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Abstract

Opinions and Preferences as Socially Distributed Attitudes

Ignacio Maria Ojea Quintana

The dissertation focuses on how to best represent the consensus and attitude dynamic of a

group given the attitudes of its individuals. This is done in the Bayesian epistemology framework

using pooling with imprecise probabilities, and in utility theory extending Harsanyi’s aggregation

theorem to characterize other directed attitudes like spite and altruism. The final part of the

dissertation considers attitudes within social networks and provides explanations and simulation

models for online segregation and tribalism as well as the spread of rumors through contagion. The

dissertation hopes to contribute to foundational issues like that of epistemic consensus, but also to

new emerging phenomena in social epistemology.
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CHAPTER 1

Introduction

1. The Basic Outline of the Project

The present dissertation consists in a collection of papers on a variety of related topics. Unlike

more traditional Ph.D Thesis where a single theme or argument is developed exhaustively in several

chapters, I here present six essays that address different questions, make different arguments, and

use different methodologies. The purpose of this introduction is to bring together all these works in a

way that the particular set of philosophical issues that motivate them are clear, their methodologies

are justified, and such that a history of my intellectual path reveals where my future research is

directed.

There are several schematic ways of partitioning the material. If papers are organized by theme,

then four of them are about social epistemology and two about social preferences. If they are divided

by methodology, four involve attitude aggregation theory and two attitude distribution in social

networks. If they are divided by developmental stage, two of them are already published, two have

been submitted, and two are first presented in this dissertation. Table 1 below summarizes this by

chronological order.

A guiding question through all of the papers is how to best conceptualize the relation between

individual attitudes (opinions or preferences) and social ones, and how to deal with some of the

philosophical issues that result from such relation. Sometimes this is done by presenting an account

of group consensus in the presence of disagreement, even of the most radical kind. Sometimes by

reflecting on how individual preferences are affected by those of friends and foes, or how preferential

treatment of others at the individual level may lead to larger social outcomes like segregation.
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Paper Theme Methodology Stage
Probabilistic Opinion Pooling with Imprecise
Probabilities

Social
Epistemology

Opinion
Aggregation

Published

Learning and Pooling, Pooling and Learning
Social

Epistemology
Opinion

Aggregation
Published

Radical Pooling and Imprecise Probabilities
Social

Epistemology
Opinion

Aggregation
Under
Review

Harsanyi meets Smith’s Altruism and Spite
Social

Preferences
Preference

Aggregation
Under
Review

Schelling Segregation in Online Social Networks
Social

Preferences
Preference

Distribution
First

Presented

Social Centrality in the Contagion of Rumors
Social

Epistemology
Opinion

Distribution
First

Presented

Table 1. Papers by Category

Finally, by studying how an individual’s power or centrality in a social arrangement affects the

diffusion of rumors or misinformation.

Through the years, the concern for the relation between the individual and the social made me

identify different philosophical problems and struggle to find the appropriate conceptual tools to

address them. The best way of giving an introduction to this dissertation is genealogical, by telling

the story of how it was originated and the conceptual transformations that led to the final chapters.

This corresponds to the ”Stage” partition in the table above. The next section will summarize the

discussion around opinion pooling, and the contribution made by the first two papers. Section 3

will describe my pragmatic turn, how my concerns shifted from foundational issues to more pressing

irritating ones, and how that turn taints the four final papers. The fourth section briefly presents

the papers on radical pooling and preference aggregation. The fifth section begins by justifying the

shift in methodology: from attitude aggregation to attitude distribution in social networks, from

proofs to simulations and data analysis. Then, it describes the two final projects that use these new

methods. The sixth and final section is conclusive and suggests future directions for my research.
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2. Opinion Pooling

A particular line of research in the area of Social Epistemology that received much attention

lately is the epistemology of collective agents. One of the central questions in this research project

is how to aggregate or pool the opinions of the individuals to get the opinion of the group or

collective. This question is being prominently addressed by Philip Pettit and Christian List in

the Philosophical literature, but it was also the focus of attention in statistical studies during the

late 80’s and early 90’s. This research area is a natural extension of the work of Kenneth Arrow in

preference aggregation in the fifties and subsequent work of Amartya Sen on social choice functions,

continued by the development of different voting methods; but now the objects to aggregate are

judgments rather than preferences. List and Pettit (2002, 2011), Dietrich and List (2011) are

helpful survey works.

The problem of opinion aggregation is considered in the literature to be the problem of determin-

ing a sensible formula for representing the opinions of a group, given the opinion of the individuals.

Representations of group opinion are important in a number of contexts, from scientific advisory

panels (on climate change, for example), to joint efforts in scientific inquiry, to decision making in

various kinds of unions. In a Bayesian setting, group consensus is particularly important from a

theoretical standpoint. The received view is that probabilistic opinions are subjective de Finetti

(1964); Ramsey (1990); Savage (1954). Forms of intersubjective agreement have been sought to

replace the surrendered notion of objectivity Genest and Zidek (1986); Nau (2002). Probabilistic

opinion pooling is one proposal for finding such consensus. It is widely assumed that, for a group of

Bayesians, a representation of group opinion should take the form of a (single) probability distribu-

tion. For example, Dietrich and List (2014a, 2017) review and generalize some important work in

pooling while making novel contributions, but do not consider treating imprecise probabilities (IP).
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Since there seem to be advantages in considering imprecise probabilities (in a number of contexts),

its natural to ask whether the aggregation problem can be approached in these terms.

The main contribution in this stage was to call into question the assumption that group opinion

should be represented by a single probability distribution when precision holds at the level of the

individuals. This is done in two different papers.

In the first paper I follow two lines of argumentation. On the one hand, we use a strategy

initiated by Seidenfeld et al. (1989, 2010); Walley (1991) that uses limitative results concerning

aggregation as a springboard into IP. Even in cases in which individual probabilities are precise,

demanding that the output of an aggregation method be a single probability function is overly

restrictive. Indeed, as it is shown in several results, representations of group opinion in terms of

sets of probability functions satisfies a number of the central pooling axioms that are not jointly

satisfied by any of the standard, precise pooling recipes. On the other hand, following some ideas by

Levi (1985); Seidenfeld et al. (1989), we argue that IP allows for a plausible philosophical account

of rational consensus as common ground at the outcome of inquiry . This co-authored paper (with

Rush Stewart) is published in the Journal of Philosophical Logic.

The second paper is focused on group learning. Among the pooling axioms that serve as

required desiderata for any aggregation function there are what are called Bayesian axioms. These

axioms encode the following intuition: the opinion of a collective agent should be the same if

we first decide to aggregate the opinions of the members and then provide the collective agent

with some information (and hence provoking a belief updating) and if we first provide each of the

members with the same information and then we decide to aggregate the individual opinions into

a collective opinion. There are several ways in which this updating could be done: Probabilistic

Conditionalization, Conditionalization using likelihood functions, Jeffrey updating and Imaging are

among the most well known. With my co-author, Rush Stewart, were successful in showing which
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of these principles are satisfied in our approach, and we argue that our account does better than

the other available pooling methods. The results of this investigation were published in Erkenntnis.

3. A Pragmatic Turn

There is an unspoken rule at Columbia according to which no formal or social epistemologist

can graduate without paying respects to the university’s pragmatist tradition. This is not the

result of the tyrannical enforcing of a social norm. Rather, this is a consequence of the sort of

philosophical conversations that are carried out within the community. Through those exchanges,

intellectual styles and sensitivities are inherited and reinterpreted. Here I will briefly describe how

my work and ideas were transformed by this tradition.

One core pragmatist stand is the rejection of foundational approaches in philosophy and the

adoption of a problem solving methodology. This idea was originally articulated by Peirce’s Belief-

Doubt Model in “The Fixation of Belief.” This epistemological model presents a dynamic that starts

when the peaceful state of belief is interrupted by an irritating doubt. Resolving that heartfelt doubt

is the sole purpose of inquiry, which will bring us back to a new peaceful state of belief. Let us

develop the point in more detail.

Peirce characterized belief as a state of mind which is “calm and satisfactory state which we

do not wish to avoid” [CP 5.372] and also a habit, a rule for action or disposition to act under

particular circumstances: “Belief does not make us act at once, but puts us into such a condition

that we shall behave in some certain way, when the occasion arises” [CP 5.373]. The Peircean view

in this text is that the fundamental relation between mental and non-mental elements is not that

of a correspondence between representation and external objects, but that of practical success in

carrying out (in action) the guides and plans contained in the mental elements (beliefs); plans and

guides oriented to satisfying the needs and desires of the agent.
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As with belief, Peirce’s characterization of doubt has an emotional and a practical component.

While the state of belief is desirable, the state of doubt “is an uneasy and dissatisfied state from

which we struggle to free ourselves and pass into the state of belief” [CP 5.372]. Peirce rejects

the Cartesian idea that philosophy should begin with hyperbolic doubt, and that it should pursue

some foundational certainty. Proper doubt is not simply an intellectual or rhetorical exercise, but

it is genuinely irritating: “Let us not pretend to doubt in philosophy what we do not doubt in

our hearts.” [CP 5.265] The practical component of doubt resides precisely in the fact that it is

irritating, and therefore motivates inquiry; “with the doubt, therefore, the struggle begins, and

with the cessation of doubt it ends. Hence, the sole object of inquiry is the settlement of opinion.”

[CP 5.375]

Inquiry, in particular philosophical inquiry, must be rooted in a pressing problem and not in

armchair speculations. Furthermore, research should be fundamentally oriented in resolving the

crucial issues at hand rather than challenging all established beliefs in order to get a new foundation.

The revision of our belief systems, technologies and dispositions should be proportional to the

problem that needs resolution. Anything can be put into question, but questioning everything at

once is putting the cart before the horse. Our habits, our moral and belief systems, help us navigate

the world, and only those routes that do not take us to safe port must be challenged.

The first two papers on pooling were motivated by the need of providing a new formal account

of consensus that was not present in the literature and that, I argued, offered certain axiomatic

advantages. They were not driven by a pressing, irritating, problem that needed resolution through

inquiry. In contrast, the next four papers were motivated by some contemporary social and political

issues and events. The most salient of them is the 2016 United States’ presidential election, but

this is just the tip of the iceberg. It became clear to me in the years before the election that there

was an increase in political and ideological polarization, that negative emotions and discourse were

gaining track in public discourse, and that social media and online networks were disrupting the
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way in which organize inquiry and politics. These issues constituted for me a fertile ground for

social epistemology that required rethinking the relation between individual and social attitudes.

This was my pragmatic turn, placing the pressing problem before the foundational speculation.

The next section will describe an intermediate pragmatist stage. In thinking about irreconcil-

able ideological differences, and connecting that problem with the original papers on consensus, I

developed an account of radical pooling. Concerned by the raise in the expression of negative emo-

tions in the media, I tried to develop an account of other directed attitudes that not only factors

benevolent or altruistic tendencies but also those that are spiteful. The section after reveals an

even more radical pragmatic turn. In order to conceptualize problems like social segregation and

the spread of rumors and unreliable information, I recognized the need to go beyond the literature

in aggregation and incorporated networks and statistical methods. This will all become more clear

shortly.

There is, someone may object, something profoundly antiphilosophical in the pragmatist stand.

After all, much of the research presented in this dissertation could be characterized as formal

sociology. Pragmatism is not defended, but assumed. Perice’s belief-doubt model, the pragmatist

conceptions of truth and progress, are here not put into question or even reinterpreted in a novel

way. Furthermore, formal methodologies adopted like deductive proofs, simulations, and regression

analysis would be foreign to many people in philosophy departments. There is certainly truth in this

objection, but only because it fails to recognize some bit of pragmatist wisdom. Some philosophical

questions, in particular those that demand a foundation, are sometimes overcome without ever

being fully answered. They are deemed irrelevant in the face of the new ideas and technologies

developed in problem solving. The reader should then follow me and evaluate the next four papers.

After all, the proof of the pudding is in the eating.

7



4. Radical Pooling and Other Directed Attitudes

Section 2 introduced the question of opinion pooling and the contributions made to that topic.

As explained, group opinion was conceptualized as consensus as common ground and a formal

representation was given in terms of imprecise probabilities. This showed to have some formal

advantages. First, it satisfies a number of the central pooling axioms that are not jointly satisfied

by any of the standard, precise pooling recipes. Second, it outperforms precise pooling under

certain accounts of probabilistic learning. Here I argue that there is a further reason to endorse

the view. Consensus as common ground at the outset of inquiry, formalized by pooling imprecise

probabilities, is a helpful model to attain group opinion when individuals disagree at the most

fundamental level.

Radical pooling is the term coined for the problem of how to aggregate credences when there is

a disagreement among agents about which are the relevant sample or event spaces. This question

has been neglected in the pooling literature, but it has been treated differently in other branches

of the discipline. In philosophy of science, this is related to the issue of theory change treated by

Kitcher (1978). In belief revision, this amount to structural changes explored by Bradley (2017) in

the probabilistic case, and by Cresto (2008) in an AGM-style. Within game theory, this resebles

the literature on unawareness by Fagin and Halpern (1987), Halpern (2001), Dekel et al. (1998),

and Modica and Rustichini (1999). None of these approaches, nevertheless, focus on consensus.

The solution to the problem of radical pooling advanced in the paper is once again based on the

notion of consensus as common ground at the outset of inquiry first introduced by Isaac Levi (1985)

and formalized using imprecise probabilities. This is not claimed to be the only solution, but a

sound one on different grounds. On the one hand, the essay uses the Priestley and Lavoisier debate

in Chemistry as a guiding example of the conceptual incommesurability that can be modeled as a

disagreement about what are the relevant sample and event spaces. The solution advanced shows
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that taking a common ground of those spaces gives a more refined set of possibilities from which to

start inquiry. At the outset, disagreements about what variables are relevant for explanation should

begin by giving a fair treatment to all the possibilities. During inquiry, some of those possibilities

may be discarded. On the other hand, the paper argues that imposing formal desiderata like

marginalization, rigidity, or minimum divergence on how to extend probabilities to larger algebras

is satisfied by using imprecise probabilities.

The upshot of the paper is that even the case when individual agents disagree on their conceptual

frameworks, suspending judgment on personal world views and trying to find a common ground

that is a starting point for collective inquiry is a feasible and healthy alternative.

The question of opinion pooling can be thought as a natural extension of the work of Kenneth

Arrow in preference aggregation in the fifties and subsequent work of Amartya Sen on social choice

functions. In this line, “Harsanyi meets Smith’s Altruism and Spite” returns to the issue of prefer-

ence aggregation and modifies Harsanyi’s Impartial Observer Theorem to characterize positive and

negative preferences towards others.

Harsanyi (1955, 1977) showed that if welfare preferences satisfy a Pareto (or indifference) condi-

tion with respect to individual preferences, then the welfare utility function can be linearly decom-

posed by the individual utility functions. Although Harsanyi (1977) provided an interpretation of

the result in terms of Smith’s Impartial Observer, much of the subsequent literature vindicated it as

utilitarian: the social or welfare utility is nothing more than the (linear) aggregation of individual

utilities. The paper suggests a return to its Smithian roots.

Smith (2002) famous theory of moral sentiments distinguishes between three types of other-

directed attitudes: social, unsocial, and selfish passions. Following some ideas in Kitcher (2010), the

paper modifies Harsanyi’s original result to characterize altruistic, spiteful, and selfish preferences.

One agent’s preferences are altruistic (spiteful) towards another’s if, all other things being equal, the
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first would rather chose a social outcome that (dis)favors the second. This can be formalized using

Pareto conditions to obtain the result that an agents other-directed utilities can be decomposed

linearly between the positive private utilities of those they care about and the negative private

utilities of those they despise.

Negative, unsocial, emotions have been neglected by the literature on preferences and utilities;

and much of the focus was placed in the economics of altruism. This may be because, as Smith

acutely notes, unsocial passions are naturally disagreeable. But they need to be acknowledged and

dealt with. In particular, they need to be distinguished from self-interest. Das Adam Smith Problem

is an argument that arose among German scholars during the second half of the nineteenth century

concerning the compatibility of the conceptions of human nature advanced in Smith’s Theory of

Moral Sentiments [TSM] and his Wealth of Nations. Roughly, the question is how to reconcile the

emphasis on sympathy and benevolence in Smith’s first book, with the emphasis on self-interest

in Smith’s second. In other words, how to reconcile in Smith the relation between the kind of

interpersonal relations that are at the base of our morality, and the relations that are constitutive

of the economic market. But without the recognition of negative emotions towards others, Smith’s

account of human nature in TMS is simply incomplete. Das Adam Smith Problem is made worse

here, because it requires reconciling all three dimensions: altruism, self-interest, but also spite.

Both papers summarized in this section are currently under review.

5. From Aggregation to Networks

The final stage of the dissertation completes the pragmatic turn in my research. For the purposes

of engaging with contemporary problems like online segregation and disinformation I decided to

incorporate new techniques and formalisms. In a nutshell, this last stage of the dissertation is a

move from group epistemology to network epistemology.
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As I see it, the listed contributions in opinion pooling are within group epistemology. The

guiding question is how to aggregate individual opinions to obtain the consensus view, which is

usually interpreted as the opinion of the group. Similarly, the paper on Harsanyi fundamentally

builds on the literature in preference aggregation, which seeks to represent the welfare utility of the

social group. Moving to network epistemology involves an ontological and methodological shift. As

I understand them, networks fall between individuals and groups.

Methodological individualism was first presented by Max Weber as the principle that social

and economic phenomena must be explained in terms of individual actions, which in turn must

be explained by reference to their intentional states. In economics this principle was famously

defended by Kenneth Arrow, and we can find contemporary defendants in Jon Elster in political

theory. In contrast, in part of the social sciences and social philosophy groups and collectives

are usually taken as units of analysis that cannot be reduced to their individual components.

Although groups supervene on individuals, as defended by List, C. and Pettit, P. (2011), they

constitute an explanatory layer of their own. The past few years saw a great development in

understanding the ontology of groups, recognizing their varieties and the relationships among their

individual components; for treatment of the issue see Uzquiano (2018). In my view, networks are

ontologically lighter than groups, but heavier than mere individuals. The basic units of analysis are

both individuals and relations between individuals. The assume no agency over an above individual

agency, but relations between agents that cannot be reduced to individual intentional states.

This intermediate methodological stance between individualism and group ontology is not de-

fended in the dissertation, and is left for future research. Rather, I do want to mention that the

transition involved incorporating new technologies: agent based modeling, statistical methods, and

network theory. The fruits of this labor are summarized below.

The first essay presents a Schelling-like model for Online Social Networks where agents form

and cut bonds with others for the purpose of satisfying homophily and heterophily preferences.
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Like in Schelling’s original model, segregation emerges as a macro phenomenon even when indi-

vidual agents have mild homophily preferences. Yet, experiments show that heterophily has more

effect than homophily in unequal populations. The results are demonstrated via simulations us-

ing Netlogo. Since the model is designed to represent the dynamics of friending/unfriending and

following/unfollowing in social media like Twitter, Facebook or Instagram, it might provide some

insight on how online communities self-organize according to tribes.

Schelling’s model as been generalized and modified in multiple ways. For example, there may be

more than two agent-types, like in Wilensky (1997). Hatna and Benenson (2015) allow for agents

to have a preference for diversity. Gandica et al. (2016) generalize by exploring different topologies,

allowing for superposition. Paolillo and Lorenz (2018) consider segregation across two dimensions,

which lead to cross-contagion effects. Rogers and J. McKane (2011) present a unified framework

for segregation with an even more general topology. Examples abound, yet most of them focus on

geographical segregation and therefore assume a fixed topological space representing a geography

which agents inhabit and explore. Even if the topology is generalized by networks, the Schelling

dynamics implemented in those studies does not modify the network in any way. Here, that is

precisely what we do.

The model hopes to resemble the kind of dynamic a user of social media would find familiar.

Agents are part of a social network in which they are connected with other agents. They also have

some agency with respect to whom they connect: they can befriend or follow other agents, and

they can also sever their links. More precisely, directed networks in which agents decide whether

follow others are akin to Twitter or Instagram. Undirected networks in which connections are

reciprocal resemble Facebook’s friending and unfriending options. This identifications are purely

motivational, and the results can be stated in abstract terms. At each stage of the dynamic, each

individual can assess their neighbors’ (friends or following) tribe. Much like in Schelling, agents

will be satisfied if a sufficient amount of their neighbors are of their type. If they are not satisfied,

12



they will (randomly) sever some of their links and (randomly) seek for new friends to follow. This

dynamic on the network stabilizes when all agents are satisfied, or when cycles emerge. How

segregated or tribal a network is depends on how much agents of one tribe are connected with

agents of the other.

Much like racial segregation, internet tribalism is a widely recognized phenomenon. It has been

long reported by the media (Cragg, 2011), diagnosed by NGO’s dealing with political polarization

(More in Common (2018)), and heavily studied by data scientists and programmers for the pur-

poses of identifying tribe membership (Bryden et al., 2013; Gloor et al., 2018). In highly polarized

networks, members of different tribes do not communicate enough, which might lead to misun-

derstandings, information bubbles, empathy gaps, etc. Here we are not interested in recognizing

tribes, much less manipulating them. Rather, we want to provide an explanation of the sort that

Schelling provided for geographic segregation. Abstracting from racism and other forms of in-group

bias, Schelling showed that segregation can emerge from very weak conditions. In a similar vein,

we intend to show that online tribalism can emerge from a dynamic with mild micro preferences,

even when we abstract the well established human tribal tendencies.

The second essay is a study of the contagion of rumors in a variety of social networks. This is

done by constructing a computational model using Netlogo, and assessing the statistical relation

between the centrality (or social power) of the initial influencer and the contagion success rate.

The study informs us about three epistemological problems around rumors.

To begin, Clifford (1879) originally identified several problems with credulity, the habit of

endorsing believes without sufficient justification. Not only this constitute an epistemic vice, but

one that may infect society at large. Credulous individuals are willing to spread information without

sufficient evidence. Such a cultural norm reduces the epistemic standards of others, fostering a

credulous character. By lowering the standards and promoting epistemic vices, the whole social

network becomes vulnerable to manipulation and fake information: “The credulous man is father
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to the liar and the cheat.” The results show that rumors or misinformation can very easily infect

much of the network, vindicating some of Clifford’s worries.

Second, it is shown that the centrality of the initial influencer has a statistically significant

effect on the contagion success. Surprisingly, some centrality measures like PageRank are negatively

correlated. But more broadly, both centrality and network properties affect contagion significantly.

This may lead to the recognition of a new form of epistemic injustice, a concept developed by

Fricker (2007) and much discussed lately in feminist epistemology.

Finally, and relatedly, in conversation with some ideas in Mößner and Kitcher (2017), the essay

argues that it may be too soon to conceive of the Internet and Online Social Networks as an

epistemically democratizing force.

The two papers summarized in this section were concluded only recently, and might be a bit

rough on the edges. I decided to include them in the dissertation because they reflect my intellectual

development, and because they introduce some of the techniques that I am hoping to refine in the

future.

6. Wrap Up

This introduction was meant to bring together the six essays that constitute the dissertation.

I decided to do that genealogically by explaining how my ideas, motivations, and methods evolved

in the course of the program. As the title suggests, the guiding issue through all the papers is

that of social opinions and preferences. The first stage essays are concerned with the notion of

consensus, and this is treated axiomatically in probabilistic pooling. After a pragmatic turn, my

interested shifted to more concrete problems in social epistemology. This resulted in an essay on

radical pooling, concerned with how to bridge disagreement in conceptual frameworks, and an essay

characterizing altruism and spite using techniques from preference aggregation. The third and final

stage papers shift from aggregation to networks, and they have an even more pragmatist vein. The

14



first one, motivated by understanding segregation in online social networks, presents a Schelling-

like dynamic that can illuminate how easily tribalism can emerge. The second one provides some

insights on the relation between the spread of rumors via contagion and the centrality of those who

want to propagate them.

I sincerely think that a network approach to social epistemology can be very fruitful, and I am

pursuing this research path in my future. Networks offer a clear and well studied formal model for

social relations, and one that can be supplemented with empirical data from our online interactions.

Technologies like the Internet and Social Media had a serious impact in the way we organize our

knowledge and information, and with that some problems emerged. My hope for now is to develop

the conceptual problems to deal with them.

To conclude, some essays were not included in this dissertation, and some others were left for

future development. More importantly, all of the ideas introduced here are perfectible, and I hope

to continue to improve my thinking through philosophical engagement.
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CHAPTER 2

Probabilistic Opinion Pooling with Imprecise Probabilities

1. Introduction

The problem of opinion aggregation is “the problem of determining a sensible formula for

representing the opinions of a group” (Genest et al., 1986). Representations of group opinion are

important in a number of contexts, from scientific advisory panels (on climate change, for example),

to joint efforts in scientific inquiry, to decision making in various kinds of groups. In a Bayesian

setting, group consensus is particularly important from a theoretical standpoint. The received view

is that probabilistic opinions are subjective (Ramsey, 1990; Savage, 1954; de Finetti, 1964). Forms

of intersubjective agreement have been sought to replace the surrendered notion of objectivity

(Genest and Zidek, 1986; Nau, 2002). Probabilistic opinion pooling is one proposal for finding such

consensus. It is widely assumed that, for a group of Bayesians, a representation of group opinion

should take the form of a (single) probability distribution. The central position of this essay is

that, in certain philosophically interesting and important cases, such an assumption is not always

appropriate.

At the end of their review article on pooling, Dietrich and List mention other approaches that

“redefine the aggregation problem itself” (2014b, p. 20). According to them, one such approach is

the aggregation of imprecise probabilities.1 Of the few accounts of aggregating probabilities that

A version of this chapter is published as a paper, coauthored with Rush Stewart, under the same title in the
Journal of Philosophical Logic.

1Here I use IP as a general term, abstracting from the important distinction Isaac Levi makes between what
he calls imprecise and indeterminate probability, or what Walley calls the Bayesian sensitivity analysis and direct
interpretations, respectively. Roughly speaking, according to the first interpretation, while an agent is normatively
committed to or descriptively in a state of numerically precise judgments of credal probability, these precise judgments
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deal with imprecision, many tend to focus on cases in which the individual opinions are already

imprecise. And such accounts do not proceed by generalizing the pooling framework, axioms, etc.

(Moral and Del Sagrado, 1998; Nau, 2002). A general account of probabilistic consensus should

cover cases in which probabilities are imprecise at the level of the individual (a topic to which I

return towards the end of the essay). However, our aim is to call into question the assumption that

group opinion should be represented by a single probability distribution when precision holds at

the level of the individuals. In this effort, I extend a line of argument that uses limitative results

concerning aggregation—results demonstrating the impossibility of jointly satisfying a set of formal

pooling criteria for precise aggregation methods—as a springboard into IP (Walley, 1982; Seidenfeld

et al., 1989). That is, the limitations of precise pooling motivate IP in the sense that certain IP

models do satisfy desiderata for “group” opinion that precise models do not.

After presenting the basic mathematical framework for probabilistic opinion pooling, I review

some of the central limitative results (Section 2). One contribution of the present essay is gener-

alizing the pooling framework, framing pooling with imprecise probabilities in the mathematical

language common in research on probability aggregation with precise probabilities (Sections 4 and

5). The particular IP model that I primarily focus on in this dissertation, as a proof of concept,

is presented in Section 4 (in a sense that will be made clear and precise, our case for considering

IP models of pooling does not rise and fall with this particular format). Even in cases in which

individual probabilities are precise, demanding that the output of an aggregation method be a

single probability function is overly restrictive. As I show, representations of group opinion in

terms of sets of probability functions have some very nice features. On the one hand, IP allows

for a plausible philosophical account of rational consensus (Section 3). On the other hand, the

construction I study satisfies a number of the central pooling axioms that are not jointly satisfied

may not be precisely elicited or introspected. On the second interpretation, imprecision is a feature of the credal
state itself and is not attributable to imperfect elicitation or introspection. It is possible, of course, for a credal state
to be imprecise in both senses, that is, an indeterminate credal state could be incompletely elicited.
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by any of the standard, precise pooling recipes on pain of triviality (Sections 5 and 6). I close by

considering some potential objections (Section 7).

2. Pooling

A general framework for aggregating the probabilistic opinions of a group to form a collective

opinion is that of pooling. Formally, a pooling method for a group of n individuals is a function

F : Pn Ñ P

mapping profiles of probability functions for the n agents (or simply the n distributions under

consideration), pp1, ...,pnq, to single probability functions intended to represent group opinion,

F pp1, ...,pnq. The probabilities are assigned to events, which we represent as subsets of a sample

space, Ω. We assume that Ω is countable. The agenda, or the set of events under consideration,

is assumed to be an algebra A of events over Ω, that is, a set of subsets of Ω closed under

complementation and finite unions (in the general case, closure under countable unions yields a

σ-algebra).2 A function p : Ω Ñ r0, 1s is a probability mass function (pmf) iff
ř

ωPΩ ppωq “ 1.

Abusing notation, we can define a probability measure, p, on general events for a given pmf by

ppEq “
ř

ωPE ppωq. Pooling can be formulated in terms of pmfs, and we will appeal to pmfs in

discussing geometric pooling functions and the external Bayesianity constraint below.

Various interpretations of pooling are proposed in the literature. Wagner, for example, offers

the following (2009, pp. 336-337):

2For completeness, I include the probability axioms. A probability function is a mapping p : A Ñ R that satisfies
the following conditions:

(i) ppAq ě 0 for any A P A ;
(ii) ppΩq “ 1;

(iii) ppAYBq “ ppAq ` ppBq for any A,B P A such that AXB “ H.
If, in addition, A is a σ-algebra and p satisfies the following condition, p is called countably additive:

(iv) If tAnu
8
n“1 Ď A is a collection of pairwise disjoint events, then

pp
Ť8

n“1 Anq “
ř8

n“1 ppAnq.
In this essay, I assume countable additivity for convenience, not because I take it to be rationally mandatory.
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p1q A rough summary of the current probabilities of the n individuals;

p2q a “compromise” adopted by the individuals for the purpose of group decision making;

p3q a rational consensus to which the individuals revise their probabilities after discussion;

p4q the opinion a decision maker external to the group adopts upon being informed of the n expert

opinions in the group;

p5q the opinion an individual in the group adopts upon being informed of the n´ 1 opinions of his

“epistemic peers” in the group.

These five interpretations do not exhaust the possibilities. Our target interpretation is rational

consensus, adopted either for the sake of the argument (a compromise) in order to perform some

task in group inference or decision making (2) or genuinely by individual group members (3, 5).

However, the account I consider could also be used by a decision maker external to the group.

2.1. Criteria for Pooling Functions. What properties should a pooling function have?

Let’s review some of the most popular properties discussed in this connection. It is important

to consider, for each property, the extent to which it is normatively compelling for a particular

interpretation and use of pooling functions. Surveys of the material presented here include Simon

French’s (1985), Genest and Zidek’s (1986), and Dietrich and List’s (2014b).

McConway (1981) and Lerher and Wagner (1981) introduce a convenient property of pooling

functions called the strong setwise function property and strong label neutrality by the respective

authors. The property has it that the individual probabilities for an event—and not the entire

distributions of each individual—are all that is required to determine the collective probability of

that event.

Strong Setwise Function Property. There exists a function G : r0, 1sn Ñ r0, 1s such that, for

every event A, F pp1, ...,pnqpAq “ Gpp1pAq, ...,pnpAqq.
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What case can be made for the strong setwise function property (SSFP) as a pooling norm? SSFP

can be seen as a probabilistic analogue of the independence of irrelevant alternatives constraint in

the social choice literature. Consider two profiles pp1, ...,pnq and pp11, ...,p
1
nq. Suppose that, for

some event A, pipAq “ p1ipAq for i “ 1, ..., n, but the two profiles differ on some other event (so for

pooling probabilities for A, “irrelevant” parts of the probability functions differ). It can happen that

F pp1, ...,pnqpAq ‰ F pp11, ...,p
1
nqpAq despite the fact that pp1pAq, ...pnpAqq “ pp11pAq, ...,p

1
npAqq.

That is, the “consensus” probabilities for A differ for the two profiles despite no change in individual

opinions concerning A. So, the pooled probability for A is not a function merely of the individual

probabilities for A. For such an F , no function G exists because such a function would have to

map one profile of values in r0, 1sn to two distinct outputs in r0, 1s. Admittedly, such a case for the

normative status of SSFP is incomplete.

Many of the axioms proposed in the literature on pooling require that some property of the

individual probability functions be preserved under pooling. When the algebra contains at least

three events, one such preservation property follows immediately from SSFP, as McConway observes

(1981, Theorem 3.2).

Zero Preservation Property. For any event A, if pipAq “ 0 for i “ 1, ..., n, then F pp1, ...,pnqpAq

“ 0.

As Genest and Zidek remark, the zero preservation property (ZPP) is one in a class of constraints

requiring that the pool preserves initial shared agreements. The normative status of this sort of

preservation axiom has been called into question in the literature (Genest and Wagner, 1987). Of

course, ZPP is forced upon those endorsing SSFP. For conceptions of consensus on which common

ground is sought, that is, a non-question begging position of agreement, ZPP is more compelling.

I return to consensus as shared agreement or common ground below in Section 3.
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McConway’s Theorem 3.2 shows more. Taken together, the marginalization property (MP) and

the zero preservation property (ZPP) are equivalent to SSFP. McConway’s formal setup differs

somewhat from the one presented here. He is concerned with classes of pooling functions that

take into account all σ´algebras on Ω. We, however, are considering pooling functions for a fixed

algebra (which seems to be the more common approach). The formal properties of concern to

McConway must be modified accordingly. A pooling function satisfies MP if marginalization and

pooling commute. We adopt the modification of MP proposed by Genest and Zidek (1986, p.

118). Let A 1 be a subalgebra of A .3 Suppose that p is a distribution over pΩ,A q. The marginal

distribution pæA 1 given by p over pΩ,A 1q is the restriction of p to A 1 such that ppAq “ pæA 1pAq

for all A P A 1. rpæA 1s is a Carathéodory extension of pæA 1 to A .

Marginalization Property. Let A 1 be a sub-σ-algebra of A . For any A P A 1, F pp1, ...,pnqpAq “

F prp1æA 1s, ..., rpnæA 1sqpAq.

Below, I will state an analogue of another of McConway’s results. That result says that MP

is equivalent to the weak setwise function property (WSFP) (1981, Theorem 3.1). Instead of

F pp1, ...,pnqpAq depending just on the pipAq, i “ 1, ...n, those pooling functions merely satisfying

WSFP depend on both pipAq and the event, A. The difference is that a profile in r0, 1sn may be

mapped to more than one output, so long as the associated event differs.

Weak Setwise Function Property. There exists a function G : A ˆ r0, 1sn Ñ r0, 1s such that,

for any event A P A , F pp1, ...,pnqpAq “ GpA,p1pAq, ...,pnpAqq for each profile in the domain of F .

Probabilistic independence is another natural candidate property for preservation under pool-

ing. In the precise setting, there are a number of equivalent formulations of probabilistic indepen-

dence. For example, two events, A and B, are said to be stochastically independent according to p

3A 1 is a boolean subalgebra of A if A 1
Ď A and A 1, with the distinguished elements and operations of A , is

a boolean algebra. That is, the operations must be the restrictions of the operations of the whole algebra; being a
subset that is a boolean algebra is not sufficient for being a subalgebra of A (Halmos, 1963).
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if ppAX Bq “ ppAqppBq. Dividing both sides by ppBq, provided ppBq ą 0, yields ppAXBq
ppBq “ ppAq

when A and B are independent. But the lefthand side of the equation is a standard definition of

the probability of A conditional on B: ppA|Bq “ ppAXBq
ppBq , when ppBq ą 0. This observation allows

us to state another standard formulation of probabilistic independence. A and B are independent

according to p if ppA|Bq “ ppAq. The conditionalization of p with respect to an event B, pB, is

given by setting pBpAq “ ppA|Bq for all A. I will return to stochastic independence below, but it

will be convenient for us to adopt the definition in terms of conditional probabilities.

Probabilistic Independence Preservation. If pipA|Bq “ pipAq for i “ 1, ..., n, then

FBpp1, ...,pnqpA) “ F pp1, ...,pnqpAq.

This axiom says that two events that are probabilistically independent according to every individual

probability function are independent according to the pool.

Another preservation axiom is unanimity preservation, which requires that, if all of the functions

being pooled are identical, then the output of the pooling function is that probability function. So if

all the individual opinions are the same, the group opinion is identical to that common distribution.

Unanimity Preservation. For every opinion profile pp1, ...,pnq P Pn, if all pi are identical, then

F pp1, ...,pnq “ pi.

Other sorts of pooling axioms, like MP above, demand that some operation or other commutes

with pooling. A very interesting example of such an operation is a type of Bayesian updating.

Standard Bayesian conditionalization goes via Bayes’ theorem:

pBpAq “ ppA|Bq “
ppAqppB|Aq

ppBq
, when ppBq ą 0.

By the law of total probability, the denominator, ppBq, can be rewritten. Where tCj : j “ 1, 2, ...u

is a partition of Ω, ppBq “
ř

j ppB|CjqppCjq.
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External Bayesianity is a mild generalization of commutativity with Bayesian conditionaliza-

tion. The requirement is that updating the individual probabilities on a common likelihood function

(as opposed to updating on an event) and then pooling is the same as pooling and then updating

the pool on that likelihood function. The likelihood function, λ : Ω Ñ r0,8q, is defined on elements

of the sample space. In conditionalizing, λp¨q serves the same role as the conditional probability

ppB|¨q in Bayes’ theorem above, expressing the degree to which some fixed evidence B is expected

on various events. Put roughly, updating on λ results from substituting the likelihood function in

for the conditional probabilities on the right hand side of Bayes’ theorem. For every ω P Ω,

pλpωq “
ppωqλpωq

ř

ω1PΩ ppω1qλpω1q
,when

ÿ

ω1PΩ

ppω1qλpω1q ą 0

If p is a probability measure, it must be defined on an algebra including the elements of Ω. Oth-

erwise, take p to be a pmf and obtain a probabiltiy measure on a given algebra by summing over

the elements of Ω in each event to obtain the probability of events in the algebra. Comparing the

above formula with the version of Bayes’ theorem in which the denominator is expanded by the

law of total probability makes the relation between λpωq and ppB|¨q apparent. While not itself

a probability distribution, λpωq is proportional to ppB|ωq, for fixed data B. And though not a

function of general events in A , the likelihood of an event A can be obtained by summing the

likelihoods of all ω P A. Updating on a likelihood function reduces to standard conditionalization

on some event, B, when

λpωq “

$

’

’

’

&

’

’

’

%

1, if ω P B

0, otherwise.

(We verify the claim with routine subsititions in the footnote.4)

4For any A P A ,pEpAq “ ppAXEq
ppEq

“
ř

ωPAXE ppωq
ř

ωPE ppωq
. By the definition of a probability measure, ppAq “

ř

ωPA ppωq,

so
ř

ωPA pλpωq “
ř

ωPA ppωqλpωq
ř

ω1PΩ ppω1qλpω1q
gives us pλpAq. We show that these two fractions are equal by showing the

equality of both the numerators and denominators. Since, for all ω P A, ppωqλpωq “ ppωq if ω P E and 0 otherwise,
ř

ωPA ppωqλpωq “
ř

ωPAXE ppωq “ ppAXEq. Hence, the numerators are equal. And since, for all ω1 P Ω,ppω1qλpω1q “
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Crucially, the likelihood function is assumed to be common in the external Bayesianity axiom.

So while disagreement concerning the prior is permitted by pooling functions satisfying external

Bayesianity, the commutativity of pooling and updating is guaranteed only when there is agreement

on the likelihood funciton.

External Bayesianity. For every profile pp1, ...,pnq in the domain of F and every likelihood

function λ such that ppλ, ...,pλnq remains in the domain of F , F ppλ1 , ...,p
λ
nq “ F λpp1, ...,pnq.

