definition 2.7.5.
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for the first stochastic order instead of the convex-decreasing one. Moreover, they

are optimal transports for reward functions satisfying the classical Spence–Mirrlees

condition fxy > 0 and its reverse, and they are characterized by what we called the

first-order left- and right-monotonicity of their supports Γ (with M = R).

The second pair of related couplings is given by the Left- and Right-Curtain

couplings PLC , PRC introduced in [13] where martingale transport is studied; that is,

the given marginals are in convex order and the transports are martingales. Indeed,

these couplings are special cases of
→
P and

←
P that arise when the marginals µ ≤cd ν

have the same barycenter—this corresponds to the fact that a supermartingale with

constant mean is a martingale and vice versa. In that case, the first-order properties

turn out to be irrelevant: in the shadow construction, the barycenter is constant and

hence only the variance needs to be minimized; the condition for the reward functions

is fxyy > 0 (or < 0), and the second-order monotonicity property of Γ alone describes

the support. As we shall see, it is the interaction between the first and second-order

properties as well as the set M that generates the rich structure of
→
P and

←
P .

Turning to
→
P in Figure 2.1, the first observation is that there are only two types

of transport kernels. On the left,
→
P uses martingale kernels of the Left-Curtain

type: each point on the x-axis is mapped to two points on the y-axis, and any two

points x, x′ satisfy the condition of second-order left-monotonicity. On the right, the

transport is of Monge-type (each point x is mapped to a single point y) and has the

structure of an Antitone coupling: any two paths intersect, which is the first-order

right-monotonicity property. On the strength of the same property, points x in the

portion to the right (thus not in M) can further be divided into two groups—the

14



left group is mapped to points y to the right of the destinations of the martingale

points, and vice versa. These facts about
→
P are true not only in our example, but

for arbitrary atomless marginals µ ≤cd ν; see Remark 2.9.7.

Let us now turn to
←
P in Figure 2.2. Similarly as before, we observe two types of

paths; the Right-Curtain and the Hoeffding–Fréchet kernels. However, the intervals

of martingale and deterministic transport alternate twice—there is no longer a unique

phase transition; in general, there can be countably many transitions. On the other

hand, the order of the intervals is now preserved by the transport—this corresponds to

the combination of the first- and second-order properties. These two differences show

that the geometries of
←
P and

→
P differ fundamentally and suggest that one cannot

obtain one coupling from the other by a transformation of the marginals. By con-

trast, it is well known that PAT can be constructed from PHF via the transformation

(x, y) 7→ (x,−y), whereas PRC can be obtained from PLC via (x, y) 7→ (−x,−y).

One common feature of
→
P and

←
P is that each consists of an optimal martin-

gale transport and an optimal (unconstrained) Monge–Kantorovich transport. That

turns out to be a general fact: a result that we call Extremal Decomposition (Corol-

lary 2.5.3) states that given an optimal supermartingale transport P for an arbitrary

reward function f , the restriction of P to M ×R is an optimal martingale transport

and the restriction to M c × R is an optimal Monge–Kantorovich transport between

its own marginals. (These marginals, however, are not easily determined a priori.)

Finally, let us mention two descriptions of
→
P and

←
P that suggest themselves (at

least under additional conditions) but are not discussed in this paper. First, one

may expect a purely analytic construction based on ordinary differential equations

15



involving the distribution functions of the marginals. Second, one may represent the

couplings as solutions to Skorokhod embedding problems with µ and ν as initial and

target distributions. These descriptions will be provided in future contributions.

Methodology and Literature

Most of our results are based on the study of the optimal transport problem (2.1.1).

We analyze this problem for general, Borel-measurable reward functions f , formulate

a corresponding dual problem and establish strong duality; i.e., absence of a dual-

ity gap and existence of dual optimizers. A formal application of Lagrange duality

suggests to consider triplets ϕ ∈ L1(µ), ψ ∈ L1(µ), h : R→ R+ such that

ϕ(x) + ψ(y) + h(x)(y − x) ≥ f(x, y), (x, y) ∈ R2 (2.1.3)

and define the dual value as inf{µ(ϕ) + ν(ψ)}, where the infimum is taken over all

triplets. Indeed, ϕ and ψ are Lagrange multipliers for the constraints µ and ν, whereas

h(x)(y − x) with h ≥ 0 represents the supermartingale constraint EP [Y |X] ≤ X.

While the corresponding duality for standard transport (without h) is valid by the

celebrated result of [66], the dual problem for the supermartingale case needs to

be relaxed in three ways to avoid a duality gap and ensure dual existence (Theo-

rem 2.4.11). Namely, the range of h needs to be widened on parts of the state space,

the integrability of ϕ and ψ needs to be loosened, and the inequality (2.1.3) needs to

be relaxed on paths (x, y) that are not used by any transport (see Section 2.10 for per-

tinent counterexamples). In particular, it is important to classify all obstructions to

16



supermartingale couplings; i.e., “barriers” that cannot be crossed (Proposition 2.3.2).

Remarkably, there are no barriers beyond a specific point as soon as the barycenters

of the marginals are not identical.

For the martingale transport, a related duality theory was provided in [16]. In

that case, the barycenters of the marginals agree and the compactness arguments

underlying the duality focus on controlling the convexity of certain functions. While

we shall greatly benefit from those ideas, the supermartingale case requires us to

control simultaneously first and second order properties (slope and convexity) which

gives rise to substantial differences on the technical side; in fact, it turns out that

controlling the slope necessitates a nontrivial increment between the barycenters of

µ and ν.

Strong duality results in a monotonicity principle (Theorem 2.5.2) along the lines

of the c-cyclical monotonicity condition of classical transport (e.g., [4, Theorem 2.13]):

a variational result linking the optimality of a transport to the pointwise properties

of its support. This principle is our main tool to study the couplings
→
P and

←
P , par-

allel to the celebrated variational principle for the martingale case in [13] which has

pioneered the idea that concepts similar to cyclical monotonicity can be developed

beyond the classical transport setting. In the supermartingale transport problem,

the monotonicity principle has a novel form describing a pair (Γ,M) of sets as in

Theorem 2.1.3 rather than the support Γ alone. The set M enters the variational

formulation by determining the class of competitors, much like it determines which

paths are subject to the first-order monotonicity condition, and turns out to be fun-

damental in determining the geometries of
→
P and

←
P .
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As a variational result, the monotonicity principle necessitates knowing a priori

that an optimal transport exists. We show that a supermartingale Spence–Mirrlees

function f is automatically continuous (Proposition 2.9.2) in a tailor-made topology

that is coarse enough to preserve weak compactness of S(µ, ν), and that yields the

required existence. This result, together with the purely geometric formulation of

the Spence–Mirrlees conditions (Definition 2.7.1), also improves the literature on

martingale transport [13, 51, 62] where a range of assumptions is imposed on f both

to ensure existence and to express the Spence–Mirrlees condition in terms of partial

derivatives or a specific functional form; cf. Corollary 2.9.5. A second generalization

is that Theorem 2.1.2 remains true if the Spence–Mirrlees condition (2.1.2) is satisfied

in the non-strict sense, except that the optimizer need not be unique.

With the appropriate definitions in place, the proofs of Theorems 2.1.2 and 2.1.3

are then applications of the monotonicity principle that are based on the interplay

between the first- and second-order monotonicity and Spence–Mirrlees conditions,

and the structure of the set M . The construction of
→
P and

←
P with the minimality

property of Theorem 2.1.1 rests on the precise understanding of the shadow of a single

atom (Lemma 2.6.3) and compactness arguments. This construction is independent

of the other results; it draws from a similar construction in [13] for the convex order.

Technical steps aside, the main difference is that the barycenter of the shadow is part

of the optimization rather than being fixed a priori by a martingale condition.

To the best of our knowledge, supermartingale couplings have not been specifically

studied in the extant literature. However, as indicated above, martingale optimal

transport has received considerable attention since it was introduced in [9] and [43].
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In particular, [13, 51, 58, 59, 62] study optimal martingale transports between two

marginals for specific cost functions; the martingale Spence–Mirrlees condition in the

form fxyy > 0 appears for the first time in [51], generalizing the functional form used

in [13].

Martingale optimal transport is motivated by considerations of model uncertainty

in financial mathematics. If, in the financial context, dynamic hedging is restricted

by a no-shorting constraint, the dual problem is supermartingale transport. Thus,

it can be seen as a special case of the dual problem in [41] where general portfolio

constraints are studied. For background on Monge–Kantorovich transport, we refer

to [4, 75, 76, 86, 85]. Recently, a rich literature has emerged around martingale

transport and model uncertainty; see [57, 73, 84] for surveys and, e.g., [3, 15, 22, 23,

24, 25, 34, 41, 44, 45, 46, 70, 87] for models in discrete time, [19, 21, 27, 28, 37, 35,

36, 52, 50, 56, 68, 69, 81, 83] for continuous time, and [7, 10, 11, 26, 29, 47, 48, 49,

54, 55, 63, 74] for related Skorokhod embedding and mimicking problems.

The remainder of this paper is organized as follows. While Section 2.2 recalls basic

facts related to the convex-decreasing order, Section 2.3 contains a complete descrip-

tion of the barriers to supermartingale couplings and more precisely, the structure of

S(µ, ν)-polar sets. After these preparations, Section 2.4 presents a complete duality

theory for Borel reward functions, and Section 2.5 formulates the resulting mono-

tonicity principle. Section 2.6 introduces the couplings
→
P and

←
P via the shadow

construction. In Section 2.7, we propose the Spence–Mirrlees conditions for reward

functions and show via the monotonicity principle that the associated optimal trans-

ports are supported on sets (Γ,M) satisfying corresponding monotonicity properties.
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Section 2.8 continues the analysis by showing that any coupling supported on such sets

must coincide with
→
P or

←
P , respectively. In Section 2.9, we close the circle: Spence–

Mirrlees functions are shown to admit optimal transports and on the strength of the

duality theory, that allows us to conclude the existence of suitable sets (Γ,M). The

main theorems stated in the Introduction then follow. The concluding Section 2.10

collects a number of counterexamples.

2.2 Preliminaries

It will be useful to consider finite measures, not necessarily normalized to be prob-

abilities. Let µ, ν be finite measures on R with finite first moment. Extending the

notation from the Introduction, we write Π(µ, ν) for the set of all couplings; i.e.,

measures P on R2 such that P ◦X−1 = µ and P ◦ Y −1 = ν, where (X, Y ) : R2 → R2

is the identity. Moreover, S(µ, ν) is the subset of all P ∈ Π(µ, ν) which are su-

permartingales; i.e.,
∫
Y 1A(X) dP ≤

∫
X1A(X) dP for all A ∈ B(R), and finally

M(µ, ν) consist of all P ∈ Π(µ, ν) satisfying this condition with equality.

We say that µ and ν are in convex-decreasing order, or second stochastic order,

denoted µ ≤cd ν, if µ(φ) ≤ ν(φ) for any convex, nonincreasing function φ : R→ R. It

then follows that µ and ν have the same total mass; moreover, we shall use repeatedly

that it suffices to check the inequality for functions φ of linear growth. An alternative

characterization of this order refers to the put (price) function, defined by

pµ : R→ R, pµ(t) :=

∫
(t− s)+ µ(ds).

20



Writing bary(µ) := (
∫
x dµ)/µ(R) for the barycenter (with bary(µ) := 0 if µ = 0)

and ∂±pµ for the right and left derivatives, the following properties are easily verified:

(i) pµ is nonnegative, increasing2 and convex,

(ii) ∂+pµ(t)− ∂−pµ(t) = µ({t}),

(iii) limt→−∞ pµ(t) = 0 and limt→∞ pµ(t) =∞1µ6=0,

(iv) limt→∞{pµ(t)− µ(R)[t− bary(µ)]} = 0.

In particular, we may extend pµ continuously to R = [−∞,∞]. The following

result is classical; see, e.g., [42, Theorem 2.58].

Proposition 2.2.1. Let µ, ν be finite measures on R with finite first moment and

µ(R) = ν(R). The following are equivalent:

(i) µ ≤cd ν,

(ii) pµ ≤ pν,

(iii) S(µ, ν) 6= ∅,

(iv) there exists a stochastic kernel κ(x, dy) with finite mean such that
∫
y κ(x, dy) ≤

x for all x ∈ R and ν = (µ⊗ κ) ◦ Y −1.

In all that follows, the statement µ ≤cd ν implicitly means that µ, ν are finite

measures on R with finite first moment. Moreover, such a pair and the corresponding

supermartingale optimal transport problem will be called proper if the barycenters

of µ and ν do not coincide. In the improper case, the problem degenerates to a

martingale optimal transport problem because any supermartingale with constant

2Throughout this paper, increasing means nondecreasing.
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mean is a martingale. Indeed, let us convene that µ and ν are in convex order,

denoted µ ≤c ν, if µ(φ) ≤ ν(φ) for any convex function φ : R → R, and introduce

the symmetric potential function

uµ : R→ R, uµ(t) :=

∫
|t− s|µ(ds).

Given µ ≤cd ν, the following are then equivalent:

(a) bary(µ) = bary(ν),

(b) µ ≤c ν,

(c) uµ ≤ uν ,

(d) M(µ, ν) 6= ∅,

(e) the kernel κ in (iv) can be chosen with
∫
y κ(x, dy) = x for all x ∈ R.

2.3 Barriers and Polar Sets

We fix µ ≤cd ν throughout this section. Our first aim is to characterize all points

x ∈ R which cannot be crossed by any supermartingale transport P ∈ S(µ, ν).

Definition 2.3.1. A point x ∈ R is called a barrier if Y ≤ x P -a.s. on {X ≤ x} and

Y ≥ x P -a.s. on {X ≥ x}, for all P ∈ S(µ, ν).

We may note that ±∞ are always barriers. The following result not only shows

how barriers can be described as points where the put functions touch, but also

introduces a particular barrier x∗ which divides the real line into two parts: To the

left of x∗, the supermartingale transport problem is in fact just a martingale transport
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problem. To the right of x∗, we have a proper supermartingale transport problem

and there are no non-trivial barriers. The convention sup ∅ = −∞ is used.

Proposition 2.3.2. Define x∗ := sup{x ∈ R : pµ(x) = pν(x)} ∈ R. Then

(i) x∗ is a barrier and pµ(x∗) = pν(x
∗),

(ii) a point x ∈ [−∞, x∗) is a barrier if and only if pµ(x) = pν(x),

(iii) if x ∈ (x∗,∞] is a barrier then µ(x,∞) = ν(x,∞) = 0.

Moreover, x∗ is the maximal barrier x ∈ R such that P |{X<x} is a martingale transport

for some (and then all) P ∈ S(µ, ν).

The reverse implication in (iii) is almost true: a point x with µ(x,∞) = ν(x,∞) =

0 is not crossed by any transport. However, if µ has an atom at x, this mass may be

transported to (−∞, x) and then x does not satisfy our definition of a barrier which

is chosen so that any mass at the barrier remains invariant.

Before reporting the proof in Section 2.3, we use the above result to character-

ize the polar sets and the irreducible components of the supermartingale transport

problem.

Definition 2.3.3. The pair µ ≤cd ν is irreducible if the set I = {pµ < pν} is connected

and µ(I) = µ(R). In this situation, let J be the union of I and any endpoints of I

that are atoms of ν; then (I, J) is the domain of (µ, ν).

This definition coincides with the notion of [13, 16] in the context of martingale

transport. More precisely, for x < x∗, we have pµ(x) = pν(x) if and only if uµ(x) =

uν(x).
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In the general case, the supermartingale transport problem will be decomposed

into at most countably many irreducible components. There is a barrier between any

two components so that they do not interact. Moreover, the components are minimal

in that they do not contain (non-trivial) barriers. In the case where µ and ν are

discrete measures, this amounts to saying that within a component, any atom of µ is

connected to any atom of ν by some supermartingale transport. In the general case,

this is made precise by saying that the polar sets of S(µ, ν) within a component are

precisely the ones of Π(µ, ν). We recall that a set is called polar for a family P of

measures if it is P -null for all P ∈ P .

I2 × J2

I1 × J1

I0 × J0

x∗

Figure 2.4: Illustration of two martingale components, separated from the super-
martingale component I0 × J0 by the maximal barrier x∗.

Proposition 2.3.4. Let µ ≤cd ν, let I0 = (x∗,∞) and let (Ik)1≤k≤N be the (open)

components of {pµ < pν} ∩ (−∞, x∗), where N ∈ {0, 1, . . . ,∞}.

(i) Set I−1 = R \ ∪k≥0Ik and µk = µ|Ik for k ≥ −1, so that µ =
∑

k≥−1 µk. Then,
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there exists a unique decomposition ν =
∑

k≥−1 νk such that

µ−1 = ν−1 and µ0 ≤cd ν0 and µk ≤c νk for all k ≥ 1.

Moreover, this decomposition satisfies Ik = {pµk < pνk} for all k ≥ 0; i.e.,

each such pair (µk, νk) is irreducible. Finally, any P ∈ S(µ, ν) admits a unique

decomposition P =
∑

k≥−1 Pk such that P0 ∈ S(µ0, ν0) and Pk ∈ M(µk, νk) for

all k 6= 0.

(ii) Let B ⊆ R2 be a Borel set. Then B is S(µ, ν)-polar if and only if there exist a

µ-nullset Nµ and a ν-nullset Nν such that

B ⊆ (Nµ × R) ∪ (R×Nν) ∪

(
∆ ∪

⋃
k≥0

Ik × Jk

)c

,

where ∆ = {(x, x) ∈ R2 : x ∈ R} is the diagonal.

Proofs of Propositions 2.3.2 and 2.3.4

We begin with the proof of Proposition 2.3.2, stated through a sequence of lemmas.

We may assume that µ and ν are probability measures.

Lemma 2.3.5. Let x ∈ R. If pµ(x) = pν(x), then x is a barrier.

Proof. Let pµ(x) = pν(x) and let E[ · ] be the expectation associated with an arbitrary

P ∈ S(µ, ν). Using E[Y |X] ≤ X and Jensen’s inequality,

(x−X)+ ≤ (x− E[Y |X])+ ≤ E[(x− Y )+|X],
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and since pµ(x) = pν(x) means that E[(x−X)+] = E[(x− Y )+], it follows that

(x−X)+ = E[(x− Y )+|X].

As a first consequence, we have

E[(x− Y )+1X≥x] = E[(x−X)+1X≥x] = 0

and hence Y ≥ x P -a.s. on {X ≥ x}. A second consequence is that

E[(x− Y )1X≤x] ≤ E[(x− Y )+1X≤x] = E[(x−X)+1X≤x].

Since E[Y |X] ≤ X implies

E[(x− Y )1X≤x] ≥ E[(x−X)1X≤x] = E[(x−X)+1X≤x],

it follows that E[(x− Y )1X≤x] = E[(x− Y )+1X≤x] and thus Y ≤ x P -a.s. on {X ≤

x}.

Lemma 2.3.6. Let x ∈ R be a barrier. The following are equivalent:

(i) EP [X1X<x] = EP [Y 1X<x] for some (and then all) P ∈ S(µ, ν).

(ii) P |{X<x} is a martingale transport for some (and then all) P ∈ S(µ, ν).

Proof. If (i) holds for some P ∈ S(µ, ν), then (ii) holds for the same P since a

supermartingale with constant mean is a martingale, and the converse holds as any
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martingale has constant mean. We complete the proof by showing that if (i) holds for

one P ∈ S(µ, ν), it necessarily holds for all elements of S(µ, ν). The cases x = ±∞

are clear, so let x ∈ R.

Let P ∈ S(µ, ν) and let ν ′ be the second marginal of P ′ := P |{X<x}. As x is a

barrier, we have ν ′ = ν on (−∞, x). If P̄ ∈ S(µ, ν) is arbitrary and P̄ ′, ν̄ ′ are defined

analogously, we have ν̄ ′ = ν = ν ′ on (−∞, x) by the same reasoning. But then also

ν ′({x}) = ν̄ ′({x}), since this is the remaining mass transported from (−∞, x):

ν ′({x}) = µ(−∞, x)− ν ′(−∞, x) = µ(−∞, x)− ν̄ ′(−∞, x) = ν̄ ′({x}).

As a result, ν̄ ′ = ν ′ on (−∞, x]. In particular, P̄ ′ satisfies (i) whenever P does.

Next, we define x∗ ∈ R by

x∗ := sup
{
x ∈ R : pµ(x) = pν(x), E[X1X<x] = E[Y 1X<x]

}
,

where the expectation is taken under an arbitrary P ∈ S(µ, ν). Indeed, Lemmas 2.3.5

and 2.3.6 show that the definition is independent of the choice of P . Only a posteriori

shall we see that x∗ = x∗ is the quantity defined in Proposition 2.3.2; i.e., that the

second condition in the definition of x∗ is actually redundant.

Lemma 2.3.7. We have pµ(x∗) = pν(x∗) and E[X1X<x∗ ] = E[Y 1X<x∗ ].

Proof. The claim is trivial if x∗ = −∞. Otherwise, it suffices to observe that pµ(x),

pν(x), E[X1X<x], E[Y 1X<x] are continuous in x along increasing sequences. This
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follows by monotone/dominated convergence; recall that the elements of S(µ, ν) have

a finite first moment.

Lemma 2.3.8. Let x ∈ R be a barrier such that P |{X<x} is a martingale transport

for some P ∈ S(µ, ν). Then pµ(x) = pν(x).

Proof. The cases x = ±∞ are clear, so let x ∈ R. The martingale property yields

that

pµ(x) = E[(x−X)1X<x] = E[(x− Y )1X<x].

Since Y ≤ x P -a.s. on {X < x} and {Y < x} ⊆ {X < x} P -a.s.,

E[(x− Y )1X<x] = E[(x− Y )+1X<x] ≥ E[(x− Y )+1Y <x] = pν(x).

Thus, pµ(x) ≥ pν(x). As the converse inequality is always true, we deduce that

pµ(x) = pν(x).

The following completes the proof of Proposition 2.3.2(ii) modulo the identity

x∗ = x∗.

Corollary 2.3.9. Let x ∈ [−∞, x∗] be a barrier. Then pµ(x) = pν(x).

Proof. We may assume that x ∈ R, which entails x∗ > −∞. Lemmas 2.3.6 and 2.3.7

show that the restriction of any P ∈ S(µ, ν) to {X < x∗} is a martingale transport.

As x ≤ x∗, the same holds for the restriction to {X < x}, and now Lemma 2.3.8

applies.

Lemma 2.3.10. If x̄ ∈ (x∗,∞] is a barrier, then µ(x̄,∞) = ν(x̄,∞) = 0.
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Proof. The case x̄ = ∞ is clear. Let x̄ ∈ (x∗,∞) be a barrier and suppose for

contradiction that µ(x̄,∞) > 0 or ν(x̄,∞) > 0.

Case 1: ν(x̄,∞) > 0. We shall contradict the barrier property by constructing an

element of S(µ, ν) which transports mass from (−∞, x̄) to (x̄,∞), and vice versa.

Let P ∈ S(µ, ν) be arbitrary and let P = µ⊗ κ be a disintegration such that for

all x < x̄, we have bary(κ(x)) ≤ x and κ(x, dy) is concentrated on (−∞, x̄] but not on

{x̄}; these choices are possible due to the barrier and the supermartingale property.

For each x ∈ (−∞, x̄), let ε(x) ∈ [0, 1] be the largest number such that

κ′(x) := (1− ε(x))κ(x)|(−∞,x̄) + ε̃(x)ν|(x̄,∞) + κ(x)|{x̄}

satisfies bary(κ′(x)) ≤ x; here ε̃(x) is the unique constant such that κ′(x) is a proba-

bility measure. This defines a stochastic kernel with the properties

κ′(x){x̄} = κ(x){x̄} for all x, κ′(x)[x̄,∞) > κ(x)[x̄,∞) if ε(x) > 0.

Moreover, ε > 0 on a set of positive µ-measure, as otherwise P |{X<x̄} is a martingale

transport which would contradict x̄ > x∗ (Lemma 2.3.8). Let ν2 be the restriction to

(x̄,∞) of the second marginal of

µ|(−∞,x̄) ⊗ κ′.

By truncating the above function ε(·) at some positive constant ε̄, we may assume that

ν2 ≤ ν while retaining the other properties. Thus, we can define a measure µ2 ≤ µ by
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taking the preimage of ν2 under P (obtained by disintegrating P = ν(dy)⊗ κ̂(y, dx)

and taking µ2 to be the first marginal of ν2(dy)⊗ κ̂(y, dx)). Moreover, let ν1 be the

restriction to (−∞, x̄) of the second marginal of

µ|(−∞,x̄) ⊗ κ − µ|(−∞,x̄) ⊗ κ′.

Then c := ν1(R) = µ2(R) and by construction,

µ|(−∞,x̄) ⊗ κ′ + (µ|[x̄,∞) − µ2)⊗ κ + c−1µ2 ⊗ ν1

is an element of S(µ, ν). Since µ(−∞, x̄) > 0 and ν(x̄,∞) > 0, it transports mass

across x̄, contradicting that x̄ is a barrier.

Case 2: µ(x̄,∞) > 0 and ν(x̄,∞) = 0. Note that in this case, ν|[x̄,∞) is con-

centrated at x̄ and the entire mass µ(x̄,∞) > 0 is transported to that atom by any

P ∈ S(µ, ν), in addition to any mass coming from (−∞, x̄]. We shall contradict the

barrier property by constructing an element of S(µ, ν) which transports mass from

(x̄,∞) to (−∞, x̄); this will be balanced by moving appropriate mass from (−∞, x̄)

to {x̄}.

Let P ∈ S(µ, ν) be arbitrary and let κ be as above. For each x ∈ (−∞, x̄), let

ε(x) ∈ [0, 1] be the largest number such that

κ′(x) := (1− ε(x))κ(x)|(−∞,x̄) + ε̃(x)ν|{x̄}

satisfies bary(κ′(x)) ≤ x; again, ε̃(x) is the unique constant such that κ′(x) is a
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probability measure. This defines a stochastic kernel with

κ′(x){x̄} ≥ κ(x){x̄} for all x, κ′(x){x̄} > κ(x){x̄} if ε(x) > 0,

and again, ε > 0 on a set of positive µ-measure. Let ν2 be the restriction to {x̄} of

the second marginal of

µ|(−∞,x̄) ⊗ κ′ − µ|(−∞,x̄) ⊗ κ.

After truncating ε(·) we again have ν2 ≤ ν; recall that P transports the mass

µ(x̄,∞) > 0 to x̄. Continuing the construction as above, the latter property shows

that µ2(x̄,∞) > 0, and thus the barrier property is again contradicted.

Corollary 2.3.11. We have pµ < pν on (x∗,∞) and hence

x∗ = sup{x ∈ R : pµ(x) = pν(x)} ≡ x∗.

Proof. Let x ∈ (x∗,∞) and suppose that pµ(x) = pν(x). In view of Lemma 2.3.5, x

is a barrier, and now Lemma 2.3.10 yields that

E[x−X] = E[(x−X)1X≤x] = pµ(x) = pν(x) = E[(x− Y )1Y≤x] = E[x− Y ]

and thus E[X] = E[Y ]. It follows that E[X1X<x] = E[Y 1X<x] and hence x ≤ x∗ by

the definition of x∗, a contradiction.
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Proof of Proposition 2.3.2. In view of Corollary 2.3.11, Proposition 2.3.2 is a conse-

quence of Lemmas 2.3.5, 2.3.7, 2.3.10 and Corollary 2.3.9.

Proof of Proposition 2.3.4(i). According to Proposition 2.3.2, we face a pure martin-

gale transport problem on (−∞, x∗]; in particular, we may apply the decomposition

result of [13, Theorem 8.4] on this part of the state space to obtain νk and Pk for

k ≥ 1. Since x∗ is itself a barrier by Proposition 2.3.2, the only possible choice for ν0

is

ν0 = ν|(x∗,∞) + [µ(x∗,∞)− ν(x∗,∞)]δx∗ ,

and this measure satisfies µ0 ≤cd ν0.

The following is the main step towards the proof of the second part of Proposi-

tion 2.3.4.

Lemma 2.3.12. If µ ≤cd ν is irreducible, the Π(µ, ν)-polar sets and the S(µ, ν)-polar

sets coincide.

Proof. If µ and ν have the same barycenter, then S(µ, ν) = M(µ, ν) and this is

the result of [16, Corollary 3.4]. Thus, we may assume that (µ, ν) is proper. By

Proposition 2.3.2, the associated domain (I, J) satisfies I = (x∗,∞) for some x∗ ∈

[−∞,∞), while J = I if ν({x∗}) = 0 (including the case x∗ = −∞) and J = [x∗,∞)

if ν({x∗}) > 0.

Since S(µ, ν) ⊆ Π(µ, ν), it suffices to show that for any π ∈ Π(µ, ν) there exists

P ∈ S(µ, ν) such that P � π. Let us show more generally that

for any measure π on R2 with marginals π1 ≤ µ and π2 ≤ ν

32



there exists P ∈ S(µ, ν) such that P � π.

While π is necessarily supported by I×J , we shall prove the claim under the additional

condition that π is concentrated on a compact rectangle K ×L ⊂ I × J . This entails

no loss of generality: a general π may be decomposed into a sum π =
∑

n π
n of

measures satisfying this condition, and if P n are the corresponding supermartingale

measures, P =
∑

n 2−nP n satisfies the claim.

The definition of (I, J) implies that ν assigns positive mass to any neighborhood of

the lower endpoint x∗ of J . More precisely, we can find a compact set B ⊂ J , located

entirely to the left of K ⊂ I, such that ν(B) > 0. (If ν({x∗}) > 0 we can simply take

B = {x∗}.) Consider a disintegration π = π1 ⊗ κ where κ(x, dy) is concentrated on

L for all x ∈ K. We introduce another stochastic kernel κ′ of the form

κ′(x, dy) =
κ(x, dy) + ε(x)ν(dy)|B

c(x)
.

Here c(x) ≥ 1 is the normalizing constant such that κ′(x, dy) is a stochastic kernel.

Moreover, ε(x) := 0 for x such that bary(κ(x)) ≤ x, whereas for x with bary(κ(x)) >

x we let ε(x) be the unique positive number such that bary(κ′(x)) = x—this number

exists by the intermediate value theorem; note that B is located to the left of x ∈ K.

By construction,

π′ := ν(B)π1 ⊗ κ′

is a supermartingale measure with π′ � π and its marginals satisfy π′1 ≤ π1 ≤ µ as

well as π′2 ≤ ν; the latter is due to π1(R) ≤ µ(R) = 1 and κ′(x) ≤ ν(B)−1 ν|B + κ(x)
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and κ(x) being concentrated on Bc. We also note that

π′ is concentrated on a quadrant of the form [k,∞)2 (2.3.1)

with [k,∞) ⊆ J ; here k ∈ R is determined by the lower bound of the set B. We shall

complete the proof by constructing P ∈ S(µ, ν) such that P � π′.

(i) We first consider the case where ν({x∗}) = 0 and hence I = J = (x∗,∞) and

k > x∗. Using that pν − pµ is continuous, strictly positive on I and

lim
t→∞

pν(t)− pµ(t) = µ(R)[bary(ν)− bary(µ)] > 0,

we see that pν − pµ is uniformly bounded away from zero on [k,∞). On the other

hand, pπ′2 − pπ′1 is uniformly bounded on [k,∞) since

lim
t→∞

pπ′2(t)− pπ′1(t) = π′1(R)[bary(π′1)− bary(π′2)] <∞.

As a result, there exists ε > 0 such that

pµ − εpπ′1 ≤ pν − εpπ′2

on [k,∞), but then also on R because pπ′1 = pπ′2 = 0 outside of [k,∞) due to (2.3.1).

Noting that this inequality may also be stated as

pµ−επ′1 ≤ pν−επ′2 ,
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Proposition 2.2.1 shows that there exists some P ′ ∈ S(µ − επ′1, ν − επ′2), and we

complete the proof by setting P := P ′ + επ′1(R)−1π′.

(ii) In the case ν({x∗}) > 0 we need to argue differently that there exists ε > 0

such that pµ − εpπ′1 ≤ pν − εpπ′2 on [k,∞). By enlarging [k,∞), we may assume that

k = x∗ is the left endpoint of J . As µ(I) = µ(R) = ν(J),

∂+pµ(x∗) = ∂+pµ(x∗)− ∂−pµ(x∗) = µ({x∗}) = 0

and similarly

∂+pπ′1(x
∗) = 0, ∂+pπ′2(x

∗) = π′2({x∗}), ∂+pν(x
∗) = ν({x∗}) > 0.

Since ν({x∗}) ≥ π′2({x∗}), it follows that

0 6= ∂+(pν − pµ)(x∗) ≥ ∂+(pπ′2 − pπ′1)(x
∗).

The existence of the desired ε > 0 then follows and the rest of the argument is as in

(i).

Proof of Proposition 2.3.4(ii). By the decomposition in Proposition 2.3.4(i) and Lemma 2.3.12,

a Borel set B ⊆ R2 is S(µ, ν)-polar if and only if B∩(Ik×Jk) is Π(µk, νk)-polar for all

k ≥ 0 and B∩∆ is P−1-null. It remains to apply the result of [18, Proposition 2.1] for

each k ≥ 0: a Borel set Bk is Π(µk, νk)-polar if and only if Bk ⊆ (Nµk×R)∪(R×Nνk)

for corresponding nullsets Nµk and Nνk .
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2.4 Duality Theory

In this section, we introduce and analyze a dual problem for supermartingale optimal

transport. We shall prove that this problem admits an optimizer and that there is

no duality gap.

Integration on a Proper Irreducible Component

We first introduce the notion of integrability that will be used for the dual elements.

Let µ ≤cd ν be proper and irreducible with domain (I, J), and let χ : J → R be

a concave increasing function. Since χ+ has linear growth, µ(χ) and ν(χ) are well

defined in [−∞,∞). In what follows, we give a meaningful definition of the difference

µ(χ)− ν(χ) in cases where both terms are infinite. We write χ′ for the left derivative

of χ, with the convention that χ′(∞) := limt→∞ χ
′(t) = inft∈I χ

′(t), and −χ′′ for

the second derivative measure of the convex function −χ on I. Finally, recall that

I = (x∗,∞). If ν has an atom at x∗, then χ may have a jump at x∗ and we denote

its magnitude by

∆χ(x∗) := χ(x∗+)− χ(x∗) ∈ R+.

Lemma 2.4.1. Let µ ≤cd ν be proper and irreducible with domain (I, J), let χ : J →

R be a concave increasing function, and let P = µ ⊗ κ be an arbitrary element of
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S(µ, ν). Then

(µ− ν)(χ) :=

∫
I

[
χ(x)−

∫
J

χ(y)κ(x, dy)

]
µ(dx)

= χ′(∞)[bary(µ)− bary(ν)] +

∫
I

(pµ − pν) dχ′′ + ∆χ(x∗)ν({x∗}).

In particular, the definition of (µ− ν)(χ) ∈ [0,∞] does not depend on P .

Proof. We first note that the above integrals are well-defined with values in [0,∞];

indeed, χ(x) −
∫
J
χ(y)κ(x, dy) is nonnegative by Jensen’s inequality and pµ − pν is

nonpositive by Proposition 2.2.1. Moreover, by linearity of the ν-integral, it suffices

to show the claimed identity for continuous χ. Indeed, χ can only have a discontinuity

at x∗, and in that case we may decompose

χ = χ̄−∆χ(x∗)1{x∗}, where χ̄ := χ1I + χ(x∗+)1{x∗}

with χ̄ being continuous, concave and increasing.

We first consider χ ∈ L1(µ) ∩ L1(ν). After fixing an arbitrary point a ∈ I =

(x∗,∞); we may assume without loss of generality that χ(a) = 0 by shifting χ. Then,

by the definition of the second derivative measure,

χ(y) = χ′(a)(y − a) +

∫
(x∗,a)

(t− y)+ χ′′(dt) +

∫
[a,∞)

(y − t)+ χ′′(dt)

for y ∈ I. Using monotone convergence on the right hand side, this extends to y ∈ J

since χ is continuous. Writing B := bary(µ)− bary(ν), integrating this formula over
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J shows that
∫
J
χ(s)(µ− ν)(ds) equals

χ′(a)

∫
J

s (µ− ν)(ds) +

∫
[x∗,a)

∫
(x∗,a)

(t− s)+ χ′′(dt) (µ− ν)(ds)

+

∫
[a,∞)

∫
[a,∞)

(s− t)+ χ′′(dt) (µ− ν)(ds)

= Bχ′(a) +

∫
(x∗,a)

∫
[x∗,a)

(t− s)+ (µ− ν)(ds)χ′′(dt)

+

∫
[a,∞)

∫
[a,∞)

(s− t)+ (µ− ν)(ds)χ′′(dt)

= Bχ′(a) +

∫
(x∗,a)

∫
J

(t− s)+ (µ− ν)(ds)χ′′(dt)

+

∫
[a,∞)

∫
J

(s− t)+ (µ− ν)(ds)χ′′(dt).

Using (s− t)+ = (t− s)+ + s− t in the last integral, this can be rewritten as

Bχ′(a) +

∫
I

(pµ − pν)(t)χ′′(dt) +

∫
[a,∞)

∫
J

s (µ− ν)(ds)χ′′(dt)

= Bχ′(a) +

∫
I

(pµ − pν)(t)χ′′(dt) +Bχ′′[a,∞)

= Bχ′(∞) +

∫
I

(pµ − pν)(t)χ′′(dt),

which completes the proof for χ ∈ L1(µ) ∩ L1(ν).

For general (continuous) χ, let χn = χ on [x∗+ 1/n,∞) and extend χn to J by an

affine function with smooth fit. Then χn is concave, increasing and of linear growth,

thus in L1(µ) ∩ L1(ν), while χn decreases to χ stationarily and χn+1 − χn is concave
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and increasing. Using monotone convergence, we then see that

∫
I

[
χn(x)−

∫
J

χn(y)κ(x, dy)

]
µ(dx)↗

∫
I

[
χ(x)−

∫
J

χ(y)κ(x, dy)

]
µ(dx),

∫
I

(pµ − pν)(t)χ′′n(dt)↗
∫
I

(pµ − pν) dχ′′,

and now the result follows since χ′n(∞) = χ′(∞).

Our next aim is to define expressions of the form µ(ϕ)+ν(ψ) in a situation where

the individual integrals are not necessarily finite. We continue to assume that µ ≤cd ν

is proper and irreducible with domain (I, J).

Definition 2.4.2. Let ϕ : I → R and ψ : J → R be Borel functions. If there exists

a concave increasing function χ : J → R such that ϕ−χ ∈ L1(µ) and ψ+χ ∈ L1(ν),

we say that χ is a moderator for (ϕ, ψ) and set

µ(ϕ) + ν(ψ) := µ(ϕ− χ) + ν(ψ + χ) + (µ− ν)(χ) ∈ (−∞,∞];

this value is independent of the choice of χ. We denote by Lci(µ, ν) the space of all

pairs (ϕ, ψ) which admit a moderator χ such that (µ− ν)(χ) <∞.

Closedness on a Proper Irreducible Component

In this section, we introduce the dual problem for a proper and irreducible pair µ ≤cd ν

with domain (I, J). It will be convenient to work with a nonnegative reward function

f and alleviate this restriction later on (Remark 2.4.12).
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Definition 2.4.3. Let f : I×J → [0,∞]. We denote by Dci,pwµ,ν (f) the set of all Borel

functions (ϕ, ψ, h) : R→ R× R× R+ such that (ϕ, ψ) ∈ Lci(µ, ν) and

ϕ(x) + ψ(y) + h(x)(y − x) ≥ f(x, y), (x, y) ∈ I × J.

We emphasize that in this definition, the inequality is stated in the pointwise

(“pw”) sense.

The following is the key result of this section. We mention that its assertion fails

if (µ, ν) is not proper; cf. Section 2.10 for a counterexample.

Proposition 2.4.4. Let f, fn : I × J → [0,∞] be such that fn → f pointwise and let

(ϕn, ψn, hn) ∈ Dci,pwµ,ν (fn) satisfy supn µ(ϕn) + ν(ψn) <∞. Then, there exist

(ϕ, ψ, h) ∈ Dci,pwµ,ν (f) such that µ(ϕ) + ν(ψ) ≤ lim inf
n

µ(ϕn) + ν(ψn).

For the course of the proof, we abbreviate Dci(f) := Dci,pwµ,ν (f).

Lemma 2.4.5. Let (ϕ, ψ, h) ∈ Dci(0). There exists a moderator χ : J → R for

(ϕ, ψ) such that χ ≤ ϕ on I and −χ ≤ ψ on J . In particular, we have (µ− ν)(χ) ≤

µ(ϕ) + ν(ψ).

Proof. Let P = µ⊗ κ be a disintegration of some P ∈ S(µ, ν). For later use, we first

argue that (ϕ, ψ, h) ∈ Dci(0) implies

∫∫
h(x)(y − x)κ(x, dy)µ(dx) =

∫
h(x)(bary(κ(x))− x)µ(dx) > −∞. (2.4.1)
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(This is quite different from the property that h(X)(Y −X) ∈ L1(P ) which may fail.)

As h ≥ 0 and bary(κ(x)) − x ≤ 0 µ-a.s., the integrals are well-defined. Moreover,

the stated identity is clear. By the assumption (φ, ψ) ∈ Lci(µ, ν) and therefore a

moderator χ̃ exists so that ϕ̃ := ϕ− χ̃ ∈ L1(µ) and ψ̃ := ψ + χ̃ ∈ L1(ν) and

(µ− ν)(χ̃) =

∫∫
[χ̃(x)− χ̃(y)]κ(x, dy)µ(dx) ∈ R+.

We have

ϕ̃(x) + ψ̃(y) + [χ̃(x)− χ̃(y)] ≥ −h(x)(y − x), (x, y) ∈ I × J.

For µ-a.e. x ∈ I, the integral with respect to κ(x, dy) can be computed term-by-term

and that yields

ϕ̃(x) +

∫
ψ̃(y)κ(x, dy) +

∫
[χ̃(x)− χ̃(y)]κ(x, dy) ≥ −h(x)(bary(κ(x))− x).

In view of the stated integrability properties, we may again integrate term-by-term

with respect to µ and obtain

µ(ϕ̃) + ν(ψ̃) + (µ− ν)(χ̃) ≥ −
∫
h(x)(bary(κ(x))− x)µ(dx).

The left-hand side is finite by the assumption that (φ, ψ) ∈ Lci(µ, ν), so the claim (2.4.1)
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follows. Summarizing the above for later reference, we have

P [ϕ(X) + ψ(Y ) + h(X)(Y −X)]

= P [ϕ̃(X) + ψ̃(Y ) + (χ̃(x)− χ̃(y)) + h(X)(Y −X)]

= µ(ϕ) + ν(ψ) +

∫∫
h(x)(y − x)κ(x, dy)µ(dx) ∈ R, (2.4.2)

where the application of Fubini’s theorem in the second equality is justified by the

nonnegativity of the integrand.

We now move on to the main part of the proof. The function

χ(y) := inf
x∈I

[ϕ(x) + h(x)(y − x)], y ∈ J

is concave and increasing as an infimum of affine and increasing functions. As (ϕ, ψ) ∈

Lci(µ, ν), we have ϕ <∞ on a nonempty set, thus χ <∞ everywhere on J . Moreover,

χ ≤ ϕ on I by the definition of χ. Our assumption that

ϕ(x) + ψ(y) + h(x)(y − x) ≥ 0, (x, y) ∈ I × J (2.4.3)

shows that χ ≥ −ψ on J . Since (ϕ, ψ) ∈ Lci(µ, ν), the set {ψ < ∞} is dense in

supp(ν), and by concavity it follows that χ > −∞ on the interior of the convex hull

of supp(ν). As χ is increasing, it follows that χ > −∞ on I. Moreover, {ψ < ∞}

must contain any atom of ν and in particular J \ I, so that χ > −∞ on J .

Set ϕ̄ := ϕ−χ ≥ 0 and ψ̄ := ψ+χ ≥ 0. By the first part of the proof, the iterated
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integral with respect to κ and µ of the function

ϕ(x) + ψ(y) + h(x)(y − x) = ϕ̃(x) + ψ̃(y) + [χ̃(x)− χ̃(y)] + h(x)(y − x)

is finite. The function

ϕ̄(x) + ψ̄(y) + [χ(x)− χ(y)] + h(x)(y − x) (2.4.4)

is identical to the above; therefore, the iterated integral of (2.4.4) is again finite. For

fixed x ∈ I, all four terms in (2.4.4) are bounded from below by linearly growing

functions. It follows that for µ-a.e. x ∈ I, the integral with respect to κ(x, dy) can

be computed term-by-term, which yields

ϕ̄(x) +

∫
ψ̄(y)κ(x, dy) +

∫
[χ(x)− χ(y)]κ(x, dy) + h(x)(bary(κ(x))− x).

The first three terms are nonnegative, and the last term is known to be µ-integrable

by the first part of the proof. Thus, we may again integrate term-by-term with respect

to µ. In conclusion, the iterated integral of (2.4.4), which was already determined to

be finite, may also be computed term-by-term. In particular, we deduce that

µ(ϕ̄) <∞, ν(ψ̄) <∞, (µ− ν)(χ) <∞,
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showing that (ϕ̄, ψ̄) ∈ Lci(µ̄, ν̄) with concave moderator χ, and

µ(ϕ) + ν(ψ) = µ(ϕ̄) + ν(ψ̄) + (µ− ν)(χ) ≥ (µ− ν)(χ)

as desired.

Our last tool for the proof of Proposition 2.4.4 is a compactness principle for

concave increasing functions. We mention that the conclusion fails if the pair µ ≤cd ν

is not proper: a nontrivial difference between the barycenters is needed to control the

first derivatives.

Proposition 2.4.6. Let a = bary(µ) and let χn : J → R be concave increasing

functions such that

χn(a) = 0 and sup
n≥1

(µ− ν)(χn) <∞.

There exists a subsequence χnk which converges pointwise on J to a concave increasing

function χ : J → R such that (µ− ν)(χ) ≤ lim infk(µ− ν)(χnk).

Proof. By our assumption, (µ− ν)(χn) is bounded uniformly in n. Since bary(µ) >

bary(ν), the second representation in Lemma 2.4.1 shows that there exists a constant

C > 0 such that

0 ≤ χ′n(∞) ≤ C and 0 ≤
∫
I

(pµ − pν) dχ′′n ≤ C, and 0 ≤ ∆χn(x∗) ≤ C
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in the case where ν({x∗}) > 0. For a suitable subsequence χnk , we have

lim
k
χ′nk(∞) = lim inf

n
χ′n(∞) (2.4.5)

and similarly

lim
k

∆χnk(x
∗) = lim inf

n
∆χn(x∗) if ν({x∗}) > 0. (2.4.6)

Without loss of generality we assume that nk = k. Given y0 ∈ I, we recall from the

proof of Lemma 2.3.12 that pµ − pν is strictly negative and uniformly bounded away

from zero on [y0,∞) ⊆ (x∗,∞) = I, and deduce that

0 ≤ −χ′′n[y0,∞) ≤ C ′

for a constant C ′. Since the (left) derivative χ′n is decreasing, it follows that

χ′n(y) = −χ′′n[y,∞) + χ′n(∞) ≤ C ′ + C for all y ∈ [y0,∞).

