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Abstract 

Large-scale neuroimaging in Alzheimer’s disease and normal aging 

Xinyang Feng 

Large-scale neuroimaging data is becoming increasingly available, providing a rich data source 

with which to study neurological conditions. In this thesis, I demonstrate the utility of large-scale 

neuroimaging as it applies to Alzheimer’s disease (AD) and normal aging, using univariate 

parametric mapping, regional analysis, and advanced machine learning. Specifically, this thesis 

covers: 1) validation and extension of prior studies using large-scale datasets; 2) AD diagnosis and 

normal aging evaluation empowered by large-scale datasets and advanced deep learning 

algorithms; 3) enhancement of cerebral blood volume (CBV) fMRI utility with retrospective CBV-

fMRI technique. 

 First, I demonstrated the utility of large-scale datasets for validating and extending prior 

studies using univariate analytics. I presented a study localizing AD-vulnerable regions more 

reliably and with better anatomical resolution using data from more than 350 subjects. Following 

a similar approach, I investigated the structural characteristics of healthy APOE ε4 homozygous 

subjects screened from a large-scale community-based study. To study the neuroimaging 

signatures of normal aging, we performed a large-scale joint CBV-fMRI and structural MRI study 

covering age 20-70s, and a structural MRI study of normal aging covering the full age-span, with 

the elder group screened from a large-scale clinic-based study ensuring no evidence of AD using 

both longitudinal follow-up and cerebrospinal fluid (CSF) biomarkers evidences. 



 Second, I performed deep learning neuroimaging studies for AD diagnosis and normal 

aging evaluation, and investigated the regionality associated with each task. I developed an AD 

diagnosis method using a 3D convolutional neural network model trained and evaluated on ~4,600 

structural MRI scans and further investigated a series of novel regionality analyses. I further 

extensively studied the utility of the structural MRI summary measure derived from the deep 

learning model in prodromal AD detection. This study constitutes a general analytic framework, 

which was followed to evaluate normal aging by performing deep learning-based age estimation 

in cognitively normal population using more than 6,000 scans. The deep learning neuroimaging 

models classified AD and estimated age with high accuracy, and also revealed regional patterns 

conforming to neuropathophysiology. The deep learning derived MRI measure demonstrated 

potential clinical utility, outperforming other AD pathology measures and biomarkers. In addition, 

I explored the utility of deep learning on positron emission tomography (PET) data for AD 

diagnosis and regionality analyses, further demonstrating the broad utility and generalizability of 

the method. 

 Finally, I introduced a technique enabling CBV generation retrospectively from clinical 

contrast-enhanced scans. The derivation of meaningful functional measures from such clinical 

scans is only possible through calibration to a reference, which was built from the largest collection 

of research CBV-fMRI scans from our lab. This method was validated in an epilepsy study and 

demonstrated the potential to enhance the utility of CBV-fMRI by enriching the CBV-fMRI 

dataset. This technique is also applicable to AD and normal aging studies, and potentially enables 

deep learning based analytic approaches applied on CBV-fMRI with similar pipelines used in 

structural MRI. 



 Collectively, this thesis demonstrates how mechanistic and diagnostic information on brain 

disorders can be extracted from large-scale neuroimaging data, using both classical statistical 

methods and advanced machine learning.  

 



i 

 

Table of Contents 

 

Table of Figures .............................................................................................................................. x 

Table of Tables ........................................................................................................................... xxii 

Acknowledgments...................................................................................................................... xxiv 

Preface....................................................................................................................................... xxvii 

1 Introduction ............................................................................................................................. 1 

1.1 Background ...................................................................................................................... 1 

1.1.1 Neuroimaging ........................................................................................................... 1 

1.1.2 Cerebral blood volume .............................................................................................. 2 