A similar axiom requires that a single individual conditionalizing on λ before pooling is the

same as conditionalizing the pool on λ (Dietrich and List, 2014b).

Individualwise Bayesianity. For every profile pp1, ...,pnq in the domain of F and every individual

k such that pp1, ...,p
λ
k , ...,pnq remains in the domain, F pp1, ...,p

λ
k , ...,pnq “ F λpp1, ...,pnq

I also have more to say about individualwise Bayesianity below.

2.2. Types of Pooling Functions. Various concrete pooling functions have been studied

in the literature. These functions fare differently on the criteria reviewed just above. Of the

commonly discussed pooling operators, linear pooling functions may be the most common and

obvious proposal (Stone, 1961; McConway, 1981; Lehrer and Wagner, 1981).

Linear Opinion Pools. F pp1, ...,pnq “
řn
i“1wipi, where wi ě 0 and

řn
i“1wi “ 1.

w1, ..., wn are fixed non-negative weights summing to 1 that are associated with the n individuals.

Linear pooling, then, takes a weighted average of the individual probabilities. Equal weights for

the n probability functions specifies one linear pooling function; a dictatorship specifies another

linear pooling function. In the latter case, all of the weight is accorded to a single individual

(wi “ 1 for some i) with the result that the pooled probability for any event A is that individual’s

probability for A: F pp1, ...,pnqpAq “ pipAq. Interestingly, weights wi “
1
n were used in a U.S.

ppω1q if ω1 P E and 0 otherwise, we have
ř

ω1PΩ ppω1qλpω1q “
ř

ω1PE ppω1q “ ppEq. Hence, the denominators are

equal, too. So, pE “ pλ.
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Nuclear Regulatory Commission study of the frequency of nuclear reactor accidents (Ouchi, 2004,

p. 5).

Another proposal is to take a weighted geometric instead of a weighted arithmetic average of

the n probability functions (Madansky, 1964; Bacharach, 1972; Genest et al., 1986).5

Geometric Opinion Pools. F pp1, ...,pnq “ c
śn
i“1 p

wi
i , where wi ě 0 and

řn
i“1wi “ 1, and

c “ 1
ř

ω1PΩrp1pω
1qsw1 ¨¨¨rpnpω

1qswn
is a normalization factor.

Unlike linear pools, geometric pools specify the collective probabilities of elements of Ω instead of

events in general. But as with the likelihood functions above, the probability of any event A is

determined by summing the probabilities of ω P A. Because of the way in which multiplication

figures into the geometric pooling recipe, there are profiles for which F pp1, ...,pnqpωq “ 0 for all

ω P Ω, in violation of the probability axioms. If for each ω P Ω there is a pi P pp1, ...,pnq such that

pipωq “ 0 we have such a violation. To avoid this worry, the domain of geometric pooling operators

is restricted to profiles of regular pmfs, i.e., those p such that ppωq ą 0 for all ω P Ω. We denote

the set of regular pmfs P1 making the relevant domain P1n.6

A third, more recent proposal from Dietrich (2010) is given by the following formula.

Multiplicative Opinion Pools. F pp1, ...,pnqpωq “ c
śn
i“0 pi, where p0 is a fixed “calibrating”

probability function, and c “ 1
ř

ω1PΩrp0pωqs¨rp1pω
1qs¨¨¨rpnpω

1qs
is a normalization factor.

As with geometric pooling functions, the domain of multiplicative pooling functions will be re-

stricted to P1n. Comments on the interpretation and choice of p0 can be found in (Dietrich and

List, 2014b, pp. 17-19)

5An unweighted geometric pool of n numerical values is given by n
?
x1 ¨ ¨ ¨ xn “ x

1
n
1 ¨ ¨ ¨ x

1
n
n .

6Rather than assuming regularity or that the algebra contains the elements of Ω, we could make the weaker
restriction to the domain of profiles of pmfs such that there is some ω P Ω for which pipωq ą 0 for all i “ 1, ..., n.
And pmfs allow us to obtain measures defined on general algebras on Ω.

25



Various results, both characterization and limitative, for the different pooling operations and

axioms have been obtained. For example, SSFP characterizes linear pooling.

Theorem 1. (McConway, 1981, Theorem 3.3; Lehrer and Wagner, 1981, Theorem 6.7) Given

that the algebra contains at least three disjoint events, a pooling function satisfies SSFP iff it is a

linear pooling function.

Theorem 2. (McConway, 1981, Corollary 3.4) Given that the algebra contains at least three

disjoint events, F satisfies WSFP and ZPP iff F is a linear pooling function.

McConway has shown that a pooling function has the WSFP iff it has the MP. So linear pooling

functions satisfy MP and ZPP.

Theorem 3. (Genest, 1984, p. 1104) The geometric pooling functions are externally Bayesian

and preserve unanimity.

Other sorts of pooling functions, such as a certain generalization of geometric pooling, satisfy the

conditions of Theorem 3. A characterization of externally Bayesian pooling functions is given in

(Genest et al., 1986). Dietrich and List provide a characterization of multiplicative pooling.

Theorem 4. (Dietrich and List, 2014b, Theorem 3) The multiplicative pooling functions are

the only individualwise Bayesian pooling functions (with domain P1n).

There are many Arrovian limitative theorems in the pooling literature. As Robert Nau notes,

none of the pooling methods discussed satisfy even unanimity, external Bayesianity, and the

marginalization property (2002, p. 266). (As I show below, our proposal in this essay does satisfy

those properties.) One result that we have occasion to appeal to below follows from results due to

Lehrer and Wagner (1983, Theorems 1 and 2) in conjunction with Theorem 1 above:
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Theorem 5. (Cf. Lehrer and Wagner, 1983) Given that the algebra contains at least three

pairwise disjoint events, the only pooling functions that preserve probabilistic independence and

satisfy SSFP are dictatorial.

It follows that non-dictatorial linear pools do not preserve probabilistic independence. In general,

non-dictatorial pooling methods struggle with independence preservation (Genest and Wagner,

1987). (Here, too, I claim to do better.)

3. Motivations for IP

In general terms, imprecise probabilities (IP) models do not require representing an agent’s or

group’s judgments of subjective probability as numerically precise. Instead, such judgments could

be represented by sets of probability functions (Kyburg and Pittarelli, 1996), for example, or by

intervals (Kyburg, 1998).

There are a number of motivations for working with IP models. These include the potential to

resolve some of the “paradoxes of decision” (Ellsberg, 1963; Levi, 1986b), allowing for more flexible

and less arbitrary models of uncertainty (Gärdenfors and Sahlin, 1982; Walley, 1991), allowing for

incomplete preferences (and hence judgments of incomparability) in the subjective expected utility

setting (Levi, 1986a; Seidenfeld, 1993; Kaplan, 1996), and increased descriptive realism (Arló-Costa

and Helzner, 2010). An overview of these and other motivations for IP can be found in (Bradley,

2014).

Most important for present purposes, IP allows for—what I consider—a very interesting and

philosophically well-motivated account of consensus (Levi, 1985; Seidenfeld et al., 1989). Our goal

in this section is to present this account of consensus for explicit consideration in the context of

pooling. It may help to first consider the case of full or plain belief. At the outset of inquiry,

inquirers may seek consensus as shared agreement in their beliefs. This could be achieved by

retaining whatever beliefs are common to all parties and suspending judgment on those that are
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controversial thereby avoiding question-begging. Importantly, the consensus is generally a weaker

state of belief. Since inquiry initiating from the consensus view proceeds without begging questions

against parties to the consensus, various hypotheses of concern can receive a fair hearing. Such a

consensus constitutes a neutral or non-controversial starting point for subsequent inquiry.

The idea that parties to a joint effort in inquiry or decision making should restrict themselves to

their shared agreements—as a compromise or as genuine consensus—can be extended to judgments

of probability. An analogous sense of suspending judgment concerning what is controversial is

available in the IP setting. To suspend judgment among some number of probability distributions

is to not rule them out for the purposes of inference and decision making. Put another way, to

suspend judgment among some number of distributions is to regard each as permissible to use in

inference and decision making. If the parties seeking consensus all agree that p is not permissible,

then the consensus position reflects that agreement and rules it out (this will have to be finessed

when we come to the question of convexity below). A set of probability functions represents the

shared agreements among the group concerning which probability functions are not permissible to

use in inference and decision making. For example, it is consensus that the probability of some

event is not below the minimum of individual assignments.

Many authors refer to the output of a pooling function as a consensus (Lehrer and Wagner,

1981; McConway, 1981; Genest and Zidek, 1986). In what way is a precise pool a consensus?

Isaac Levi draws a distinction between consensus as the outcome of inquiry and consensus at the

outset of inquiry (1985). At the outset of inquiry, agents may seek common ground upon which to

pursue joint inquiry. This is consensus as shared agreement, discussed just above. Disagreement

among the parties to the consensus may then be resolved (in the best case) through joint efforts

in inquiry—consensus as the outcome of inquiry. Given the restriction that consensus must be

representable by a unique probability function, outside of the special case when all individuals are
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in total agreement, finding consensus as shared agreement that suspends judgment on unshared

probabilistic views is a foreclosed possibility.

The individuals could assume some common, precise probability distribution, but Levi argues

this is not consensus as common ground:

there can be no analogue in contexts of probability judgment of the two senses of
consensus I identify. If two or more agents differ in probability judgment, they
can all switch either to the distribution adopted by one of them or to some other
distribution which is, in a sense, a potential resolution of the conflict between their
differing distributions. There is only one kind of consensus to be recognized—
namely the resolution of conflict reached through revolution, conversion, voting,
bargaining or some other psychological or social process. (1985, pp. 5-6)

Wagner likewise distinguishes between a compromise adopted to perform an exercise in group

decision making and a consensus to which the individuals revise their own beliefs (Section 2). Levi’s

point in the quotation above is that a precise pool is neither a consensus as shared agreement since,

in general, it is not restricted to just the shared probabilistic views; nor is it justified on the basis

of inquiry, understood as designing and performing experiments, obtaining evidence, etc. A precise

pool might represent the sort of political consensus that a vote does in the case of preferences, or

that the output of a judgment aggregation function does in the case of qualitative belief. That is,

consensus as bargaining or compromise. Of course, at least one sort of compromise is a consensus

adopted for the sake of the argument rather than genuinely. That is, parties to the compromise

could assume the consensus position as Levi identifies it—namely, a convex IP set—for the sake

of the argument, or for carrying out some group deliberation or inquiry so long as the consensus

position is strong enough for the group’s purposes. It must be admitted that there are other

compromise positions, including precise pools, that the group might assume.

But Levi’s view distinguishes between political and rational consensus. Returning again to the

case of full belief, Levi requires that revisions be decomposable into a sequence of contractions and

expansions. An inquirer’s set of full beliefs constitute her “standard for serious possibility” in the

following sense: if A is among her full beliefs,  A is not a serious possibility. To change her mind,
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the inquirer must first suspend judgment on A by contracting A if she cares to avoid error (where

error is judged by her own lights). From the contraction, both A and  A are serious possibilities.

A direct revision to include  A involves deliberately importing error from the point of view that

rules  A out as a serious possibility.

Unlike full beliefs, however, judgments of subjective probability do not bear truth values. So

how might one suspend judgment among candidate distributions before changing points of view?

As discussed just above, subjective probabilities are used in determining expectations for available

acts. Levi’s proposal is that to suspend judgment among some number of distributions is to not rule

them out for use in the functions that they perform in inquiry and deliberation. Coming to regard a

probability distribution as permissible is the analogue of opening one’s mind to the (serious) possi-

bility of  A in the case of full belief. Just as assuming a weaker position in full belief avoids begging

questions, retreating to a superset of distributions avoids prejudging the issue of determining which

distributions are permissible for use in inquiry and deliberation. Moving from a set of probability

functions (including a singleton) to a superset is the probabilistic analogue of contraction. Employ-

ing sets of probability functions avoids demanding direct revisions to probabilistic judgments the

agent regards as impermissible from the standpoint of her current probabilistic judgments without

first “contracting” to a neutral position that suspends judgment among the relevant probabilistic

views (Levi, 1974). As he emphasizes, both reaching common ground at the outset of inquiry and

subsequent reasoned changes in probabilistic views are available to groups in the IP setting.

Why has most work on probabilistic aggregation restricted itself to consideration of represen-

tations in terms of a single probability function? One reason is that such representation is the

standard for individuals and, since we are treating groups as agents in a sense, that representation

should extend to groups as well. Genest and Zidek write, “it would be natural to express the

consensus judgment in the same form as the originals” (1986, p. 115). But I am not moved by

this convention (or in Walley’s terminology, by this “Bayesian dogma of precision”) for some of the
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very reasons as discussed just above. I urge, in what follows, that theorizing concerning IP should

be extended to accounts of probabilistic opinion pooling and vice versa. Even if the motivations

for IP in general, including at the level of individuals, are found less than convincing, one might

think that the case for IP at the level of group opinion is more persuasive, say as an account of

consensus. I take the motivations above and the propositions that follow as recommending further

consideration of IP in the context of pooling and consensus.

4. IP Pooling Formats

I want to make a case that the out-of-the-gate restriction of the codomain of F to P is unwar-

ranted (just as many have argued that the standard Bayesian assumption that rational individuals

are committed to determinate probabilistic judgments is unwarranted). Our strategy is to point

to a sensible account that abandons that restriction. Here we assume a representation in terms of

a set of probability functions. We make use of set-valued functions or correspondences. Where F

refers to a pooling function that outputs a single probability function, we will use F to refer to

pooling correspondences outputting sets of probability functions:

F : Pn Ñ PpPq

4.1. Convex or Not? Much of the work with IP assumes that IP sets of probabilities are

convex (Smith, 1961; Levi, 1974; Girón and Ŕıos, 1980; Gilboa and Schmeidler, 1989; Walley, 1991;

Moral and Del Sagrado, 1998). A set of probability functions, P , is convex if, for any two functions

in the set, the set includes every convex combination of those functions.

Convexity. If p1,p2 P P , then αp1 ` p1´ αqp2 P P for α P r0, 1s.

Besides some handy computational properties of convex sets of probability functions (Girón and

Ŕıos, 1980), convexity can be motivated philosophically. A set of probability functions represents
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the shared agreements among the group members concerning which distributions are ruled out for

use in deliberation and inquiry. But is it not common ground that the convex combinations of

individual probability functions are ruled out? The idea is that convexity recommends a weaker

attitude in suspending judgment among some number of probability distributions; fewer distribu-

tions are ruled out. Convexity requires keeping an open mind concerning potential compromises or

resolutions of conflict (the convex combinations) between various probabilistic views. Levi argues

that convex combinations have “all the earmarks of potential resolutions of the conflict; and, given

the assumption that one should not preclude potential resolutions when suspending judgment be-

tween rival systems [...] all weighted averages of the two functions are thus taken into account”

(1980, p. 192).

The normative status of convexity is the subject of outstanding controversy. Seidenfeld, Schervish,

and Kadane make a case against convexity in the context of group decision making (1989). They

observe that if two Bayesian agents differ in both probability and utility, any compromise position

in probability besides trivial convex combinations entails a violation of a Pareto constraint on pref-

erence. Levi responds in his (1990), arguing against the Pareto condition. Kyburg and Pittarelli

lodge some complaints about the property in “Some Problems for Convex Bayesians” (1992). In

“Set-Based Bayesianism,” they explore relaxing convexity to allow for IP sets in general. Seiden-

feld et al.’s theory of coherent choice does not require convexity (2010). They offer a variation of

one of Kyburg and Pittarelli’s criticisms of convexity, registering a counterexample that exploits

the failure of convex combinations to preserve probabilistic independence (but see (Levi, 2009, pp.

373-375) for a response).

Depending on the decision theory, distinctions between pooling formats may or may not be of

importance. For example, there are decision rules that cannot distinguish between certain convex

and non-convex sets of probabilities (Gilboa and Schmeidler, 1989; Walley, 1991). Such distinctions

are meaningful according to other decision rules (Levi, 1980). And there are decision rules that
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distinguish between any two sets of probabilities (Seidenfeld et al., 2010). The important point here

is that disputes over the format of pooling functions are idle if such distinctions are not decision-

theoretically meaningful. On decision theories that cannot distinguish a convex set of probabilities

from its extreme points, for example, there is nothing at stake in arguments over whether an IP

opinion pool is convex or not.

4.2. Convex Pooling Functions. As a proof of concept, I will investigate aggregation func-

tions that output sets of probability functions. The aggregate is formed by taking the convex hull

of the n probability distributions:

Fpp1, ...,pnq “ convtpi : i “ 1, ..., nu

The convex hull of a set of points is the smallest convex set containing those points. We write

Fpp1, ...,pnqpAq as shorthand for the set of probability assignments to A:

Fpp1, ...,pnqpAq “ tppAq : p P Fpp1, ...,pnqu

I work with convexity, not because I presume to know of decisive arguments in its favor, but because

convexity is a broadly customary assumption, I do not yet feel compelled to dismiss it, and it allows

me to make a proof of concept argument for IP pooling. In effect, assuming convexity amounts to

making it slightly harder to show some of the propositions below, though the propositions also hold

for IP aggregation methods that relax convexity. I return to the issue of convexity below to make

good on my earlier promise to clarify how our case for IP in the context of opinion aggregation

does not depend entirely on convex IP pools (Section 7.3, Proposition 7).
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5. Extending Pooling Axioms to the IP Setting

Convex IP pooling functions satisfy the extensions of those axioms to the IP setting. For the

SSFP, we replace G with a set-valued function or correspondence: G : r0, 1sn Ñ Ppr0, 1sq. G

is a map from n numerical values in r0, 1s to a set of probability values, Gpp1p¨q, ...,pnp¨qq. The

constraint becomes that there exists a function G such that, for any event A, Fpp1, ...,pnqpAq “

Gpp1pAq, ...,pnpAqq. WSFP, then, requires a function G : A ˆ r0, 1sn Ñ Ppr0, 1sq. For unanimity

preservation, we do not distinguish between p and tpu. ZPP is generalized analogously. If pipAq “ 0

for all i “ 1, ..., n, then Fpp1, ...,pnqpAq “ t0u. The MP has a straightforward extension to sets

of probability functions: Fpp1, ...,pnqpAq “ Fprp1æA 1s, ..., rpnæA 1sqpAq, for any A P A 1 There

are many ways to generalize constraints. While I offer conservative and natural modifications of

the axioms in order to extend them to the imprecise setting, the crucial question is whether I

have modified what is compelling about the axioms. For example, is representation in terms of a

unique probability function crucial to what makes commutativity of conditionalization and pooling

compelling, or what is appealing about preserving shared judgments of independence? In each case,

I submit, the attractiveness of the axiom does not hinge on whether the output of the aggregation

function is a single probability function or a set of them.

First, we note that an analogue of McConway’s result holds for IP pooling functions in general.

Proposition 1. Let F : Pn Ñ PpPq be an IP pooling function (not necessarily convex). F

satisfies WSFP iff F satisfies MP.

Before stating the next proposition, we record a fact about convex sets of probabilities (simple and

familiar to those with a background in geometry) that we will make use of in the proof.7 Proofs

for the lemmas and propositions are recorded in the appendix.

7I include a proof of the observation because we appeal to it several times in the other proofs, because it is a
simple special case (but all we need) of a more general result concerning convexity (Rockafellar, 1970), and because
some readers may not have a conceptual handle on the property.
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Lemma 1. Let Fpp1, ...,pnq “ convtpi : i “ 1, ..., nu for any profile pp1, ...,pnq in the domain of

F . Any p P Fpp1, ...,pnq can be expressed as a convex combination of the n probability functions,

i.e. p “
řn
i“1 αipi, where αi ě 0 for i “ 1, ..., n and

řn
i“1 αi “ 1.

Proposition 2. Convex IP pooling functions satisfy SWFP, WSFP, MP, ZPP, and unanimity

preservation.

As indicated in the proof, SSFP entails both WSFP and ZPP.

While linear pooling functions are not externally Bayesian, convex IP pooling functions satisfy

the extension of external Bayesianity to the IP setting. The convex or prior-by-prior conditional-

ization of a convex set of probability functions, FBpp1, ...,pnq, results from conditionalizing each

member of the set. Updating a convex set of probability functions on a common likelihood function

is defined analogously:

Fλpp1, ...,pnq “

"

pλ : p P Fpp1, ...,pnq,
ÿ

ω1PΩ

ppω1qλpω1q ą 0, and pλp¨q “
pp¨qλp¨q

ř

ω1PΩ ppω1qλpω1q

*

To show that convex IP pooling functions are externally Bayesian, we first state another observation.

Lemma 2. (Cf. Levi, 1978; Girón and Rı́os, 1980) Convexity is preserved under updating on a

likelihood function, i.e., Fλpp1, ...,pnq is convex.

Proposition 3. Convex IP pooling functions are externally Bayesian.

Dietrich and List argue that while geometric pooling is justified on epistemic grounds when

individual opinions are based on the same information, multiplicative pooling is justified in cases of

asymmetric information, when individual opinions are in part based on private information. Their

case is built around the individualwise Bayesianity axiom and the fact that multiplicative pooling

satisfies it (Theorem 4).
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Proposition 4. Convex IP pooling functions are not individualwise Bayesian.

I regard Proposition 4, however, as stating a feature and not a bug of convex IP aggregation. At

least insofar as the idea is to reach a consensus, it is not desirable for features of one individual’s

probability distribution to be unilaterally imposed on the group. In the case of full belief, the

initial consensus does not adopt just any belief of any member. Better, in our view, for group

opinion to change through efforts in intelligently conducted inquiry from initial common ground

(in inquiry, a group may designate a subgroup as an information source on a given topic, but this

process requires a richer representation). Dietrich and List motivate individualwise Bayesianity by

pointing out that if the constraint is not satisfied, then it makes a difference if an individual first

learns some information and opinions are then pooled, or if the opinions are pooled and then the

information is acquired by the group as a whole. But for consensus, this is as it should be. If the

opinions of the group members do not reflect some piece of information, that information is not

common ground. The consensus among group members depends on the probabilistic opinions of

the members.

None of this is to say, of course, that features of individual probability distributions are irrelevant

to group consensus. On the convex IP view, the kernel of truth in individualwise Bayesianity can

be formulated by the inequalities below, stated here for standard conditionalization.

mintppBq : p P Fpp1, ...,pnqu

ď mintppBq : p P Fpp1, ...,p
B
i , ...,pnqu

ď mintppBq : p P FBpp1, ...,pnqu

And similarly,

maxtppBq : p P Fpp1, ...,pnqu

ď maxtppBq : p P Fpp1, ...,p
B
i , ...,pnqu

ď maxtppBq : p P FBpp1, ...,pnqu.
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The consensus probabilities for B shift up (at least not down, more precisely) if one individual con-

ditionalizes on B, and shift more if the consensus itself conditionalizes on B. But these inequalities

simply reflect facts about what the common ground is and do not reflect group “learning” from

one individual’s probability function.

Convex IP pooling also inherits some of the challenges facing linear pooling. SSFP conflicts

with probabilistic independence preservation. As Theorem 5 states, the only pooling functions

that preserve probabilistic independence and satisfy SSFP are dictatorial. The loss of probabilistic

independence presents both epistemic challenges as well as decision theoretic ones (Kyburg and

Pittarelli, 1992; Seidenfeld et al., 2010).

In the case of convex IP pooling, however, there is more leeway to address the challenges. Several

generalizations of the concept of independence for IP have been proposed and studied (de Campos

and Moral, 1995; Cozman, 1998). We consider Levi’s notion of confirmational irrelevance.

Confirmational Irrelevance Preservation. If pipA|Bq “ pipAq for i “ 1, ..., n, then

Fpp1, ...,pnqpAq “ FBpp1, ...,pnqpAq.
8

Irrelevance preservation is a generalization of probabilistic independence preservation. It is clear

that when Fpp1, ...,pnq is a single probability function, irrelevance preservation reduces to inde-

pendence preservation. According to some decision theories for IP, it is the whole set P that is

relevant for inquiry and decision making (Levi, 1980; Seidenfeld et al., 2010). Irrelevance is a sen-

sible generalization of independence because it allows us to identify when some information will

not make a difference to certain inquiries or deliberations, namely, those inquiries and deliberations

concerning events to which the information is irrelevant.

8This binary case of irrelevance can be generalized to non-binary partitions. Let A1, ..., Ak be a partition of Ω.
In Levi’s setup, a question is represented as a partion, each element of which is a potential answer. Information B is
pairwise irrelevant to A1, ..., Ak if B is irrelevant to each cell of the partition.
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It also does not take much work to show that confirmational irrelevance preservation is sat-

isfied by any IP pooling function (not necessarily convex) that satisfies stochastic independence

preservation.

Stochastic Independence Preservation If pipA X Bq “ pipAqpipBq, for i “ 1, ..., n, then, for

all p P Fpp1, ...,pnq, ppAXBq “ ppAqppBq.

It turns out that confirmational irrelevance is, but stochastic independence is not, preserved by

convex IP pooling functions. Suppose that A and B are probabilistically independent according to

pi, i “ 1, ..., n. Since linear pooling does not preserve independence, independence is not preserved

at some of the interior, non-extreme points of P . However, the whole set of probability values for

A, Fpp1, ...,pnqpAq, is the same before and after conditionalizing on B.

Proposition 5. Convex IP pooling functions satisfy irrelevance preservation.

So, while stochastic independence and confirmational irrelevance are equivalent in the precise setting

(when ppBq ą 0), they come apart in the IP context.9 Because irrelevance preservation reduces

to probabilistic independence preservation when the output of the pooling function is a unique

probability function, and linear, geometric, and multiplicative pooling functions do not satisfy

probabilistic independence preservation in general, we have that linear, geometric, and multiplica-

tive pooling functions do not satisfy irrelevance preservation either. If there are good reasons to

require IP pooling functions to satisfy the stronger stochastic independence preservation property,

then convex IP pool does not deliver (though there are IP formats that do (Proposition 7)).

9Pedersen and Wheeler show how logically distinct independence concepts are teased apart in the context of
imprecise probabilities. They write, “there are several distinct concepts of probabilistic independence and [...] they
only become extensionally equivalent within a standard, numerically determinate probability model. This means
that some sound principles of reasoning about probabilistic independence within determinate probability models are
invalid within imprecise probability models” (2014, p. 1307). So IP provides a more subtle setting in which to
investigate independence concepts.

38



Finally, convex IP pooling admits of a simple characterization in terms of the set of universally

admissible means.10 We call a function m : r0, 1sn Ñ r0, 1s a mean on the interval r0, 1s. We first

define a mapping Mn : Pn Ñ Ppr0, 1sr0,1s
n
q by setting for every pp1, ...,pnq P Pn:

Mnpp1, ...,pnq “
!

m P r0, 1sr0,1s
n

: m
`

p1p¨q, ...,pnp¨q
˘

P P
)

.

Call a mean admissible for pp1, ...,pnq if m
`

p1p¨q, ...,pnp¨q
˘

P P. Then, Mnpp1, ...,pnq is the set

of admissible means for pp1, ...,pnq. Using Mn, we define another mapping Mn : Pn Ñ PpPq by

setting for every pp1, ...,pnq P Pn:

Mnpp1, ...,pnq “
!

m
`

p1p¨q, ...,pnp¨q
˘

: m P
č

~qPPn
Mnp~qq

)

.

Mnpp1, ...,pnq is the set of probability functions that results from composing each universally

admissible mean with
`

p1p¨q, ...,pnp¨q
˘

.

Proposition 6. Suppose that A contains at least three pairwise incompatible events. A map-

ping F : Pn Ñ PpPq is a convex IP pooling function—that is, Fpp1, ...,pnq “ convpp1, ...,pnq—if

and only if Mnpp1, ...,pnq “ Fpp1, ...,pnq for all pp1, ...,pnq P Pn.

An interesting line of research to pursue would be to consider pooling from the perspective of

an analysis of means (e.g., Kolmogorov, 1930; de Finetti, 1931; Aczél, 1948). Perhaps such an

analysis could shed light on issues like the propriety of qualitative conditions on pooling rules, or

the function of convexity in reaching a consensus in inquiry and deliberation.

6. Epistemic and Procedural Grounds for

10Thanks to Paul Pedersen for suggesting that I include a result along these lines.
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IP Accounts

In their review article, Dietrich and List claim that the question of how probabilities should be

aggregated admits of no obvious answer, and, ultimately, the appropriateness of the pooling method

depends on the purpose and context of aggregation (2014b). They raise the question of whether a

pooling method should be justified on epistemic or procedural grounds. To be justified on epistemic

grounds, “the pooling function should generate collective opinions that [...] respect the relevant

evidence or track the truth, for example.” In order to be justified on procedural grounds, a pooling

method should yield a collective opinion that is a “fair representation of the individual opinions”

(2014b, p. 2). Dietrich and List claim that, while linear pooling can be justified on procedural

grounds, it cannot be justified on epistemic grounds. By satisfying WSFP, linear pooling functions

reflect “the democratic idea that the collective opinion on any issue should be determined by

individual opinions on that issue” (2014b, p. 6). Geometric pooling, however, can be justified in

epistemic terms “by invoking the axiom of external Bayesianity” (2014b, p. 13). The idea seems

to be that since updating is a response to the evidence, a pooling method that is well-behaved in

the sense of commuting with updating “respects the relevant evidence” by not allowing the order

of operations to distort evidential impact.

Convex IP pooling, then, can be justified on Dietrich and List’s procedural grounds in virtue

of satisfying WSFP. Concerning procedural grounds in general, it is difficult to think of a more

fair or democratic representation of individual opinions than a representation that includes each

opinion and all of the compromises between opinions. But since convex IP pooling functions also

satisfy external Bayesianity, it would thus appear that the alleged tension between epistemic and

procedural criteria for probabilistic opinion aggregation can be resolved by simply moving to an IP

account.
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I endorse the basic motivation for Dietirch and List’s discussion. Like other deliberate activi-

ties, pooling is goal-directed. How one should approach pooling depends on, among other things,

one’s goals. One may have multiple goals, in which case, tensions in jointly satisfying them may

require tradeoffs. Nevertheless, I find it rather opaque precisely how WSFP encodes an intuitive

procedural constraint on pooling. Similarly, how commutativity of pooling and updating ensures

that the collective opinion respects the relevant evidence or tracks the truth stands in need of

further clarification. Even if the philosophical distinction and interpretation of WSFP and exter-

nal Bayesianity does not admit of further clarification, however, our point stands that the tension

between satisfying the formal desiderata can be resolved in the IP setting.

7. Objections to IP Pooling

Perhaps the relative neglect of IP in discussions of pooling can be explained in part by a

skepticism concerning the use to which IP sets can be put. In their very nice overview of work on

pooling, Genest and Zidek write, “the jury remains out on the theory of Walley [...] In particular,

it is unclear how [the IP set] could be used ‘at the end of the day’” (1986, p. 124). There are

essentially two types of uses to which an account of probabilities may be put: those concerning

epistemic issues like inference, and those concerning issues in decision making.

7.1. Epistemology. Some degree of the skepticism about the epistemic usefulness of IP may

be dispelled by considering recent work. For instance, after Genest and Zidek’s article, Walley

published his magisterial book addressing applications of IP to issues in statistical reasoning (1991).

Fabio Cozman explores the application of IP to issues in Bayesian networks in a number of papers

(1998; 2000).

But let us consider some epistemological challenges of a general sort. In reviewing some difficul-

ties for the few available accounts of pooling IP sets of probabilities (accounts allowing imprecision
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at the individual level), Robert Nau claims that neither taking the union nor the intersection of

convex sets of imprecise probabilities yields a satisfactory account of pooling. He writes,

As more opinions are pooled, the union can only get larger, and it reflects only
the least informative opinions, whereas intuitively there ought to be (at least
the possibility of) an increase in precision as the pool gets larger. On the other
hand, the intersection of convex sets of measures may be empty if experts are
mutually incoherent, and it generally yields too tight a representation of aggregate
uncertainty. As more opinions are pooled, the intersection can only shrink, and
it reflects only the most extreme among those opinions, whereas intuitively there
should be some convergence to an average opinon when the pool gets sufficiently
large. Moreover, neither the union nor the intersection provides an opportunity
for the differential weighting of opinions, which would be desireable in cases where
one individual is considered (either by herslef or by an external evaluator) to be
better or worse informed than another individual about a particular event under
consideration. (2002, p. 267)

Similar concerns could be expressed about the account of pooling under examination in this essay

since uncertainty never decreases by mere pooling on our account. But I think they would mis-

placed. The appropriateness of the behavior of a pooling function cannot be assessed in abstract,

without specifying the point of pooling probabilities in the first place. If the point is to find com-

mon ground among the opinions being pooled, increasing uncertainty is to be expected. In general,

the more opinions among which we try to find common ground, the less common ground there will

be.11 One might not wish to seek consensus among certain opinions, but that is a different matter.

On our account uncertainty can be reduced, but through inquiry and not through pooling. As the

group acquires sufficient information, conditionalization generally leads to a reduction of impreci-

sion. In the IP setting, it is also possible, however, for conditionalization to increase imprecision

in the short run, a phenomenon known as dilation (Seidenfeld and Wasserman, 1993; Wasserman

and Seidenfeld, 1994; Herron et al., 1997; Pedersen and Wheeler, 2014, 2015). But our point here

is not that conditionalization invariably decreases uncertainty, but that it can and that decreas-

ing uncertainty through conditionalization has familiar Bayesian “learning” foundations whereas

pooling (averaging) does not.

11I suspect that Nau is not targeting consensus because his models of pooling involve game-theoretic bargaining
scenarios pitting the opinions to be aggregated against each other.
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Furthermore, in the case of pooling imprecise probabilities, I would not endorse taking intersec-

tions for the purpose of finding consensus. In the case of mutual incoherence, intersections yield the

empty set. But the lack of any consensus concerning which probability functions can be ruled out

means that the group in consensus cannot rule any probability functions out. Taking the convex

hull of the union would reflect this, yielding complete uncertainty.12

I think it is important to distinguish between finding consensus among some opinions and taking

those opinions as evidence. In the latter case, if an agent outside the group considers some members

of the group to be less informed than others, that opinion should be reflected in conditionalization

through the likelihood for the experts’ opinions (Cf. the Supra-Bayesian approach to pooling

(Genest and Zidek, 1986, p. 120)). In the former case, if a group member is considered, by herself

or other group members, to be less informed, consensus is often not sought. Finding what common

ground the group members share is unproblematic when consensus is sought, regardless of the

social, political, or intellectual clout members accord each other. It is also open to, and perhaps

rationally obligatory for, the modest group member to allow her opinion concerning her relative

informedness to be reflected in her probabilistic opinion before pooling.

Finally, one might object that IP pooling amounts to declining to really aggregate. In a sense,

that is true, if pooling is restricted to taking some sort of average of individual probabilities. But,

again, what is the theoretical basis for only considering precise averages of subjective probabilities?

An IP set clearly represents group opinion, and can be employed in inference and decision making.

7.2. Decision Theory. Because decision theory is a very involved topic and I do not treat it

in this chapter, I limit myself to pointing out that sophisticated decision theories for IP have been

developed and extensively studied. These include Levi’s E-admissibility and tie-breaking decision

12See Larry Wasserman’s review of Walley’s book for objections to this representation of complete uncertainty
(1993), and Levi’s concept of confirmational commitment as a potential means of addressing the objections (1974).
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rule (1980), Girón and Rios’ quasi-Bayesian decision theory (1980), Gilboa and Schmeidler’s Γ-

Maximin (1989), and Walley’s Maximality (1991). Seidenfeld, Schervish, and Kadane axiomatize

their theory of coherent choice under uncertainty in the framework of set-valued choice functions

(2010). Though saying so overcommits me for my project in this essay, I hold the view that

theoretical disputes about probability cannot be adjudicated without thorough decision theoretic

considerations.

7.3. Convexity Revisited. How much do the results in this essay depend on the convexity

of the IP set? Not much! To see why, consider the following very simple IP pooling function,

F : Pn Ñ PpPq, such that

Fpp1, ...,pnq “ tpi : i “ 1, ..., nu

So defined, F takes as input a profile of probability functions and returns the set of functions in

that profile.

Proposition 7. Let F : Pn Ñ PpPq be an IP pooling function such that, for each profile

in Pn, Fpp1, ...,pnq “ tpi : i “ 1, ..., nu. Then, F satisfies SSFP, WSFP, ZPP, MP, unanim-

ity preservation, external Bayesianity, and confirmational irrelevance preservation. Moreover, F

satisfies stochastic independence preservation.

The proof of Proposition 7 is straightforward and so is omitted here. The upshot is that pooling

with imprecise probabilities is promising in a robust sense. So, while the convex IP pooling model

is the chief subject of our philosophical approbation and mathematical analysis in this essay, our

case for the consideration of IP in the context of pooling does not rest exclusively with that model.

7.4. Dynamics. As I have presented convex IP pooling functions, the input is a profile of

individual probability functions and the output is a convex set of probability functions. What

if individual probabilities are themselves imprecise? Or what happens if we attempt to pool the
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probabilistic opinions of agents that are themselves groups?13 As it stands, our account is silent.

There is, however, a natural extension of the account on offer. Consonant with the philosophical

position staked out here, the idea is to convexify the union of sets of probability functions.

F : PpPqn Ñ PpPq

Where the profile consists of n sets of probability functions, pP 1, ...,P nq, the pool is given by

FpP 1, ...,P nq “ convt
Ť

iP iu. I leave examination of this more complete account to future work.

8. Conclusion

According to standard Bayesian theory, personal probabilities are subjective. One route that

has been explored for recovering some objectivity is establishing intersubjective agreement. There

are, for example, the famous convergence theorems to the effect that, given non-extreme priors

and a suitably large amount of evidence upon which to conditionalize, posteriors converge (Savage,

1954; Gaifman and Snir, 1982). Consensus in the (very) long-run, however, is not the only kind

of consensus we may seek. Prior to inquiry, consensus as shared agreement is still possible, and

desirable for joint efforts in inquiry. Convex IP pooling can be philosophically motivated as an

account of such consensus.

Our objective has been to undermine the preconception that probabilistic opinion pooling should

result in a representative probability function for the group. Our tack has been to explore another

option, arguing that, even by the very lights of those working in pooling, this option is promising.

We have the following summary (an “X” means the pooling method does not generally satisfy the

property):

13The problem being raised is similar to one in the literature on AGM belief revision. The principle of categorical
matching requires that the output of a belief revision operator be of the same format as the input. Otherwise, the
account of belief revision, constructed for a certain input format, is silent about iterated belief revision (Gärdenfors
and Rott, 1995). In the case of convex IP pooling functions, dynamics of pooling are defined so long as we are never
pooling sets of probabilities.
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Table 2. Pooling Method Report Card

Linear Geometric Multiplicative Convex IP
SSFP X X X X
ZPP X X X X
MP X X X X
WSFP X X X X
Unanimity Preservation X X X X
External Bayesianity X X X X
Individualwise Bayesianity X X X X
Irrelevance Preservation X X X X

Perhaps the most sensible representation of group opinion, especially when pooling is interpreted as

reaching consensus, is not in terms of a single probability function. At the very least, the arguments

and results above may be read both as an exploration of extending the mathematical framework

of opinion pooling to cover IP pooling, and as a plea for liberalism about pooling formats.
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CHAPTER 3

Learning and Pooling, Pooling and Learning

1. Introduction

Bayesian conditionalization is the gold standard of probabilistic learning. Yet several authors

advocate modifications of conditionalization for a number of reasons. For example, conditionaliza-

tion entails assigning probability 1 to the evidence. Dissatisfied with such “dogmatic epistemology,”

Richard Jeffrey proposed his probability kinematics as a way of updating on uncertain evidence (Jef-

frey, 2004). To take another example, consider probabilistic imaging. One widely pursued goal in

work on the logic of conditionals is to find a way of identifying the probability of a conditional with

the corresponding conditional probability. Attempts to do so have been repeatedly frustrated by a

series of triviality results. However, David Lewis introduces imaging and shows that a version of

the identity holds when formulated in terms of imaging instead of in terms of conditionalization

(Lewis, 1976). And there are other proposals, such as minimizing the Kullback-Leibler divergence

(Kullback and Leibler, 1951). Here, the objective is to accommodate the evidence in such a way as

to minimize a measure (the K-L divergence) of the difference between posterior and prior.