Thus, the Lipschitz constant of χn is bounded on compact subsets of I, uniformly

in n. Recalling that χn(a) = 0, the Arzela–Ascoli theorem then yields a function

χ : I → R such that χn → χ locally uniformly, after passing to a subsequence. Clearly

χ is concave and increasing, and integration by parts shows that −χ′′n converges to the

second derivative measure −χ′′ associated with χ, in the sense of weak convergence

relative to the compactly supported continuous functions on I. Approximating pµ−pν
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from above with compactly supported continuous functions, we then see that

∫
I

(pµ − pν) dχ′′ ≤ lim inf
n→∞

∫
I

(pµ − pν) dχ′′n.

Using also (2.4.5), (2.4.6) and the representation in Lemma 2.4.1, we conclude that

(µ− ν)(χ) ≤ lim infn→∞(µ− ν)(χn) as desired.

We can now derive the closedness result.

Proof of Proposition 2.4.4. Wemay assume that lim infn µ(ϕn)+ν(ψn) = lim supn µ(ϕn)+

ν(ψn), by passing to a subsequence. Since (ϕn, ψn, hn) ∈ Dci(fn) and fn ≥ 0, we can

introduce the associated moderators χn as in Lemma 2.4.5. We may assume that

χn(a) = 0, where a := bary(µ) ∈ I, by shifting ϕn and ψn appropriately. After

passing to a subsequence, Proposition 2.4.6 then yields a pointwise limit χ : J → R.

Since ϕn ≥ χn → χ, Komlos’ lemma (in the form of [33, Lemma A1.1] and

its subsequent remark) yields ϕ̄n ∈ conv{ϕn, ϕn+1, . . . } which converge µ-a.s., and

similarly for ψn. Without loss of generality, we may assume that ϕ̄n = ϕn, and

similarly for ψn. Thus, ϕ := lim supϕn and ψ := lim supψn satisfy

ϕn → ϕ µ-a.s., ϕ− χ ≥ 0 and ψn → ψ ν-a.s., ψ + χ ≥ 0.
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Fatou’s lemma and Proposition 2.4.6 then show that

µ(ϕ−χ) + ν(ψ + χ) + (µ− ν)(χ)

≤ lim inf µ(ϕn − χn) + lim inf ν(ψn + χn) + lim inf(µ− ν)(χn)

≤ lim inf[µ(ϕn − χn) + ν(ψn + χn) + (µ− ν)(χn)]

= lim inf[µ(ϕn) + ν(ψn)] <∞.

In particular, (ϕ, ψ) ∈ Lci(µ, ν) with moderator χ, and then the above can be stated

as µ(ϕ) + ν(ψ) ≤ lim inf µ(ϕn) + ν(ψn).

It remains to find a corresponding h. For any function g : J → R, let gci : J → R

denote the concave-increasing upper envelope. Fix x ∈ I. Our assumption that

ϕn(x) + hn(x)(y − x) ≥ fn(x, y)− ψn(y), (x, y) ∈ I × J

implies that

ϕn(x) + hn(x)(y − x) ≥ [fn(x, ·)− ψn]ci(y), (x, y) ∈ I × J.

Using also the general inequality lim inf(gcin ) ≥ (lim inf gn)ci, we deduce that for all
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y ≤ x,

ϕ(x) ≥ lim inf ϕn(x)

≥ lim inf ϕn(x) + hn(x)(y − x)

≥ lim inf[fn(x, ·)− ψn]ci(y)

≥ [lim inf(fn(x, ·)− ψn)]ci(y)

= [f(x, ·)− ψ]ci(y)

=: ϕ̂(x, y).

As ν{ψ = ∞} = 0 and f > −∞, we have ϕ̂(x, y) > −∞ for all y ∈ J . If x /∈ N :=

{ϕ =∞}, choosing y := x in the above inequalities also shows ϕ̂(x, x) ≤ ϕ(x) <∞.

As a result, the concave and increasing function ϕ̂(x, ·) is finite and therefore admits

a finite left derivative

∂−ϕ̂(x, ·)(y) ≥ 0 for y ∈ I.

We define h(x) := ∂−ϕ̂(x, ·)(x). By concavity, it follows that

ϕ(x) + h(x)(y − x) ≥ ϕ̂(x, x) + ∂−ϕ̂(x, ·)(x)(y − x) ≥ ϕ̂(x, y) ≥ f(x, y)− ψ(y)

for all y ∈ J , for x ∈ I \N . We may extend h to I by setting h = 0 on N . As ϕ =∞

on N , the desired inequality

ϕ(x) + ψ(y) + h(x)(y − x) ≥ f(x, y)
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then extends to x ∈ I, and thus (ϕ, ψ, h) ∈ Dci(f).

Duality on a Proper Irreducible Component

Recall that the pair µ ≤cd ν is proper and irreducible. We define the primal and dual

values as follows.

Definition 2.4.7. Let f : R2 → [0,∞]. The primal and dual problems are respec-

tively given by

Sµ,ν(f) := sup
P∈S(µ,ν)

P (f) ∈ [0,∞],

Ipwµ,ν(f) := inf
(ϕ,ψ,h)∈Dci,pwµ,ν (f)

µ(ϕ) + ν(ψ) ∈ [0,∞],

where P (f) is the outer integral if f is not measurable.

A function f : R2 → [0,∞] is upper semianalytic if the sets {f ≥ c} are analytic

for all c ∈ R, where a subset of R2 is called analytic if it is the (forward) image of a

Borel subset of a Polish space under a Borel mapping. Any Borel function is upper

semianalytic and any upper semianalytic function is universally measurable; we refer

to [20] for further background.

Proposition 2.4.8. Let µ ≤cd ν be proper and irreducible, f : R2 → [0,∞].

(i) If f is upper semianalytic, then Sµ,ν(f) = Ipwµ,ν(f) ∈ [0,∞].

(ii) If Ipwµ,ν(f) <∞, there exists a dual optimizer (ϕ, ψ, h) ∈ Dci,pwµ,ν (f).
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Proof. Let f : R2 → [0,∞] be universally measurable, P ∈ S(µ, ν) and (ϕ, ψ, h) ∈

Dci,pwµ,ν (f). Then

µ(ϕ) + ν(ψ) ≥ P [ϕ(X) + ψ(Y ) + h(X)(Y −X)] ≥ P (f)

by (2.4.1) and (2.4.2). It follows that Sµ,ν(f) ≤ Ipwµ,ν(f), which is the easy inequality

in (i). The proof of the converse inequality comprises of three steps. First, it is estab-

lished for regular functions f by a Hahn–Banach separation argument on a suitable

space of continuous functions, exploiting the closedness result of Proposition 2.4.4—

alternately, a result of [41] could be applied. Second, one shows that the mappings

Sµ,ν(·) and Ipwµ,ν(·) are capacities with respect to the lattice of bounded, nonnegative

upper semicontinuous functions which again uses the closedness. Finally, Choquet’s

capacitability theorem can be applied to extend the result from the first step to upper

semianalytic f . We omit the details since these arguments are very similar to the

proof of [16, Theorem 6.2].

To obtain (ii), it suffices to apply Proposition 2.4.4 with fn = f to a maximizing

sequence (ϕn, ψn, hn).

Global Duality

In this section, we formulate a global duality result. We shall be brief since it is little

more than the combination of the preceding results for the proper irreducible case

and the known martingale case; however, it requires some notation.

Let µ ≤cd ν be probability measures and let f : R2 → [0,∞] be a Borel function.
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As in the irreducible case, the primal problem is

Sµ,ν(f) := sup
P∈S(µ,ν)

P (f).

For the dual problem, we first recall from Proposition 2.3.4 the decompositions µ =∑
k≥−1 µk and ν =

∑
k≥−1 νk, where µk ≤cd νk is irreducible with domain (Ik, Jk) for

k ≥ 0 and µ−1 = ν−1; moreover, P−1 is the unique element of S(µ−1, µ−1). So far, we

have focused on a proper pair (µ0, ν0) and its dual problem. The pairs (µk, νk) for

k ≥ 1 are in convex order (µk and νk have the same barycenter) and the corresponding

martingale optimal transport has an analogous duality theory. While the arguments

are different, the preceding results hold true if “convex-increasing” is replaced by

“convex” and the function h is allowed to take values in R instead of R+; we refer to

[16] for the proofs. The spaces corresponding to Lci(µ, ν) and Dciµ,ν(f) are denoted

Lc(µ, ν) and Dcµ,ν(f), respectively.

Let (ϕ, ψ, h) : R→ R×R×R be Borel. Since P−1 is concentrated on the diagonal

∆, the dual problem associated to (µ−1, ν−1) is trivially solved, for instance, by setting

ϕ(x) = f(x, x) and ψ = h = 0. To simplify the notation below, we set

Lcµ−1,ν−1
:= {(ϕ, ψ) : ϕ+ ψ ∈ L1(µ−1)}

and µ−1(ϕ) + ν−1(ψ) := µ−1(ϕ + ψ) for (ϕ, ψ) ∈ Lcµ−1,ν−1
. Moreover, Dc,pwµ−1,ν−1

(f) is
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the set of all (ϕ, ψ, h) with (ϕ, ψ) ∈ Lcµ−1,ν−1
and

ϕ(x) + ψ(x) ≥ f(x, x), x ∈ I−1.

Finally, it will be convenient to define Sµ−1,ν−1(f) := P−1(f) ≡ µ−1(f(X,X)).

We can now introduce the domain for the global dual problem which will be stated

in the quasi-sure sense. A property is said to hold S(µ, ν)-quasi surely, or S(µ, ν)-q.s.

for short, if it holds P -a.s. for all P ∈ S(µ, ν), or equivalently, if it holds up to a

S(µ, ν)-polar set.

Definition 2.4.9. Let L(µ, ν) be the set of all Borel functions ϕ, ψ : R → R such

that (ϕ, ψ) ∈ Lci(µ0, ν0) and (ϕ, ψ) ∈ Lc(µk, νk) for all k 6= 0 and

∑
k≥−1

|µk(ϕ) + νk(ψ)| <∞.

For (ϕ, ψ) ∈ L(µ, ν), we define

µ(ϕ) + ν(ψ) :=
∑
k≥−1

µk(ϕ) + νk(ψ) <∞,

and Dµ,ν(f) is the set of all Borel functions (ϕ, ψ, h) : R → R × R × R such that

(ϕ, ψ) ∈ L(µ, ν), h ≥ 0 on I0 and

ϕ(X) + ψ(Y ) + h(X)(Y −X) ≥ f(X, Y ) S(µ, ν)-q.s.
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Finally,

Iµ,ν(f) := inf
(ϕ,ψ,h)∈Dµ,ν(f)

µ(ϕ) + ν(ψ) ∈ [0,∞].

We emphasize that h is required to be nonnegative on I0 but can take arbitrary

real values outside of I0. It is shown in Section 2.10 that nonnegativity cannot be

enforced everywhere.

Before making precise the correspondence between this quasi-sure formulation

and the individual components, let us recall that the intervals Jk may overlap at their

endpoints, so we have to avoid counting certain things twice. Indeed, let (ϕk, ψk, hk) ∈

Dc(i),pwµk,νk (f); we claim that ψk can be normalized such that

ψk = 0 on Jk \ Ik. (2.4.7)

Indeed, if Jk contains one of its endpoints, it is an atom of ν and hence ψk is finite

on Jk \ Ik. If k ≥ 1, we can translate ψk by an affine function and shift ϕk and

hk accordingly. In the supermartingale case k = 0, we recall from Proposition 2.3.4

that I0 = (x∗,∞), so that J0 can have at most one endpoint. As a result, we may

obtain the normalization by shifting ψ0 with a constant, which can be compensated

by shifting ϕ0 alone and thus respecting the requirement that h0 ≥ 0 on I0.

The dual domain can then be decomposed as follows.

Lemma 2.4.10. Let f : R2 → [0,∞] be Borel, let µ ≤cd ν and let µk, νk be as in

Proposition 2.3.4.

(i) Let (ϕ0, ψ0, h0) ∈ Dci,pwµ0,ν0
(f) and (ϕk, ψk, hk) ∈ Dc,pwµk,νk

(f) for k ≥ 1, normalized
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as in (2.4.7), and let ϕ−1(x) = f(x, x) and ψ−1 = 0. If
∑

k≥−1 µ(ϕk) + ν(ψk) <

∞, then

ϕ :=
∑
k≥−1

ϕk1Ik , ψ :=
∑
k≥0

ψk1Jk , h :=
∑
k≥0

hk1Ik

satisfies (ϕ, ψ, h) ∈ Dµ,ν(f) and µ(ϕ) + ν(ψ) =
∑

k≥−1 µk(ϕk) + νk(ψk).

(ii) Conversely, let (ϕ, ψ, h) ∈ Dµ,ν(f). After changing ϕ on a µ-nullset and ψ on

a ν-nullset, we have (ϕ, ψ, h) ∈ Dci,pwµ0,ν0
(f) and (ϕ, ψ, h) ∈ Dc,pwµk,νk

(f) for k 6= 0,

and ∑
k≥−1

µk(ϕ) + νk(ψ) = µ(ϕ) + ν(ψ) <∞.

This is a direct consequence of Proposition 2.3.4; the details of the proof are

analogous to [16, Lemma 7.2]. We can now state the global duality result.

Theorem 2.4.11. Let f : R2 → [0,∞] be Borel and let µ ≤cd ν. Then

Sµ,ν(f) = Iµ,ν(f) ∈ [0,∞].

If Iµ,ν(f) <∞, there exists an optimizer (ϕ, ψ, h) ∈ Dµ,ν(f) for Iµ,ν(f).

This is a direct consequence of Proposition 2.4.8 and the corresponding result in

the martingale case; the details of the proof are as in [16, Theorem 7.4].

Remark 2.4.12. The lower bound on f in Theorem 2.4.11 can easily be relaxed.

Indeed, let f : R2 → R be Borel and suppose that there exist a ∈ L1(µ), b ∈ L1(ν)

such that

f(x, y) ≥ a(x) + b(y), x, y ∈ R.
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Then, we may apply Theorem 2.4.11 to f̄ := [f(X, Y ) − a(X) − b(Y )]+ and deduce

the duality result for f as well.

2.5 Monotonicity Principle

An important consequence of the duality theorem is a monotonicity principle describ-

ing the support of optimal transports; it can be seen as a substitute for the cyclical

monotonicity from classical transport theory. The following notion will be useful for

our study of the canonical couplings.

Definition 2.5.1. Let π be a finite measure on R2 with finite first moment and

let M0,M1 ⊆ R be Borel. Denote by π1 its first marginal and by π = π1 ⊗ κ

a disintegration. A measure π′ is an (M0,M1)-competitor of π if it has the same

marginals and if its disintegration π′ = π1 ⊗ κ′ satisfies

bary(κ′(x)) ≤ bary(κ(x)) for π1-a.e. x ∈M0,

bary(κ′(x)) = bary(κ(x)) for π1-a.e. x ∈M1.

This definition extends a concept of [13] where the barycenters are required to be

equal on the whole real line. In our context, we need to distinguish three regimes for

the applications in the subsequent sections: equality, inequality, and no constraint on

the barycenters.

Given µ ≤cd ν, we recall from Proposition 2.3.4 the sets Ik, Jk, where the labels k ≥

1 correspond to the martingale components, k = 0 is the supermartingale component,
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and k = −1 is the complement (where any transport from µ to ν is the identity).

Moreover, any element of S(µ, ν) is necessarily supported by the set

Σ := ∆ ∪
⋃
k≥0

Ik × Jk. (2.5.1)

Theorem 2.5.2 (Monotonicity Principle). Let f : R2 → [0,∞] be Borel, let µ ≤cd

ν be probability measures and suppose that Sµ,ν(f) < ∞. There exist a Borel set

Γ ⊆ R2 and disjoint Borel sets M0,M1 ⊆ R with the following properties, where

M := M0 ∪M1.

(i) A measure P ∈ S(µ, ν) is optimal for Sµ,ν(f) if and only if it is concentrated

on Γ and P |M×R is a martingale.

(ii) Let µ̄ ≤cd ν̄ be probabilities on R. If P̄ ∈ S(µ̄, ν̄) is concentrated on Γ and

P̄ |M×R is a martingale, then P̄ is optimal for Sµ̄,ν̄(f).

(iii) Let π be a finitely supported probability on R2 which is concentrated on Γ. Then

π(f) ≥ π′(f) for any (M0,M1)-competitor π′ of π that is concentrated on Σ.

If (ϕ, ψ, h) ∈ Dµ,ν(f) is a suitable3 version of the optimizer from Theorem 2.4.11,

then we can take

M0 := I0 ∩ {h > 0},

M1 := ∪k 6=0Ik,

Γ :=
{

(x, y) ∈ R2 : ϕ(x) + ψ(y) + h(x)(y − x) = f(x, y)
}
∩ Σ.

3chosen as in Lemma 2.4.10 (ii)
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Moreover, the assertion in (iii) remains true if π is not finitely supported, as long as

(ϕ, ψ) ∈ L(π1, π2), where π1 and π2 are the marginals of π.

Before giving the proof, let us draw a corollary stating that the supermartingale

optimal transport can be decomposed as follows. On M , an optimizer P ∈ S(µ, ν) is

also an optimizer of a martingale optimal transport problem. Thus, we think of M

as the set where the supermartingale constraint is “binding,” and in fact it acts like

the seemingly stronger martingale constraint (thus M as in martingale). Whereas on

N := R \M , the measure P is also an optimizer of a (Monge–Kantorovich) optimal

transport problem with no constraint at all on the dynamics (N as in no constraint).

Corollary 2.5.3 (Extremal Decomposition). Let f : R2 → [0,∞] be Borel and let

µ ≤cd ν be probability measures such that Sµ,ν(f) < ∞. There exists a Borel set

M ⊆ R with the following property.

Given an optimizer P ∈ S(µ, ν) for Sµ,ν(f), let µM = µ|M and let νM be the

image4 of µM under P . Moreover, let µN = µ|R\M and let νN be the image of µN

under P . Then for the same function f as above,

(i) P |M×R is an optimal martingale transport from µM to νM ,

(ii) P |N×R is an optimal Monge–Kantorovich transport from µN to νN .

A word of caution is in order: while the set M is defined without reference to

P , the second marginals νM , νN in the extremal problems do depend on P . In that

sense, the decomposition is non-unique—which, however, is quite natural given that

the optimizer P is non-unique as well, for general f .

4 If P = µ⊗ κ, the image of µM under P is defined as the second marginal of µM ⊗ κ.
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Remark 2.5.4. The lower bound on f in Theorem 2.5.2 and Corollary 2.5.3 can

be relaxed as follows. Instead of f being nonnegative, suppose that there exist real

functions a ∈ L1(µ), b ∈ L1(ν) such that

f(x, y) ≥ a(x) + b(y), x, y ∈ R.

Then, Theorem 2.5.2 (i), (iii) as well as Corollary 2.5.3 hold as above, using Re-

mark 2.4.12 but otherwise the same proofs. Moreover, Theorem 2.5.2 (ii) as well as

the last statement in Theorem 2.5.2 hold under the condition that a, b are integrable

for µ̄, ν̄ and π1, π2, respectively.

Example 2.5.5. In the context of Corollary 2.5.3, suppose that µ has no atoms

and that f is smooth, of linear growth, and satisfies the Spence–Mirrlees condition

fxy > 0 and the martingale Spence–Mirrlees condition fxyy > 0 (this is not one of the

canonical cases studied later). Then an optimizer P exists and the corollary implies

that P |M×R is the Left-Curtain coupling [13] between its marginals and P |N×R is the

Hoeffding–Fréchet coupling [75, Section 3.1] between its marginals. In particular,

writing P = µ⊗ κ and using the results of the indicated references, we immediately

deduce the possible forms of the kernel: at almost every x, κ(x) is either deterministic

(the Hoeffding–Fréchet kernel) or a martingale kernel concentrated at two points (the

Left–Curtain kernel). In particular, κ(x) is never what might seem to be the typical

case—a truly random process with downward drift.

In this situation, the decomposition R = M∪N is in fact essentially unique (points

where the transport is the identity can be assigned to eitherM orN). Indeed, suppose
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that P ′ is another optimizer and let κ′ be the associated kernel. The above properties

apply to κ′ as well, and now if the decomposition were different then the optimizer

P ′′ = (P +P ′)/2 would have a kernel κ′′ = (κ+κ′)/2 violating those same properties.

We mention that the coupling P is nevertheless not canonical in the sense of the

Introduction: the decomposition does change if we replace f by a different function

satisfying the same Spence–Mirrlees conditions; cf. Section 2.10 for a counterexample.

Proof of Corollary 2.5.3. Let M = M0 ∪M1 and (ϕ, ψ, h) be as in Theorem 2.5.2,

and note that P (f) <∞.

(i) We have PM := P |M×R ∈M(µM , νM) by (i) of the theorem. Moreover, setting

PN := P |N×R, any P̄M ∈M(µM , νM) induces an element of S(µ, ν) via P̄ := P̄M+PN .

Thus, P̄M(f) > PM(f) would contradict the optimality of P .

(ii) This part is less direct because elements of Π(µN , νN) are not supermartingales

in general; we shall invoke Theorem 2.5.2(iii) with π := P . By (i) of the theorem, π

is concentrated on Γ, and of course (ϕ, ψ) ∈ L(µ, ν) = L(π1, π2). Moreover, for any

π′N ∈ Π(µN , νN), the measure π′ = PM+π′N is an (M0,M1)-competitor of π = PM+PN

which is concentrated on Σ as PN is concentrated on I0 × J0 ⊆ Σ; note that N ⊆ I0.

Now the extension of (iii) at the end of the theorem yields π(f) ≥ π′(f) and hence

PN(f) ≥ π′N(f).

Proof of Theorem 2.5.2. As Iµ,ν(f) = Sµ,ν(f) < ∞, Theorem 2.4.11 yields a dual

optimizer (ϕ, ψ, h) ∈ Dµ,ν(f) and we can define Γ and M as stated.

(i) Let P ∈ S(µ, ν) and let P = µ ⊗ κ be a disintegration. Recalling (2.4.1)
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and (2.4.2) and the analogous facts for the martingale case [16], we have

P (f) ≤ P [ϕ(X) + ψ(Y ) + h(X)(Y −X)]

= µ(ϕ) + ν(ψ) +

∫∫
h(x)(y − x)κ(x, dy)µ(dx)

≤ µ(ϕ) + ν(ψ).

Since Sµ,ν(f) = µ(ϕ)+ν(ψ), P is optimal if and only if both inequalities are equalities.

As P (f) < ∞, the first inequality is an equality if and only if P is concentrated on

Γ. Moreover, the second inequality is an equality if and only if
∫

(y − x)κ(x, dy) = 0

µ-a.e. on {h > 0}; note that the condition on κ holds automatically on the martingale

components Ik, k ≥ 1. In particular, this is equivalent to P |M×R being a martingale.

(ii) We choose a version of (ϕ, ψ, h) ∈ Dµ,ν(f) as in Lemma 2.4.10 (ii); moreover,

we may assume that P̄ (f) <∞. We need to show that (ϕ, ψ, h) ∈ Dµ̄,ν̄(f); once this

is established, optimality can be argued exactly as in (i) above.

(a) On the one hand, we need to show that

ϕ(X) + ψ(Y ) + h(X)(Y −X) ≥ f(X, Y ) S(µ̄, ν̄)-q.s. (2.5.2)

For this, it suffices to prove that the domains of the irreducible components of µ̄ ≤cd ν̄

are subsets of the ones of µ ≤cd ν; i.e., that pµ(x) = pν(x) implies pµ̄(x) = pν̄(x), for

any x ∈ R. Indeed, let pµ(x) = pν(x). Since P̄ is concentrated on Γ ⊆ Σ, we know

that Y ≤ x P̄ -a.s. on {X ≤ x} and Y ≥ x P̄ -a.s. on {X ≥ x}. Writing E[ · ] for the

60



expectation under P̄ , it follows that

pν̄(x) = E[(x− Y )+] = E[(x− Y )1X≤x].

Note that pµ(x) = pν(x) implies x ≤ x∗, cf. Proposition 2.3.2. Recalling that

(−∞, x∗) ⊆M , our assumption on P̄ then yields that P̄ |{X<x} is a martingale. As a

consequence,

E[(x− Y )1X≤x] = E[(x−X)1X≤x] = E[(x−X)+] = pµ̄(x)

and this part of the proof is complete.

(b) On the other hand, we need to show that (ϕ, ψ) ∈ L(µ̄, ν̄). By reducing to

the components, we may assume without loss of generality that (µ̄, ν̄) is irreducible

with domain (I, J). Moreover, the argument for the martingale case is contained in

the proof of [16, Corollary 7.8], so we shall assume that (µ̄, ν̄) is proper. Let

χ(y) := inf
x∈I

[ϕ(x) + h(x)(y − x)], y ∈ J.

As (ϕ, ψ, h) ∈ Dci,pwµ,ν (f), the arguments below (2.4.2) yield that χ : J → R is concave

and increasing, that ϕ̄ := ϕ−χ ≥ 0 and ψ̄ := ψ+χ ≥ 0, and that P̄ [ϕ(X) +ψ(Y ) +

h(X)(Y −X)] can be computed as the µ̄(dx)-integral of

ϕ̄(x) +

∫
ψ̄(y)κ(x, dy) +

[
χ(x)−

∫
χ(y)κ(x, dy)

]
+ h(x)(bary(κ(x))− x),
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where P̄ = µ̄⊗κ. By the assumption that P̄ |M×R is a martingale and R\M = {h ≤

0} ∩ I0 ⊆ {h = 0}, either h(x) = 0 or bary(κ(x)) = x, for µ̄-a.e. x ∈ R. Using also

that P̄ is concentrated on Γ, we deduce that

P̄ (f) = P̄ [ϕ(X) + ψ(Y ) + h(X)(Y −X)]

=

∫ {
ϕ̄(x) +

∫
ψ̄(y)κ(x, dy) +

[
χ(x)−

∫
χ(y)κ(x, dy)

]}
µ̄(dx)

= µ̄(ϕ̄) + ν̄(ψ̄) + (µ̄− ν̄)(χ),

where the last step is justified by the nonnegativity of the integrands. As P̄ (f) <∞,

we conclude that the three (nonnegative) terms on the right-hand side are finite; that

is, (ϕ, ψ) ∈ L(µ̄, ν̄) with moderator χ.

(iii) Again, we may assume that π(f) < ∞. Let π′ be an (M0,M1)-competitor

of π, let µ̄, ν̄ be the common first and second marginals of π, π′ and let π = µ̄ ⊗ κ,

π′ = µ̄ ⊗ κ′. If (ϕ, ψ) ∈ L(µ̄, ν̄), using h ≥ 0 on M0 ⊆ I0 and R \M ⊆ {h = 0} and

the definition of the competitor yields

π(f) = π[ϕ(X) + ψ(Y ) + h(X)(Y −X)]

= µ̄(ϕ) + ν̄(ψ) +

∫
M

h(x)(bary(κ(x))− x) µ̄(dx)

≥ µ̄(ϕ) + ν̄(ψ) +

∫
M

h(x)(bary(κ′(x))− x) µ̄(dx)

= π′[ϕ(X) + ψ(Y ) + h(X)(Y −X)]

≥ π′(f).
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Of course, (ϕ, ψ) ∈ L(µ̄, ν̄) holds in particular if π is finitely supported.

2.6 Shadow Construction

In this section, we introduce the Increasing and Decreasing Supermartingale Trans-

ports via an order-theoretic construction. Let M1(R) be the set of all finite measures

on (R,B(R)) which have a finite first moment, endowed with the weak convergence

induced by the continuous functions of linear growth. We shall mainly use the restric-

tion of this topology to subsets of measures of equal mass, and then it is equivalent

to the Kantorovich or 1-Wasserstein distance W (ν, ν ′) = supf (ν − ν ′)(f), where f

ranges over all 1-Lipschitz functions.

Definition 2.6.1. Let µ, ν ∈ M1(R). We say that µ, ν are in positive-convex-

decreasing order, denoted µ ≤pcd ν, if µ(φ) ≤ ν(φ) for all nonnegative, convex,

decreasing functions φ : R→ R.

We note that µ ≤pcd ν necessarily satisfy µ(R) ≤ ν(R). In fact, the case of strict

inequality is the one of interest: if µ(R) = ν(R), then µ ≤pcd ν is equivalent to

µ ≤cd ν.

Lemma 2.6.2. Let µ, ν ∈M1(R) satisfy µ ≤pcd ν. Then the set5

Jµ, νK := {θ ∈M1(R) : µ ≤cd θ ≤ ν}

5We think of the elements of Jµ, νK as lying between µ and ν, as the notation suggests. However,
we caution the reader that µ, ν /∈ Jµ, νK in general.
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is nonempty and contains a unique least element Sν(µ) for the convex-decreasing

order:

Sν(µ) ≤cd θ for all θ ∈ Jµ, νK .

The measure Sν(µ) is called the shadow of µ in ν.

Proof. Without loss of generality, ν is a probability measure.

(i) We first show that Jµ, νK contains some element θ. Let λ be the Lebesgue

measure on R and let Gν be the quantile function of ν; that is, the left-continuous

inverse of the c.d.f. of ν. We define

θ := λ|[0,k] ◦G−1
ν where k := µ(R) ∈ [0, 1].

This implies that θ ∈M1(R), that θ(R) = k, and that θ ≤ ν. Intuitively speaking, θ

is the “left-most” measure θ ≤ ν of mass k on R; in particular, if ν admits a density

fν , the density of θ is fθ = fν1(−∞,Gν(k)].

Let φ be a convex, decreasing function; we need to show that µ(φ) ≤ θ(φ). To

this end, we may assume that φ(Gν(k)) = 0 by translating φ, and then we have

µ(φ) ≤ µ(φ+) ≤ ν(φ+) = θ(φ+) = θ(φ)

since φ+ = φ on Gν([0, k]). As a result, θ ∈ Jµ, νK 6= ∅.

(ii) Next, we show that Jµ, νK is directed; i.e., given θi ∈ Jµ, νK , i = 1, 2 there

exists θ ∈ Jµ, νK such that θ ≤cd θi. Indeed, let p : R → R be defined as the convex

hull of the minimum of pθ1 and pθ2 . Then p is convex, and p is increasing like pθi .
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Since the asymptotic slope of the functions pθi is given by θi(R) = µ(R), the same is

true for p, and finally, pθi ≥ pµ yields p ≥ pµ. These facts imply that p is the put

function associated with a measure θ satisfying µ ≤cd θ ≤cd θi. It remains to show

that θ ≤ ν, which is equivalent to pν − p being convex. Indeed, the fact that pν − pθi

is convex for i = 1, 2 implies this property; cf. the end of the proof of [13, Lemma 4.6]

for a detailed argument.

(iii) The set Jµ, νK ⊆M1(R) consists of measures with common total mass µ(R);

we show that it is compact. Indeed, closedness is readily established. Moreover,

any θ ∈ Jµ, νK satisfies θ ≤ ν. By Prokhorov’s theorem, this immediately yields

tightness in the weak topology induced by bounded continuous functions, and then

using
∫
|x| ν(dx) <∞ yields relative compactness in M1(R).

(iv) It follows from (iii) that for any convex, decreasing function φ of linear growth,

the continuous functional θ 7→ θ(φ) has a nonempty compact set Θφ ⊆ Jµ, νK of

minimizers. The directedness of Jµ, νK from (ii) implies that a finite intersection

Θφ1 ∩ · · · ∩ Θφn is still nonempty, and then compactness shows that θ 7→ θ(φ) has a

common minimizer Sν(µ) for all φ. The uniqueness of the minimizer follows from the

fact that θ1 ≤cd θ2 and θ2 ≤cd θ1 imply θ1 = θ2.

Lemma 2.6.3. Let µ, ν ∈M1(R) satisfy µ ≤pcd ν and suppose that µ is concentrated

at a single point x ∈ R. Then, the shadow Sν(µ) is of the form

Sν(µ) = ν|(a,b) + kaδa + kbδb.

Among all measures θ ≤ ν with mass µ(R) of this form, Sν(µ) is determined by
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maximizing bary(θ) subject to the constraint bary(θ) ≤ x. Moreover, a and b can be

chosen such that a ≤ x ≤ b.

Finally, the map ν 7→ Sν(µ) is continuous when restricted to a set of measures

ν ∈M1(R) of equal total mass satisfying µ ≤pcd ν.

Proof. We may assume that ν(R)=1. Then, µ = kδx for some k ∈ [0, 1], and we may

focus on k ∈ (0, 1). Consider the family

θs = λ|[s,s+k] ◦G−1
ν , s ∈ [0, 1− k].

Similarly as in the proof of Lemma 2.6.2, we have θs ≤ ν for all s, whereas µ =

kδx ≤cd θs if and only if bary(θs) ≤ x. As µ ≤pcd ν, this inequality holds true in

particular for s = 0. The function

s 7→ bary(θs) =
1

k

∫ k

0

Gν(s+ t)λ(dt) =
1

k

∫ k

0

Gν(s+ t+)λ(dt) (2.6.1)

is continuous and increasing; thus, we may define s∗ as the largest value in [0, 1− k]

for which bary(θs) ≤ x, and then θ∗ := θs∗ is in Jµ, νK. We claim that θ∗ is the least

element in Jµ, νK.

To show this, let (a, b) = (Gν(s
∗), Gν(s

∗ + k)); then θ∗|(a,b) = ν|(a,b) and θ∗ is

concentrated on [a, b]. Now let θ ∈ Jµ, νK be arbitrary. As θ ≤ ν, we see that

θ − (θ∗ ∧ θ) is concentrated on (a, b)c, whereas θ∗ − (θ∗ ∧ θ) is concentrated on [a, b].

Moreover, we must have bary(θ) ≤ bary(θ∗). Indeed, this is clear if bary(θ∗) = x. If

not, the definition of s∗ implies that ν(b,∞) = 0 and then θ∗ clearly has the largest
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barycenter among all measures θ ≤ ν with mass µ(R). Thus, Lemma 2.6.4 below

implies that θ∗ ≤cd θ and as a result, θ∗ is the least element in Jµ, νK; i.e., Sν(µ) = θ∗.

As bary(θ∗) ≤ x, it is clear that a ≤ x. With the above choice of b, it may happen

that b < x . However, by the definition of s∗, this is possible only if θ∗({b}) = ν({b})

and ν(b,∞) = 0. In that case, we may redefine b := x without invalidating the other

assertions of the lemma, and then we have a ≤ x ≤ b as required.

It remains to verify the continuity of ν 7→ Sν(µ). Let ν ′ be another probability

measure such that µ ≤pcd ν ′ and let Sν′(µ) = θ′r∗ be the corresponding shadow

constructed as above. Using the fact that the 1-Wasserstein distance satisfies

W (ν, ν ′) =

∫ 1

0

|Gν(t)−Gν′(t)|λ(dt) (2.6.2)

as well as (2.6.1) and Gθs(r) = Gν(s+ r) on [0, k], we have

k| bary(θ′t)− bary(θt)| ≤ W (θt, θ
′
t) ≤ W (ν, ν ′),

k| bary(θs)− bary(θt)| = W (θs, θt).

These relations yield that

W (Sν(µ),Sν′(µ)) ≤ W (θs∗ , θr∗) +W (θr∗ , θ
′
r∗)

≤ k| bary(θs∗)− bary(θr∗)|+W (ν, ν ′)

≤ k| bary(θs∗)− bary(θ′r∗)|+ 2W (ν, ν ′)

= k| bary(Sν(µ))− bary(Sν′(µ))|+ 2W (ν, ν ′).
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Using (2.6.1) and (2.6.2), it follows from the construction of the shadow that ν 7→

bary(Sν(µ)) is continuous, and then the above estimate shows that ν 7→ Sν(µ) is

continuous.

The following property was used in the preceding proof.

Lemma 2.6.4. Let µ, ν ∈ M1(R) satisfy µ(R) = ν(R) and bary(µ) ≥ bary(ν). If

there exists an interval I = (a, b) such that µ is concentrated on Ī := [a, b] ∩ R and

ν is concentrated on Ic, then µ ≤cd ν. The same is true if there exists an interval I

such that µ− (µ ∧ ν) is concentrated on Ī and ν − (µ ∧ ν) is concentrated on Ic.

Proof. The first claim implies the second, so we may focus on the former. We need

to show that µ(φ) ≤ ν(φ) for any convex decreasing function φ. To this end, we may

assume that the left endpoint a of the interval is finite and strictly smaller than the

right endpoint b, as otherwise we must have µ = ν = 0; moreover, we may assume by

translation that φ(a) = 0. If b is finite as well, we define

ψ(x) := φ(x)− φ(b)

b− a
(x− a), x ∈ R,

whereas ψ := φ if b =∞. Then ψ ≤ 0 on Ī and ψ ≥ 0 on Ic, which yields

µ(φ) ≤ µ(ψ+) +
φ(b)

b− a
[bary(µ)− a] ≤ ν(ψ+) +

φ(b)

b− a
[bary(ν)− a] = ν(φ)

as desired.

Since we will apply the shadow in an iterative fashion, the following additivity re-
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sult is vital. The first assertion intuitively follows from the minimality of the shadow:

if we transport part of a measure µ ≤pcd ν to its shadow in ν, the remaining part µ2

of µ is still dominated by the remaining part of ν. Moreover, if we then transport µ2

to its shadow in the remainder, the cumulative result is the same as the shadow of µ

in ν.

Proposition 2.6.5. Let µ1, µ2, ν ∈ M1(R) satisfy µ1 + µ2 ≤pcd ν. Then µ2 ≤pcd

ν − Sν(µ1) and

Sν(µ1 + µ2) = Sν(µ1) + Sν−Sν(µ1)(µ2).

Proof. (i) Suppose first that µ1 = kδx is a single atom of mass k > 0 at x ∈ R. Then

by Lemma 2.6.3, there is an interval I = (a, b) with x ∈ Ī = [a, b]∩R such that Sν(µ)

is concentrated on Ī and Sν(µ)|I = ν|I . We may assume that I is a strict subset of

R, as otherwise µ1 = ν and µ2 = 0.

To see that µ2 ≤pcd ν−Sν(µ1), let φ be a nonnegative, convex, decreasing function

of linear growth. Let ψ be the minimal function ψ ≥ φ which is affine on I, then ψ

is finite (as I 6= R) and equal to φ on Ic. Then we have

(ν − Sν(µ1))(φ) = (ν − Sν(µ1))(ψ) ≥ (ν − µ1)(ψ) ≥ µ2(ψ) ≥ µ2(φ),

where we have used that ν − Sν(µ1) is concentrated on Ic, that ψ is affine on Ī and

Sν(µ1) and µ1 are concentrated on Ī, that µ1 + µ2 ≤pcd ν, and finally that ψ ≥ φ.
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This shows that µ2 ≤pcd ν − Sν(µ1). In particular, Sν−Sν(µ1)(µ2) is well-defined. Set

θ′ := Sν(µ1) + Sν−Sν(µ1)(µ2).

Since Sν−Sν(µ1)(µ2) ≤ ν−Sν(µ1), it is clear that θ′ ≤ ν. Using also that µ1 ≤cd Sν(µ1)

and µ2 ≤cd Sν−S
ν(µ1)(µ2), we have θ′ ∈ Jµ1 + µ2, νK.

Let θ be another element of Jµ1 + µ2, νK. Then θ ≤ ν implies Jµ1, θK ⊆ Jµ1, νK

and thus Sν(µ1) ≤cd Sθ(µ1) by minimality. Moreover, θ ≤ ν implies θ − Sθ(µ1) ≤

ν − Sν(µ1); to see this, we use the description of the shadow from Lemma 2.6.3 and

note that the interval for θ will contain the one for ν. Now, the same minimality

argument implies Sν−Sν(µ1)(µ2) ≤cd Sθ−S
θ(µ1)(µ2). Combining these two facts, we

have

θ′ = Sν(µ1) + Sν−Sν(µ1)(µ2) ≤cd Sθ(µ1) + Sθ−Sθ(µ1)(µ2).

But the right-hand side equals θ; indeed, Sθ(µ1) + Sθ−Sθ(µ1)(µ2) ≤ θ and both sides

of this inequality have total mass (µ1 +µ2)(R). We have shown that θ′ is the minimal

element in Jµ1 + µ2, νK and thus that Sν(µ1 + µ2) = θ′.

(ii) If µ1 is finitely supported, the claim follows by iterating the result of (i). For

general µ1, let (µn1 ) be a sequence of finitely supported measures such that µn1 ≤cd

µn+1
1 ≤cd µ1 and µn1 → µ1 weakly; cf. [13, Lemma 2.9] for the existence of (µn1 ), even

in convex (instead of convex-decreasing) order. Under the additional condition that

µ2 is a Dirac mass, the claim follows by passing to the limit in

Sν(µn1 + µ2) = Sν(µn1 ) + Sν−Sν(µn1 )(µ2),
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where we use Lemma 2.6.6 below for the first two terms as well as the last assertion

of Lemma 2.6.3 for the third term.

(iii) By iterating the result of (ii), we obtain the claim in the case where µ2 is

finitely supported (and µ1 is arbitrary). To complete the proof, we approximate µ2

by a sequence (µn2 ) as in (ii) and pass to the limit µn2 → µ2 using Lemma 2.6.6.

The following continuity property of the shadow was used in the preceding proof.

Lemma 2.6.6. Let µn, µ, ν ∈ M1(R) satisfy µ1 ≤cd µ2 ≤cd · · · ≤cd µ ≤pcd ν. Then

µn → µ∞ for some µ∞ ∈M1(R), and Sν(µn)→ Sν(µ∞).

Proof. The limits are constructed by passing to the monotone limit in the associated

put functions. The details are similar to the proof of [13, Proposition 4.15] and

therefore omitted.

Next, we shall use the shadow mapping to construct specific supermartingale

transports. Let µ ≤cd ν and suppose first that µ =
∑n

i=1 kiδxi is finitely supported.

We may transport µ to ν by first mapping k1δx1 to its shadow in ν, continue by map-

ping k2δx2 to its shadow in the “remainder” ν−Sν(k1δx1) of ν, and so on. Proceeding

until i = n, this constructs the kernel κ corresponding to a supermartingale transport

µ⊗κ ∈ S(µ, ν). In fact, this recipe leads to a whole family of transports—the labeling

of the atoms was arbitrary, and a different order in their processing will typically give

rise to a different transport. There are two choices that seem canonical: left-to-right

(increasing) and right-to-left (decreasing). We shall show in the subsequent sections

that the corresponding transports
→
P and

←
P are indeed canonical in several ways.
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Theorem 2.6.7. Let µ ≤cd ν.

(i) There exists a unique measure
→
P on R × R which transports µ|(−∞,x] to its

shadow Sν(µ|(−∞,x]) for all x ∈ R; that is, the first marginal of
→
P equals µ and

→
P ((−∞, x]× A) = Sν(µ|(−∞,x])(A), A ∈ B(R). (2.6.3)

(ii) Similarly, there exists a unique measure
←
P on R × R which transports µ|[x,∞)

to its shadow Sν(µ|[x,∞)) for all x ∈ R.

Moreover, those two measures are elements of S(µ, ν). We call
→
P and

←
P the Increas-

ing and the Decreasing Supermartingale Transport, respectively.

Proof. The function F (x, y) := Sν(µ|(−∞,x])(−∞, y] is clearly increasing and right-

continuous in y. Moreover, Proposition 2.6.5 implies that

Sν(µ|(−∞,x2])− Sν(µ|(−∞,x1]) = Sν−Sν(µ|(−∞,x1])(µ|(x1,x2]) ≥ 0, x1 ≤ x2

which yields the same properties for the variable x; note that the total mass of the

right-hand side equals µ(x1, x2]. Noting also that F has the proper normalization for

a c.d.f., we conclude that F induces a unique measure
→
P on B(R × R). It is clear

that µ is the first marginal of
→
P . The second marginal is Sν(µ) ≤ ν, and this is

in fact an equality because both measures have the same mass. To conclude that

→
P ∈ S(µ, ν), it suffices to show that

→
P [Y φ(X)] ≤

→
P [Xφ(X)] for all functions φ of
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the form φ = 1(x1,x2] with x1 < x2. Indeed, Proposition 2.6.5 implies that

→
P [Y φ(X)] =

∫
y [Sν(µ|(−∞,x2])− Sν(µ|(−∞,x1])](dy)

= bary
(
Sν−Sν(µ|(−∞,x1])(µ|(x1,x2])

)
≤ bary

(
µ|(x1,x2]

)
=

→
P [Xφ(X)].

The arguments for
←
P are analogous.

A different construction of
→
P and

←
P could proceed through an approximation of

the marginals by discrete measures, for which the couplings can be defined explicitly

by iterating Lemma 2.6.3, and a subsequent passage to the limit. We refer to [62,

Remark 2.18] for a sketch of such a construction in the martingale case.

2.7 Spence–Mirrlees Functions and Geometry of

their Optimal Transports

In this section, we relate monotonicity properties of the reward function f to the

geometry of the supports of the corresponding optimal supermartingale transports,

where the support will be described by a pair (Γ,M) as in Theorem 2.5.2. We first

introduce the relevant properties of f .
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Definition 2.7.1. A function f : R2 → R is first-order Spence–Mirrlees if

f(x2, ·)− f(x1, ·) is strictly increasing for all x1 < x2.

Moreover, f is second-order Spence–Mirrlees if

f(x2, ·)− f(x1, ·) is strictly convex for all x1 < x2,

and f is supermartingale Spence–Mirrlees if f is second-order Spence–Mirrlees and

−f is first-order Spence–Mirrlees.

We note that if f is smooth, the first and second order Spence–Mirrlees properties

are equivalent to the classical cross-derivative conditions fxy > 0 and fxyy > 0, respec-

tively. The latter is also called martingale Spence–Mirrlees condition in the literature

on martingale optimal transport—the above terminology will be more convenient in

what follows.

Remark 2.7.2. There exist smooth, linearly growing supermartingale Spence–Mirrlees

functions on R2.

Indeed, let ϕ be a smooth, bounded, strictly increasing function on R; e.g., ϕ(x) =

tanh(x). Let ψ be a smooth, linearly growing, strictly decreasing, strictly convex

function on R; e.g., ψ(y) = (1 + y2)1/2 − y. Then,

g(x, y) := ϕ(x)ψ(y)
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satisfies gxy < 0 and gxyy > 0, while |g(x, y)| ≤ C(1 + |y|) for some C > 0.

Next, we introduce the relevant geometric properties of the support.