1.1.3 Structural measurement of brain ............................................................................... 3 

1.1.4 Alzheimer’s disease and normal aging ..................................................................... 3 

1.1.5 CBV-fMRI studies on regional vulnerability in Alzheimer’s disease and normal 

 aging .......................................................................................................................... 4 

1.1.6 Large-scale neuroimaging ......................................................................................... 4 

1.1.7 Deep learning ............................................................................................................ 5 

1.2 Motivation ........................................................................................................................ 6 

1.3 Specific aims .................................................................................................................... 6 

1.4 Innovations ....................................................................................................................... 8 

2 Specific Aim 1: Large-scale validation and extension of prior studies ................................... 9 



ii 

 

2.1 Alzheimer’s disease.......................................................................................................... 9 

2.1.1 Introduction ............................................................................................................... 9 

2.1.1.1 Transentorhinal cortex ....................................................................................... 9 

2.1.1.2 APOE ............................................................................................................... 10 

2.1.2 Methods................................................................................................................... 10 

2.1.2.1 ADNI dataset ................................................................................................... 10 

2.1.2.2 WHICAP dataset ............................................................................................. 11 

2.1.2.3 Flat-map representation ................................................................................... 12 

2.1.3 Results ..................................................................................................................... 13 

2.1.3.1 AD-vulnerable region ...................................................................................... 13 

2.1.3.2 Structural characteristics of healthy APOE ε4 homozygous subjects ............. 14 

2.1.4 Discussion ............................................................................................................... 15 

2.1.4.1 AD-vulnerable region ...................................................................................... 15 

2.1.4.2 Mechanistic implications from the healthy APOE ε4 homozygous subjects 

 analysis ............................................................................................................ 16 

2.2 Normal aging .................................................................................................................. 17 

2.2.1 Introduction ............................................................................................................. 17 

2.2.1.1 Concordant changes in functional and structural MRI reflect dendritic spine loss

  ......................................................................................................................... 17 

2.2.1.2 Necessity and method to exclude the confound of AD ................................... 19 



iii 

 

2.2.2 Methods................................................................................................................... 20 

2.2.2.1 Columbia cohort .............................................................................................. 20 

2.2.2.2 Cross-sectional cohort of normal aging elderlies from ADNI ........................ 22 

2.2.2.3 Longitudinal cohort of normal aging elderlies from ADNI ............................ 22 

2.2.2.4 MRI acquisition ............................................................................................... 23 

2.2.2.5 MRI processing................................................................................................ 23 

2.2.2.6 Image Analysis ................................................................................................ 24 

2.2.3 Results ..................................................................................................................... 26 

2.2.3.1 Brain regions vulnerable and resistant to normal aging from 20-72 years of age  

  ......................................................................................................................... 26 

2.2.3.2 Brain regions vulnerable and resistant to normal aging from 62-85 years of age  

  ......................................................................................................................... 31 

2.2.3.3 Longitudinal analysis of brain regions vulnerable and resistant to normal aging  

  ......................................................................................................................... 33 

2.2.3.4 Brain regions vulnerable and resistant to normal aging across age span ........ 34 

2.2.3.5 Cross-sectional volumetric analyses in independent life-span normal aging 

 studies .............................................................................................................. 37 

2.2.4 Discussion ............................................................................................................... 37 

3 Specific Aim 2: Alzheimer’s disease diagnosis and normal aging evaluation based on deep 

 learning neuroimaging ........................................................................................................... 40 

3.1 Alzheimer’s disease diagnosis ....................................................................................... 40 



iv 

 

3.1.1 Introduction ............................................................................................................. 40 

3.1.1.1 AD diagnosis using MRI ................................................................................. 40 

3.1.1.2 Deep learning ................................................................................................... 41 

3.1.1.3 Previous works ................................................................................................ 42 

3.1.1.4 Contributions ................................................................................................... 44 

3.1.2 Methods................................................................................................................... 46 

3.1.2.1 Data .................................................................................................................. 46 

3.1.2.2 Preprocessing ................................................................................................... 49 