Probabilistic opinion pooling can be viewed as part of an important strand in Bayesian episte-

mology and statistics concerned with consensus. The received view is that personal probabilities

are subjective (Ramsey, 1990; Savage, 1954; de Finetti, 1964), resulting in much fretting about the

implications for scientific methodology. The worry is that the objectivity of scientific confirmation,

A version of this chapter is published as a paper, also coauthored with Rush Stewart, under the same title in
Erkenntnis.
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explanation, inference, and the like is compromised to the extent that such probability plays a role.

A prominent Bayesian response comes in the form of convergence and merging of opinions theorems,

which show that, given agreement about probability 0 events and enough evidence, probabilities

converge (almost surely) (Savage, 1954; Gaifman and Snir, 1982).1 Conditionalization, that is, leads

to consensus, “washing out” the problematically subjective priors leaving intersubjective agreement

in their place.

Pooling offers a distinct way of reaching a consensus in probabilistic opinion, one available

even when the opportunity to collect more evidence is not. Consensus is reached immediately via

methods for aggregating probabilistic judgments instead of in the long run via conditionalization

(Huttegger, 2015). After all, as Keynes astutely observes, we have reasons not to be particularly

concerned with the long run. As with convergence arguments, intersubjective agreement stands

in for objectivity in the pooling context. Still, in the literature on probabilistic opinion pooling,

one of the constraints of central concern is external Bayesianity, which requires that pooling and

Bayesian conditionalization on a common likelihood function commute (Madansky, 1964). That is,

the result of pooling and then updating is the same as first updating and then pooling. The order of

operations does not change the outcome. One natural question to ask in light of the aforementioned

alternatives to conditionalization is, what about commutativity with alternative updating policies?

This is the question that concerns us in the present essay.

Much of the focus in the pooling literature is on characterization and impossibility results.

Such results are not the intended contribution of this chapter (though Proposition 8 generalizes a

characterization result due to Wagner to the imprecise probabilities setting). Instead, we continue

an exploration of the potential of imprecise probabilities in the context of learning and pooling.

In the previous chapter, I argued that collective opinion is more properly represented by imprecise

1Not all merging of opinions results require probabilities to converge to certainty (Blackwell and Dubins, 1962).
Under certain conditions, Bayesian conditionalizing can bring probabilities close even if they do not converge to 1 or
0.
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probabilities (IP) in general. I provide three arguments. First, if pooling is interpreted as reaching

a consensus in probabilistic opinion, IP pooling is on firmer philosophical ground (Cf. Levi, 1985;

Seidenfeld et al., 1989). The point, briefly, is that IP models allow for suspending judgment between

some number of probability distributions by not ruling them out for use in deliberation and inquiry,

and reflect the common ground among the group concerning which probability distributions are

ruled out. Such a consensus constitutes a neutral initial position from which to launch further

inquiry. Precise pooling functions, on the other hand, do not allow for an analogous suspense of

judgment, and may yield collective probabilistic opinions endorsed by none of the group members.

Second, there are IP pooling functions that jointly satisfy more of the standard pooling constraints

than any precise pooling recipe can. Third, in the IP setting, the tension between a pooling

method’s being justified on epistemic or procedural grounds (Dietrich and List, 2014b)—reflected

in the tension between satisfying certain formal epistemic and procedural constraints—dissipates,

an artifact of the assumption of precision.

The results that follow may be taken to contribute to that case for IP. Briefly put, I show

that, while the form of updating for a given precise pooling method is quite restricted under the

requirement of commutativity, relaxing the assumption that the collective opinion should take the

form of a numerically determinate probability function enables us to lift many of those restrictions.

Several revision methods are consistent with pooling understood the IP way. After introducing

the mathematical pooling framework in the next section, we begin with the gold standard in

Section 3. I remain neutral as to whether Jeffrey conditionalization and imaging ultimately admit

of sufficient motivation, though I rehearse some of the standard motivations for and reservations

about probability kinematics (Section 5) and imaging (Section 6), and state the commutativity

results. Motivations for requiring commutativity of learning and pooling are discussed Section 4.
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2. Preliminaries

Let Ω denote a sample space, a set of mutually exclusive and exhaustive possible states of

the world.2 In what follows, we assume that Ω is countable. A function p : Ω Ñ r0, 1s is a

probability mass function (pmf) iff
ř

ωPΩ ppωq “ 1. An algebra A of events over Ω is a set of

subsets of Ω closed under complementation and finite unions; closure under countable unions yields

a σ-algebra. We assume throughout the essay that A is a σ-algebra. Given a pmf, we can define

a probability measure, (abusing notation by using the same symbol as for pmfs) p, on events in

general: ppEq “
ř

ωPE ppωq.

Let P be the set of all pmfs on Ω. A precise pooling function is a function, F : Pn Ñ P, mapping

a profile of n pmfs, pp1, ...,pnq, to a single pmf, F pp1, ...,pnq. Typically, the n pmfs are taken to

represent the opinions of a set N of individuals, and F pp1, ...,pnq is supposed to represent, in some

sense, the aggregate or collective opinion. Various candidate interpretations of an opinion pool

exist in the literature: a rational consensus (adopted genuinely by all members or adopted merely

“for the sake of the argument”); a compromise adopted for the purpose of group decision making;

the opinion a group member adopts after learning the opinion of her “epistemic peers”; the opinion

an external agent adopts upon being informed of the n expert opinions, etc. (Genest and Zidek,

1986; Wagner, 2009). There are a number of concrete pooling functions discussed in the literature,

but, by far, the two most prominent are linear and geometric pooling functions.

Linear Opinion Pools. F pp1, ...,pnq “
řn
i“1 αipi, where αi ě 0 and

řn
i“1 αi “ 1.

A linear opinion pool is just a weighted arithmetic average of the n probability functions. A

geometric pooling function takes the (weighted) geometric average of the n pmfs.

2Ω may be thought of as a partition of a space of agent-relative serious possibilities determined by consistency
with a state of full belief. As is a state of full belief, Ω is open to being revised, refined, etc., as judged appropriate
(Levi, 1980).
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Geometric Opinion Pools. F pp1, ...,pnq “ c
śn
i“1 p

αi
i , where αi ě 0 and

řn
i“1 αi “ 1, and

c “ 1
ř

ω1PΩrp1pω
1qsα1 ¨¨¨rpnpω

1qsαn
is a normalization factor.3

The focus of this section of the dissertation is on a generalization of pooling functions to the

IP setting: F : Pn Ñ PpPq.4 We use F , opposed to F , to denote set-valued pooling operators. IP

pooling functions are maps from profiles of probability measures to sets of probability measures.

In particular, we consider pooling functions that map profiles of n pmfs to the convex hull of

those functions: Fpp1, ...,pnq “ convtpi : i “ 1, ..., nu. The convex hull is the smallest convex set

containing pi for i “ 1, ..., n. A set, P , is convex if it satisfies the following property.

Convexity. If p1,p2 P P , then αp1 ` p1´ αqp2 P P for α P r0, 1s. 5

Put another way, Fpp1, ...,pnq is the set of all convex combinations of the individual probability

functions. We let Fpp1, ...,pnqpAq denote the set of probability values assigned to A:

Fpp1, ...,pnqpAq “ tppAq : p P Fpp1, ...,pnqu

There are alternative IP formats, including set-based formats that do not require convexity, interval-

valued probability functions, or, more operationally, sets of desirable gambles, for instance. In my

view, all are worthy of extensive study. Convex sets are quite commonly employed in the theory

of IP, including in sophisticated decision theories. Since I do not intend to settle complex debates

internal to IP theory here, and the results to come do not hinge on convexity in the sense that

there are alternative IP formats for which they hold, I will simply restrict my attention to convex

sets as an illustration of the potential of IP in theorizing about pooling.

3Notice that, due to the way geometric pooling is defined, there are profiles for which F pp1, ...,pnqpωq “ 0 for all
ω P Ω—in violation of the probability axioms. Such a situation arises if for each ω P Ω there is a pi P pp1, ...,pnq such
that pipωq “ 0. Circumventing this problem, Wagner restricts the domain of pooling operators to the set of profiles
for which this does not happen. That is, the domain of a pooling function is the set of profiles such that there is
some ω P Ω for which pipωq ą 0 for all i “ 1, ..., n.

4See (Schervish and Seidenfeld, 1990; Herron et al., 1997) for studies of convergence relevant to IP.
5Within the IP research community, convexity is a matter of some controversy. For attacks on the requirement,

see (Seidenfeld et al., 1989; Kyburg and Pittarelli, 1992; Seidenfeld et al., 2010). For defenses, see (Levi, 1990, 2009).
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3. External Bayesianity

Essential to Bayesian methodology is the assumption of a prior probability distribution on the

algebra of events (or propositions) of concern. Learning proceeds by conditionalizing the prior on

the evidence, yielding a posterior distribution. Conditionalization of a probability function, p, on

evidence, E, results from setting the posterior probability for any event A P A equal to the prior

conditional probability ppA|Eq.

pEpAq “ ppA|Eq “
ppAX Eq

ppEq
, when ppEq ą 0.

The posterior, pE , can be thought of as the result of learning E. In the context of sets of probability

functions, conditionalization can be generalized by conditionalizing each member of the set:

FEpp1, ...,pnq “ tp
E : p P Fpp1, ...,pnq, ppEq ą 0, and pEp¨q “ pp¨|Equ

Call FEpp1, ...,pnq the prior-by-prior conditionalization of Fpp1, ...,pnq (when Fpp1, ...,pnq is con-

vex, FEpp1, ...,pnq is called the convex conditionalization of Fpp1, ...,pnq).
6 We define prior-by-

prior conditionalization generally, allowing ppEq “ 0 for some p P Fpp1, ...,pnq (Cf. Kyburg, 1987,

p. 279). But when we first update the pi, we assume pipEq ą 0 for i “ 1, ..., n; otherwise,

FppEi , ...,pEn q is not defined. Though not stated in the language of probabilistic opinion pooling,

proofs of the commutativity of convexifying a set of probability functions and conditionalization

exist in the literature.

Theorem 6. (Levi, 1978; Girón and Rı́os, 1980) Convex IP pooling commutes with condition-

alization.

6In the IP setting, conditionalization can actually lead to greater uncertainty in the short-run, a very interesting
phenomenon known as dilation (Seidenfeld and Wasserman, 1993; Pedersen and Wheeler, 2014).
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Figure 1. Commutativity of Pooling and Conditionalization

pp1, ...,pnq

Fpp1, ...,pnq ppE1 , ...,p
E
n q

FEpp1, ...,pnq FppE1 , ...,pEn q

Importantly, linear opinion pooling does not commute with conditionalization, though geometric

pooling does (Genest, 1984; Russell et al., 2015). As we will see, linear pooling does commute with

imaging, though geometric pooling does not.

As standardly pointed out, external Bayesianity is a generalization of the requirement that

pooling and standard conditionalization commute (Wagner, 2009; Dietrich and List, 2014b; Rus-

sell et al., 2015), because conditionalization on a common likelihood function generalizes standard

Bayesian conditionalization on an event. A likelihood function, λ : Ω Ñ r0,8q, is intended to en-

code, given any ω P Ω, how expected some evidence is with the number λpωq. The conditionalization

of a pmf, p, on a likelihood function, λ, is give by the following formula.

pλpωq “
ppωqλpωq

ř

ω1PΩ ppω1qλpω1q
, when

ÿ

ω1PΩ

ppω1qλpω1q ą 0

For the special case of Bayesian conditionalization on an event E, define λ as the indicator function

for that event:

λpωq “

$

’

’

’

&

’

’

’

%

1, if ω P E

0, otherwise.

External Bayesianity requires that updating the individual probabilities on a common likelihood

function and then pooling is the same as pooling and then updating the pool on that likelihood

function.
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External Bayesianity. For every profile pp1, ...,pnq in the domain of F and every likelihood

function λ such that ppλ, ...,pλnq remains in the domain of F , F ppλ1 , ...,p
λ
nq “ F λpp1, ...,pnq.

When pooling is presumed to produce a numerically determinate probability function for the group,

generalized geometric pooling functions uniquely satisfy external Bayesianity (Genest et al., 1986;

Nau, 2002). Extended to the IP setting, the constraint requires Fppλ1 , ...,pλnq “ Fλpp1, ...,pnq.

The requirement is still that learning by updating on a common likelihood function and pooling

commute, but the format of the pool is altered. What is not altered, we submit, are the compelling

aspects of the constraint. Recall the following observation from the previous chapter.

Proposition 3. Convex IP pooling functions are externally Bayesian.

(The propositions in this dissertation are my results. When provided, proofs are relegated to

the appendix.) And since Bayesian conditionalization is a special case of updating on a likelihood

function, it follows that any IP pooling function (not necessarily convex) that is externally Bayesian

also satisfies commutativity with conditionalization.

The fact that updating on a common likelihood generalizes updating on an event may serve to

show that the assumption of a common likelihood function is not quite as strong as it may appear

initially, since the conditionalization of the pi on some event drops out as a special case. That

is, learning the same event is an instance of a shared likelihood function. It is also worth pausing

to consider why Bayesians would deal in likelihood functions in the first place if updating with a

likelihood function presents ways of learning not reducible to conditionalization.7 One reason is

that, under certain conditions, there is a way of regarding updating with a likelihood function as

a case of Bayesian conditionalization by refining the algebra so that there is an event such that

conditionalizing on it yields the same results as updating with the likelihood function on the coarser

7Thanks to Paul Pedersen for emphasizing this point to me.
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algebra. We return to this point—which is relevant to Jeffrey Conditionalization as well—at the

close of Section 5.

4. Commutativity

But why should it matter if a pooling method is externally Bayesian? More generally, why

should we insist on the commutativity of learning and pooling? A few motivations, which I now

briefly survey, are offered in the literature.

In introducing the external Bayesianity constraint, Madansky points out that the decisions of

a group with common interests employing an externally Bayesian pooling operator will appear to

outsiders as the decisions of a single Bayesian agent (1964). How? A Bayesian agent conditionalizes.

So, given group opinion, F pp1, ...,pnq, the updated group opinion should result from the group prior

by conditionalization, F λpp1, ...,pnq. If the group employs a pooling operator that is not externally

Bayesian, and learning happens at the level of individuals, the posterior group opinion may not

result from the prior group opinion by conditionalization: F ppλ1 , ...,p
λ
nq ‰ F λpp1, ...,pnq. If the

relevant learning happens at the level of group opinion, then the posterior group opinion may not

be the result of applying the (non-externally Bayesian) pooling method that allegedly gives us

the way of arriving at group opinion when applied to individual opinions: again, F ppλ1 , ...,p
λ
nq ‰

F λpp1, ...,pnq.

Of course, there are a number of interpretations of the pool of individual opinions, including

as “a rough summary” of the n pmfs (Wagner, 2009). The properties that are appropriate for a

pooling function to exhibit depend on the interpretation of the pool and the use to which it is put.

When pooling is interpreted as a method of reaching either a compromise or a genuine consensus for

use in group decision making, it may be important to ensure adherence of “group opinion” to norms

of individual rationality. For views according to which groups can be agents subject to the same

rationality conditions, for example, failing to satisfy external Bayesianity raises problems insofar
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as Bayesian conditionalization is rationally mandatory. More generally, those problems arise for

failures of commutativity of pooling with any rule of learning held to be normatively compelling.

Furthermore, Russell et al. charge pooling methods that fail to commute with conditionaliza-

tion with vulnerability to a diachronic Dutch book (2015). When the group posterior does not

result from the group prior by conditionalizing on what the individuals learn, the conditions for a

diachronic Dutch book (at the level of group opinion) are met. Echoing Raiffa (1968, pp. 221-226),

Dietrich and List offer other strategic considerations in favor of external Bayesianity. If a pooling

method is not externally Bayesian, collective opinion is open to manipulation. By disclosing rel-

evant information at the appropriate time, someone could affect collective opinion by increasing

the influence of certain opinions, for example (2014b). There are, in short, possible manipulations

besides those of a clever bookie.

Perhaps most uncontroversially, pooling operators for which learning and pooling commute

save us the trouble of having to figure out whether updating should come before or after pooling,

whether susceptibility to a diachronic book is damning for the pooling method, how and when to

safeguard against manipulation, etc. In any event, the main position argued for in this chapter

can be understood as a conditional: if one finds commutativity of learning (of various types) and

pooling compelling, then one has reasons to seriously consider IP pooling formats.

5. Jeffrey Conditionalization

As indicated in the introduction, standard Bayesian conditionalization requires that the event

conditionalized upon receives probability 1 in the posterior distribution. Jeffrey’s point is that

not all learning experiences are like that. Sometimes observation leads to a revision in subjective

probability even when there is no proposition (event) E that is learned “for certain.” Jeffrey’s

famous candle light example serves to illustrate his point. Suppose you observe your friend’s coat,

but only under candle light. The coat looks blue, but you are not quite sure. The impact of this
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observation is a shift in your subjective probabilities concerning the color of the coat, but none of

the options goes to 1. This sort of scenario, some Jeffrey sympathizers claim, is “the normal case”

(e.g., Spohn, 2012, p. 38). Improved lighting generally only shifts probabilities a bit more.

Let E “ tEiu be a countable family of pairwise disjoint events partitioning Ω. In the candle

light example above, the partition of concern consists of the possible colors of the coat. A posterior,

q, comes from a prior, p, by Jeffrey conditionalization by updating on the new probabilities for the

cells of E, qpEiq, in the following way:

qpAq “
ÿ

i

qpEiqppA|Eiq

The qpEiq express the direct effect of an observation on subjective probabilities for the cells of the

partition. When qpEiq “ 1 for some Ei, Jeffrey conditionalization reduces to standard Bayesian

conditionalization.

A fact about Jeffrey conditionalization that many have found problematic is the failure of

learning sequences to commute (Skyrms, 1986).

Figure 2. Commutativity of Updatings

p

q Q

R r

FE

F E

Suppose that the learning experiences prompting the revision from p to q and the revision of Q to

r are the same, as are those leading to the revision of q to R and p to Q (reflected in the updating

partitions E and F , respectively). Jeffrey conditionalization can yield R ‰ r. That is, switching

the order of two learning experiences can yield different probabilities in the end. Van Fraassen

complains:
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Two persons, who have the same relevant experiences on the same day, but in a

different order, will not agree in the evening even if they had exactly the same

opinions in the morning. Does this not make nonsense of the idea of learning

from experience? (1989, p. 338)

It is because of the issue of commutativity of learning experiences (as well as the nice off-the-shelf

result of Wagner’s (Theorem 8) we appeal to below) that we present here a particular parameteri-

zation of Jeffrey conditionalization intended to address the commutativity difficulty.

Hartry Field offers a fix, identifying conditions that are sufficient to ensure that, for finite

partitions, R “ r in Figure 2 above (Field, 1978). Wagner generalizes the result to countable

partitions (Wagner, 2002). We introduce some useful notation. Where A and B are events and q

is a revision of p, the Bayes factor is the ratio of new to old odds:

Bpq,p;A : Bq “
qpAq{qpBq

ppAq{ppBq

Instead of being reflected in identical posteriors, the proposal on the table is to understand identical

learning as reflected in identical Bayes factors. Wagner points out that identifying identical learning

with identical Bayes factors has a distinguished pedigree in Bayesian thinking (Good, 1983; Jeffrey,

2004).8 What Field shows is that Jeffrey conditionalization is commutative when identical learning

is interpreted as identical Bayes factors.

8 Wagner contends that identical learning should be thought of as identical Bayes factors rather than identical
posteriors. One alleged reason is that posteriors are tainted by the prior, whereas Bayes factors are an uncontaminated
measure of the impact of the evidence. How do Bayes factors measure the impact of the evidence in isolation from
the prior? Consider the case in which q comes from p by Bayesian conditionalization on E. Then,

qpAq{qpBq “
ppA|Eq

ppB|Eq

and

Bpq,p;A : Bq “
ppA|Eq{ppB|Eq

ppAq{ppBq
.

So, Bpq,p;A : Bq is a measure of the change the evidence, E, induces in favor of A over B. Bpq,p;A : Bq can also
be rearranged using Bayes’ theorem.

qpAq

qpBq
“

ppA|Eq

ppB|Eq
“

ppAqppE|Aq
ppEq

ppBqppE|Bq
ppEq

“
ppAqppE|Aq

ppBqppE|Bq
“

ppAq

ppBq
ˆ

ppE|Aq

ppE|Bq
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Theorem 7. (Wagner, 2002, Theorem 3.1) Consider the revision scheme of Figure 2. If

Bpq,p;Ei1 : Ei2q “ Bpr,Q;Ei1 : Ei2q for all i1, i2

and

BpR, q;Fj1 : Fj2q “ BpQ,p;Fj1 : Fj2q for all j1, j2,

then R “ r.

Wagner further shows that Jeffrey conditionalization has an equivalent parameterization in

terms of Bayes factors (2009, Theorem 3.2). The function q gives us posteriors for atomic events,

bk “ Bpq,p;Ek : E1q, k “ 1, 2, ..., and rω P Eks is the characteristic function of the set Ek:

rω P Eks “

$

’

’

’

&

’

’

’

%

1, if ω P Ek

0, otherwise.

Wagner’s parameterization, then, is the following.

qpωq “ pE
J pωq “

ř

k bkppωqrω P Eks
ř

k bkppEkq

There are two very nice features of this parameterization that are relevant. First, as I have been

explaining, it responds to the complaints about commutativity because the result of a sequence

of updates is invariant under permutations of that sequence when Jeffrey conditionalization is

understood this way, with identical learning reflected in identical Bayes factors instead of identical

posteriors.

Dividing now by ppAq
ppBq

, the denominator of Bpq,p;A : Bq, gives us

Bpq,p;A : Bq “
ppE|Aq

ppE|Bq

The quantity ppE|Aq
L

ppE|Bq is sometimes referred to as the likelihood ratio. So, the Bayes factor is a ratio of the
non-prior quantities involved in Bayes’ theorem, the quantities that revise the prior.
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The second nice feature, as Wagner shows, is that with his parameterization, we can articulate a

version of commutativity with Jeffrey conditionalization that provides us with a characterization of

externally Bayesian pooling operators in terms familiar to formal epistemologists and philosophers

of science. We call Wagner’s version of commutativity with Jeffrey CJCW .

CJCW . For all partitions E “ tEku of Ω, all profiles pp1, ...,pnq in the domain of F , the Jeffrey up-

date of the pool, FE
J pp1, ...,pnq “

ř

k bkF pp1,...,pnqr¨PEks
ř

k bkF pp1,...,pnqpEkq
, is identical to F p

ř

k bkp1r¨PEks
ř

k bkp1pEkq
, ...,

ř

k bkpnr¨PEks
ř

k bkpnpEkq
q “

F ppE
1J , ...,p

E
nJq, the pool of the (Jeffrey updated) posteriors.9

Crucially, the Bayes factors, bk for k “ 1, 2, ..., are held fixed across the pi (and also used in

updating F pp1, ...,pnq). This is quite different from holding fixed a common posterior distribution,

q, in Jeffrey conditionalizing the pi. Put another way, he shows that External Bayesianity is

equivalent to CJCW .

Theorem 8. (Wagner, 2009, Theorem 3.3) A (precise) pooling operator is externally Bayesian

iff it satisfies CJCW .

We take FE
J pp1, ...,pnq to be given by Jeffrey conditionalization of each element of Fpp1, ...,pnq

on the partition E, holding fixed the Bayes factors bk for k “ 1, 2, ... for pi for i “ 1, ..., n. A very

slight mathematical generalization allows us to extend Wagner’s result to IP pooling functions in

general.

Proposition 8. Let F : Pn Ñ PpPq be an IP pooling function (not necessarily convex). F is

externally Bayesian iff F satisfies CJCW .

9Wagner’s version of commutativity with Jeffrey conditionalization involves some additional technical assump-
tions. First, that pipEkq ą 0 for all i and all k. Second, that b1 “ 1 and

ř

k bkpipEkq ă 8 for i “ 1, ..., n. Third,

where qipωq “
ř

k bkpipωqrωPEks
ř

k bkpipEkq
, it is the case that 0 ă

ř

k bkF pp1, ...,pnqpEkq ă 8. In the IP setting, this last

assumption may be adjusted to be a requirement for each p P Fpp1, ...,pnq.
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In particular, moving to the convex IP setting does not break the equivalence between exter-

nal Bayesianity and commutativity with Wagner’s parameterization of Jeffrey conditionalization.

Putting Propositions 3 and 8 together, we obtain the following.

Proposition 9. Convex IP pooling satisfies CJCW .

We have the following immediate corollary (the proof is trivial given Proposition 9, and is omitted).

Proposition 10. Convexity is preserved under Jeffrey conditionalization with common Bayes

factors.

To say that convexity is preserved means that, if we start with a convex set, we do not lose convexity

in moving to the set of updated probability functions.

However, when qi comes from pi by standard Jeffrey conditionalization on some shared posterior

distribution, q, over a partition, E, and the pool is updated likewise by updating each element of

Fppi, ...,pnq on that same posterior distribution over E, Jeffrey conditionalization and convex IP

pooling do not commute.

Proposition 11. Convex IP pooling does not commute with Jeffrey conditionalization on a

common posterior.

Instead of holding fixed common Bayes factors, here we assume a fixed posterior distribution on

E. Neither is commutativity of Jeffrey conditionalization so formulated and pooling guaranteed

in the precise setting (Wagner, 2009, pp. 340-341). In particular, linear and geometric pooling

fail to commute with Jeffrey in general. Furthermore, certain “objective” Bayesian updating meth-

ods, like minimizing the Kullback-Leibler divergence between posterior and prior, generalize Jeffrey

conditionalization (Diaconis and Zabell, 1982a). A corollary of Proposition 11, then, is that min-

mizing the Kullback-Leibler divergence does not commute with convex IP pooling. Minimizing

61



the Kullback-Leibler divergence is also a generalization of Jaynes’ Maximum Entropy formalism

(e.g., Williams, 1980a). While there are many advocates of the Kullback-Leibler approach (e.g.,

Hartmann, 2014a), even in the precise setting, a number of Bayesian-style objections to MaxEnt

methods have been voiced in the literature (see, e.g., Seidenfeld, 1986; Gaifman and Vasudevan,

2012).

How much ground does Jeffrey conditionalization ultimately gain over standard Bayesian con-

ditionalization? In certain cases—characterized by the superconditioning criterion—Jeffrey condi-

tionalization can be represented as Bayesian updating on certain evidence in an enlarged probability

space (Diaconis and Zabell, 1982a, Theorem 2.1). For finite algebras, the effect of Jeffrey condi-

tionalization can always be so represented by Bayesian conditionalization (fn. 1, Wagner, 2002, p.

268). Kyburg attributes an early, informal version of this result to Levi (Levi, 1967; Kyburg, 1987,

Lemma A.5). The point, as Kyburg puts it, is not that we make effable the ineffable observational

input motivating Jeffrey conditionalization: “This is not to say that we need to specify that ev-

idence; it is that there is an algorithm by means of which the impact of the uncertain evidence

can be represented as the impact of other ‘certain’ evidence” (Kyburg, 1987, p. 280). The obvious

question is whether or when the formal superconditioning move is a philosophically legitimate one.

6. Imaging

An hypothesis occupying the attention of many scholars working on the logic of conditionals

asserts that the probability of a conditional is identical to the relevant conditional probability:

ppA Ñ Bq “ ppB|Aq. There are, of course, a number of ways to interpret the components of the

claim. There are, for instance, various ways to define a conditional probability, ppB|Aq, just as

there are various ways to specify an interpretation of a conditional connective, Ñ. Suppose we

take conditional probability to be defined standardly as in Section 3. Is there an interpretation of

Ñ such that the desired identity holds for all p? No, on pain of triviality, as Lewis proved (1976).
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That is, a conditional satisfying the identity exists only for trivial probability models. Similar

triviality results hold for alternative readings of the identity. For example, “for any p there exists

some Ñ such that ppAÑ Bq “ ppB|Aq” runs into similar problems. An impressive battery of such

triviality results has been obtained for different ways of reading the identity. A helpful overview of

much of the relevant literature can be found in (Hájek and Hall, 1994). Though it fails in general

when formulated in terms of conditionalization, Lewis shows that a version of the identity holds if

formulated in terms of imaging instead. We turn now to a brief presentation of imaging and Lewis’

possibility result.

Robert Stalnaker specified the semantics of the so-called Stalnaker conditional, ą, in terms of

possible worlds. Ω is interpreted as a set of possible worlds.10 Propositions are subsets of Ω. We

assume that A is a σ-algebra of subsets of Ω, the set of relevant propositions. For any ω P Ω, let ωA

be the “most similar” possible world at which A holds, the “closest” A-world to ω. Say that A ą B

is true at ω iff B is true at ωA (when the antecedent is impossible, A ą B is taken to be vacuously

true at all worlds). Lewis tailors a probabilistic revision scheme to the Stalnaker semantics.

For any non-empty E P A , imaging shifts the probability from each ω1 P Ω to its “image”

atom, ω P E. If ω1 P E, then ω1 is its own image atom. Lewis offers an interpretation in terms of

possible worlds. On the assumption that for each world there is a unique “most similar” world in E,

imaging can be thought of as the process of revising probabilities by shifting the total probability

of each world to its most similar world in E. Relaxing the uniqueness assumption results in what

is known as general imaging. General imaging allows the probability of each ω1 P Ω to be shifted to

an image set, each element of which receives some fraction of the total probability of ω1. Clearly,

general imaging reduces to imaging when the image set is a singleton and the total probability of

each ω1 P Ω is transferred to its image set.

10A metaphysically deflationary conception of possible worlds has it that a possible world is just a maximally
complete set of sentences in some propositional language, instead of a “possible totality of facts.”
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Formally, we represent the relevant transfer of probability with a transfer function, T : A ˆΩˆ

Ω Ñ r0, 1s, such that
ř

ωPΩ TEpω
1, ωq “ 1 for all ω1 P Ω. For any E and all ω, ω1 P Ω, TEpω

1, ωq (times

100 percent) specifies the percentage of the total probability mass that is transferred from ω1 to ω. It

is sometimes assumed—e.g., by Lewis but not by Leitgeb (Leitgeb, 2016)—that
ř

ωPE TEpω
1, ωq “ 1,

so that E bears probability 1 after imaging on it. With T in place, we can formulate the recipe for

general imaging. Say that q comes from p by general imaging if

qpωq “ ppω||Eq “
ÿ

ω1PΩ

ppω1qTEpω
1, ωq

The constraint on T of summing to 1 for each ω1 ensures that all probability mass is transferred,

so no probability mass is created or destroyed, and the result of imaging is again a pmf. As

before, the probability of an event A P A can be obtained by summing across ω P A. Lewis claims

that conditionalization and imaging are both minimal revisions, but in different senses. While

conditionalization “does not distort the profile of probability ratios, equalities, and inequalities

among sentences that imply A,” imaging “involves no gratuitous movement of probability from

worlds to dissimilar worlds” (1976, p. 142). Lewis proves the following possibility result for (sharp)

imaging and the probability of conditionals.

Theorem 9. (Lewis, 1976, p. 142) The probability of a Stalnaker conditional with a possible

antecedent is the probability of the consequent after imaging on the antecedent: ppA ą Bq “

ppB||Aq “ qpBq.

More important for the purposes of the present essay is that, as Hannes Leitgeb observes, a

result about general imaging due to Peter Gärdenfors can be restated in the language of pooling

operators (2016). By update mechanism, Leitgeb means a function U : P ˆ A Ñ P that maps a

probability function and a (non-empty) proposition to a probability function. Gärdenfors shows
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that general imaging is the unique probabilistic revision method that preserves convex combina-

tions of probability measures. Leitgeb repurposes this result, obtaining the following insight about

pooling.

Theorem 10. (Cf. Gärdenfors, 1982, Theorem 1) Update by general imaging (with respect to

a fixed transfer function T ) is the unique update mechanism that commutes with linear pooling with

respect to arbitrary coefficients.

(Here, the transfer function, T , is invariant across priors.) Together with Leitgeb’s insight, Gärdenfors’

theorem makes showing the next result very easy.

Proposition 12. Convex IP pooling commutes with general imaging.

(Commutativity with imaging (CI) could be stated as an axiom for pooling operators.) An analogue

of Proposition 10 follows immediately from Proposition 12: convexity is also preserved under general

imaging.

Interest in imaging extends beyond natural language semantics and the philosophy of language.

Part of the concern with identifying the probability of a conditional with the relevant conditional

probability, after all, comes from attempts to give acceptability conditions for conditionals. Further-

more, some have argued that, while conditional probability represents matter-of-fact supposition in

the context of probability, imaging represents counterfactual supposition.11 Lewis himself thought

that an interpretation like Stalnaker’s is right for subjunctive conditionals or counterfactuals, but

not for indicative conditionals. Imaging finds crucial employment in James Joyce’s account of causal

decision theory. Causal relationships are thought to be expressed by subjunctive conditionals, so

the probability of such conditionals is of central concern on that view (1999). Baratgin and Politzer

contend that empirical evidence indicates that general imaging has some claim as a description of

11Others, however, have offered more uniform accounts of supposition (e.g., Levi, 1996).
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actual revision of probabilistic judgment in dynamic environments (2010). Many authors, however,

complain that a philosophically defensible interpretation of the requisite similarity relation among

possible worlds has yet to be provided. Some see both the Stalnaker conditional and imaging as

questionable shifts from epistemology to metaphysics (Arló-Costa, 2007). Moreover, beginning at

least with Ramsey, an alternative line of research attempts to provide acceptability conditions for

counterfactuals in terms of belief revision theory, eschewing construals of counterfactuals as bear-

ing truth values (Levi, 1996). Nevertheless, imaging seems to have captured the fancy of many

philosophers and others working on conditionals, counterfactual reasoning, and decision theory.

7. Discussion

Propositions 9 and 10 have important implications outside of the context of opinion pooling.

While IP models have been widely and convincingly advanced as superior to precise Bayesian

representations of uncertainty, standard conditionalization via certain learning has been by and

large retained as the relevant updating rule (Levi, 1978; Girón and Ŕıos, 1980). Proposition 10

shows that there is no mathematical necessity in that retention for convex Bayesians. For those

compelled by Jeffrey’s vision of learning, they can have their convex sets of probabilities and their

probability kinematics, too.12 A similar point holds for imaging. Since convexity is preserved under

imaging, imaging constitutes a possible “dynamics” for convex Bayesians.13

Furthermore, in the precise setting, only linear opinion pooling commutes with imaging. But

linear opinion pooling does not commute with Bayesian conditionalization. It follows that no precise

pooling method commutes with both imaging and Bayesian conditionalization. In this way, one’s

12Though, as Diaconis and Zabell’s aforementioned result shows us, in a range of cases there is no mathematical
necessity in adopting Jeffrey conditionalization in order to obtain the results of Jeffrey conditionalization.

13 Though it is not uncontroversial that conditionalization or some other type of updating of represents learning.
Isaac Levi, for instance, writes, “All conditions of rationality are equilibrium conditions. In a sense they are synchronic
conditions [...] Furthermore, in stating conditions of rational equilibrium, no prescription is made regarding the
psychological path to be taken in moving from disequilibrium or from one equilibrium position to another. In other
words, there are no norms prescribing rational learning processes” (Levi, 1970).
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hand is forced on the question of updating methods by commitments to pooling methods, and vice

versa. Not so in the imprecise setting.

Table 3. Summary of Pooling and Updating Commutativity

Linear Geometric Convex IP
External Bayesianity X X X
CJCW X X X
CI X X X

Another way to put the point is that, if commutativity of learning and pooling is endorsed and

more than one updating method is found acceptable (depending on context, say), then there may

exist no accommodating precise pooling method.

Further limitations issue from results obtained in the literature. For example, suppose commu-

tativity of pooling with both standard Bayesian conditionalization (or Jeffrey conditionalization)

and marginalization is endorsed. In the precise setting, we are out of luck. Again, not so in the

IP setting, as the results of this chapter in conjunction with those of the previous chapter attest.

Philosophical positions that argue for or assume that pooling should be of a particular format are

answerable for the limitations of those methods. For instance, in the epistemological debate about

peer disagreement, a prominent position encourages peers to “split the difference” between their

probabilistic opinions (Elga, 2007). So-called conciliatory views on disagreement generally counsel

revising opinions in the direction of the dissenting opinions. The revision goes by equal-weight or

near equal-weight linear pooling (Christensen, 2009). Some consequences of the failure of com-

mutativity with conditionalization are highlighted in (Russell et al., 2015). As indicated above,

Russell, et al. allege that a variant of a diachronic Dutch book can be made against parties follow-

ing such a policy of disagreement resolution. Similar points can be made regarding other properties

of particular pooling methods. For example, neither linear nor geometric pooling preserves prob-

abilistic independence in general (Genest and Wagner, 1987), though convex IP pooling preserves
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Levi’s confirmational irrelevance, a generalization of probabilistic independence (Proposition 5).

Seidenfeld, Schervish, and Kadane offer a decision-theoretic counterexample to the reasonableness

of linear pooling on the basis of its failure to preserve independence (2010). Arguing similarly,

Elkin and Wheeler present a variant of a Dutch book argument against resolving disagreements

according to the equal weight view (Elkin and Wheeler, 2016). I submit that, not only are IP

pooling functions more flexible formal tools, but they admit of stronger normative motivations

when various prominent pooling criteria (including the commutativity criteria above) are taken as

normative yardsticks.
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CHAPTER 4

Radical Pooling and Imprecise Probabilities

Phaedrus: And what is the other principle, Socrates?
Socrates: That of dividing things again by classes, where the natural
joints are, and not trying to break any part, after the manner of a bad
carver.

Plato, Phaedrus, 265d-265e

1. Introduction

One interpretation for the operation of pooling or aggregating probabilistic judgments amounts

to finding a consensus among the parties involved. Much of the literature focused on a constrained

form of disagreement among the parties, namely when they disagree solely on the degree of belief

assigned to events on a shared outcome and event space (for a excellent survey see Dietrich and

List (2014b); Genest and Zidek (1986); Wagner (2009)). The purpose of this paper is to generalize

the question of pooling to cover cases when agents disagree radically ; not only on their probabilistic

judgments but also on the logical space over which those judgments are made. I will further argue

that we can import rationality criteria for these cases and they will require the use of imprecise

probabilities.

The kind of radical divergence explored here will not involve moral or political disagreement.

Following the literature on pooling, agents’ attitudes are modeled by probability functions over
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a algebra of events. Preferences, or formalisms to represent agents’ valuational structure, will be

disregarded in the aggregation procedure.1

Diverging parties seeking consensus may find that the tension comes not much from the degree of

belief they assign to certain events, but rather from what each takes to be the relevant set of questions

and issues. According to the partition theory initiated by Groenendijk and Stokhof (Groenendijk

and Stokhof, 1984), the meaning of a question is identified with a set whose members correspond

to each possible answer; i.e. a partition of the logical space where each member of the partition

corresponds to a proposition expressing one of the possible answers. Parties in disagreement about

which are the relevant questions will therefore parse the space of doxastic possibilities differently.

The paper has four sections. This introductory one will conclude with a motivating example

from the history of science. The second section introduces the basic setup, which involves identifying

the three possible loci of disagreement, and elaborating the notion of pooling as a form of consensus

as common ground at the outset of inquiry. Section three contains the substance of the paper.

Sections 3.1 and 3.2 argue for a way of understanding the common sample and event spaces, and

they make a connection with the issue of conceptual transformation in theory change. Section

3.3 has the main arguments for imprecision. If the arguments about the common sample and

event spaces are endorsed, then (i) marginalization, (ii) rigidity, and (iii) divergence accounts of

how to strengthen probabilistic judgments to larger algebras will lead to the adoption of imprecise

probabilities. Section 3.4 completes the approach by pooling imprecise probabilities. The fourth

and final section offers my conclusion and presents a picture of the framework.