Definition 2.7.3. Let (Γ,M) ⊆ R2 × R and consider (x1, y1), (x2, y2) ∈ Γ with

x1 < x2. The pair (Γ,M) is

(i) first-order left-monotone if y1 ≤ y2 whenever x2 /∈M ,

(ii) first-order right-monotone if y2 ≤ y1 whenever x1 /∈M .

We will also need the following properties of Γ; they are taken from [13] where

they are simply called left- and right-monotonicity.

Definition 2.7.4. Let Γ ⊆ R2 and consider (x, y1), (x, y2), (x′, y′) ∈ Γ with y1 < y2.

Then Γ is

(i) second-order left-monotone if y′ /∈ (y1, y2) whenever x < x′,

(ii) second-order right-monotone if y′ /∈ (y1, y2) whenever x′ < x.

For convenience, we shall use the same terminology for a pair (Γ,M) even though

only Γ is relevant for the second-order properties. Yet another notion will be useful:

we write

Γ1 = {x ∈ R : (x, y) ∈ Γ for some y ∈ R}

for the projection of Γ onto the first coordinate.

Definition 2.7.5. A pair (Γ,M) ⊆ R2 × R is nondegenerate if

(i) for all x ∈ Γ1 such that (x, y) ∈ Γ for some y > x, there exists y′ < x such that

(x, y′) ∈ Γ,
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(ii) for all x ∈ Γ1 ∩M such that (x, y) ∈ Γ for some y < x, there exists y′ > x such

that (x, y′) ∈ Γ.

These two conditions imply that

(i’) for all x ∈ Γ1 there exists y ≤ x such that (x, y) ∈ Γ,

(ii’) for all x ∈ Γ1 ∩M there exists y ≥ x such that (x, y) ∈ Γ.

Essentially, nondegeneracy postulates that there is a down-path at every x ∈ Γ1,

and also an up-path if x ∈ M . Thus, it is a natural requirement if we intend to

consider supermartingales supported by Γ which are martingales onM×R. For later

use, let us record that nondegeneracy can be assumed without loss of generality in

our context.

Remark 2.7.6. Let (Γ,M) ∈ B(R2)×B(R), let µ ≤cd ν be probability measures and

suppose there is P ∈ S(µ, ν) with P (Γ) = 1 such that P |M×R is a martingale. Then,

there exists a Borel subset Γ′ ⊆ Γ with P (Γ′) = 1 such that (Γ′,M) is nondegenerate.

Proof. Let N ′1 be the set of all x ∈ Γ1 such that Definition 2.7.5 (i) fails. Then N ′1 is

universally measurable and thus we can find a Borel setN1 ⊇ N ′1 such thatN1\N ′1 is µ-

null. The fact that P is a supermartingale implies that Γ1 := Γ∩{Y > X}∩(N1×R)

is P -null. After defining similarly a set N2 for Definition 2.7.5 (ii), the martingale

property of P on M ×R shows that Γ2 := Γ∩ {Y < X} ∩ (N2×R) is P -null as well,

and then we can set Γ′ := Γ \ (Γ1 ∪ Γ2).

The first-order properties turn out to be highly asymmetric when combined with

nondegeneracy. The following observation will have far-reaching consequences re-
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garding the geometry of the coupling
→
P and has no analogue in the left-monotone

case.

Remark 2.7.7. Let (Γ,M) be first-order right-monotone and nondegenerate. Then,

M is a half-line unbounded to the left within Γ1; that is,

if x1, x2 ∈ Γ1 satisfy x1 < x2 and x2 ∈M , then x1 ∈M .

Indeed, let x1, x2 be as stated; then nondegeneracy yields y1, y2 such that y1 ≤ x1 <

x2 ≤ y2 and (xi, yi) ∈ Γ. If we had x1 /∈ M , this would contradict first-order right-

monotonicity.

With these definitions in place, we can use the monotonicity principle of Theo-

rem 2.5.2 to infer the geometry of (Γ,M) from the properties of f . Given µ ≤cd ν, we

recall the corresponding intervals Ik, Jk of Proposition 2.3.4 and the corresponding

set Σ of (2.5.1). In fact, the following result does not refer directly to the marginal

measures; it merely uses the general shape of Σ.

Proposition 2.7.8. Let (Γ,M) ∈ B(R2)×B(R) be nondegenerate, where Γ ⊆ Σ and

M = M0 ∪ M1 with Borel sets M0 ⊆ I0 and M1 = ∪k 6=0Ik, and let f : R2 → R.

Suppose that the assertion of Theorem 2.5.2 (iii) holds; that is, if π is a finitely

supported probability which is concentrated on Γ, then π(f) ≥ π′(f) for any (M0,M1)-

competitor π′ of π that is concentrated on Σ.

(i) If f is first-order Spence–Mirrlees, (Γ,M) is first-order left-monotone.

(ii) If −f is first-order Spence–Mirrlees, (Γ,M) is first-order right-monotone.
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(iii) If f is second-order Spence–Mirrlees,Γ is second-order left-monotone.

(iv) If −f is second-order Spence–Mirrlees,Γ is second-order right-monotone.

Proof. (i) Consider (x1, y1), (x2, y2) ∈ Γ with x1 < x2 and suppose for contradiction

that y2 < y1. The measures

π := 1
2
δ(x1,y1) + 1

2
δ(x2,y2), π′ := 1

2
δ(x1,y2) + 1

2
δ(x2,y1)

have the same first marginal π1 = 1
2
δx1 + 1

2
δx2 . Let π = π1⊗ κ and π′ = π1⊗ κ′, then

bary(κ′(x1)) < bary(κ(x1)), bary(κ′(x2)) > bary(κ(x2)).

Suppose that x1 /∈ M1 and x2 /∈ M . Then, π′ is an (M0,M1)-competitor of π.

Moreover, xi /∈ M1 implies that xi ∈ I0 and thus yi ∈ J0, i = 1, 2 which shows that

π′ is supported on Σ. Thus, we must have π(f) ≥ π′(f). However,

2(π(f)− π′(f)) = (f(x2, y2)− f(x1, y2))− (f(x2, y1)− f(x1, y1)) < 0

as f is first-order Spence–Mirrlees, so we have reached the desired contradiction.

Let x1 ∈ M1 and x2 /∈ M . Recalling that M1 = ∪k 6=0Ik = (−∞, x∗], we have

y1 ∈ Jk for some k 6= 0, whereas x2 /∈ M implies y2 ∈ J0. Since J0 is located to the

right of Jk for k 6= 0, we must have y1 ≤ y2.

(ii) Consider (x1, y1), (x2, y2) ∈ Γ with x1 < x2 and suppose for contradiction that
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y1 < y2. We define π, π′ as in (i); then

bary(κ′(x1)) > bary(κ(x1)), bary(κ′(x2)) < bary(κ(x2)).

Let x1 /∈M . Then, x1 ∈ I0 = (x∗,∞) and thus x2 > x1 is in I0 as well. In particular,

x2 /∈M1 and y1, y2 ∈ J0. Thus π′ is an (M0,M1)-competitor of π that is concentrated

on Σ and we reach a contradiction to −f being first-order Spence–Mirrlees, similarly

as in (i).

(iii) Let (x, y1), (x, y2), (x′, y′) ∈ Γ satisfy x < x′ and assume for contradiction

that y1 < y′ < y2. Define λ = y′−y1
y2−y1 and

π =
λ

2
δ(x,y1) +

1− λ
2

δ(x,y2) +
1

2
δ(x′,y′),

π′ =
λ

2
δ(x′,y1) +

1− λ
2

δ(x′,y2) +
1

2
δ(x,y′).

Then, π and π′ have the same first marginal π1 and if π = π1⊗κ and π′ = π1⊗κ′, then

κ(x), κ′(x), κ(x′), κ′(x′) all have barycenter y′. Hence, π′ is an (M0,M1)-competitor

of π, and since the shape of Γ ⊆ Σ shows that π′ is concentrated on Σ, we deduce

that π(f) ≥ π′(f). However, f being second-order Spence–Mirrlees implies that

π(f) < π′(f).

(iv) The proof is symmetric to (iii).
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2.8 Geometric Characterization of the Canonical

Supermartingale Transports

In this section, we consider fixed probability measures µ ≤cd ν and show that the

associated Increasing and Decreasing Supermartingale Transports
→
P ,

←
P (cf. Theo-

rem 2.6.7) are characterized by geometric properties of their supports.

Theorem 2.8.1. Let (Γ,M) ∈ B(R2) × B(R) be nondegenerate and let P ∈ S(µ, ν)

be such that P is concentrated on Γ and P |M×R is a martingale.

(i) If (Γ,M) is first-order right-monotone and second-order left-monotone, then P

is the Increasing Supermartingale Transport
→
P .

(ii) If (Γ,M) is first-order left-monotone and second-order right-monotone, then P

is the Decreasing Supermartingale Transport
←
P .

Before proving this result, we record two auxiliary lemmas.

Lemma 2.8.2. Let a ∈ R and µ ≤cd ν. If ν is concentrated on [a,∞), then so is µ,

and moreover ν({a}) ≥ µ({a}). If µ ≤c ν, the same holds for (−∞, a].

Proof. The first claim is easily deduced from the fact that S(µ, ν) 6= ∅ by Proposi-

tion 2.2.1, and then the second is implied by symmetry.

The following is [13, Lemma 5.4].

Lemma 2.8.3. Let σ be a nontrivial signed measure on R with σ(R) = 0 and let

σ = σ+ − σ− be its Hahn decomposition. There exist a ∈ supp(σ+) and b > a such

that
∫

(b− y)+1[a,∞)(y) dσ(y) > 0.
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We can now proceed with the proof of the theorem; we shall use the notation

Γx = {y ∈ R : (x, y) ∈ Γ}, x ∈ R.

Proof of Theorem 2.8.1 (i). Given x ∈ R, we set µx := µ|(−∞,x] and denote by νPx the

second marginal of P |(−∞,x]×R; that is, the image of µx under the transport P . Since

P is concentrated on Γ and has the same mass as
→
P , it suffices to show that

νPx = ν
→
P
x (2.8.1)

for all x ∈ Γ1.

In a first step we will show that (2.8.1) holds for all x ∈ Γ1 ∩ M . In view of

Remark 2.7.7 it then follows that

P |M×R =
→
P |M×R. (2.8.2)

After that we will show that (2.8.1) holds for all x ∈ Γ1 ifM = ∅; and this assumption

will be removed in a final step.

Let us first establish an auxiliary result that will be used in steps 1 and 2. If

(2.8.1) is violated for some x ∈ Γ1, then the signed measure

σ := ν
→
P
x − νPx

is nontrivial and we can find a ∈ supp(σ+) and b > a as in Lemma 2.8.3. Note that
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σ+ ≤ ν−νPx and that ν−νPx is the image of µ|(x,∞) under P . Hence, a ∈ supp(ν−νPx )

and as P (Γ) = 1, there exists a sequence of points

(xn, an) ∈ Γ with x < xn and an → a. (2.8.3)

Step 1: Equality of the martingale parts. We argue by contradiction and assume

that there exists x ∈ Γ1 ∩M such that (2.8.1) is violated. We first establish that

ν
→
P
x ≤c νPx and in particular bary(ν

→
P
x ) = bary(νPx ). (2.8.4)

Indeed, in view of x ∈ M , Remark 2.7.7 shows that (−∞, x] ∩ Γ1 ⊆ M and thus

P |(−∞,x]×R is a martingale. Therefore, bary(νPx ) = bary(µx), and moreover bary(µx) ≥

bary(ν
→
P
x ) since

→
P is a supermartingale. Thus, bary(νPx ) ≥ bary(ν

→
P
x ). On the other

hand, P ∈ S(µ, ν) implies νPx ∈ Jµx, νK and hence ν
→
P
x ≤cd νPx by the minimality

property defining
→
P ; cf. Theorem 2.6.7. In view of Proposition 2.2.1, these two facts

imply (2.8.4).

Next, we show that

Γt ∩ (a,∞) = ∅, t ≤ a ∧ x. (2.8.5)

Indeed, let t ≤ a ∧ x and suppose that Γt ∩ (a,∞) 6= ∅. Then in particular Γt ∩

(t,∞) 6= ∅ and thus nondegeneracy, more precisely Definition 2.7.5 (i), yields that

Γt ∩ (−∞, t) 6= ∅ and hence Γt ∩ (−∞, a) 6= ∅. But now we obtain a contradiction to
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the second-order left-monotonicity of Γ by using (xn, an) from (2.8.3) for (x′, y′) and

t for x in Definition 2.7.4, for some large enough n.

Case (a): x ∈ M and x ≤ a. As x ≤ a, (2.8.5) applies to all t ≤ x and

hence P (Γ) = 1 implies that νPx is concentrated on (−∞, a]. In view of (2.8.4) and

Lemma 2.8.2, it follows that ν
→
P
x is concentrated on (−∞, a] as well, and νPx ({a}) ≥

ν
→
P
x ({a}). Using these three facts yields

∫
(b− y)+1[a,∞)(y) ν

→
P
x (dy) = (b− a)ν

→
P
x ({a})

≤ (b− a)νPx ({a})

=

∫
(b− y)+1[a,∞)(y) νPx (dy);

that is,
∫

(b − y)+1[a,∞)(y)σ(dy) ≤ 0. This contradicts the choice of a and b; cf.

Lemma 2.8.3.

Case (b): x ∈ M and a < x. Since a < x, we can argue exactly as below (2.8.4)

to obtain that

ν
→
P
a ≤c νPa and in particular bary(ν

→
P
a ) = bary(νPa ). (2.8.6)

Moreover, (2.8.5) and P (Γ) = 1 now imply that νPa is concentrated on (−∞, a], and

then Lemma 2.8.2 shows that

νPa , ν
→
P
a are concentrated on (−∞, a] and ν

→
P
a ({a}) ≤ νPa ({a}). (2.8.7)
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Next, we establish that νPx − νPa is concentrated on [a,∞). Let a < t ≤ x be such

that Γt 6= ∅. Since x ∈ M , Remark 2.7.7 yields that t ∈ M and now nondegeneracy,

cf. Definition 2.7.5 (ii’), shows that Γt∩[t,∞) 6= ∅. Then, using (2.8.3) and the second-

order left-monotonicity of Γ yield that Γt ∩ (−∞, a) = ∅, and therefore, νPx − νPa is

indeed concentrated on [a,∞). We shall prove below that

ν
→
P
x − ν

→
P
a ≤cd νPx − νPa (2.8.8)

and thus Lemma 2.8.2 shows that ν
→
P
x − ν

→
P
a is concentrated on [a,∞) as well. Using

these facts, (2.8.7) and that y 7→ (b − y)+1[a,∞)(y) is convex decreasing on [a,∞)

yields

∫
(b− y)+1[a,∞)(y) ν

→
P
x (dy)

=

∫
(b− y)+1[a,∞)(y) (ν

→
P
x − ν

→
P
a )(dy) + (b− a)ν

→
P
a ({a})

≤
∫

(b− y)+1[a,∞)(y) (νPx − νPa )(dy) + (b− a)νPa ({a})

=

∫
(b− y)+1[a,∞)(y) νPx (dy).

This again contradicts the choice of a and b; cf. Lemma 2.8.3.

It remains to show (2.8.8). Indeed, using again that νPx − νPa is concentrated on

[a,∞) as well as (2.8.7), we have

νPx − νPa = (νPx − νPa )|[a,∞) ≤ (ν − νPa )|[a,∞) ≤ (ν − ν
→
P
a )|[a,∞) ≤ ν − ν

→
P
a .
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On the other hand, we have µ|(a,x] ≤cd νPx − νPa by the supermartingale property of

P , and thus

νPx − νPa ∈
r
µ|(a,x], ν − ν

→
P
a

z
.

Since ν
→
P
x − ν

→
P
a = Sν−ν

→
P
a (µ|(a,x]) is the minimal element of the above set by the

definition of
→
P and the additivity of the shadow (Proposition 2.6.5), we conclude

that (2.8.8) holds, and that completes the proof of Step 1.

In fact, using Remark 2.7.7 and P (Γ) = 1, this already allows us to conclude that

Step 2: M = ∅. Again, suppose there exists x ∈ Γ1 such that (2.8.1) is violated.

Define

yx := inf Γx.

If (x′, y) ∈ Γ and x′ < x, first-order right-monotonicity implies that y ≥ yx (since

M = ∅), and the latter holds trivially for x′ = x. Conversely, if (x′, y) ∈ Γ and x < x′,

first-order right-monotonicity implies that y ≤ yx. As a result, P is concentrated on

the set

(−∞, x]× [yx,∞) ∪ (x,∞)× (−∞, yx]

and as P ∈ S(µ, ν), this implies that

νPx = ν|(yx,∞) + kδyx , k := µ((−∞, x])− ν((yx,∞)).

This is the minimal element of
q
µ|(−∞,x], ν

y
as can be seen, e.g., from Lemma 2.6.4,

and thus νPx = ν
→
P
x .
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Step 3: M 6= ∅. In the general case, let µM = µ|M and let νPM denote the second

marginal of P |M×R. We note that x /∈ M yields M ⊆ (−∞, x] by Remark 2.7.7 and

hence µM ≤ µx.

We may apply the result proved in Step 2 to Γ′ = Γ ∩ (M c × R), M ′ = ∅ and

the marginals µ′ = µ − µM , ν ′ = ν − νM to deduce that P |Mc×R is the Increasing

Supermartingale Transport from µ′ to ν ′. In particular,

Sν−νPM (µx − µM) = νPx − νPM . (2.8.9)

Observing that (2.8.2) implies νPM = ν
→
P
M = Sν(µM), the additivity of the shadow

(Proposition 2.6.5) shows that

ν
→
P
x = Sν(µx) = Sν(µM) + Sν−Sν(µM )(µx − µM)

= νPM + Sν−νPM (µx − µM)

which equals νPx by (2.8.9). As x /∈ M was arbitrary, this completes the proof of

Theorem 2.8.1 (i).

Proof of Theorem 2.8.1 (ii). It will be convenient to reverse the notation with respect

to the preceding proof: given x ∈ R, we set µx := µ|[x,∞) and let νPx be the second

marginal of P |[x,∞)×R. Again, we assume for contradiction that there exists x ∈ Γ1

such that νPx 6= ν
←
P
x , so that the signed measure

σ := ν
←
P
x − νPx
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is nontrivial and we can find a ∈ supp(σ+) and a < b as in Lemma 2.8.3. Similarly

as in (2.8.3), there exist

(xn, an) ∈ Γ with xn < x and an → a. (2.8.10)

Moreover, P ∈ S(µ, ν) implies that νPx ∈ Jµx, νK and hence, by minimality,

ν
←
P
x ≤cd νPx . (2.8.11)

Case 1a: x ∈M and a ≤ x. We first show that

νPx is concentrated on [a,∞). (2.8.12)

Indeed, let t ∈ Γ1 be such that t > x. Suppose that Γt ∩ (−∞, a) 6= ∅. If t ∈ M ,

nondegeneracy yields that Γt∩[t,∞) 6= ∅ and since a ≤ x < t, (2.8.10) contradicts the

second-order right-monotonicity of Γ. Hence, t /∈ M . Since x ∈ M , nondegeneracy

also yields that Γx ∩ [x,∞) 6= ∅. But now Γt ∩ (−∞, a) 6= ∅ and a ≤ x contradict

first-order left-monotonicity as t /∈ M . As a result, Γt ∩ (−∞, a) = ∅. To extend

this to t = x, note that in this case we have t ∈ M . Thus, if Γt ∩ (−∞, a) 6= ∅,

the nondegeneracy of Definition 2.7.5 (ii) and (2.8.10) contradict second-order right-

monotonicity. We have shown that Γt ∩ (−∞, a) = ∅ for all t ≥ x, and (2.8.12)

follows. In view of (2.8.11) and Lemma 2.8.2, we conclude that

ν
←
P
x is concentrated on [a,∞) and ν

←
P
x ({a}) ≤ νPx ({a}). (2.8.13)
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Since (b− y)+ is convex and decreasing, (2.8.11), (2.8.12) and (2.8.13) then yield

∫
(b− y)+1[a,∞)(y) ν

←
P
x (dy) =

∫
(b− y)+ ν

←
P
x (dy)

≤
∫

(b− y)+ νPx (dy)

=

∫
(b− y)+1[a,∞)(y) νPx (dy)

which contradicts the choice of a and b; cf. Lemma 2.8.3.

Case 1b: x ∈M and x < a. Let t ≥ a and suppose that Γt ∩ (−∞, a) 6= ∅. If t ∈

M , nondegeneracy yields that Γt∩(t,∞) 6= ∅ and since x < a ≤ t, (2.8.10) contradicts

the second-order right-monotonicity of Γ. Hence, t /∈ M , but then Γt ∩ (−∞, a) 6= ∅

and (2.8.10) contradict first-order left-monotonicity. As a result, Γt ∩ (−∞, a) = ∅

for all t ≥ a and hence νPa is concentrated on [a,∞). Since

ν
←
P
a ≤cd νPa (2.8.14)

can be argued as in (2.8.11), Lemma 2.8.2 then yields that

νPa , ν
←
P
a are concentrated on [a,∞) and ν

←
P
a ({a}) ≤ νPa ({a}). (2.8.15)

Next, we show that symmetrically,

νPx − νPa , ν
←
P
x − ν

←
P
a are concentrated on (−∞, a] (2.8.16)
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and (ν
←
P
x − ν

←
P
a )({a}) ≤ (νPx − νPx )({a}). (2.8.17)

Indeed, let t ∈ Γ1 be such that x ≤ t < a and suppose that Γt ∩ (a,∞) 6= ∅.

Since Γt ∩ (−∞, t] 6= ∅ by nondegeneracy, (2.8.10) contradicts second-order right-

monotonicity. Thus, Γt ∩ (a,∞) = ∅ and νPx − νPa is concentrated on (−∞, a]. In

order to conclude (2.8.16) and (2.8.17) via Lemma 2.8.2, it remains to show that

ν
←
P
x −ν

←
P
a ≤c νPx −νPa . Indeed, let again t ∈ Γ1 be such that x ≤ t < a. If t /∈M , then

Γt ∩ (−∞, t] 6= ∅ and (2.8.10) contradict first-order left-monotonicity; thus t ∈ M .

As a result, P |[x,a)×R is a martingale and bary(νPx − νPa ) = bary(µx − µa). Hence, we

only have to show that

ν
←
P
x − ν

←
P
a ≤cd νPx − νPa . (2.8.18)

Using that νPx − νPa is concentrated on (−∞, a] as well as (2.8.15), we have

νPx − νPa = (νPx − νPa )|(−∞,a] ≤ (ν − νPa )|(−∞,a] ≤ (ν − ν
←
P
a )|[a,∞) ≤ ν − ν

←
P
a .

On the other hand, µ|[x,a) ≤cd νPx − νPa by the supermartingale property of P , and

thus (2.8.18) follows from the minimality of
←
P and Proposition 2.6.5. This completes

the proof of (2.8.16) and (2.8.17).
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Finally, we can apply (2.8.14)–(2.8.17) to find that

∫
(b− y)+1[a,∞)(y) ν

←
P
x (dy)

=

∫
(b− y)+1[a,∞)(y) (ν

←
P
x − ν

←
P
a )(dy) +

∫
(b− y)+1[a,∞)(y) ν

←
P
a (dy)

= (b− a)(ν
←
P
x − ν

←
P
a )({a}) +

∫
(b− y)+ ν

←
P
a (dy)

≤ (b− a)(νPx − νPa )({a}) +

∫
(b− y)+ νPa (dy)

=

∫
(b− y)+1[a,∞)(y) νPx (dy)

which again contradicts the choice of a and b.

Case 2: x /∈ M . Define again yx = inf Γx; note that yx ≤ x by nondegeneracy.

Let t ∈ Γ1 be such that t < x. If Γt ∩ (yx,∞) 6= ∅, then as x /∈ M , the definition

of yx yields a contradiction to first-order left-monotonicity. On the other hand, let

x < t and assume that Γt ∩ (−∞, yx) 6= ∅. If t /∈ M , the construction of yx again

contradicts first-order left-monotonicity; thus t ∈M . But then nondegeneracy shows

that Γt ∩ [t,∞) 6= ∅ and the definition of yx yields a contradiction to second-order

right-monotonicity. Clearly, Γx ⊆ [yx,∞), and we have established that P must be

concentrated on

(−∞, x)× (−∞, yx] ∪ [x,∞)× [yx,∞).

Since P ∈ S(µ, ν), this implies that

νPx = ν|(yx,∞) + kδyx , k := µ([x,∞))− ν((yx,∞)).

90



This is the minimal element of
q
µ|[x,∞), ν

y
, and thus νPx = ν

←
P
x .

2.9 Regularity of Spence–Mirrlees Functions

A supermartingale Spence–Mirrlees function f need not be (semi)continuous. For

instance, if f(x, y) = ϕ(x)ψ(y) for a strictly increasing function ϕ and a strictly

convex and decreasing function ψ, then f is supermartingale Spence–Mirrlees but

clearly ϕ need not be upper or lower semicontinuous. In general, f may have a

continuum of various types of discontinuities.

However, we show in Proposition 2.9.2 below that a measurable second-order

Spence–Mirrlees function is automatically continuous for a finer topology on R2, and

this topology will be coarse enough to preserve the weak compactness of S(µ, ν).

Thus, we can still deduce the existence of optimal transports (Lemma 2.9.3) for up-

per semicontinuous reward functions f , and in particular for supermartingale Spence–

Mirrlees functions. That will allow us to apply the monotonicity principle of Theo-

rem 2.5.2.

Before stating these results, we introduce a relaxed version of the Spence–Mirrlees

conditions of Definition 2.7.1, where increase and convexity are required in the non-

strict sense—we have reserved the shorter name for the object that appears more

frequently.

Definition 2.9.1. We call f : R2 → R relaxed first-order Spence–Mirrlees if

f(x2, ·)− f(x1, ·) is increasing for all x1 < x2,
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relaxed second-order Spence–Mirrlees if

f(x2, ·)− f(x1, ·) is convex for all x1 < x2,

and relaxed supermartingale Spence–Mirrlees if f is relaxed second-order Spence–

Mirrlees and −f is relaxed first-order Spence–Mirrlees.

Proposition 2.9.2. Let f : R2 → R be Borel and relaxed second-order Spence–

Mirrlees. There exists a Polish topology τ on R such that f is τ ⊗ τ -continuous.

Moreover, τ refines the Euclidean topology and induces the same Borel sets.

Proof. We begin by constructing the functions fn; the topology will be defined in the

last step.

Step 1: Regularity in y. We first suppose that f vanishes along the y-axis,

f(0, y) = 0, y ∈ R. (2.9.1)

Under this hypothesis, the second-order Spence–Mirrlees condition implies that


f(x, ·) is convex, x ≥ 0,

f(x, ·) is concave, x ≤ 0.

(2.9.2)

Therefore, y 7→ f(x, y) admits a finite left derivative ∂yf(x, 0) at y = 0. We impose
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the further hypothesis that

∂yf(x, 0) = 0, x ∈ R. (2.9.3)

Since y 7→ f(x, y) is convex or concave, its restriction to a compact interval Km =

[−m,m] is Lipschitz continuous with some optimal Lipschitz constant Lip(f(x, ·)|Km) <

∞. More precisely, (2.9.2) and (2.9.3) imply that the optimal constant is the supre-

mum of the absolute slopes of the tangents at the endpoints y = ±m. The second-

order Spence–Mirrlees condition implies that the absolute slopes are increasing in |x|;

in particular,

sup
x∈Km

Lip(f(x, ·)|Km) = sup
x=±m

Lip(f(x, ·)|Km) <∞. (2.9.4)

Step 2: Approximation. Fix n ∈ N, let ynk = 2−nk for k ∈ Z and let fn(x, ·) be

the continuous, piecewise affine approximation to f(x, ·) along this grid; that is, for

ynk ≤ y < ynk+1 we define

fn(x, y) = λf(x, ynk ) + (1− λ)f(x, ynk+1), λ := 2n(ynk+1 − y). (2.9.5)

We then have |fn(x, y)− f(x, y)| ≤ 2−nL for all y ∈ Km if L is a Lipschitz constant

for f(x, ·) on Km. In view of (2.9.4), this shows that

fn → f uniformly on Km ×Km, for all m ∈ N. (2.9.6)
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Step 3: Refining the Topology. Next, we introduce the topology τ . The basic idea

here is that if ϕ is a real function with a single discontinuity at y0 ∈ R, we can change

the topology on R by declaring y0 an isolated point and then ϕ becomes continuous.

More generally, [65, Theorem 13.11, Lemma 13.3] show that given a countable family

of Borel functions on R, there exists a Polish topology τ ⊆ B(R) which renders these

functions continuous and refines the Euclidean topology. In particular, we can find

τ such that f(·, ynk ) is τ -continuous for all n, k. As τ refines the Euclidean topology,

it readily follows that the functions fn defined in (2.9.5) are τ ⊗ τ -continuous. But

now (2.9.6) yields that f is continuous as well.

It remains to remove the hypotheses stated in (2.9.1) and (2.9.3). Indeed, the

above shows that the claim holds for

f̃(x, y) := f(x, y)− f(0, y)− ∂y[f(x, y)− f(0, y)]y=0 × y.

It is easy to check that f̃ is still second-order Spence–Mirrlees if f is. We can further

refine τ such that the two Borel functions subtracted on the right-hand side are

τ -continuous, and then the result for f follows.

As announced, the preceding result allows us to deduce the existence of optimal

transports.

Lemma 2.9.3. Let µ ≤cd ν and let τ be a Polish topology on R which refines the

Euclidean topology and induces the same Borel sets. Moreover, let f : R2 → R be

upper semicontinuous for the product topology τ ⊗ τ and suppose that f+ is S(µ, ν)-
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uniformly integrable; i.e.,

lim
N→∞

sup
P∈S(µ,ν)

P (f+1f+>N) = 0. (2.9.7)

Then, Sµ,ν(f) <∞ and there exists an optimal P ∈ S(µ, ν) for Sµ,ν(f).

Condition (2.9.7) is satisfied in particular if f(x, y) ≤ a(x) + b(y) for some func-

tions a ∈ L1(µ) and b ∈ L1(ν).

Proof. Standard arguments show that S(µ, ν) is compact in the usual topology of

weak convergence as induced by the Euclidean metric. However, the weak topology

on S(µ, ν) induced by τ ⊗ τ does not depend on the choice of the Polish topology

τ as long as σ(τ) = B(R); this follows from [17, Lemma 2.3]. Thus, S(µ, ν) is still

weakly compact relative to τ ⊗ τ .

Under the additional condition that f is bounded from above, the mapping P 7→

P (f) is upper semicontinuous by [85, Lemma 4.3]. Applying this result to f ∧N and

using (2.9.7), the same extends to f as in the lemma, and the claim follows.

We remark that compactness of S(µ, ν) may fail if non-product topologies are

considered on R2, so that the use of τ ⊗ τ is crucial.

Corollary 2.9.4. Let µ ≤cd ν be probability measures and let f : R2 → R be Borel

and relaxed supermartingale Spence–Mirrlees. Suppose that there exist a ∈ L1(µ),

b ∈ L1(ν) such that

f(x, y) ≥ a(x) + b(y), x, y ∈ R
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and that f+ is S(µ, ν)-uniformly integrable; cf. (2.9.7). Then, Sµ,ν(f) < ∞ and

→
P ∈ S(µ, ν) is an optimizer. If f is supermartingale Spence–Mirrlees, the optimizer

is unique.

The analogous statement holds for
←
P if instead −f is (relaxed) supermartingale

Spence–Mirrlees.

Proof. Let f be supermartingale Spence–Mirrlees (in the strict sense). Under the

stated integrability condition, Proposition 2.9.2 and Lemma 2.9.3 show that Sµ,ν(f) <

∞ and that an optimizer P ∈ S(µ, ν) exists. Now, the monotonicity principle of

Theorem 2.5.2 and Remark 2.5.4 provide sets (Γ,M) ∈ B(R2) × B(R) such that P

is concentrated on Γ, P |M×R is a martingale and the assertion of Theorem 2.5.2 (iii)

holds. In view of Remark 2.7.6, we may assume that Γ is nondegenerate by passing

to a subset of full P -measure. Proposition 2.7.8 implies that (Γ,M) is first-order

right monotone and second-order left-monotone, and then Theorem 2.8.1 yields that

P =
→
P .

If f is relaxed supermartingale Spence–Mirrlees, let g be as in Remark 2.7.2 and

note that for each n ∈ N, the function fn = f + (1/n)g is supermartingale Spence–

Mirrlees in the strict sense. Since fn satisfies the stated integrability conditions,

the above shows that
→
P is the unique optimizer for fn. Suppose that there ex-

ists P∗ ∈ S(µ, ν) such that P∗(f) >
→
P (f). Then, as monotone convergence yields

P∗(fn) → P∗(f) and
→
P (fn) →

→
P (f), it follows that P∗(fn) >

→
P (fn) for n large

enough, contradicting the optimality of
→
P .

The argument for
←
P is similar.
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In the special case where µ ≤c ν, the supermartingale transport problem special-

izes to martingale transport and by construction,
→
P coincides with the Left-Curtain

coupling of [13]. For completeness, we record the analogue of Corollary 2.9.4.

Corollary 2.9.5. Let µ ≤c ν be probability measures and let f : R2 → R be Borel and

relaxed second-order Spence–Mirrlees. Suppose that there exist a ∈ L1(µ), b ∈ L1(ν)

such that

f(x, y) ≥ a(x) + b(y), x, y ∈ R

and that f+ is S(µ, ν)-uniformly integrable; cf. (2.9.7). Then, Sµ,ν(f) < ∞ and

→
P ∈ S(µ, ν) ≡ M(µ, ν) is an optimizer, where

→
P coincides with the Left-Curtain

coupling of [13]. If f is second-order Spence–Mirrlees, the optimizer is unique.

The analogous statement holds for
←
P if instead −f is (relaxed) supermartingale

Spence–Mirrlees, and
←
P coincides with the Right-Curtain coupling of [13].

The proof is the same as for Corollary 2.9.4—note that when M = R, the first-

order monotonicity condition is vacuous.

Finally, we also have the converse of Theorem 2.8.1 which completes the proofs

for the main results as stated in the Introduction.

Corollary 2.9.6. Let µ ≤cd ν be probability measures and let
→
P be the associated

Increasing Supermartingale Transport. There exists a nondegenerate pair (Γ,M) ∈

B(R2) × B(R) which is first-order right-monotone and second-order left-monotone

such that
→
P is concentrated on Γ and

→
P |M×R is a martingale.

The analogous statement, exchanging left and right, holds for
←
P .
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Proof. Let g be a supermartingale Spence–Mirrlees function as in Remark 2.7.2. We

know from Corollary 2.9.4 that
→
P is the unique optimal transport for g, and the

existence of (Γ,M) follows as in the proof of Corollary 2.9.4.

Remark 2.9.7. Corollary 2.9.6 shows, in particular, that the no-crossing properties

of
→
P and

←
P as stated in the Introduction are true for general marginals. Together

with Remark 2.7.7, it also yields that
→
P has at most one transition from martingale

kernels to proper supermartingale ones.

A martingale transport with second-order left-monotone support is the Left-

Curtain coupling of its marginals and if the first marginal has no atoms, each kernel

of this transport is concentrated on two points [13]. Moreover, an arbitrary trans-

port with first-order right-monotone support is the Antitone coupling and if the first

marginal has no atoms, its kernels are deterministic [75, Section 3.1]. As a result, if

µ is diffuse,

(i)
→
P |Mc×R is of Monge-type,

(ii)
→
P |M×R is concentrated on the union of two graphs.

The analogue holds for
←
P , with the Right-Curtain and Hoeffding–Fréchet couplings.

2.10 Counterexamples

Duality Theory

In the Introduction and the body of the text, we have claimed that certain relaxations

cannot be avoided.
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In [16], we have already stated several examples related to the duality theory

for the case of martingale transport. Bearing in mind that this is a special case of

the supermartingale transport problem at hand, these examples still apply: If the

inequality defining the dual elements is stated in the classical sense as

ϕ(x) + ψ(y) + h(x)(y − x) ≥ f(x, y), (x, y) ∈ R2

rather than the quasi-sure sense, a duality gap may occur; cf. [16, Example 8.1]. A

duality gap may also occur if integrability of dual elements is required in the usual

sense; i.e., ϕ ∈ L1(µ), or if f has no lower bound, see [16, Examples 8.4, 8.5].

Next, let us substantiate two claims made in the body of the text. Recall that

the set Dci,pwµ,ν (f) was defined with nonnegative functions h, whereas for Dµ,ν(f) non-

negativity is required only on the proper portion of the state space (Definitions 2.4.3

and 2.4.9). We shall show below that this is necessary.

(i) The requirement that the dual elements (ϕ, ψ, h) satisfy h ≥ 0 would preclude

existence of dual optimizers.

Second, we have claimed that the restriction to proper pairs µ ≤cd ν in Section 2.4

is necessary. While we have already seen that the proof of Proposition 2.4.4 crucially

uses a nontrivial difference of the barycenters of µ and ν in order to control the slope

of χ, we still owe an argument that this is indeed unavoidable.

(ii) The closedness property of Dci,pwµ,ν (f) asserted in Proposition 2.4.4 fails if the

(irreducible) pair µ ≤cd ν is not proper,
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and this remains true even if, in view of (i), we were to alleviate the requirement that

h ≥ 0. Indeed, let ci = i−3C, i ≥ 1, where C > 0 is such that
∑
ci = 1, and define

µ :=
∑
i≥1

ciδi, ν :=
1

3

∑
i≥1

ci(δi−1 + δi + δi+1).

Moreover, let f(x, y) = 1x 6=y. Following [16, Examples 8.4, 8.5] we find that µ ≤cd ν

is irreducible and

P :=
∑
i≥1

ci δi ⊗
1

3
(δi−1 + δi + δi+1) ∈ S(µ, ν)

is a primal optimizer. Clearly, bary(µ) = bary(ν); i.e., the pair is not proper. Let

(ϕ, ψ, h) be a dual optimizer. Even if we are flexible about the precise definition of

the dual domain, a minimal requirement to avoid a duality gap is that ϕ(x) +ψ(y) +

h(x)(y − x) = f(x, y) P -a.s. and hence

ϕ(x) + ψ(y) + h(x)(y − x) = f(x, y), (x, y) ∈ N× N0, y ∈ {x− 1, x, x+ 1}.

It follows that 

ϕ(x) + ψ(x− 1)− h(x) = 1,

ϕ(x) + ψ(x+ 1) + h(x) = 1,

ϕ(x) + ψ(x) = 0
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for x ∈ N, and all solutions of this system satisfy

ϕ(x) = −x2 + bx+ c, ψ(x) = x2 − bx− c, h(x) = −2x+ b

for x ∈ N, where b, c ∈ R are arbitrary constants. While any such triplet defines a

dual optimizer in the sense of the body of the paper, we see that there is no solution

satisfying h ≥ 0, which was our claim in (i).

To argue (ii), suppose for contradiction that the closedness property of Dci,pwµ,ν (f)

asserted in Proposition 2.4.4 were true even though µ ≤cd ν is not proper. Then,

following the proofs in the body of the paper shows that the analogue of Proposi-

tion 2.4.8 would hold as well; i.e., there is no duality gap and there exists a dual

optimizer in Dci,pwµ,ν (f). We have seen that this is not the case with the requirement

that h ≥ 0, but it fails even if this is dropped. Indeed, consider again a triplet

(ϕ, ψ, h) satisfying the above system of equations. If (ϕ, ψ, h) ∈ Dci,pwµ,ν (f), then in

particular there exists a concave and increasing moderator χ such that ϕ−χ ∈ L1(µ).

Noting that µ has an infinite second moment and that ϕ−(x) has quadratic growth

as x→∞ along the integers, it follows that χ−(x) must have superlinear growth as

x→∞. But then χ can certainly not be increasing, and we have reached the desired

contradiction.

Two Couplings that are not Canonical

As mentioned in the Introduction, it is natural to ask if reward functions f that

are first- and second-order Spence-Mirrlees are also maximized by a common su-
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permartingale transport—i.e., fxy > 0, fxyy > 0 if f is smooth, rather than the

mixed signs that were considered in the preceding sections (see also Example 2.5.5).

However, it turns out that two functions f 1, f 2 satisfying these Spence–Mirrlees con-

ditions may have different optimizers, even if the optimizer is unique for each f i.

This is shown in Example 2.10.1. The same is true when −f i are first- and second-

order Spence-Mirrlees, as shown by Example 2.10.2; we confine ourselves to numerical

counterexamples.

Example 2.10.1. Let µ and ν be uniformly distributed on {−1, 0, 1} and {−4,−2.5, 2},

respectively; then µ ≤cd ν. We consider the reward functions f 1(x, y) = exey and

f 2(x, y) = exey + 4xy which satisfy f ixy > 0 and f ixyy > 0. The corresponding optimal

transports can be obtained with an LP-solver; they are unique and given by

π1 = 5
18
δ(−1,−4) + 1

18
δ(−1,−2.5) + 5

18
δ(0,−2.5) + 1

18
δ(0,2) + 1

18
δ(1,−4) + 5

18
δ(1,2),

π2 = 1
3
δ(−1,−4) + 7

27
δ(0,−2.5) + 2

27
δ(0,2) + 2

27
δ(1,−2.5) + 7

27
δ(1,2).

Their supports are shown in Figure 2.5. The transports are first- and second order

left-monotone with M = {1}, but the kernels and supports are different.

π1 π2

Figure 2.5: The optimal transports from Example 2.10.1
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Example 2.10.2. Let µ and ν be uniformly distributed on {−1, 0, 1} and {−4,−2.5, 0.5},

respectively; then again µ ≤cd ν. We consider the reward functions f 1(x, y) = −exey

and f 2(x, y) = −exey−4xy which are the negatives of the functions in Example 2.10.1;

they satisfy f ixy < 0 and f ixyy < 0. The corresponding (unique) optimal transports

are given by

π1 = 1
9
δ(−1,−4) + 2

9
δ(−1,0.5) + 2

9
δ(0,−2.5) + 1

9
δ(0,0.5) + 2

9
δ(1,−4) + 1

9
δ(1,−2.5),

π2 = 1
6
δ(−1,−2.5) + 1

6
δ(−1,0.5) + 1

6
δ(0,−2.5) + 1

6
δ(0,0.5) + 1

3
δ(1,−4).

Their supports are shown in Figure 2.6. The transports are first- and second order

right-monotone with M = {−1}, but the kernels and supports are different.

π1 π2

Figure 2.6: The optimal transports from Example 2.10.2
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3

Multiperiod Martingale Transport

This chapter is based on the article [72] of the same title, authored by Marcel Nutz,

Florian Stebegg and Xiaowei Tan. It is forthcoming in Stochastic Processes and its

Applications.

3.1 Introduction

Let µ = (µ0, . . . , µn) be a vector of probability measures µt on the real line. A

measure P on Rn+1 whose marginals are given by µ is called a coupling (or transport)

of µ, and the set of all such measures is denoted by Π(µ). We shall be interested in

couplings P that are martingales; that is, the identity X = (X0, . . . , Xn) on Rn+1 is

a martingale under P . Hence, we will assume that all marginals have a finite first

moment and denote by M(µ) the set of martingale couplings. A classical result of

Strassen [82] shows thatM(µ) is nonempty if and only if the marginals are in convex

order, denoted by µt−1 ≤c µt and defined by the requirement that µt−1(φ) ≤ µt(φ)

for any convex function φ, where µ(φ) :=
∫
φ dµ.
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The first goal of this paper is to introduce and study a family of “canonical”

couplings P ∈ M(µ) that we call left-monotone. These couplings specialize to the

Left-Curtain coupling of [13] in the one-step case n = 1 and share, broadly speaking,

several properties reminiscent of the Hoeffding–Fréchet coupling of classical optimal

transport. Indeed, left-monotone couplings will be characterized by order-theoretic

minimality properties, as simultaneous optimal transports for certain classes of reward

(or cost) functions, and through no-crossing conditions on their supports.

The second goal is to develop a strong duality theory for multiperiod martingale

optimal transport, along the lines of [16] for the one-period martingale case and [66]

for the classical optimal transport problem. That is, we introduce a suitable dual

optimization problem and show the absence of a duality gap as well as the existence

of dual optimizers for general transport reward (or cost) functions. The duality result

is a crucial tool for the study of the left-monotone couplings.

We also develop similar results for a variant of our problem where the intermediate

marginals µ1, . . . , µn−1 are not prescribed (Section 3.9), but we shall focus on the full

marginal case for the purpose of the Introduction.

Left-Monotone Transports

For the sake of orientation, let us first state the main result and then explain the

terminology contained therein. The following is a streamlined version—the results in

the body of the paper are stronger in some technical aspects.

Theorem 3.1.1. Let µ = (µ0, . . . , µn) be in convex order and P ∈ M(µ) a martin-
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gale transport between these marginals. The following are equivalent:

(i) P is a simultaneous optimal transport for f(X0, Xt), 1 ≤ t ≤ n whenever

f : R2 → R is a smooth second-order Spence–Mirrlees function.

(ii) P is concentrated on a left-monotone set Γ ⊆ Rn+1.

(iii) P transports µ0|(−∞,a] to the obstructed shadow Sµ1,...,µt(µ0|(−∞,a]) in step t, for

all 1 ≤ t ≤ n and a ∈ R.

There exists P ∈M(µ) satisfying (i)–(iii), and any such P is called a left-monotone

transport. If µ0 is atomless, then P is unique.

Let us now discuss the items in the theorem.

(i) Optimal Transport. This property characterizes P as a simultaneous optimal

transport. Given a function f : Rn+1 → R, we may consider the martingale optimal

transport problem with reward f (or cost −f),

Sµ(f) = sup
P∈M(µ)

P (f); (3.1.1)

recall that P (f) = EP [f(X0, . . . , Xn)]. A Lipschitz function f ∈ C1,2(R2;R) is called

a smooth second-order Spence–Mirrlees function if it satisfies the cross-derivative

condition fxyy > 0; this has also been called the martingale Spence–Mirrlees condition

in analogy to the classical Spence–Mirrlees condition fxy > 0. Given such a function

of two variables and 1 ≤ t ≤ n, we may consider the n-step martingale optimal

transport problem with reward f(X0, Xt). Characterization (i) states that a left-

monotone transport P ∈ M(µ) is an optimizer simultaneously for the n transport
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problems f(X0, Xt), 1 ≤ t ≤ n, for some (and then all) smooth second-order Spence–

Mirrlees functions f .

In the one-step case, a corresponding result holds for the Left-Curtain coupling [13];

here the simultaneous optimization becomes a single one. In view of the characteriza-

tion in (i), an immediate consequence is that if there exists P ∈ M(µ) such that all

bivariate projections P0t = P ◦ (X0, Xt)
−1 ∈M(µ0, µt) are of Left-Curtain type, then

P is left-monotone. However, such a transport does not exist unless the marginals

satisfy a very specific condition (see Proposition 3.6.9), and in general the bivariate

projections of a left-monotone transport are not of Left-Curtain type.