3.1.2.3 Inclusion of longitudinal data .......................................................................... 50 

3.1.2.4 Convolutional neural network ......................................................................... 51 

3.1.2.5 Application to MCI progression prediction ..................................................... 53 

3.1.2.6 Class activation map ........................................................................................ 53 

3.1.2.7 MRI 2D slice based classification ................................................................... 54 

3.1.2.8 Brain lobe based classification ........................................................................ 55 

3.1.3 Results ..................................................................................................................... 55 

3.1.3.1 AD classification ............................................................................................. 55 

3.1.3.2 Application to MCI progression prediction ..................................................... 57 

3.1.3.3 Regionality analyses ........................................................................................ 59 

3.1.4 Discussion ............................................................................................................... 63 

3.1.4.1 AD staging and dysfunction spread ................................................................. 63 



v 

 

3.1.4.2 Localization ..................................................................................................... 63 

3.1.4.3 Prodromal disease classification using progressed cases ................................ 65 

3.1.4.4 Applicability and Practicality .......................................................................... 65 

3.1.4.5 Limitations ....................................................................................................... 66 

3.1.4.6 Implications for the present AD biomarker system ......................................... 68 

3.1.4.7 Future work...................................................................................................... 68 

3.1.4.8 Conclusion ....................................................................................................... 69 

3.2 Comparative studies to other AD pathology measures in prodromal AD detection ...... 70 

3.2.1 Introduction ............................................................................................................. 70 

3.2.2 Methods................................................................................................................... 72 

3.2.2.1 ADNI cohort .................................................................................................... 72 

3.2.2.2 Deep learning derived MRI score .................................................................... 78 

3.2.2.3 Statistical analysis............................................................................................ 78 

3.2.3 Results ..................................................................................................................... 81 

3.2.3.1 Classifying prodromal Alzheimer’s disease .................................................... 81 

3.2.3.2 Predicting progression to AD dementia ........................................................... 82 

3.2.3.3 Correlations with AD pathology...................................................................... 84 

3.2.4 Discussion ............................................................................................................... 87 

3.3 Age estimation in normal aging ..................................................................................... 90 

3.3.1 Introduction ............................................................................................................. 90 



vi 

 

3.3.2 Methods................................................................................................................... 92 

3.3.2.1 Study Population.............................................................................................. 93 

3.3.2.2 Experimental setup .......................................................................................... 96 

3.3.2.3 Comparison with model trained on unbalanced dataset .................................. 97 

3.3.2.4 Neuropsychological and morphometric associations ...................................... 97 

3.3.2.5 Age activation map .......................................................................................... 98 

3.3.2.6 Slice based age estimation ............................................................................... 99 

3.3.2.7 Lobe based age estimation ............................................................................... 99 

3.3.3 Results ................................................................................................................... 100 

3.3.3.1 Age prediction ............................................................................................... 100 

3.3.3.2 Reproducibility .............................................................................................. 101 

3.3.3.3 Comparison with results using unbalanced dataset ....................................... 102 

3.3.3.4 Neuropsychological and neuromorphometric association ............................. 103 

3.3.3.5 Age activation maps ...................................................................................... 104 

3.3.3.6 Slice based age estimation ............................................................................. 106 

3.3.3.7 Brain lobe based age estimation .................................................................... 107 

3.3.4 Discussion ............................................................................................................. 108 

3.3.4.1 Regionality..................................................................................................... 108 

3.3.4.2 Open questions .............................................................................................. 109 

3.3.4.3 Study sample composition ............................................................................. 109 



vii 

 

3.3.4.4 An overarching framework ............................................................................ 109 

4 Specific Aim 3: Enhancing the utility of CBV with retrospective CBV ............................. 113 

4.1 Introduction .................................................................................................................. 113 

4.2 Methods ........................................................................................................................ 115 

4.2.1 Data ....................................................................................................................... 115 