1.1. An Example: The Priestley - Lavoisier debate.

1The attempt to jointly aggregate probabilities and preferences is arguably impossible (Seidenfeld et al. (1989)).
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Finding consensus in the presence of radical disagreement resembles questions about (revo-

lutionary) theory change in philosophy of science. Central to the revolutionary view of science

advanced by Kuhn (1970, 2000) and Feyerabend (1962) is the claim that language used in a field

of science changes so radically during a revolution that the old language and the new one are not

inter-translatable. More generally, they espoused the idea that in those situations opposing theo-

ries are incommensurable. Similarly, agents disagreeing about the logical space of possibilities over

which they make their probabilisitic judgments share no common basis on which to measure their

divergence.

The resemblance has its limits. First, pooling is about finding rational consensus between par-

ties. But according to the mainstream reading of Kuhn, in scientific revolutions parties do not have

a recourse to a common theoretical language, body of observational evidence, or methodological

rules. For these reasons, disputes cannot be resolved on purely epistemic grounds, but rather by

revolution, conversion, gestalt switch, bargaining or some other psychological, social, economic or

political process. In contrast, I will here argue that finding consensus in radical disagreement can

be achieved by invoking epistemic rationality principles akin to those that are endorsed in stan-

dard non-radical pooling. Second, pooling is an information aggregation procedure. In contrast,

Kuhn initially used incommensurability predominately to challenge cumulative characterizations

of scientific advance, according to which scientific progress is an improving approximation to the

truth.

Despite the differences, the analogy is helpful. Kuhn’s notion of incommesurability changed

through his career, but the distinction between methodological and taxonomical incommesurability

is important here (Kuhn, 2000). Methodological incommensurability is the idea that there are no

shared, objective standards of scientific theory appraisal, so that there are no external or neutral

standards that univocally determine the comparative evaluation of competing theories. We are not

concerned with it here. On the other hand, taxonomic or conceptual incommesurability is more
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useful for us. During periods of scientific revolution, existing concepts are replaced with new con-

cepts that are incompatible with the old ones because they do not share the same lexical taxonomy,

they cross-classify objects according to different sets of kinds (Kuhn, 2000). To paraphrase the

Phaedrus, they carve nature at different joints. The well studied debate between Joseph Priestley

and Antoine Lavoisier is revealing.

Priestley advocated the Phlogiston Theory, which attempted to give an account of a number

of chemical reactions and in particular combustion. Its basic explanatory hypothesis (H) was that

there is a substance which is emitted in combustion, namely phlogiston, and which is normally

present in the air. For example, wood and other materials that burn easily are rich in phlogiston.

Similarly, when a metal is heated, phlogiston is emitted, and we obtain the calx of the metal.

Furthermore, the process is reversible in some cases. By heating the red calx of mercury in isolation,

Priestley found that he could obtain the metal mercury, and a new kind of air which he called

dephlogisticated air. Priestley even noticed that dephlogisticated air supported breathing and

combustion better than regular air, and explained this by pointing out that when phlogiston is

removed from the air, the latter acquired a greater capacity for absorbing the former.

In contrast, Lavoisier’s theory of combustion is akin to our modern theory. Below, a helpful

table comparing experiments and their descriptions.

Phlogiston Theory Modern Theory
Input Output Input Output

Metal + air

+ heat

Calx of metal +

phlogisticated air

Metal + air

+ heat

Metal oxide + air

which is poor in oxygen
Red calx (oxide)

of mercury + heat

Mercury +

dephlogisticated air

Oxide of mercury

+ heat
Mercury + oxygen
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It seems it would be easy to attain some consensus. After all, identifying “dephlogisticated

air” with “oxygen” provides a good mapping for these experiments. But the problem is deeper.

Phlogiston theory departs from the false presupposition (H) that there is a unique substance which

is always emitted in combustion, and this contaminates its terminology and carving of the logical

space. This is precisely Kuhn’s and Feyerabend’s point. Important terms of phlogiston theory

are theory-laden. Under the guise of H, the term phlogiston refers to that which is emitted in all

cases of combustion. For Lavoisier and the modern theory, H is false and therefore it seems that

phlogiston fails to refer.

This taxonomical incommesurability leaves us with a historical explanatory gap. Although they

recognize that phlogiston theory is incorrect, historians of science might want to explain its success,

give credit to their discoveries, and acknowledge some of their truths. But such a revolutionary

theory change seems to leave no room for continuity, much less consensus. Kitcher (1978) analysis

of this case can save us from this bleak prospect. Through this case study, Kitcher argues for a

semantics of theoretical expressions that avoids the problem:

I suggest that an expression-type used by a scientific community is associated
with a set of events such that productions of tokens of that type by members of
the community are normally initiated by an event in the associated set. The set
which is associated with a particular expression-type will be called the reference
potential of the expression. Terms which have heterogeneous reference potential,
that is, terms whose reference potential contains two or more different initiating
events, may reasonably be called theory-laden. [pg. 540]

In particular, Kitcher explains how Pristley’s use of dephlogisticated air is theory-laden. Priest-

ley’s early utterances of the expression, driven by the hypothesis that phlogiston is emitted in com-

bustion, correspond to the substance obtained by removing from air the substance which is emitted

in combustion. Those token expressions of dephlogisticated air corresponded to a set of referents

that is different fromo posterior token expression. Priestley’s later utterances, after his isolation

yet misidentification of oxygen through the heating of a red calx (oxide) of mercury, correspond

to the gas obtained by heating the red calx of mercury. Hence later tokens of dephlogisticated
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air refer to oxygen. Lavoisier found a way to interpret the different tokens Priestley used, and

therefore carve the space in a more refined way. Furthermore, in so far as Lavoisier et al. used the

term oxygen to refer to the late tokens of dephlogisticated air, there was room for communication

between theoretical rivals.

One way of representing the problem in the language of Bayesianism is the following. Driven

by the hypothesis that phlogiston is always emitted in combustion, Priestley, Cavendish, et al.

partitioned their event space so that there is an event P that represents the proposition that the

output of the experiment includes phlogisticated air. More formally, given an underlying outcome

space Ω “ tw1, w2, ..., wnu, they organized the algebra over Ω so that there is P “ twi : wi s.t. the

experiment results in the release of phlogiston into the airu. After heating of a red calx (oxide) of

mercury, Priestley discovered a gas that had a great capacity for absorbing phlogiston, and called it

dephlogisticated air. More generally, he discovered a method for extracting phlogiston from the air.

This corresponds to a proposition stating that that the output of the experiment is dephlogisticated

air. This proposition corresponds to an event DP in his carving: DP “ twi : wi s.t. the experiment

results in the removal of phlogiston from the airu. P and DP are clearly mutually exclusive, but we

do not need to assume they are exhaustive to understand the source of radical disagreement with

Lavoisier. What matters, nevertheless, is that propositions and events like P and DP were at the

core of phlogiston theory.

Lavoisier et al. were doing similar experiments so for simplicity I will assume they shared

the same sample space Ω “ tw1, w2, ..., wnu with Priestley et al.. The difference, nevertheless, is

that their carving of the algebra was more refined. Where Priestley saw a gas without phlogiston,

Lavoisier sometimes saw oxygen, but not always. In other words, Lavoisier understood that de-

phlogisticated air was a misnomer, with a coarse heterogeneous reference potential that could be

partitioned even more. The proposition DP, then, is also heterogeneous and includes instances of

oxygen release but also others. The proposition O that the outcome of the experiment is the release

74



of oxygen entails but it is not entailed by DP, O Ĺ DP . By rejecting the hypothesis that there is a

substance released in every combustion, Lavoisier could group experiments like the heating of the

oxide of mercury that result in the release of oxygen in a more refined class. In a further oversimpli-

fication, let AP be the phlogiston theory algebra, the carving of the logical space of outcomes, and

let tw1, w2u “ DP Ĺ AP . Furthermore, given H, the absence of phlogiston in the air was at the

core of the theory. Tokens of dephlogisticated air with different referents were taken as a unit. If

tw1u corresponds of instances with oxygen and tw2u without, then tw1u, tw2u R AP . For Lavoisier,

tw1u, tw2u P AL, so that at least with respect to this issue he made more relevant distinctions. He

carved the event space where the natural joints are.

What, then, would be a good way of aggregating the information? What kind of consensus

could we define between parties? For this particular case, taking the meet AP ^AL as a consensus

position for the logical carving will ensure that all distinctions are preserve, and it will be the

solution defended. But the problem is more general and requires a more systematic presentation.

2. The Framework

2.1. Setup.

The formal representation machinery is the usual. For each agent i, Ωi “ tw1, w2, ..., wnu

denotes a sample space, a set of mutually exclusive and exhaustive possible states of the world. For

simplicity, Ωi is assumed to be countable. A function pi : Ωi Ñ r0, 1s is a probability mass function

(pmf) iff
ř

ωPΩi
ppωq “ 1. The agenda, or the set of events under consideration, is assumed to be a

algebra Ai of events over Ωi - that is, a set of subsets of Ωi that includes the empty set and is closed

under complementation and finite unions (in the general case, closure under countable unions yields

a σ-algebra). Given a pmf, we can define a probability measure, (abusing notation by using the

same symbol as for pmfs) pi, on events in general: pipEq “
ř

ωPE pipωq. Notice, that although a
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pmf is sufficient to define a probability measure, it is not necessary. Probability functions can be

defined directly via axiomatic means.2

There are then three loci for disagreement among agents, each corresponding to the concepts

just defined: the sample spaces Ω, the algebras A defined over those sample spaces, and the

probability functions p defined over those algebras. Prima facie, there seems then to be 23 ´ 1

possible forms of disagreements (and one complete agreement). Nevertheless, since some definitions

depend on others, I will assume here that disagreement about the sample space implies disagreement

about the algebra and the probability function (but not the converse), and disagreement about the

algebra implies disagreement about the probability function (but not the converse). This leaves us

with three fundamental forms of disagreement:3

(1) Full radical disagreement (when agents differ in all three loci),

(2) Partial radical disagreement (when agents differ on their algebras and probability func-

tions, but not with respect to their sample space), and

(3) Non-radical disagreement (when agents differ only in their subjective probability func-

tions).

2For completeness, we include the probability axioms. A probability function is a mapping p : A Ñ R that
satisfies the following conditions:

(i) ppAq ě 0 for any A P A ;
(ii) ppΩq “ 1;

(iii) ppAYBq “ ppAq ` ppBq for any A,B P A such that AXB “ H.
If, in addition, A is a σ-algebra and p satisfies the following condition, p is called countably additive:

(iv) If tAnu
8
n“1 Ď A is a collection of pairwise disjoint events, then

pp
Ť8

n“1 Anq “
ř8

n“1 ppAnq.
3 Much of this depends on the accurate representation of the agents’ sample and event spaces by the modeler.

Consider the following case. Agent A has ΩA “ tw1, w2u, AA “ PpΩ1q, and p1pw1q “
1
2

. Agent B has ΩB “

tw1, w2, w3u, AB “ ttw1u, tw2, w3u,H, tw1, w2, w3uu, and p2pw2q “ p2pw3q “
1
4
. There is a sense in which both

agents disagree about everything, just because they depart from different outcome or sample spaces. Nevertheless,
there is no clear epistemic or doxastic sense in which agent B distinguishes between w2 and w3, since those elements
are bundled in the algebra. The choice of representing the seconds’ agent set of doxastic possibilities this way needs
to be justified on grounds of disagreement resolution, but it is not. Furthermore, there is a bijection f between AA

and AB that preserves both algebraic structure and probabilistic values - f (tw2u)=tw2, w3u. So it is may not clear
to asses what the disagreement is about if the representation is inaccurate.
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As formalized here, the Priestley-Lavoisier debate falls under the second category. But with

a bit of imagination, we could picture cases of full radical disagreement. Suppose, for the sake of

the argument, that Lavoisier had performed more replications of the kind of experiments Priestley

was doing. Assume, furthermore, that such experiments have sufficiently uncontrolled variables so

that Lavoisier iterations led to an experimental outcome that Priestley never observed. Let us call

it wo. Lavoisier’s sample space would include wo and Priestley’s would not, not because of the lack

of refinement, but because such observation is not acknowledged as a possibility.

Sample and event spaces offer different ways for modelers to represent disagreement on doxastic

or epistemic possibilities.4 Each agent i has an agenda of questions they want to investigate. This

induces a partition of the space of possibilities, with each element of the partition corresponding to

one of the different complete answer (to all of the questions) that i is deeming relevant, and formally

represented in the framework by the atoms of the agent’s algebra A . Agents may disagree on the

set of questions, and/or on their possible answers. They can have different degrees of refinement.

An agent i may be simply more refined than j, and that would be captured by the fact that their

Aj is a subalgebra of Ai, like in our analysis of the Priestley-Lavoisier debate.5 It is also possible

for i to be more refined in some respects, but more coarse in others.6 Another option, like our

imaginary case before, is for i to include an answer (outcome) that j did not consider, and is also

incompatible with what j considers possible. This is represented in the model by Ωj Ĺ Ωi. The

three forms of disagreement allow to model a wide variety of cases.

4I make no distinction between the two concepts. Doxastic possibilities are the objects towards which an agent
has doxastic attitudes, epistemic possibilities are the objects towards which an agent has epistemic attitudes. Here
they are assumed to be the same.

5We say that A 1 is a subalgebra of A if A 1
Ď A and A 1, with the distinguished operations of A , is a (σ-)algebra.

That is, the operations must be the restrictions of the operations of the whole algebra; being a subset that is a boolean
algebra is not sufficient for being a subalgebra of A (Halmos, 1963).

6Say Ω1 “ Ω2 “ tw1, w2, w3, w4u, while AtpA1q “ tH, tw1u, tw2u, tw3, w4uu and AtpA2q “

tH, tw3u, tw4u, tw1, w2uu.
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2.2. Pooling and consensus as common ground.

The problem of opinion aggregation is the problem of determining a sensible formula for rep-

resenting the opinions of a group (Genest and Zidek, 1986). Probabilistic opinion pooling is one

proposal for finding such consensus. One general way of aggregating the probabilistic opinions of a

group to form a collective opinion is to employ some pooling function. Say P is the set of probability

functions defined over a common algebra A . Formally, a precise pooling method for a group of n

individuals is a function:

F : Pn Ñ P

mapping profiles of probability functions for the n agents (or simply the n distributions under

consideration), pp1, ...,pnq, to single probability functions intended to represent group opinion,

F pp1, ...,pnq. The probabilities are assigned to events, represented by a common algebra A defined

over a shared sample space Ω.

Various interpretations of pooling are proposed in the literature (Lehrer and Wagner, 1981;

McConway, 1981; Genest and Zidek, 1986). Wagner (2009), for example, offers the following: (a)

A rough summary of the current probabilities of the n individuals; (b) a compromise adopted by

the individuals for the purpose of group decision making; (c) a rational consensus to which the

individuals revise their probabilities after discussion; (d) the opinion a decision maker external to

the group adopts upon being informed of the n expert opinions in the group; and (e) the opinion

an individual in the group adopts upon being informed of the n´1 opinions of his “epistemic peers

in the group. These five interpretations do not exhaust the possibilities. The target interpretation

here is rational consensus (c) adopted either for the sake of the argument in order to perform some

task in group inference or decision making. A secondary and related interpretation, (e) the opinion

of an individual group member after learning the opinions of the others, will also be relevant in some
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of the procedures defined here. This latter interpretation leads to the issues of (peer) disagreement

and expert opinion.

Important for our purposes here, imprecise probabilities allow for a very interesting and philo-

sophically well-motivated account of consensus (Levi, 1985; Seidenfeld et al., 1989). Consider first

the case of full or plain belief. For each of the propositions in the doxastic space of possibilities,

agents are said to have three attitudes: acceptance, rejection, or suspension of judgment. Agents

also have three standard forms of belief change, following Alchourrn et al. (1985) [AGM]: expan-

sion, contraction, and revision. At the outset of inquiry, inquirers may seek consensus as shared

agreement in their beliefs. This could be achieved by retaining whatever beliefs are accepted by

all parties and suspending judgment on those that are not shared, i.e. contracting to the strongest

belief set shared by all. Inquiry initiating from the consensus view can proceed without begging

questions against parties in the consensus, thereby allowing various hypotheses of concern to re-

ceive a fair hearing. Such a consensus constitutes a neutral or non-controversial starting point for

subsequent inquiry.

Levi (1985) draws a distinction between consensus as the outcome of inquiry and consensus at

the outset of inquiry. At the outset of inquiry, agents may seek a common ground upon which to

pursue joint inquiry. This is consensus as shared agreement, discussed just above. Disagreement

among the parties to the consensus may then be resolved (in the best case) through joint efforts

in inquiry - consensus as the outcome of inquiry. A precise pool, namely a pooling function with

a unique probability as its outcome, is neither a consensus as shared agreement, nor justified on

the basis of joint inquiry. In the case of full belief, an analogous process to pooling would be for

each party to either endorse one party’s beliefs or to switch to some compromise set of beliefs that

none endorse originally. Without first suspending judgment, it is difficult to understand how an

individual could be justified in switching to a point of view their beliefs rule out. As Levi emphasizes,
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both reaching common ground at the outset of inquiry and reasoned changes in probabilistic views

are available to groups in the imprecise probabilities setting.

The idea that parties joining effort in inquiry or decision making should restrict themselves

to their shared agreements can be extended to judgments of probability. An analogous sense of

suspending judgment concerning what is controversial is available in the imprecise probabilities

setting. To suspend judgment among some number of probability distributions is to not rule them

out for the purposes of inference and decision making. If the parties seeking consensus all agree

that p is not permissible, then the consensus position reflects that agreement and rules it out. A

set of probability functions represents the shared agreements among the group concerning which

probability functions are not permissible to use in inference and decision making. This avenue was

explored by Stewart and Quintana (2016, 2018).

Consensus as shared agreement also provides a general heuristic to cope with full and partial

radical disagreement.

Returning to the case of plain belief, the case of radical disagreement extends the attitudes

agents can have; not only can they accept, reject or suspend judgment on propositions, but they

can also be unaware of their possibility. In our account, Priestley was unaware that dephlogisticated

air had a heterogeneous reference class. We can therefore recognize three forms of structural change

for the agents: radical strengthening, radical weakening, and radical revision. An agent strengthens

radically when they extend their set of doxastic possibilities, be it at the level of the outcome space

or the event space. Similarly, an agent weakens radically when they forget or now deem irrelevant

some of the original possibilities. Radical revision involves both a strengthening and a weakening,

so that the new doxastic space of possibilities is neither a strict superset nor a strict subset of the

original. These types of structural beliefs changes have been explored by Bradley (2017) in the
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probabilistic case, by Cresto (2008) in an AGM-style, and within game theory in the literature

on unawareness by Fagin and Halpern (1987); Halpern (2001); Dekel et al. (1998); Modica and

Rustichini (1999).

Notice that a structural strengthening does not necessarily entail a structural expansion in the

usual sense. Bringing formerly inaccessible events into consideration does not in principle involve

any doxastic attitude of acceptance, rejection, or suspension of judgment towards them, nor does

it require a credal probabilistic judgment. On the contrary, there is a sense in which a structural

strengthening is more akin to a contraction. In the plain belief case, suspending judgment about

a previously accepted or rejected proposition (i.e. contracting) means leaving open the possibility

that it would be rejected or accepted in the future. In structural strengthening, new doxastic

possibilities are incorporated that will require acceptance, rejection, suspension of judgment, or a

probabilistic judgment, in the future.

Going back to consensus, finding a common ground at the outset requires weakening to the

strongest position compatible with everyone’s views. In other words, the consensus position is the

strongest position weaker than all of than the individual ones. Taken as an rule of thumb, this is

the heuristic that will be employed in the next sections. Furthermore, if, as I will argue later, this

form of consensus is taken to be rationally grounded, then it may explain Lavoisier’s victory in the

debate as a reasonable outcome.

3. Radical Pooling

This section will proceed constructively. I will begin by focusing on full radical disagreement

and then move to partial radical disagreement, and then proper pooling. Each subsection will solve

part of the puzzle, and the last one will summarize the picture.

3.1. A common sample space.
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Suppose there are i, j P I such that Ωi ‰ Ωj . As in our sample imaginary case, Lavoisier

made observations that Priestley did not consider possible outcomes of his experiments. What is a

suitable candidate for a common ground sample space? I will argue that the union of the individual

sample spaces, i.e. Ω˚ “
Ť

iPI Ωi, is the best candidate.

Finding a common ground requires not begging the question about which are the relevant

possibilities, so that all hypothesis in this respect are given a fair hearing. Excluding outcomes

deemed possible by some of the agents would entail a controversial starting point of inquiry, one in

which the consensus position is identified with a dictatorial one, or with some compromise that no

agent originally endorsed but still excludes some. At the outset, epistemic grounds cannot justify

that exclusion. Fairness concerns demand that no view is in principle excluded; if some agent is

not regarded as an equal there would be no rational grounds to call the position a consensus.

Like in the case of suspension of judgment, expanding any Ωi to Ω˚ is in fact a particular

kind of contraction. It amounts considering more propositions possible and open for acceptance,

rejection, suspension of judgment or probabilistic evaluation. Suspending judgment over a previ-

ously endorsed or rejected proposition is the act of opening the possibility that it can be (believed

to be) either false or true, i.e. no doxastic judgement is made about its truth value. By struc-

turally strengthening any Ωi to Ω˚ new outcomes are certainly judged possible, but no judgment is

made about the truth or probabilistic value of those new possibilities. By taking Ω˚ as the com-

mon ground sample space agents are required to weaken their position to the strongest position

compatible with everyone’s possibility space.

In our imaginary case, if Priestley is committed to finding a consensus with Lavoisier, then the

starting position should incorporate Lavoisier’s (claimed) observations as possible, even if Priestley

never had access to them. Failing to include wo at the outset would imply excluding Priestley’s

contribution without any evidence or reasons against it, and it also entail a loss of information.
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Nevertheless, the consensus position developed so far requires no judgment about the likelihood of

an outcome, and in so far as it was never observed by him, Priestley can justifiable require it to

have null probability.

The present view of consensus is as common ground at the outset of inquiry. Future investigation

or deliberation among agents might lead them to conclude that some of the outcomes originally

endorsed as possible by some of the agents are in fact irrelevant. This might very well lead to a

structural weakening in which Ω˚ is reduced to a subset. If after jointly repeating the experiment

multiple times, Priestley’s alleged outcome wo is never observed, nothing precludes them to weaken

their sample space structurally and remove wo. But that amounts to a form of consensus at

the outcome of some rational procedure. At the outset, without bringing into consideration new

evidence or arguments to support the exclusion of some outcomes as irrelevant or impossible,

nothing less than Ω˚ can be accepted on rational grounds. No reasons support expanding the

consensus view to a superset of Ω˚, that would entail endorsing possibilities ex nihilo.

Finding a common sample space is still not enough at this point, since agents have their event

space defined over their original outcome space. Each agent i starts with a sample space Ωi and

an event space Ai defined over Ωi. Once the common ground sample space Ω˚ is reached, agents

need to extend Ai to a sample space A ˚
i defined over Ω˚. The suggestion here is for A ˚

i to be the

coarsest algebra over Ω˚ such that Ai Ď A ˚
i .

Observation 1. There is a unique coarsest algebra A ˚
i over Ω˚ such that Ai Ď A ˚

i . A ˚
i is

the closure under countable unions of Ai Y tw
˚ : w˚ P Ω˚{Ωiu.

7

7The algebras over Ω˚ are partially ordered by the subalgebra relation defined before. A is coarser than A 1 if
the former is a subalgebra of the latter. An algebra satisfying some condition (here Ai Ď A ˚

i ) is the coarsest if no
subalgebra of it satisfies the condition.

Let X “ Ω˚{Ωi. Consider A ˚
i to be the closure under countable unions of members of Ai Y tXu. Notice first

that A ˚
i is a σ-algebra over Ω˚. It is closed under countable unions by definition. Since any xk P A ˚

i can be
decomposed as the countable union of members of Ai Y tXu, either X Ď xk or X X xk “ H. Furthermore, let

yk “ xk{X P Ai. Consider the countable intersection
Ş

k xk of members of A ˚
i . Let

Ş

k xk “ p
Ş

m xmq X p
Ş

n xnq
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The rationale for such a choice is as expected. Agents are required to move to the weakest

position compatible with others. By taking the coarsest algebra that includes theirs, they are not

giving up on any of their own consideration while including others doxastic possibilities without

committing to any probabilistic judgment about them. In our example, Priestley would have to

simply accept the event twou as possible, and minimally include it into his carving of the logical

space.

3.2. A shared event space.

We have now reduced the problem of full radical disagreement to the problem of partial radical

disagreement. In the previous section agents started diverging in their sample space and ended

up finding a common ground. But although they agree on the expanded new sample space Ω˚,

they each had a new event space A ˚
i which will most likely differ for different agents. So now

agents agree on the sample space but disagree about the event space. How should they then find

a common ground event space?

As anticipated before, the suggestion here is that they ought to take the meet of the A ˚
i . The

meet of a set of algebras is the coarsest algebra that is finer than all of the ones in the set. In detail,

A ˚ “
Ź

i A
˚
i is such that (a) for all i, A ˚

i Ď A ˚, (b) A ˚ is still an algebra, and (c) no subalgebra

of A ˚ satisfies (a). By taking the meet as the shared event space agents are precisely following

the heuristic defended here: taking as common ground the coarsest space that is compatible with

everyone’s original position. Taking any reduced algebra would imply excluding events deemed

where X Ď xm for all m, and XXxn “ H for all n. Now,
Ş

k xk “ p
Ş

m xmqXp
Ş

n xnq “ p
Ş

mpymYXqqXp
Ş

n xnq “

pp
Ş

m ymqYXqXp
Ş

n xnq. If n is empty, then
Ş

k xk “ p
Ş

m ymqYX P A ˚
i since

Ş

m ym P Ai. If n is non-empty, then
Ş

k xk “ pp
Ş

m ymq YXq X p
Ş

n xnq “ p
Ş

m ymq X p
Ş

n xnq P Ai Ď A ˚
i . Now for complementation. Take any x P A ˚

i .

If X X x “ H, then x P Ai and Ωi{x P Ai. But x “ Ω˚{x “ pX Y Ωiq{x “ pX{xq Y pΩi{xq “ X Y pΩi{xq P A ˚
i . The

second case is when X Ď x. Now x “ y YX “ y XX “ y XΩi P Ai Ď A ˚
i . So we have that there exists a σ-algebra

over Ω˚ that includes Ai. It remains to show that it is the unique coarsest.
Suppose A @

i is a σ-algebra over Ω˚ such that Ai Ď A @
i . Hence Ωi P A @

i , and therefore X P A @
i by closure under

complementation. It is clear then that A ˚
i Ď A @

i , and in consequence A ˚
i is a subalgebra of A @

i .
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possible by some agent. Taking any finer algebra would be rationally unjustified, in so far as the

refinement would not be grounded on the available evidence.

If there is some accuracy in my presentation and formalization of the Priestley-Lavoisier debate,

then the proposed solution aligns with the scientific consensus that resulted from the dispute. By

rejecting the hypothesis that there is a substance that is released in combustion, namely phlogiston,

Lavoisier studied the properties of the gas resulting from heating a red calx of (oxide of) mercury

as properties of a substance of its own kind, oxygen. Priestley, on the other hand, studied them

as properties of a gas depleted from phlogiston and therefore started with a coarser algebra. Once

again, Lavoisier carved the event space where the natural joints are. But if this is the case, then

the meet AP ^AL is just AL and the proposed common ground is precisely Lavoisier’s carving.

Not all cases of partial radical disagreement fit the example I’ve been exploring, namely when

one individual is simply more refined than another. Nothing precludes the alternative that all

of the parties involved considered possibilities that none of the other did. For example, for two

agents A and B we could reasonably have Ω˚ “ ΩA “ ΩB “ tw1, w2, w3, w4u, AA is generated

by ttw1u, tw2u, tw3, w4uu, while AB is generated by ttw1, w2u, tw3u, tw4uu. Here A distinguishes

between tw1u and tw2u while B does not, and conversely for tw3u and tw4u. Furthermore, notice

that by taking the meet here, there will be new events not present in any of the individual’s event

space brought into consideration. The consensus position acknowledge as doxastically possible

events that no one considered possible before. AA ^ AB “ A ˚ “ PpΩ˚q, and in particular

tw2, w3u P A ˚ but tw2, w3u R AA and tw2, w3u R AB. I take this to be a positive feature of the

proposal. It shows that seeking consensus in one of its weakest forms, as common ground and at

the outset of inquiry, already can lead to conceptual refinement and innovation.

3.3. Extending the probability functions: A case for imprecision.
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So far so good, but not much was said about probabilistic judgments. The moves so far were

the following:

Ωi Ω˚

Ai A ˚
i A ˚

Shared Sample Space

Ω˚ “
Ť

iPI Ωi

Subjective Extension

Coarsest including Ai

Shared Event Space

A ˚ “
Ź

i A
˚
i

Defined Over

Consensus first required to find a common sample space Ω˚, which I argued should be the union

of the sample spaces of all of the members of the group. After that, each agent extended their event

space Ai to the new common sample space by taking A ˚
i , the coarsest algebra that includes their

original event space. The third step was to find a common event space, and I defended the idea of

taking the meet A ˚ of all the A ˚
i . Probability functions were left far behind, only defined for the

original Ωi and Ai. How should the agent extend their subjective probability, originally defined for

narrower sample and event spaces, to the new common ground of doxastic possibilities?

Let us start with an easy case, when all the pmf pi are defined over the power set algebra of a

Ωi. There is, I claim, one very natural way of extending each pi over Ωi to a pmf p˚i over Ω˚:

p˚i pwq “

$

’

’

&

’

’

%

pipwq if w P Ωi

0 if otherwise

There are reasons to assign null probabilistic weight to outcomes that were not considered

before. Recall our imagined scenario before. Lavoisier claims to have observed some new outcome
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wo from his experiments, an outcome that Priestley never observed. I argued before that seeking

consensus required Priestley to accept that outcome, and its corresponding event, into the common

ground sample and event spaces. How should Priestley adjust his personal subjective probabilities

pP to the new space of possibilities? The suggestion is p˚P pw
oq “ 0. After all, he never observed

the alleged experimental outcome.

Notice first that this is not yet the output of a pooling function. The pooling function is the

result of aggregating all such p˚i ; that would be the probabilistic consensus of the group. By itself,

p˚i is the extension of pi to the common ground sample and event spaces. On the one hand, i did not

originally acknowledged all the w P Ω˚ but w R Ωi as relevant doxastic possibilities, so in principle

there seems to be no reason to give them any probabilistic weight. On the other hand, giving

them some probabilistic weight implies modifying - most likely reducing - the probabilistic weight

of doxastic possibilities they originally considered relevant to the problem; which seems prima facie

unjustified. Giving null weight to the doxastic possibilities originally regarded as irrelevant seems

to be the most cost effective way of taking into account the common sample and event spaces -

though not yet others’ probabilistic judgments.

Furthermore, if this solution is endorsed, now the problem of radical pooling is reduced to the

problem of non-radically pooling the p˚i , since they are all defined over the same spaces. Somewhere

else (Stewart and Quintana, 2016, 2018) I defended the use of imprecise probabilities for non-radical

pooling; but non-radical aggregation is not the subject of this essay. Imprecise probabilities will be

vindicated again after the following considerations.

The previous solution is only partial, since it is unjustified to assume that all the subjective

probabilities are defined over the power set algebras. We want a procedure that is defined in general.

Our guiding example was precisely one in which Priestley’s original event space was coarser than
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Lavoisier’s. Modelling a situation in which one agent is more doxastically refined than another

requires making use of sub-algebras of the power set.

Marginalization leads to imprecision

Each probability measure pi is defined over Ai, which may or may not be the power set of Ωi,

and the task is to extend that measure to A ˚. The suggestion here is to use imprecise probabilities.

In particular, there are several admissible extensions of pi to A ˚ and there is no reason for i to

prefer one over the other.

P˚i “ tp˚i : p˚i æAi “ piu

So P˚i is the set of all probability measures that extend pi - i.e. all the p˚i defined over A ˚

such that restricted to Ai gives back pi. More precisely: p˚i æAi “ pi if and only if for each H P Ai,

p˚i pHq “ pipHq.
8

Observation 2. P˚i is convex for all i.9

Notice, furthermore, that this is a generalization of the previous case where probability measures

were defined in terms of pmfs. New events will have non-null probability weight only if they have

old events as subsets. Completely new events, which were not regarded doxastically possible at all

before, will have null probabilistic weight. In the imagined scenario, Priestley would assign zero

probability to Lavoisier’s alleged observation.

Any precise p˚i satisfying the condition will be arbitrary and unjustified.

8In general the marginalization operation p˚i æAi is defined only when Ai is a subalgebra of A ˚, but this needs
not to be the case here and that is why the definition is necessary.

9 Suppose p1,p2
P P˚i . I want to show that for α P r0, 1s, p˚ “ α.p1

` p1´ αq.p2
P P˚i .

It is enough to show that p˚æAi “ pi. Given any E P Ai, p
˚
pEq “ α.p1

pEq ` p1 ´ αq.p2
pEq “ α.pipEq ` p1 ´

αq.pipEq “ pipEq.
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Using imprecise probabilities here follows the general heuristic and conception of consensus as

common ground that I have been defending. Arguably, imprecision amounts to a weakening and

an increase in uncertainty. That is fine, since we are requiring each of the agents to extend their

probabilistic judgment to events that they never even considered doxastically possible.

Rigidity leads to imprecision

A standard, yet contested, principle of Bayesian epistemology is rigidity : conditional probabil-

ities are kept fixed throughout updating procedures. Let pp¨q be defined over some algebra A of

events be a representation of some agent’s (coherent) credal state. Suppose now the agent learns

an event E and updates their credal state to qp¨q “ pp¨|Eq according to Bayesian standards. For

all events H P A we have:

‚ Rigidity: qpH|Eq “ ppH|E X Eq “ ppH|Eq

Richard Jeffrey (Jeffrey, 1990) famously argued against this form of rigidity, and cases like the

problem of old evidence show it can be rational to change one’s initial conditional probabilities. I

do not intend to discuss this form of rigidity, but one relevant for the structural strengthening case,

and in line with some ideas presented by Bradley (Bradley, 2017).

The idea behind rigidity is that we should extend our relational attitudes to the new set in such

a way as to conserve all prior relational credences. Becoming aware of the new events should not

affect the relative credibility of previously considered events. Becoming aware of such new events

does not provide any justification for such a change, and therefore it would not be a conservative

structural strengthening. For all E,H P Ai with pipEq ‰ 0 ‰ p˚i pEq :

‚ Strong Structural Rigidity [SSR]: p˚i pH|Eq “ pipH|Eq
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SSR can arguably be regarded as too strong of a requirement. If so, consider the principle

that demands that the strengthened conditional probabilities of old events given the old set of

possibilities should be kept the same. Namely, if after becoming aware of new possibilities agents

learn that the old ones are the relevant ones, they ought to return to the original probabilistic

judgments. For all H P Ai:

‚ Weak Structural Rigidity [WSR]: p˚i pH|Ωiq “ pipH|Ωiq “ pipHq

The following observation holds trivially.

Observation 3. Strong Structural Rigidity and Weak Structural Rigidity are equivalent.10

Going back to imprecision, it is easy to observe that all the p˚i P P˚i “ tp˚i : p˚i æAi “ piu satisfy

SSR,11 yet the set of all p˚i satisfying SSR is strictly larger than P˚i .12 The following condition

suffices to make the two sets coextentional.

‚ Structural Conservatism: p˚i pΩiq “ pipΩiq “ 1.

Structural Consevatism requires that outcomes originally inaccessible to the agent will get null

probability, but new events compatible with the previous set of doxastic possibilities need not have

null probabilistic value. Notice that once again that a structural strengthening is not yet the output

of a pooling function. It is not yet taking into account any (probabilistically representable) evidence

in support of the new possibilities, nor seeking probabilistic consensus. Structural strengthening

should be distinguished from some form of expansion, the case in which not only the space of

possibilities is extended but also new possibilities are accepted.

10The proof relies on conditional probabilities being defined rather than primitive. SSR entails WSR tivially,
since Ωi P Ai and pipΩiq “ 1. WSR and the definition of conditional probabilities secure that for all E,H P Ai,

pipH|Eq “
pipHXEq

pipEq
“

pipHXE|Ωiq

pipE|Ωiq
“

p˚i pHXEq

p˚i pEq
“ p˚i pH|Eq.

11If p˚i P P˚i , then for all H P Ai, p
˚
i pHq “ pipHq. Hence, p˚i pH|Eq “

p˚i pHXEq

p˚i pEq
“

pipHXEq

pipEq
“ pipH|Eq.

12Let Ωi “ tw1, w2u, Ai “ PpΩiq, and pipw1q “
1
2
. On the other hand, let Ω˚ “ tw1, w2, w3u, A ˚

“ PpΩ˚q, and

p˚i pw1q “ p˚i pw2q “ p˚i pw3q “
1
3
. Then p˚i satisfies SSR but p˚i R P˚i .
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Observation 4. The set of all p˚i defined over A ˚ satisfying SSR and Structural Conservatism

is just P˚i “ tp˚i : p˚i æAi “ piu.
13

Divergence measures lead to imprecision

When extending pi from Ai to A ˚ it is worth noticing that although Ai Ď A ˚, the former

need not be a subalgebra of the latter [i.e. when Ωi Ĺ Ω˚]. pi can therefore be interpreted as an

incoherent credence function over A ˚, one in which there are no values assigned for some elements

of the algebra. Hence the question of how to structurally strengthen pi to A ˚ is akin to the issue

of how to fix incoherent credences, a topic extensively developed by Pettigrew (Pettigrew, 2017)

and Predd et al (Predd et al., 2009). A well argued solution involves using divergence measures.

Let P be the set of credence functions defined on A .14 A divergence is a function DA : PˆPÑ

r0,8s such that for all credences p,p1 P P, (i) DA pp,pq “ 0, and (ii) DA pp,p
1q ą 0 if p ‰ p1.

Symmetry is not required, nor the satisfaction of triangle inequality. The following are two classical

examples:

Squared Euclidean Distance [SED]

SEDA pp,p
1q “

ÿ

EPA

rppEq ´ p1pEqs2

Generalized Kullback-Leibler [GKL]

13A previous note showed that the p˚i P P˚i satisfy SSR, and they trivially satisfy Structural Conservatism.
Suppose p˚i satisfies SSR and Structural Conservatism. Let H P Ai (so H Ď Ωi) and consider p˚i pHq. By Structural
Conservatism p˚i pHq “ p˚i pH|Ωiq. By SSR and Observation 4, p˚i satisfies WSR and therefore p˚i pH|Ωiq “ pipHq.

14Notice that nothing in the definition requires the elements of P to be probability functions, just that they assign
values in [0,1] to the elements of A
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GKLA pp,p
1q “

ÿ

EPA

„

ppEqlog

ˆ

ppEq

p1pEq

˙

´ ppEq ` p1pEq



Divergence measures are generally used under the methodological assumption of minimal mu-

tilation, which states that any shift from a prior to a posterior credal states should accommodate

the posterior condition by minimally changing the prior. For example, Bayesian conditionalization

satisfies the minimal mutilation principle according to GKL: pp¨|Eq “ p1 minimizes GKLA pp,p
1q

on the condition that the p1 is a probability function (i.e. coherent credal functions) that assigns

value 1 to E. Similarly, Kullback-Leibler divergence generalizes Jeffrey conditionalization (Diaconis

and Zabell, 1982b). GKL is also a generalization of Jaynes Maximum Entropy formalism (Williams,

1980b). The principle of minimal mutilation, and GKL in particular, has also gained support in

solving issues like the problem of old evidence (e.g., Hartmann, (Hartmann, 2014b)).