(ii) Geometry. The second item characterizes P through a geometric property of

its support. A set Γ ⊆ Rn+1 will be called left-monotone if it has the following no-

crossing property for all 1 ≤ t ≤ n: Let x = (x0, . . . , xt−1), x′ = (x′0, . . . , x
′
t−1) ∈ Rt

and

y−, y+, y′ ∈ R with y− < y+

be such that (x, y+), (x, y−), (x′, y′) are in the projection of Γ to the first t + 1

coordinates. Then,

y′ /∈ (y−, y+) whenever x0 < x′0.

That is, if we consider two paths in Γ starting at x0 and coinciding up to t− 1, and

a third path starting at x′0 to the right of x0, then at time t the third path cannot

step in-between the first two—this is illustrated in Figure 3.1. Item (ii) states that

a left-monotone transport P ∈ M(µ) can be characterized by the fact that it is
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µ0

µt−1

µt

x0

y−t y+
t

x′0

y′t

µ0

µt−1

µt

x0

y−t y+
t

x′0

y′t

Figure 3.1: Two examples of forbidden configurations in left-monotone sets.

concentrated on a left-monotone set Γ. (In Theorem 3.7.16 we shall state a stronger

result: we can find a left-monotone set that carries all left-monotone transports at

once.)

In the one-step case n = 1, left-monotonicity coincides with the Left-Curtain

property of [13]. However, we emphasize that for t > 1, our no-crossing condition

differs from the Left-Curtain property of the bivariate projection (X0, Xt)(Γ) as the

latter would not contain the restriction that the first two paths have to coincide up

to t− 1 (see also Example 3.6.10). This corresponds to the mentioned fact that the

bivariate marginal P0t need not be of Left-Curtain type. On the other hand, the

geometry of the projection (Xt−1, Xt)(Γ) is also quite different from the Left-Curtain

one, as our condition may rule out third paths crossing from the right and left at

t− 1, depending on the starting point x′0 rather than the location of x′t−1.

(iii) Convex Ordering. This property characterizes left-monotone transports in

an order-theoretic way and will be used in the existence proof. To explain the idea,

suppose that µ0 consists of finitely many atoms at x1, . . . , xN ∈ R. Then, for any

109



fixed t, a coupling of µ0 and µt can be defined by specifying a “destination” measure

for each atom. We consider all chains1 µ0|xi ≤c θ1 ≤c · · · ≤c θt of measures θs in

convex order that satisfy the marginals constraints θs ≤ µs for s ≤ t. Of these chains,

keep only the terminal measures θt and compare them according to the convex order.

The obstructed shadow of µ0|x1 in µt through µ1, . . . , µt−1, denoted Sµ1,...,µt(µ0|xi), is

defined as the unique least element2 among the θt. A particular coupling of µ0 and

µt is the one that successively maps the atoms µ0|xi to their obstructed shadows in

the remainder of µt, starting with the left-most atom xi and continuing from left to

right. In the case of general measures, we consider the restrictions µ0|(−∞,a] instead

of successively mapping the atoms. Characterization (iii) then states that a left-

monotone transport P ∈ M(µ) maps µ0|(−∞,a] to its obstructed shadow at date t

for all 1 ≤ t ≤ n and a ∈ R. This shows in particular that the bivariate projections

P0t = P ◦ (X0, Xt)
−1 of a left-monotone coupling are uniquely determined. In the

body of the text, we shall also give an alternative definition of the obstructed shadow

by iterating unobstructed shadows through the marginals up to date t; see Section 3.6.

The above specializes to the construction of [13] for the one-step case, which

corresponds to the situation of t = 1 where there are no intermediate marginals ob-

structing the shadow. When t > 1, the obstruction by the intermediate marginals

once again entails that P0t need not be of Left-Curtain type. More precisely, Char-

acterization (iii) gives rise to a sharp criterion (Proposition 3.6.9) on the marginals

µ, describing exactly when this coincidence arises.

1Here µ0|xi
denotes a Dirac measure of mass µ0({xi}) at xi.

2See Definition 3.6.6 and Lemma 3.6.7 for details on this construction.
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(Non-)Uniqueness. We have seen above that for a left-monotone transport P ∈

M(µ) the bivariate projections P0t, 1 ≤ t ≤ n are uniquely determined. In particular,

for n = 1, we recover the result of [13] that the left-monotone coupling is unique. For

n > 1, the situation turns out to be quite different depending on the nature of the

first marginal. On the one extreme, we shall see that when µ0 is atomless, there is a

unique left-monotone transport P ∈M(µ). Moreover, P has a degenerate structure

reminiscent of Brenier’s theorem: it can be disintegrated as P = µ0 ⊗ κ1 ⊗ · · · ⊗ κn

where each one-step transport kernel κt is concentrated on the graphs of two functions.

On the other extreme, if µ0 is a Dirac mass, the typical case is that there are infinitely

many left-monotone couplings—see Section 3.8 for a detailed discussion. We shall also

show that left-monotone transports are not Markovian in general, even if uniqueness

holds (Example 3.7.17).

Duality

The analysis of left-monotone transports is based on a duality result that we develop

for general reward functions f : Rn+1 → (−∞,∞] with an integrable lower bound.

Formally, the dual problem (in the sense of linear programming) for the transport

problem Sµ(f) = supP∈M(µ) P (f) is the minimization

Iµ(f) := inf
(φ,H)

n∑
t=0

µt(φt)
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where the infimum is taken over vectors φ = (φ0, . . . , φn) of real functions and pre-

dictable processes H = (H1, . . . , Hn) such that

n∑
t=0

φt(Xt) + (H ·X)n ≥ f ; (3.1.2)

here (H ·X)n :=
∑n

t=1Ht (Xt−Xt−1) is the discrete-time integral. The desired result

(Theorem 3.5.2) states that there is no duality gap, i.e. Iµ(f) = Sµ(f), and that the

dual problem is attained whenever it is finite. From the analysis for the one-step case

in [16] we know that this assertion fails for the above naive formulation of the dual,

and requires several relaxations regarding the integrability of the functions φt and the

domain V ⊆ Rn+1 where the inequality (3.1.2) is required. Specifically, the inequality

needs to be relaxed on sets that are M(µ)-polar; i.e. not charged by any transport

P ∈ M(µ). These sets are characterized in Theorem 3.3.1 where we show that the

M(µ)-polar sets are precisely the (unions of) sets which project to a two-dimensional

polar set ofM(µt−1, µt) for some 1 ≤ t ≤ n.

The duality theorem gives rise to a monotonicity principle (Theorem 3.5.4) that

underpins the analysis of the left-monotone couplings. Similarly to the cyclical mono-

tonicity condition in classical transport, it allows one to study the geometry of the

support of optimal transports for a given function f .

Background and Related Literature

The martingale optimal transport problem (3.1.1) was introduced in [9] with the

dual problem as a motivation. Indeed, in financial mathematics the function f is
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understood as the payoff of a derivative written on the underlying X and (3.1.2)

corresponds to superhedging f by statically trading in European options φt(Xt) and

dynamically trading in the underlying according to the strategy H. The value Iµ(f)

then corresponds to the lowest price of f for which the seller can enter a model-free

hedge (φ, H) if the marginals Xt ∼ µt are known from option market data. In [9],

it was shown (with the above, “naive” formulation of the dual problem) that there is

no duality gap if f is sufficiently regular, whereas dual existence was shown to fail

even in regular cases. The idea of model-free hedging as well as the connection to

Skorokhod embeddings goes back to [56]; we refer to [21, 22, 28, 57, 73, 84] for further

references. A specific multiperiod martingale optimal transport problem also arises

in the study of the maximum maximum of a martingale given n marginals [52].

The one-step case n = 1 has been studied in great detail. In particular, [13]

introduced the Left-Curtain coupling and pioneered numerous ideas underlying The-

orem 3.1.1, [51] provided an explicit construction of that coupling, and [62] established

the stability with respect to the marginals. Our duality results specialize to the ones

of [16] when n = 1. Unsurprisingly, we shall exploit many arguments and results from

these papers wherever possible. As indicated above, and as will be seen in the proofs

below, the multistep case allows for a richer structure and necessitates novel ideas;

for instance, the analysis of the polar sets (Theorem 3.3.1) is surprisingly involved.

Other works in the one-step martingale case have studied reward functions f such

as forward start straddles [58, 59] or Asian payoffs [81]. We also refer to [44, 67] for

recent developments with multidimensional marginals.

One-step martingale optimal transport problems can alternately be studied as
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optimal Skorokhod embedding problems with marginal constraints; cf. [7, 19, 10, 12].

A multi-marginal extension [8] of [7] is in preparation at the time of writing and the

authors have brought to our attention that it will offer a version of Theorem 3.1.1

in the Skorokhod picture, at least in the case where µ0 is atomless and some further

conditions are satisfied. The Skorokhod embedding problem with multi-marginal

constraint was also studied in [48].

A multi-step coupling quite different from ours can be obtained by composing

in a Markovian fashion the Left-Curtain transport kernels from µt−1 to µt, 1 ≤

t ≤ n, as discussed in [51]. In [61] the continuous-time limits of such couplings for

n → ∞ are studied to find solutions of the so-called Peacock problem [54] where

the marginals for a continuous-time martingale are prescribed; see also [50] and [63]

for other continuous-time results with full marginal constraint. Early contributions

related to the continuous-time martingale transport problem include [35, 36, 43, 68,

80, 83].

The remainder of the paper is organized as follows. Section 3.2 fixes basic termi-

nology and recalls the necessary results from the one-step case. In Section 3.3, we

characterize the polar structure of M(µ). Section 3.4 introduces and analyzes the

space that is the domain of the dual problem in Section 3.5, where we state the du-

ality theorem and the monotonicity principle. Section 3.6 introduces left-monotone

transports by the shadow construction and Section 3.7 develops the equivalent char-

acterizations in terms of support and optimality properties. The (non-)uniqueness of

left-monotone transports is discussed in Section 3.8. We conclude with the analysis

of the problem with unconstrained intermediate marginals in Section 3.9.
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3.2 Preliminaries

Throughout this paper, µt, µ, ν denote finite measures on R with finite first moment,

the total mass not necessarily being normalized. Generalizing the notation from the

Introduction to a vector µ = (µ0, . . . , µn) of such measures, we will write Π(µ) for the

set of couplings; that is, measures P on Rn+1 such that P ◦X−1
t = µt for 0 ≤ t ≤ n

where X = (X0, . . . , Xn) : Rn+1 → Rn+1 is the identity. Moreover, M(µ) is the

subset of all P ∈ Π(µ) that are martingales, meaning that

∫
Xs1A(X0, . . . , Xs)dP =

∫
Xt1A(X0, . . . , Xs)dP

for all s ≤ t and Borel sets A ∈ B(Rs+1).

We denote by F = {Ft}0≤t≤n the canonical filtration Ft := σ(X0, . . . , Xt). As

usual, an F-predictable process H = {Ht}1≤t≤n is a sequence of real functions on

Rn+1 such that Ht is Ft−1-measurable; i.e. Ht = ht(X0, . . . , Xt−1) for some Borel-

measurable ht : Rt → R. Given an F-predictable process H, the discrete stochastic

integral {(H ·X)t}0≤t≤n is defined by

(H ·X)t :=
t∑

s=1

Hs · (Xs −Xs−1).

IfX is a martingale under some measure P , thenH ·X is a generalized (not necessarily

integrable) martingale in the sense of generalized conditional expectations; cf. [60,

Proposition 1.64].

We say that µ = (µ0, . . . , µn) is in convex order if µt−1 ≤c µt for all 1 ≤ t ≤ n;
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that is, µt−1(φ) ≤ µt(φ) for any convex function φ : R → R. This implies that µt−1

and µt have the same total mass. The order can also be characterized by the potential

functions

uµt : R→ R, uµt(x) :=

∫
|x− y|µt(dy).

The following properties are elementary:

(i) uµt is nonnegative and convex,

(ii) ∂+uµt(x)− ∂−uµt(x) = 2µt({x}),

(iii) lim|x|→∞ uµt(x) =∞1µt 6=0,

(iv) lim|x|→∞ uµt(x)− µt(R)|x− bary(µt)| = 0,

where ∂+ and ∂− denote the right and left derivatives, respectively, and bary(µt) =

(
∫
xdµt)/µt(R) is the barycenter. We can therefore extend uµt continuously to R̄ =

[−∞,∞]. The following result of Strassen is classical (cf. [82]; the last statement is

obtained as e.g. in [42, Corollary 2.95]).

Proposition 3.2.1. Let µ = (µ0, . . . , µn) be finite measures on R with finite first

moments and equal total mass. The following are equivalent:

(i) µ0 ≤c · · · ≤c µn,

(ii) uµ0 ≤ · · · ≤ uµn,

(iii) M(µ) 6= ∅,

(iv) there exist stochastic kernels κt(x0, . . . , xt−1, dxt) such that

∫
|xt|κt(x0, . . . , xt−1, dxt) <∞ and

∫
xt κt(x0, . . . , xt−1, dxt) = xt−1
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for all (x0, . . . , xt) ∈ Rt and 1 ≤ t ≤ n, and

µt = (µ0 ⊗ κ1 ⊗ · · · ⊗ κn) ◦ (Xt)
−1 for all 0 ≤ t ≤ n.

All kernels will be stochastic (i.e. normalized) in what follows. A kernel κt with

the first property in (iv) is called martingale kernel.

The One-Step Case

For the convenience of the reader, we summarize some results from [13] and [16] for

the one-step problem (n = 1) which will be used later on. In this section we write

(µ, ν) instead of (µ0, µ1) for the given marginals in convex order.

Definition 3.2.2. The pair µ ≤c ν is irreducible if the set I = {uµ < uν} is connected

and µ(I) = µ(R). In this situation, let J be the union of I and any endpoints of I

that are atoms of ν; then (I, J) is the domain ofM(µ, ν).

The first result is a decomposition of the transport problem into irreducible parts;

cf. [13, Theorem 8.4].

Proposition 3.2.3. Let µ ≤c ν and let (Ik)1≤k≤N be the (open) components of {uµ <

uν}, where N ∈ {0, 1, . . . ,∞}. Set I0 = R\ ∪k≥1 Ik and µk = µ|Ik for k ≥ 0, so that

µ =
∑

k≥0 µk. Then, there exists a unique decomposition ν =
∑

k≥0 νk such that

µ0 = ν0 and µk ≤c νk for all k ≥ 1,
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and this decomposition satisfies Ik = {uµk < uνk} for all k ≥ 1. Moreover, any

P ∈M(µ, ν) admits a unique decomposition P =
∑

k≥0 Pk such that Pk ∈M(µk, νk)

for all k ≥ 0.

We observe that the measure P0 in Proposition 3.2.3 transports µ0 to itself and

is concentrated on ∆0 := ∆ ∩ I2
0 where ∆ = {(x, x) : x ∈ R} is the diagonal. Thus,

the transport problem with index k = 0 is not actually an irreducible one, but we

shall nevertheless refer to (I0, I0) as the domain of this problem. When we want to

emphasize the distinction, we call (I0, I0) the diagonal domain and (Ik, Jk)k≥1 the

irreducible domains ofM(µ, ν). Similarly, the sets Vk := Ik×Jk, k ≥ 1 will be called

the irreducible components and V0 := ∆0 will be called the diagonal component of

M(µ, ν). This terminology refers to the following result of [16, Theorem 3.2] which

essentially states that the components are the only sets that can be charged by a

martingale transport. We call a set B ⊆ R2 M(µ, ν)-polar if it is P -null for all

P ∈ M(µ, ν), where a nullset is, as usual, any set contained in a Borel set of zero

measure.

Proposition 3.2.4. Let µ ≤c ν and let B ⊆ R2 be a Borel set. Then B isM(µ, ν)-

polar if and only if there exist a µ-nullset Nµ and a ν-nullset Nν such that

B ⊆ (Nµ × R) ∪ (R×Nν) ∪

(⋃
k≥0

Vk

)c

.

The following result of [16, Lemma 3.3] will also be useful; it is the main ingredient

in the proof of the preceding proposition.
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Lemma 3.2.5. Let µ ≤c ν be irreducible and let π be a finite measure on R2 whose

marginals π1, π2 satisfy3 π1 ≤ µ and π2 ≤ ν. Then, there exists P ∈ M(µ, ν) such

that P dominates π in the sense of absolute continuity.

3.3 The Polar Structure

The goal of this section is to identify all obstructions to martingale transports imposed

by the marginals µ = (µ0, . . . , µn), and thus, conversely, the sets that can indeed be

charged. We recall that a subset B of Rn+1 is calledM(µ)-polar if it is a P -nullset for

all P ∈M(µ). The result for the one-step case in Proposition 3.2.4 already exhibits

an obvious type of polar set B ⊆ Rn+1: if for some t there is an M(µt−1, µt)-polar

set B′ ⊆ R2 such that B ⊆ Rt−1 × B′ × Rn−t, then B must be M(µ)-polar. The

following shows that unions of such sets are in fact the only polar sets ofM(µ).

Theorem 3.3.1 (Polar Structure). Let µ = (µ0, . . . , µn) be in convex order. Then a

Borel set B ⊆ Rn+1 isM(µ)-polar if and only if there exist µt-nullsets Nt such that

B ⊆
n⋃
t=0

(Xt)
−1(Nt) ∪

n⋃
t=1

(Xt−1, Xt)
−1

(⋃
k≥0

V t
k

)c

(3.3.1)

where (V t
k )k≥1 are the irreducible components of M(µt−1, µt) and V t

0 is the corre-

sponding diagonal component.

Before stating the proof, we introduce some additional terminology. The second

3By π1 ≤ µ we mean that π1(A) ≤ µ(A) for every Borel set A ⊆ R.
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Figure 3.2: The shaded area represents Vk for k = (1, 1).

part of (3.3.1) can be expressed as

n⋃
t=1

(Xt−1, Xt)
−1

(⋃
k≥0

V t
k

)c

=

(
n⋂
t=1

⋃
k≥0

(Xt−1, Xt)
−1(V t

k )

)c

=

( ⋃
k1,...,kn≥0

n⋂
t=1

(Xt−1, Xt)
−1(V t

kt)

)c

. (3.3.2)

For every k = (k1, . . . , kn), the set

Vk =
n⋂
t=1

(Xt−1, Xt)
−1(V t

kt) ⊆ Rn+1

as occurring in the last expression of (3.3.2) will be referred to as an irreducible

component ofM(µ); these sets are disjoint since V t
k ∩ V t

k′ = ∅ for k 6= k′. Moreover,

we call their union

V = ∪kVk

the effective domain ofM(µ).

Roughly speaking, an irreducible component Vk is a chain of irreducible compo-
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nents from the individual steps (t− 1, t). In the one-step case considered in [13, 16],

it was possible and useful to decompose the transport problem into its irreducible

components and study those separately to a large extent; cf. Proposition 3.2.3. This

is impossible in the multistep case, as illustrated by the following example.

Example 3.3.2. Consider the two-step martingale transport problem with marginals

µ0 = δ0, µ1 = 1
2
(δ−1+δ1) and µ2 = 1

4
(δ−2+2δ0+δ2). Then the irreducible components

are given by

V00 = {(x, x, x) : x /∈ (−2, 2)}

V01 = {(x, x) : x ∈ (−2,−1]} × [−2, 0]

V02 = {(x, x) : x ∈ [1, 2)} × [0, 2]

V10 = (−1, 1)× {0} × {0}

V11 = (−1, 1)× [−1, 0)× [−2, 0]

V12 = (−1, 1)× (0, 1]× [0, 2].

There is only one martingale transport P ∈M(µ), given by

P =
1

4
(δ(0,−1,−2) + δ(0,−1,0) + δ(0,1,0) + δ(0,1,2)).

While P is supported on V11 ∪ V12, it cannot be decomposed into two martingale

parts that are supported on V11 and V12, respectively: V11 and V12 are disjoint, but

P |V11 = 1
4
(δ(0,−1,−2) + δ(0,−1,0)) is not a martingale.
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The main step in the proof of Theorem 3.3.1 will be the following lemma.

Lemma 3.3.3. Let Vk be an irreducible component ofM(µ) and consider a measure

π concentrated on Vk such that πt ≤ µt for t = 0, . . . , n. Then there exists a transport

P ∈M(µ) which dominates π in the sense of absolute continuity.

Deferring the proof, we first show how this implies the theorem.

Proof of Theorem 3.3.1. Clearly (Xt)
−1(Nt) isM(µ)-polar for t = 0, . . . , n and (Xt−1, Xt)

−1
(⋃

k≥0 V
t
k

)c
isM(µ)-polar for t = 1, . . . , n. This shows that (3.3.1) is sufficient for B ⊆ Rn+1 to

beM(µ)-polar.

Conversely, suppose that (3.3.1) does not hold; we show that B is not M(µ)-

polar. In view of (3.3.2), by passing to a subset of B if necessary, we may assume

that

B ⊆ V =
⋃
k

Vk =
⋃
k

n⋂
t=1

(Xt−1, Xt)
−1(V t

kt).

Wemay also assume that there are no µt-nullsetsNt such thatB ⊆ ∪nt=0(Xt)
−1(Nt).

By a result of classical optimal transport [18, Proposition 2.1], this entails that B is

not Π(µ)-polar; i.e. we can find a measure ρ ∈ Π(µ) such that ρ(B) > 0.

We now write B =
⋃
kB ∩ Vk. As ρ(B) =

∑
k ρ(B ∩ Vk) > 0, we can find some k

such that ρ(B∩Vk) > 0. But then π := ρ|Vk satisfies the assumptions of Lemma 3.3.3

which yields P ∈ M(µ) such that P � π. In particular, P (B) > 0 and B is not

M(µ)-polar.
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Proof of Lemma 3.3.3

The reasoning for Lemma 3.3.3 follows an induction on the number n of time steps;

its rigorous formulation requires a certain amount of control over subsequent steps of

the transport problem. Thus, we first state a more quantitative version of (the core

part of) the lemma that is tailored to the inductive argument.

Definition 3.3.4. Let µ be in convex order and V the effective domain of M(µ).

We say that a finite measure π has a compact support family if there are disjoint

compact product sets4 K1, . . . , Km ⊆ V with π(∪iKi) = π(Rn+1) such that Ki ⊆ Vki

for some irreducible component Vki for all i = 1, . . . ,m.

Definition 3.3.5. Let µ be in convex order, t ≤ n and σ ≤ µt a finite measure on R.

If t = n, we say that σ is diagonally compatible (with µ) if there is a finite family of

compact sets L1, . . . , Lm ⊆ R with σ(∪iLi) = σ(R). Whereas if t < n, we require in

addition that for every i, either (a) Li ⊆ Ik for some irreducible component (Ik, Jk)

of M(µt, µt+1) or (b) Li ⊆ I0 and there is t + 1 ≤ t′ ≤ n such that Li ⊆ Is0 for the

diagonal components of M(µs, µs+1) for all t ≤ s < t′ and Li ⊆ I t
′

k for some (non-

diagonal) irreducible component (I t
′

k , J
t′

k ) ofM(µt′ , µt′+1), where we set Ink = Jnk = R

for notational convenience.

Lemma 3.3.6. Let t < n and let L ⊆ I0 be a compact interval contained in the

diagonal component of M(µt, µt+1) such that µt(L) > 0. There exist a compact

interval L′ ⊆ L with µt(L′) > 0 and t+ 1 ≤ t′ ≤ n such that L′ ⊆ Is0 for the diagonal

component of M(µs, µs+1) for all t ≤ s < t′ and L′ ⊆ I t
′

k for some (non-diagonal)

4By a compact product set we mean a set K = A0 × · · · ×An where each At ⊆ R is compact.
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irreducible component (I t
′

k , J
t′

k ) ofM(µt′ , µt′+1), where we again set Ink = Jnk = R for

notational convenience.

Proof. The statement is trivially satisfied for t = n−1 as we can just take L′ = L. For

t < n−1, consider the family of irreducible components (I t+1
k , J t+1

k ) ofM(µt+1, µt+2).

We distinguish three cases.

(i) First, consider the case where L ∩ I t+1
k = ∅ for all k ≥ 1, then L is contained

in the diagonal component ofM(µt+1, µt+2).

(ia) If L = {x} consists of a single point with positive mass, then we can conclude

by induction from the result for t+ 1.

(ib) If no endpoint of L is on the boundary of some component I tk, then observe

that µt|L = µt+1|L. We can find L′ ⊆ L from the statement of the lemma for t + 1.

Then L′ gives the result as µt(L′) = µt+1(L′) > 0.

(ic) If L contains more than one point, and also the endpoint of some component

I tk. When this endpoint x has positive point mass, we can set L′ = {x} and conclude

as in (ia). If the endpoint has zero mass, we can find L̄ ⊆ L compact with µt(L̄) > 0

that does not contain this endpoint and argue as in (ib). (Observe that there might

be at most two endpoints.)

(ii) Next, let k ≥ 1 be such that µt+1(L∩I t+1
k ) > 0 (and in particular L∩I t+1

k 6= ∅).

Then we can find a compact interval L′ ⊆ L∩I t+1
k such that µt(L′) > 0 and we directly

see that L′ satisfies the statement of the lemma.

(iii) Finally, suppose that there is k ≥ 1 with L ∩ I t+1
k 6= ∅ but µt(L ∩ I t+1

k ) = 0.

In particular this means that L 6⊆ I t+1
k . It furthermore means that I t+1

k 6⊆ L, as
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otherwise µt+1(I t+1
k ) = µt(I

t+1
k ) = µt(L ∩ I t+1

k ) = 0 which contradicts the definition

of I t+1
k . As L is a compact interval and I t+1

k is an open interval, we have that L\I t+1
k

is a compact interval and µt(L\I t+1
k ) = µt(L) > 0. Notice that there can be at most

two such components I t+1
k for fixed L and we will be in case (i) after removing both

of them if necessary.

Lemma 3.3.7. Let t ≤ n and let J ⊆ R be an interval such that µt(J) > 0. Then

we can find a compact interval K ⊆ J with µt(K) > 0 such that µt|K is diagonally

compatible.

Proof. The case t = n is trivial. Thus, let t < n. We consider the family {Ik}k≥1 of

open sets corresponding to the irreducible components ofM(µt, µt+1) and distinguish

two cases.

(i) There is some k ≥ 1 such that µt(Ik ∩ J) > 0. In this case, we can choose a

compact interval K ⊆ Ik ∩ J such that µt(K) > 0.

(ii) Now suppose that µt(Ik ∩ J) = 0 for all k ≥ 1. Then we first notice that

there are at most two components Ik1 ,Ik2 so that Iki ∩ J 6= ∅ and J\(Ik1 ∪ Ik2) is still

a nonempty interval with positive µt-mass, since Ik cannot be contained in J . We

can therefore assume without loss of generality that J ⊆ I0 and is compact. Now

we can apply Lemma 3.3.6 to find a subinterval K ⊆ J such that µt|K is diagonally

compatible.

Lemma 3.3.8. Let t ≤ n and let π be a measure on Rt+1 that has a compact support

family with respect to µ0, . . . , µt and satisfies πs ≤ µs for s ≤ t. In addition, suppose

that πt is diagonally compatible.
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Then there is a martingale measure Q on Rt+1 that dominates π in the sense of

absolute continuity and has a compact support family with respect to µ0, . . . , µt and

satisfies Qs ≤ µs for s ≤ t. In addition, Qt can be chosen to be diagonally compatible.

Finally, Q can be chosen such that dQ = gdπ + dσ where the density g is bounded

and the measure σ is singular with respect to π.

Proof. We proceed by induction on t. For t = 0 there is nothing to prove; we can set

Q = π.

Consider t ≥ 1 and assume that the lemma has already been shown for (t−1)-step

measures. We disintegrate

π = π′ ⊗ κ(x0, . . . , xt−1, dxt) (3.3.3)

and observe that π′ satisfies the conditions of the lemma. In particular, π′t−1 must

be diagonally compatible: the compact sets that it is supported on are either con-

tained in irreducible components ofM(µt−1, µt) or in the diagonal component. Any

such compact subset of the diagonal component of M(µt−1, µt) must correspond to

one of the finitely many compact sets in the support of πt so that they inherit the

compatibility property from these sets.

By the induction assumption, we then find a martingale measure Q′ � π′ on Rt

with the stated properties. In particular, the marginal Q′t−1 is diagonally compatible

with µ.

Again, let {Ik}k≥1 be the open intervals from the irreducible domains (Ik, Jk) of

M(µt−1, µt) and let I0 denote the corresponding diagonal domain. We shall construct
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a martingale kernel κ̂ by suitably manipulating κ. Let us observe that since π is

concentrated on V and has a compact support family with respect to µ0, . . . , µt, the

following hold for π′-a.e. x = (x0, . . . , xt−1) ∈ Rt and a finite family of compact sets

Li with properties (a) or (b) from Definition 3.3.5:

• κ(x, ·) = δxt−1 whenever xt−1 ∈ I0,

• κ(x, ·) is concentrated on some Li with Li ⊆ Jk for xt−1 ∈ Ik with k ≥ 1 and

Q′t−1(Ik) > 0.

By changing κ on a π′-nullset, we may assume that these two properties hold for all

x ∈ Rt.

Step 1. Next, we argue that we may change Q′ and κ such that the marginal

(Q′ ⊗ κ)t = (Q′ ⊗ κ) ◦X−1
t satisfies

(Q′ ⊗ κ)t ≤ µt. (3.3.4)

Indeed, recall that dQ′ = dQ′abs + dσ′ = g′dπ′ + dσ′ where the density g′ is bounded

and σ′ is singular with respect to π′. Using the Lebesgue decomposition theorem, we

find a Borel set A ⊆ Rt such that σ′(A) = σ′(Rt) and π′(A) = 0. By scaling Q′ with

a constant we may assume that g′ ≤ 1/2. As πt ≤ µt, the marginal (Q′abs ⊗ κ)t is

then bounded by 1
2
µt, and it remains to bound (σ′ ⊗ κ)t in the same way.

Note that Q′t−1 ≤ µt−1 implies σ′t−1 ≤ µt−1. We may change κ arbitrarily on the

set A without invalidating (3.3.3). Indeed, for each irreducible component (Ik, Jk)

of M(µt−1, µt) we choose and fix a compact interval Kk ⊆ Jk with µt(Kk) > 0
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such that µt|Kk is diagonally compatible; this is possible by Lemma 3.3.7. For x =

(x0, . . . , xt−1) ∈ A such that xt−1 ∈ Ik we then define

κ(x, ·) :=
1

µt(Kk)
µt|Kk .

Set εk = µt(Kk)/µt−1(Ik). Then

ε := inf
k:Q′t−1(Ik)>0

εk ∧ 1

is strictly positive because there are only finitely many k with Q′t−1(Ik) > 0 (this

is the purpose of the induction assumption that Q′t−1 is diagonally compatible). As

σ′t−1 ≤ µt−1, we may scale Q′ once again to obtain σ′t−1 ≤ ε
6
µt−1. We now have

(σ′|Rt−1×Ik ⊗ κ)t = σ′t−1(Ik)
1

µt(Kk)
µt|Kk ≤

ε

6

µt−1(Ik)

µt(Kk)
µt|Kk ≤

1

6
µt|Kk .

For the diagonal domain I0 the corresponding inequality holds because we have

κ(x, ·) = δxt−1 for xt−1 ∈ I0 and σ′t−1|I0 ≤ 1
6
µt−1|I0 ≤ 1

6
µt|I0 . As a consequence,

we have (σ′ ⊗ κ)t ≤ 1
2
µt as desired, so that we may assume (3.3.4) in what follows.

Step 2. We now construct a martingale kernel κ̂ such that Q = Q′ ⊗ κ̂ has the

required properties. For a fixed irreducible component (Ik, Jk) we have that Q′t−1|Ik =

Q′t−1|K for some compact K ⊆ Ik. We can find compact intervals B−, B+ ⊆ Jk with

µt(B
−) > 0 and µt(B+) > 0 such that B− is to the left of K and B+ is to the right

of K, in the sense that x < y < z for x ∈ B−, y ∈ K and z ∈ B+. By Lemma 3.3.7,

we can further assume that we have B+ ⊆ I tk and B− ⊆ I tk′ for some k, k′ ≥ 0,
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where (I tl )l≥0 belong to the components ofM(µt, µt+1), and that µt|B± is diagonally

compatible.

Next, we define two nonnegative functions x 7→ ε−(x), ε+(x) for x = (x0, . . . , xt−1) ∈

Rt−1 ×K as follows:

• for x such that bary(κ(x, ·)) < xt−1, let ε+ be the unique number such that

κ(x, ·) + ε+(x) · µt|B+ has barycenter xt−1,

• for x such that bary(κ(x, ·)) > xt−1, let ε− be the unique number such that

κ(x, ·) + ε−(x) · µt|B− has barycenter xt−1,

• ε±(x) = 0 otherwise.

Observe that these numbers always exist because B− and B+ have positive mass and

positive distance from the points xt−1 ∈ K. We now define the martingale kernel κ̂

by

κ̂(x) := c(ε− · µt|B− + κ+ ε+ · µt|B+)

where 0 < c ≤ 1 is a normalizing constant such that κ̂ is again a stochastic kernel.

We also define κ̂(x) = κ(x) for x on the diagonal domain.

For each k ≥ 1, let B±k denote the sets associated with Ik as above. Once again,

the number

C :=
1

3
inf

k:Q′t−1(Ik)>0
[µt(B

−
k ) ∧ µt(B+

k )]

is strictly positive because there are only finitely many k with Q′t−1(Ik) > 0. We can

now define

Q := C · (Q′ ⊗ κ̂).
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Then Q is a martingale transport whose marginals satisfy Qs ≤ Q′s ≤ µs for 0 ≤ s ≤

t− 1 whereas Qt ≤ µt by (3.3.4), the construction of κ̂ and the choice of C; indeed,

for every xt−1 ∈ I tk we have

3Cκ̂(x) ≤ 3Cε− · µt|B− + 3Cκ+ 3Cε+ · µt|B+

≤ µt|B− + κ+ µt|B+ ≤ 2µt + κ.

To see that Qt is diagonally compatible, observe that Qt is supported by a finite

family of compact sets consisting of the following:

• a finite family of compact sets L̄i ⊆ I0 such that Q′t−1|L̄i is diagonally compatible

(from the induction hypothesis that Q′t−1 is diagonally compatible),

• a finite family of compact sets Li ⊆ Jk for some k ≥ 1 with Q′t−1(Ik) > 0 such

that Qt|Li ≤ µt|Li is diagonally compatible, and

• the sets B±k for the finitely many k such that Q′t−1(Ik) > 0, where Qt|B±k ≤ µt|B±k

is diagonally compatible.

It remains to check that Q has the required decomposition with respect to π.

Indeed, κ̂ can be decomposed as

κ̂ = cκ+ (1− c)κ⊥

where κ⊥ is singular to κ. Recalling the decomposition Q′ = Q′abs + σ′, we then have

Q′ ⊗ κ̂ = cQ′abs ⊗ κ + (1− c)Q′abs ⊗ κ⊥ + σ′ ⊗ κ̂.
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The last two terms are singular with respect to π = π′ ⊗ κ, and the first term is

absolutely continuous with bounded density.

Proof of Lemma 3.3.3. Let π be a measure with marginals πt ≤ µt for all t which is

concentrated on some irreducible component V = Vk and thus, in particular, on the

effective domain V .

Step 1. We first decompose π =
∑∞

m=1 π
m such that each πm satisfies the require-

ments of Lemma 3.3.8 with t = n.

Indeed, let V = ∩nt=1(Xt−1, Xt)
−1(V t

kt
) and suppose first that kt 6= 0 for 1 ≤ t ≤ n.

Then, we can write V as a product of nonempty intervals: V = A0 × · · · × An

where A0 = I1
k1
, An = Jnkn and At = J tkt ∩ I

t+1
kt+1

for 1 < t < n. Thus, we can

choose increasing families of compact intervals Km
t such that At = ∪m≥1K

m
t for all t.

Setting π1 := π|∏n
t=0K

1
t
and πm := π|∏n

t=0K
m
t \

∏n
t=0K

m−1
t

for m > 1 yields the required

decomposition.

If kt = 0 for one or more 1 ≤ t ≤ n, we have V ⊆ A0 × · · · × An, where At is

defined as above when kt 6= 0 6= kt+1 but we use R instead of J tkt when kt = 0 and

R instead of I t+1
kt+1

when kt+1 = 0. After these modifications, πm can be defined as

above; recall that diagonal components are always closed.

Step 2. For each of the measures πm, Lemma 3.3.8 yields a martingale measure

Qm � πm with the properties stated in the lemma. In particular, each Qm has a

compact support family. We show below that there exist Pm ∈ M(µ) such that

Pm � Qm, and then P :=
∑

2−mPm satisfies P ∈M(µ) and P � π as desired.

To complete the proof, it remains to show that for fixed m ≥ 1 there exist 0 <
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ε < 1 and Q̄m ∈M(µ− ε(Qm
0 , . . . , Q

m
n )), as we may then conclude by setting Pm :=

εQm+Q̄m ∈M(µ). By Proposition 3.2.1, the setM(µ−ε(Qm
0 , . . . , Q

m
n )) is nonempty

if the marginals are in convex order, or equivalently if the potential functions satisfy

uµt−1 − εuQmt−1
≤ uµt − εuQmt (3.3.5)

for t = 1, . . . , n. Thus, it suffices to find ε > 0 with this property for fixed t, and we

have reduced to a question about a one-step martingale transport problem. Indeed,

we have uµt−1 ≤ uµt on R. Since Qm has a compact support family and in particular

is supported by V , there is a finite collection of compact sets Kj ⊆ R such that each

Kj is contained in one of the intervals I t−1
kj

from the decomposition of (µt−1, µt) into

irreducible components, Qm transports mass from Kj to itself for each j, and Qm is

the identical Monge transport on the complement (∪jKj)
c. On each Kj, Steps (a)

and (b) in the proof of [16, Lemma 3.3] yield ε > 0 such that (3.3.5) holds on Kj,

and we can choose ε > 0 independently of j since there are finitely many j. On the

other hand, (3.3.5) trivially holds on (∪jKj)
c since uQmt−1

= uQmt on that set. This

completes the proof.

3.4 The Dual Space

In this section we introduce the domain of the dual optimization problem and show

that it has a certain closedness property. The latter will be crucial for the duality

theorem in the subsequent section.
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We shall need a generalized notion of integrability for the elements of the dual

space. To this end, we first recall the integral for concave functions as detailed in [16,

Section 4.1].

Definition 3.4.1. Let µ ≤c ν be irreducible with domain (I, J) and let χ : J → R

be a concave function. We define

(µ− ν)(χ) :=
1

2

∫
I

(uµ − uν)dχ′′ +
∫
J\I
|∆χ|dν ∈ [0,∞]

where −χ′′ is the (locally finite) second derivative measure of −χ on I and |∆χ| is

the absolute magnitude of the jumps of χ at the boundary points J\I.

Remark 3.4.2. As shown in [16, Lemma 4.1], this integral is well-defined and satisfies

(µ− ν)(χ) =

∫
I

[
χ(x)−

∫
J

χ(y)κ(x, dy)

]
µ(dx)

for any P = µ⊗ κ ∈M(µ, ν). Moreover, it coincides with the difference µ(χ)− ν(χ)

of the usual integrals when χ ∈ L1(µ) ∩ L1(ν).

For later reference, we record two more properties of the integral.

Lemma 3.4.3. Let µ ≤c ν be irreducible with domain (I, J) and let χ : J → R be

concave.

(i) Assume that I has a finite right endpoint r and χ(a) = χ′(a) = 0 for some
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a ∈ I. Then χ ≤ 0 and χ1[a,∞) is concave. If ν has an atom at r, then

χ(r) ≥ − C

ν({r})
(µ− ν)(χ1[a,∞))

for a constant C ≥ 0 depending only on µ, ν.

(ii) For a, b ∈ R, the concave function χ̄(x) := χ(x) + ax+ b satisfies

(µ− ν)(χ̄) = (µ− ν)(χ).

Proof. The first part is [16, Remark 4.6] and the second part follows directly from

χ̄′′ = χ′′ and ∆χ̄ = ∆χ.

Let us now return to the multistep case with a vector µ = (µ0, . . . , µn) of mea-

sures in convex order and introduce µ(φ) :=
∑n

t=0 µt(φt) in cases where we do not

necessarily have φt ∈ L1(µt). As mentioned previously, in contrast to [16], the multi-

step transport problem does not decompose into irreducible components, forcing us

to directly give a global definition of the integral.

Definition 3.4.4. Let φ = (φ0, . . . , φn) be a vector of Borel functions φt : R→ R̄. A

vector χ = (χ1, . . . , χn) of Borel functions χt : R → R is called a concave moderator

for φ if for 1 ≤ t ≤ n,

(i) χt|J is concave for every domain (I, J) of an irreducible component ofM(µt−1, µt),

(ii) χt|I0 ≡ 0 for the diagonal domain I0 ofM(µt−1, µt),

(iii) φt − χt+1 + χt ∈ L1(µt),
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where χn+1 ≡ 0. We also convene that χ0 ≡ 0. The moderated integral of φ is then

defined by

µ(φ) :=
n∑
t=0

µt(φt − χt+1 + χt) +
n∑
t=1

∑
k≥1

(µt−1 − µt)k(χt) ∈ (−∞,∞], (3.4.1)

where (µt−1− µt)k(χt) denotes the integral of Definition 3.4.1 on the k-th irreducible

component ofM(µt−1, µt).

Remark 3.4.5. The moderated integral is independent of the choice of the moderator

χ. To see this, consider a second moderator χ̃ for φ; then we have (χ̃t+1 − χt+1) −

(χ̃t − χt) ∈ L1(µt). We may assume that (3.4.1) is finite for at least one of the

moderators. Using Remark 3.4.2 with arbitrary κt such that µt−1⊗ κt ∈M(µt−1, µt)

for 1 ≤ t ≤ n, as well as Fubini’s theorem for kernels,

n∑
t=1

∑
k≥1

(µt−1 − µt)k(χt)− (µt−1 − µt)k(χ̃t)

=

∫
· · ·
∫ n∑

t=1

χt(xt−1)− χt(xt)κn(xn−1, dxn) · · ·κ1(x0, dx1)µ0(dx0)

−
∫
· · ·
∫ n∑

t=1

χ̃t(xt−1)− χ̃t(xt)κn(xn−1, dxn) · · ·κ1(x0, dx1)µ0(dx0)

=
n∑
t=0

µt((χt+1 − χ̃t+1)− (χt − χ̃t)).

It now follows that (3.4.1) yields the same value for both moderators.

For later reference, we also record the following property.
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Remark 3.4.6. If χ is a concave moderator, Definition 3.4.4 (ii) implies that

χt =
∑
k≥1

χt|Itk =
∑
k≥1

χt|Jtk

where (I tk, J
t
k) is the k-th irreducible domain ofM(µt−1, µt).

Next, we introduce the space of functions which have a finite integral in the

moderated sense.

Definition 3.4.7. We denote by Lc(µ) the space of all vectors φ admitting a concave

moderator χ with
∑n

t=1

∑
k≥1(µt−1 − µt)k(χt) <∞.

It follows that µ(φ) is finite for φ ∈ Lc(µ), and we have µ(φ) =
∑

t µt(φt)

for φ ∈ Πn
t=0L

1(µt). The definition is also consistent with the expectation under

martingale transports, in the following sense.

Lemma 3.4.8. Let φ ∈ Lc(µ) and let H = (H1, . . . , Hn) be F-predictable. If

n∑
t=0

φt(Xt) + (H ·X)n

is bounded from below on the effective domain V ofM(µ), then

µ(φ) = P

[
n∑
t=0

φt(Xt) + (H ·X)n

]
, P ∈M(µ).

Proof. Let P ∈ M(µ), let χ be a concave moderator for φ, and assume without

loss of generality that 0 is the lower bound. Using Remark 3.4.6, we have that
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∑n
t=0 φt(Xt) + (H ·X)n equals

n∑
t=0

(φt − χt+1 + χt)(Xt) +
n∑
t=1

∑
k≥1

(χt|Itk(Xt−1)− χt|Jtk(Xt)) + (H ·X)n ≥ 0.

By assumption, the functions (φt − χt+1 + χt)(Xt) are P -integrable. Therefore, the

negative part of the remaining expression must also be P -integrable. Writing Pt :=

P ◦ (X0, . . . , Xt)
−1 and using that (χt|Jtk)

+ has linear growth, we see that for any

disintegration P = Pn−1 ⊗ κn,

∫ [ n∑
t=1

∑
k≥1

(χt|Itk(Xt−1)− χt|Jtk(Xt)) + (H ·X)n

]
κn(X0, . . . , Xn−1, dXn)

=
n−1∑
t=1

∑
k≥1

(χt|Itk(Xt−1)− χt|Jtk(Xt)) + (H ·X)n−1

+
∑
k≥1

∫ [
χn|Ink (Xn−1)− χn|Jnk (Xn)

]
κn(X0, . . . , Xn−1, dXn).

Iteratively integrating with kernels such that Pt = Pt−1 ⊗ κt and observing that we

can apply Fubini’s theorem to
∑n

t=1

∑
k≥1(χt|Itk(Xt−1)− χt|Jtk(Xt)) + (H ·X)n as its

negative part is P -integrable, we obtain

P

[
n∑
t=1

∑
k≥1

(χt|Itk(Xt−1)− χt|Jtk(Xt)) + (H ·X)n

]
=

n∑
t=1

∑
k≥1

(µt−1 − µt)k(χt)

and the result follows.

We can now define our dual space. It will be convenient to work with nonnega-
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tive reward functions f for the moment—we shall relax this constraint later on; cf.

Remark 3.5.3.

Definition 3.4.9. Let f : Rn+1 → [0,∞]. We denote by Dµ(f) the set of all pairs

(φ, H) where φ ∈ Lc(µ) and H = (H1, . . . , Hn) is an F-predictable process such that

n∑
t=0

φt(Xt) + (H ·X)n ≥ f on V .

By Lemma 3.4.8, the expectation of the left hand side under any P ∈ M(µ) is

given by the moderated integral µ(φ); this will be seen as the dual cost of (φ, H)

when we consider the dual problem inf(φ,H)∈Dµ(f)µ(φ) in Section 3.5 below.

The following closedness property is the key result about the dual space.

Proposition 3.4.10. Let fm : Rn+1 → [0,∞], m ≥ 1 be a sequence of functions such

that

fm → f pointwise

and let (φm, Hm) ∈ Dµ(fm) be such that supmµ(φm) <∞. Then there exist (φ, H) ∈

Dµ(f) with

µ(φ) ≤ lim inf
m→∞

µ(φm).