To fix pi amounts then to finding the (set of) coherent p˚i defined over A ˚ that minimizes some

appropriate divergence measure. We can avoid the question on whether to use SED or GKL by

looking at a generalization of both:

Additive Bregman Divergence [ABD]

Suppose φ : r0, 1s Ñ R is a strictly convex function that is twice differentiable on (0,1) with

a continuous second derivative. Let P be the set of credence functions defined on A . Suppose

D : PˆPÑ r0,8s. Then D is the additive Bregman divergence generated by φ if, for any p,p1 P P,

DA pp,p
1q “

ÿ

EPA

rφpppEqq ´ φpp1pEqq ´ φ1pp1pEqqpppEq ´ p1pEqqs
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SED is the ABD generated by φpxq “ x2, and GKL is the ABD generated by φpxq “ xlogx´x.

The additive Bregman divergence can also be justified on accuracy-first grounds. Predd et al (Predd

et al., 2009) show that if p is an incoherent credence function, then the coherent credence function

p1 that minimizes ABD with respect to it is more accurate than p at all possible worlds. Therefore

fixing incoherent credence functions using ABD increases accuracy.

The following observation is important for our purposes:

Observation 5. For all p˚i coherent credence functions defined over A ˚:

p˚i P P˚i “ tp˚i : p˚i æAi “ piu iff DAippi,p
˚
i q “ 0 “ DAipp

˚
i ,piq

15

This section explored the structural strengthening of pi to A ˚ and argued for imprecision,

namely that the strengthening ought to be P˚i “ tp˚i : p˚i æAi “ piu. This was shown to be compatible

with marginalization, the principle of minimal mutilation expressed by divergence measures (as well

as some accuracy-first intuitions), and some conservative constrains involving rigidity. Any of the

p˚i P P˚i will satisfy those principles. Furthermore, excluding any of the p˚i satisfying the conditions

would be in principle arbitrary and unjustified. In other words, if we take any or all of those

conditions to be exhaustive principles for structural strengthening, then we would be required to

adopt P˚i “ tp˚i : p˚i æAi “ piu.

3.4. Pooling (imprecise) probabilistic judgments.

15The observation follows from the fact that ABD is a divergence measure as defined before. If p˚i P P˚i then
for all E P Ai, p˚i pEq “ pipEq, and hence each element of the summation will be null. On the other hand, if
p˚i R P˚i , then there is E P Ai such that p˚i pEq ‰ pipEq. I will rely on the well known fact that φ is strictly convex
if and only if @x ‰ y P r0, 1s, φpxq ą φpyq ` φ1pyqpx ´ yq. This implies that for any E P Ai, if p˚i pEq “ pipEq,
then φpppEqq ´ φpp1pEqq ´ φ1pp1pEqqpppEq ´ p1pEqq “ 0; but also, if p˚i pEq ‰ pipEq, then φpppEqq ´ φpp1pEqq ´
φ1pp1pEqqpppEq ´ p1pEqq ą 0, which is sufficient to complete the proof.
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Each agent now has a convex set of probability functions P˚i defined over a common algebra

A ˚. The view defended is that pooling means finding a common ground - excluding that and only

that which all agree should be excluded. Say P “ PpP q, the power set of the set of all probability

functions defined on an algebra A ˚. A generalized imprecise pooling function is defined as:

F : Pn Ñ P

The general question about how to aggregate profiles of imprecise probabilities is not settled

by the literature, and I do not intend to provide definitive arguments about it here. Rather, I am

more interested in providing arguments for the feasibility of some options and the unfeasibility of

others in the present context. There are several natural candidates for imprecise pooling. Let P˚i

be the set of probability functions corresponding to agent i.

Proposal 1:: FpP˚1 , ...,P˚nq “
Şn
i“1 Pi.

Proposal 2: FpP˚1 , ...,P˚nq “
Ťn
i“1 Pi.

Proposal 3: FpP˚1 , ...,P˚nq “ conv

"

Ťn
i“1 Pi

*

.

In the present view, agents strengthening their original probabilistic judgments will assign

zero probability to events or outcomes incompatible with the original sample space. This entails

that in most cases adopting Proposals 1 would trivialize the account. It suffices for an agent to

assign non null probability to an outcome not considered by others to make the intersection empty.

Furthermore, about the first two proposals, Robert Nau writes:

As more opinions are pooled, the union can only get larger, and it reflects only
the least informative opinions, whereas intuitively there ought to be (at least
the possibility of) an increase in precision as the pool gets larger. On the other
hand, the intersection of convex sets of measures may be empty if experts are
mutually incoherent, and it generally yields too tight a representation of aggregate
uncertainty. As more opinions are pooled, the intersection can only shrink, and
it reflects only the most extreme among those opinions, whereas intuitively there
should be some convergence to an average opinion when the pool gets sufficiently
large. Moreover, neither the union nor the intersection provides an opportunity
for the differential weighting of opinions, which would be desirable in cases where
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one individual is considered (either by herself or by an external evaluator) to be
better or worse informed than another individual about a particular event under
consideration. (Nau, 2002)

Nau’s reservations about taking the intersection and the triviality argument mentioned before

suffice to reject Proposal 1.

Nau’s reservations about taking the union are less persuasive here. If, as suggested, pooling is

interpreted as consensus as common ground, then more precision is not expected as the pool gets

larger. Similarly, in finding common ground individuals are all given a fair standing and at the

outset they are not assumed to be unequally informed. Such epistemic priority can be revealed

during inquiry. Furthermore, a Bayesian account of inquiry secures that joint investigation and

updating leads to convergence and uncertainty reduction. In principle, the arguments reviewed are

not compelling against Proposal 2.

On a different note, agents may want to preserve all those probability functions that represent

a potential resolution of the conflict between their differing distributions. If we assume that these

potential resolutions have the form of convex combinations as suggested by (Stewart and Quintana,

2016, 2018) and the literature on linear pooling, then Proposal 3 seems a feasible alternative.

To conclude, taking unions ensures that all of the agents probabilistic judgments are giving

a fair hearing, and that only those probabilities rejected by everyone are excluded. Taking the

convex set of unions might lead to greater imprecision, but this might be warranted if all potential

resolutions are to be preserved at the outset. Proposals 2 and 3 are feasible alternatives for pooling.

4. Conclusion

The general procedure can be visualized in the following diagram:
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Ωi Ω˚

Ai A ˚
i A ˚

pi P˚i P˚

Shared Sample Space

Ω˚ “
Ť

iPI Ωi

Subjective Extension

Coarsest including Ai

Shared Event Space

A ˚ “
Ź

i A
˚
i

Subjective Extension

P˚i “ tp˚i : p˚i æAi “ piu

Pooling
Ťn
i“1 P˚i

Defined Over

Defined Over

The nature of this essay is programmatic. It is focused in assessing a form of disagreement

that has been neglected in the literature, disagreement about which are the relevant sample or

event spaces. The position defended here is that pooling can be interpreted as a technical and

philosophical characterization of a form of consensus, namely consensus as common ground at the

outset of inquiry. This view was explained and defended in Section 2, and developed formally in

Section 3. Furthermore, one of upshots of such an account is that (i) marginalization, (ii) rigidity,

and (iii) divergence accounts of how to strengthen probabilistic judgments to larger algebras will

lead to the adoption of imprecise probabilities.

Nowhere in this essay it is claimed that taking consensus as common ground is the only solution

to the problem, but rather that it is a sound one. On the one hand, there might be other formal

approaches. For example, considering product algebras and probabilistic extensions to them. On

the other hand, there might be other philosophical approaches, by taking different notions of

consensus. One might think, for example, that an agent that has a prior defined over a more

refined event or sample space has some kind of epistemic priority over a coarser (less sophisticated)

agent. Hence, in some instances, resolving radical disagreement may resemble a case of expert

testimony.
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The Priestley and Lavoisier debate served as a motivating example of the kind of disagreements

that can be found in science, or inquiry in general. I argued that conceptual incommesurability can

be modeled as a disagreement about what are the relevant sample and event spaces, what are the

best natural joints to carve. But even in the face of such discrepancy, some form of consensus can

be defined. At the outset, disagreements about what variables are relevant for explanation should

begin by giving a fair treatment to all the possibilities. During inquiry, some of those possibilities

may be discarded. For example, statistical methods of model selection like variance analysis or the

AIC algorithm may deem some variables insignificant. But a pooling function cannot be expected

to give an armchair account of the outcome of inquiry. In order to resolve radical disagreement

rationally agents need start the conversation by taking others’ world views as possible.
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CHAPTER 5

Harsanyi meets Smith’s Altruism and Spite

1. Introduction

Harsanyi (1977) originally thought of his Aggregation and Impartial Observer Theorems in

the context of Adam Smith’s moral sentimentalism. Nevertheless, subsequent discussion focused

on whether they provide an accurate representation of utilitarian social welfare functions. The

purpose here is to go back to the original spirit of the results and show that they help to formally

characterize Smith’s tripartite division of the passions between social, unsocial, and selfish [here

represented by altruism, spite, and self-interest]. Furthermore, I suggest that Smith’s recognition of

the value of unsocial passions [and their proper taming] in his Theory of Moral Sentiments (Smith,

2002) makes the Das Adam Smith Problem even worse.

This introduction will present Harsanyi’s results and summarize the basics of Smith’s moral

sentimentalism. Section 2 will be devoted to a discussion of altruism, where a definition is provided

following Kitcher (2010), as well as a characterization using Harsanyi’s result. Section 3 will proceed

analogously with the notion of spite, now using an adapted version of the classic theorem. The

concluding section will discuss Das Adam Smith Problem and his tripartite division of society.

1.1. Harsanyi, between moral sentiments and utilitarianism.

Harsanyi (1955, 1977) famously presented two distinct results popularized as the Aggregation

Theorem and the Impartial Observer Theorem.

Theorem 11. Aggregation Theorem
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Suppose u, u1, ..., un are von Neumann-Morgenstern (VNM) utility functions on the set L of all

lotteries generated from a non empty set of pure prospects and, for all p, q P L

(1) uppq “ upqq whenever uippq “ uipqq for all i “ 1, .., n1

Then there are2 real numbers α1, ..., αn, and β3

uppq “
n
ÿ

i“1

αiuippq ` b(1)

If, in addition, for all p, q P L

(2) uppq ą upqq whenever uippq ě uipqq for all i, and uippq ą uipqq for some i.

Then αi ą 0 for all i.

Moving towards the Impartial Observer Theorem, Harsanyi (1977) presented his results in the

context of Smith’s moral sentimentalism:

Since Adam Smith, moral philosophers have often pointed out that the moral
point of view is essentially the point of view of a sympathetic but impartial ob-
server. It is the point of view of a person taking a positive sympathetic interest
in the welfare of each participant but having no partial bias in favor of any par-
ticipant. (1977, p. 48-49)

He provides a particular interpretation of Smith’s sympathy :

This must obviously involve his imagining himself to be placed in individual
j’s objective position, i.e., to be placed in the objective positions (e.g., income,
wealth, consumption level, state of health, social position) that i would face in

1In all truth, this is a presentation of a weaker version of the result, since Harsanyi arrives to the same conclusions
but departing from (vNM) preference orderings rather than (vNM) utilities.

2Furthermore, if the u1, ..., un are affinely independent, then the αi and β are unique.
3A further assumption here involves what Weymark Weymark (1991) calles Independent Prospects: For each

i “ 1, ..., n, there exists pi, qi P P such that such that for all p P P , pi j q
i for all i ‰ j and pi „ qi. This will be

Axiom 5 below.
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social situation A. But it must also involve assessing these objective conditions
in terms of j’s own subjective attitudes and personal preferences. (1977, p. 52)4

In order to account for such sympathetic judgments of the imagination, Harsanyi introduces

lotteries over extended alternatives of the form [Aj , Pj ], where Aj is j’s personal prize (or personal

position in social situation A), and Pj denotes j’s subjective attitudes towards that prize or position.

According to Harsanyi’s reading of Smith, an individual’s choice among social situations is

moral if it satisfies the requirement of impartiality and impersonality; this is, if they did not know

in advance what their own social position would be in each social situation [Harsanyi (1977), pg.49].

He first models this uncertainty by requiring that they treat a social situation A as if it were an

equiprobable mixture of the n extended alternatives rA1, P1s, ..., rAn, Pns, where i “ 1, .., n are all

the members of society. Later, he expresses the impartiality and impersonality making use of an

assumption of symmetry.

Theorem 12. Impartial Observer Theorem

Suppose W,u1, ..., un are von Neumann-Morgenstern (VNM) utility functions on the set L of

all lotteries generated from extended alternatives and, for all p, q P L (1) and (2) are satisfied.

Furthermore, assume the following holds

(3) If u1, ..., un are expressed in the same utility unit5, then W must be a symmetric function

of these individual utility functions.

, then

W ppq “
1

n

n
ÿ

i“1

uippq(2)

4This latter account on the basis of consumer’s sovereignty : The interests of each individual must be defined in
terms of their own personal preference and not in terms of what somebody else thinks is good for them. We will
return to this idea when assessing non-paternalistic altruism.

5For the time being, I will bypass the issue of interpersonal utility comparisons.
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Although Harsanyi (1977) framed the interpretation of the results in terms of Smith’s moral sen-

timentalism and sympathy, later discussion revolved around their significance for social welfare and

utilitarianism. In particular, he took equation (2) to express utilitarianism, namely the claim that

social welfare ought to be understood as the equally weighted sum of individual utilities. His result

was challenged most notably by Sen (1974, 1977, 2005) and Diamond (1967). They objected the

appropriateness of the expected utility axioms (mainly Independence) for social decision-making,

and the fact that the linearity result depends on whether or not VNM utility representations are

used at the individual level.6 In a nutshell, they questioned whether Harsanyi’s theorems provide

an accurate axiomatization of (weighted) utilitarianism or just another representation theorem.

The literature discussing these issues extends way beyond the scope of this essay. For an excel-

lent, though outdated, survey paper see Weymark (1991); for quality examples of the state of the

contemporary debate, see Fleurbaey and Mongin (2016), Mongin (2001), or Fleurbaey (2010).

The suggestion now is to return to Harsanyi’s original interpretative line. As it will be developed

in the next section, Adam Smith’s development of his Impartial Spectator is built over a moral

psychology that takes into account individual’s judgments of sympathy as well as their social,

unsocial, and selfish passions. Harsanyi’s Aggregation Theorem, independently of its relevance

with respect to utilitarianism or social welfare, will become useful as a technique to represent and

characterize those other-directed subjective attitudes.

1.2. Smith’s moral passions.

In The Theory of Moral Sentiments (TMS, Smith (2002)), Smith argues that social psychology

is a better guide to moral action than reason. One way of reading Smiths TMS is as a recon-

struction of virtue ethics, based on the study of human moral sentiments. Virtuous actions are

6In principle, it is theoretically permissible to replace an individual’s VNM utility function by any non-affine
increasing transformation, see Fleurbaey and Mongin (2016) for a resolution of this point.
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those actions that have merit and are praiseworthy (propriety), vicious are those that are improper

and punishable. In order to determine which actions are proper or improper we rely on the moral

sentiment of sympathy, the tripartite division of the moral passions, plus other cognitive abilities

like imagination. His famous Impartial Spectator emerges as a moral standard over the base of

individuals exercising their subjective moral/sympathetic judgments in society.

Smith’s most fundamental concept in TMS is that of sympathy, in particular situational sym-

pathy, whereby we imagine how we would feel in the circumstances of others (a rich discussion

of Smith on sympathy can be found in Griswold (1998), ch.2).7 Situational Sympathy therefore

involves not only the capacity for empathy (recognizing and sharing the emotions of others), but

also a judgment. If after imagining ourselves in other’s shoes, we picture ourselves feeling the same

emotions they express, then we judge their sentiments appropriate; otherwise we judge them inap-

propriate. Furthermore, if there is concordance between the emotions experienced by the the agent

and the emotions that arise form the situational sympathy, then we achieve mutual sympathy. And

this state is not just the sharing of positive emotions, but ”any passion whatever”:

We enter into their gratitude towards those faithful friends who did not desert
them in their difficulties; and we heartily go along with their resentment against
those perfidious traitors who injured, abandoned, or deceived them (2002, p. 13)

For Smith, we not only supply, but we also demand sympathy. As agents, we make constant

efforts to adjust our feelings so that sympathetic spectators would judge our actions as appropriate.

It is this process of mutual emotional adjustment that gives rise to virtue. We will get back to this

in a moment.

7“Sympathy, therefore, does not arise so much from the view of the passion, as from that of the situation which
excites it. We sometimes feel for another, a passion of which he himself seems to be altogether incapable; because,
when we put ourselves in his case, that passion arises in our breast from the imagination, though it does not in his
from the reality.” (2002, p. 15)
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Mutual Sympathy, then, is “our fellow-feeling with any passion whatever” (pg.13), which begs

for classification of emotions. In TMS, Smith recognizes three types of (moral) passions brought

by the habit of the imagination: Unsocial passions, social passions, and selfish passions.8 The

unsocial passions are “hatred and resentment, with all their different modifications” (pg.41); the

social passions are “generosity, humanity, kindness, compassion, mutual friendship and esteem, all

the social and benevolent affections”(pg.47); and the selfish passions are “never either so graceful

as is sometimes the one set, nor is ever so odious as is sometimes the other” (pg.49), which Smith

exemplifies them with grief and joy.

One way of reading this tripartite distinction among the moral passions is as inducing for each

individual a partition of society in three distinct groups. A group towards which they are spiteful,

a group towards which they are altruistic, and a group towards which they are selfish.9 This is the

picture pursued in this essay. The next sections will provide definitions and formal characterizations

of these other-directed attitudes, as well as some discussion of their significance.

One biased approach to the impartial spectator is through the Wealth of Nations (WN, Smith

Adam 1723-1790 (2000)). Out of the individuals’ sympathetic judgments of propriety and impro-

priety, and their demand for sympathy, a marketplace comes into place where agents negotiate and

adjust their moral passions. The impartial spectator comes about as the standard for judgment:10

Whatever judgment we can form concerning them [our own sentiments and con-
duct], accordingly, must always bear some secret reference, either to what are, or
to what, upon a certain condition, would be, or to what, we imagine, ought to be

8This account is developed in Part I, Section II, Chapters III-V.
9We should also recognize the possibility of context-dependence. For each individual j there might be situations

in which I’m altruistic towards j, situations in which I’m spiteful towards j, and situations in which I’m simply
self-interested in dealings with j. For the purposes of this essay we will avoid this issue.

10This account of the impartial spectator as a form of equilibrium point in the marketplace of judgments of
sympathy is in no way canonical.
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the judgment of others. We endeavour to examine our own conduct as we imagine
any other fair and impartial spectator would examine it. (2002, p. 128-129)

There exists in the mind of every man, an idea of this kind, gradually formed
from his observations upon the character and conduct both of himself and of
other people. It is the slow, gradual, and progressive work of the great demigod
within the breast, the great judge and arbiter of conduct. (2002, p. 219)

Smith offers several interpretations of this demigod, sometimes as an ideal of exact propriety

and perfection under perfect information, sometimes by an approximation to this idea as it is

exemplified by the best of society,11 and others. I do not pretend an exhaustive presentation here.

Furthermore, it is doubtful that Harsanyi’s account of the impartial observer as an individual who

is uncertain with respect to their social position was intended to be an accurate characterization

of Smith’s. The purpose for invoking the impartial observer here is to emphasize that for Smith

it is a bottom up emerging concept, “gradually formed from his observations upon the character

and conduct of both himself and of other people”. Hence the study of Smith’s three types of moral

passions at the individual level (rather than the social welfare level) is a necessary precondition,

and this will be the focus of the present work.

2. Altruism

Smith’s opening lines of TMS speak to the importance that the social passions have to his moral

project:

How selfish soever man may be supposed, there are evidently some principles in
his nature, which interest him in the fortune of others, and render their happiness
necessary to him, though he derives nothing from it except the pleasure of seeing
it.

11“In estimating our own merit, in judging of our own character and conduct, there are two different standards
to which we naturally compare them. The one is the idea of exact propriety and perfection, so far as we are each of
us capable of comprehending that idea. The other is that degree of approximation to this idea which is commonly
attained in the world, and which the greater part of our friends and companions, of our rivals and competitors, may
have actually arrived at.” (Smith (2002) pg. 219)
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For Smith, social passions are such that even in excess they do not induce any form of aversion

or resentment, but rather some compassion;12 very much unlike unsocial passions. Furthermore,

when they are appropriate, they are the object of gratitude and require reward.13 The proper

objects of either gratitude or resentment constitute the basis for merit and demerit, which are the

building blocks of virtue and vice.

The focus of the present section is on benevolence, the concern for the well being of others. It

will be treated her under with the concept of altruism; since this is the technical term adopted by

contemporary literature.

2.1. A counterfactual definition.

Allow me to begin with an intuitive definition of behavioral altruism:

An individual agent behaves altruistically whenever it performs an action that it is

costly for itself but beneficial for another party.

This definition is behavioral in so far as there is no appeal to intentions like beliefs or desires,

nor to emotions like the warm glow felt by those that enjoy helping others. It is defined just in

terms of actions in an environment or decision context. The first task is to specify what is meant

by ”costly” and ”beneficial”. This will be done by refining (and generalizing) the definition.

Kitcher (2010) introduced a counterfactual account of altruism, an approach that we could trace

back to the Groundwork (Kant and Gregor, 1998).14 He compares the attitudes that agents have

12“Those amiable passions, even when they are acknowledged to be excessive, are never regarded with aversion.
There is something agreeable even in the weakness of friendship and humanity. The too tender mother, the too
indulgent father, the too generous and affectionate friend, may sometimes, perhaps, on account of the softness of
their natures, be looked upon with a species of pity, in which, however, there is a mixture of love, but can never be
regarded with hatred and aversion, nor even with contempt, unless by the most brutal and worthless of mankind”.
(pg. 49)

13“Actions of a beneficent tendency, which proceed from proper motives, seem alone to require reward; because
such alone are the approved objects of gratitude, or excite the sympathetic gratitude of the spectator”. (pg. 91)

14In the first section of his Groundwork, Kant is interested in knowing whether an altruist (“friend of humanity”)
is acting out of duty (i.e. respect for the moral law) or out of inclination (i.e. the ”warm glow”). In order to solve
this puzzle, he suggests a counterfactual account by exploring what would the agent do if it were not affected by the
pleasure of helping:

“Suppose, then, that the mind of that friend of humanity were beclouded by his own grief, which
extinguishes all compassion for the fate of others; that he still had the means to benefit others in
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in two different contexts, a solitary choice context C˚ in which the payoffs are defined only for the

decision maker; and a corresponding social choice context C with choices involving the same payoff

for him or her, but payoffs are also defined for other agents.15 Furthermore, in context C agents

have information about the preferences of other agents. The basic idea is that to assess whether an

agent is behaving altruistically we need to compare what that agent would have done if others were

not involved. If, when moved from the solitary situation to the social one, the agent is prepared

to change their choice in a way that benefits the other agent, then they are behaving altruistically.

The underlying rationale is that the agent is paying an opportunity cost by changing the choice to

a less preferred option, and the most salient reason they are doing it is to benefit others. An agent

i is an altruist with respect to another agent j if16 there are solitary and social counterpart choice

contexts C˚ and C such that:

(a) i’s choice in C is different from their choice in C˚.

(b) i’s choice in C offers a better payoff to j than the payoff corresponding to the choice that

i makes in C˚.

The two contexts C and C˚ need not necessarily be presented as counterfactual counterparts.

One possible reading is purely epistemic. The agent is presented with two decision problems.

Although they are informed of the outcomes for themselves in both, in the solitary context they

have no idea about the payoffs for others - they simply don’t enter the picture.

need, but the need of others did not touch him because he is sufficiently occupied with his own;
and that now, as inclination no longer stimulates him to it, he were yet to tear himself out of this
deadly insensibility, and to do the action without any inclination, solely from duty; not until then
does it have its genuine moral worth.” (4:398)

We are not interested in duty here, but this counterfactual method fits nicely when trying to asses altruistic attitudes.
15The reader might fairly object that there is an unjustified assumption here. Namely, the idea that we can in

most contexts separate the outcomes affecting different agents. In particular, that cases involving altruism are such
that we can always posit these type of solitary and social counterparts. I take the complaint to be a fair one, but
I do not wish to address it here. Rather, I urge the reader to accept it now for the sake of the argument, and later
assess its merits by its conceptual advantages.

16For the time being, allow me to take the following condition as sufficient.
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Consider the following example. Suppose first that you are not originally willing to invest in

a risky gamble (like buying the national lottery ticket) [context C˚]. Nevertheless, assume now

you are willing to invest but only after learning that the earnings will go to a charity [context C].

Then we can safely claim that you are being altruistic. If you would have chosen to play in both

contexts, then we would not be able to decide whether you are are acting altruistically you might

just enjoy gambling. Furthermore, if provided with similar solitary and social context counterparts

including all available lotteries, you always choose the same in both contexts; then it is safe to say

that you do not care about the recipients of the charity.

Although Kitcher requires also assessing the intentional structure (beliefs and desires) of the

agent, I will here disregard this dimension and treat it using the utility theory formal apparatus.

This is because there are some methodological difficulties with psychological altruism.

On the one hand, psychological altruism is hard to judge, simply because it is in general difficult

to determine the agent’s intentional and motivational structure. This is an empirical enterprise

beyond the scope of this essay, if it is even feasible.17

On the other, there are particular difficulties in determining whether the agent has the right

intentional structure in strategic situations - namely, Game Theory. Issues like expected reciprocity,

strategic helping, reputation building, or signaling weight as some of the many reasons agents could

have in iterated or one-shot games. For an excellent critical essay on this matter, see Elster (2006).

17To bring back some Kantian themes, and with the proviso that Kant is concerned about duty, he stresses that
experience will never be able to determine the cause of the will:

In fact, it is absolutely impossible by means of experience to make out with complete certainty a
single case in which the maxim of an action that otherwise conforms with duty rest solely on moral
grounds and on the representation of ones duty. (...) from this it cannot be inferred with certainty
that the real determining cause of the will was not actually a covert impulse of self-love under the
mere pretense of that idea; for which we then gladly flatter ourselves with the false presumption of
a nobler motive, whereas in fact we can never, even by the most strenuous examination, get entirely
behind our covert incentives, because when moral worth is at issue what counts is not the actions,
which one sees, but their inner principles, which one does not see. [4:407]
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The present essay will make use of the formal apparatus of utility theory and its representation

theorems. They have been usually framed in behavioristic terms. Agents are not required to provide

reasons for their preference structure, and the framework has no room for capturing their inten-

tional structure. It only minimally requires agents to provide a preference ordering, constrained by

(questionable) rationality principles. The usual upshot is that even with this minimal information

about the agents, they can still be regarded as maximizing expected utility. Nevertheless, the

apparatus of expected utility theory can be used to ascribe to agents intentional states, especially

preferences and beliefs, and therefore this essay lays between psychological and behavioral altruism.

2.2. Formalizing the definition.

I will proceed in the usual Von Neumann and Morgenstern (1947) framework, in the same way

as Harsanyi does. A context is nothing more than a choice among a set of lotteries. Given an

agent i, a context C˚ is solitary in the sense that it specifies outcomes only for agent i ; while C

is social because it specifies outcomes for i but also for other agents. We say that C is the social

counterpart of C˚ if for each lottery in the latter there is exactly one lottery in the former with

the same expected outcomes for i, and vice-versa. Clearly, a solitary context for a single agent i

can have several counterpart social contexts corresponding to it. A situation is a pair (C˚, C) of

solitary and social counterpart contexts.

More formally, for each of the agents i P I we have a finite set of personal prizes or outcomes

Xi “ tA
1
i , .., A

n
i u

18, and a set of lotteries or prospects Yi “ ∆Xi defined over those outcomes. On

the other hand, there are social prizes or outcomes X “
ś

iXi represented as a Cartesian product

of the personal outcomes19. In this way, a social outcome can be thought as a profile of individual

outcomes. Also, there are social lotteries or prospects Y “ ∆X. Lotteries Y “ ∆X and Yi “ ∆Xi

reflect the two largest social and personal contexts of the previous definition.

18Nothing precludes each agent to consider different sets of outcomes.
19For simplicity, I here avoid using extended lotteries as defined before. All the formalisms hold analogously.
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Following Harsanyi (1977), the first set of assumptions of the model are rationality assumptions.

Agents are sufficiently (vNM) rational with respect to their preferences over personal and social

lotteries.

Axiom 1: Individual rationality over personal preferences

Each of the agents i P I has a preference ordering ěi over Yi that satisfies the von Neumann-

Morgenstern axioms20. Here Li1 „i L
i
2 is L1 ěi L2 and Li2 ěi L

i
1, while Li1 ąi L

i
2 is Li1 ěi L

i
2 but

Li1 i L
i
2.

Axiom 2: Individual rationality over social preferences

Each of the agents i P I has a preference ordering Çi over Y that satisfies the von Neumann-

Morgenstern axioms. Here L1 «i L2 is L1 Çi L2 and L2 Çi L1, while L1 "i L2 is just L1 Çi L2 but

L1 ffi L2.

Each of the agents i P I preference ordering ěi over personal lotteries Yi can be extended to a

preference ordering ěi
21 over the social lotteries Y in the following way: For all Li P Y , L1 ěi L2

if and only if Li1 ěi L
i
2. Here a lottery of the form Lij is the marginal personal lottery for agent i

in social lottery Lj .

Observation 6. Each of the agents i P I extended preference ordering ěi over social lotteries

Y also satisfies the von Neumann-Morgenstern axioms.

20I here group a set of axioms as one single proposition for simplicity. In the interest of completeness, I will list
them:

‚ Axiom 1 (Ordering): ěi is a reflexive, complete, and transitive binary ordering.
‚ Axiom 3 (Continuity): Given lotteries L, M and K: If L ě M ě K, then there is p P r0, 1s such that
ă L, p;K, p1´ pq ą„M .

‚ Axiom 4 (Independence): Given lotteries L, M and K: If L ąM , then for any K and p P p0, 1s, xL, p;K, p1´
pqy ą xM,p;K, p1´ pqy.

21There is some abuse of notation here.
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The observation follows trivially. The idea here is that the new preference ordering ěi represents

how the agent would organize their social preferences if they were not informed about how the

outcomes affect others; namely by only taking into account their personal preferences.22

Now let us move to the altruistic conditions. The main idea here is to transition from the

intuitive definitions presented before to an interpretation in terms of Pareto-like requirements.

The gist of Kitcher’s definition was that an agent is altruistic towards another if, for some

personal and social context pair, there is shift in choices when moving from personal to social

contexts such that it favors the beneficiary. Altruists are willing to pay some (opportunity) cost

so long as the outcome will benefit someone else. There are may ways in which this definition is

unsatisfactory, in particular when we take into account multiple agents and sets of contexts.

Suppose you are indifferent to Bob but you care about Alice. Furthermore, assume that in a

particular context choice pair you are willing to change your choice once you learn it will benefit

Alice. But by a mere accident your social choice also benefits Bob. According to the current

definition, that would suffice to make you an altruist towards Bob; which we rejected by assumption.

Nevertheless, if Kitcher’s condition is taken as a necessary requirement for altruism (rather that a

sufficient one), then it seems fitter. For if Alice is among the people you care about, then there are

surely many situations in which you are willing to pay an opportunity cost to help her.

Furthermore, it is also unsatisfactory to look just to particular context choice pairs. After all,

you might be willing to pay to benefit Alice in some situation, but also pay to harm her in another.

To be altruistic towards Alice means that you have the general or systematic disposition to help

her, and that you are never disposed to harm her.

22The reader might fairly object that there is an unjustified assumption here. Namely, the idea that we can in most
contexts separate the outcomes affecting different agents; as if they were independent. Although one might argue
that actual decision-making sometimes recognizes effects on other people and sometimes not; I take the complaint to
be fair, but I do not wish to address it here. Rather, I urge the reader to accept it now for the sake of the argument,
and later assess its merits by its conceptual advantages.
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But the previous principle is also problematic if stated carelessly. There is no inconsistency in

caring more about Bob than about Alice; while also being an altruist towards Alice. There might

be contexts in which you might prefer to harm Alice (although you care about her), so long as Bob

receives a substantial benefit.

The way of cashing out the previous intuition without falling into the problems just presented

is to say that an agent i˚ is an altruist with respect to an agent j if all other things being equal

(for the relevant set of agents), i˚ would rather (a) not harm, or (b) benefit, j.23 This is precisely

what is captured by the Pareto-like principles below.

Axiom 3: Weak Pareto (No Harming Altruism) [WA]

We say that i˚ is weakly altruistic with respect to the agents in J Ď I when:

If for all agents j P J we have that Lj1 ěj L
j
2, then

ś

j L
j
1 Çi˚

ś

j L
j
2.24

Axiom 4: Strong Pareto (Beneficent Altruism) [SA]

We say that i˚ is strongly altruistic with respect to the agents in J Ď I when two conditions

hold:

(1’) If for all agents j P J we have that Lj1 „j L
j
2, then

ś

j L
j
1 «i˚

ś

j L
j
2.

23A word needs to be said with respect to paternalistic and non-paternalistic altruism. This in turn is related with
what Harsanyi Harsanyi (1977) calls the principle of consumer’s sovereignty :

The interest of each individual must be defined fundamentally in terms of his own personal prefer-
ences and not in terms of what somebody else thinks is ”good for him”. (pg. 52)

The distinction relies on an ambiguity of what it means to believe that an action benefits others. On the one hand,
this could mean that Bob chooses what he thinks is best for Alice according to his preference system, and disregarding
what he knows about Alice’s. This is paternalistic altruism, since he is disregarding Alice’s preferences and acting
according to what he believes is beneficial for her. On the other hand there is non-paternalistic altruism, when the
altruist takes the recipient as a sovereign subject of his or her own good.

24There is some abuse of notation here. If J Ă I, then
ś

j L
j
1 Çi˚

ś

j L
j
2 means that for any two lotteries

ś

i L
i
1 and

ś

i L
i
2, if the former coincides with

ś

j L
j
1 in all the j P J values, the second one with

ś

j L
j
2, then

ś

i L
i
1 Çi˚

ś

i L
i
2.
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(2’) If for all agents j P J we have that Lj1 ěj L
j
2, but also there is at least one agent k P J

such that Lk1 ąk L
k
2, then

ś

j L
j
1 "i˚

ś

j L
j
2.

Condition (1’) is usually called Pareto Indifference. The antecedents of the first definition and

of clause (2’) of the second ensure that if everyone agrees that the personal prizes they get in one

lottery are not worse than the personal prize they get in the other, then social preferences of the

altruist should find the first lottery as preferred as the second. Furthermore, notice that these

altruistic Pareto axioms are expressed conditionally but not biconditionally. An altruist may prefer

a social lottery over another even though the Pareto condition is not met for the personal prizes

in those lotteries. In particular, suppose i˚ cares about both j1 and j2 and there are two lotteries

L1 and L2. Also assume that j1 strictly prefers the personal prize of L1 over that of L2, and the

converse holds for j2. Nothing precludes i˚ to prefer j1 over j2 by ranking L1 "i˚ L2. This is not

inconsistent with i˚ being an altruist towards j2, just as in the case of Bob and Alice mentioned

before.

The previous observation is relevant since I will assume throughout the essay that agents care

about themselves. Formally, if J Ď I is the collection of agents that i˚ cares about (as expressed

in the altruistic axioms), then i˚ P J . This is not required by the formalism, but by the concept

of altruism being characterized. As it will become clear later, if i˚ is (strongly) altruistic towards

j, then there will be two lotteries L1 and L2 such that i˚ strictly prefers the personal prize in the

former but the social outcomes of the second, just because j is better off there. In a nutshell, i˚ is

willing to pay a (opportunity) cost to benefit j. This shows that Kitcher’s necessary requirement

is met.
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2.3. Characterizing Altruism.

The main result offered here is a corollary of Harsanyi’s Aggregation Theorem (Harsanyi, 1955,

1977), but modified to fit the current framework. Although Harsanyi’s result holds, his published

presentations are in some way flawed. In particular, Resnik (1983) introduced a difficulty and

Fishburn (1984) provided an amended proof. I will nevertheless follow and adjust Harsanyi (1977)

terminology for its simplicity and naturalness. The following innocuous axiom is necessary:

Axiom 5: Richness of the space25

For each of the agents i P I, there are yi, zi P Yi such that: yi i zi.

This just requires that all agents are not indifferent between some two personal outcomes.

This result can be obtained from the axioms above:

Proposition 13. Characterizing Altruistic Utilities as weighted Solitary Utilities:26

If Axioms 1 and 2 are satisfied, then each i P I has a solitary utility function sui that represents

their solitary preferences, and an altruistic utility function aui such that that represents their social

preferences:

‚ For any two lotteries Li1, L
i
2 P Yi, L

i
1 Çi˚ L

i
2 if and only if suipL

i
1q ě suipL

i
2q. Also, sui

satisfies the expected utility property: suipxA
k
i , pkyq “

ř

k suipA
k
i q.pk. Here the Aki are

personal prizes for i.

‚ For any two lotteries L1, L2 P Y , L1 ěi L2 if and only if auipL1q ě auipL2q. Also, aui

satisfies the expected utility property: auipxB
k, pkyq “

ř

k auipB
kq.pk. Here the Bk are

social prizes.

25In the literature around Harsanyi’s result, a similar principle is usually called Independent Prospects; but the
name does not suit the current framework.

26I call it a characterization, rather than a representation, because the counterpositive of the proposition holds
trivially.
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More interestingly, if i˚ also satisfies Weak Altruism with respect to the j P J , as well as Axiom

5, then there are α1, ..., αn P r0, 1s such that for any social lottery
ś

j L
j:

‚ aui˚p
ś

j L
jq “

ř

jPJ αj .sujpL
jq

‚ Furthermore, if i˚ satisfies Strong Altruism then for all j P J , αj P p0, 1s and
ř

j αj “ 1.

A short proof is given in the appendix. The upshot of this result is that altruistic utilities can

be characterized as a weighted averages of solitary utilities.

We concluded that to be an altruist means that all other things being equal (for the relevant set

of agents), our altruist would help their beneficiary. This was captured by the Pareto axioms stated

before. With them we used Harsanyi’s result to show the proposition. Notice that the necessary

condition imposed by Kitcher’s criteria is met. Consider an agent j P J such that αj ą 0. It is a

simple exercise to construct two social lotteries, L1 and L2, such that all agents except j and i˚

receive the same prize; but i˚ personally prefers his or her personal prize in L1 over the one in L2,

and j personally prefers his or her personal prize in L over the one in L1. Nevertheless, since i˚ is

an altruist towards j, he or she would socially prefer L2 over L1; this is, they would be willing to

pay a personal cost in order to benefit j.

To conclude, notice that this way of characterizing altruism is consistent with the standard

general requirements of monotonicity imposed over altruistic utilities. For example, Kolm (2006)

(pg. 7-8) insists that if we are to follow Smith, we should represent the level of happiness of an

individual i˚ by a utility function ui˚ “ ui˚pu´i˚ , xi˚q, where u´i˚ “ tujujPJ is the set of levels uj

for all individuals j P J , and xi˚ denotes other factors of i˚’s happiness. The general reuirement

is that each ui˚ must be an increasing function of each uj , for all j P J . Kitcher (2010, 1993)

also presents constrains requiring at least monotonicity. The Pareto axioms guarantee that present
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formalization in terms of positive weighted averages satisfies them. Furthermore, if we think those

axioms accurately capture the requirement, then Harsanyi’s result secures that the linearity is

necessary.

3. Spite

Maybe surprisingly, Smith ascribed a fundamental and positive role to the unsocial passions of

hatred and resentment; so long as they are properly tamed. This can be viewed as a general interpre-

tative key for Smith: Recognizing that apparently negative human attributes have a positive overall

effect in society.27 The Wealth of Nations shows that self-interest can lead to economic progress.