Proof of Proposition 3.4.10

An attempt to prove Proposition 3.4.10 directly along the lines of [16] runs into

a technical issue in controlling the concave moderators. Roughly speaking, they

do not allow sufficiently many normalizations; this is related to the aforementioned
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fact that the multistep problem cannot be decomposed into its components. We

shall introduce a generalized dual space with families of functions indexed by the

components, and prove a “lifted” version of Proposition 3.4.10 in this larger space.

Once that is achieved, we can infer the closedness result in the original space as well.

(The reader willing to admit Proposition 3.4.10 may skip this subsection without

much loss of continuity.)

Definition 3.4.11. Let φ = {φkt : 0 ≤ t ≤ n, k ≥ 0} be a family of Borel functions,

consisting of one function φkt : J tk → R̄ for each irreducible component (I tk, J
t
k) of

M(µt−1, µt) as indexed by k ≥ 1 and 1 ≤ t ≤ n, functions φ0
t : I t0 → R̄ for the

diagonal components I t0 indexed by 1 ≤ t ≤ n , and a single function φ0
0 : R→ R̄ for

t = 0. Similarly, let χ = {χkt : 1 ≤ t ≤ n, k ≥ 0} be a family of functions, consisting

of one concave function χkt : J tk → R for each irreducible component (I tk, J
t
k) and Borel

functions χ0
t : I t0 → R for the diagonal components. We also convene that χ0

0 ≡ 0 and

define the functions5 χt :=
∑

k≥0 χ
k
t |Itk for t = 1, . . . , n, as well as χn+1 ≡ 0.

We call χ a concave moderator for φ if for all t = 0, . . . , n and k ≥ 0,

φkt + χkt − χt+1 ∈ L1(µkt )

and the sum
∑

k≥0 µ
k
t (φ

k
t + χkt − χt+1) converges in (−∞,∞], where µkt is the second

marginal of the k-th irreducible component in the decomposition ofM(µt−1, µt) as in

Proposition 3.2.3 and µ0
0 ≡ µ0. The generalized6 moderated integral is then defined

5The restriction to Itk is important to avoid “double counting” in the sums. Note that the
intervals J may overlap at their endpoints.

6This integral is not related to the notion of a generalized martingale.
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by

µ(φ) :=
n∑
t=0

∑
k≥0

µkt (φ
k
t + χkt − χt+1) +

n∑
t=1

∑
k≥1

(µt−1 − µt)k(χkt ).

We denote by Lc,g(µ) the set of all families φ which admit a concave moderator χ

such that

n∑
t=0

∑
k≥0

|µkt (φkt + χkt − χt+1)|+
n∑
t=1

∑
k≥1

(µt−1 − µt)k(χkt ) <∞.

For φ ∈ Lc,g(µ), the value of µ(φ) is independent of the choice of the moderator

χ. This is shown similarly as in Remark 3.4.5. We can now introduce the generalized

dual space.

Definition 3.4.12. Let f : Rn+1 → [0,∞]. We denote by Dgµ(f) the set of all pairs

(φ, H) where φ ∈ Lc,g(µ), H = (H1, . . . , Hn) is F-predictable, and

n∑
t=0

φktt (xt) + (H · x)n ≥ f(x)

for all x = (x0, . . . , xn) and k = (k0, . . . , kn) such that (xt−1, xt) ∈ (I tkt , J
t
kt

) for some

(irreducible or diagonal) component7 and t = 1, . . . , n.

We observe that for any x ∈ V the corresponding k = (k0, . . . , kn) is uniquely

defined, where the index k0 ≡ 0 exists purely for notational convenience.

For later reference, the following lemma elaborates on certain degrees of freedom

in choosing elements of Dgµ(f).

7 Given an irreducible component (I, J), the notation (x, y) ∈ (I, J) means that x ∈ I, y ∈ J ,
whereas for a diagonal component (I0, I0) it is to be understood as x = y ∈ I0.
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Lemma 3.4.13. Let (φ, H) ∈ Dgµ(f) and let χ be a corresponding concave moderator.

Let 1 ≤ t ≤ n, let (I tk, J
t
k) be the domain of an irreducible component ofM(µt−1, µt)

and c1, c2 ∈ R. Introduce new families (φ̃, H̃) and χ̃ by either (i) or (ii):

(i) Define

φ̃kt (y) = φkt (y)− (c1y − c2), χ̃kt (y) = χkt (y) + (c1y − c2),

φ̃k
′

t−1(x) = φk
′

t−1(x) + (c1x− c2)|Itk , χ̃k
′

t−1 = χk
′

t−1,

φ̃k
′

s = φk
′

s , χ̃k
′

s = χk
′

s for s /∈ {t− 1, t},

H̃t = Ht + c1|X−1
t−1(Itk), H̃s = Hs for s 6= t

where k′ runs over all components of the corresponding step in the subscript.

(ii) Define

φ̃0
t = φ0

t + χ0
t − χ0

t+1|It0 , χ̃0
t = 0, and

φ̃kt = φkt − χ0
t+1, χ̃kt = χkt for k ≥ 1, t = 0, . . . , n.

Then (φ̃, H̃) ∈ Dgµ(f) and χ̃ is a corresponding concave moderator. Moreover, we

have
n∑
t=0

φktt (xt) + (H · x)n =
n∑
t=0

φ̃ktt (xt) + (H̃ · x)n and

φkt + χkt − χt+1 = φ̃kt + χ̃kt − χ̃t+1 for all k ≥ 1, t = 0, . . . , n,

as well as µ(φ) = µ(φ̃).
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Proof. (i) If x is such that (xt−1, xt) /∈ I tk× J tk, then φ̃
kt
t (xt) = φktt (xt) for t = 0, . . . , n

and H̃(x) = H(x). Otherwise,

φ̃ktt (xt) + φ̃
kt−1

t−1 (xt−1) + H̃t(xt − xt−1) = φktt (xt) + φ
kt−1

t−1 (xt−1)

+Ht(xt − xt−1),

φ̃kt + χ̃kt − χ̃t+1 = φkt + χkt − χt+1, and

φ̃k
′

t−1 + χ̃k
′

t−1 − χ̃t = φk
′

t−1 + χk
′

t−1 − χt.

Along with the fact that (µt − µt−1)k(χkt ) = (µt − µt−1)k(χ̃kt ), these identities imply

the assertions.

(ii) Similarly as in (i), the terms in question coincide by construction.

Remark 3.4.14. The modification of Lemma 3.4.13 (i) can be applied simultaneously

for infinitely many k’s without difficulties. In this case we set

φ̃k
′

t−1(x) := φk
′

t−1(x) +
∑
k≥1

(ck1x− ck2)|Itk ,

as well as φ̃kt (y) = φkt (y)−(ck1y−ck2) and χ̃kt (y) = χkt (y)+(ck1y−ck2) for the components

k ≥ 1 in step t. The pointwise equalities still hold as above and in particular, the

moderated integral does not change.

Remark 3.4.15. Any (φ, H) ∈ Dµ(f) induces an element (φg, H) ∈ Dgµ(f) with

µ(φg) = µ(φ) by choosing some concave moderator χ for φ and setting

φkt := φt|Jtk , χkt := χt|Jtk .
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We now show the analogue to Lemma 3.4.8 for the generalized dual space.

Lemma 3.4.16. Let φ ∈ Lc,g(µ) and let H = (H1, . . . , Hn) be F-predictable. If

n∑
t=0

φ
kt(x)
t (xt) + (H · x)n

is bounded from below on the effective domain V ofM(µ), then

µ(φ) = P

[
n∑
t=0

φ
kt(x)
t (xt) + (H · x)n

]
, P ∈M(µ).

Proof. Let P ∈ M(µ), let χ be a concave moderator for φ such that χ0
t ≡ 0 and

assume that 0 is the lower bound. It is easy to see that
∑n

t=0 φ
kt(x)
t (xt) + (H · x)n

equals

n∑
t=0

(φ
kt(x)
t − χt+1 + χ

kt(x)
t )(xt) +

n∑
t=1

(χ
kt(x)
t (xt−1)− χkt(x)

t (xt)) + (H · x)n ≥ 0.

By assumption
∑n

t=0(φ
kt(x)
t − χt+1 + χ

kt(x)
t )(xt) is P -integrable. Therefore, the

negative part of the remaining expression must also be P -integrable. Writing Pt :=

P ◦ (X0, . . . , Xt)
−1 and using that (χkt )

+ has linear growth, we see that for any disin-

tegration P = Pn−1 ⊗ κn,
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∫ [ n∑
t=1

(χ
kt(x)
t (xt−1)− χkt(x)

t (xt)) + (H · x)n

]
κn(x0, . . . , xn−1, dxn)

=
n−1∑
t=1

(χ
kt(x)
t (xt−1)− χkt(x)

t (xt)) + (H · x)n−1

+

∫ [
(χkn(x)

n (xn−1)− χkn(x)
n (xn))

]
κn(x0, . . . , xn−1, dxn).

Iteratively integrating with kernels such that Pt = Pt−1 ⊗ κt and observing that

we can apply Fubini’s theorem to
∑n

t=1(χ
kt(x)
t (xt−1) − χ

kt(x)
t (xt)) + (H · x)n as its

negative part is P -integrable, we obtain

P

[
n∑
t=1

(χ
kt(x)
t (xt−1)− χkt(x)

t (xt)) + (H · x)n

]
=

n∑
t=1

∑
k≥1

(µt−1 − µt)k(χkt )

and the result follows.

Next, we establish that lifting from Dµ(f) to Dgµ(f) does not change the range of

dual costs.

Proposition 3.4.17. Let f : Rn+1 → [0,∞]. We have

{µ(φg) : (φg, H) ∈ Dgµ(f)} = {µ(φ) : (φ, H) ∈ Dµ(f)}.

Proof. Remark 3.4.15 shows the inclusion “⊇.” To show the reverse, we may apply

Lemma 3.4.13 (i) together with Remark 3.4.14 to modify a given pair (φg, H) ∈

Dgµ(f) such that φkt (x) = 0 for x ∈ J tk\I tk, for all irreducible domains (I tk, J
t
k) of
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M(µt−1, µt) and 1 ≤ t ≤ n. Here we have used that x ∈ J tk\I tk implies µtk({x}) > 0,

cf. Definition 3.2.2, and therefore φg ∈ Lc,g(µ) implies φkt (x) ∈ R; that is, such

endpoints can indeed be shifted to 0 by adding affine functions to φkt .

Let χg be a concave moderator for φg. Using Lemma 3.4.3 (ii) and again Lemma

3.4.13 as above, we can modify χkt to satisfy χkt (x) = 0 for x ∈ J tk\I tk, for all irreducible

domains (I tk, J
t
k) of M(µt−1, µt) and 1 ≤ t ≤ n. Here, the finiteness of χkt at the

endpoints follows from Lemma 3.4.3 (i) and (µt−1 − µt)k(χkt ) <∞.

Still denoting the modified dual element by (φg, H), we define φ ∈ Lc(µ) and a

corresponding concave moderator χ by

φt(x) := φkt (x), χt(x) := χkt (x), for x ∈ J tk;

they are well-defined since φkt and χkt vanish at points that belong to more than one

set J tk. We have µ(φ) = µ(φg) by construction and the result follows.

Definition 3.4.18. Let 1 ≤ t ≤ n and xt ∈ R. A sequence x = (x0, . . . , xt) is a

predecessor path of xt if there are indices (k0, . . . , kt) such that (xs−1, xs) ∈ (Isks , J
s
ks

)

for some component (irreducible or diagonal) ofM(µs−1, µs), for all 1 ≤ s ≤ t. We

write k(x) for the (unique) associated sequence (k0, . . . , kt) followed by the path x

in the above sense, and Ψk
t (xt) for the set of all predecessor paths with kt = k.

These notions will be useful in the next step towards the closedness result, which

is to “regularize” the concave moderators. For concreteness in some of the expressions

below, we convene that ∞−∞ :=∞.
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Lemma 3.4.19. Let (φ, H) ∈ Dgµ(0). There is a concave moderator χ of φ such that

φkt + χkt − χt+1 ≥ 0 on J tk for all t = 0, . . . , n, k ≥ 1, and (3.4.2)

φ0
t + χ0

t − χt+1 ≥ 0 µt-a.s. on I t0 for all t = 1, . . . , n. (3.4.3)

As a consequence,
n∑
t=1

∑
k≥1

(µt−1 − µt)k(χkt ) ≤ µ(φ).

Proof. Fix 1 ≤ t ≤ n and let (I tk, J
t
k) be the domain of some component ofM(µt−1, µt).

We define χ = (χkt ) by χ0
0 = 0 and

χkt (xt) = inf
x∈Ψkt (xt)

{
t−1∑
s=0

φks(x)
s (xs) + (H · x)t

}
;

then χkt is concave on J tk for k ≥ 1 as an infimum of affine functions.

We first show that

{χkt = +∞} ⊆
{
φk
′

t−1 = +∞
}
∪ {χk′t−1 = +∞}.

In particular, such points only exist after a chain of diagonal components from

a point where φkt (xt) = ∞. Suppose χkt (xt) = +∞ and k ≥ 1, then the prede-

cessor paths of xt agree with the predecessor paths of all of Jkt up to t − 1, but

{
∑t−1

s=0 φ
ks(x)
s (xs) < ∞} must hold M(µ)-q.s. as φ ∈ Lc,g(µ). We must therefore

have xt ∈ I0
t . Then, by definition, χ0

t (xt) = χkt−1(xt) +φkt−1(xt) and the claim follows.
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Next, we verify that χ satisfies (3.4.2) and (3.4.3). For notational convenience

we for now set χn+1 ≡ infx∈V

{∑n
s=0 φ

ks(x)
s (xs) + (H · x)n

}
≥ 0. Restricting the

infimum in the definition of χ to the set of paths x with xt+1 = xt ∈ I t+1
k′ ∩ J tk yields

χt+1(xt) = χk
′

t+1(xt) = inf
x∈Ψk

′
t+1(xt)

{
t∑

s=0

φks(x)
s (xs) + (H · x)t+1

}

≤ inf
x∈Ψkt (xt)

{
t−1∑
s=0

φks(x)
s (xs) + (H · x)t

}
+ φkt (xt)

= χkt (xt) + φkt (xt).

Since ∪k′≥0I
t+1
k′ = R, this will imply (3.4.2) after we check that χkt > −∞ for k ≥ 1

and χ0
t > −∞ holds µ0

t -a.s., which also implies that χt > −∞ holds µt−1-almost

surely. We show this inductively for t ≥ 1.

Clearly χn+1 ≥ 0 > −∞. Now, for t ≤ n the induction hypothesis is that

χt+1 > −∞ holds almost surely µt.

From φ ∈ Lc,g and χt+1 > −∞ µt-a.s. we have that

φkt <∞, χt+1 > −∞ hold µkt -a.s.

As χkt is concave and Jkt is the convex hull of the topological support of µkt we then

get χkt > −∞ on all of Jkt from the previous inequality.

For k = 0, the inequality yields {χ0
t = −∞} ⊆ {χt+1 = −∞}∪{φ0

t (xt) =∞} and

both of these sets are µt nullsets. Finally µt−1({χt = −∞}) = 0 as this is a subset of

the diagonal component where µt−1 is dominated by µt.
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Set φ̄kt := φkt + χkt − χt+1|Jtk for 0 ≤ t ≤ n; then φ̄kt ≥ 0. Moreover, choose an

arbitrary P ∈ M(µ) with disintegration P = µ0 ⊗ κ1 ⊗ · · · ⊗ κn for some stochastic

kernels κt(x0, . . . , xt−1, dxt). From Lemma 3.4.16 we know that

µ(φ) = P

[
n∑
t=0

φ
kt(X)
t (Xt) + (H ·X)n

]
<∞.

We can therefore apply Fubini’s theorem for kernels as in the proof of Lemma 3.4.16

to the expression

0 ≤
n∑
t=0

φ
kt(x)
t (xt) + (H · x)n

=
n∑
t=0

φ̄
kt(x)
t (xt) +

n∑
t=1

(
χt(xt−1)− χkt(x)

t (xt)
)

+ (H · x)n

and obtain

P

[
n∑
t=0

φ
kt(X)
t (Xt) + (H ·X)n

]
=

n∑
t=0

∑
k≥0

µkt (φ̄
k
t ) +

n∑
t=1

∑
k≥1

(µt−1 − µt)k(χkt )

which shows that the right hand side is finite, and therefore χ is a concave moderator

for φ. Finally, the second claim follows from µkt (φ̄
k
t ) ≥ 0.

The last tool for our closedness result is a compactness property for concave

functions in the one-step case; cf. [16, Proposition 5.5].

Proposition 3.4.20. Let µ ≤c ν be irreducible with domain (I, J) and let a ∈ I be
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the common barycenter of µ and ν. Let χm : J → R be concave functions such that8

χm(a) = χ′m(a) = 0 and sup
m≥1

(µ− ν)(χm) <∞.

There exists a subsequence χmk which converges pointwise on J to a concave function

χ : J → R, and (µ− ν)(χ) ≤ lim infk(µ− ν)(χmk).

We are now ready to state and prove the analogue of Proposition 3.4.10 in the

generalized dual.

Proposition 3.4.21. Let fm : Rn+1 → [0,∞], m ≥ 1 be a sequence of functions such

that

fm → f pointwise

and let (φm, Hm) ∈ Dgµ(fm) be such that supmµ(φm) <∞. Then there exist (φ, H) ∈

Dgµ(f) with

µ(φ) ≤ lim inf
m→∞

µ(φm).

Proof. Since (φm, Hm) ∈ Dgµ(fm) and fm ≥ 0, we can introduce a sequence of

concave moderators χm as in Lemma 3.4.19. A normalization of (φm, Hm) as in

Lemma 3.4.13 (i) and (ii), in the general form of Remark 3.4.14, allows us to assume

without loss of generality that χ0
t,m ≡ 0 and χkt,m(akt ) = (χkt,m)′(akt ) = 0, where akt is

the barycenter of µkt—this modification is the main merit of lifting to the generalized

dual space. While the generalized dual gives enough degrees of freedom to choose

this normalization, the dual without the generalization does not. This is related to

8To be specific, let us convene that χ′m is the left derivative—this is not important here.
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the possible overlap of the intervals I, J at the different times t; see also Figure 3.2

and the paragraph preceding Example 3.3.2.

By passing to a subsequence as in Proposition 3.4.20 for each component and

using a diagonal argument, we obtain pointwise limits χkt : J tk → R for χkt,m after

passing to another subsequence.

Since φkt,m + χkt,m − χt+1,m ≥ 0 on J tk
9 and χkt,m → χkt as well as χt+1,m → χt+1,

we can apply Komlos’ lemma (in the form of [33, Lemma A1.1] and its remark) to

find convex combinations φ̃kt,m ∈ conv{φkt,m, φkt,m+1, . . . } which converge µkt -a.s. for

0 ≤ t ≤ n. We may assume without loss of generality that φ̃kt,m = φkt,m. Thus, we can

set

φkt := lim supφkt,m on J tk for t = 1, . . . , n,

φ0 := lim inf φ0,m

to obtain

φkt,m → φkt µkt -a.s. and φkt + χkt − χt+1 ≥ 0 on J tk.

9Observe that this inequality will still hold after modifying φ and χ as in Lemma 3.4.13.
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We can now apply Fatou’s lemma and Proposition 3.4.20 to deduce that

µ(φ) =
n∑
t=0

∑
k≥0

µkt (φ
k
t + χkt − χt+1) +

n∑
t=1

∑
k≥1

(µt−1 − µt)k(χkt )

≤
n∑
t=0

∑
k≥0

lim inf µkt (φ
k
t,m + χkt,m − χt+1,m)

+
n∑
t=1

∑
k≥1

lim inf(µt−1 − µt)k(χkt,m)

≤ lim inf

[
n∑
t=0

∑
k≥0

µkt (φ
k
t,m + χkt,m − χt+1,m) +

n∑
t=1

∑
k≥1

(µt−1 − µt)k(χkt,m)

]

= lim inf µ(φm) <∞.

In particular, we see that φ ∈ Lc,g(µ) with concave moderator χ.

It remains to construct the predictable process H = (H1, . . . , Hn). With a mild

abuse of notation, we shall identify Ht(x0, . . . , xn) with the corresponding function of

(x0, . . . , xt−1) in this proof.

We first define for each k = (k0, . . . , kt) and x = (x0, . . . , xt) such that k = k(x),

the functions Gkt,m and Gkt by

Gkt,m(x) :=
t∑

s=0

φkss,m(xs) +
t∑

s=1

Hs,m(x0, . . . , xs−1) · (xs − xs−1),

Gkt (x) := lim inf Gkt,m(x).

Given k = (k0, . . . , kt), we write k′ = (k0, . . . , kt−1). We claim that there exists an
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F-predictable process H such that for all 1 ≤ t ≤ n,

Gk
′

t−1(x0, . . . , xt−1) + φktt (xt) +Ht(x0, . . . , xt−1) · (xt− xt−1) ≥ Gkt (x0, . . . , xt). (3.4.4)

Once this is established, the proposition follows by induction since G(0)
0 (x0) = φ0(x0)

and Gkn(x0, . . . , xn) ≥ f(x0, . . . , xn).

To prove the claim, write gconc for the concave hull of a function g and observe

that

lim inf[Gk
′

t−1,m(x0, . . . , xt−1) +Ht,m(x0, . . . , xt−1) · (xt − xt−1)]

≥ lim inf[(Gkt,m(x0, . . . , xt−1, ·)− φktt,m(·))conc(xt)]

≥ [lim inf(Gkt,m(x0, . . . , xt−1, ·)− φktt,m(·)]conc(xt)

≥ [Gkt (x0, . . . , xt−1, ·)− φktt (·)]conc(xt)

=: φ̂kt (x0, . . . , xt−1, xt).

By construction, φ̂kt is concave in the last variable and satisfies

Gk
′

t−1(x0, . . . , xt−1) ≥ φ̂kt (x0, . . . , xt−1, xt−1).

Let ∂tφ̂kt denote the left partial derivative in the last variable and set

Hk
t (x0, . . . , xt−1) := ∂tφ̂

k
t (x0, . . . , xt−1, xt−1)
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for kt ≥ 1 and Hk
t (x0, . . . , xt−1) = 0 for kt = 0; then we have

Gk
′

t−1(x0, . . . , xt−1) +Hk
t (x0, . . . , xt−1) · (xt − xt−1)

≥ φ̂kt (x0, . . . , xt−1, xt−1) +Hk
t (x0, . . . , xt−1) · (xt − xt−1)

≥ φ̂kt (x0, . . . , xt−1, xt)

≥ Gkt (x0, . . . , xt)− φktt (xt).

Finally, for any (x0, . . . , xt−1) ∈ Rt, we define Ht(x0, . . . , xt−1) as


Hk
t (x0, . . . , xt−1), if k = k(x0, . . . , xt−1, xt) for some xt ∈ R

0, otherwise;

this is well-defined since k(x0, . . . , xt) depends only on (x0, . . . , xt−1). The predictable

process H satisfies (3.4.4) and thus the proof is complete.

Proof of Proposition 3.4.10. In view of Remark 3.4.15 and Proposition 3.4.17, the

result follows from Proposition 3.4.21.

3.5 Duality Theorem and Monotonicity Principle

The first goal of this section is a duality result for the multistep martingale transport

problem; it establishes the absence of a duality gap and the existence of optimizers

in the dual problem. (As is well known, an optimizer for the primal problem only

exists under additional conditions, such as continuity of f .) The second goal is a
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monotonicity principle describing the geometry of optimal transports; it will be a

consequence of the duality result.

As above, we consider a fixed vector µ = (µ0, . . . , µn) of marginals in convex

order. The primal and dual problems as defined follows.

Definition 3.5.1. Let f : Rn+1 → [0,∞]. The primal problem is

Sµ(f) := sup
P∈M(µ)

P (f) ∈ [0,∞],

where P (f) refers to the outer integral if f is not measurable. The dual problem is

Iµ(f) := inf
(φ,H)∈Dµ(f)

µ(φ) ∈ [0,∞].

We recall that a function f : Rn+1 → [0,∞] is called upper semianalytic if the sets

{f ≥ c} are analytic for all c ∈ R, where a subset of Rn+1 is called analytic if it is the

image of a Borel subset of a Polish space under a Borel mapping. Any Borel function

is upper semianalytic and any upper semianalytic function is universally measurable;

we refer to [20, Chapter 7] for background. The following is the announced duality

result.

Theorem 3.5.2 (Duality). Let f : Rn+1 → [0,∞].

(i) If f is upper semianalytic, then Sµ(f) = Iµ(f) ∈ [0,∞].

(ii) If Iµ(f) <∞, there exists a dual optimizer (φ, H) ∈ Dµ(f).

Proof. Given our preceding results, much of the proof follows the lines of the corre-
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sponding result for the one-step case in [16, Theorem 6.2]; therefore, we shall be brief.

We mention that the present theorem is slightly more general than the cited one in

terms of the measurability condition (f is upper semianalytic instead of Borel); this

is due to the global proof given here.

Step 1. Using Lemma 3.4.8 we see that Sµ(f) ≤ Iµ(f) holds for all upper semi-

continuous f : Rn+1 → [0,∞].

Step 2. Using the de la Vallée–Poussin theorem and our assumption that the

marginals have a finite first moment, there exist increasing, superlinearly growing

functions ζµt : R+ → R+ such that x 7→ ζµt(|x|) is µt-integrable for all 0 ≤ t ≤ n.

Define

ζ(x0, . . . , xn) := 1 +
n∑
t=0

ζµt(|xt|)

and let Cζ be the vector space of all continuous functions f such that f/ζ vanishes

at infinity. Then, a Hahn–Banach separation argument can be used to show that

Sµ(f) ≥ Iµ(f) holds for all f ∈ Cζ ; the details of the argument are the same as in

the proof of [16, Lemma 6.4].

Step 3. Let f be bounded and upper semicontinuous; then there exists a sequence

of bounded continuous functions fm ∈ Cb(Rn+1) which decrease to f pointwise. As

Cb(Rn+1) ⊆ Cζ , we have Sµ(fm) = Iµ(fm) for all m by the first two steps.

Let U be the set of all bounded, nonnegative, upper semicontinuous functions on

Rn+1. We recall that a map C : [0,∞]R
n+1 → [0,∞] is called a U -capacity if it is

monotone, sequentially continuous upwards on [0,∞]R
n+1 and sequentially continuous

downwards on U . The functional f 7→ Sµ(f) is a U -capacity; this follows from the
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weak compactness ofM(µ) and the arguments in [66, Propositions 1.21, 1.26].

It follows that Sµ(fm) → Sµ(f). By the monotonicity of f 7→ Iµ(f) and Step 1

we obtain

Iµ(f) ≤ lim Iµ(fm) = limSµ(fm) = Sµ(f) ≤ Iµ(f).

Step 4. Since Sµ = Iµ on U by Step 3, Iµ is sequentially downward continuous

on U like Sµ. On the other hand, Proposition 3.4.10 implies that it is sequentially

upwards continuous on [0,∞]R
n+1 . As a result, Iµ is a U -capacity.

Step 5. Let f : Rn+1 → [0,∞] be upper semianalytic. For any U -capacity C,

Choquet’s capacitability theorem shows that

C(f) = sup{C(g) : g ∈ U , g ≤ f}.

As Sµ and Iµ are U -capacities that coincide on U , it follows that Sµ(f) = Iµ(f).

This completes the proof of (i).

Step 6. To see that the infimum Iµ(f) is attained if it is finite, we merely need to

apply Proposition 3.4.10 with the constant sequence fm = f .

We can easily relax the lower bound on f .

Remark 3.5.3. Let f : Rn+1 → (−∞,∞] and suppose there exist φ ∈
∏n

t=0 L
1(µt)

and a predictable process H such that

f ≥
n∑
t=0

φt(Xt) + (H ·X)n on V .
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Then we can apply Theorem 3.5.2 to [f −
∑n

t=0 φt(Xt)− (H ·X)n]
+ and obtain the

analogue of its assertion for f .

The duality result gives rise to a monotonicity principle describing the support

of optimal martingale transports, in the spirit of the cyclical monotonicity condi-

tion from classical transport theory. The following generalizes the results of [13,

Lemma 1.11] and [16, Corollary 7.8] for the one-step martingale transport problem.

Theorem 3.5.4 (Monotonicity Principle). Let f : Rn+1 → [0,∞] be Borel and sup-

pose that Sµ(f) <∞. There exists a Borel set Γ ⊆ Rn+1 with the following properties.

(i) A measure P ∈M(µ) is concentrated on Γ if and only if it is optimal for Sµ(f).

(ii) Let µ̄ = (µ̄0, . . . , µ̄n) be another vector of marginals in convex order. If P̄ ∈

M(µ̄) is concentrated on Γ, then P̄ is optimal for Sµ̄(f).

Indeed, if (φ, H) ∈ Dµ(f) is an optimizer for Iµ(f), then we can take

Γ :=

{
n∑
t=0

φt(Xt) + (H ·X)n = f

}
∩ V .

Proof. As Sµ(f) <∞, Theorem 3.5.2 shows that Iµ(f) = Sµ(f) <∞ and that there

exists a dual optimizer (φ, H) ∈ Dµ(f). In particular, we can define Γ as above.

(i) As 0 ≤ f and P (f) ≤ Sµ(f) < ∞ for all P ∈ M(µ), we see that f is P -

integrable for all P ∈ M(µ). Since
∑n

t=0 φt(Xt) + (H · X)n ≥ 0 on the effective

domain V , and P [
∑n

t=0 φt(Xt) + (H ·X)n] = µ(φ) = Iµ(f) < ∞ by Lemma 3.4.8,
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we also obtain the P -integrability of
∑n

t=0 φt(Xt) + (H ·X)n. In particular,

0 ≤ P

[
n∑
t=0

φt(Xt) + (H ·X)n − f

]
= µ(φ)− P (f) = Sµ(f)− P (f)

and equality holds if and only if P is concentrated on Γ.

(ii) We may assume that P̄ is a probability measure with P̄ (f) < ∞. As a first

step, we show that the effective domain V̄ ofM(µ̄) is a subset of the effective domain

V of M(µ). To that end, it is sufficient to show that if 1 ≤ t ≤ n and x ∈ R are

such that uµt−1(x) = uµt(x), then uµ̄t−1(x) = uµ̄t(x), and if moreover ∂+uµt−1(x) =

∂+uµt(x), then ∂+uµ̄t−1(x) = ∂+uµ̄t(x), and similarly for the left derivative ∂− (cf.

Proposition 3.2.3). Indeed, for t and x such that uµt−1(x) = uµt(x), our assumption

that Γ ⊆ V implies

Γ ⊆ (Xt−1, Xt)
−1
(
(−∞, x]2 ∪ [x,∞)2

)
.

Using also that EP̄ [Xt|Ft−1] = Xt−1 and that P̄ is concentrated on Γ,

uµ̄t−1(x) = EP̄ [|Xt−1 − x|]

= EP̄ [(Xt−1 − x)1Xt−1≥x] + EP̄ [(x−Xt−1)1Xt−1≤x]

= EP̄ [(Xt − x)1Xt−1≥x] + EP̄ [(x−Xt)1Xt−1≤x]

= EP̄ [|Xt − x|] = uµ̄t(x)
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as desired. If in addition ∂+uµt−1(x) = ∂+uµt(x), then Γ ⊆ V implies

Γ ⊆ (Xt−1, Xt)
−1
(
(−∞, x]2 ∪ (x,∞)2

)
.

As P̄ is concentrated on Γ, it follows that

∂+uµ̄t−1(x) = P̄ [Xt−1 ≤ x]− P̄ [Xt−1 > x]

= P̄ [Xt ≤ x]− P̄ [Xt > x] = ∂+uµ̄t(x)

as desired. The same argument can be used for the left derivative and we have shown

that V̄ ⊆ V .

In view of that inclusion, the inequality
∑n

t=0 φt(Xt) + (H ·X)n ≥ f holds on V̄ .

Since P̄ is concentrated on Γ,

P̄

[
n∑
t=0

φt(Xt) + (H ·X)n

]
= P̄ (f) <∞.

We may follow the arguments in the proof of Lemma 3.4.19 to construct a moderator

χ and establish that (φ, H) ∈ Dgµ̄(f), where we are implicitly using the embedding

detailed in Remark 3.4.15. (Note that the proof of Lemma 3.4.19 uses the condition

(φ, H) ∈ Dgµ̄(0) only to establish P̄ [
∑n

t=0 φt(Xt) + (H ·X)n] < ∞. In the present

situation the latter is known a priori and the condition is not needed.) Then, we can

modify χ as in the proof of Proposition 3.4.17 to see that (φ, H) ∈ Dµ̄(f). As a
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result, we may apply Lemma 3.4.8 to obtain that

P̄ (f) = P̄

[
n∑
t=0

φt(Xt) + (H ·X)n

]
= µ̄(φ),

whereas for any other P ′ ∈M(µ̄) we have

P ′(f) ≤ P ′

[
n∑
t=0

φt(Xt) + (H ·X)n

]
= µ̄(φ) = P̄ (f).

This shows that P̄ ∈M(µ̄) is optimal.

3.6 Left-Monotone Transports

In this section we define left-monotone transports through a shadow property and

prove their existence.

Preliminaries

Before moving on to the n-step case, we recall the essential definitions and results

regarding the one-step version of the left-monotone transport (also called the Left-

Curtain coupling). The first notion is the so-called shadow, and it will be useful to

define it for measures µ ≤pc ν in positive convex order, meaning that µ(φ) ≤ ν(φ)

for any nonnegative convex function φ. Clearly, this order is weaker than the convex

order µ ≤c ν, and it is worth noting that µ may have a smaller mass than ν. The

following is the result of [13, Lemma 4.6].
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Lemma 3.6.1. Let µ ≤pc ν. Then the set

Jµ, νK := {θ : µ ≤c θ ≤ ν}

is non-empty and contains a unique least element Sν(µ) for the convex order:

Sν(µ) ≤c θ for all θ ∈ Jµ, νK .

The measure Sν(µ) is called the shadow of µ in ν.

It will be useful to have the following picture in mind: if µ is a Dirac measure,

its shadow in ν is a measure θ of equal mass and barycenter, chosen such as to have

minimal variance subject to the constraint θ ≤ ν.

The second notion is a class of reward functions.

Definition 3.6.2. A Borel function f : R2 → R is called second-order Spence–

Mirrlees if y 7→ f(x′, y)− f(x, y) is strictly convex for any x < x′.

We note that if f is sufficiently differentiable, this can be expressed as the cross-

derivative condition fxyy > 0 which has also been called the martingale Spence–

Mirrlees condition, in analogy to the classical Spence–Mirrlees condition fxy > 0.

In the one-step case, the left-monotone transport is unique and can be charac-

terized as follows; cf. [13, Theorems 4.18, 4.21, 6.1] where this transport is called the

Left-Curtain coupling, as well as [71, Theorem 1.2] for the third equivalence in the

stated generality.
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Proposition 3.6.3. Let µ ≤c ν and P ∈M(µ, ν). The following are equivalent:

(i) For all x ∈ R and A ∈ B(R),

P [(−∞, x]× A] = Sν(µ|(−∞,x])(A).

(ii) P is concentrated on a Borel set Γ ⊆ R2 satisfying

(x, y−), (x, y+), (x′, y′) ∈ Γ, x < x′ ⇒ y′ /∈ (y−, y+).

(iii) P is an optimizer of Sµ,ν(f) for some (and then all) f : R2 → R second-

order Spence–Mirrlees such that there exist functions a ∈ L1(µ), b ∈ L1(ν) with

|f(x, y)| ≤ a(x) + b(y).

There exists a unique measure P̄ ∈ M(µ, ν) satisfying (i)–(iii), and P̄ is called the

(one-step) left-monotone transport.

If µ is a discrete measure, the characterization in (i) can be understood as follows:

the left-monotone transport P̄ processes the atoms of µ from left to right, mapping

each one of them to its shadow in the remaining target measure.

Next, we record two more results about shadows that will be used below. The

first one, cited from [14, Theorem 3.1], generalizes the above idea in the sense that

the atoms are still mapped to their shadows but can be processed in any given order;

in the general (non-discrete) case, such an order is defined by a coupling π from the

uniform measure to µ.

162



Proposition 3.6.4. Let µ ≤c ν and π ∈ Π(λ, µ) where λ denotes the Lebesgue

measure on [0, 1]. Then there exists a unique measure Q ∈ Π(λ, µ, ν) on R3 such that

Q ◦ (X0, X1)−1 = π and

Q|[0,s]×R×R ◦ (X1, X2)−1 ∈M(πs,Sν(πs)), s ∈ R,

where πs := π|[0,s]×R ◦ (X1)−1.

We shall also need the following facts about shadows.

Lemma 3.6.5. (i) Let µ1, µ2, ν be finite measures satisfying µ1 + µ2 ≤pc ν. Then

µ2 ≤pc ν − Sν(µ1) and Sν(µ1 + µ2) = Sν(µ1) + Sν−Sν(µ1)(µ2).

(ii) Let µ, ν1, ν2 be finite measures such that µ ≤pc ν1 ≤c ν2. Then, it follows that

Sν1(µ) ≤pc ν2. Moreover, Sν2(Sν1(µ)) = Sν2(µ) if and only if Sν1(µ) ≤c Sν2(µ).

Proof. Part (i) is [13, Theorem 4.8]. To obtain the first statement in (ii), we observe

that Sν1(µ) ≤ ν1 ≤c ν2 and hence

Sν1(µ)(φ) ≤ ν1(φ) ≤ ν2(φ)

for any nonnegative convex function φ. Turning to the second statement, the “only

if” implication follows directly from the definition of the shadow in Lemma 3.6.1. To

show the reverse implication, suppose that Sν1(µ) ≤c Sν2(µ). Then, we have

µ ≤c Sν1(µ) ≤c Sν2(Sν1(µ)) ≤ ν2 and Sν1(µ) ≤c Sν2(µ) ≤ ν2.
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These inequalities imply that

Sν2(Sν1(µ)) ∈ Jµ, ν2K and Sν2(µ) ∈ JSν1(µ), ν2K ,

and now the minimality property of the shadow shows that

Sν2(µ) ≤c Sν2(Sν1(µ)) and Sν2(Sν1(µ)) ≤c Sν2(Sν2(µ)) = Sν2(µ)

as desired.

Construction of a Multistep Left-Monotone Transport

Our next goal is to define and construct a multistep left-monotone transport. The

following concept will be crucial.

Definition 3.6.6. Let µ0 ≤pc µ1 ≤c · · · ≤c µn. For 1 ≤ t ≤ n, the obstructed shadow

of µ0 in µt through µ1, . . . , µt−1 is iteratively defined by

Sµ1,...,µt(µ0) := Sµt(Sµ1,...,µt−1(µ0)).

The obstructed shadow is well-defined due to Lemma 3.6.5 (ii). An alternative

definition is provided by the following characterization.

Lemma 3.6.7. Let µ0 ≤pc µ1 ≤c · · · ≤c µn and 1 ≤ t ≤ n. Then Sµ1,...,µt(µ0) is the
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unique least element of the set

Jµ0, µtK
µ1,...,µt−1 := {θt ≤ µt : ∃θs ≤ µs, 1 ≤ s ≤ t− 1, µ0 ≤c θ1 ≤c · · · ≤c θt}

for the convex order; that is, Sµ1,...,µt(µ0) ≤c θ for all elements θ.

Proof. For t = 1 this holds by the definition of the shadow in Lemma 3.6.1. For t > 1,

we inductively assume that Sµ1,...,µt−1(µ0) is the least element of Jµ0, µt−1K
µ1,...,µt−2 .

Consider an arbitrary element θt ∈ Jµ0, µtK
µ1,...,µt−1 and fix some

µ0 ≤c θ1 ≤c · · · ≤c θt−1 ≤c θt with θs ≤ µs, 1 ≤ s ≤ t− 1.

Then, θt−1 ∈ Jµ0, µt−1K
µ1,...,µt−2 and in particular Sµ1,...,µt−1(µ0) ≤c θt−1. Recall that

Sµ1,...,µt(µ0) is defined as the least element for ≤c of

JSµ1,...,µt−1(µ0), µtK = {θ ≤ µt : Sµ1,...,µt−1(µ0) ≤c θ}

⊇ {θ ≤ µt : θt−1 ≤c θ} 3 θt.

Hence, Sµ1,...,µt(µ0) ≤c θt, and as θt ∈ Jµ0, µtK
µ1,...,µt−1 was arbitrary, this shows that

Sµ1,...,µt(µ0) is a least element of Jµ0, µtK
µ1,...,µt−1 . The uniqueness of the least element

follows from the general fact that θ1
t ≤c θ2

t and θ2
t ≤c θ1

t imply θ1
t = θ2

t .

We can now state the main result of this section.

Theorem 3.6.8. Let µ = (µ0, . . . , µn) be in convex order. Then there exists P ∈
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M(µ) such that the bivariate projections P0t := P ◦ (X0, Xt)
−1 satisfy

P0t[(−∞, x]× A] = Sµ1,...,µt(µ0|(−∞,x])(A) for x ∈ R, A ∈ B(R),

for all 1 ≤ t ≤ n. Any such P ∈M(µ) is called a left-monotone transport.

We observe that an n-step left-monotone transport is defined purely in terms of its

bivariate projections P ◦ (X0, Xt)
−1. In the one-step case, this completely determines

the transport. For n > 1, we shall see that there can be multiple (and then infinitely

many) left-monotone transports; in fact, they form a convex compact set. This will

be discussed in more detail in Section 3.8, where it will also be shown that uniqueness

does hold if µ0 is atomless.

Proof of Theorem 3.6.8. Step 1. We first construct measures πt ∈ Π(λ, µt), 0 ≤ t ≤ n

such that

πt|[0,µ0((−∞,x])]×R ◦X−1
1 = Sµ1,...,µt(µ0|(−∞,x])

for all x ∈ R, as well as measures Qt ∈ Π(λ, µt−1, µt), 1 ≤ t ≤ n such that

Qt|[0,µ0((−∞,x])]×R×R ◦ (X1, X2)−1 ∈

M
(
Sµ1,...,µt−1(µ0|(−∞,x]),Sµ1,...,µt(µ0|(−∞,x])

)
(3.6.1)

for all x ∈ R. Indeed, for t = 0, we take π0 ∈ Π(λ, µ0) to be the quantile10 coupling.

Then, applying Proposition 3.6.4 to π0 yields the measure Q1, and we can define

10The quantile coupling (or Fréchet–Hoeffding coupling) is given by the law of (F−1λ , F−1µ0
) under

λ, where F−1µ0
is the inverse c.d.f. of µ0.
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π1 := Q1 ◦ (X0, X2)−1. Proceeding inductively, applying Proposition 3.6.4 to πt−1

yields Qt which in turn allows us to define πt := Qt ◦ (X0, X2)−1.

Step 2. For 1 ≤ t ≤ n, consider a disintegration Qt = πt−1 ⊗ κt of Qt. By (3.6.1),

we may choose κt(s, xt−1, dxt) to be a martingale kernel; that is,

∫
xt κt(s, xt−1, dxt) = xt−1

holds for all (s, xt−1) ∈ R2. We now define a measure π ∈ Π(λ, µ0, . . . , µn) on Rn+2

via

π = π0 ⊗ κ1 ⊗ · · · ⊗ κn.

Then, π satisfies

π ◦ (X0, Xt)
−1 = πt−1 and π ◦ (X0, Xt, Xt+1)−1 = Qt

for 1 ≤ t ≤ n, and setting P = π ◦ (X1, . . . , Xn+1)−1 yields the theorem.

The following result studies the bivariate projections P0t of a left-monotone trans-

port and shows in particular that P0t may differ from the Left-Curtain coupling [13]

inM(µ0, µt).

Proposition 3.6.9. Let µ = (µ0, . . . , µn) be in convex order and let P ∈M(µ) be a

left-monotone transport. The following are equivalent:

(i) The bivariate projection P0t = P ◦ (X0, Xt)
−1 ∈M(µ0, µt) is left-monotone for

all 1 ≤ t ≤ n.
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µ0

µ1

µ2

µ0

µ2

µ0

µ2

Figure 3.3: The left panel shows the support of the left-monotone transport P from
Example 3.6.10. The right panel shows the support of P02 (top) and the support of
the left-monotone transport inM(µ0, µ2) (bottom). The elements of the support are
represented by the diagonal lines.

(ii) The marginals µ satisfy

Sµ1(µ0|(−∞,x]) ≤c · · · ≤c Sµn(µ0|(−∞,x]) for all x ∈ R. (3.6.2)

Proof. Given µ ≤ µ0, an iterative application of Lemma 3.6.5 (ii) shows that the

obstructed shadows coincide with the ordinary shadows, i.e. Sµ1,...,µt(µ) = Sµt(µ) for

1 ≤ t ≤ n, if and only if Sµ1(µ) ≤c · · · ≤c Sµn(µ). The proposition follows by

applying this observation to µ = µ0|(−∞,x].

The following example illustrates the proposition and shows that (3.6.2) may

indeed fail.

Example 3.6.10. Consider the marginals

µ0 =
1

2
δ−1 +

1

2
δ1, µ1 =

1

2
δ−2 +

1

2
δ2, µ2 =

1

4
δ−4 +

1

2
δ0 +

1

4
δ4.

Then the setM(µ) consists of a single transport P ; cf. the left panel of Figure 3.3.
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Thus, P is necessarily left-monotone. Similarly, P01 = P ◦ (X0, X1)−1 is the unique

element ofM(µ0, µ1). However, P02 = P ◦ (X0, X2)−1 is given by

3

16
δ(−1,−4) +

1

4
δ(−1,0) +

1

16
δ(−1,4) +

1

16
δ(1,−4) +

1

4
δ(1,0) +

3

16
δ(1,4)

whereas the unique left-monotone transport inM(µ0, µ2) can be found to be

1

8
δ(−1,−4) +

3

8
δ(−1,0) +

1

8
δ(1,−4) +

1

8
δ(1,0) +

1

4
δ(1,4).

Therefore, there exists no transport P ∈ M(µ) such that both P01 and P02 are

left-monotone, and Proposition 3.6.9 shows that (3.6.2) fails.

Remark 3.6.11. Of course, all our results on left-monotone transports have “right-

monotone” analogues, obtained by reversing the orientation on the real line (i.e.

replacing x 7→ −x everywhere).

3.7 Geometry and Optimality Properties

In this section we introduce the optimality properties for transports and the geometric

properties of their supports that were announced in the Introduction, and prove that

they equivalently characterize left-monotone transports.
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Geometry of Optimal Transports for Reward Functions of

Spence–Mirrlees Type

The first goal is to show that optimal transports for specific reward functions are con-

centrated on sets Γ ⊆ Rn+1 satisfying certain no-crossing conditions that we introduce

next. Given 1 ≤ t ≤ n, we write

Γt = {(x0, . . . , xt) ∈ Rt+1 : (x0, . . . , xn) ∈ Γ for some (xt+1, . . . , xn) ∈ Rn−t}

for the projection of Γ onto the first t+ 1 coordinates.