Almost twenty years before, Smith argued in his Theory of Moral Sentiments that resentment is

necessary for individual survival, and it is at the base of justice and punishment.

Smith is emphatic in that these passions are in general disagreeable.28 They are particularly

disagreeable if compared with the social passions. Yet, Smith argues that, if properly ”brought

down to a pitch much lower than that to which undisciplined nature would raise them” (pg. 41)

they could serve society and the individual. This is, if hatred and resentment are appropriate, in

the sense that we can in fact sympathize with them, then they bare some use:

But though the utility of those passions to the individual, by rendering it dan-
gerous to insult or injure him, be acknowledged; and though their utility to the
public, as the guardians of justice, and of the equality of its administration, be
not less considerable, as shall be shewn hereafter; yet there is still something
disagreeable in the passions themselves. (2002, p. 43)

A functional member of society must be capable to bare resentment and hatred, even if they

never exercise it. Without that capability, Smith seems to argue, they would be unable to defend

27If we take into account Mendeville’s Fable, this could be seen as a topic of the times.
28”Too violent a propensity to those detestable passions, renders a person the object of universal dread and

abhorrence, who, like a wild beast, ought, we think, to be hunted out of all civil society”. (pg. 49)
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themselves and deter their attackers.29 Furthermore, those who are capable of exercising proper

resentment are those who exercise the virtue of justice.30 Finally, Smith sometimes even seem to

suggest that the impartial spectator, as a standard of moral behavior, must also be capable of

expressing (or sympathize with) unsocial passions.31

The topic of spite, or more generally negative social emotions, seem to be under-treated in

the literature. In economics, Kolm (1995, 2002) is the prime example of the study of envy. In

biology, shortly after his influential papers on the evolutionary advantages of altruism (Hamilton,

1963, 1964; Axelrod and Hamilton, 1981), Hamilton (1970) set himself to provide an evolutionary

explanation of spite among social animals. It would be disingenuous to deny that spite is part of

human psychology. Following Smith’s, the proper challenge is to understand them, and train them

in a way that become beneficial for society at large.

3.1. Definition, Formalization and Characterization.

I will here take spite as altruism’s evil twin. If, intuitively, altruism is the willingness to pay

some cost in order to benefit someone; spite is the willingness to pay a cost in order to harm

someone. Since they are so structurally similar, most of the subtleties of its formalization are

similar to that of the formalization of altruism, which were discussed in Sections 2 and 3. I will

then proceed to formalize the notion analogously:

Axiom 6: Weak Spite (No Help Spite) [WS]

We say that i˚ is weakly spiteful with respect to the agents in J Ď I when:

29“Resentment seems to have been given us by nature for defence, and for defence only. It is the safeguard of
justice and the security of innocence”.(pg. 92)

30“This virtue is justice: the violation of justice is injury: it does real and positive hurt to some particular persons,
from motives which are naturally disapproved of. It is, therefore, the proper object of resentment, and of punishment,
which is the natural consequence of resentment”.(pg. 93)

31“The heart of every impartial spectator rejects all fellow- feeling with the selfishness of his motives, and he is
the proper object of the highest disapprobation”. (pg. 81)
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If for all agents j P J we have that Lj1 ěj L
j
2, then

ś

j L
j
2 Çi˚

ś

j L
j
1.

Axiom 7: Strong Spite (Harmful Spite) [SS]

We say that i˚ is strongly spiteful with respect to the agents in J Ď I when two conditions

hold:

(a) If for all agents j P J we have that Lj1 „j L
j
2, then

ś

j L
j
2 «i˚

ś

j L
j
1.

(b) If for all agents j P J we have that Lj1 ěj L
j
2, but also there is at least one agent k P J such

that Lk1 ąk L
k
2, then

ś

j L
j
1 "i˚

ś

j L
j
2.

Proposition 14. Characterizing Spiteful Utilities as weighted Solitary Utilities:

If Axioms 1 and 2, then each i P I has a solitary utility function sui that represents his/her

solitary preferences, and a spiteful utility function tui such that that represents his/her social pref-

erences:

‚ For any two lotteries Li1, L
i
2 P Yi, L

i
1 Çi˚ L

i
2 if and only if suipL

i
1q ě tuipL

i
2q. Also, tui

satisfies the expected utility property: suipxA
k
i , pkyq “

ř

k suipA
k
i q.pk. Here the Aki are

personal prizes for i.

‚ For any two lotteries L1, L2 P Y , L1 ěi L2 if and only if tuipL1q ě tuipL2q. Also, tui

satisfies the expected utility property: tuipxB
k, pkyq “

ř

k tuipB
kq.pk. Here the Bk are

social prizes.

More interestingly, if i˚ also satisfies Weak Spite with respect to the j P J , as well as Axiom 5,

then there are β1, ..., βm P r´1, 0s such that for any social lottery
ś

j L
j:

117



‚ tui˚p
ś

j L
jq “

ř

jPJ βj .sujpL
jq

‚ Furthermore, if i˚ Satisfies Strong altruism then for all j P J , βj P r´1, 0q and
ř

j βj “ ´1.

The fact that Harsanyi’s Aggregation Theorem can imply negative weights seems to have been

neglected. In particular, if only Pareto Indifference is required, nothing precludes all parameters

to be negative. When presenting an Impartial Observer, Harsanyi and others usually imagine a

beneficent agent that serves as a standard that takes everyone as equal. This is very much in line

with utilitarianism, but it might be in tension with Smith’s moral sentimentalism. For him, the

Impartial Spectator is capable of praising virtue and blaming vice, sympathize with altruism and

antagonize with improper spite, reward heroes and punish criminals.

4. Das Adam Smith Problem

Das Adam Smith Problem is an argument that arose among German scholars during the second

half of the nineteenth century concerning the compatibility of Smith’s conceptions of human nature

advanced in Theory of Moral Sentiments and Wealth of Nations. Section 4 of Kitcher (2010)

articulates this problem in detail. Roughly, the question is how to reconcile the emphasis on

sympathy and benevolence in Smith’s first book, contained in the opening quote of this paper, with

the emphasis on self-interest in Smith’s later work, as testified by the famous:

It is not from the benevolence of the butcher, the brewer, or the baker, that we
expect our dinner, but from their regard to their own interest.

The previous observations about Smith’s treatment of the unsocial passions show that the

tension is not just between benevolent attitudes and a self-interested driven market; but on how to

harmonize the latter both with altruism and with spite. As explained before, unsocial passions like

resentment, anger and hatred play a fundamental role in Smith’s moral sentimentalism. Without

the recognition of negative emotions towards others, Smith’s account of human nature in TMS is
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simply incomplete. The purpose here is not to solve Das Adam Smith Problem (DASP), but to

make it worse.

Furthermore, if we take Harsanyi’s framework to be an accurate interpretation of Smith, then his

Aggregation Theorem is precisely a worsening of DASP. Smith’s distinction between the unsocial,

social and self-interested moral passions lead the way to a three-fold partition of society between

those we care about, those towards which we hold resentment, and those for which we do not have

any systematic concern in various contexts. The first part of Harsanyi’s theorem implies linearity in

the presence of Pareto Indifference; but nothing secures that the real weights αi will all be positive

or negative. Without loss of generality, we can divide those weights in those two groups. Positive

values will correspond to individuals the agent cares about, negative to those they hold resentment

to, and those individuals with zero weight represent those the agent has no particular regard for.

We can, on the other hand, depart from such a societal partition, impose the pareto conditions

to the groups, and obtain the desired parameters using Harsanyi]s technique. Suppose now that

for each agent i˚ P I, society is divided between a group J1 Ď I of individuals towards which they

are altruistic, a group J2 Ď I towards which they are spiteful, and a group J3 Ď I towards which

they have no systematic attitude. Furthermore, for simplicity, assume J1 Y J2 Y J3 “ I and that

groups are disjoint with each other.32

Axiom 8: Strong Societal Division [SSD]

Let J “ J1 Y J2.

32The assumption that groups are disjoint is an inescapable idealization in the context of Harsanyi’s theorem, which
assigns a unique weight to each individual. Yet it is questionable whether people have systematic either altruistic or
spiteful attitudes towards individuals, or even to themselves. Those attitudes would require a completely different
formal approach.
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(a) If for all agents j P J we have that Lj1 „j L
j
2, then

ś

j L
j
2 «i˚

ś

j L
j
1.

(b) If (i) for all agents j1 P J1 we have that Lj11 ěj1 L
j1
2 , (ii) for all agents j2 P J2 we have that

Lj22 ěj2 L
j2
1 , and (iii) there is at least one j1 P J1 such that Lj11 ąj1 L

j1
2 or there is at least one

j2 P J2 such that Lj22 ąj2 L
j2
1 ; then

ś

j L
j
1 "i˚

ś

j L
j
2.

Axiom 8 implicitly contains the altruistic and spiteful attitudes characterized by the previous

axioms. All other things being equal, i˚ would be willing to benefit the j1 P J1 and harm the

j2 P J2. The following proposition follows using the same techniques:

Proposition 15. Characterizing Other-Related Utilities as weighted Solitary Utilities:

If Axioms 1 and 2, then each i P I has a solitary utility function sui that represents his/her

solitary preferences, and an social utility function tui such that that represents his/her social pref-

erences:

‚ For any two lotteries Li1, L
i
2 P Yi, L

i
1 Çi˚ L

i
2 if and only if suipL

i
1q ě suipL

i
2q. Also, sui

satisfies the expected utility property: suipxA
k
i , pkyq “

ř

k suipA
k
i q.pk. Here the Aki are

personal prizes for i.

‚ For any two lotteries L1, L2 P Y , L1 ěi L2 if and only if uipL1q ě uipL2q. Also, ui satisfies

the expected utility property: uipxB
k, pkyq “

ř

k uipB
kq.pk. Here the Bk are social prizes.

If i˚ also satisfies Axiom 8 with respect to the j1 P J1 and j2 P J2 respectively, then there are

α1, ..., αn P r0, 1s and β1, ..., βm P r´1, 0s such that for any social lottery of the form L “
ś

j L
j:

‚ ui˚p
ś

j L
jq “

ř

jPJ1
αj .sujpL

jq `
ř

jPJ2
βj .sujpL

jq

120



‚ Furthermore, for all j P J1, αj P p0, 1s; and for all j P J2, αj P r´1, 0q.33

Kitcher (2010) approaches DASP by imagining spheres in our social interactions. We engage

with others within some of those spheres: we have a degree of altruism towards family, some

different towards friends, and another towards acquaintances; we might prefer to buy the groceries

at the local store out of sympathy, but we will be more selfish if their prices are too expensive, and

we might completely disregard the well being of big company stockholders if we are doing business.

There is no account for spite in that work.

The results here presented favor that picture of spheres, since there is substantial freedom

in the αj and βj parameters; sufficient to model those familiar situations. Nothing precludes an

agent to be particularly beneficent towards their family and friends, while minimally altruistic

towards acquaintances; this can be easily modeled by assigning larger αs to former and smaller

to the latter. Similarly, if our agent holds a particular spite against a group of individuals, or

their general misanthropy makes them slightly resentful towards all of humanity, this can be easily

modeled by adjusting the βs appropriately. Altruism and spite also come in a variety of degrees

that can be parametrized.

Finally, what about the j3 P J3, the agents towards which i˚ seems to have no particular

sympathetic attitude? In fact, the result ensures that with respect to them, i˚ is self-interested.

On the assumption that i˚ P J1, the idea that i˚ cares about themself, it is easy to show that all

other things being equal for the (other) j P J1 Y J2, i˚ would put their personal interest over those

of the j3 P J3.

33Notice, in particular, that if Ji ‰ H ‰ J2 the previous entailment that
ř

j αj “ 1 and
ř

j βj “ ´1 does not hold
any more.
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The Smithian project of moral sentimentalism, or for that matter that of social psychology,

requires the recognition of other-directed attitudes beyond that of beneficence and self-interest;

and the different degrees in which these attitudes are expressed. Throughout the paper I presented

definitions and characterization results for both altruism and spite that distinguish for each indi-

vidual their private utilities from their social other-directed ones. Self-interest came at the end.

In the final picture, agents divide society between friends, foes, and neutral; and each individual’s

social utilities are differently responsive to the interests of the members of each group.

Concepts like spite and negative emotions like hatred or resentment have been under-theorized

in the literature. Maybe because, as Smith acutely notes, these are naturally disagreeable passions.

But they need recognition, for they play a fundamental role in morality and politics. The hope is

that by properly understanding them and, as Smith suggests, taming them, we can shape them

into something positive for society at large.
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CHAPTER 6

Schelling Segregation in Online Social Networks

1. Introduction

Schelling (2006, 1969, 1971a) models of segregation are recognized as a seminal (Hatna and

Benenson, 2015) in agent-based modelling and one of the first contributions in computational

social sciences and complex systems dynamics (Epstein and Axtell, 1996). Schelling observed that

segregation might emerge from the mutual adaptation of people who seek to live close to members

of their own group within spatial constraints but without assuming negative attitudes towards other

groups. This provided a new explanatory framework in which undesirable macro-behavior could

be explained as the result of otherwise well-intended micro-motives (Schelling, 2006). The most

popular models are often cited as a prototype of checkerboard models (Zhang, 2009), and tipping

behavior in residential dynamics (Card et al., 2008).

Let us start with the original and simplest model in 1969 Schelling (1969). There, Schelling

imagines a line along which two types of agents1 have been distributed in equal numbers.

a 9b 9a b b a a 9b a b

Notice that all nodes have an immediate neighbor of a different type. If each of the agents is

happy to live together in a ratio of about fifty-fifty, then they are all satisfied if their neighborhood

is defined to be the whole line. If instead we define the neighborhood to be their immediate nodes on

1Blacks and whites, men and women, natives and immigrants, or any socially reductive dualism of your choice.
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their side (and themselves), then some agents will be unhappy. In the illustration above, dissatisfied

nodes appear with a dot above. Since they are unhappy, Schelling imagines agents will move to the

nearest point at which at least half of their neighbors are like them. This is done stepwise, starting

from the left. Once nodes start moving, other nodes can become dissatisfied. If so, mark the new

unhappy nodes with a dot, and restart the process. This dynamic will stabilize here:

a a b b b a a a b b

Now the four nodes with a line above are segregated: they have no immediate neighbors of

their type. Schelling’s brilliance lies in recognizing that these kind of emergent phenomena, where

stable equilibria are highly segregated, can result from the most tolerant micromotives.

Schelling’s model as been generalized and modified in multiple ways. For example, there may be

more than two agent-types (Wilensky, 1997). Hatna and Benenson (2015) allow for agents to have

a preference for diversity, something we do here too. Gandica et al. (2016) generalize by exploring

different topologies, allowing for superposition. Paolillo and Lorenz (2018) consider segregation

across two dimensions, which lead to cross-contagion effects. Rogers and J. McKane (2011) present

a unified framework for segregation with an even more general topology. Examples abound, yet

most of them focus on segregation and therefore assume a fixed topological space representing a

geography which agents inhabit and explore. Even if the topology is generalized by using networks,

since it is meant to represent a geography, the Schelling dynamics implemented in those studies

does not modify the network in any way. Here, that is precisely what we do. The object of this

essay is Online Segregation, and the dynamics runs over the social relations that agents have with

each other in the context of social networks.
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Much like a geography, recent technologies created a new space for human interaction and so-

cialization. In fact, the past decade saw a replacement of some geographical spaces of socialization

by digital ones. Where a few decades ago gamers gathered together to play chess, cards or board

games, now the online gaming community reaches several millions of individuals. Romantic and

sexual encounters that before developed spontaneously as a result of a shared space have been

heavily influenced by dating apps like Tinder, OkCupid, etc. Local clubs of interest have been

virtually replaced by specialized online forums where people can discuss the most varied topics.

Friendships and family relations can be held together internationally by WhatsApp group chats.

Personal experiences that before were shared in a common event can be now communicated through

Facebook or Instagram. Political engagement, which before was done in situ or through conven-

tional media, has been massively disrupted by Online Social Networks like Twitter. All of this

brings us to central questions: Is the Internet truly bringing us together? In particular, are Online

Social Networks really making us more connected? It does not seem so.

Online polarization, the tendency of agents to adopt more extreme views and attitudes, can be

understood as a byproduct of tribalism. In popular culture, tribalism refers to a way of behaving

and thinking in which individuals draw much of their personal identity from the tribe they belong

and are therefore loyal to their social group while they have animosity towards other groups. In

the sciences, tribalism has been widely studied cross culturally and in its evolutionary history

(Isaacs and Pye, 1989). We are here interested in Internet Tribalism of the kind that emerges from

interactions through social media like Facebook, Twitter, Instagram, etc. For the purposes of this

essay, we will treat online tribalism and online segregation as very much the same phenomena. After

all, segregated networks operate very much like tribalism: agents interact mostly with members of

their own group, for which they have a preference. Much like racial segregation, internet tribalism

is widely recognized. It has been long reported by the media (Cragg, 2011), diagnosed by NGO’s

dealing with political polarization (More in Common (2018)), and heavily studied by data scientists
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and programmers for the purposes of identifying tribe membership (Bryden et al., 2013; Gloor et al.,

2018).

Online tribalism can be very problematic. The connection with political polarization is obvious,

but there are other issues. Another example is its relation with fake news. William Clifford, who

coined the expression “tribal self”, famously argued in Clifford (1879) that “it is wrong always,

everywhere, and for anyone, to believe anything upon insufficient evidence.” Agents within a tribe

are expected to be like-minded and biased towards the world view of their tribe. Clifford observed

that this makes individuals credulous, and willing to spread information without sufficient evidence.

What is worse, he observed, is that it such a cultural norm reduces the epistemic standards of others,

fostering a credulous character. But that, he pointed, is not the end of its evils. By lowering

the standards and promoting epistemic vices, the whole social network becomes vulnerable to

manipulation: “The credulous man is father to the liar and the cheat.” This is to say that problems

like online segregation and fake news, as well as other issues that result from digital interaction,

are most likely interconnected.

Here we are not interested in identifying tribes, much less manipulating them. Rather, we want

to provide an explanation of the sort that Schelling provided for segregation, and with it some

suggestions on how to increase integration. Abstracting from racism and other forms of in-group

bias, Schelling showed that segregation is cheap, it can emerge from very weak conditions. In a

similar vein, we intend to show that online tribalism can emerge from mild micro preferences, even

when we abstract the well established human tribal tendencies.

The model hopes to resemble the kind of dynamic a user of social media would find familiar.

Agents are part of a social network in which they are connected with other agents. They also

have some agency with respect to whom they connect: they can befriend or follow other agents,

and they can also sever their links - very much like in Twitter, Facebook, Instagram, etc. More
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precisely, directed networks in which agents decide whether follow others are akin to Twitter or

Instagram. Undirected networks in which connections are reciprocal resemble Facebook’s friending

and unfriending options. At each stage of the dynamic, each individual can assess their neighbors’

(friends or following) tribe. Much like in Schelling, agents will be satisfied if a sufficient amount of

their neighbors are of their type. If they are not satisfied, they will (randomly) sever some of their

links and (randomly) seek for new friends to follow. This dynamic on the network stabilizes when

all agents are satisfied, or when cycles emerge. How segregated or tribal a network is depends on

how much agents of one tribe are connected with agents of the other. In highly polarized networks,

members of different tribes do not communicate enough, which might lead to misunderstandings,

information bubbles, empathy gaps, etc. The purpose of this work is to assess how cheap this kind

of polarization is, under what conditions it emerges, and up to which degree.

2. Model and Simulation Experiments

We implemented our model by (quite substantially) modifying Netlogo’s version of Schelling’s

model (Wilensky, 1997). The original model is defined over a grid and it was here adapted to run

over networks. The study was done both with directed and undirected networks. In the latter,

agents have reciprocal relations they can sever - representing Facebook’s “unfriend” option -, but

they can also create friendships with other agents without their consent - unlike Facebook. In

directed networks agents can only create or sever outgoing connections, representing those who

they follow and therefore appear in their feed - very much like in Twitter or Instagram. The

initial networks are Erdös-Rényi random networks GpN, pq with N nodes and where each edge has

an independent probability p of appearing.2 For all the simulations we took N “ 100 and the

parameter p sweeping across [0.05, 0.10, 0.15]. Given a node i, Npiq is its set of neighbor. In the

case of directed networks, Npiq is the set of nodes i points to. Some initial network properties

2Just to clarify, in directed networks and edge from node a to a node b is distinct from an edge from b to a and
both appear with independent probability p.
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can be expected by the link probability p: density3, global clustering coefficient, and average path

length.

Agents belong to one of two tribes, modeled by a color tag (blue and red), so that for agent

i, T piq P tB,Ru. The model allows for up two five different tribes, but the experiments here were

done with just two for simplicity. The total number of agents was fixed in one hundred, but the

population of the blue tribe was allowed to vary in each simulation with a sweeping parameter of

[25, 50, 75]. For example, suppose the population of blue is fixed at 25, then 25 nodes are selected

uniformly at random and colored blue, while the rest is colored red.

In Network Science, segregation and tribalism are connected with the notion of homophily.

Homophily is the tendency to associate with those that are considered similar McPherson et al.

(2001); Currarini et al. (2016). Heterophily, in contrast, is the tendency to value diversity and

associate with that which is different. In the model, homophily [Σ] and heterophily [∆] preference

thresholds are global parameters shared by all agents.4 The homophily threshold sweep was [20%,

25%, 30%, 35%, 40%, 45%], and the heterophily was [0%, 15%, 30%, 45%]. Each agent i has

similarity measure σi and a diversity measure δi given by the proportion of neighbors of the same

and different type:

σi “
#tj P Npiq : T pjq “ T piqu

#Npiq

δi “
#tj P Npiq : T pjq ‰ T piqu

#Npiq

3The density of an undirected network is the amount of actual connections [
ř

i #tj P Npiqu] over the amount of

possible connections [
`

N
2

˘

=N˚pN´1q
2

]. For a directed network, it is that number divided by two, since in the original
definition each undirected link counted twice - once for each of the nodes it connects.

4One might expect that such preferences may vary across groups, and such an implementation can be easily coded
in further experiments. The original Netlogo implementation assigns to each agent i a personal homophily Σi which
is a random number in [0,Σ), and similarly for heterophily. Since I do not think this constitutes any real conceptual
improvement, while it adds computational demands, I required all agents to have the same thresholds.
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Each network GpN, pq also has a similarity (σG) and a diversity (δG) measure. How tribal

or segregated a network is was measured using σG, which is defined by the proportion of similar

neighbors across the network over the total number of neighbors5, while δG is just 1´ σG:

σG “

ř

i #tj P Npiq : T pjq “ T piqu
ř

i #Npiq

At each stage of the dynamic, an agent i is happy in case Σ ă σi and ∆ ă δi.
6 A network’s

happiness HG at a certain stage is defined by the proportion of happy agents over the total amount

of agents - while the unhappiness parameter UG is just 1´HG. Happy agents do not change their

set of neighbors, but unhappy agents do. We study two dynamics. On the one hand, unhappy

agents randomly sever one of their (outgoing) links and randomly seek for one other friend (to

follow). On the other hand, unhappy agents sever all of their links and they randomly seek friends

until they have the same amount of connections as before. Some observations are in place here.

First, much like in most of Schelling’s original models (Schelling, 1971a, 1969, 2006), agents are

not actively seeking for locations (or friends) that satisfy their homophily/heterophily threshold

preferences. In our case, they not even sever connections selectively. Rather, they randomly

sever and then randomly explore the space of possibilities to hopefully stabilize whenever those

preferences are satisfied. The implicit hypothesis is that if segregation or tribalism emerges from

random procedures, we can be sure that it will emerge from more selective micro behaviors.7 Second,

the purpose of the sever one vs. sever all dynamics is to assess variation in tribalism degree and

speed of convergence. It is clear that real agents do not sever all their connections at once. Third,

both dynamics ensure that the total amount of links in the networks is constant (hence density

is constant). Furthermore, in the case of directed networks, agents always have the same amount

of outgoing links. The idea here is to study how the dynamic affects the network structure, in

5In the implementation, this is further multiplied by 100 so to obtain percentiles.
6In the case that 0 ă Σ,∆, I assumed for simplicity that nodes with a single neighbor are happy.
7Another natural dynamic would be for agents to be able to connect only with friends of current friends.
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particular whether clustering and average path length change.8 For this reason, global clustering

coefficient and average path length were measured at the start and end of each of the experiments.

For each point in the parameter sweep space, we ran 100 simulation repetitions, for a total

of 86400 observations. Each simulation was run either until all agents were happy, or until 500

time steps passed. The tables below summarize the sweep parameters, and dynamic and output

measures just explained:

Directed
Network

Probability
p

Blue
Population

Homophily
Threshold

Heterophily
Threshold

Sever All?

true, false 0.05, 0.1, 0.15 25%, 50%, 75%
20%, 25%, 30%,
35%, 40%, 45%

0%, 15%, 30%, 45% true, false

Table 4. Parameter sweeping space

Dynamic Variables for Agents Computation Range

Neighbor similarity (σi)
#tjPNpiq:T pjq“T piqu

#Npiq [0,1]

Neighbor diversity (δi)
#tjPNpiq:T pjq‰T piqu

#Npiq [0,1]

Happiness Σ ă σi and ∆ ă δi true, false
Table 5. Variables for Agents

For each simulation, the values of each of the sweeping parameters were recorded. Furthermore,

for the table below, initial and final measures were recorded for all variables except those which are

constant (link amount, network density, and average degree).

Global Output Measures Computation
Number of Links Trivial

Network Density
ř

i Lpiq
990 (*2 for undirected networks)

Average Degree
ř

i Lpiq
100 (*2 for undirected networks)

Global Clustering
The number of closed triplets in a network
divided by the total number of triplets

Mean Clustering Mean of local clustering among all agents

Path Length
Average shortest-path length between all
distinct pairs of agents in the network

Network Segregation (σG)
ř

i #tjPNpiq:T pjq“T piqu
ř

i #Npiq

Network Unhappiness (UG) Proportion of unhappy agents over the total

Table 6. Global Measures Recorded
8It would be more interesting to study whether there are changes in degree distribution, and whether social hier-

archies emerge from this dynamic in the same way as they emerge from the Barabási-Albert preferential attachment
algorithm.
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3. Results

3.1. The Schelling Dynamic Induces Segregation.

Schelling’s original models had no heterophily threshold, so we will start by taking a look at

the data corresponding to those simulations.

Figure 3. Segregation vs Homophily without Heterophily

Figure 1 displays the increase of segregation as we increase the homophily threshold when there

was no heterophily required. Data is partitioned according to link probability, population, and

whether the network is directed or not. The lines correspond to observation means, and the dots

to observation instances.

To begin, imposing different homophily thresholds did affect how much segregation was ob-

tained. For example, when link probability p “ 0.1, a homophily treshold of 30% led to an average

segregation of 60% across all populations for directed networks, and about 63% for undirected.

And when blue and red populations were equal, a threshold of 40% led to a segregation of 55% and

60%.
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A noticeable feature is that undirected networks were in general more affected by homophily

than directed ones. This pattern will emerge systematically, and developed later. Different link

probability (density) also had an effect. Notice that as it increases, directed and undirected network

mean lines get closer. Finally, the shape of the mean curves across populations is similar, but their

starting point is different. This is because different proportions of blue-red will induce different

base rate segregation at the initial state. In a society where the major type is a fraction x of the

total population, the baseline segregation in random initial conditions is: x ˚ x` p1´ xq ˚ p1´ xq.

If blue is in the majority and x “ 3
4 “ 0.75, then each blue individual can expect 75% of their

neighbors to be blue, and each red for 25% of their neighbors to be red. Hence for our cases, the

expected baseline segregation for 25% and 75% blue populations is of 62.5%, and when population

are equal it is expected to be of 50%. Thus, it is misleading to consider absolute segregation values.

Rather, Figure 2 presents segregation difference, namely how much segregation changed between

the initial state and the final after the implementation of the dynamic. From now on, we will stick

to segregation difference as a measure for tribalism.

Figure 4. Segregation Difference vs Homophily without Heterophily
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The observations made before still hold. Undirected networks are more suceptible to the dy-

namic, an increase in density (link probability) reduces the effect of the dynamic, but differences

between population proportions do not.

Now is the time to make a central observation. When the population is equal, the expected

base segregation at initiation is of 50%. For all the homophily thresholds considered here, agents

are expected to be happy with that initial segregation. In the long run, factoring out random

fluctuations in initial conditions by taking large data sets, networks with equal population should

have all of their agents happy at initiation when the homophily threshold is less than the fixed

baseline segregation of 50%. Yet, the dynamics of repeated relinking triggers the evolution of an

equilibrium configuration with a positive increase in segregation. For example, for a threshold of

30%, there was a increase in mean segregation of about 5% for undirected networks, and of 3% for

directed. Let us take a closer look to this phenomenon in Figure 3:

Figure 5. Segregation Difference and Speed vs Homophily in Equal Populations
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Figure 6. Segregation Difference Densities (Equal Populations and no Heterophily)

An increase in density led to an increase in speed of conversion. The dashed lines in the plots

above show the mean of steps for both the undirected and directed networks (false true), and for

different link probabilities (i.e. expected densities). The higher the proportion of connections,

the more likely is that an individual agent’s neighbors will express the initial baseline segregation.

Furthermore, slight changes would be sufficient to reach equilibrium. Conversely, low density

networks will exhibit more agents with not enough connections to secure their desired homophily,

so that the dynamic does not converge and it is forced to stop after 500 steps.

Density also affected how much segregation was obtained by the dynamics, as observed in the

plots below of Figure 3. With a base segregation of 50%, a 30% homophily threshold should be

easily satisfied. But with low density networks this led to a mean increase in segregation of 10%

for undirected networks and 5% for directed. To explore this, let us take a closer look at the

segregation difference distribution with respect to different densities and network types in Figure

4 on the next page.

In Figure 4, the mean segregation difference for both directed and undirected networks (false

true) with a density of 5% was of ten points, while for more dense networks it was below five, and

decreasing as the network has more connections. Furthermore, density had an effect on variance.
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Across network with 5% density (directed and undirected), the variance of the segregation difference

was about 46, while for a 10% density it was about 22, and a density of 15% it was about 12.

To conclude, the results clearly showed that micro-motives created a macro-behavior: ho-

mophily thresholds induce increasing segregation. Our Schelling dynamics may explain some of the

segregation we observe in Online Social Networks.

It is worth pointing that the effect of the dynamic may seem minor. After all, an increase in

mean segregation of about 5% or 3% in equal populations across all networks could be disregarded.

But this is a misleading conclusion. As Figures 2-4 show, the effect of micro behavior heavily

depends on the density of the network, with lower densities leading to more segregation effect

(although slower). For a 5% density the effect was of a 10 and 5 point increase for undirected and

directed networks respectively. But a 5% density means that on average each agent is connected

with 5% of the population. In a community of 100 individuals, each agent would have 5 friends;

in a community of 1000, 50. In an Online Social Network of one billion individuals, it means that

each agent has on average 50 million friends; an absurd assumption. According to Pew Reserch, in

2013 the average Facebook user had 338 friends, and the network had about 1.2 billion active users

total. This corresponds to a density of about 0.00003%. The segregation effect of micro motives in

networks with such a low density would be extremely large.9

3.2. Heterophily beats Homophily in Unequal Populations.

If the reader is concerned about the social implications of results of the previous section, do

not despair. Segregation induced by agents’ preferences for their own group can be effectively

countered by praising diversity. In this section we will study the interaction between homophily

and heterophily, love for what is different.

9Unfortunately, computational limitations restrict the possibility of running experiments with individuals in the
thousands, much less millions, and very low densities.
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Figure 7. Heterophily vs Homophily on Segregation

The top plots in Figure 5 next page present the segregation difference induced by the heterophily

threshold for different values of the homophily threshold. As it is expected, heterophily reduces

segregation in all cases for both directed and undirected networks, with a slightly higher effect for

directed networks. The second thing to observe is that as homophily increases, the base segregation

difference increases too. When the homophily threshold is in 20% (top left), heterophily reduces

segregation from about 2 to around -10 points; but when homophily is 45% (top right), this goes

from about 10 to about 5. Yet the heterophily graphs are roughly similar in shape. This indicates

that the interaction between homophily and heterophily in the dynamics is roughly linear. Although

this will prove to be false in not long, it is a helpful heuristic. Let us call the ”Philiac Difference” of

an experiment the difference between the homophilic and heterophilic thresholds. This will become

handy soon.

The bottom plots of Figure 5 reveal something even more interesting. It seems that for unequal

populations the effect of heterophily was larger than for equal populations. Let us take a closer

look, using the Philic Difference as a parameter in Figure 6.
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Figure 8. Heterophily Beats Homophily

When populations are unequal, and therefore there is a minority, heterophily and homophily

have different power. It will be easier for the majority to satisfy their homophily than their

heterophily, and the converse for the minority. But since segregation is measured considering

everyone equally and independently of their group, that which affects the majority more will have

a larger effect overall.

The top plots in Figure 6 show that for all homophily thresholds, a small amount of heterophily

is sufficient to induce a segregation reduction - namely integration. The middle plot exemplifies that

even when homophily is larger than heterophily by a margin of 0 to 20, integration is still obtained.

Interestingly, once again directed networks are more affected by the interaction than undirected

ones. The bottom plot shows that in equal population proportions, both threshold demands have

the same force. In particular, when the Philic Difference is of zero, no segregation nor integration

was observed.
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The observation is hopeful: In the presence of minorities, convincing individuals of the value of

diversity will have a greater effect on integration than emphasizing their in-group preference has

on segregation.

3.3. Heterophily makes us Happier in Unequal populations.

So far we explored the effects of homophily and heterophily with respect to segregation, but

not with respect to happiness. Following the trend in the previous section, a praise for diversity is

correlated with higher increase in happiness for unequal populations. Here ”Happiness Difference”

is the difference between the final proportion of satisfied individuals and the initial proportion.

Figure 9. Happiness

The plots on top of Figure 7 show that in almost all cases there was a gain in happiness after

the dynamics was implemtented (i.e. the happiness difference is positive). More interestingly, as

the philiac difference increases in unequal populations, namely as they become more homophilic,

the gain in happiness decreases. This is particularly pronounced in directed networks. The straight
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lines are regression lines, while the others are the means. The effect is also observed in directed

networks with equally distributed populations. For an explanation of this, consider a network

with unequal populations. At the initial state, its harder for individuals in the majority to satisfy

their heterophily, and for individuals in the minority to satisfy their homophily. Heterophily has a

greater effect on how (un)happy the overall population is, relative to the effect that homophily has.

As the dynamic is implemented, there is more happiness gained by satisfying heterophily than by

satisfying homophily.

The plots at the bottom of Figure 7 are also informative. First, in unequal populations hap-

piness is correlated with integration. This once again depends on the fact that heterophily has

more effect when there are minorities. On the other hand, in equal populations happiness induces

Heteroscedasticity: as happiness increases the segregation difference variance increases. In the

graph this is is shown by the fact that although the mean of the points is always around zero, as

happiness increases they are more spread. This is because happiness can increase by satisfying ho-

mophily or/and by satisfying heterophily, and these different ways will translate in different degrees

of segregation increase and reduction.

Again we encounter an encouraging conclusion. Celebrating diversity, i.e. heterophily, not only

is more powerful than celebrating homogeneity, it also makes people happier. There is hope for

integration.

3.4. Interaction between Homophily and Heterophily.

In developing the last two points, we assumed that philiac difference was a good way of measur-

ing the interaction between homophily and heterophily. This was a helpful heuristic to represent

some interesting phenomena, but it is not entirely correct. To be clear, the points made in the last

subsection hold: heterophily beats homophily in unequal populations both in respect to segregation
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and happiness. But the graphical representations were slightly misleading. To observe this, let us

look at two data sets. On the one hand, we go back to the set with no heterophilia, but where the

homophily thresholds were just 20%, 25%, and 30%. On the other, let us look at the data sets in

which the philic difference has those values.10 If the relation between homophilia and heterophilia

with respect to segregation difference were linear, these two data sets should look relatively alike,

but they do not.

Figure 10. Non Linear Interaction

These figures show, for example, that its not the same to have (a) a 25% threshold for ho-

mophily with no heterophily, and (b) a 45% threshold for homophily and a 20% threshold for

heterophily; even in equal populations. For example, in the bottom right plot, case (a) induced a

mean segregation increase of about 2.5% (across all networks), while case (b) induced about 7%.

The fact that such a difference manifests even in the case of equal populations is surprising, and

suggests that the relationship between the two constraints is more complicated than expected.

3.5. Direction and Relink Dynamic.

10Furthermore, we disregarded the data with no homophilia.
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Now we take a closer look at the differences between directed and undirected networks, and

also briefly reflect on the two different dynamics presented (with a single random relinking, or a

complete relinking).

We already observed that in general the undirected networks were more affected when there

was no heterophily, but directed networks were more affected when there was [Figures 1-7], and

that the relation between happiness and philiac difference was larger on directed networks. Let us

now look at the segregation difference and steps distributions (by link probability).

On the left of Figure 9 next page, means appear to be close to each other. This might be

due to the fact that undirected networks seem to be more affected by homophily, while directed

networks by heterophily [i.e. Figures 1-7]; and when taking means across all values their mean

segregation evens out. A glance at the segregation distribution suggests that directed networks

are more concentrated around the mean. This can be verified by looking at the variance: The

segregation difference variance for the full data set is 66.66, while for directed networks is 54.55,

and for undirected is 78.41. On the other hand, directed networks were clearly faster in attaining an

equilibrium, and were substantially more successful also. Many undirected networks fail to achieve

a stable equilibria, as is shown by the fact that almost half of them lie within 500 steps - meaning

that the dynamic was coerced to end even when there were unhappy individuals.

Once again, Figure 10 shows that the segregation difference means are almost the same for the

relink all vs relink one dynamics. This may be misleading in that properly partitioning the data

could show that the different dynamics have a significant effect on segregation and integration.

But to avoid boring the reader with more graphs, this study will be left for another time. More

relevantly, different dynamics do have an effect on the variance. The segregation difference variance

for the relink all dynamic is 72.83, while for relink one is 60.12. On the other hand, unexpectedly

relink all had a slower mean rate of convergence to equilibrium than relink one; and no significant

difference in equilibrium failure is observed.
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Figure 11. Directed vs Undirected

Figure 12. Relink One vs Relink All

To sum up, undirected networks in which connections are reciprocal have a higher variance

and segregation effect but lower convergence speed, relative to directed networks. Whether the

relinking was done one at a time or not also had an effect on variance, and speed. Relinking all

was faster but with a larger spread.
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4. Conclusions and Discussion

Schelling (2006, 1969, 1971a) offered a new type of explanation for macro social arrangements in

terms of individual preferences and micro behavior. The upshot of the study was that geographical

ethnic segregation can emerge even when agents have minor preferences for their own group. The

first purpose of this essay was to show that the same kind of explanation can be given for segregation

in the context of Online Social Networks.

Communities were represented via Erdös-Rényi random networks GpN, pq in which individual

agents satisfy their homophily and heterophily thresholds by severing and creating links with other

agents. Like in Twitter or Instagram, we studied directed networks where individuals can follow

or unfollow other agents. Like in Facebook, undirected networks have reciprocal connections or

friends. The results show that imposing a Schelling-like dynamic on these networks generates

segregation and integration, according to different parameters.

In general, undirected networks were more affected by homophily and directed networks by

heterophily, and the latter had higher speed of convergence and less variance. More importantly

for our explanatory purposes, differences in network density affected how the dynamic changed

segregation, with lower densities implying higher effect. The density of a network is the amount

of actual connections over the amount of total connections, and this was studied by looking at

the link probability p, which corresponds to the expected density. The lowest valued studied was

0.05, corresponding to an expected density of 5%. In this case, results show that the dynamic

induced a non negligible segregation increase of up to 23 points (in undirected networks with

equal populations and no heterophily). As pointed before, real life Online Social Networks have a

substantially lower densities, which suggests that the effect of a Schelling-like dynamic will be much
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larger. Unfortunately, computational limitations restrict the study of more representative sizes.11

Finally, although lower densities increased the effect, they also slowed it down.