Definition 3.7.1. Let Γ ⊆ Rn+1 and 1 ≤ t ≤ n. Consider x = (x0, . . . , xt−1), x′ =

(x′0, . . . , x
′
t−1) ∈ Rt and y+, y−, y′ ∈ R with y− < y+ such that (x, y+), (x, y−), (x′, y′) ∈

Γt. Then, the projection

Γt is left-monotone if y′ /∈ (y−, y+) whenever x0 < x′0.

The set Γ is left-monotone11—it will be clear from the context what is meant. if Γt

is left-monotone for all 1 ≤ t ≤ n.

We also need the following notion.

Definition 3.7.2. Let Γ ⊆ Rn+1 and 1 ≤ t ≤ n. The projection Γt is nondegenerate

if for all x = (x0, . . . , xt−1) ∈ Rt and y ∈ R such that (x, y) ∈ Γt, the following hold:

(i) if y > xt−1, there exists y′ < xt−1 such that (x, y′) ∈ Γt;

(ii) if y < xt−1, there exists y′ > xt−1 such that (x, y′) ∈ Γt.

11This terminology for Γ is abusive since Γ = Γn is in fact a projection itself
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The set Γ is called nondegenerate12 if Γt is nondegenerate for all 1 ≤ t ≤ n.

Broadly speaking, this definition says that for any path to the right in Γ there

exists a path to the left, and vice versa. For a set supporting a martingale, nonde-

generacy is not a restriction, in the following sense.

Remark 3.7.3. Let µ be in convex order, V its effective domain and Γ ⊆ V .

(i) There exists a nondegenerate, universally measurable set Γ′ ⊆ Γ such that

P (Γ′) = 1 for all P ∈M(µ) with P (Γ) = 1.

(ii) Fix P ∈ M(µ) with P (Γ) = 1. There exists a nondegenerate, Borel-

measurable set Γ′P ⊆ Γ such that P (Γ′P ) = 1.

Proof. Let Nt be the set of all x ∈ Γt such that (i) or (ii) of Definition 3.7.2 fail. If

P is a martingale with P (Γ) = 1, we see that Nt ×Rn−t+1 is P -null. Moreover, Nt is

universally measurable (as the projection of a Borel set) and we can set

Γ′ := Γ\
n⋃
t=1

(Nt × Rn−t+1)

to prove (i). Turning to (ii), universal measurability implies that there exists a Borel

set N ′t ⊇ Nt such that N ′t\Nt is Pt−1-null, where Pt−1 = P ◦ (X0, . . . , Xt−1)−1. We

can then set Γ′P := Γ\ ∪nt=1 (N ′t × Rn−t+1).

Next, we introduce a notion of competitors along the lines of [13, Definition 1.10].

Definition 3.7.4. Let π be a finite measure on Rt+1 whose marginals have finite first

moments and consider a disintegration π = πt ⊗ κ, where πt is the projection of π

12Footnote 11 applies here as well.
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onto the first t coordinates. A measure π′ = πt ⊗ κ′ is a t-competitor of π if it has

the same last marginal and

bary(κ(x, ·)) = bary(κ′(x, ·)) for πt-a.e. x = (x0, . . . , xt−1).

Using these definitions, we now formulate a variant of the monotonicity principle

stated in Theorem 3.5.4 (i) that will be convenient to infer the geometry of Γ.

Lemma 3.7.5. Let µ = (µ0, . . . , µn) be in convex order, 1 ≤ t ≤ n and let f̄ :

Rt+1 → [0,∞) be Borel. Consider f(X0, . . . , Xn) := f̄(X0, . . . , Xt) and suppose that

Iµ(f) < ∞. Let (φ, H) ∈ Dµ(f) be an optimizer for Iµ(f) with the property that

φs ≡ Hs ≡ 0 for s = t+ 1, . . . , n and define the set

Γ :=

{
n∑
t=0

φt(Xt) + (H ·X)n = f

}
∩ V .

Let π be a finitely supported probability on Rt+1 which is concentrated on Γt. Then

π(f̄) ≥ π′(f̄) for any t-competitor π′ of π that is concentrated on V t.

Proof. Recall that the projections πt and π′t onto the first t coordinates coincide.

Thus,

π[Ht · (Xt −Xt−1)] =

∫
Ht · (bary(κ(X0, . . . , Xt−1, ·)−Xt−1)dπt

=

∫
Ht · (bary(κ′(X0, . . . , Xt−1, ·)−Xt−1)dπ′t

= π′[Ht · (Xt −Xt−1)].
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Using also that the last marginals coincide, we deduce that

π[f̄ ] = π

[
t∑

s=0

φs(Xs) + (H ·X)t

]
= π′

[
t∑

s=0

φs(Xs) + (H ·X)t

]
≥ π′[f̄ ].

Next, we formulate an intermediate result relating optimality for Spence–Mirrlees

reward functions to left-monotonicity of the support.

Lemma 3.7.6. Let 1 ≤ t ≤ n and let Γ ⊆ V be a subset such that Γt is nondegenerate.

Moreover, let f : Rt+1 → R be of the form f(X0, . . . , Xt) = f̄(X0, Xt) for a second-

order Spence–Mirrlees function f̄ . Assume that for any finitely supported probability

π that is concentrated on Γt and any t-competitor π′ of π that is concentrated on V t,

we have π(f) ≥ π′(f). Then, the projection Γt is left-monotone.

Proof. Consider (x, y1), (x, y2), (x′, y′) ∈ Γt satisfying x0 < x′0 and suppose for con-

tradiction that y1 < y′ < y2. We define λ = y2−y′
y2−y1 and

π =
λ

2
δ(x,y1) +

1− λ
2

δ(x,y2) +
1

2
δ(x′,y′)

π′ =
λ

2
δ(x′,y1) +

1− λ
2

δ(x′,y2) +
1

2
δ(x,y′).

Then π and π′ have the same projection πt = π′t on the first t marginals and their

last marginals also coincide. Moreover, disintegrating π = πt ⊗ κ and π′ = πt ⊗ κ′,

the measures κ(x), κ(x′), κ′(x), κ(x′) all have barycenter y′. Therefore, π and π′ are

t-competitors. We must also have that π′ is concentrated on V t, by the shape of V .
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Now our assumption implies that π(f) ≥ π′(f), but the second-order Spence–Mirrlees

property of f̄ implies that π(f) < π′(f).

Geometry of Left-Monotone Transports

Next, we establish that transports with left-monotone support are indeed left-monotone

in the sense of Theorem 3.6.8.

Theorem 3.7.7. Let µ = (µ0, . . . , µn) be in convex order and let P ∈M(µ) be con-

centrated on a nondegenerate, left-monotone set Γ ⊆ Rn+1. Then P is left-monotone.

Before stating the proof of the theorem, we record two auxiliary results about

measures on the real line. The first one is a direct consequence of Proposition 3.2.1.

Lemma 3.7.8. Let a < b and µ ≤c ν. If ν is concentrated on (−∞, a], then so is µ,

and moreover ν({a}) ≥ µ({a}). The analogue holds for [b,∞).

The second result is [13, Lemma 5.2].

Lemma 3.7.9. Let σ be a nontrivial signed measure on R with σ(R) = 0 and let

σ = σ+ − σ− be its Hahn decomposition. There exist a ∈ supp(σ+) and b > a such

that
∫

(b− y)+1[a,∞) dσ(y) > 0.

We can now give the proof of the theorem; it is inspired by [13, Theorem 5.3]

which corresponds to the case n = 1.

Proof of Theorem 3.7.7. Since the case n = 1 is covered by Proposition 3.6.3, we may

assume that the theorem has been proved for transports with n − 1 steps and focus

on the induction argument.
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For every x ∈ R we denote by µtx the marginal (P |(−∞,x]×Rn) ◦X−1
t . In particular,

we then have µ0
x = µ0|(−∞,x] and µtx is the image of µ0

x under P after t steps. For the

sake of brevity, we also set νtx := Sµ1,...,µt(µ0
x). By definition, P is left-monotone if

µtx = νtx for all x ∈ R and t ≤ n, and by the induction hypothesis, we may assume

that this holds for t ≤ n− 1.

We argue by contradiction and assume that there exists x ∈ R such that µnx 6= νnx .

Then, the signed measure

σ := νnx − µnx

is nontrivial and we can find a < b with a ∈ supp(σ+) as in Lemma 3.7.9. Observe that

σ+ ≤ µn−µnx where µn−µnx is the image of µn|(x,∞) under P . Hence, a ∈ supp(µn−µnx)

and as P is concentrated on Γ, we conclude that there exists a sequence of points

xm = (xm0 , . . . , x
m
n ) ∈ Γ with x < xm0 and xmn → a. (3.7.1)

Moreover, by the characterization of the obstructed shadow in Lemma 3.6.7, we must

have

νnx ≤c µnx

as µnx ∈ Jµ0
x, µnK

µ1,...,µn−1 due to the fact that µnx is the image of µ0
x under a martingale

transport.

Step 1. We claim that for all x = (x0, . . . , xn−1) with x0 ≤ x and xn−1 ≤ a, it

holds that

Γx ∩ (a,∞) = ∅,
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where Γx = {y ∈ R : (x, y) ∈ Γ} is the section of Γ at x. By way of contradiction,

assume that for some x with x0 ≤ x and xn−1 ≤ a we have Γx ∩ (a,∞) 6= ∅, then in

particular Γx ∩ (xn−1,∞) 6= ∅. In view of the nondegeneracy of Γ, we conclude that

Γx ∩ (−∞, xn−1) 6= ∅ and hence that Γx ∩ (−∞, a) 6= ∅. This yields a contradiction

to the left-monotonicity of Γ by using xm from (3.7.1) for x′ in Definition 3.7.1 for

large enough m, and the proof of the claim is complete.

Step 2. Similarly, we can show that for all x = (x0, . . . , xn−1) with x0 ≤ x and

xn−1 ≥ a,

Γx ∩ (−∞, a) = ∅.

Step 3. Next, we consider the marginals

µtx,a :=
(
P |(−∞,x]×Rn−2×(−∞,a]×R

)
◦X−1

t .

Then, in particular, µn−1
x,a = µn−1

x |(−∞,a] and µnx,a is the image of µn−1
x,a under the last

step of P . Step 1 of the proof thus implies that µnx,a is concentrated on (−∞, a]. We

also write

νnx,a := Sµn(µn−1
x |(−∞,a]).

We have µn−1
x,a ≤c µnx,a asM(µn−1

x,a , µ
n
x,a) 6= ∅, and µnx,a ≤ µnx ≤ µn. Therefore,

νnx,a ≤c µnx,a (3.7.2)
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by the minimality of the shadow. Next, we show that

νnx − νnx,a ≤c µnx − µnx,a. (3.7.3)

Observe that µnx −µnx,a is the image of µn−1
x |(a,∞) under P and therefore concentrated

on [a,∞) by Step 2. Using this observation, that µnx,a is concentrated on (−∞, a] as

mentioned above, and the fact that νnx,a({a}) ≤ µnx,a({a}) as a consequence of (3.7.2)

and Lemma 3.7.8, we have

µnx − µnx,a = (µnx − µnx,a)|[a,∞) ≤ (µn − µnx,a)|[a,∞) ≤ (µn − νnx,a)|[a,∞) ≤ µn − νnx,a.

We also have µn−1
x |(a,∞) ≤c µnx − µnx,a since the latter measure is the image of the

former under P . Together with the preceding display, we have established that

µnx − µnx,a ∈
q
µn−1
x |(a,∞), µn − νnx,a

y
.

On the other hand,

νnx − νnx,a = Sµn−νnx,a(µn−1
x |(a,∞))

from the additivity property of the shadow in Lemma 3.6.5 (i), and therefore (3.7.3)

follows by the minimality of the shadow.

Step 4. Recall from Step 3 that µnx,a is concentrated on (−∞, a] and that µnx−µnx,a

is concentrated on [a,∞). Therefore, νnx,a is concentrated on (−∞, a] and νnx − νnx,a is

concentrated on [a,∞), by Lemma 3.7.8. Moreover, we have νnx,a({a}) ≤ µnx,a({a}) by
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the same lemma, and finally, the function y 7→ (b− y)+1[a,∞)(y) is convex on [a,∞)

as a < b. Using these facts and (3.7.3),

∫
(b− y)+1[a,∞)(y)νnx (dy)

=

∫
(b− y)+1[a,∞)(y)(νnx − νnx,a)(dy) + (b− a)νnx,a({a})

≤
∫

(b− y)+1[a,∞)(y)(µnx − µnx,a)(dy) + (b− a)µnx,a({a})

=

∫
(b− y)+1[a,∞)(y)µnx(dy).

This contradicts the choice of a and b, cf. Lemma 3.7.9, and thus completes the

proof.

Optimality Properties

In this section we relate left-monotone transports and left-monotone sets to the op-

timal transport problem for Spence–Mirrlees functions.

Theorem 3.7.10. For 1 ≤ t ≤ n, let ft : R2 → R be second-order Spence–Mirrlees

functions such that |ft(x, y)| ≤ a0(x) + at(y) for some a0 ∈ L1(µ0) and at ∈ L1(µt).

There exists a universally measurable, nondegenerate, left-monotone set Γ′ ⊆ Rn+1

such that any simultaneous optimizer P ∈ M(µ) for Sµ(ft(X0, Xt)), 1 ≤ t ≤ n is

concentrated on Γ′. In particular, any such P is left-monotone.

Proof. The last assertion follows by an application of Theorem 3.7.7, so we may focus

on finding Γ′. For each 1 ≤ t ≤ n, we use Theorem 3.5.2 and Remark 3.5.3 to find a
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dual optimizer (φ, H) ∈ Dµ(ft) for Iµ(ft(X0, Xt)) and define the Borel set

Γ(t) :=

{
n∑
s=0

φs(Xs) + (H ·X)n = ft

}
∩ V .

Here, we may choose a dual optimizer such that φs ≡ Hs ≡ 0 for s = t+1, . . . , n. (This

can be seen by applying Theorem 3.5.2 to the transport problem involving only the

marginals (µ0, . . . , µt) and taking the corresponding dual optimizer.) Theorem 3.5.4

shows that any simultaneous optimizer P ∈ M(µ) is concentrated on Γ(t) for all t,

and hence also on the Borel set

Γ :=
n⋂
t=1

Γ(t).

Using Remark 3.7.3 (i), we find a universally measurable, nondegenerate subset Γ′ ⊆ Γ

with the same property. Since the projection (Γ′)t is contained in the projection

(Γ(t))t, Lemma 3.7.5 and Lemma 3.7.6 yield that (Γ′)t is left-monotone for all t; that

is, Γ′ is left-monotone.

Remark 3.7.11. In Theorem 3.7.10, if we only wish to find a nondegenerate, left-

monotone set Γ′P ⊆ Rn+1 such that a given simultaneous optimizer P ∈ M(µ) is

concentrated on Γ′P , then we may choose Γ′P to be Borel instead of universally measur-

able. This follows by replacing the application of Remark 3.7.3 (i) by Remark 3.7.3 (ii)

in the proof.

The following is a converse to Theorem 3.7.10.
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Theorem 3.7.12. Given 1 ≤ t ≤ n, let f ∈ C1,2(R2) be such that fxyy ≥ 0 and

suppose that the following integrability condition holds:


f(X0, Xt), f(0, Xt), f(X0, 0), h̄(X0)X0, h̄(X0)Xt

are P -integrable for all P ∈M(µ),

(3.7.4)

where h̄(x) := ∂y|y=0[f(x, y) − f(0, y)]. Then every left-monotone transport P ∈

M(µ) is an optimizer for Sµ(f).

The integrability condition clearly holds when f is Lipschitz continuous; in partic-

ular, a smooth second-order Spence–Mirrlees function (as defined in the Introduction)

satisfies the assumptions of the theorem for any µ.

The proof will be given by an approximation based on the following building blocks

for Spence–Mirrlees functions; the construction is novel and may be of independent

interest.

Lemma 3.7.13. Let 1 ≤ t ≤ n and let f(X0, . . . , Xn) := 1(−∞,a](X0)ϕ(Xt) for a

concave function ϕ and a ∈ R. Then every left-monotone transport P ∈M(µ) is an

optimizer for Sµ(f).

Proof. In view of Lemma 3.6.7, this follows directly by applying the defining shadow

property from Theorem 3.6.8 with x = a.

The integrability condition (3.7.4) implies that setting

g(x, y) := f(x, 0) + f(0, y)− f(0, 0) + h̄(x)y,
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the three terms constituting

g(X0, Xt) = [f(X0, 0) + h̄(X0)X0] + [f(0, Xt)− f(0, 0)] + [h̄(X0)(Xt −X0)]

are P -integrable and P [g(X0, Xt)] is constant over P ∈ M(µ). By replacing f with

f − g, we may thus assume without loss of generality that

f(x, 0) = f(0, y) = fy(x, 0) = 0 for all (x, y) ∈ R2. (3.7.5)

After this normalization, integration by parts yields the representation

f(x, y) =

∫ y

0

∫ x

0

(y − t)fxyy(s, t) ds dt. (3.7.6)

Lemma 3.7.14. Theorem 3.7.12 holds under the following additional condition: there

exists a constant c > 0 such that

x 7→ f(x, y) is constant on {x > c} and on {x < −c},

y 7→ f(x, y) is affine on {y > c} and on {y < −c}.
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Proof. Integration by parts implies that for all (x, y) ∈ R2, we have the representation

f(x, y) = −
∫ c

−c

∫ c

−c
1(−∞,s](x)(y − t)+fxyy(s, t) ds dt

+ [f(x,−c)− (−c)fy(x,−c)]

+ [f(c, y)− f(c,−c)− fy(c,−c)(y − (−c))]

+ fy(x,−c)y.

The last three terms are of the form g(x, y) = φ̃(x)+ψ̃(y)+h̃(x)y and of linear growth

due to the additional condition. Hence, as above, P ′[g(X0, Xt)] = C is constant for

P ′ ∈ M(µ). If P ∈ M(µ) is left-monotone and P ′ ∈ M(µ) is arbitrary, Fubini’s

theorem and Lemma 3.7.13 yield that

P [f ] = −
∫ c

−c

∫ c

−c
P [1(−∞,s](x)(y − t)+]fxyy(s, t) ds dt+ C

≥ −
∫ c

−c

∫ c

−c
P ′[1(−∞,s](x)(y − t)+]fxyy(s, t) ds dt+ C

= P ′[f ],

where P, P ′ are understood to integrate with respect to (x, y) and the application of

Fubini’s theorem is justified by the nonnegativity of the integrand.

Proof of Theorem 3.7.12. Let f be as in the theorem. We shall construct functions

fm, m ≥ 1 satisfying the assumption of Lemma 3.7.14 as well as P [fm] → P [f ] for

all P ∈M(µ). Once this is achieved, the theorem follows from the lemma.

Indeed, we may assume that f is normalized as in (3.7.5). Let m ≥ 1 and let
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ρm : R → [0, 1] be a smooth function such that ρm = 1 on [−m,m] and ρm = 0 on

[−m− 1,m+ 1]c. In view of (3.7.6), we define fm by

fm(x, y) =

∫ y

0

∫ x

0

(y − t)fxyy(s, t)ρm(s)ρm(t) ds dt.

It then follows that fm satisfies the assumptions of Lemma 3.7.14 with the constant

c = m+ 1. Moreover, we have

0 ≤ fm(x, y) ≤ fm+1(x, y) ≤ f(x, y) for x ≥ 0

and the opposite inequalities for x ≤ 0, as well as fm(x, y)→ f(x, y) for all (x, y).

Let P ∈ M(µ). Since f is P -integrable, applying monotone convergence sepa-

rately on {x ≥ 0} and {x ≤ 0} yields that P [fm] → P [f ], and the proof is com-

plete.

Remark 3.7.15. The function

f̄(x, y) := tanh(x)
√

1 + y2

satisfies the conditions of Theorem 3.7.12 for all marginals µ in convex order, since

the latter are assumed to have a finite first moment.

We can now collect the preceding results to obtain, in particular, the equivalences

stated in Theorem 3.1.1.
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Theorem 3.7.16. Let µ = (µ0, . . . , µn) be in convex order. There exists a left-

monotone, nondegenerate, universally measurable set Γ ⊆ Rn+1 such that for any

P ∈M(µ), the following are equivalent:

(i) P is an optimizer for Sµ(f(X0, Xt)) whenever f is a smooth second-order

Spence–Mirrlees function and 1 ≤ t ≤ n,

(ii) P is concentrated on Γ,

(ii’) P is concentrated on a left-monotone set,

(iii) P is left-monotone; i.e. P0t transports µ0|(−∞,a] to Sµ1,...,µt(µ0|(−∞,a]) for all

1 ≤ t ≤ n and a ∈ R.

Moreover, there exists P ∈M(µ) satisfying (i)–(iii).

Proof. Let Γ be the set provided by Theorem 3.7.10 for the function ft = f̄ of

Remark 3.7.15. Given P ∈ M(µ), Theorem 3.7.10 shows that (i) implies (ii) which

trivially implies (ii’). Theorem 3.7.7 and Remark 3.7.3 show that (ii’) implies (iii), and

Theorem 3.7.12 shows that (iii) implies (i). Finally, the existence of a left-monotone

transport was stated in Theorem 3.6.8.

We conclude this section with an example showing that left-monotone transports

are not Markovian in general, even if they are unique and (3.6.2) holds for µ.

Example 3.7.17. Consider the marginals

µ0 =
1

2
δ0 +

1

2
δ1, µ1 =

3

4
δ0 +

1

4
δ2, µ2 =

1

8
δ−1 +

1

2
δ0 +

1

8
δ1 +

1

4
δ2.
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The transport P ∈M(µ) given by

P =
1

2
δ(0,0,0) +

1

8
δ(1,0,−1) +

1

8
δ(1,0,1) +

1

4
δ(1,2,2)

is left-monotone because its support is left-monotone (Figure 3.4), and it is clearly

not Markovian. On the other hand, it is not hard to see that this is the only way to

build a left-monotone transport inM(µ).

3.8 Uniqueness of Left-Monotone Transports

In this section we consider the (non-)uniqueness of left-monotone transports. It turns

out the presence of atoms in µ0 is important in this respect—let us start with the

following simple observation.

Remark 3.8.1. Let µ = (µ0, . . . , µn) be in convex order. If µ0 is a Dirac mass,

then every P ∈ M(µ) is left-monotone. Indeed, M(µ0, µt) is a singleton for every

1 ≤ t ≤ n, hence P0t must be the (one-step) left-monotone transport.

µ0

µ1

µ2

Figure 3.4: Support of the non-Markovian transport in Example 3.7.17.
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Exploiting this observation, the following shows that left-monotone transports

need not be unique when n ≥ 2.

Example 3.8.2. Let µ0 = δ0, µ1 = 1
2
δ−1 + 1

2
δ1, µ2 = 3

8
δ−2 + 1

4
δ0 + 3

8
δ2. By the

remark, any element in M(µ) is left-monotone. Moreover, M(µ) is a continuum

sinceM(µ1, µ2) contains the convex hull of the two measures

Pl =
1

4
δ(−1,−2) +

1

4
δ(−1,0) +

1

8
δ(1,−2) +

3

8
δ(1,2),

Pr =
3

8
δ(−1,−2) +

1

8
δ(−1,2) +

1

4
δ(1,0) +

1

4
δ(1,2).

The corresponding supports are depicted in Figure 3.5.

µ0

µ1

µ2

µ0

µ1

µ2

Figure 3.5: Supports of two left-monotone transports for the same marginals.

The example illustrates that non-uniqueness can typically be expected when µ0

has atoms. On the other hand, we have the following uniqueness result.

Theorem 3.8.3. Let µ = (µ0, . . . , µn) be in convex order. If µ0 is atomless, there

exists a unique left-monotone transport P ∈M(µ).

The remainder of this section is devoted to the proof. Let us call a kernel κ(x, dy)

binomial if for all x ∈ R, the measure κ(x, dy) consists of (at most) two point masses.
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A martingale transport will be called binomial if it can be disintegrated using only bi-

nomial kernels. We shall show that when µ0 is atomless, any left-monotone transport

is a binomial martingale, and then conclude the uniqueness via a convexity argument.

The first step is the following set-theoretic result.

Lemma 3.8.4. Let k ≥ 1 be an integer and Γ ⊆ Rt+1. For x ∈ Rt, we denote by

Γx := {y ∈ R : (x, y) ∈ Γ} the section at x. If the set

{x ∈ Rt : |Γx| ≥ k}

is uncountable, then it has an accumulation point. More precisely, there are x =

(x0, . . . , xt) ∈ Rt and y1 < · · · < yk in Γx such that for all ε > 0 there exist x′ =

(x′0, . . . , x
′
t) ∈ Rt and y′1 < · · · < y′k in Γx′ satisfying

(i) ‖x− x′‖ < ε,

(ii) x0 < x′0,

(iii) maxi=1,...,k |yi − y′i| < ε.

Proof. The proof is similar to the one of [13, Lemma 3.2] and therefore omitted.

The following statement on the binomial structure generalizes a result of [13] for

the one-step case and is of independent interest.

Proposition 3.8.5. Let µ = (µ0, . . . , µn) be in convex order and let µ0 be atomless.

There exists a universally measurable set Γ ⊆ Rn+1 such that every left-monotone

transport P ∈ M(µ) is concentrated on Γ and such that for all 1 ≤ t ≤ n and
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x ∈ Rt,

|{y ∈ R : (X0, . . . , Xt)
−1(x, y) ∩ Γ 6= ∅}| ≤ 2. (3.8.1)

In particular, every left-monotone transport P ∈M(µ) is a binomial martingale.

Proof. Let Γ be as in Theorem 3.7.16; then every left-monotone P ∈M(µ) is concen-

trated on Γ. Let At be the set of all x ∈ Rt such that (3.8.1) fails. Suppose that At

is uncountable; then Lemma 3.8.4 yields points x,x′ such that for some y1, y2 ∈ Γtx

and y ∈ Γtx′ we have y1 < y < y2. This contradicts the left-monotonicity of Γ (Def-

inition 3.7.1), thus At must be countable. Hence, (X0, . . . , Xt−1)−1(At) is Borel and

P -null for all P ∈M(µ), as µ0 is atomless. The set Γ′ = Γ\∪nt=1(X0, . . . , Xt−1)−1(At)

then has the required properties.

Proof of Theorem 3.8.3. We will prove this result using induction on n. For n = 1 the

result holds by Proposition 3.6.3, with or without atoms. To show the induction step,

let P ′ be the unique left-monotone transport inM(µ0, . . . , µn−1) and let P1 = P ′⊗κ1

and P2 = P ′ ⊗ κ2 be disintegrations of two n-step left-monotone transports. Then,

P1 + P2

2
= P ′ ⊗ κ1 + κ2

2

is again left-monotone, and Proposition 3.8.5 yields that (κ1 + κ2)/2 must be a bino-

mial kernel P ′-a.s. Using also the martingale property of κ1 and κ2, this can only be

true if κ1 = κ2 holds P ′-a.s., and therefore P1 = P2.
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3.9 Free Intermediate Marginals

In this section we discuss a variant of our transport problem where the intermediate

marginal constraints µ1, . . . , µn−1 are omitted; that is, only the first and last marginals

µ0, µn are prescribed. (One could similarly adapt the results to a case where some,

but not all of the intermediate marginals are given.)

The primal space will be denoted by Mn(µ0, µn) and consists of all martingale

measures P on Rn+1 such that µ0 = P ◦ (X0)−1 and µn = P ◦ (Xn)−1. To make the

connection with the previous sections, we note that

Mn(µ0, µn) =
⋃
M(µ)

where the union is taken over all vectors µ = (µ0, µ1, . . . , µn−1, µn) in convex order.

Polar Structure

We first characterize the polar sets of Mn(µ0, µn). To that end, we introduce an

analogue of the irreducible components.

Definition 3.9.1. Let µ0 ≤c µn and let (Ik, Jk) ⊆ R2 be the corresponding irreducible

domains in the sense of Proposition 3.2.3. The n-step components ofMn(µ0, µn) are

the sets13

(i) Ink × Jk, where k ≥ 1,

(ii) In+1
0 ∩∆n,

13A superscript m indicates the m-fold Cartesian product; ∆n is the diagonal in Rn+1.
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(iii) I tk × {p}n−t+1, where p ∈ Jk \ Ik and 1 ≤ t ≤ n, k ≥ 1.

The characterization then takes the following form.

Theorem 3.9.2 (Polar Structure). Let µ0 ≤c µn. A Borel set B ⊆ Rn+1 isMn(µ0, µn)-

polar if and only if there exist a µ0-nullset N0 and a µn-nullset Nn such that

B ⊆ (N0 × Rn) ∪ (Rn ×Nn) ∪
(⋃

Vj

)c

where the union runs over all n-step components Vj ofMn(µ0, µn).

It turns out that our previous results can be put to work to prove the theorem,

by means of the following lemma which may be of independent interest.

Lemma 3.9.3. Let µ ≤c ν be irreducible with domain (I, J) and let ρ be a probability

concentrated on J . Then, there exists a probability µ ≤c θ ≤c ν satisfying θ � ρ such

that µ ≤c θ and θ|I ≤c (ν − θ|J\I) are both irreducible.

Proof. Step 1. We first assume that ρ = δx for some x ∈ J and show that there exists

θ satisfying

µ ≤c θ ≤c ν and θ � δx.

If ν has an atom at x, we can choose θ = ν. Thus, we may assume that ν({x}) = 0

and in particular that x ∈ I. Let a be the common barycenter of µ and ν and suppose

that x < a. For all b ∈ R and 0 ≤ c ≤ ν({b}), the measure

νb,c := ν|(−∞,b) + cδb

190



satisfies νb,c ≤ ν, and as x < a there are unique b, c such that bary(νb,c) = x. Setting

α = νb,c and ε0 = α(R), we then have ε0δx ≤c α ≤ ν, and a similar construction yields

this result for x ≥ a. The existence of such α implies that

εδx ≤pc ν, 0 ≤ ε ≤ ε0

and thus the shadow Sν(εδx) is well-defined. This measure is given by the restriction

of ν to an interval (possibly including fractions of atoms at the endpoints); cf. [13,

Example 4.7]. Moreover, the interval is bounded after possibly reducing the mass ε0.

Thus, for all ε < ε0, the difference of potential functions

uSν(εδx) − uεδx ≥ 0

vanishes outside a compact interval, and it converges uniformly to zero as ε→ 0.

On the other hand, as µ ≤c ν is irreducible, the difference uν−uµ ≥ 0 is uniformly

bounded away from zero on compact subsets of I and has nonzero derivative on J \I.

Together, it follows that

uν − uSν(εδx) + uεδx ≥ uµ (3.9.1)

for small enough ε > 0, so that

θ := ν − Sν(εδx) + εδx

satisfies µ ≤c θ ≤c ν; moreover, θ � δx as ν({x}) = 0.
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Step 2. We turn to the case of a general probability measure ρ on J . By Step 1,

we can find a measure θx for each x ∈ J such that

µ ≤c θx ≤c ν and θx � δx.

The map x 7→ θx can easily be chosen to be measurable (by choosing the ε for (3.9.1)

in a measurable way). We can then define the probability measure

θ′(A) :=

∫
J

θx(A)ρ(dx), A ∈ B(R)

which satisfies µ ≤c θ′ ≤c ν. Moreover, we have θ′ � ρ; indeed, if A ∈ B(R) is a

θ′-nullset, then θx(A) = 0 for ρ-a.e. x and thus ρ(A) = 0 as θx � δx.

Finally, θ := (µ + θ′ + ν)/3 shares these properties. As uµ < uν on I due to

irreducibility, we have uµ < uθ < uν on I and it follows that µ ≤c θ and θ|I ≤c

(ν − θ|J\I) are irreducible.

Lemma 3.9.4. Let µ0 ≤c µn and let π be a measure on Rn+1 which is concentrated

on an n-step component V ofMn(µ0, µn) and whose first and last marginals satisfy

π0 ≤ µ0, πn ≤ µn.

Then there exists P ∈Mn(µ0, µn) such that P � π.

Proof. If V = In+1
0 ∩∆n, then π must be an identical transport and we can take P to

be any element ofM(µ0, µ0, . . . , µ0, µn). Thus, we may assume that V is of type (i)
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or (iii) in Definition 3.9.1, and then, by fixing k ≥ 1, that µ0 ≤c µn is irreducible with

domain (I, J).

Using Lemma 3.9.3, we can find intermediate marginals µt with

µ0 ≤c µ1 ≤c · · · ≤c µn−1 ≤c µn

such that µt � πt for all 1 ≤ t ≤ n − 1, and each of the steps µt−1 ≤c µt, 1 ≤

t ≤ n has a single irreducible domain given by (I, J) as well as (possibly) a diagonal

component on J \I. We note that V is an irreducible component ofM(µ0, µ1, . . . , µn)

as introduced after Theorem 3.3.1.

Let ft = dπt/dµt be the Radon–Nikodym derivative of the marginal at date t. For

m ≥ 1, we define the measure πm � π by

πm(dx0, . . . , dxn) = 2−m

(
n−1∏
t=1

1ft(xt)≤2m

)
π(dx0, . . . , dxn).

Then, the marginals πmt satisfy the stronger condition πmt ≤ µt for 0 ≤ t ≤ n. Thus,

we can apply Lemma 3.3.3 to µ = (µ0, . . . , µn) and the irreducible component V , to

find Pm ∈M(µ) ⊆Mn(µ0, µn) such that Pm � πm. Noting that
∑

m≥1 2−mπm � π,

we see that P :=
∑

m≥1 2−mPm � π satisfies the requirements of the lemma.

Proof of Theorem 3.9.2. The result is deduced from Lemma 3.9.4 by following the

argument in the proof of Theorem 3.3.1.
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Duality

In this section we formulate a duality theorem for the transport problem with free

intermediate marginals.

Definition 3.9.5. Let f : Rn+1 → [0,∞]. The primal problem is

Snµ0,µn(f) := sup
P∈Mn(µ0,µn)

P (f) ∈ [0,∞]

and the dual problem is

Inµ0,µn(f) := inf
(φ,ψ,H)∈Dnµ0,µn (f)

µ0(φ) + µn(ψ) ∈ [0,∞],

where Dnµ0,µn(f) consists of all triplets (φ, ψ,H) such that (φ, ψ) ∈ Lc(µ0, µn) and

H = (H1, . . . , Hn) is F-predictable with

φ(X0) + ψ(Xn) + (H ·X)n ≥ f Mn(µ0, µn)-q.s.

i.e. the inequality holds P -a.s. for all P ∈Mn(µ0, µn).

The analogue of Theorem 3.5.2 reads as follows.

Theorem 3.9.6 (Duality). Let f : Rn+1 → [0,∞].

(i) If f is upper semianalytic, then Snµ0,µn(f) = Inµ0,µn(f) ∈ [0,∞].

(ii) If Inµ0,µn(f) <∞, there exists a dual optimizer (φ, ψ,H) ∈ Dnµ0,µn(f).
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The main step for the proof is again a closedness result. We shall only discuss the

case where µ0 ≤c µn is irreducible; the extension to the general case can be obtained

along the lines of Section 3.4.

Proposition 3.9.7. Let µ0 ≤c µn be irreducible and let fm : Rn+1 → [0,∞] be a

sequence of functions such that fm → f pointwise. Moreover, let (φm, ψm, Hm) ∈

Dnµ0,µn(fm) be such that supm µ0(φm) + µn(ψm) < ∞. Then there exist (φ, ψ,H) ∈

Dnµ0,µn(f) such that

µ0(φ) + µn(ψ) ≤ lim inf
m→∞

µ0(φm) + µn(ψm).

Proof. Let µt, 1 ≤ t ≤ n − 1 be such that µ = (µ0, . . . , µn) is in convex order

and µt−1 ≤c µt is irreducible for all 1 ≤ t ≤ n; such µt are easily constructed

by prescribing their potential functions. Setting φm = (φm, 0, . . . , 0, ψm) we have

(φm, Hm) ∈ Dgµ(fm) and can thus apply Proposition 3.4.21 to obtain (φ, H) ∈ Dgµ(f).

The construction in the proof of that proposition yields φt ≡ 0 for 1 ≤ t ≤ n − 1.

Therefore, (φ0, φn, H) ∈ Dnµ0,µn(f) and

µ0(φ0) + µn(φn) = µ(φ) ≤ lim inf
m→∞

µ(φm) = lim inf
m→∞

µ0(φm) + µn(ψm).

Proof of Theorem 3.9.6. On the strength of Proposition 3.9.7, the proof is analogous

to the one of Theorem 3.5.2.
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Monotone Transport

The analogue of our result on left-monotone transports is somewhat degenerate: with

unconstrained intermediate marginals, the corresponding coupling is the identical

transport in the first n − 1 steps and the (one-step) left-monotone transport in the

last step. The full result runs as follows.

Theorem 3.9.8. Let P ∈Mn(µ0, µn). The following are equivalent:

(i) P is a simultaneous optimizer for Snµ0,µn(f(X0, Xt)) for all smooth second-order

Spence–Mirrlees functions f and 1 ≤ t ≤ n.

(ii) P is concentrated on a left-monotone set Γ ⊂ Rn+1 such that

Γn−1 = {(x, . . . , x) : x ∈ Γ0}.

(iii) For 0 ≤ t ≤ n−1, we have P ◦ (Xt)
−1 = µ0 and P ◦ (Xt, Xn)−1 is the (one-step)

left-monotone transport inM(µ0, µn).

There exists a unique P ∈Mn(µ0, µn) satisfying (i)–(iii).

Proof. A transport P as in (iii) exists and is unique, because the identical transport

between equal marginals and the left-monotone transport inM(µ0, µn) exist and are

unique; cf. Proposition 3.6.3. The equivalence of (ii) and (iii) follows from the same

proposition and the fact that the only martingale transport from µ0 to µ0 is the

identity.

Let P ∈Mn(µ0, µn) satisfy (i). In particular, P is then an optimizer for Snµ0,µn(f(X0, Xn)),

which by Proposition 3.6.3 implies that P0n = P ◦ (X0, Xn)−1 is the (one-step)
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left-monotone transport in M(µ0, µn). For t = 1, . . . , n − 1, P is an optimizer for

Snµ0,µn(−1{X0≤a}|Xt − b|), for all a, b ∈ R. This implies that P0t transports µ0|(−∞,a]

to the minimal element of {θ : µ0|(−∞,a] ≤c θ ≤pc µn} in the sense of the convex

order, which is θ = µ0|(−∞,a]. Therefore, P0t must be the identical transport for

t = 1, . . . , n− 1 and all but the last marginal are equal to µ0.

Conversely, let P ∈Mn(µ0, µn) have the properties from (iii). Then, P is optimal

for Snµ0,µn(−1{X0≤a}(Xt − b)+) for all 1 ≤ t ≤ n and this can be extended to the

optimality (i) for smooth second-order Spence–Mirrlees functions as in the proof of

Theorem 3.7.12.
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4

Robust Pricing and Hedging around the Globe

This chapter is based on the article [53] of the same title, authored by Sebastian

Herrmann and Florian Stebegg. It is forthcoming in Annals of Applied Probability.

4.1 Introduction

This paper studies the robust pricing and superhedging of derivative securities with

a payoff of the form

F (X,A) = f
(∫

[0,T ]

Xt dAt

)
. (4.1.1)

Here, f is a nonnegative Borel function, X is a càdlàg price process (realized on

the Skorokhod space), and A is chosen by the buyer from a given set A of exercise

rights. More precisely, A is a set of so-called averaging processes, i.e., nonnegative

and nondecreasing adapted càdlàg processes A with AT ≡ 1. Setting A = {1[[τ,T ]] :

τ a [0, T ]-valued stopping time} or A = {t 7→ t/T} reduces (4.1.1) to the relevant
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special cases of American- or Asian-style derivatives, respectively:

f(Xτ ) or f
( 1

T

∫ T

0

Xt d t
)
. (4.1.2)

Other relevant examples are Bermudan options and European options with interme-

diate maturity (cf. Examples 4.3.3–4.3.4).

Robust pricing problem. Let µ and ν be probability measures on R. We denote

byM(µ, ν) the set of (continuous-time) martingale couplings between µ and ν, i.e.,

probability measures P under which X is a martingale with marginal distributions

X0
P∼ µ and XT

P∼ ν. The value of the primal problem

S := sup
P∈M(µ,ν)

sup
A∈A

EP [F (X,A)] (4.1.3)

can be interpreted as the maximal model-based price for F over all models which are

consistent with the given marginals.

If A is a singleton, then (4.1.3) is a so-called (continuous-time) martingale optimal

transport problem. This problem was introduced (for general payoffs) by Beiglböck,

Henry-Labordère, and Penkner [9] in a discrete-time setting and by Galichon, Henry-

Labordère, and Touzi [43] in continuous time; cf. the survey [84].

Semi-static superhedging problem. The formal dual problem to (4.1.3) has a

natural interpretation as a superhedging problem.1 Loosely speaking, a semi-static

1The primal problem (4.1.3) can be viewed as an optimization over finite measures P with three
constraints: two marginal constraints and the martingale constraint. Its formal dual problem is

200



superhedge is a triplet (ϕ, ψ,H) consisting of functions ϕ, ψ and a suitable process

H such that for every A ∈ A, the superhedging inequality holds:

ϕ(X0) + ψ(XT ) +

∫ T

0

HA
t− dXt ≥ F (X,A) pathwise. (4.1.4)

Here, the strategy H = HA may depend in an adapted way on A (cf. Section 3.2 for

a precise formulation). For the example of an American-style payoff, this means that

at the chosen exercise time τ , the buyer communicates her decision to exercise to the

seller, who can then adjust the dynamic part of his hedging strategy (cf. [6, Section 3]).

The left-hand side in (4.1.4) is the payoff of a static position in two European-style

derivatives on X plus the final value of a self-financing dynamic trading strategy in X.

The inequality (4.1.4) says that the final value of this semi-static portfolio dominates

the payoff F for every choice of exercise right and “all” price paths. The initial cost

to set up a semi-static superhedge (ϕ, ψ,H) equals the price µ(ϕ)+ν(ψ) of the static

part.2 The formal dual problem to (4.1.3),

I := inf{µ(ϕ) + ν(ψ) : (ϕ, ψ,H) is a semi-static superhedge}, (4.1.5)

amounts to finding the cheapest semi-static superhedge (if it exists) and its initial

cost, the so-called robust superhedging price.

the Lagrange dual problem where suitable functions ϕ and ψ and a suitable process H are used as
Lagrange multipliers for the marginal and martingale constraints, respectively.

2We use the common notation µ(ϕ) for the integral of ϕ against µ.
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Main objectives and relaxation of the dual problem. We are interested in

strong duality, i.e., S = I, and dual attainment, i.e., the existence of a dual minimizer.

Dual attainment requires a suitable relaxation of the dual problem. Indeed, for

the discrete-time martingale optimal transport problem, Beiglböck, Henry-Labordère,

and Penkner [9] show strong duality for upper semicontinuous payoffs but provide a

counterexample that shows that dual attainment can fail even if the payoff function is

bounded and continuous. Beiglböck, Nutz, and Touzi [16] achieve strong duality and

dual attainment for general payoffs and marginals in the one-step case by relaxing the

dual problem in two aspects. First, they only require the superhedging inequality to

hold in the quasi-sure sense, i.e., outside a set which is a nullset under every one-step

martingale coupling between µ and ν. The reason is that the marginal constraints

may introduce barriers on the real line which (almost surely) cannot be crossed by

any martingale with these marginals; this was first observed by Hobson [30] (see also

Cox [26] and Beiglböck and Juillet [14]). These barriers partition the real line into

intervals and the marginal laws into so-called irreducible components. Then strong

duality and dual attainment can be reduced to proving the same results for each

irreducible component [30, 16]. Second, Beiglböck, Nutz, and Touzi [16] extend the

meaning of the expression µ(ϕ) + ν(ψ) to certain situations where both individual

integrals are infinite. For example, it can happen that µ(ϕ) = −∞ and ν(ψ) = ∞,

but the price EP [ϕ(X0) + ψ(XT )] of the combined static part is well-defined, finite,

and invariant under the choice of P ∈ M(µ, ν). In this situation, this price is still

denoted by µ(ϕ) + ν(ψ). We employ both relaxations for the precise definition of the

dual problem in Section 4.3.
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In continuous time, Dolinsky and Soner [35, 36] show strong duality for uniformly

continuous payoffs satisfying a certain growth condition. They use the integration

by parts formula to define the stochastic integral
∫ T

0
Ht− dXt pathwise for finite

variation integrands H. However, dual attainment cannot be expected in this class

in general. For our payoffs (4.1.1), we need to allow integrands that are of finite

variation whenever they are bounded but can become arbitrarily large or small on

certain price paths. As the integrands are not of finite variation on these paths, the

meaning of the pathwise integral needs to be extended appropriately.

For the purpose of the introduction, we discuss our results and methodology in

a non-rigorous fashion, ignoring all aspects relating to the relaxation of the dual

problem.

Main results. We prove strong duality and dual attainment for payoffs of the form

(4.1.1) under mild conditions on f and A for irreducible marginals (Theorem 4.3.9);

all results can be extended to general marginals along the lines of [16, Section 7].

The key idea is the reduction of the primal and dual problems to simpler auxiliary

problems, which do not depend on the set A of exercising rights. In particular, our

results cover American-style derivatives f(Xτ ) for Borel-measurable f and Asian-style

derivatives f( 1
T

∫ T
0
Xt d t) for lower semicontinuous f and show that both derivatives

have (perhaps surprisingly) the same robust superhedging prices and structurally

similar semi-static superhedges.
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Methodology. Our methodology relies on two crucial observations which allow us

to bound the primal problem from below and the dual problem from above by simpler

auxiliary primal and dual problems, respectively. To obtain a primal lower bound, we

show that for any law θ which is in convex order between µ and ν, there is a sequence

(Pn)n≥1 ⊂ M(µ, ν) such that the law of
∫

[0,T ]
Xt dAt under Pn converges weakly to

θ if A is a suitable averaging process. This allows us to bound S from below by the

value of the auxiliary primal problem

S̃ := sup
µ≤cθ≤cν

θ(f).

(The converse inequality also holds (cf. Lemma 4.4.1), so that in fact S = S̃.)

Regarding the dual upper bound, we prove (modulo technicalities) that if ϕ is con-

cave and ψ is convex such that ϕ+ψ ≥ f , then (ϕ, ψ,H) is a semi-static superhedge,

where the dynamic part H is given explicitly in terms of ϕ and ψ by

Ht := ϕ′(X0)−
∫

[0,t]

{ϕ′(X0) + ψ′(Xs)} dAs. (4.1.6)

This allows us to bound I from above by the value of the auxiliary dual problem

Ĩ := inf{µ(ϕ) + ν(ψ) : ϕ concave, ψ convex, ϕ+ ψ ≥ f}.

As a consequence, strong duality and dual attainment for S and I follow from the

same assertions for the simpler problems S̃ and Ĩ, which we prove by adapting the

techniques of [16]. Moreover, our reduction of the dual problem implies that if (ϕ, ψ)
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is optimal for Ĩ, then it is also the static part of an optimal semi-static superhedge

and the dynamic part H can be computed ex-post via (4.1.6). This dramatically

decreases the complexity of the superhedging problem: the optimization over two

functions and a process satisfying an inequality constraint on the Skorokhod space is

reduced to an optimization over two functions satisfying an inequality constraint on

R.

Our methodology reveals that many derivatives have the same robust superhedg-

ing prices and semi-static superhedges. Indeed, Ĩ and S̃ do not depend on the set A

of exercise rights granted to the buyer, and this independence transfers to S and I

under mild conditions on f and A. For example, if f is lower semicontinuous, then

the Asian-style derivative f( 1
T

∫ T
0
Xt d t), the American-style derivative f(Xτ ), and

the European-style derivative f(XT ′) (for a fixed maturity T ′ ∈ (0, T )) all have the

same robust superhedging price (Remark 4.3.10). This invariance breaks down when

more than two marginals are given.

Related literature. Much of the extant literature on robust superhedging in semi-

static settings is concerned with strong duality and dual attainment. The results vary

in their generality and explicitness as well as their precise formulation. The semi-

static setting, where call options are available as additional hedging instruments,

dates back to Hobson’s seminal paper [56] on the lookback option.3 Many other

specific exotic derivatives (mostly without special exercise rights) have been analyzed

in this framework in the past two decades; cf. the survey [57].

3We note that the superhedging strategies described in [56] are actually dynamic in the call
options.
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Securities with special exercise rights have been studied in the context of American-

style derivatives in discrete-time settings. Bayraktar, Huang, and Zhou [6] obtain a

duality result for a somewhat different primal problem (cf. [6, Theorem 3.1]) and show

that duality may fail in their setting if they formulate their primal problem in anal-

ogy to the present paper; see also [39] for related results with portfolio constraints.

Hobson and Neuberger [31] (based on Neuberger’s earlier manuscript [2]) resolve this

issue by adopting a weak formulation for the primal problem: instead of optimizing

only over martingale measures on a fixed filtered path space, the optimization there

runs over filtered probability spaces supporting a martingale and thereby allows richer

information structures and hence more stopping times. We also refer to [1, 40, 32] for

recent developments in this regard. We note that all these papers permit significant

restrictions on the set of possible price paths (e.g., binomial trees) while we allow

all càdlàg paths. This difference may be the reason why strong duality holds in our

setting without any relaxation of the primal problem.

The case of an Asian-style payoff as in (4.1.2) has been studied in the case of

a Dirac initial law µ. For convex or concave f , Stebegg [81] shows strong duality

and dual attainment. For nonnegative Lipschitz f , Cox and Källblad [5] obtain a

PDE characterization of the maximal model-based price for finitely supported ν.

Bayraktar, Cox, and Stoev [38] provide a similar, but not identical PDE for the

corresponding pricing problem for American-style payoffs as in (4.1.2). A consequence

of our main duality result is that the Asian and American pricing problems are the

same, so that both these PDEs have the same (viscosity) solution.
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Organization of the paper. The remainder of the article is organized as follows.

In Section 2, we recall basic results on the convex order and potential functions,

introduce the generalized integral of [16] and its relevant properties, and present

the extension of the pathwise definition of the stochastic integral for finite variation

integrands. Section 4.3 introduces the robust pricing and semi-static superhedging

problems and presents our duality result. The duality between the auxiliary prob-

lems, the structure of their optimizers, and their relation to the robust pricing and

superhedging problem are treated in Section 4.4. In Section 4.5, we provide simple

geometric constructions of primal and dual optimizers for risk reversals and butterfly

spreads. Finally, some counterexamples are collected in Section 4.6.

4.2 Preliminaries

Fix a time horizon T and let Ω = D([0, T ];R) be the space of real-valued càdlàg

paths on [0, T ]. We endow Ω with the Skorokhod topology and denote by F the

corresponding Borel σ-algebra, by X = (Xt)t∈[0,T ] the canonical process on Ω, and

by F = (Ft)t∈[0,T ] the (raw) filtration generated by X. Unless otherwise stated, all

probabilistic notions requiring a filtration pertain to F.

For any process Y = (Yt)t∈[0,T ] on Ω, we set Y0− = 0, so that the jump of Y at

time 0 is ∆Y0 = Y0.
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Martingale measures and convex order

Let µ and ν be finite4 measures on R with finite first moment. We denote by Π(µ, ν)

the set of (continuous-time) couplings of µ and ν, i.e., finite measures P on Ω such

that P ◦ X−1
0 = µ and P ◦ X−1

T = ν. If, in addition, the canonical process X is a

martingale under P (defined in the natural way if P is not a probability measure),

then we write P ∈M(µ, ν) and say that P is a (continuous-time) martingale coupling

between µ and ν.

We also consider discrete-time versions of these notions. To wit, we denote by

Πd(µ, ν) the set of finite measures Q on R2 with marginal distributions µ and ν

and byMd(µ, ν) the subset of measures Q under which the canonical process on R2

is a martingale (in its own filtration). The sets Πd(µ, θ, ν) and M(µ, θ, ν) of finite

measures on R3 with prescribed marginal distributions are defined analogously.

We write µ ≤c ν if µ and ν are in convex order in the sense that µ(ϕ) ≤ ν(ϕ)

holds for any convex function ϕ : R → R. In this case, µ and ν have the same mass

and the same barycenter bary(µ) := 1
µ(R)

∫
xµ(dx).

The potential function uµ : R→ [0,∞] of µ is defined as

uµ(x) :=

∫
|x− y|µ(d y). (4.2.1)

We refer to [14, Section 4.1] for basic properties of potential functions. In partic-

ular, the following relationship between the convex order, potential functions, and

martingale measures is well known.

4As in [16], using finite measures as opposed to probability measures turns out to be useful.
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Proposition 4.2.1. Let µ and ν be finite measures with finite first moments and

µ(R) = ν(R). Then the following are equivalent: (i) µ ≤c ν, (ii) uµ ≤ uν, (iii)

Md(µ, ν) 6= ∅, and (iv)M(µ, ν) 6= ∅.

An analogous result holds for three marginals µ, θ, ν, the corresponding potential

functions, and the setMd(µ, θ, ν).

We recall the following definition from [16, Definition 2.2] (see also [14, Defini-

tion A.3]).

Definition 4.2.2. A pair of finite measures µ ≤c ν is called irreducible if the set

I = {uµ < uν} is connected and µ(I) = µ(R). In this situation, let J be the union of

I and any endpoints of I that are atoms of ν; then (I, J) is the domain of µ ≤c ν.

We work with irreducible µ ≤c ν for the remainder of this article.

Generalized integral

Let µ ≤c ν be irreducible with domain (I, J). Beiglböck and Juillet [14, Section A.3]

and Beiglböck, Nutz, and Touzi [16, Section 4] appropriately extend the meaning

of the expression µ(ϕ) + ν(ψ) to the case where the individual integrals are not

necessarily finite. We present here a slight extension of their work in order to deal

with intermediate laws µ ≤c θ ≤c ν for which the pairs µ ≤c θ and θ ≤c ν may not

be irreducible.

For the rest of this article, whenever we write µ ≤c ν for any two measures µ and

ν, we implicitly assume that both measures are finite and have a finite first moment.

Throughout this section, we fix µ ≤c θ1 ≤c θ2 ≤c ν.
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Definition 4.2.3. Let χ : J → R be concave. Denote by −χ′′ the second derivative

measure of the convex function−χ and by ∆χ the possible jumps of χ at the endpoints

of I. We set

(θ1 − θ2)(χ) :=
1

2

∫
I

(uθ1 − uθ2) dχ′′ +

∫
J\I
|∆χ| d(θ2 − θ1) ∈ [0,∞]. (4.2.2)

The right-hand side is well defined in [0,∞] because uθ1 ≤ uθ2 on I and θ1({b}) ≤

θ2({b}) for b ∈ J \ I.

If θ1 = µ and θ2 = ν, then (4.2.2) coincides with Equation (4.2) in [16] because µ is

concentrated on I. As in [16], there is an alternative representation of (θ1− θ2)(χ) in

terms of an iterated integral with respect to a disintegration of a (one-step) martingale

coupling on R2:

Lemma 4.2.4. Let χ : J → R be concave and let Q ∈ Md(θ1, θ2). For any disinte-

gration Q = θ1 ⊗ κ, we have

(θ1 − θ2)(χ) =

∫
J

[
χ(x1)−

∫
J

χ(x2)κ(x1, dx2)

]
θ1(dx1).

Proof. The proof of [16, Lemma 4.1] does not use that µ ≤c ν is irreducible. Moreover,

for χ̄ : J → R concave and continuous, the same arguments as in the proof of [16,

Lemma 4.1] yield

1

2

∫
I

(uθ1 − uθ2) d χ̄′′ =

∫
J

[
χ̄(x1)−

∫
J

χ̄(x2)κ(x1, dx2)

]
θ1(dx1). (4.2.3)
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(Note that
∫
J
χ̄(x2)κ(x1, dx2) = χ̄(x1) for boundary points x1 ∈ J \ I because κ is a

martingale kernel concentrated on J .)

For a general concave χ : J → R, we write χ = χ̄− |∆χ|1J\I with χ̄ continuous.

Then we can replace χ̄ with χ on the left-hand side of (4.2.3) and the integrand on

the right-hand side reads as

χ+ |∆χ|1J\I −
∫
J

χ(x2)κ(·, dx2)−
∫
J\I
|∆χ(x2)|κ(·, dx2).

Integrating this against θ1 and using Fubini’s theorem yields

∫
J

[
χ(x1)−

∫
J

χ(x2)κ(x1, dx2)

]
θ(dx1) +

∫
J\I
|∆χ| d θ1 −

∫
J\I
|∆χ| d θ2.

Together with (4.2.3), this proves the claim.

It can be shown as in [16] that (θ1 − θ2)(χ) = θ1(χ)− θ2(χ) if at least one of the

individual integrals is finite.

We can now define the integral θ1(ϕ) + θ2(ψ) as in [16, Definition 4.7].

Definition 4.2.5. Let ϕ : J → R and ψ : J → R be Borel functions. If there exists

a concave function χ : J → R such that ϕ− χ ∈ L1(θ1) and ψ + χ ∈ L1(θ2), we say

that χ is a concave moderator for (ϕ, ψ) with respect to θ1 ≤c θ2 and set

θ1(ϕ) + θ2(ψ) := θ1(ϕ− χ) + θ2(ψ + χ) + (θ1 − θ2)(χ) ∈ (−∞,∞]. (4.2.4)

As in [16], the expression θ1(ϕ) + θ2(ψ) defined in (4.2.4) does not depend on the
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choice of the concave moderator.

Definition 4.2.6. We write Lc(θ1, θ2) for the space of pairs of Borel functions ϕ, ψ :

J → R which admit a concave moderator χ with respect to θ1 ≤c θ2 such that

(θ1 − θ2)(χ) <∞.

We next present additional properties of the notions introduced above.

Lemma 4.2.7. Let (ϕ, ψ) ∈ Lc(θ1, θ2).

(i) ϕ is finite on atoms of θ1. If ϕ is concave, then ϕ <∞ on J and ϕ > −∞ on

the interior of the convex hull of the support of θ1.

(ii) ψ is finite on atoms of θ2. If ψ is convex, then ψ > −∞ on J and ψ < ∞ on

the interior of the convex hull of the support of θ2.

(iii) If a, b : R→ R are affine, then (ϕ+ a, ψ + b) ∈ Lc(θ1, θ2) and

θ1(ϕ+ a) + θ2(ψ + b) = {θ1(ϕ) + θ2(ψ)}+ θ1(a) + θ2(b).

Proof. We only prove (iii). Let χ be a concave moderator for (ϕ, ψ) with respect to

θ1 ≤c θ2. Then ϕ− χ ∈ L1(θ1), ψ + χ ∈ L1(θ2), and (θ1 − θ2)(χ) <∞. Being affine,

a and b are θ1- and θ2-integrable. It follows that χ is also a concave moderator for

(ϕ+ a, ψ + b) with respect to θ1 ≤c θ2 and that (ϕ+ a, ψ + b) ∈ Lc(θ1, θ2). The last

assertion is a direct computation.

Remark 4.2.8. Recall that I is the interior of the convex hull of the support of ν

and that J is the union of I and any endpoints of I that are atoms of ν. Hence,

212



Lemma 4.2.7 (ii) shows in particular, that if (ϕ, ψ) ∈ Lc(θ1, ν) with ψ convex, then

ψ is finite on J .

We conclude this section with a number of calculation rules for the integrals

defined above when ϕ is concave and ψ is convex.

Lemma 4.2.9. Let µ ≤c θ1 ≤c θ2 ≤c θ3 ≤c ν (where the pair µ ≤c ν is irreducible)

and let (ϕ, ψ) ∈ Lc(θ1, θ3) be such that ϕ is concave and finite, ψ is convex and finite,

and ϕ+ ψ is bounded from below by a concave θ3-integrable function.

(i) ϕ and −ψ are concave moderators for (ϕ, ψ) with respect to θ1 ≤c θ3.

(ii) (ϕ, ψ) ∈ Lc(θ1, θ2) ∩ Lc(θ2, θ3).

(iii) θ1(ϕ) + θ2(ψ) ≤ θ1(ϕ) + θ3(ψ).

(iv) θ2(ϕ) + θ3(ψ) ≤ θ1(ϕ) + θ3(ψ).

Proof. Denote by ξ a concave θ3-integrable lower bound for ϕ+ ψ. By the concavity

of ξ, we have θ1(ξ) ≥ θ2(ξ) ≥ θ3(ξ) > −∞, so that ξ is also θ1- and θ2-integrable.

(i): Regarding the concave moderator property of ϕ, it suffices to show that ϕ+ψ

is θ3-integrable. Denote by ϕ′ the left-derivative of the concave function ϕ on I. Then

for (x1, x3) ∈ I × J ,

ξ(x3) ≤ ϕ(x3) + ψ(x3) ≤ ϕ(x1) + ψ(x3) + ϕ′(x1)(x3 − x1). (4.2.5)

Fix any Q ∈ Md(θ1, θ3). Then (4.2.5) also holds Q-a.e. on J × J (setting ϕ′ = 0

on J \ I for example); this uses that any mass in a point of J \ I stays put under a

martingale transport plan. Since ξ is θ3-integrable, the negative part of the right-hand
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side in (4.2.5) is Q-integrable. Then it can be argued as in [16, Remark 4.10] that

the right-hand side in (4.2.5) is Q-integrable. It follows that ϕ+ ψ is θ3-integrable.

Regarding the assertion about −ψ, it suffices to show that ϕ+ψ is θ1-integrable.

We have

ξ(x1) ≤ ϕ(x1) + ψ(x1)

= [ϕ(x1) + ψ(x3) + ϕ′(x1)(x3 − x1)]

+ [ψ(x1)− ψ(x3)− ϕ′(x1)(x3 − x1)] Q-a.e. on J × J.

(4.2.6)

By the above, the first term on the right-hand side is Q-integrable. Thus, the negative

part of the second term is also Q-integrable. Hence, we may integrate the second term

iteratively using Fubini’s theorem as in [16, Remark 4.10]. The Q-integral equals

−(θ1 − θ3)(−ψ) ≤ 0. In particular, the right-hand side in (4.2.6) is Q-integrable. It

follows that ϕ+ ψ is θ1-integrable.

(ii)–(iv): We know from the above that ϕ+ψ is θ3-integrable. It follows that ϕ is a

concave moderator for (ϕ, ψ) with respect to θ2 ≤c θ3. Because θ1 ≤c θ2, we have that

uθ1 ≤ uθ2 and θ1({b}) ≤ θ2({b}) for b ∈ J \ I. Thus, (θ2− θ3)(ϕ) ≤ (θ1− θ3)(ϕ) <∞

(cf. Definition 4.2.3). Hence, (ϕ, ψ) ∈ Lc(θ2, θ3) and

θ2(ϕ) + θ3(ψ) = θ2(ϕ− ϕ) + θ3(ϕ+ ψ) + (θ2 − θ3)(ϕ)

≤ θ1(ϕ− ϕ) + θ3(ϕ+ ψ) + (θ1 − θ3)(ϕ)

= θ1(ϕ) + θ3(ψ).
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One can show similarly that (ϕ, ψ) ∈ Lc(θ1, θ2) and that θ1(ϕ) + θ2(ψ) ≤ θ1(ϕ) +

θ3(ψ).

Pathwise stochastic integration

For any F-adapted càdlàg process H of finite variation, the integral H− • XT =∫
(0,T ]

Ht− dXt can be defined pathwise, i.e., for each ω ∈ Ω individually, via integra-

tion by parts as follows:

H− •XT := XTHT −X0H0 −
∫

(0,T ]

Xt dHt, (4.2.7)

where the integral on the right-hand side is the pathwise Lebesgue–Stieltjes integral.

Setting H0− = 0, so that ∆H0 = H0, we can recast (4.2.7) as

H− •XT = (XT −X0)H0 +

∫
(0,T ]

(XT −Xt) dHt. (4.2.8)

For any martingale measure P , if the (standard) stochastic integral ofH− with respect

to X exists, then it is P -indistinguishable from the pathwise stochastic integral.

We need to give a sensible meaning to the integral H− •XT for certain integrands

H which are not necessarily of finite variation, but may diverge in finite time.

Example 4.2.10. The following example motivates our extension of the pathwise

stochastic integral for finite variation integrands. Let µ = δ0 and ν = 1
2
δ−1 + 1

2
δ1.

Then µ ≤c ν are irreducible with domain (I, J) = ((−1, 1), [−1, 1]). Consider a payoff

function f which is convex on [−1, 1] and has infinite (one-sided) derivatives at −1
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and 1, e.g., f(x) = 1−
√

1− x21[−1,1](x), A semi-static superhedge for the Asian-style

derivative f( 1
T

∫ T
0
Xt d t) can be derived as follows. By Jensen’s inequality and the

convexity of f , for every path of X that evolves in [−1, 1],

f
( 1

T

∫ T

0

Xt d t
)
≤
∫ T

0

f(Xt)
d t

T
≤
∫ T

0

(
f(XT )− f ′(Xt)(XT −Xt)

) d t

T

= f(XT )−
∫ T

0

(XT −Xt)f
′(Xt)

d t

T
.

Comparing this with (4.2.8), a semi-static superhedge for the Asian-style derivative

is obtained from a European-style derivative with payoff f(XT ) maturing at T and a

dynamic trading strategy H with H0 = 0 and dynamics dHt = −f ′(Xt)
d t
T
. Then H

is of finite variation whenever X stays away from the boundaries of (−1, 1). But, as

X approaches −1 or 1, the derivative f ′(Xt) becomes arbitrarily large (in absolute

value), and H may fail to be of finite variation. It turns out, however, that the

integral
∫ T

0
(XT −Xt)f

′(Xt)
d t
T

is still well defined on these paths. The reason is that

when paths of X come arbitrarily close to 1, say, then for any martingale coupling

P ∈ M(µ, ν), XT = 1 P -a.s. on these paths (because J = [−1, 1]), so that XT −Xt

becomes small and counteracts the growth of f ′(Xt).

We shall define a pathwise stochastic integral for F-adapted càdlàg integrators X

and integrands Ĥ− of the form

Ĥt = h0 +

∫
(0,t]

hs dYs (4.2.9)

for an F-adapted càdlàg process Y = (Yt)t∈[0,T ] of finite variation and an F-adapted
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process h = (ht)t∈[0,T ]—even in certain situations where the right-hand side of (4.2.9)

is not finite. The idea is to formally substitute (4.2.9) into (4.2.8), formally use the

associativity of Lebesgue–Stieltjes integrals, and then employ the resulting expression

as a definition for a pathwise stochastic integral. In particular, this expression is

P -indistinguishable from the stochastic integral of Ĥ− with respect to X for any

martingale measure P and can still be interpreted as the gains from self-financing

trading in X according to the trading strategy Ĥ−.

We first introduce a set of integrands for this integral.

Definition 4.2.11. Let Ω′ ⊂ D([0, T ];R). We denote by L(Ω′) the set of pairs

(h, Y ) consisting of an F-adapted process h and an F-adapted càdlàg process Y of

finite variation such that the process ((XT − Xt)ht)t∈[0,T ] is dY -integrable on (0, T ]

for each path in Ω′.

If Y is an F-adapted càdlàg process of finite variation, then (1, Y ) ∈ L(Ω′) for any

Ω′ ⊂ D([0, T ];R) (because any càdlàg function is bounded on compact intervals).

We fix a set Ω′ ⊂ D([0, T ];R) for the rest of this section.

Definition 4.2.12. For H = (h, Y ) ∈ L(Ω′), we set

H �XT := (XT −X0)h0 +

∫
(0,T ]

(XT −Xt)ht dYt on Ω′. (4.2.10)

We note that the Lebesgue–Stieltjes integral on the right-hand side of (4.2.10) is

well defined and finite by the definition of L(Ω′). The following result shows that for

pathwise bounded h, H �XT coincides with Ĥ− •XT for Ĥ as in (4.2.9).
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Proposition 4.2.13. Let H = (h, Y ) ∈ L(Ω′) and ω ∈ Ω′. If the function t 7→ ht(ω)

is bounded on [0, T ], then

(H �XT )(ω) = (Ĥ− •XT )(ω),

where Ĥ = h0 +
∫

(0,·] h dY .

If we set h0 = Y0 and ht = 1 for t ∈ (0, T ] for an F-adapted càdlàg process Y of

finite variation, then H = (h, Y ) ∈ L(Ω) and by Proposition 4.2.13,

H �XT = Y− •XT on Ω.

So the integral H �XT embeds all pathwise stochastic integrals Y− •XT .

Proof of Proposition 4.2.13. Since h(ω) is bounded on [0, T ], Ĥt(ω) = h0(ω)+
∫

(0,t]
hs(ω) dYs(ω)

is a well-defined càdlàg finite variation function on [0, T ]. Thus, by (4.2.8),

Ĥ− •XT = (XT −X0)h0 +

∫
(0,T ]

(XT −Xs)hs dYs = H �XT .

4.3 Robust pricing and superhedging problems

Throughout this section, we fix an irreducible pair µ ≤c ν with domain (I, J) and a

Borel function f : R → R which is bounded from below by a ν-integrable concave

function.
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Pricing problem

Our pricing and hedging duality applies to a wide range of exotic derivatives includ-

ing American options, fixed strike Asian options, Bermudan options, and European

options with an intermediate maturity. We now describe this class of derivative se-

curities.

Definition 4.3.1. A nonnegative F-adapted nondecreasing càdlàg processA = (At)t∈[0,T ]

is called an averaging process if AT (ω) = 1 for every ω ∈ Ω. If in addition A0(ω) = 0

and ∆AT (ω) = 0 for each ω ∈ Ω, then A is called an interior averaging process. If in

addition there is t ∈ (0, T ) such that At(ω) = 0 for each ω ∈ Ω, then A is called a

strictly interior averaging process.

Recall that we set A0− = 0 and note that for each ω ∈ Ω, A(ω) can be identified

with a Borel probability measure on [0, T ]. If A is an interior averaging process, then

this probability measure is supported on (0, T ), and if A is a strictly interior averaging

process then its support is (uniformly in ω) contained in [t, T ) for some t ∈ (0, T ).

Given a nonempty set A of averaging processes, we consider a derivative security

whose payoff at time T is

f
(∫

[0,T ]

Xt dAt

)
, (4.3.1)

where A ∈ A is chosen by the buyer and the seller observes (As)s∈[0,t] at time t. Then
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the robust model-based price is defined as

Sµ,ν(f,A) = sup
P∈M(µ,ν)

sup
A∈A

EP

[
f
(∫

[0,T ]

Xt dAt

)]
. (4.3.2)

In other words, Sµ,ν(f,A) is the highest model-based price of the derivative security

(4.3.1) among all martingale models which are consistent with the given marginal

distributions.

Remark 4.3.2. One can show that for each P ∈ M(µ, ν) and each averaging

process A, the law of
∫

[0,T ]
Xt dAt under P is in convex order between µ and ν;

cf. Lemma 4.4.1. Because f is by assumption bounded from below by a ν-integrable

concave function, the expectations in (4.3.2) are well defined.

Important special cases are obtained for specific choices of A.

Example 4.3.3 (No special exercise rights). Setting A = {A} deprives the buyer

of any special exercise rights and reduces (4.3.2) to the more familiar robust pricing

problem

sup
P∈M(µ,ν)

EP [F ]

for the derivative security F = f(
∫

[0,T ]
Xt dAt).

(i) Asian options. SettingAt = t/T recovers the Asian-style derivative f( 1
T

∫ T
0
Xt d t);

this includes fixed strike Asian puts and calls, but not floating strike Asian op-

tions. This robust pricing problem is analyzed in [5].
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(ii) European options. Setting At = 1[T ′,T ](t) yields a European-style payoff f(XT ′)

with an intermediate maturity T ′ ∈ (0, T ).

Example 4.3.4 (Special exercise rights). Fix a nonempty set T of [0, T ]-valued

F-stopping times, and consider A = {1[[τ,T ]] : τ ∈ T }. Then (4.3.2) reduces to

sup
P∈M(µ,ν)

sup
τ∈T

EP [f(Xτ )] . (4.3.3)

(i) American options. If T consists of all [0, T ]-valued F-stopping times, then

(4.3.3) is the robust American option pricing problem analyzed in [38].

(ii) Bermudan options. Bermudan options with exercise dates 0 ≤ T1 < · · · < Tn ≤

T are covered by choosing T to be the set of {T1, . . . , Tn}-valued F-stopping

times.

Superhedging problem

In the case of robust semi-static superhedging of American options, it is well known

that a pricing-hedging duality can in general only hold if the seller of the option can

adjust the dynamic part of his trading strategy after the option has been exercised;

cf. [6, Section 3]. In other words, the buyer has to communicate her decision of

exercising to the seller at the time of exercising. The analog in our setting is that

the seller observes At at time t. That is, his trading strategy can be “adapted” to the

averaging process chosen by the buyer.

To make this precise, let Ω̂ be the cartesian product of Ω and the set of non-

negative, nondecreasing, càdlàg functions a : [0, T ] → [0, 1] with a(T ) = 1. As Ω̂
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is a subspace of the Skorokhod space D([0, T ];R × [0, 1]), we can equip it with the

subspace Skorokhod topology and denote by F̂ the corresponding Borel σ-algebra.

We write F̂ = (F̂t)t∈[0,T ] for the (raw) filtration generated by the canonical process

on Ω̂. For any process Z on Ω̂ and any averaging process A (on Ω), we define the

process ZA on Ω by

ZA
t (ω) = Zt(ω,A(ω)), ω ∈ Ω.

Note that if Z is F̂-adapted, then ZA is F-adapted, and if Z is càdlàg or of finite

variation, then so is ZA.

Next, we define a suitable set of paths for the hedging problem. Let Ωµ,ν ⊂ Ω

denote the subset of paths which start in I, evolve in J , and are “captured” if they

approach the boundary ∂J :

Ωµ,ν := {ω ∈ Ω : ω0 ∈ I, ωt ∈ J for all t ∈ (0, T ],

if ωt− ∈ ∂J , then ωu = ωt− for all u ∈ [t, T ], and (4.3.4)

if ωt ∈ ∂J , then ωu = ωt for all u ∈ [t, T ]}.

One can show that every martingale coupling between µ and ν is concentrated on

Ωµ,ν :5

Lemma 4.3.5. Ωµ,ν ∈ F and P [Ωµ,ν ] = P [Ω] for every P ∈M(µ, ν).

5The fact that µ and ν are concentrated on I and J , respectively, together with the martingale
property implies that P -a.e. path has the first two properties in (4.3.4). The other two properties
can be shown similarly to the fact that nonnegative supermartingales are almost surely captured in
zero (cf. [64, Lemma 7.31]).
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We are now ready to define the trading strategies for the robust superhedging

problem.

Definition 4.3.6. A semi-static trading strategy is a triplet (ϕ, ψ,H) consisting of a

pair of functions (ϕ, ψ) ∈ Lc(µ, ν) and a pair H = (ht, Yt)t∈[0,T ] of F̂-adapted processes

on Ω̂ such that

HA := (hA, Y A) ∈ L(Ωµ,ν) for every averaging process A. (4.3.5)

The portfolio value at time T of a semi-static trading strategy is given by the

sum of the static part with payoffs ϕ(X0) and ψ(XT ) and the gains HA �XT of the

dynamic part:

ϕ(X0) + ψ(XT ) +HA �XT . (4.3.6)

The initial cost to set up this position is equal to the initial price of the static part:

µ(ϕ) + ν(ψ). (4.3.7)

We now turn our attention to semi-static trading strategies which dominate the

payoff (4.3.1) of our derivative security for each path in Ωµ,ν and every averaging

process in A.

Definition 4.3.7. A semi-static trading strategy (ϕ, ψ,H) is called a semi-static
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superhedge (for f and A) if for every A ∈ A,

f
(∫

[0,T ]

Xt dAt

)
≤ ϕ(X0) + ψ(XT ) +HA �XT on Ωµ,ν (4.3.8)

and

EP
[
ϕ(X0) + ψ(XT ) +HA �XT

]
≤ µ(ϕ) + ν(ψ), P ∈M(µ, ν). (4.3.9)

The set of semi-static superhedges for f and A is denoted by Dµ,ν(f,A).

The requirement (4.3.9) is an admissibility condition. It demands that for every

P ∈M(µ, ν), the portfolio value, consisting of both the static and the dynamic part,

is a one-step P -supermartingale between the time at which the static part is set up

and time T . In other words, the expectation of the terminal portfolio value (4.3.6) is

less than or equal to the initial portfolio value (4.3.7).

We define the robust superhedging price (for f and A) as the “minimal” initial

capital required to set up a semi-static superhedge for f and A:6

Iµ,ν(f,A) = inf
(ϕ,ψ,H)∈Dµ,ν(f,A)

{µ(ϕ) + ν(ψ)}. (4.3.10)

Weak and strong duality

Weak duality between the robust pricing and hedging problems is an immediate

consequence of their definitions:

6We use the convention inf ∅ =∞.
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Lemma 4.3.8 (Weak duality). Let f : R → R be Borel and bounded from below by

a ν-integrable concave function and let A be a nonempty set of averaging processes.

Then

Sµ,ν(f,A) ≤ Iµ,ν(f,A).

Proof. Let P ∈ M(µ, ν), A ∈ A, and (ϕ, ψ,H) ∈ Dµ,ν(f,A) (there is nothing to

show if this set is empty). Taking P -expectations in (4.3.8) and using (4.3.9) shows

that EP
[
f(
∫

[0,T ]
Xt dAt)

]
≤ µ(ϕ) + ν(ψ).

This proves the claim as P , A, and (ϕ, ψ,H) were arbitrary.

With an additional mild assumption on either A or f , we obtain strong duality

and the existence of dual minimizers:

Theorem 4.3.9. Let µ ≤c ν be irreducible, let f : R→ [0,∞] be Borel, and let A be

a set of averaging processes. Suppose that one of the following two conditions holds:

• f is lower semicontinuous and A contains an interior averaging process;

• A contains a strictly interior averaging process.

Then

Sµ,ν(f,A) = Iµ,ν(f,A) ∈ [0,∞]

and this value is independent of A as long as one of the two conditions above holds.

Moreover, if Iµ,ν(f,A) < ∞, then there exists an optimizer (ϕ, ψ,H) ∈ Dµ,ν(f,A)

for Iµ,ν(f,A).
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Remark 4.3.10.

(i) For fixed f , the robust model-based price Sµ,ν(f,A) is invariant under the

choice of the set A (as long as the assumptions of Theorem 4.3.9 hold). In

particular, American, Bermudan, and European options with intermediate ma-

turity (cf. Examples 4.3.3–4.3.4) all have the same robust model-based price

(because the corresponding sets A all contain a strictly interior averaging pro-

cess). If f is lower semicontinuous, this extends to the Asian-style option of

Example 4.3.3 (i). If more than two marginals are given, then the robust model-

based prices of these derivatives typically differ; see Example 4.6.3.

(ii) Derivatives of the form (4.3.1) that depend distinctly on X0 and/or XT such

as f(1
2
(X0 + XT )) are not covered by Theorem 4.3.9 (A does not contain an

interior averaging process). In these cases, the robust model-based price is

still bounded above by the corresponding robust model-based price of, say, the

European-style derivative f(XT/2). However, the inequality is typically strict;

see Example 4.6.4.

Remark 4.3.11.

(i) Theorem 4.3.9 can be extended to non-irreducible marginals along the lines of

[16, Section 7].

(ii) Strong duality continues to hold if we restrict ourselves to finite variation strate-

gies; cf. Remark 4.4.15 for an outline of the argument. It is an open question

whether there is (in general) a dual minimizer (ϕ, ψ,H) with a dynamic part

H of finite variation.

226



We defer the proof of Theorem 4.3.9 to the end of Section 4.4. The idea is as

follows. We bound the pricing problem from below and the hedging problem from

above by auxiliary maximization and minimization problems, respectively, and show

that strong duality holds between those two auxiliary problems. Then all four prob-

lems have equal value and in particular strong duality for the pricing and hedging

problems holds. Moreover, we show that the auxiliary dual problem admits a min-

imizer and that every element in the dual space of the auxiliary problem gives rise

to a semi-static superhedge with the same cost. Then, in particular, the minimizer

of the auxiliary dual problem yields an optimal semi-static superhedge for f and A

(which is independent of A).

4.4 Auxiliary problems

Throughout this section, we fix an irreducible pair µ ≤c ν with domain (I, J) and a

function f : R→ R which is bounded from below by a ν-integrable concave function.

The auxiliary primal and dual problems are formally derived in Section 4.4. They

are rigorously introduced in Sections 4.4–4.4 and proved to be lower and upper bounds

of the robust model-based price and the robust superhedging price, respectively. Their

strong duality is proved in Section 4.4. Finally, structural properties of primal and

dual optimizers of the auxiliary problems are studied in Section 4.4.
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Motivation

The key property of payoffs of the form (4.3.1) is that the law of
∫

[0,T ]
Xt dAt under

P ∈ M(µ, ν) is in convex order between µ and ν. In this section, we explain this

observation and how it can be used to estimate the robust pricing problem from below

and the robust superhedging problem from above.

Let P ∈ M(µ, ν) and let τ be a [0, T ]-valued F-stopping time. An application

of the optional stopping theorem and Jensen’s inequality shows that for any convex

function ψ,

µ(ψ) = EP [ψ(X0)] = EP
[
ψ(EP [Xτ | F0])

]
≤ EP [ψ(Xτ )] and

ν(ψ) = EP [ψ(XT )] ≥ EP
[
ψ(EP [XT | Fτ ])

]
= EP [ψ(Xτ )] ,

so that the law of Xτ under P is in convex order between µ and ν.

Using a time change argument and again Jensen’s inequality and the optional

stopping theorem, it can be shown that this property generalizes to the random

variable
∫

[0,T ]
Xt dAt for an averaging process A.

Lemma 4.4.1. Let P ∈M(µ, ν) and let A be an averaging process. Then the law of∫
[0,T ]

Xt dAt under P is in convex order between µ and ν.

In the sequel, we write S = Sµ,ν(f,A) and I = Iµ,ν(f,A) for brevity. Lemma 4.4.1

implies that

S ≤ sup
µ≤cθ≤cν

θ(f) =: S̃.
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We show in Section 4.4 that also the converse inequality holds under mild assumptions

on f and A. Thus, S = S̃ and one is led to expect that I = Ĩ for a suitable dual

problem Ĩ to S̃.

Let us thus formally derive the Lagrange dual problem for S̃. Dualizing the

constraint µ ≤c θ ≤c ν suggests to consider the Lagrangian

L(θ, ψ1, ψ2) := θ(f) + (θ(ψ1)− µ(ψ1)) + (ν(ψ2)− θ(ψ2)), (4.4.1)

where convex functions ψ1, ψ2 are taken as Lagrange multipliers.7 Then the Lagrange

dual problem is

Ĩ = inf
ψ1,ψ2

sup
θ
L(θ, ψ1, ψ2) = inf

ψ1,ψ2

sup
θ
{θ(f + ψ1 − ψ2)− µ(ψ1) + ν(ψ2)}

where the infima are taken over convex functions and the suprema are taken over finite

measures. Viewing the finite measure θ as a Lagrange multiplier for the constraint

f ≤ −ψ1 + ψ2 and relabeling ϕ = −ψ1 and ψ = ψ2, we obtain

Ĩ = inf{µ(ϕ) + ν(ψ) : ϕ concave, ψ convex, and ϕ+ ψ ≥ f}. (4.4.2)

In the precise definition of Ĩ in Section 4.4, µ(ϕ)+ν(ψ) is understood in the generalized

sense of Definition 4.2.5 and the inequality ϕ+ψ ≥ f is required to hold on J . We then

show that each feasible element (ϕ, ψ) for Ĩ entails an element (ϕ, ψ,H) ∈ Dµ,ν(f,A)

7Note that the last two terms in (4.4.1) are nonnegative for all convex ψ1, ψ2 if and only if the
primal constraint µ ≤c θ ≤c ν holds.
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(Proposition 4.4.7), which implies that I ≤ Ĩ.

Combining the above with the weak duality inequality (Lemma 4.3.8) yields

S̃ = S ≤ I ≤ Ĩ.

Hence, strong duality and dual attainment for the robust pricing and superhedging

problems reduce to the same assertions for the simpler auxiliary problems, which are

proved in Section 4.4.

Auxiliary primal problem

Consider the auxiliary primal problem

S̃µ,ν(f) = sup
µ≤cθ≤cν

θ(f), (4.4.3)

where θ(f) is understood as the outer integral if f is not Borel-measurable. Under

suitable conditions on f and A, the primal value S̃µ,ν(f) is a lower bound for the

robust model-based price (4.3.2):

Proposition 4.4.2. Let A be a set of averaging processes. Suppose that one of the

following two sets of conditions holds:

(i) A contains an interior averaging process and f is lower semicontinuous and

bounded from below by a ν-integrable concave function ϕ : J → R;

(ii) A contains a strictly interior averaging process and f is Borel.
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Then

S̃µ,ν(f) ≤ Sµ,ν(f,A).

The proof of Proposition 4.4.2 is given at the end of this section. It is based on the

following construction of measures in M(µ, ν) under which the law of
∫

[0,T ]
Xt dAt

equals (approximately or exactly) a given θ. This construction also highlights the

importance of A containing an interior averaging process, which does not put any

mass on the times 0 and T at which the marginal distributions of X are given; see

Example 4.6.4 for a counterexample.

Lemma 4.4.3. Let µ ≤c θ ≤c ν.

(i) There is a sequence (Pn)n≥1 ⊂M(µ, ν) such that

LPn
(∫

[0,T ]

Xt dAt

)
n→∞−−−→ θ weakly

for every interior averaging process A.

(ii) If A is a strictly interior averaging process, then there is P ∈M(µ, ν) (depend-

ing on A) such that LP
( ∫

[0,T ]
Xt dAt

)
= θ.

Proof. (i): By the two-step adaptation of Proposition 4.2.1, there exists a measure

Q ∈ Md(µ, θ, ν). For all n large enough, let ιn : R3 → Ω be the embedding of R3 in

Ω which maps (y1, y2, y3) to the piecewise constant path

[0, T ] 3 t 7→ y11[0, 1
n

)(t) + y21[ 1
n
,T )(t) + y31{T}(t) (4.4.4)

231



(which jumps (at most) at times 1
n

and T ), and denote by Pn := Q ◦ (ιn)−1 the

associated pushforward measure. Then Pn ∈M(µ, ν) by the corresponding properties

of Q. Moreover, denoting the canonical process on R3 by (Y1, Y2, Y3) and setting

An = A ◦ ιn for an interior averaging process A, we have

∫
[0,T ]

(ιn)t dAnt − Y2 = Y1A
n
1
n
− + Y2(AnT− − An1

n
−) + Y3∆AnT − Y2AT

= (Y1 − Y2)An1
n
− + (Y3 − Y2)∆AnT (4.4.5)

= (Y1 − Y2)An1
n
− on R3,

where we use the properties AT = 1 and ∆AT = 0 of an interior averaging process.

By construction, the law of
∫

[0,T ]
(ιn)t dAnt under Q coincides with the law of∫

[0,T ]
Xt dAt under Pn and the law of Y2 under Q is θ. It thus suffices to prove that

the right-hand side in (4.4.5) converges to zero in L1(Q) as n→∞. To this end, note

that |Y1− Y2| ≤ |Y1|+ |Y2| is Q-integrable because µ and θ have finite first moments.

Thus, by dominated convergence, it is enough to show that An1
n
− → 0 pointwise as

n → 0. So fix (y1, y2, y3) ∈ R3. Since A is F-adapted, A 1
n
−(ω) only depends on the

values of the path ω on the interval [0, 1
n
). In view of the embedding (4.4.4), this

means that

An1
n
−(y1, y2, y3) = A 1

n
−(ιn(y1, y2, y3)) = A 1

n
−(y11[0,T ]),

where y11[0,T ] denotes the constant path at y1. Hence, the asserted pointwise conver-

gence follows from the fact that A0 = 0 and A is right-continuous.
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(ii): If A is a strictly interior averaging process, then the last expression in (4.4.5)

is identically zero for n large enough and setting P = Pn gives the desired result.

Remark 4.4.4. Part (i) of Lemma 4.4.3 remains true if we restrict ourselves to

martingale measures with almost surely continuous paths. The analog of part (ii) for

continuous martingales requires the additional assumption that there exists t < T

such that At ≡ 1.

The main ingredient for this assertion is [78, Theorem 11]: for every discrete time-

martingale {Yn}n≥0, there is a continuous-time martingale {Zt}t≥0 with continuous

sample paths such that the processes {Yn}n≥0 and {Zn}n≥0 have the same (joint)

distribution.

Proof of Proposition 4.4.2. Let µ ≤c θ ≤c ν. Assume first that condition (ii) holds

and let A be a strictly interior averaging process. Then by Lemma 4.4.3 (ii), there is

P ∈M(µ, ν) such that LP (
∫

[0,T ]
Xt dAt) = θ. Hence,

θ(f) = EP

[
f
(∫

[0,T ]

X dA
)]
≤ Sµ,ν(f,A).

As θ was arbitrary, the claim follows.

Next, assume instead that condition (i) holds and let A be an interior averaging

process and ϕ as in condition (i). By Lemma 4.4.3 (i), there is a sequence (Pn)n∈N ⊂

M(µ, ν) such that θn := LPn(
∫

[0,T ]
Xt dAt)→ θ weakly. Define fk = f ∨ (−k), k ≥ 1.

Then fk is bounded from below and lower semicontinuous, so lim infn→∞ θn(fk) ≥

θ(fk) by the Portmanteau theorem.
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Fix ε > 0. Choose first k large enough such that ν((ϕ+k)−) ≤ ε
2
and then N large

enough such that θn(fk)−θ(fk) ≥ − ε
2
for all n ≥ N . Using that 0 ≤ fk−f ≤ (ϕ+k)−

and that (ϕ+ k)− is convex, we obtain for n ≥ N ,

θn(f)− θ(f) = θn(f − fk) + (θn(fk)− θ(fk)) + θ(fk − f)

≥ −θn((ϕ+ k)−)− ε

2
≥ −ν((ϕ+ k)−)− ε

2
≥ −ε.

Thus, lim infn→∞ θn(f) ≥ θ(f). Now the claim follows from

θ(f) ≤ lim inf
n→∞

θn(f) = lim inf
n→∞

EPn

[
f
(∫

[0,T ]

Xt dAt

)]
≤ Sµ,ν(f,A).

Auxiliary dual problem

Consider the auxiliary dual problem

Ĩµ,ν(f) = inf
(ϕ,ψ)∈D̃µ,ν(f)

{µ(ϕ) + ν(ψ)}, (4.4.6)

where D̃µ,ν(f) denotes the set of (ϕ, ψ) ∈ Lc(µ, ν) with concave ϕ : J → R and

convex ψ : J → R such that ϕ+ ψ ≥ f on J .

The dual value Ĩµ,ν(f) is an upper bound for the robust superhedging price

(4.3.10):

Proposition 4.4.5. Let f : R→ [0,∞] be Borel. Then Iµ,ν(f,A) ≤ Ĩµ,ν(f).

Proposition 4.4.5 follows immediately from the next result (Proposition 4.4.7)
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which shows that every (ϕ, ψ) ∈ D̃µ,ν(f) gives rise to a semi-static superhedge for f

and A. More precisely, the semi-static superhedge is of the form (ϕ, ψ,H) and the

dynamic part H can be explicitly written in terms of the “derivatives” of ϕ and ψ.

Given a convex function ψ : J → R, a Borel function ψ′ : I → R is called a

subderivative of ψ if for every x0 ∈ I, ψ′(x0) belongs to the subdifferential of ψ at x0,

i.e.,

ψ(x)− ψ(x0) ≥ ψ′(x0)(x− x0), x ∈ J.

Symmetrically, for a concave function ϕ : J → R, a Borel function ϕ′ : I → R is

called a superderivative of ϕ if −ϕ′ is a subderivative of −ϕ.

Remark 4.4.6. If (ϕ, ψ) ∈ D̃µ,ν(f) and f > −∞ on J , then ϕ and ψ are both finite

(so that sub- and superderivatives are well defined). Indeed, we already know from

Remark 4.2.8 that ψ is finite on J . Moreover, ϕ < ∞ on J by Lemma 4.2.7 (i) and

if f > −∞ on J , then ϕ ≥ f − ψ > −∞, so that also ϕ is finite on J .

Proposition 4.4.7. Let f : R→ [0,∞] be Borel and let (ϕ, ψ) ∈ D̃µ,ν(f). Denoting

the canonical process on Ω̂ by (X,A), define the F̂-adapted process h = (ht)t∈[0,T ] (on

Ω̂) by

h0 = ϕ′(X0)(1− A0)− ψ′(X0)A0,

ht = −ϕ′(X0)− ψ′(Xt), t ∈ (0, T ],

(4.4.7)

where ϕ′ is any superderivative of ϕ, ψ′ is any subderivative of ψ, and we set ϕ′ =

ψ′ = 0 on R \ I. Set H = (h,A). Then (ϕ, ψ,H) ∈ Dµ,ν(f,A) for any nonempty set
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A of averaging processes.

The proof of Proposition 4.4.7, given at the end of this section, relies on the

following two technical lemmas. The definition of Ωµ,ν in (4.3.4) is crucial for the

first one. We recall that (real-valued) càdlàg functions are bounded on compact

intervals.

Lemma 4.4.8. Let ψ and ψ′ be as in Proposition 4.4.7. For each ω ∈ Ωµ,ν, the

function [0, T ] 3 t 7→ (ωT − ωt)ψ′(ωt) is bounded.