We also studied dynamics with heterophily thresholds in which agents enjoy diverse company.

It was encouraging to observe that heterophily had a greater effect than homophily in populations

with minorities, leading to positive integration. This is because when there are minorities the

majority is affected more heavily by heterophily than homophily. Relatedly, the results show that

populations that prefer diversity end up more happy, in particular when there are minorities and

networks are directed. Furthermore, happiness increase is correlated with integration in unequal

populations. Both these results are a natural consequence of the first observation: heterophily

beats homophily in unequal populations.

The model presented here can be modified and adapted in different ways. Higher computational

power would be useful in studying more representative sizes. Agents’ types may be increased to

more than two - in fact the Netlogo model attached to this essay allows for uniform distribution of up

two five tribes. Homophily and heterophily thresholds may not be universal, allowing them to vary

across different groups - it is not hard to imagine that some tribes are more prone to diversity than

others. Severing connections and finding new ones may not be random, but maybe involving in and

out-group biases. Agents may not easily identify the tribe of their neighbors. Initial networks need

not be random Erdös-Rényi. Feasible alternative are Barabási-Albert and Watts-Strogatz networks.

Hierarchical networks like those generated using Barabási-Albert preferential attachment algorithm

are more representative of actual Online Social Networks because their degree distribution follows

a power law (Pareto distribution) in its tail (long tails, with a few nodes concentrating most of

the connections). Alternatively, Watts-Strogatz networks have short average path length12 but,

11Models GpN, pq with N=100 and significantly lower densities will almost always fail to converge. Models with
larger N, even in the few hundreds, are hard to compute.

12Watts-Strogatz networks have the small world property according to which the typical distance between two
randomly chosen nodes grows proportionally to the logarithm of the number of nodes N in the network. This captures
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unlike Erdös-Rényi, they have high clustering. Conversely, and maybe more interestingly, natural

Schelling-dynamics like the ones introduced here may be defined on networks so that they explain

the distribution and segregation of actual internet communities. A minor step in this direction

is carried away in the Appendix, where we present the effect that the dynamic had on network

structural properties like clustering and average path length.

Tribalism and segregation in Online Social Networks is a well documented phenomena which,

very much like geographical racial segregation, can have negative social effects. The results obtained

in this study are both disappointing and encouraging. Given the low density of online networks,

even very low homophily thresholds may lead to high degrees of segregation. Nevertheless, the

results also show that inducing heterophily, in particular with regards to minorities, can very

well counter the segregation effects of homophily and generate integration. Furthermore, it might

increase overall population happiness.

These results can be taken as informative towards policies, or towards ways of improving our

social relations online. For example, divisive speeches and narratives may increase homophily since

individuals are forced to take a stand on the matter, identify themselves with a tribe and signal

belonging. This paper shows how easy is to generate segregation from low levels of homophily,

and therefore a cultural non-partisan effort to reduce generalizing and divisive outbursts would

contribute to integration - provided that is what parties are seeking. More moderate discourse

may even make it harder for agents to identify others as belonging to certain tribes, a capacity

that we assumed here. Furthermore, the model shows that praising diversity and heterophily in

the presence of minorities has a strategic advantage over homophily and leads to integration and

the six degrees of separation intuition in ER. For those networks it can be shown that for large n, average path length
and diameter (largest shortest path) are approximately proportional to log(n)/log(d). If n = 6.7 million, and each
person knows around 50 people so that d = 50, log(n)/log(d) is precisely about 6.
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satisfaction. The new digital technologies are creating new forms of socialization, and with them

new problems emerge. This paper is trying to understand and address one of them.
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CHAPTER 7

Social Centrality in the Contagion of Rumors

The danger to society is not merely that it should believe wrong things,
though that is great enough; but that it should become credulous, and
lose the habit of testing things and inquiring into them; for then it must
sink back into savagery.

Clifford, The Ethics of Beliefn

1. Introduction

The spread of rumors is a very interesting practice from an epistemological perspective. One of

the earliest and most famous treatment of them is due to Clifford (1879), “The Ethics of Belief.”

Clifford was concerned with the evils brought by credulity, the habit of endorsing believes without

sufficient justification. His dictum is memorable: “it is wrong always, everywhere, and for anyone,

to believe anything upon insufficient evidence.” His central argument is fundamentally social.

For Clifford, personal beliefs are not a private matter, but they concern society and even human-

ity at large.1 Second, he is concerned with epistemic practices and virtues rather particular cases

of belief or disbelief. For him, what is more worrisome is the development of a credulous character,

“when a habit of believing for unworthy reasons is fostered and made permanent.” Third, Clifford

argues that such epistemic character flaws can be adopted by others or society at large, which

brings us back to the epigraph. Here is where rumors come into play. A credulous character not

only endorses propositions without sufficient evidence, but they also communicate them to others,

1He states:

Belief, that sacred faculty which promts the decisions of our will, and knits into harmonious
working all the compacted energies of our being, is ours not for ourselves but for humanity.

How this view would play with the question of censorship is unclear. But Clifford seems to be espousing personal
freedom to belive but moral and social responsibility to believe with evidence.

147



sometimes even making use of their epistemic authority or some enforcing mechanism. This makes

others credulous, and the disease continues to spread. Finally, the worse of all evils. As society

becomes credulous, it becomes manipulable and susceptible to deception and fake information: “It

may matter little to me, in my cloud-castle of sweet illusions and darling lies; but it matters much

to Man that I have made my neighbours ready to deceive. The credulous man is father to the liar

and the cheat.”

Such cliffordian worries about the evils of rumors may be reasonably exacerbated by the rise

of the Internet and digital social media. Mößner and Kitcher (2017) discuss some of the epistemic

problems that emerge from what they identify as the democratization of knowledge and information

through the internet. The question whether the internet democratizes information, in the sense

that the production and consumption of knowledge or data is more evenly distributed in the overall

population, will be discussed later. More related to our concern with rumors, Mößner and Kitcher

(2017) discuss the concept of epistemic opacity. They attribute this property to sources of infor-

mation: “A source is opaque for a seeker when the seeker cannot apply the markers available as to

vouch for the reliability of the source.” Sources can be opaque for different reasons. Anonymous

sources are usually opaque, but also unknown news outlets or even academic journals. More gen-

erally, the strategies that agents developed to reliably assign epistemic authority are not useful or

applicable for the source at hand. This does not mean that the sources are untrustworthy according

to those standards, but that they cannot be evaluated by them.

As I see them, rumors are opaque in a different but related way. While the opaqueness of a

source has to do with how reliable it is, the opaqueness of a rumor has to do with its corroboration.

For different reasons, it is hard for agents to deploy strategies to assess the veracity of a rumor.

One recent example of rumor that circulated online was the claim that ‘600 Murders Took Place in

Chicago during the second weekend of August 2018’, originated in a television show and sparking
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anxiety about such a large number of violence in the city. This was later factchecked as false [the

reported amount for that city in that weekend was just one]. But at the time the rumor began,

official statistics were not released and there were no easy sources for falsification.

In the face of such rumor opacity, Clifford suggested suspension of judgment, since there is

not enough evidence for its endorsement. But Clifford’s core value was truth, and there might be

other concerns at play when it comes to rumors, namely justice. Consider the recent the #MeToo

movement. Following the story, it could be argued that initial public outbreak of the Weinstein

atrocities was precisely the result of the spread of rumors about him. Furthermore, soon after many

lists of alleged sexual predators were distributed online, and in the face of them our strategies of

corroboration are either useless or too slow. This is not to say that the allegations are false. The

point is that Clifford’s suggestion of skepticism and suspension of judgment in the face of insufficient

evidence may be trumped by other concerns. Following James (1979) “The Will To Believe,” some

beliefs need to be pursued first, even with insufficient evidence, in order for them to turn out to

be true. Rumors’ opacity may not be completely bad after all. Rumors may be a way of speaking

truth behind power.

Last paragraph argued that in some occasions rumor opacity can be defended on the grounds

of justice, which inevitable leads us to the issue epistemic injustice famously developed by Fricker

(2007). The issue is complex enough to be treated fairly in this introduction. Suffices to say

that Fricker identifies two important forms of epistemic injustices suffered by marginalized groups.

Testimonial injustice occurs when a speaker is given less credibility than deserved on the basis

of their identity. Hermeneutical injustice involves a structural prejudice in the economy of collec-

tive hermeneutical resources, so that marginalized groups and individuals may lack the conceptual

frameworks that allows them to understand and interpret some of their experiences. Fricker exem-

plifies the latter with the concept of sexual harassment, and our recount of the #MeToo movement
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may illustrate the first, since women spread rumors about Weinstein because their public statements

were not given enough credibility.

Nevertheless, it may be reasonably argued that epistemically marginalized groups are partic-

ularly vulnerable to stereotyping or defamatory rumors. In the examples discussed, opacity had

a strategic advantage in the pursue of justice, but this may not be generalizable. Returning to

Clifford’s intuitions, it is by no means clear that the habit or practice of spreading rumors would

be conducive to justice in the long run. This is a serious issue that deserves examination, but will

be left for another time.

Rumors present a further interesting case for epistemic injustice, since the social position that

an agent enjoys in the communication structure may affect how successful they are in spreading

rumors. This is the subject of the present essay. It is a study of how different social arrangements

(egalitarian, hierarchical, and random) and the centrality that individual agents have within those

arrangements affects the spread of rumors. This is done by providing a formal representation of

social arrangements in terms of networks, and of rumors in terms of epidemiological models of

contagion. The upshot will be that how successful agents are can be partially explained in terms of

both properties of the networks and how central they are to those arrangements. But the results are

surprising and interrelated, central agents are not always the most successful, and this varies across

different networks. Whether network centrality is a form of epistemic privilege is still unclear, but

this work is a step forward in answering the question.

The next section presents the technical details of the model. First, the epidemiological model

of contagion that will be used as well as some other variants. Second, a detailed presentation of

different social networks and centrality measures. Section 3 presents the results of the study. The

last section is conclusive.
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2. Formal Models of Rumor Contagion

The past few years saw a significant increase in the computational study of rumors, most likely

due to the emergence of fake news in the context of Online Social Networks. Shelke and Attar

(2019) is an excellent recent review paper that details many techniques, in particular for rumor

source detection. Three formal features will be presented here. First, as explained in Shelke and

Attar (2019), the spread of rumors is usually modelled using an epidemiological framework. Much

like diseases, there is a contagion of rumors. Second, rumors circulate in different networks which

may have a variety of properties. Here we will organize the study by considering broadly egalitarian,

hierarchical and random networks. Finally, we will call ‘influencers’ those individuals that originate

the rumor. We are interested in assessing how the network centrality of the influencers affect how

successful they are in spreading it. For this, several notions of network centrality will be used and

explained below.

2.1. The Epidemiology of Rumor.

Epidemiology is the study of the distribution and determinants of health-related states or events,

and the application of this study to the control of diseases and other health problems. Two of the

most famous mathematical models of disease spread developed in the field are the SIS and SIR

models. Their basic idea is the following. We start with a population of N individuals, each of which

can be in two (SIS) or three (SIR) states: Susceptible, Infected, and Resistant. Sptq represents the

total amount of susceptible individuals at time t, and analogously for Iptq and Rptq. In the SIS

model there are no resistant individuals and the population dynamics is modeled by the following

set of equations:

‚ dS
dt “ γI ´ β.IS

N

‚ dI
dt “

βIS
N ´ γI
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Here β is the infectious rate, it models the probability of getting the disease in a contact

between a susceptible and an infectious subject. γ captures the recovery rate, the probability that

an infected individual recovers and becomes susceptible again. At each transition stage t, (a) the

rate of susceptible individuals decreased by β.Ipt´1qSpt´1q
N and increases by γIpt ´ 1q, and (b) the

rate of infected is increased by β.Ipt´1qSpt´1q
N and is reduced by γIpt´1q. In the SIR model, infected

agents can also become resistant with probability δ:

‚ dS
dt “ γI ´ β.IS

N

‚ dI
dt “

βIS
N ´ γI ´ δI.

‚ dR
dt “ δI

In this work we will only focus on the SIS model in the interest of space, but the experiments

and analysis were done for the SIR model too. This formal representation does not take into

account vital dynamics (individuals being born and dying), immunity loss, the category of disease

carrier (but not infected), and other variants. In the next section we will enumerate different ways

in which the formalism can be extended.

More importantly for us here, models do not take into account network structure. They assume

that transmission is uniform across all individuals, so that the contagion is proportional to the

quantity of infected agents. But this simplifying assumption is not realistic. In general, agents

interact do not interact uniformly with everyone but they have a small network of friends and

acquaintances with whom they share most of their social time. Furthermore, some agents may be

more social and have more connections, while others have less. Some may be more central and

influential than other in the network arrangement. The spread of rumors will be affected by these

subtleties.

2.2. Contagion on Networks.
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Formally, a network or graph GpN,Eq is defined as a set of nodes (or vertices) N and a set

of edges E between those nodes. We will only consider non-weighted undirected edges. For our

purposes, nodes represent individuals and edges offer a representation of a connection between

them. In the simplest interpretation, two individuals are connected if they each belong to the

social circle of the other, namely if they interact on a moderately regular basis.

Given a network GpN,Eq, the following is a discrete implementation of the Susceptible-Infected-

Susceptible model of contagion on them. For each node i and stage t, the state of i in t, spi, tq

is defined by the state of i and all its neighbors at stage t ´ 1. A susceptible node will become

infected with probability equal as β [infectious rate] times the amount of infected neighbors, and

an infected node will become susceptible with probability equal to γ [recovery rate].

The previous model is deliberately simple because it is devised to study the relation between

very fundamental network properties and rumor contagion, as it will be explained in the next

section. Extensions and modifications on the model can be done either on the contagion dynamic

or the network definition. Regarding the latter, for example:

(1) Edges could be directed, so that contagion is not symmetric between agents.

(2) Edges could be weighted, so that contagion may encounter some kind of resistance, or

because the communication medium is defective.

(3) Nodes could be typed at each step, to reflect in-group and out-group biases. In this way,

contagion may operate differently between agents of the same type than between agents of

different types. In the literature, this is the study of homophily. Alternatively, this could

help model the kind of testimonial injustice explained before.

(4) Node population could vary, reflecting generational dynamics of birth, death, and inheri-

tance.
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(5) Edges, friendships between nodes, may change in time responding to a dynamic. For

example, following Schelling’s Schelling (1971b) famous dynamic of segregation, nodes

may rewire according to their type.

On the contagion dynamic, the model could be extended to the Susceptible-Infected-Resistant

(SIR) dynamic, but also the following:

(1) Rather than considering doxastic states, agents could have credal levels. After all, the

endorsement of a proposition may come in degrees.

(2) The model could have several rumors operating simultaneously. Furthermore, rumors

could interact with each other positively or negatively. Several testimonial rumors pointing

in the same direction may be a good reason to spread them all, while conflicting rumors

may reduce each other’s diffusion. Alternatively, rumors could mutate in different ways,

by switching one to another or changing their levels.

(3) Many other parameters could be included. For example, following Bosse et al. (2014), this

could mean adding how expressive or communicative an agent is, how sensitive a recipient

is, whether recipient amplifies or reduces the rumor (adoption level), etc.

(4) Contagion could be represented along the lines of social norms, where the adoption of a

rumor depends on whether a certain proportion of neighbors adopt it. This is sometimes

called complex contagion in the literature Centola and Macy (2007).

We focus on the simplest model because it allows us to study the behavior of rumor contagion

in well studied and classic network structures and properties. Establishing conclusions on highly at-

tuned models may depend strongly on their particularities, while establishing them on the simplest

cases sets up the basis for future study of more involved representations.

2.3. Networks and Network Properties.
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In this essay I will model contagion over three types of networks, and some of their combinations:

(a) Random Erdös-Rényi networks, (b) hierarchical networks using Barabási-Albert preferential

attachment algorithm, and (c) egalitarian networks using Watts-Strogatz networks.

The cannonical random network is the Erdös-Rényi (ER) model. There are two ways of pre-

senting them. In the GpN, pq model, a network is constructed by connecting nodes randomly where

every pair of nodes is connected with (independent) probability p. Any given network with N nodes

and M edges has a probability pM .p1 ´ pqp
N
2 q´M of being generated. The second presentation of

the model is due to Gilbert Gilbert (1959). Given N nodes and M edges, GpN,Mq is a network

chosen uniformly at random from the collection of all networks which have N nodes and M edges.

Both models are related since the expected number of edges in GpN, pq is
`

N
2

˘

.p. By the law of

large numbers any graph in GpN, pq will almost surely have approximately this many edges. Hence,

GpN, pq should behave similarly to GpN,Mq with M “
`

N
2

˘

.p as N increases.

The second class of networks we are going to study are generated using Barabási-Albert pref-

erential attachment (PA) algorithm Barabási and Albert (1999). The algorithm is the following:

(1) At stage 0 we begin with m fully connected nodes and (2) at each new stage, a single node

is created which forms m edges to existing nodes. New nodes create links preferentially, giving

priority to nodes with more links. In particular, at stage t the probability of attaching to node i

is given by diptq{2tm, where diptq is i’s degree (the amount of edges it has), and 2tm “
ř

i diptq is

the total degree of the network. Networks generated this way are said to be hierarchical because

their degree distribution is such that older nodes receive substantially more connections than newer

nodes. The process generates a long-tailed distribution that follows a Pareto distribution (or power

law) in its tail, which is heavily studied in the social sciences.

There are ways of combining hierarchical and random networks of the kinds that were presented.

One straightforward way would be to take a PA network and replace a number or percentage of its
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edges with the same number or percentage of random edges as explained before. A more involved

hybrid model modifies the Barabási-Albert procedure so that at each stage, new nodes still assign

m connections, but only a certain percentage of them are assigned by preference and the rest are

assigned at random with the available nodes. The difference between the two hybrids is that the

former results in a random network when the percentage is 100, while the latter preserves some of

the features of preferential attachment.

The third type of networks are egalitarian in that, for the base case, all nodes share the same

degrees and centrality measures (see below). In a ring each node connects to exactly m other

adjacent nodes [m2 on each side], forming the expected circle-shaped arrangement. Building on

rings, I will here consider Watts-Strogatz Watts and Strogatz (1998) networks. Intuitively, these

networks are hybrids that begin with a ring and for each node they replace a certain percentage of

its edges [on one side] with random edges. As before, when the percentage is 100 then we obtain

(something very close to) a random network. The beauty of Watts-Strogatz is that they manage to

secure short average path lengths and high clustering, roughly by inheriting properties both from

rings (the clustering) and form Erdös-Rényi (the short path) networks. Not only the average path

is short, but these networks (as well as ER)2 have the small world property according to which the

typical distance between two randomly chosen nodes grows proportionally to the logarithm of the

number of nodes N in the network.3

To summarize, Erdös-Rényi random networks provide a good comparison class and standard to

study contagion on networks. The Barabási-Albert preferential attachment algorithm accurately

captures hierarchical arrangements because its degree distribution follows the power law (in its

2The question whether there are preferential attachment networks satisfying this property is not trivial .
3This captures the six degrees of separation intuition in ER. For those networks it can be shown that for large n,

average path length and diameter (largest shortest path) are approximately proportional to log(n)/log(d). If n = 6.7
million, and each person knows around 50 people so that d = 50, log(n)/log(d) is precisely about 6.
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tail), and have been shown to emerge in many real like cases.4 Finally, Watts-Strogatz networks

represent more egalitarian networks with nice structural properties.

We will also study two well known network properties: Global Clustering Coefficient and Av-

erage Path Length. A path between two nodes is the shortest sequence of edges that begins in one

and end in the other. The length of the path is the amount of edges is contains. If two nodes are

not connected, this is somewhat represented with an infinite path, or an N/A value. The average

path length is then the average of the length of the paths within a network. If the network is not

connected, then it has no average path length. If the network is connected, then the average path

length gives us an idea of how fast the contagion effect can manifest. For example, a simple ring

is connected but it has a long average path length [N2 : m
2 “

N
m ], while (connected) ER networks

exhibit short average path length and follow the small world property exhibited before. In a ring,

it takes the ”disease” or rumor several steps to reach other nodes from the initial infected; in a

ER, it takes less. Watts-Strogatz networks help us explore this features, since higher rewiring rate

reduces average path length.

The clustering coefficient of a node i is defined as the number of edges between the i’s neighbors

divided by the total number of possible edges between its neighbors. Intuitively, the proportion

of i’s friends that are friends with each other. Clustering then helps measure the density of ties

between nodes. The Global Clustering Coefficient (GCC) of a network uses the notion of a triplet.

A triplet consists of three nodes that are connected by either two (open triplet) or three (closed

triplet) undirected edges. The GCC is the number of closed triplets over the total number of

triplets. Once again Watts-Strogatz becomes useful. Rings are highly clustered, while ER networks

have very low GCC. As the rewiring-rate in Watts-Strogatz increases, GCC goes down.

4Examples abound, but Price De Solla Price (1976) first studied such patterns in scientific bibliographic citations.
Proving his point, I reference that paper for being the first one with a concrete application but I am not citing
contemporary work.
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Finally, the variables of our interest: nodes’ Power, or Centrality measures.

The most natural measure of power is the normalized degree of a node, namely the amount

of edges it has relative to the average amount of edges in the whole network. Intuitively, a node

with more ”friends” will be able to influence more people. But this notion of centrality is somewhat

naive. Consider the following network:

A B C

a

a

c

c

Node B has less degree than both A and C, but B’s position in the network is very strategic.

Notice, for example, that B is at most two edges from every node, while A and B are at most

three. Also, any contagion from the A crowd must go through B in order to reach the C crowd,

and vice-versa. Relatedly, in this connected network consider the following centrality measure. For

each node, Closeness Centrality is the inverse of the sum of it’s distances to all other turtles.5

So for both A and C this is 1
11 , while for B it is 1

10 . So B is more central than both A and C. There

are ways of defining Closeness Centrality when the network is not connected. The implementation

here measures it by considering all the nodes that are accessible from the given node (i.e. its largest

component).

Another well studied measure of power is Betweeness Centrality. The betweenness centrality

for a node is the number of the shortest paths (between two other nodes) that go through the node.

Formally:

5Here we will take the inverse of the average rather than the sum, because its easier to implement and preserves
the relevant features.
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bpvq “
ÿ

s‰v‰t

σstpvq

σst

Here σst is the total number of shortest paths from node s to node t, and σstpvq is the number of

those paths that pass through v.6 So in our case, A and B both have a betweeness centrality of 7
15 ,

while B has a betweeness centrality of 9
15 . Again B is more central in this regard.

The fourth centrality measure is page rank, famously implemented by Larry Page, one of the

founders of Google, in the beginnings of the seach engine. The version of page rank used here can

be thought of as the proportion of time that an agent walking forever at random on the network

would spend at the node being measured. The agent has an equal chance of taking any of a nodes

edges, and will jump around the network completely randomly 15% of the time. In practice, nodes

that are connected to a lot of other turtles that are themselves well-connected (and so on) get a

higher page rank.

The final centrality measure is Eigenvector Centrality. The intuitive idea is that centrality

is a somewhat self-referential notion. The centrality of a node is proportional to the summed

centralities of its neighbors. This can be defined using some linear algebra. A network GpN,Eq

can be represented by its adjacency matrix A “ pav,tq where av,t “ 1 if node v is linked to node t,

and zero otherwise. The centrality xv of a node v is defined as:

xv “
1

λ

ÿ

tPG

av,txt

Here we see that the centrality measure xv is proportional to the summed centralities of v’s

neighbors. If we take x “ px1, ..., xN q to be a vector of the measures for the N nodes, the system

of equations is:

6In the model, I will be using its normalized version defined:

normalpgpvqq “
gpvq ´minpg

maxpgq ´minpgq

Otherwise, the measure will depend heavily on the number of nodes and edges in the network.
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x “
1

λ
Ax

And rearranging:

λx “ Ax

Hence x is an eigenvector with eigevalue λ. The system has several solutions, but using the

PerronFrobenius theorem we can be sure that there is a largest real eigenvalue and that the cor-

responding eigenvector can be chosen to have strictly positive values in its components - so we

normalize in a way that its entries in x have a maximum value of one.

Wrapping up, in these experiments I considered as measures (a) normalized degree, (b) closeness

centrality, (c) normalized betweeness centrality, (d) page rank, and (e) eigenvector centrality. It

should be noted that closeness and betweeness centralities do depend on whether the network is

connected.

3. Some Surprising Results

The purpose of this section is to summarize the results obtained. The Netlogo model is available

for assessment, as well as several R-markdown files with the detailed regression analysis.

Section 2 described the Suceptibe-Infected-Suceptible model, its implementation on networks,

the types of networks considered, and different sets of properties. To refresh, given a network

GpN,Eq the procedure begins by randomly infecting a single node, which we called ”influencer”.

We consider two dynamics, one in which the influencer is capable of recovering, and one in

which they can not. In the first case, the influencer is not intentionally trying to spread the rumor

but rather became randomly infect and has the urge to spread it. In the second case, the influencer
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is intentionally spreading the rumor. In the literature, Shelke and Attar (2019), this is sometimes

conceptualized as the difference between misinformation and disinformation - intentionality does

matter and the behavioral pattern might help identify the source of the rumor. As explained before,

the state of a node i in stage t, spi, tq is defined by the state of i and all its neighbors at stage

t´1. A susceptible node will become infected with probability equal to β [infectious rate] times the

amount of infected neighbors, and an infected node will become susceptible with probability equal

to γ [recovery rate]. Experiments were done with Erdös-Rényi networks, (hybrid) Barabási-Albert

generated networks, and the Watts-Strogatz model.

In doing the study, the initial hypothesis was that the centrality of the influencer would have

some effect on the success of the contagion. The results offer positive evidence in this direction.

Furthermore, as it is already been shown Centola (2010), network variables like average path length

and global clustering coefficient explain part of the variance in diffusion. What is surprising is that

in many scenarios centrality measures like PageRank and Eigenvector are in many cases negatively

correlated with contagion success.

3.1. Preeliminaries.

For each type of network we ran 216000 simulations, as explained below. Since the closeness

and betweeness centrality measures used here depend on whether the network is connected, we only

looked at the experiments that generated connected networks. This left us with more than 150000

experiments for each network type, enough to make informed observations.

As Figure 1 shows, in many experiments contagion was not successful, with a percentage of

infected nodes below 1% at the end of the process. For this reason, the data was subsetted to study

the instances of successful contagion - when the percentage of infected nodes was larger or smaller

than 1% respectively. The plots in Figure 1 have the distribution of percentage of infection, i.e.
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the number of experiments for which such percentage was recorded at the end of the simulation.

The top plot corresponds to the total data and the bottom to the successful data.

Figure 13. Distribution of Contagion

Although the experiments with different network types are not strictly comparable because they

depend on different sweeping parameters, it is noticeable that in general random networks [ER]

were the most successful in spreading the rumor contagion and generalized preferential attachment

[GPA] was second. Variance was also different for the three networks, with WS having one of 635,

GPA of 449, and ER of 369 in the successful contagion data set. This will be presented in more

detail later.

The purpose of the study is to evaluate how much network structure and the centrality of the

initial influencer affects contagion. In order to do this, each experiment stored the values of the

following three kinds of variables:
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Contagion Variables Network Variables Centrality Variables
Percentage Infected,
Percentage Recovered,
Spread %, Recovery %,
Resistance %,
Influencer Recovery.

Number of Nodes, Number of Links
Link % [ER], Rewire % [GPA, WS],
Average Degree,
Global Clustering Coefficient,
and Average Path Length.

Normalized Degree,
Eigenvector Centrality,
Closeness Centrality,
Page Rank, and
(norm) Betweeness Centrality.

Table 7. Variable Sets

The next step was to ran several multivariate regression analysis over these data sets. The

guiding question was how much of the infection variance can be explained by the different sets

of variables. Infection percentage was taken as the predicted, dependent, variable and different

models were explored for the complete and the successful data sets. The next sections summarize

the results in detail.

3.2. Erdös-Rényi Random Networks.

For random networks, experiments were performed by considering 500 repetitions the following

sweeping parameters:

Spread % (β) Recovery % (γ) Population Link % Recovery?
1, 3, 5 1, 4, 7, 10 100, 200, 300 5, 10, 15 true, false

Table 8. Erdös-Rényi Parameters

For example, we start by fixing the population N in 100 and the link % in 5 for the code to

generate an Erdös-Rényi Gp100, 0.05q network. Second, contagion parameters like spread, recovery,

and resistance chance are fixed; as well as whether the influencer can recover. Third, an initial

random node (the influencer) is infected and the experiment is performed until the network stabilizes

or 1000 steps passed. Finally, the data of the experiment is stored.

Table 9 summarizes the percentage of the variance that can be explained by each of the ten

regression models. For example, by looking at the data set that corresponds to the successful SIS

experiments (bottom right), we can explain with statistical significant 14% of the infection by the

centrality variables. In other words, socially powerful individuals have an effect on contagion.
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Data Set Best Model Full Model Contagion Network Centrality
Complete SIS 59% 59% 44% 15% 15%
SIS with Success 72% 72% 53% 15% 14%

Table 9. Erdös-Rényi Variance Explanation

The Full Model corresponds here to the model that takes into account all recorded variables.

The Best Model begins with the Full Model and chooses a model by Akaike Information Criterion

(AIC) in a stepwise algorithm. Fundamentally, this procedure disregards statistically uninformative

variables. In most, but not all cases, the best and the full models are the same. Also, in most but

not all cases, all variables in all models were statistically significant with a p-value less than 0.05.

In many of the experiments in the complete data set contagion failed, so much of the dependant

variable (percentage of infected) is centered at zero and therefore variance is harder to explain.

The results provide evidence to the common sense claim that the centrality or power of an

influencer has an effect on contagion. What is surprising is that they also suggest that some

centrality measures have a negative effect, so that the more central an influencer is, the less the

contagion is expected to spread. For example, Figure 2 plots the percentage of infected over page

rank and eigenvector centrality in the successful data set, by the expected amount of links the

networks had.
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Figure 14. Some Centralities and Contagion

The lines here represent linear regressions. The more dense the network was, i.e. the higher

the link probability, the more the infection. It is clear that page rank had a negative effect on now

successful the contagion effect was. Eigenvector, on the other hand, seems to have had a positive

effect. A more subtle analysis reveals that the first negative correlation holds under scrutiny, but

not the seconds. To understand this, let us look at the coefficients7 of the best regression model

for the successful SIS data set.

This model explains 72% of the contagion variance and has a p-value ă 10´16. The first thing

to notice is that not all variables are included, some of them were deemed uninformative by the

Akaike Information Criterion (AIC). Yet variables from the three categories appear, suggesting that

they have independent explanatory power.

The dependent or predicted variable here is the infection percentage. The estimate coefficient

for each independent variable is telling us the size and direction of the effect that it is having on the

7Some of the coefficients were rounded for simplicity.
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Variable Estimate Standard Error T-Value P-Value
Intercept 0.01 1.18 86 ă 10´16

Number Nodes 0.05 « 0 26 ă 10´16

Number Links -0.003 « 0 -18 ă 10´16

Recovery? (true) 2 0.07 30 ă 10´16

Recovery % (γ) -3.5 0.01 -343 ă 10´16

Spread % (β) 5.75 0.02 275 ă 10´16

Average Degree 0.6 0.03 18 ă 10´16

Glob. Clust. Coeff. -8.32 4 -2 0.04
Avg. Path Lenght -16.7 0.31 -53 ă 10´16

Eigenvector C. -1.1 0.5 -2.3 0.02
Page Rank -1 0.37 -2.7 0.006
N. Betweeness C. 1.2 0.35 3.4 0.0006

Table 10. Best Model for the SIS data set with success

dependent variable. For example, in this model each 1% increase in spread chance (β) will increase

the infection by 5.75%, and each 1% increase in the recovery chance (γ) will decrease 3.5 points

in the infection percentage. The standard error is an estimate of the standard deviation of the

coefficient, the amount it varies across cases. It measures the precision of the coefficient estimate,

so that smaller values represent more precise estimates. The T-Value is the coefficient divided by

its standard error, and is used here mostly to compute the P-Value. The P-Value is the probability

of seeing a result as extreme as the obtained (the T-Value) in a collection of random data in which

the variable had no effect. In other words, assuming a (random) distribution in which the variable

had no effect (i.e. the null hypothesis is true), the value is telling us how likely it is that the data

obtained came from that distribution. With a P-Value of 0.05 there is only a 5% chance that the

observed results come up in a random distribution, so you can say with a 95% probability of being

correct that the variable is having some effect (i.e. rejection of the null hypothesis). In this model,

all variables appear with a P-Value ă 0.05, which is usually regarded as the threshold for statistical

significance.

The linear model also offers some intuitive support to the idea that there were no gross mistakes

in the experimental setup, or the underlying code. It is natural to expect that recovery chance

166



will decrease contagion, and spread will increase it. Similarly, the greater the average degree of

the network, the greater the contagion effect. Furthermore, there is a well established literature

initiated by Watts and Strogatz (Watts and Strogatz, 1998; Centola, 2010; Granovetter, 1973)

revealing that average path length and global clustering coefficients are negatively correlated with

contagion success (and speed). Intuitively, the longer the average path, the more steps it would

take for contagion to reach nodes distant from the original infection, and therefore higher chance

of recovery in the mean time. High clustering means, in many cases, that nodes are segregated

so that only those clustered around the original infection will end up infected. On the other

hand, results are also unintuitive. Whether the influencer recovers affects the overall contagion,

but somewhat conversely: If it recovers, that increases the percent of contagion positively by two

points. Each extra node increases contagion by 0.05%, and number of links have a negative effect,

albeit negligible.

The most unexpected observation is that Page Rank and Eigenvector Centrality have a negative

effect on contagion. The best model suggests that each 1% increase in page rank8 decreases 1%

the contagion effect. Similarly, the more central the initial node is with respect to eigenvector cen-

trality, the less successful the contagion is expected to be.9 In contrast, the normalized betweeness

centrality shows a positive effect on contagion. Also surprisingly, influencer normalized degree and

closeness centrality were deemed uninformative by the stepwise AIC algorithm.

The next sections will show that the effect that centrality variables and network variables have

on contagion are not negligible for other types of networks. Furthermore, the surprising result that

8The Page Rank measure is normalized so that the sum of all page rank values is approximately one hundred,
hence each point increase in Page Rank can be interpreted as a 1% increase of the influencer centrality

9Eigenvector and (normalized) Betweeness centrality are normalized so that the most central nodes gets a value of
1 and the lease central a value of 0, but nothing secures that sum of all is 1. This is why the percentile interpretation
given for page rank cannot be given to these measures.
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some of the centrality measures have a negative effect on contagion, and some others are irrelevant

will be a persistent emergent phenomenon.

3.3. Preferential Attachment.

Here we run 100 repetitions of the following combinations of parameters:

Spread % Recovery % Population Rewire Prob Recovery? Neighbors
1,3,5 1,4,7,10 100, 200, 300 0, 0.25, 0.5, 0.75, 1 true, false 1,6,11

Table 11. Barabási-Albert Preferential Attachment Parameters

Some variables were kept the same as before: Spread %, Recovery %, Resistance %, Population,

and Recovery. The Neighbors variable refers to the amoung m of edges created at each stage of

the Barabási-Albert PA algorithm. Finally, the Rewire Prob is a hybridization parameter: the

percentage of the edges of the network were replaced by random edges. Variables were stored and

categorized in the same way as before. Once again, in most of the experiments the contagion was

not successful and hence the data was again divided into two groups. This is how much of the

variance is explained by the regression analysis:

Data Set Best Model Full Model Contagion Network Centrality
Complete SIS 66% 66% 43% 29% 21%
SIS with Success 78% 78% 52% 18% 16%

Table 12. Barabási-Albert Preferential Attachment Variance Explanation

As with the case with Random Networks, the models explain a substantial amount of the

variance, and both network and centrality variables show up as significant. The surprising result

of the previous section still holds: some measures of centrality appear to have a negative effect on

contagion. Let us look at the Best Model for the SIS data set with success.

Once again all variables of the best model are statistically significant. The new rewiring proba-

bility variable positively affects contagion. This shows that the more random (and less hierarchical)

the networks are, the more successful the contagion is. Also, like in random networks, page rank
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Estimate Standard Error T-Value P-Value
Intercept 77.6 1.33 58 ă 10´16

Number Nodes 0.036 0.0017 20 ă 10´16

Number Links -0.0018 « 0 -8 ă 10´16

Recovery? (true) 2 0.08 25 ă 10´16

Recovery % -3.93 0.01 -340 ă 10´16

Spread % 6.52 0.02 272 ă 10´16

Rewire Prob 3.5 0.28 12 ă 10´16

Average Degree 0.64 0.03 18 ă 10´16

Glob. Clust. Coeff. 9.6 2 4.8 ă 10´6

Avg. Path Lenght -11.1 0.18 -56 ă 10´16

Eigenvector C. -3.6 0.7 -5.2 0.000001
Page Rank -2 0.28 -7.5 ă 10´13

Norm. Degree 0.62 0.16 4 0.00006
N. Betweeness C. 1.33 0.5 2.7 0.007

Table 13. Best Model for the SIS data set with success

and eigenvector centrality also have a negative effect on contagion. Furthermore, the effect seems

to be more pronounced. For each 1% increase in the page rank of a node, the percentage of infected

is expected to decrease by 2%. In the same set for random networks eigenvector had an coefficient

of -1.1 while now it is -3.6, more than three times larger. Normalized betweeness degree has again

a positive effect, and we now find the influencer’s normalized degree as significant.

Like in the random network case, page rank and eigenvector centrality have negative coefficients

in the best model for the full data set and the SIS model (both the complete and the successful

subsets). They also have negative coefficient for those data sets in the full model and the model

using only centrality variables. Before drawing any general conclusions, let us explore the results

in small world egalitarian networks.

3.4. Small World Watts-Strogatz.

Again, we run 100 repetitions of the following combinations of parameters:
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Spread % Recovery % Population Rewire Prob Recovery? Neighbors
1,3,5 1,4,7,10 100,200,300 0, 0.25, 0.5, 0.75, 1 true, false 1,6,11

Table 14. Watts-Strogatz Parameters

Data Set Best Model Full Model Contagion Network Centrality
Complete SIS 73% 73% 27% 43% 37%
SIS with Success 78% 78% 28% 34% 25%

Table 15. Watts-Strogatz Variance Explanation

Variables are organized in the same way as in the previous section. Given that we are now

familiar with the methodology, let us move to the variance explanation table.

Table 16 shows that in Watts-Strogatz, network and centrality variables explain more of the

contagion effect than they did in the previous cases. Let us take a look at the best model regression:

Estimate Standard Error T-Value P-Value
Intercept 30.1 0.6 49 ă 10´16

Number Nodes 0.0037 0.0025 1.5 0.14
Number Links 0.003 0.0025 14 ă 10´16

Recovery? (true) 3 0.1 32.4 ă 10´16

Recovery % -3.82 0.013 -283 ă 10´16

Spread % 6.65 0.028 238 ă 10´16

Rewire Prob 10.75 0.25 42 ă 10´16

Average Degree -0.35 0.032 -11 ă 10´16

Glob. Clust. Coeff. 49.2 0.7 70 ă 10´6

Avg. Path Lenght -0.67 0.011 -58 ă 10´16

Eigenvector C. 10.84 0.36 30 ă 10´16

Closeness C. 78 1.06 73 ă 10´16

Page Rank -1113 51.28 -21 ă 10´16

Norm. Degree -1.22 0.51 -2 0.0166
N. Betweeness C. -4.57 0.38 -12 ă 10´16

Table 16. Best Model for the SIS data set with success

All variables, except the number of nodes, are statistically significant. As before, the rewiring

probability variable affects contagion positively, so that in the more random (and less egalitarian)

networks the percentage of infected was higher. But now the story about centrality measures is not

the same. Page rank still has a negative effect, and very substantial. Eigenvector is now positive,

while it was negative in the other networks. Betweeness and normalized degree are now negatinve
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and they were positive before. Closeness centrality is now a relevant variable according to the AIC,

and it has a positive effect.

4. Conclusion

4.1. Technical Upshot of the Results.

So what have we learned from these experiments? For starters, that network contagion is not

as simple as expected. Yet, some claims are supported by the evidence.

(1) The centrality of the initial infection (influencer) has a significant effect on contagion.

More interestingly, the effect of different centralities varies across different networks.

(2) Network properties have a significant effect on contagion.

(3) How hierarchical or egalitarian a network is has an effect on the contagion.

The fist claim (1) is grounded on the fact that in all of the models presented, some of the

centrality variables were statistically significant (with a p-value of 0.05). The surprise, nonetheless,

was that in some cases centrality had a negative effect. To summarize some examples:

‚ Page Rank: Had a negative estimate in all of the models and all of the data sets.

‚ Eigenvector Centrality: Had a negative estimate in random and preferential attachment

networks, while a positive in Watts-Strogatz.

‚ Betweeness Centrality: Had a positive effect in random and preferential attachment net-

works, while a negative in Watts-Strogatz.

‚ Normalized Degree: Was positive in preferential attachment, negative in Watts-Strogatz,

and irrelevant in random networks.

In all cases, (2) general network properties had an significant effect on contagion. In particular,

the average path length of the networks was negatively correlated, since the longer the paths the

harder it would be for the rumor to be transmitted further away in the network. Global clustering

coefficient was more interesting, since it has a positive effect in hierarchical and egalitarian networks
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but a negative one in Erdös-Rényi. Average degree was statistically significant but had only a minor

effect.

More interestingly, (3) how egalitarian, hierarchical or random the network was did affect

contagion. The boxplot10 in Figure 3 presents the mean percent of infection by how randomized

WS and GPA networks were. Surprisingly, when there was no randomization so that networks

were purely egalitarian (a ring) or hierarchical (pure Barabási-Albert procedure) the mean percent

infected was the same for both kinds of networks. Nevertheless, as soon as randomization is

introduced contagion increases overall and it is more effective in hierarchical networks - although

the difference is small.

Figure 15. Randomization and Contagion

4.2. Philosophical Upshot of the Results.

Unfortunately, the results do not offer a moral that can be truthfully summarized in an eloquent

or provocative slogan. This is not surprising, since in many ways this work is propaedeutic for

10Means are represented by the dots, median by the horizontal lines at each parameter, boxes represent the overall
spread of the sample, and dots at the bottom are outlier data points.
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future research. The contagion of rumors in a network is more complex than expected, and further

research may be necessary before definite conclusions about epistemic justice or about Clifford’s

worries on the spread of misinformation. Yet, since Ioannidis (2005), it is well known that negative

or inconclusive investigations are hard to publish, so some preeliminary observations are on point.

To begin, the experiments suggest that Clifford’s worries about the dangers of the spread of

misinformation are warranted. The regression models before showed that infection rate (β) was

positively correlated with infection, and the recovery rate (γ) was negatively correlated. But this

was not truly informative about absolute contagion rates. In Figure 4, the Net Contagion Effect

variable in the horizontal axis is defined as β ´ γ, namely the probability of infection minus the

probability of recovery. The graph takes into account all data, not just the successful contagion

cases. Notice that in its lower rate, when β ´ γ “ ´9, the mean population infection was between

7% and 27%. When the net contagion effect is zero, the mean population infection was above 70%

for all networks. This graph shows that it takes very little to get most of the population infected

with a rumor. Clifford’s fears seem vindicated.
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Figure 16. Net Contagion Effect

Let us move to epistemic injustice. The results showed that social hierarchies, represented by

centrality measures, do have a statistically significant effect in the power to spread rumors. So it

is fair to conclude that, in so far those hierarchies are morally or epistemologically unjustified, we

might be in the presence of a new kind of epistemic injustice. Yet the picture is not straightforward.

Very surprisingly, PageRank centrality was negatively correlated with contagion. It is unclear what

to do with this. More interestingly, the effect that centrality had depended on the overall structure of

the network; whether they are more egalitarian (Watts-Strogatz), hierarchical (Barabási-Albert),

or random (Erdös-Rényi). Yet whether networks were hierarchical or egalitarian made no gross

difference in mean contagion success or variance, while random networks were more infected on

average and had higher variance. This suggests that attempting to reduce contagion effects by

making social networks less hierarchical and more egalitarian may not have a significant effect;

although more research can be revealing in this respect.
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To conclude, it may seem, as Mößner and Kitcher (2017) suggested, that technologies like the

Internet or Online Social Networks are an epistemically democratizing force in which individuals are

now capable of producing and consuming more information freely. Following Clifford’s epistemic

conservatism, I do not think there is enough evidence to support that claim. Furthermore, this paper

suggests that new, different, and sophisticated epistemic hierarchies may be emerging. Hierarchies

in which those with a privileged position in the network can heavily influence others. Yet, in

agreement with Mößner and Kitcher (2017), the issue about epistemic hierarchies is not that they

are negative in themselves, but that they may not be conducive to the kind of values and goals

that we are pursuing.
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(Eds.), Oxford Handbook of Probability and Philosophy. Oxford University Press.

178



Dietrich, F. and C. List (2017, Apr). Probabilistic opinion pooling generalized. part two: the

premise-based approach. Social Choice and Welfare 48 (4), 787–814.

Elga, A. (2007). Reflection and disagreement. Noûs 41 (3), 478–502.
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Netlogo Instructions and Repositories

Setting up the Software

In order to download the software you can click here, or copy-paste the following link in your

browser:

‚ https://ccl.northwestern.edu/netlogo/download.shtml

You should select version 6.0.4 or higher. For the latest version you can go here, or copy-paste

the following link:

‚ https://ccl.northwestern.edu/netlogo/6.1.0-RC2/

That page also describes the installation process according to your operating system.

Once you were able to open the program, you should be ready to go to the next section.

The model makes use of the networks extension [nw] which is included in versions 5.0.1 or

higher. Furthermore, the extension’s grammar and applications changed slightly in the transition

to newer versions. The code included in this dissertation works for versions 6.0.4 or 6.1.0-RC2

(latest). Nothing secures future versions will keep the grammar the same.

Simulations’ Repository

You can find the repository for the simulations here, or once again copy-pasting the following

link in your browser:

‚ https://drive.google.com/drive/folders/1LJfoCq3sijNFbvmbxT3S260vqoEacWPr?usp=sharing
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In these repositories you will find different types of files:

‚ Extension “.nlogo” corresponds to the NetLogo models, which will be briefly described in

the next sections.

‚ Extension “.csv” corresponds to the data sets of the simulation results. They should be

reproducible, modulo some random parameters, using the NetLogo models.

‚ Extensions “.R” and “.Rmd” correspond to the R and R-Markdown codes that I used

to make the statistical analysis and plotting. In their present form, they are not at all

elegant. That is why I excluded them from the material. They will be cleaned up in not

long, and included only if the committee thinks it is relevant.

‚ Extension “.html” allows you to visualize the R-Markdowns.

The next sections will give a very brief introduction on how to use and explore the models.

Schelling on Social Networks Model

Begin by downloading the file “Schelling Segregation Final.nlogo” from the repository, and

opening it using NetLogo.

Here a brief example on how to explore the model.

(1) Begin by setting the “save-data” switch at the top right to “Off”; otherwise experimental

results would be stored.

(2) Set up the desired number of nodes using the “num-nodes” slider on the top left.

(3) Set up the “link-prob” slider near the center, with the ER random parameter. Intuitively,

each node is expected to have link-prob * 100 links.

(4) Choose whether the network to be generated is going to be directed or not.
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(5) Click “General Setup”. Alternative, the buttons for setting up a network or a directed

network.

(6) At this point you should have a network with colorful agents around. Now its time to

divide them into tribes.

(7) Below the Schelling Online Segregation Model banner, there are two sliders corresponding

to tribes. In the two-tribe model, you get to decide what the proportion of blue (vs red)

agents is. In the multi tribe, how many tribes you want. So decide accordingly.

(8) Click the “Setup” button below the Two Tribe or Multi Tribe notes.

(9) So we now have a network with tribes. It is time to set up the parameters of the dynamic.

“Tolerance” and “Intolerance” correspond to heterophily and homophily. The Relink

Dynamic is explained in the paper.

(10) Click “General Go” to observe the evolution of the dynamic.

(11) The plot shows the evolution of the proportion of (un)happiness and segregation. Un-

fortunately, it is not easy to design a code for the visualization in the main display that

shows the segregation layout. This is only cosmetic, but hopefully I can develop it later.

This is not a full description of the model, but it will be helpful for an initial exploration.

Rumor Contagion on Social Networks Model

Begin by downloading the file “Rumor Contagion - Complete.nlogo” from the repository, and

opening it using NetLogo.

Once again, a brief example on how to explore the model. This model is a bit more involved

than the previous one because it includes a wide variety of networks, not just random networks. We

192



will exemplify with WattsStrogatz networks because its nice to visualize. You are free to inquire

about other types.

(1) Begin by setting the “save-data” switch at the top right to “Off”; otherwise experimental

results would be stored.

(2) Set up the desired number of nodes using the “num-nodes” slider on the top left.

(3) Set up the “n-links2” slider under the “Hybrid Models” title. Also set up the “rewire-

prob” slider. The first corresponds to how many links each node will have, and the second

with how much randomization will be inposed on the WattsStrogatz network.

(4) Click “WattsStrogatz model”. You are free to experiment changing the parameters fixed

before.

(5) You should have a network with colorful agents around. Now its time to divide them into

the contagion categories.

(6) Below the Contagion banner, there are several sliders and one switch that you can use to

determine recovery rate, spread chance, whether agents can gain resistance (this is the SIR

model), the amount of initial infected agents, and whether those initial infected agents can

recover (and gain resistance).

(7) Click the “Setup” button below those sliders. You will see a change of color that corre-

sponds to whether agents are Suceptible (blue) or Infected (red) at initiation.

(8) Click “Go” to observe the contagion effect.

(9) The plot shows the evolution of the proportion of the population that corresponds to

Susceptible, Infected or Recovered.
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APPENDIX A

Appendix to Chapter 2: Proofs

Proof of Proposition 1

Proof. We carry out McConway’s proof with minimal adjustments made for our framework

(pp. 411-412 1981, Theorem 3.1).

WSFPñMP. Assume that F has the WSFP, i.e., there is a function G : A ˆr0, 1sn Ñ Ppr0, 1sq

such that Fpp1, ...,pnqpAq “ GpA,p1pAq, ...,pnpAqq. By WSFP, we have Fprp1æA 1s, ..., rpnæA 1sqpAq

“ GpA, rp1æA 1spAq, ..., rpnæA 1spAqq. Since G is a function and pipAq “ rpiæA 1spAq for any A P A 1

(all suchA P A 1 are also in A ), it follows that GpA, rp1æA 1spAq, ..., rpnæA 1spAqq “ GpA,p1pAq, ...,pnpAqq

“ Fpp1, ...,pnqpAq. Hence, Fpp1, ...,pnqpAq “ Fprp1æA 1s, ..., rpnæA 1sqpAq.

MP ñ WSFP. Assume that F has the MP. Let A P A . We want to show that Fpp1, ...,pnqpAq

depends only on A and pipAq, i “ 1, ..., n.

First, if A “ H or A “ Ω, then, since the range of F is PpPq,Fpp1, ...,pnqpAq depends only on A

and pipAq, i “ 1, .., n, for any profile because, setting Fpp1, ...,pnqpAq “ GpA,p1pAq, ...,pnpAqq and

Fpp11, ...,p1nqpAq “ GpA,p11pAq, ...,p1npAqq, it follows that GpA,p1pAq, ...,pnpAqq “ GpA,p11pAq, ...,p1npAqq.

Next, suppose that H ‰ A ‰ Ω. Consider the σ-algebra A 1 “ tH, A,Ac,Ωu. A contains A

and has A 1 as a sub-algebra. By MP, then

Fpp1, ...,pnqpAq “ Fprp1æA 1s, ..., rpnæA 1sqpAq.
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A 1 is uniquely defined by A and any probability over A 1 is uniquely determined by the probability

of A under that distribution. So the righthand side of the equation above is determined by A and

piæA 1pAq “ rpiæA 1spAq “ pipAq. �

1. Proof of Lemma 1

Proof. Let Y “ tp : p “
řn
i“1 αipi such that αi ě 0 for i “ 1, ..., n and

řn
i“1 αi “ 1u. We

want to show the following:

Fpp1, ...,pnq “ convtpi : i “ 1, ..., nu “ Y

The first equality we have by definition. In order to show the second equality, we have to show

that Y is the smallest convex set containing tpi : i “ 1, ..., nu. To show convexity, we show that

for any two functions in Y , any convex combination of those functions is in Y . Suppose that

p,p1 P Y . By assumption, p “
řn
i“1 αipi and p1 “

řn
i“1 βipi. Consider p‹ “ γp ` p1 ´ γqp1 “

γp
řn
i“1 αipiq ` p1´ γq

řn
i“1 βipi.

p‹ “ γ
řn
i“1 αipi ` p1´ γq

řn
i“1 βipi

“
řn
i“1 γαipi `

řn
i“1p1´ γqβipi

“
řn
i“1rγαipi ` p1´ γqβipis

“
řn
i“1rγαi ` p1´ γqβispi

“
řn
j“1 δjpj

where δj “ γαj ` p1 ´ γqβj . δj ě 0 for j “ 1, ..., n because every term is nonnegative.
řn
j“1 δj “

řn
i“1rγαi`p1´γqβis “

řn
i“1 γαi`

řn
i“1p1´γqβi “ γ

řn
i“1 αi`p1´γq

řn
i“1 βi “ γp1q`p1´γq1 “ 1.
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Hence, p‹ P Y , so Y is convex. If Y were not the smallest such set, then there would be some

convex Z Ĺ Y such that tpi : i “ 1, ..., nu Ď Z. But for any p P Y,p is a convex combination of the

elements in tpi : i “ 1, ..., nu. Since Z is convex and contains the pi, it follows that p P Z, which is

a contradiction. �

2. Proof of Proposition 2

Proof. Since Fpp1, ...,pnqpAq “ tppAq : p P Fpp1, ...,pnqu, we let G of the SSFP be the convex

hull operation applied to tpipAq : i “ 1, ..., nu. It is clear that G depends just on the individual

probabilities for A. We need to show that

tppAq : p P Fpp1, ...,pnqu “ convtpipAq : i “ 1, ..., nu.

Trivially, the lefthand side includes tpipAq : i “ 1, ..., nu. Suppose ppAq,p1pAq P tppAq : p P

Fpp1, ...,pnqu. Since Fpp1, ...,pnq is convex, it follows immediately that any convex combination

of ppAq,p1pAq is in tppAq : p P Fpp1, ...,pnqu. Finally, suppose that there is some convex Z Ĺ

tppAq : p P Fpp1, ...,pnqu which contains tpipAq : i “ 1, ..., nu. But for any ppAq P tppAq : p P

Fpp1, ...,pnqu, ppAq is a convex combination of the pipAq since every p P Fpp1, ...,pnq is such a

convex combination of the pi (Lemma 1). Hence, ppAq P Z, contrary to our supposition. So, the

equality holds and the SWFP is satisfied.

But since SWFP clearly implies WSFP, WSFP is satisfied, too. By Proposition 1, it follows

immediately that F has the MP.

Because Fpp1, ...,pnq is a set of probability functions, Fpp1, ...,pnqpHq “ t0u. Let pipAq “

0, i “ 1, ..., n. Since there is a function, G, such that Fpp1, ...,pnqpAq “ Gpp1pAq, ...,pnpAqq, we

have it that
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t0u “ Fpp1, ...,pnqpHq

“ Gpp1pHq, ...,pnpHqq

“ Gpp1pAq, ...,pnpAqq

“ Fpp1, ...,pnqpAq

So, ZPP follows from SWFP.

For any profile pp1, ...,pnq P Pn, if all pi are identical, then the convex hull is just tpiu. So F

satisfies unanimity preservation.

�

3. Proof of Lemma 2

We generalize a proof of a result due originally to Girón and Rios and Levi (Levi, 1978; Girón and

Ŕıos, 1980) for updating on an event to updating on a common likelihood function.

Proof. We want to show that Fλpp1, ...,pnq is convex. That is, given any two members,

pλ,p1λ P Fλpp1, ...,pnq and α P r0, 1s, p‹ “ αpλ ` p1 ´ αqp1λ is in Fλpp1, ...,pnq. If there is a

convex combination of p and p1, p‹, such that pλ‹ “ p‹, then the convexity of Fλpp1, ...,pnq is

established as a consequence of the convexity of Fpp1, ...,pnq. Where pλ‹p¨q “
p‹p¨qλp¨q

ř

ω1PΩ p‹pω
1qλpω1q “

βpp¨qλp¨q`p1´βqp1p¨qλp¨q
β
ř

ω1PΩ ppω1qλpω1q`p1´βq
ř

ω1PΩ p1pω1qλpω1q , for any α we want to find some β such that

p‹p¨q “ αpλp¨q ` p1´ αqp1λp¨q “
βpp¨qλp¨q ` p1´ βqp1p¨qλp¨q

β
ř

ω1PΩ ppω1qλpω1q ` p1´ βq
ř

ω1PΩ p1pω1qλpω1q
“ pλ‹p¨q.

For β “
α
ř

ω˚PΩ p1pω˚qλpω˚q
α
ř

ω˚PΩ p1pω˚qλpω˚q`p1´αq
ř

ω˚PΩ ppω˚qλpω˚q , the equality is verifiable with some tedious alge-

bra. �

4. Proof of Proposition 3
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Proof. We must show that convex IP pooling functions are externally Bayesian, i.e., Fppλ1 , ...,pλnq “

Fλpp1, ...,pnq (provided the relevant profiles are in the domain of F).

Fppλ1 , ...,pλnq Ď Fλpp1, ...,pnq. Trivially, for each i “ 1, ..., n, pλi P Fλpp1, ...,pnq. By Lemma 2,

Fλpp1, ...,pnq is convex. It follows that convtpλi : i “ 1, ..., nu “ Fppλ1 , ...,pλnq Ď Fλpp1, ...,pnq.

Fλpp1, ...,pnq Ď Fppλ1 , ...,pλnq. By Lemma 1, any p P Fpp1, ...,pnq can be expressed as the convex

combination of the n extreme points generating Fpp1, ...,pnq, i.e., p “
řn
i“1 αipi where αi ě 0 for

i “ 1, ..., n and
řn
i“1 αi “ 1. By definition,

Fλpp1, ...,pnq “ tp
λ : p P Fpp1, ...,pnq and pλp¨q “

pp¨qλp¨q
ř

ω1PΩ ppω1qλpω1q
u

We show that any member of Fλpp1, ...,pnq is identical to some member of Fppλ1 , ...,pλnq.

pλpωq “
ppωqλpωq

ř

ω1PΩ ppω1qλpω1q
[Definition]

“

řn
i“1 αipipωqλpωq

ř

ω1PΩ

řn
i“1 αipipω

1qλpω1q
[Lemma 1]

“

řn
i“1 αip

λ
i pωq ¨

ř

ω1PΩ pipω
1qλpω1q

ř

ω1PΩ

řn
i“1 αipipω

1qλpω1q
[pipωqλpωq “ pipωq

λ
¨
ř

ω1PΩ pipω
1
qλpω1q]

“
řn
j“1 βjp

λ
j pωq P Fppλ1 , ...,pλnq [Algebra]

where βj “
αj ¨

ř

ω1PΩ pjpω
1qλpω1q

ř

ω1PΩ

řn
i“1 αipipω

1qλpω1q
with βj ě 0 for all j “ 1, ..., n and

řn
j“1 βj “ 1.

�
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5. Proof of Proposition 4

Proof. We provide a very simple type of counterexample to individualwise Bayesianity, though

counterexamples are plentiful. Consider the profile pp1,p2q for n “ 2 agents such that p1 “ p2. In-

dividualwise Bayesianity requires that Fpp1,p
λ
2q “ Fλpp1,p2q (provided both pp1,p2q and pp1,p

λ
2q

are in the domain of F). By Proposition 3 (external Bayesianity), it follows that Fλpp1,p2q “

Fppλ1 ,pλ2q. But since p1 “ p2, it follows that pλ1 “ pλ2 . By unanimity (Proposition 2), then, we

have Fppλ1 ,pλ2q “ tpi
λu, where pλi “ pλ1 “ pλ2 . However, in general pi ‰ pλi and so Fpp1,p

λ
2q is not

a singleton. It follows that, in general, Fpp1,p
λ
2q ‰ Fλpp1,p2q.

�

6. Proof of Proposition 5

Proof. Suppose that pipA|Bq “ pipAq for i “ 1, ..., n. We want to show that Fpp1, ...,pnqpAq

“ FBpp1, ...,pnqpAq. Consider p‹pAq P Fpp1, ...,pnqpAq and p‹pAq P FBpp1, ...,pnqpAq. By

Lemma 1, p‹pAq “
řn
i“1 αipipAq, for appropriate αi. By Proposition 3 (external Bayesianity),

FBpp1, ...,pnqpAq “ FppB1 , ...,pBn qpAq (Proposition 3 holds for standard conditionalization since

standard conditionalization is a special case of updating on a likelihood function, as noted in the

body of the essay). So, we have p‹pAq “
řn
i“1 βip

B
i pAq, for appropriate βi, again by Lemma 1. By

hypothesis pBi pAq “ pipAq for i “ 1, ..., n. Hence, p‹pAq “
řn
i“1 βip

B
i pAq “

řn
i“1 βipipAq. Letting

αi “ βi, it follows that Fpp1, ...,pnqpAq “ FBpp1, ...,pnqpAq. �

7. Proof of Proposition 6

Proof. We show first that Mnpp1, ...,pnq Ď convpp1, ...,pnq for all pp1, ...,pnq P Pn. Since

there are at least three disjoint events, A1, A2, A3 P A , following (Lehrer and Wagner, 1981,

Theorems 6.4, 6.7) and (McConway, 1981, Theorem 3.3), we can exploit techniques and results
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for functional equations. For any numbers ai, bi P r0, 1s with ai ` bi P r0, 1s, define a sequence of

probability measures, pi, i “ 1, ..., n by setting

pipA1q “ ai

pipA2q = bi

pipA3q “ 1´ ai ´ bi

Since it is the case that m
`

p1p¨q, ...,pnp¨q
˘

P P for all pp1, ...,pnq P Pn and every m
`

p1p¨q, ...,pnp¨q
˘

P

Mnpp1, ...,pnq, we have it that m
`

p1pAq, ...,pnpAq
˘

“ ppAq, for some p P P and all A P A . Now,

by the additivity of probability measures, ppA1 YA2q “ ppA1q ` ppA2q. Hence, mpa1 ` b1, ..., an `

bnq “ m
`

a1, ..., an
˘

` m
`

b1, ..., bn
˘

. So, m satisfies Cauchy’s multivariable functional equation. For

each i “ 1, ..., n, define mipaq “ mp0, ..., a, ..., 0q, where a occupies the i-th position of the vector

p0, ..., a, ..., 0q. It is clear that mipa ` bq “ mipaq ` mipbq for all a, b P r0, 1s with a ` b P r0, 1s.

Because m is nonnegative, so is mi, i “ 1, ..., n. By Theorem 3 of (Aczél and Oser, 2006, p. 48), it

follows that there exists a nonnegative constant αi such that mipaq “ αia for all a P r0, 1s. By the

Cauchy equation we have

mpa1, ..., anq “ mpa1, 0, ..., 0q `mp0, a2, ..., anq

“ mpa1, 0, ..., 0q `mp0, a2, 0, ..., 0q ` ...`mp0, ..., 0, anq

So we have mpa1, ..., anq “ m1pa1q ` ...`mnpanq “ α1a1 ` ...` αnan. And since mp1, ..., 1q “ 1 (by

consideration of the probability of Ω), it follows that
řn
i“1 αi “ 1. Thus, m is a convex combination.

Now, we want to show that convpp1, ...,pnq ĎMnpp1, ...,pnq. Let p be an element of convpp1, ...,pnq.

It is clear that there exists an m P Mnpp1, ...,pnq such that m
`

p1p¨q, ...,pnp¨q
˘

“ p. And since p

is just a convex combination, there exist weights α1, ..., αn P r0, 1s such that
řn
i“1 αi “ 1 and

p “
řn
i“1 αipi. But for any other profile pq1, ..., qnq P Pn, taking any convex combination yields

a probability measure. In particular,
řn
i“1 αiqi P P. It follows that m P

Ş

~qPPn Mnp~qq. So,

p “ m
`

p1p¨q, ...,pnp¨q
˘

PMnpp1, ...,pnq, as desired.
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The two inclusions above show that Mnpp1, ...,pnq “ convpp1, ...,pnq. Hence, Fpp1, ...,pnq “

convpp1, ...,pnq is equivalent to Fpp1, ...,pnq “Mnpp1, ...,pnq. �
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APPENDIX B

Appendix to Chapter 3: Proofs

Proof of Proposition 8

Proof. We follow through Wagner’s proof for the precise case (2009, Theorem 3.3), adapting

it for IP where necessary.

pñq Assume that F is externally Bayesian, i.e., for all profiles and any likelihood function,

Fλpp1, ...,pnq “ Fppλ1 , ...,pλnq. We want to show that, for all partitions E “ tEku of Ω and all

profiles in Pn,

FE
J pp1, ...,pnq =

"ř

k bkpr¨ P Eks
ř

k bkppEkq
: p P Fpp1, ...,pnq

*

“ F
ˆř

k bkp1r¨ P Eks
ř

k bkp1pEkq
, ...,

ř

k bkpnr¨ P Eks
ř

k bkpnpEkq

˙

“ FppE
1J , ...,p

E
nJq

where the first and last equalities are definitional. Recall the definition of bk: bk “ Bpq,p;Ek :

E1q “
qpEkq{qpE1q

ppEkq{ppE1q
, k “ 1, 2, ... Set λpωq “

ř

k bkrω P Eks. Wagner observes the following chain of

equalities then obtains for pi, i “ 1, ..., n (2009, (3.10), p. 342):

p‹q
ÿ

ωPΩ

λpωqpipωq “
ÿ

ωPΩ

pipωq
ÿ

k

bkrω P Eks “
ÿ

k

bk
ÿ

ωPΩ

pipωqrω P Eks “
ÿ

k

bkpipEkq
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Since each of the terms bkpipEkq is positive and
ř

k bkpipEkq ă 8, λ is a likelihood function for pi,

with pλi a defined, updated pmf for i “ 1, ..., n. Using p‹q, we can obtain

FppE
1J , ...,p

E
nJq “ F

ˆ

p1λp¨q
ř

ω1PΩ p1pω
1qλpω1q

, ...,
pnλp¨q

ř

ω1PΩ pnpω
1qλpω1q

˙

by substituting, for each i “ 1, ..., n, λp¨q for
ř

k bkrω P Eks in the numerator and
ř

ω1PΩ pipω
1qλpω1q

for
ř

k bkpipEkq in the denominator. But by definition,

F
ˆ

p1λp¨q
ř

ω1PΩ p1pω
1qλpω1q

, ...,
pnλp¨q

ř

ω1PΩ pnpω
1qλpω1q

˙

“ Fppλ1 , ...,pλnq

and by assumption Fppλ1 , ...,pλnq “ Fλpp1, ...,pnq. By definition, Fλpp1, ...,pnq “ tpλ : p P

Fpp1, ...,pnqu. But, for all p P Fpp1, ...,pnq, p
λ “

ř

k bkpr¨PEks
ř

k bkppEkq
. Hence, Fλpp1, ...,pnq “ FE

J pp1, ...,pnq.

So, FE
J pp1, ...,pnq “ FppE

1J , ...,p
E
nJq follows from the assumption.

pðq Suppose that F satisfies CJCW and that λ is a likelihood function for pi, i “ 1, ..., n. Let

pω1, ω2, ...q be a list of all of those ω P Ω such that λpωq ą 0, and let E “ tE1, E2, ...u, where

Ei :“ tωiu. Setting bk “
λpωkq
λpω1q

for k “ 1, 2, ..., it follows that bk ą 0 and that b1 “ 1. Since λ is

a likelihood for pi, i “ 1, ..., n, we have
ř

k bkpipEkq ă 8, i “ 1, ..., n, and that pq1, ..., qnq P Pn,

where qipωq :“
ř

k bkpipωqrωPEks
ř

k bkpipEkq
. From CJCW , it follows that 1q 0 ă

ř

k bkppEkq ă 8 for all p P

Fpp1, ...,pnq, and that 2q FE
J pp1, ...,pnq “ FppE

1J , ...,p
E
nJq. 1q implies that 0 ă

ř

ωPΩ λpωqppωq ă 8

for all p P Fpp1, ...,pnq, and 2q implies that Fλpp1, ...,pnq “ Fppλ1 , ...,pλnq (since substituting the

definition of bk in terms of λ in
ř

k bkpipωqrωPEks
ř

k bkpipEkq
, the formula for obtaining the qi, reduces that

formula to the formula for updating on that λ).

�
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Proof of Proposition 11

Proof. We provide a case in which convex IP pooling and Jeffrey conditionalization as stan-

dardly construed do not commute. Let qi come from pi by Jeffrey conditionalization, and let q

be a common posterior distribution over partition E for pi, i “ 1, ..., n. Let FE
J pp1, ...,pnq come

from Fpp1, ...,pnq by Jeffrey conditionalizing each p P Fpp1, ...,pnq using q, the common poste-

rior distribution over E. We offer a counterexample to commutativity in which FE
J pp1, ...,pnq ‰

Fpq1, ..., qnq.

Let Ω “ tω1, ω2, ω3, ω4u, and consider the following two pmfs.

Table 16. Priors

ω1 ω2 ω3 ω4

p1 1{4 1{4 1{4 1{4

p2 1{8 1{2 1{4 1{8

Let E “ tE1, E2u with E1 “ tω1, ω2u and E2 “ tω3, ω4u be a partition of Ω. Jeffrey updating both

pmfs using q, where qpE1q “ 2{3 and qpE2q “ 1{3, we obtain the following posteriors.

Table 17. Posteriors

ω1 ω2 ω3 ω4

q1 1{3 1{3 1{6 1{6

q2 2{15 8{15 2{9 1{9

Consider the .50 ´ .50 mixture of p1 and p2, p‹ “ 0.5p1 ` 0.5p2. It is clear that p‹ P Fpp1,p2q.

Jeffrey conditionalizing p‹ with q gives us q‹. In particular, q‹pω1q “ 2{9 and q‹pω3q “ 4{21. It is

clear that q‹ P FJEpp1,p2q. Any q‹ P Fpq1, q2q is of the form q‹ “ αq1 ` p1´ αqq2 for α P r0, 1s.

Suppose that FE
J pp1,p2q “ Fpq1, q2q. Then, there is a q‹ P Fpq1, q2q such that q‹ “ q‹. In

particular, q‹pω1q “ 2{9 and q‹pω3q “ 4{21. Letting q‹pω1q “ 2{9, we can compute α.

2{9 “ q‹pω1q “ αq1pω1q ` p1´ αqq2pω1q “ α1{3` p1´ αq2{15
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Solving, we get α “ 4{9. However, we are supposed to have q‹pω3q “ 4{21. For α “ 4{9, that is

not the case.

q‹pω3q “ αq1pω3q ` p1´ αqq2pω3q “ 4{9p1{6q ` 5{9p2{9q “ 16{81 ą 4{21 “ q‹pω3q

It follows that FE
J pp1,p2q ‰ Fpq1, q2q.

�

Proof of Proposition 12

Proof. We want to show that Fpq1, ..., qnq “ FEI pp1, ...,pnq, where qi comes from pi by

general imaging on E, and FEI pp1, ...,pnq comes from Fpp1, ...,pnq by general imaging each p P

Fpp1, ...,pnq on E. Again, we show both inclusions. In the proofs, we appeal to the fact any

element of a convex set is some convex combination of the generating, extreme points: For any

p P Fpp1, ...,pnq,p “
řn
i“1 αipi, where αi ě 0 for i “ 1, ..., n, and

řn
i“1 αi “ 1 (see, e.g., Redacted,

Redacted, Lemma 1).

Let q P Fpq1, ..., qnq. So, q “
řn
i“1 αiqi. Since q is a linear pool of qi for i “ 1, ..., n, by

Gärdenfors’ result, Theorem 10, q is also the result of imaging p “
řn
i“1 αipi on E, because linear

pooling and general imaging commute. Since p P Fpp1, ...,pnq, it follows that q P FEI pp1, ...,pnq.

For the other direction, assume that q P FEI pp1, ...,pnq. So, q is the result of general imaging

some p P Fpp1, ...,pnq on E. For any p P Fpp1, ...,pnq,p “
řn
i“1 αipi. By Gärdenfors’ result,

q “
řn
i“1 αiqi, where the qi come from the pi by general imaging on E, because general imaging

and linear pooling commute. But then it follows that q P Fpq1, ..., qnq.

�
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APPENDIX C

Appendix to Chapter 5: Proofs

Proof of Proposition 1: Characterizing Altruistic Utilities as weighted Solitary

Utilities

Proof. The existence of the solitary and altruistic utility functions sui and aui that represent

the solitary and altruistic preferences respectively follow directly from the standard von Neumann

- Morgenstern result. Furthermore, this result secures that we can use any positive affine transfor-

mation as a utility representation of those preferences; this will become relevant later.

As Observation 1 points, we can extend each agent i’s solitary preferences ěi to an ordering

ěi over the social lotteries that also satisfies the von Neumann - Morgenstern axioms. So we get

a utility function su˚i that represents those preferences. Furthermore, since these are also defined

up to affine transformations, we can assume without lost of generality that for all L P Y,Li P Yi,

suipLq “ su˚pLiq [where Li is the i-marginal of L].

The rest of the proof is a simple applicatin of Harsanyi’s theorem as stated in this essay.

Axiom 3 of Weak Altruism [Pareto] secures the satisfaction of (1), Pareto Indifference, and

therefore guarantee the linear decomposition.

Axiom 4 of Strong Altruism [Pareto] secures the satisfaction of (2), and therefore that the αj

are positive. �
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Proof of Proposition 2: Characterizing Spiteful Utilities as weighted Solitary Utilities

Proof. Notice that in the context of Axioms 1,2 and 5, both Weak and Strong Spite entail

Pareto Indifference. So by Harsanyi’s Aggregation Theorem we are guaranteed the linear decom-

position.

tui˚p
ś

j L
jq “

ř

jPJ βj .sujpL
jq

It only remains to be shown that the parameters βj are non-positive (and negative) and add

up to -1.

For each i P I, let Oi be such that suipO
iq “ 1. We can safely define this because of Axiom

5. Also, we stipulate that suipZ
iq “ 0 and tui˚p

ś

i Z
iq “ 0. In fact this last stipulation is used

in the proof of Harsanyi’s original result. Each sui is now defined uniquely (not just up to affine

transformations).

Now, let Oj˚ “
ś

i‰j Z
ixOj . This is the lottery in which j gets Oj and the rest of the agents

get their respective neutral lottery. Since @i suipZ
iq “ 0, sujpO

jq “ 1 ą 0 and the sui are utility

representations, we can make use of Weak (and Strong) Spite. In particular, WS secures that

0 ě tui˚pO
j
˚q “ βj and SA that 0 ą βj . �

Proof of Proposition 3: Characterizing Other-Related Utilities as weighted Solitary

Utilities

Proof. Once again, in the context of Axioms 1,2 and 5, Axiom 8 entails Pareto Indifference.

Again linear decomposition is ensured.

tui˚p
ś

j L
jq “

ř

jPJ βj .sujpL
jq
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Using the same stipulations, sui is now defined uniquely. We also have that for each i P I, let

Oi be such that suipO
iq “ 1; that suipZ

iq “ 0, and that tui˚p
ś

i Z
iq “ 0.

As before, for all j P J1YJ2, let Oj˚ “
ś

i‰j Z
ixOj . This is the lottery in which j gets Oj and the

rest of the agents get their respective neutral lottery. Again, @i suipZ
iq “ 0, sujpO

jq “ 1 ą 0. So for

j P J1, using Axiom 8 we get αj “ě tui˚pO
j
˚q ą 0; and for j P J2, it secures 0 ě tui˚pO

j
˚q “ βj . �
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APPENDIX D

Appendix to Chapter 6: Exploration

Network Structural Properties: Clustering and Average Path Lenght

The purpose of this appendix is to briefly study the effect that the Schelling dynamic had on

the networks global and mean clustering, as well as its average path length.

Let us start with clustering. We measured each network’s global clustering coefficients before

and after introducing the dynamic, and we stored the difference. The global clustering coefficient of

a network is defined based on the types of triplets in the network. A triplet consists of a central node

and two of its neighbors. If its neighbors are also connected, its a closed triplet. If its neighbors are

not connected, its an open triplet. The global clustering coefficient is simply the number of closed

triplets in a network divided by the total number of triplets. We also defined a variable, “Degree

of Intervention”, that is simply the addition of the homophily and heterophily thresholds.

Figure 17. Clustering Change
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Although the intervention degree does not seem to have a significant effect on the change in

global clustering degree, the segregation difference is negatively correlated with clustering differ-

ence. In the plot to the left of Figure 11, networks that were desegregated by the dynamic gained

clustering, while networks that were segregated lost it. This holds both for directed and undirected

networks. This observation is prima facie unintuitive, in more segregated networks agents of each

type are expected to have more friends of their own type. But this would be a misunderstanding,

for in group clustering may consistently increase while reducing overall clustering, as suggested by

the graph. In order to asses the value of this explanation, in group clustering measures would be

required which were not done in this study. This task is left for future investigation.

Let us move to average path length. This is the average number of steps along the shortest

paths for all possible pairs of network nodes. If the network is not connected, i.e. if there are at

least two nodes with no path between them, then the average path length is undefined.

First we study the effect the dynamics had on whether the networks gain or lost connectivity.

Out of the 86400 simulations, in 3494 cases the dynamic transformed a disconnected network into

a connected one, and in 6212 cases it transformed a connected network into a disconnected one.

The table below summarizes the information for these categorical changes:

Total Directed (true,false) Density (5,10,15) Relink (all,one) Mean Seg Diff
3494 1024, 2470 3424, 70, 0 1844, 1650 1.5784
6212 2442, 3770 5906, 304, 2 3258, 2954 -4.523

Table 20. Connectivity Change

It should be clear that random networks with low density (5%) are less likely to be connected

than those with high density. Since by definition the dynamics do not change density, low density

unconnected networks will appear both before and after its implementation. Yet, there were almost
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twice as many networks that lost connectivity than those which gain it. This suggests that im-

plementing the dynamics might be detrimental to connectivity. Surprisingly, networks that gained

connectivity on average increased seggregation difference, while the opposite is the case for those

that lost it.

In the remaining 63231 cases in which connectivity was neither gained nor lost, average path

length of directed networks decreased with segregation difference, as illustrated by Figure 12. It is

not clear why this is the case. On the other hand, as with clustering, degree of intervention does

not seem to have a significant effect on average path length change.

Figure 18. Relink One vs Relink All

This appendix is mostly propaedeutic. The purpose was to study the effects of the Schelling

dynamics on some broad network properties. Part of the purpose of formal models is to provide

an explanation of actual phenomena. Schelling presented a type of dynamics that, we argued, can

explain segregation in Online Social Networks. Barabási-Albert preferential attachment algorithm,

to give another, provides a dynamics that explains observed degree distributions following the power

law. In general, defining a dynamics that explains both social arrangements like segregation and

observed network properties like degree distribution (or average path length and global clustering)

would be optimal. The exercise in this appendix was a step in that direction.
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