Proof. Fix ω ∈ Ωµ,ν and write I = (l, r) with l, r ∈ R. We consider three cases: (i)

J = I, (ii) J = [l, r), and (iii) J = [l, r]. The case (l, r] is symmetric to (ii).

(i): Suppose that J = I = (l, r). We claim that ω evolves in a compact (and

hence strict) subset of I. Suppose for the sake of contradiction hat inft∈[0,T ] ωt = l ∈

[−∞,∞). Then there is a sequence (tn)n∈N ⊂ [0, T ] such that limn→∞ ωtn = l. Passing

to a subsequence if necessary, this sequence may be chosen to be either (strictly)

increasing or nonincreasing to a limit t? ∈ [0, T ]. Then, as ω is càdlàg, ωt?− = l or

ωt? = l. But then ωt? = l in any case by the definition of Ωµ,ν , a contradiction to

ωt? ∈ J = I. Thus, inft∈[0,T ] ωt > l and symmetrically supt∈[0,T ] ωt < r. This proves

the claim. It follows that (ωT − ωt)ψ
′(ωt) is bounded over t ∈ [0, T ] because the

subderivative ψ′ is bounded on compact subsets of I.

(ii): Suppose that J = [l, r), i.e., ν has an atom in l > −∞. If ω evolves in I, then

we can argue as in (i). We may thus assume that t? := inf{t ∈ [0, T ] : ωt = l} ∈ (0, T ].

Then, as ω is càdlàg and by the definition of Ωµ,ν , we have ωu = l for all u ∈ [t?, T ]).
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In particular, ωT = l and it is enough to show that [0, t?) 3 t 7→ (ωT − ωt)ψ′(ωt) is

bounded.

We can argue similarly as in (i) that r′ := supt∈[0,T ] ωt < r, so that the path ω

evolves in the compact interval [l, r′]. Because ψ is convex and finite on (l, r), ψ′ is

bounded from above on [l, r′]. It follows that t 7→ (ωT − ωt)ψ′(ωt) is bounded from

below on [0, t?). To show that this function is also bounded from above, we observe

that by the convexity of ψ,

(ωT − ωt)ψ′(ωt) ≤ ψ(ωT )− ψ(ωt) = ψ(l)− ψ(ωt). (4.4.8)

Now ψ(l) is finite because ν has an atom at l, and ψ is bounded from below on [l, r′]

because it is finite and convex on the compact interval [l, r′]. Using this in (4.4.8)

shows the assertion.

(iii): Suppose that J = [l, r], i.e., ν has atoms at l > −∞ and r <∞. As in (ii),

we may assume that ω hits one of the endpoints of J before T . By symmetry, we

may assume that ω hits l. By definition of Ωµ,ν , the path ω is then bounded away

from the right endpoint r (otherwise it would be captured in r), i.e., supt∈[0,T ] ωt < r.

Now the same argument as in (ii) proves the assertion.

The second technical lemma is an adaptation of [16, Remark 4.10] to our setting.

It is used to show the admissibility condition (4.3.9) of the semi-static trading strategy

in Proposition 4.4.7.

Lemma 4.4.9. Let (ϕ, ψ) ∈ Lc(µ, ν) and let g0, g1 : J → R be Borel. Let τ be a
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[0, T ]-valued F-stopping time such that

ϕ(X0) + ψ(XT ) + g0(X0)(Xτ −X0) + g1(Xτ )(XT −Xτ ) (4.4.9)

is bounded from below on Ωµ,ν. Then for all P ∈M(µ, ν),

EP [ϕ(X0) + ψ(XT ) + g0(X0)(Xτ −X0) + g1(Xτ )(XT −Xτ )] = µ(ϕ) + ν(ψ).

Proof. Let χ be a concave moderator for (ϕ, ψ) with respect to µ ≤c ν and let θ be

the law of Xτ . By optional stopping, µ ≤c θ ≤c ν. We expand (4.4.9) to

(ϕ− χ)(X0) + (ψ + χ)(XT ) + [χ(X0)− χ(XT ) (4.4.10)

+ g0(X0)(Xτ −X0) + g1(Xτ )(XT −Xτ )],

and observe that the first two terms are P -integrable. Then the assumed lower bound

yields that the last term has a P -integrable negative part. We can therefore apply

Fubini’s theorem and evaluate its integral iteratively. To this end, let Q be the law

of (X0, Xτ , XT ) on the canonical space R3 with a disintegration

dQ = µ(dx0)⊗ κ0(x0, dx1)⊗ κ1(x0, x1, dx2)

for martingale kernels κ0 and κ1. In view of the definition of µ(ϕ) + ν(ψ) in (4.2.4),

we have to show that the P -expectation of the last term in (4.4.10) is (µ− ν)(χ).
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To this end, we observe that for µ⊗ κ0-a.e. (x0, x1) ∈ J2,

∫
J

[χ(x0)− χ(x2) + g0(x0)(x1 − x0) + g1(x1)(x2 − x1)] κ1(x0, x1, dx2)

=

∫
J

[χ(x0)− χ(x2) + g0(x0)(x1 − x0)] κ1(x0, x1, dx2) (4.4.11)

= χ(x0)−
∫
J

χ(x2)κ1(x0, x1, dx2) + g0(x0)(x1 − x0).

Integrating the left-hand side of (4.4.11) against µ ⊗ κ0 gives the P -expectation of

the last term in (4.4.10). It thus remains to show that the corresponding integral of

the right-hand side equals (µ− ν)(χ). Integrating the right-hand side of (4.4.11) first

against κ0(x0, dx1) yields for µ-a.e. x0 ∈ J ,

χ(x0)−
∫
J

χ(x2)κ(x0, dx2), (4.4.12)

where κ(x0, ·) =
∫
J
κ1(x1, ·)κ0(x0, dx1) is again a martingale kernel. Finally, the

integral of (4.4.12) against µ is

∫
J

[
χ(x0)−

∫
J

χ(x2)κ(x0, dx2)

]
µ(dx0).

Noting that µ ⊗ κ is a disintegration of a one-step martingale measure on R2 with

marginals µ and ν, the last term equals (µ− ν)(χ) by Lemma 4.2.4.

Proof of Proposition 4.4.7. First, we show that (ϕ, ψ,H) is a semi-static trading

strategy. As h and A are clearly F̂-adapted and (ϕ, ψ) ∈ Lc(µ, ν) by assumption,

it remains to check condition (4.3.5) (with Y A replaced by A). So fix an averag-
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ing process A and note that HA = (hA, A). The only nontrivial part in proving

HA ∈ L(Ωµ,ν) is to show that (XT −Xt)h
A
t is dA-integrable on (0, T ] for each path

in Ωµ,ν . To this end, note that ϕ′(X0) and ψ′(X0) are finite because X0 ∈ I. It thus

suffices to show that (XT −Xt)ψ
′(Xt) is bounded on [0, T ] for each path in Ωµ,ν ; this

is the content of Lemma 4.4.8.

Second, we show the superhedging property (4.3.8). Fix an averaging process A

and a path in Ωµ,ν . To ease the notation, we write h instead of hA in the following.

Note, however, that hA has the same formal expression as h in (4.4.7), but with A

being the fixed averaging process (and not the second component of the canonical

process on Ω̂).

Using the definitions of H � XT and h as well as the fact that A0 = ∆A0, we

obtain

H �XT = (XT −X0)h0 +

∫
(0,T ]

(XT −Xt)ht dAt

= (XT −X0)ϕ′(X0)−
∫

[0,T ]

(XT −Xt)(ϕ
′(X0) + ψ′(Xt)) dAt.

Then, using that dA is a probability measure on [0, T ], the concavity of ϕ and the
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convexity of ψ, and Jensen’s inequality, we can estimate

H �XT =

∫
[0,T ]

ϕ′(X0)(Xt −X0) dAt −
∫

[0,T ]

ψ′(Xt)(XT −Xt) dAt (4.4.13)

≥ ϕ′(X0)

(∫
[0,T ]

Xt dAt −X0

)
−
∫

[0,T ]

(ψ(XT )− ψ(Xt)) dAt

≥ ϕ

(∫
[0,T ]

Xt dAt

)
− ϕ(X0)− ψ(XT ) +

∫
[0,T ]

ψ(Xt) dAt

≥ ϕ

(∫
[0,T ]

Xt dAt

)
− ϕ(X0)− ψ(XT ) + ψ

(∫
[0,T ]

Xt dAt

)
.

Rearranging terms and using that ϕ+ ψ ≥ f on J , we find

ϕ(X0) + ψ(XT ) +H �XT ≥ f

(∫
[0,T ]

Xt dAt

)
.

Third, we show the admissibility condition (4.3.9). Fix an averaging process A

and P ∈M(µ, ν). Define the family of F-stopping times Cs, s ∈ (0, 1), by

Cs = inf{t ∈ [0, T ] : At > s}

and note that 0 ≤ Cs ≤ T for s ∈ (0, 1) because AT = 1. Then using the family Cs

as a time change (cf. [77, Proposition 0.4.9]) for the integral in (4.4.13) yields

ϕ(X0) + ψ(XT ) +H �XT (4.4.14)

=

∫ 1

0

{ϕ(X0) + ψ(XT ) + ϕ′(X0)(XCs −X0)− ψ′(XCs)(XT −XCs)} d s.

Now, suppose that the integrand in (4.4.14) is bounded from below, uniformly over
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s ∈ (0, 1) and ω ∈ Ωµ,ν . Then by Lemma 4.4.9, the P -expectation of the integrand

equals µ(ϕ)+ν(ψ) for each s ∈ (0, 1). Using this together with Tonelli’s theorem and

(4.4.14) gives

EP [ϕ(X0) + ψ(XT ) +H �XT ] = µ(ϕ) + ν(ψ),

so that (4.3.9) holds.

It remains to show that the integrand in (4.4.14) is uniformly bounded from

below. This follows from concavity of ϕ and convexity of ψ together with the fact

that ϕ+ ψ ≥ f ≥ 0 on J :

ϕ(X0) + ψ(XT ) + ϕ′(X0)(Xt −X0)− ψ′(Xt)(XT −Xt)

≥ ϕ(Xt) + ψ(Xt) ≥ f(Xt) ≥ 0, t ∈ [0, T ].

This completes the proof.

Duality

We now turn to the duality between the auxiliary problems S̃µ,ν(f) and Ĩµ,ν(f).

Theorem 4.4.10. Let µ ≤c ν be irreducible with domain (I, J) and let f : R →

[0,∞].

(i) If f is upper semianalytic, then S̃µ,ν(f) = Ĩµ,ν(f) ∈ [0,∞].

(ii) If Ĩµ,ν(f) <∞, then there exists a dual minimizer (ϕ, ψ) ∈ D̃µ,ν(f).
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A couple of remarks are in order.

Remark 4.4.11. We only state the duality for one irreducible component. One can

formulate and prove the full duality for arbitrary marginals µ ≤c ν in analogy to [16,

Section 7]. We omit the details in the interest of brevity.

Remark 4.4.12. The lower bound on f in Theorem 4.4.10 can be relaxed. Indeed,

suppose that f : R→ R is upper semianalytic and bounded from below by an affine

function g.

We first consider the primal problem. Because g is affine and any µ ≤c θ ≤c ν

has the same mass and barycenter as µ,

θ(f − g) = θ(f)− θ(g) = θ(f)− µ(g).

Thus,

S̃µ,ν(f − g) = S̃µ,ν(f)− µ(g). (4.4.15)

Regarding the dual problem, we note that (ϕ, ψ) ∈ D̃µ,ν(f − g) if and only if

(ϕ+ g, ψ) ∈ D̃µ,ν(f) and that by Lemma 4.2.7 (iii),

µ(ϕ) + ν(ψ) = {µ(ϕ+ g) + ν(ψ)} − µ(g).
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Hence,

Ĩµ,ν(f − g) = Ĩµ,ν(f)− µ(g). (4.4.16)

Because f − g is nonnegative, the left-hand sides of (4.4.15)–(4.4.16) coincide by

Theorem 4.4.10 (i). Therefore, S̃µ,ν(f) = Ĩµ,ν(f) ∈ (−∞,∞].

Moreover, if Ĩµ,ν(f) < ∞, then also Ĩµ,ν(f − g) < ∞ and a dual minimizer

(ϕ, ψ) ∈ D̃µ,ν(f − g) for Ĩµ,ν(f − g) exists by Theorem 4.4.10 (ii). Now the above

shows that (ϕ+ g, ψ) ∈ D̃µ,ν(f) is a dual minimizer for Ĩµ,ν(f).

The proof of Theorem 4.4.10 is based on several preparatory results. We start with

the crucial closedness property of the dual space in the spirit of [16, Proposition 5.2].

Proposition 4.4.13. Let µ ≤c ν be irreducible with domain (I, J), let f, fn : J →

[0,∞] be such that fn → f pointwise, and let (ϕn, ψn) ∈ D̃µ,ν(fn) with supn{µ(ϕn) +

ν(ψn)} <∞. Then there is (ϕ, ψ) ∈ D̃µ,ν(f) such that µ(ϕ)+ν(ψ) ≤ lim infn→∞{µ(ϕn)+

ν(ψn)}.

Proof. Let hn = ϕ′n : I → R be a superderivative of the concave function ϕn. As

ϕn(x) + ψn(y) + hn(x)(y − x) ≥ ϕn(y) + ψn(y) ≥ fn(y) ≥ 0, (x, y) ∈ I × J,

(ϕn, ψn, hn) is in the dual space Dcµ,ν(0) of [16]. Hence, following the line of reasoning

in the proof of [16, Proposition 5.2] (which is based on Komlos’ lemma; we recall that

convex combinations of convex (concave) functions are again convex (concave)), we
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may assume without loss of generality that

ϕn → ϕ̄ µ-a.e. and ψn → ψ̄ ν-a.e.

for some (ϕ̄, ψ̄) ∈ Lc(µ, ν). Moreover, the arguments in [16] also show that µ(ϕ̄) +

ν(ψ̄) ≤ lim infn→∞{µ(ϕn) + ν(ψn)}.

Now, define the functions ϕ, ψ : J → R by ϕ := lim infn→∞ ϕn and ψ :=

lim supn→∞ ψn. Then ϕ is convex, ψ is concave, ϕ = ϕ̄ µ-a.e., and ψ = ψ̄ ν-a.e.

In particular, (ϕ, ψ) ∈ Lc(µ, ν) and µ(ϕ) + ν(ψ) ≤ lim infn→∞{µ(ϕn) + ν(ψn)}. Fur-

thermore, as ϕk + ψk ≥ fk on J , we have for each n that

inf
k≥n

ϕk + sup
k≥n

ψk ≥ inf
k≥n

(ϕk + ψk) ≥ inf
k≥n

fk on J.

Sending n→∞ gives ϕ+ ψ ≥ f . In summary, (ϕ, ψ) ∈ D̃µ,ν(f).

We proceed to show strong duality for bounded upper semicontinuous functions.

Lemma 4.4.14. Let f : R → [0,∞] be bounded and upper semicontinuous. Then

S̃µ,ν(f) = Ĩµ,ν(f).

The proof is based on a Hahn–Banach separation argument similar to [16, Lemma 6.4].

Proof. We first show the weak duality inequality. Let µ ≤c θ ≤c ν and (ϕ, ψ) ∈

D̃µ,ν(f). In particular, ϕ+ψ is bounded from below. Then by Lemma 4.2.9 (iii)–(iv),

θ(f) ≤ θ(ϕ+ ψ) = θ(ϕ) + θ(ψ) ≤ θ(ϕ) + ν(ψ) ≤ µ(ϕ) + ν(ψ), (4.4.17)
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and the inequality S̃µ,ν(f) ≤ Ĩµ,ν(f) follows.

The converse inequality is based on a Hahn–Banach argument, so let us introduce

a suitable space. By the de la Vallée–Poussin theorem, there is an increasing convex

function ζν : R+ → R+ of superlinear growth such that x 7→ ζν(|x|) is ν-integrable.

Now, set ζ(x) = 1 + ζν(|x|), x ∈ R, and denote by Cζ the space of all continuous

functions f : R→ R such that f/ζ vanishes at infinity. We endow Cζ with the norm

‖f‖ζ := ‖f/ζ‖∞. With this notation, the same arguments as in the proof of [16,

Lemma 6.4] show that the dual space C∗ζ of continuous linear functionals on Cζ can

be represented by finite signed measures.

Fix f ∈ Cζ . Then

−ζ(x)‖f‖ζ ≤ f(x) ≤ ζ(x)‖f‖ζ , x ∈ J. (4.4.18)

Because ζν is convex and x 7→ ζν(|x|) is ν-integrable, we have θ(ζ) ≤ ν(ζ) < ∞

for all µ ≤c θ ≤c ν. This together with (4.4.18) shows that S̃µ,ν(f) is finite. Thus,

adding a suitable constant to f , we may assume that S̃µ,ν(f) = 0. For the following

Hahn–Banach argument, we consider the convex cone

K := {g ∈ Cζ : Ĩµ,ν(g) ≤ 0}.

Proposition 4.4.13 implies that K is closed.

Suppose for the sake of contradiction that Ĩµ,ν(f) > 0. Then, by the Hahn–Banach

theorem, K and f can be strictly separated by a continuous linear functional on Cζ .
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That is, there is a finite signed measure ρ such that ρ(f) > 0 and ρ(g) ≤ 0 for all

g ∈ K. For any compactly supported nonnegative continuous function g ∈ Cζ , we

have Ĩµ,ν(−g) ≤ 0. That is, −g ∈ K and hence ρ(−g) ≤ 0. This shows that ρ is a

(nonnegative) finite measure. Multiplying ρ by a positive constant if necessary, we

may assume that ρ has the same mass as µ and ν. Next, let ψ be convex and of linear

growth. Then ψν(R) − ν(ψ) ∈ K and −ψµ(R) + µ(ψ) ∈ K. Using that ρ ≤ 0 for

these two functions yields µ(ψ) ≤ ρ(ψ) ≤ ν(ψ). We conclude that µ ≤c ρ ≤c ν. But

now ρ(f) > 0 contradicts S̃µ,ν(f) = 0. Thus, Ĩµ,ν(f) ≤ S̃µ,ν(f).

Finally, let f be bounded and upper semicontinuous and choose fn ∈ Cb(R) ⊆ Cζ

such that fn ↘ f . By the above, we have S̃µ,ν(fn) = Ĩµ,ν(fn) for all n. We show

below that limn→∞ S̃µ,ν(fn) = S̃µ,ν(f). Using this and the monotonicity of Ĩµ,ν , we

obtain

Ĩµ,ν(f) ≤ lim
n→∞

Ĩµ,ν(fn) = lim
n→∞

S̃µ,ν(fn) = S̃µ,ν(f) ≤ Ĩµ,ν(f).

So strong duality holds for bounded upper semicontinuous functions.

It remains to argue that limn→∞ S̃µ,ν(fn) = S̃µ,ν(f). We show more generally

that S̃µ,ν is continuous along decreasing sequences of bounded upper semicontinuous

functions. So let fn ↘ f be a convergent sequence of bounded upper semicontinuous

functions. Fix ε > 0 and set ` := limn→∞ S̃µ,ν(fn). Then for each n, ` ≤ Sµ,ν(fn) <∞

and thus the set

An := {µ ≤c θ ≤c ν : θ(fn) ≥ `− ε}
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is nonempty. Moreover, each An is a closed subset of the weakly compact set {θ :

µ ≤c θ ≤c ν} and An+1 ⊆ An. Therefore, there exists a θ′ in the intersection ∩n≥1An.

We then obtain by monotone convergence that

S̃µ,ν(f) ≥ θ′(f) = lim
n→∞

θ′(fn) ≥ `− ε.

This implies that S̃µ,ν(f) ≥ ` as ε was arbitrary. The converse inequality follows from

the monotonicity of S̃µ,ν . This completes the proof.

Proof of Theorem 4.4.10. (i): This is a consequence of Lemma 4.4.14 and a capac-

itability argument that is almost verbatim to [16, Section 6]. The same arguments

can be found in [66]. We therefore omit these elaborations.

(ii): Applying Proposition 4.4.13 to the constant sequence fn = f and a minimiz-

ing sequence (ϕn, ψn) ∈ D̃µ,ν(f) of Ĩµ,ν(f) yields a dual minimizer.

We are now in a position to prove the duality between the robust pricing and

superhedging problems.

Proof of Theorem 4.3.9. By Proposition 4.4.2, Lemma 4.3.8, and Proposition 4.4.5,

S̃µ,ν(f) ≤ Sµ,ν(f,A) ≤ Iµ,ν(f,A) ≤ Ĩµ,ν(f),

and Theorem 4.4.10 shows that S̃µ,ν(f) = Ĩµ,ν(f). Hence,

S̃µ,ν(f) = Sµ,ν(f,A) = Iµ,ν(f,A) = Ĩµ,ν(f). (4.4.19)
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In particular, the quantities in (4.4.19) are all independent of the choice of A (as long

as one of the two conditions of Theorem 4.3.9 holds).

If Iµ,ν(f,A) < ∞, then Ĩµ,ν(f) < ∞ and hence there is an optimizer (ϕ, ψ) ∈

D̃µ,ν(f) for Ĩµ,ν(f). Then Proposition 4.4.7 provides an H = (h,A) such that

(ϕ, ψ,H) ∈ Dµ,ν(f,A). By (4.4.19) and the definition of Iµ,ν(f,A), (ϕ, ψ,H) is

an optimizer for Iµ,ν(f,A).

Remark 4.4.15. Strong duality (without dual attainment) for the robust pricing and

superhedging problems continues to hold if we restrict ourselves to trading strategies

whose dynamic part is of finite variation.

First, observe that the process Ĥ defined by (4.2.9) is of finite variation when h

is bounded. Recalling the definition (4.4.7) of h in Proposition 4.4.7, we see that h

is bounded on {ω : ωT ∈ J◦} as these paths are bounded in a compact subset of J ,

on which ψ′ is bounded. This will more generally hold for almost all paths if ψ′ is

uniformly bounded on J . Therefore, strong duality (and dual attainment in strategies

of finite variation) holds if J is open.

Second, consider the case J = [a, b) for some −∞ < a < b ≤ ∞. Suppose that

the assumptions of Theorem 4.3.9 hold and that Iµ,ν(f,A) < ∞, and let (ϕ, ψ) ∈

D̃µ,ν(f) be a dual auxiliary optimizer. Then ψ(a) < ∞ as ν has an atom at a

(cf. Lemma 4.2.7). If ψ′(a) > −∞, then the same argument as above shows that the

dynamic trading strategy constructed in Proposition 4.4.7 is of finite variation. If
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ψ′(a) = −∞, then we construct a sequence of functions

ψk(x) :=


ψ(x) for x ≥ a+ 1

k
,

ψ(a) + k(x− a)(ψ(a+ 1
k
)− ψ(a)) for x < a+ 1

k
.

that approximates ψ by linear interpolation on the interval [a, a+ 1
k
]. We then have

ψk ↘ ψ and µ(ϕ) + ν(ψk) ↘ µ(ϕ) + ν(ψ) = Ĩµ,ν(f) as k → ∞. Since ψ′k(a) > −∞,

the associated process H(k) is of finite variation almost surely. The cases J = (a, b]

and J = [a, b] are analogous.

Structure of primal and dual optimizers

If a primal optimizer to the auxiliary problem exists, we can derive some necessary

properties for the dual optimizer.

Proposition 4.4.16. Let µ ≤c ν be irreducible with domain (I, J) and let f : R →

[0,∞] be Borel. Suppose that S̃µ,ν(f) = Ĩµ,ν(f), that µ ≤c θ ≤c ν is an optimizer for

S̃µ,ν(f), and that (ϕ, ψ) ∈ D̃µ,ν(f) is an optimizer for Ĩµ,ν(f). Then

(i) ϕ+ ψ = f θ-a.e.,

(ii) ϕ is affine on the connected components of {uµ < uθ},

(iii) ψ is affine on the connected components of {uθ < uν},

(iv) ϕ does not have a jump at a finite endpoint b of J if θ({b}) > 0, and

(v) ψ does not have a jump at a finite endpoint b of J if θ({b}) < ν({b}).
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Proof. As in the proof of Lemma 4.4.14, we obtain (cf. (4.4.17)) that

θ(f) ≤ θ(ϕ+ ψ) ≤ µ(ϕ) + ν(ψ).

By the absence of a duality gap as well as the optimality of θ and (ϕ, ψ), all inequalities

are equalities:

θ(f) = θ(ϕ+ ψ) = µ(ϕ) + ν(ψ). (4.4.20)

Now (i) follows from the first equality in (4.4.20) and the fact that ϕ+ ψ ≥ f on

J . Rearranging the second equality, we can write

0 = {µ(ϕ) + ν(ψ)} − θ(ϕ+ ψ)

= {µ(ϕ) + ν(ψ)} − {θ(ϕ) + ν(ψ)}+ {θ(ϕ) + ν(ψ)} − θ(ϕ+ ψ).

Using the definition (4.2.4) of the first three expressions (using ϕ as a concave mod-

erator for the first two terms and −ψ for the third; cf. Lemma 4.2.9 (i)), we obtain

0 = (µ− ν)(ϕ)− (θ − ν)(ϕ) + (θ − ν)(−ψ)

= (µ− θ)(ϕ) + (θ − ν)(−ψ), (4.4.21)

where the last equality is a direct consequence of the definitions of (µ − ν)(ϕ) and

(θ−ν)(ϕ) (cf. (4.2.2)). Both terms on the right-hand side of (4.4.21) are nonnegative
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by definition and hence must vanish:

0 = (µ− θ)(ϕ) =

∫
I

(uµ − uθ) dϕ′′ +

∫
J\I
|∆ϕ| d θ

and similarly for (θ − ν)(−ψ). This implies that ϕ′′ = 0 on {uµ < uθ} (which is

assertion (ii)) and that |∆ϕ| = 0 for every endpoint of J on which θ has an atom

(which is assertion (iv)). The proofs of (iii) and (v) are similar.

The next result shows that for upper semicontinuous f , there is a maximizer for

S̃µ,ν(f) which is maximal with respect to the convex order. We omit the proof in the

interest of brevity.

Proposition 4.4.17. Let µ ≤c ν be irreducible and let f : R → [0,∞] be upper

semicontinuous and bounded from above by a convex, continuous, and ν-integrable

function. Furthermore, fix a strictly convex function g : R → R with linear growth,

and consider the “secondary” optimization problem

sup
θ∈Θ(f)

θ(g), (4.4.22)

where Θ(f) := {θ : µ ≤c θ ≤c ν and θ(f) ≥ S̃µ,ν(f)} is the set of optimizers of the

auxiliary primal problem.

(i) Θ(f) is non-empty, convex, and weakly compact and (4.4.22) admits an opti-

mizer.

(ii) Any optimizer θ of (4.4.22) has the following properties:
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• θ is maximal in Θ(f) with respect to the convex order.

• If O is an open interval such that O ⊆ {uθ < uν} and f |O is convex, then

θ(O) = 0.

• If K is an interval such that K◦ ⊆ {uµ < uθ}, f |K is strictly concave, and

θ(K) > 0, then θ|K is concentrated in a single atom.

The following example shows that the set optimizers for S̃µ,ν(f) can have multiple

maximal or minimal elements with respect to the convex order; there is in general no

greatest or least element for this partially ordered set.

Example 4.4.18. Let µ = δ0 and ν = 1
3
(δ−1 + δ0 + δ1) and let f be piecewise linear

with f(−1) = f(1) = 3, f(−1/2) = f(1/2) = 2, and f(0) = 0. We claim that there

is no greatest or least primal optimizer.

We construct candidate primal and dual optimizers as follows. On the primal

side, set θ1 = 2
3
δ− 1

2
+ 1

3
δ1 and θ2 = 1

3
δ−1 + 2

3
δ 1

2
. On the dual side, set ϕ ≡ 0 and let

ψ be the convex function that interpolates linearly between ψ(−1) = ψ(1) = 3 and

ψ(0) = 1. Direct computations yield θ1(f) = θ2(f) = 7
3

= ν(ψ) which shows that θ1

and θ2 are primal optimizers and that (ϕ, ψ) is a dual optimizer.

First, we show that there is no primal optimizer which dominates both θ1 and

θ2 in convex order. Indeed, one can check that uν = max(uθ1 , uθ2), so that ν is the

only feasible primal element which dominates both θ1 and θ2 in convex order. But

ν(f) = 2 < 7
3
and therefore ν is not optimal.

Second, we show that there is no primal optimizer which is dominated by both

θ1 and θ2. Indeed, one can check that {uµ < min(uθ1 , uθ2)} = (−1
2
, 1

2
), so that every
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feasible primal element that is dominated by both θ1 and θ2 must be concentrated on

[−1
2
, 1

2
]. But f ≤ 2 on [−1

2
, 1

2
], so that no primal optimizer can be concentrated on

this interval.

We conclude this section with an example that shows that primal attainment does

not hold in general if f is not upper semicontinuous.

Example 4.4.19. Let µ = δ0, ν = 1
2
(δ−1 + δ1), and set f(x) := |x|1(−1,1)(x). Then

µ ≤c ν is irreducible with domain ((−1, 1), [−1, 1]). Considering the sequence θn :=

1
2
(δ−1+ 1

n
+ δ1− 1

n
), one can see that S̃µ,ν(f) ≥ 1. But there is no µ ≤c θ ≤c ν such that

θ(f) ≥ 1 because f < 1 on [−1, 1].

4.5 Examples

Two common payoff functions are risk reversals and butterfly spreads. In this section,

we provide solutions to the auxiliary primal and dual problems for these payoffs.

Throughout this section, we fix irreducible marginals µ ≤c ν and denote their common

total mass and first moment by m0 and m1, respectively.

Risk reversals

The payoff function of a risk reversal is of the form

f(x) = −(a− x)+ + (x− b)+,
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uν
uµ

a b

ϕ+ ψ

f

(a, uµ(a))

(z, uν(z))

uν
uµ

ϕ+ ψ

a b

(a, uµ(a))

(z, uν(z))

Figure 4.1: Construction of the potential functions of the optimal intermediate laws
θ (top) and the dual optimizers ϕ + ψ (bottom) for a risk reversal as described in
Proposition 4.5.1; z > b in the left panel and z < b in the right panel.

for fixed a < b. The following result provides a simple geometric construction of the

primal and dual optimizers in terms of the potential functions of µ and ν.8 We recall

that any convex function u lying between the potential functions uµ and uν is the

potential function of a measure θ which is in convex order between µ and ν (cf., e.g.,

[79]).

Proposition 4.5.1. Consider the line through the point (a, uµ(a)) of maximal slope

lying below (or on) the graph of uν; cf. Figure 4.1. This line is either (i) a tangent

line to the graph of uν with a tangent point (z, uν(z)) for some z ∈ (a,∞) or (ii) the

asymptote line for the graph of uν near +∞.9

8The authors thank David Hobson for the idea of this construction.
9Note that case (ii) can only happen when (a, µ(a)) lies on the increasing part of the dashed

potential function in Figure 4.1. In particular, in this case, µ is concentrated on the left of a.
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In case (i), define the concave function ϕ and the convex function ψ by

ϕ(x) = −α(x− a)+,

ψ(x) = x− a+ α(x− (z ∨ b))+,

where α = (b − a)/((z ∨ b) − a). Moreover, let u be the unique convex function that

coincides with uµ on (−∞, a] and with uν on [z,∞) and is affine on [a, z] (i.e., u

coincides on [a, z] with the tangent line considered above). Denote by θ the unique

measure with potential function uθ = u. In case (ii), set ϕ(x) = 0, ψ(x) = x− a, and

θ = µ.

Then, θ is an optimizer for the auxiliary primal problem S̃µ,ν(f), (ϕ, ψ) is an

optimizer for the auxiliary dual problem Ĩµ,ν(f), and the common optimal optimal

value is given in terms of the potential functions of µ and ν by

S̃µ,ν(f) = Ĩµ,ν(f) =


m1 − a+b

2
m0 + b−a

2

uν(z∨b)−uµ(a)

(z∨b)−a in case (i),

m1 − am0 in case (ii).

Proof. We first note that θ and (ϕ, ψ) are admissible elements for the auxiliary pri-

mal and dual problems, respectively. Indeed, by construction, uθ is convex and lies

between uµ and uθ. Thus, the associated measure θ satisfies µ ≤c θ ≤c ν. More-

over, a straightforward computation shows that ϕ+ ψ ≥ f , and (ϕ, ψ) ∈ Lc(µ, ν) by

Lemma 4.2.9.

By the weak duality inequality (4.4.17) (this also holds if f is bounded from below
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by an affine function; cf. Remark 4.4.12), θ(f) ≤ µ(ϕ)+ν(ψ) holds for any admissible

primal and dual elements. It thus suffices to show that θ(f) = µ(ϕ) + ν(ψ) for our

particular choices for θ and (ϕ, ψ).

Case (i): Using the identity (t− s)+ = 1
2
(|t− s|+ t− s), the integrals θ(f), µ(ϕ),

and ν(ψ) can be expressed in terms of the potential functions of µ, θ, and ν as follows:

θ(f) =
1

2
(uθ(b)− uθ(a)) +m1 −

a+ b

2
m0,

µ(ϕ) = −α
2

(uµ(a) +m1 − am0),

ν(ψ) = m1 − am0 +
α

2
(uν(z ∨ b) +m1 − (z ∨ b)m0).

Substituting α = (b− a)/((z ∨ b)− a) and simplifying gives

µ(ϕ) + ν(ψ) = m1 +
1

2
((a− (z ∨ b))α− 2a)m0 −

α

2
(uµ(a)− uν(z ∨ b))

= m1 −
a+ b

2
m0 +

b− a
2

uν(z ∨ b)− uµ(a)

(z ∨ b)− a
.

Hence,

θ(f)− (µ(ϕ) + ν(ψ)) =
b− a

2

(
uθ(b)− uθ(a)

b− a
− uν(z ∨ b)− uµ(a)

(z ∨ b)− a

)
,

and it suffices to show that the two quotients inside the brackets are equal. To this

end, we distinguish two cases. On the one hand, if z ≤ b, it is enough to observe that

uθ(a) = uµ(a) and uθ(b) = uν(b) by the construction of u = uθ. On the other hand,

if z ≥ b, then the two quotients are the same because u = uθ is affine on [a, z] ⊃ [a, b]
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uν
uµ

ϕ+ ψ

a− h a a+ h

f

(z−, uν(z−)) (z+, uν(z+))

(a, uµ(a))

Figure 4.2: Construction of the potential function of the optimal intermediate law θ
(top) and the dual optimizer ϕ + ψ (bottom) for a butterfly spread as described in
Proposition 4.5.2.

and coincides with uµ at a and with uν at z.

Case (ii): On the one hand, since θ = µ and µ is concentrated on the left of a, we

have θ(f) = µ(f) = m1 − am0. On the other hand, µ(ϕ) + ν(ψ) =
∫

(x− a) ν(dx) =

m1 − am0.

Butterfly spreads

The payoff function of a butterfly spread is of the form

f(x) = (x− (a− h))+ − 2(x− a)+ + (x− (a+ h))+

= 1
2
|x− a+ h| − |x− a|+ 1

2
|x− a− h|,

for fixed a and h > 0. We have the following analog to Proposition 4.5.1; we omit

the proof.

Proposition 4.5.2. Consider the two lines l+, l− through the point (a, uµ(a)) of max-
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imal and minimal slope, respectively, lying below (or on) the graph of uν. We distin-

guish the cases (i+) l+ is a tangent line with tangent point (z+, uν(z+)), (ii+) l+ is

an asymptote, (i−) l− is a tangent line with tangent point (z−, uν(z−)), (ii−) l− is

an asymptote. In case (ii±), we set z± = ±∞.

Let u be the convex function that coincides with uν on (−∞, z−] ∪ [z+,∞) and

is affine on [z−, a] and on [a, z+], and define the concave function ϕ and the convex

function ψ by

ϕ(x) = −(α + β)(x− a)+,

ψ(x) = α(x− (z− ∧ (a− h)))+ + β(x− (z+ ∨ (a+ h)))+,

where α = h
a−(z−∧(a−h))

and β = h
(z+∨(a+h))−a . Here, in the asymptote cases (ii±), ϕ, ψ

need to be interpreted as the limiting functions that arise as z± → ±∞.10

Then, the intermediate law θ with potential function uθ = u is an optimizer for the

auxiliary primal problem S̃µ,ν(f), (ϕ, ψ) is an optimizer for the auxiliary dual problem

Ĩµ,ν(f), and the common optimal optimal value is given in terms of the potential

functions of µ and ν by

S̃µ,ν(f) = Ĩµ,ν(f) = h
2
(s+ + s−),

10For instance, if z− = −∞ and z+ <∞, then ϕ(x) = −β(x− a)+ and ψ(x) = h+ β(x− (z+ ∨
(a+ h)))+.
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where

s+ =


uν(z+∨(a+h))−uµ(a)

(z+∨(a+h))−a in case (i+),

1 in case (ii+),

s− =


uν(z−∧(a−h))−uµ(a)

a−(z−∧(a−h))
in case (i-),

−1 in case (ii-).

4.6 Counterexamples

In this section, we give four counterexamples. Example 4.6.1 shows that strong

duality for the auxiliary problems may fail for general (not necessarily irreducible)

marginals if the dual elements ϕ, ψ are required to be globally concave and convex,

respectively. Example 4.6.2 shows that strong duality may fail if the dual elements ϕ

and ψ are required to be µ- and ν-integrable, respectively. Example 4.6.3 shows that

the robust model-based prices of Asian- and American-style derivatives are typically

not equivalent when more than two marginals are given. Example 4.6.4 shows that

the equality Sµ,ν(f,A) = S̃µ,ν(f) may fail when the assumptions of Proposition 4.4.2

are violated.

Example 4.6.1 (Duality gap with globally convex/concave dual elements). Let µ =

1
2
δ−1 + 1

2
δ1, let ν be the uniform distribution on (−2, 2), and set f(x) := |x|− 1

2 , x ∈ R

(with f(0) =∞).

First, we show that S̃µ,ν(f) is finite. Fix any µ ≤c θ ≤c ν. Computing the

potential functions uµ and uν shows that µ ≤c ν and that {uµ < uν} = I1 ∪ I2
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with I1 = (−2, 0) and I2 = (0, 2). Because ν does not have an atom at the common

boundary 0 of I1 and I2, also θ cannot have an atom at 0. Thus, we can write

θ = θ1 + θ2 with

1

2
δ−1 ≤c θ1 ≤c ν|I1 and

1

2
δ1 ≤c θ2 ≤c ν|I2 .

Since f is convex when restricted to I1 or I2, we have

θ(f) = θ1(f) + θ2(f) ≤ ν|I1(f) + ν|I2(f) = ν(f) <∞.

It follows S̃µ,ν(f) = ν(f) <∞.

Second, let ϕ be concave and ψ be convex such that ϕ + ψ ≥ f . We show

that then necessarily µ(ϕ) + ν(ψ) = ∞. To this end, we may assume that ϕ < ∞

on supp(µ) = {−1, 1}. Then ϕ < ∞ everywhere by concavity. Thus, evaluating

ϕ + ψ ≥ f at 0 implies that ψ(0) = ∞. Therefore, ψ = ∞ on (−∞, 0] or on [0,∞)

by the convexity of ψ. In both cases, we have µ(ϕ) + ν(ψ) =∞.

Example 4.6.2 (Duality gap with individually integrable dual elements). We con-

sider the marginals

µ := C
∑
n≥1

n−3µn and ν := C
∑
n≥1

n−3νn,

where C := (
∑

n≥1 n
−3)−1, µn := δn and νn := 1

3
(δn−1 + δn + δn+1) for n ≥ 1. These

are the same marginals as in [16, Example 8.5] where it is shown that µ ≤c ν is
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Figure 4.3: The function f in Example 4.6.2.

irreducible with domain ((0,∞), [0,∞)). We now let f : R+ → [0, 1] be the piecewise

linear function through the points given by f(n) = 0 and f(2n + 1
2
) = 1

4
for n ≥ 0;

cf. Figure 4.3.

We proceed to construct candidates for optimizers for S̃µ,ν(f) and Ĩµ,ν(f). For

the primal problem, define the sequence (θ̄n)n≥1 by

θ̄n =


1
3
(δn−1 + 2δn+ 1

2
) for n even,

1
3
(2δn− 1

2
+ δn+1) for n odd,

and set θ̄ := C
∑

n≥1 n
−3θ̄n. One can check that µn ≤c θ̄n ≤c νn and compute

θ̄n(f) = 1
6
. Hence, µ ≤c θ̄ ≤c ν (by linearity of potential functions in the measure)

and θ̄(f) = 1
6
.

We now turn to the dual problem. Let ϕ̄ and ψ̄ be the unique concave and convex

functions, respectively, with second derivative measures

−ϕ̄′′ =
∑
n≥0

δ2n+ 1
2

and ψ̄′′ =
1

2

∑
n≥1

δn

and ϕ̄(0) = ψ̄(0) = 0, ϕ̄′(0) = f ′(0) = 1
2
, and ψ̄′(0) = 0. The “initial conditions” are

chosen such that f(0) = ϕ̄(0) + ψ̄(0) and f ′(0) = ϕ̄′(0) + ψ̄′(0) and the choice of the
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second derivative measures ensures that ϕ and ψ pick up the negative and positive

curvature of f , respectively. Thus, ϕ̄ + ψ̄ = f on R+ by construction. We proceed

to compute µ(ϕ̄) + ν(ψ̄) in the sense of Definition 4.2.3. (The individual integrals

are infinite because ϕ̄ and ψ̄ have quadratic growth while µ and ν have no second

moments.) To this end, we note that ϕ̄ + ψ̄ = f vanishes on the support of ν. This

implies that ϕ̄ is a concave moderator for (ϕ̄, ψ̄) with respect to µ ≤c ν. We can then

compute

µ(ϕ̄) + ν(ψ̄) = µ(ϕ̄− ϕ̄) + ν(ψ̄ + ϕ̄) + (µ− ν)(ϕ̄) = (µ− ν)(ϕ̄)

= C
∑
n≥1

n−3(µn − νn)(ϕ̄).

Fix n ≥ 1. Because ϕ̄ is continuous, we have

(µn − νn)(ϕ̄) =
1

2

∫
I

(uµn − uνn) d ϕ̄′′. (4.6.1)

The difference uµn − uνn vanishes outside (n − 1, n + 1) and on this interval, ϕ̄′′ is

concentrated on either n − 1
2
(if n is odd) or on n + 1

2
(if n is even) with mass 1.

Therefore, the right-hand side of (4.6.1) collapses to 1
2
(uµn − uνn)(n ± 1

2
) = 1

6
. It

follows that µ(ϕ̄) + ν(ψ̄) = 1
6

= θ̄(f). Hence, by (weak) duality, θ̄ and (ϕ̄, ψ̄) are

primal and dual optimizers, respectively.

We are now in a position to argue that no dual optimizer lies in L1(µ) × L1(ν).

Suppose for the sake of contradiction that (ϕ, ψ) ∈ L1(µ)×L1(ν) is a dual optimizer

and note that supp(θ̄) = {0.5, 1, 2, 2.5, 3, . . .}. We have ϕ+ ψ = f θ̄-a.e. by Proposi-
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tion 4.4.16 (i). One can show that the following modifications of (ϕ, ψ) do not affect

its optimality nor the individual integrability of ϕ and ψ; we omit the tedious details.

First, ψ is replaced by its piecewise linear interpolation at the atoms of ν. Second, ϕ

is replaced by its piecewise linear interpolation at the kinks of f . Third, a suitable

convex function is added to ϕ and subtracted from ψ (preserving their concavity and

convexity, respectively) such that the second derivative measures −ϕ′′ and ψ′′ become

singular.

Because ϕ + ψ = f on supp(θ̄) and both sides are piecewise linear, we conclude

that ϕ + ψ = f holds on [1
2
,∞). As −ϕ′′ and ψ′′ are singular, ϕ and ψ must then

account for the negative and positive curvature of f , respectively. It follows that both

ϕ and ψ have quadratic growth. Since µ and ν do not have a second moment, we

conclude that µ(ϕ) = −∞ and ν(ψ) =∞, a contradiction.

Example 4.6.3 (Different robust model-based prices for Asian- and American-style

derivatives for multiple marginals). For n ≥ 2 given marginals µ0 ≤c µ1 ≤c · · · ≤c

µn corresponding to the time points 0, 1, . . . , n (say), the robust model-based price

Sµ0,...,µn(f,A) is defined analogously. But this robust model-based price now depends

non-trivially on A, as the following example shows. Fix a strictly convex function

f . On the one hand, if A corresponds to American-style derivatives, then one can

check that Sµ0,...,µn(f,A) = µn(f). On the other hand, for Asian-style derivatives,

i.e., A′ = {t 7→ t/n}, Jensen’s inequality yields

f

(
1

n

∫ n

0

Xt d t

)
≤ 1

n

n−1∑
i=0

f

(∫ i+1

i

Xt d t

)
,
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so that

Sµ0,...,µn(f,A′) ≤ 1

n

n∑
i=1

µi(f) ≤ µn(f).

For a generic choice of marginals, both inequalities are strict. Hence, the robust

model-based price of an Asian-style derivative with a strictly convex payoff function

is typically smaller than that of the corresponding American-style derivative.

Example 4.6.4 (Necessity of the assumptions of Proposition 4.4.2).

(i) We show that Sµ,ν(f,A) = S̃µ,ν(f) may fail if A does not contain an interior

averaging process. Set A = {A} = {t 7→ 1
2

+ 1
2
1{t=T}}, so that

∫ T
0
XtdAt =

(X0 + XT )/2, and consider f(x) = x2. Then, using the martingale property of

X under any P ∈ M(µ, ν), one can check that Sµ,ν(f,A) = (3µ(f) + ν(f))/4,

whereas S̃µ,ν(f) = ν(f) since f is convex. Now, choose µ and ν such that

µ(f) < ν(f) (f is strictly convex). Then, Sµ,ν(f,A) < S̃µ,ν(f).

(ii) We show that Sµ,ν(f,A) = S̃µ,ν(f) may fail if A contains an interior averaging

process but f is not lower semicontinuous. Set A = {t 7→ t/T} and f(x) =

1{|x|≥1}, and choose µ = δ0 and ν = (δ1 + δ−1)/2. On the one hand, since

ν(f) = 1 and f ≤ 1, we have S̃µ,ν(f) = 1. On the other hand, we claim that

Sµ,ν(f,A) = 0. To this end, fix P ∈ M(µ, ν). Since P -a.e. path of X starts

in 0, evolves in [−1, 1], and is right-continuous,
∣∣∣ 1
T

∫ T
0
Xt d t

∣∣∣ < 1 P -a.s. Thus,

EP
[
f( 1

T

∫ T
0
Xt d t)

]
= 0. Since P ∈M(µ, ν) was arbitrary, Sµ,ν(f,A) = 0.
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