4.2.2 Scaling correction factor estimation with brain region segmentation .................. 117 

4.2.3 Scaling correction factor estimation with tissue class segmentation .................... 118 

4.2.4 Retrospective TLE analysis .................................................................................. 119 

4.3 Results .......................................................................................................................... 119 

4.3.1 Screening internal reference region ...................................................................... 119 

4.3.2 Retrospective TLE analysis .................................................................................. 121 

4.4 Discussion .................................................................................................................... 122 

4.4.1 Finer segmentation of white matter ...................................................................... 123 

4.4.2 Epilepsy Lateralization ......................................................................................... 123 

4.4.3 Limitations ............................................................................................................ 124 

4.4.4 Conclusions ........................................................................................................... 124 

4.5 Future work .................................................................................................................. 125 

5 Discussion and conclusion................................................................................................... 127 

6 Related Publications ............................................................................................................ 128 

7 Abbreviations....................................................................................................................... 131 



viii 

 

8 References ........................................................................................................................... 135 

A Appendix ............................................................................................................................. 151 

A.1 Supplementary figure and tables .................................................................................. 151 

A.1.1 Specific aim 1 ....................................................................................................... 151 

A.1.2 Specific aim 2 ....................................................................................................... 152 

A.2 Cross-sectional volumetric analyses in independent life-span normal aging studies .. 157 

A.3 AD classification specificity evaluation ....................................................................... 159 

A.3.1 Introduction ........................................................................................................... 159 

A.3.2 Methods................................................................................................................. 159 

A.3.3 Results ................................................................................................................... 160 

A.3.3.1 Specificity ...................................................................................................... 160 

A.3.3.2 Structural profile of other neurological diseases ........................................... 161 

A.3.4 Discussion ............................................................................................................. 166 

A.4 CSF biomarker estimation from structural MRI .......................................................... 167 

A.4.1 Introduction ........................................................................................................... 167 

A.4.2 Methods................................................................................................................. 167 

A.4.3 Results ................................................................................................................... 168 

A.4.4 Discussion ............................................................................................................. 168 

A.5 Diagnosis and regionality analysis of Alzheimer’s disease using PET ....................... 170 

A.5.1 Introduction ........................................................................................................... 170 



ix 

 

A.5.2 Methods................................................................................................................. 171 

A.5.2.1 Data ................................................................................................................ 171 

A.5.2.2 Analysis ......................................................................................................... 172 

A.5.2.3 Modality Merge ............................................................................................. 173 

A.5.2.4 Normalization ................................................................................................ 173 

A.5.2.5 DLPET scores ................................................................................................ 174 

A.5.2.6 MCI progression prediction ........................................................................... 174 

A.5.2.7 Association with the prior-based measures ................................................... 175 

A.5.2.8 Class activation map ...................................................................................... 175 

A.5.3 Results ................................................................................................................... 175 

A.5.3.1 Individual modality classification performance ............................................ 175 

A.5.3.2 Classification performance using common scans of FDG and AV45 ........... 176 

A.5.3.3 Classification performance merging FDG and AV45 features at different depth  

  ....................................................................................................................... 176 

A.5.3.4 MCI progression prediction ........................................................................... 176 

A.5.3.5 Association with the prior-based composite scores ....................................... 178 

A.5.3.6 Class activation maps .................................................................................... 179 

A.5.4 Discussion ............................................................................................................. 180 

 

  



x 

 

Table of Figures 

Figure 1-1. Sample neuroimaging modalities, with focuses on T1w structural MRI and CBV-

fMRI in this thesis work. .............................................................................................................. 1 

Figure 2-1. An illustration of flat-map representation of human cortex. (Left) Multiple 3D 

views are required for the full view of brain surface. (Right) Flat-map instead provides an unbiased 

single view of the whole cortex which facilitates identification of patterns and clusters. ............ 12 

Figure 2-2. Cortical thickness analysis of AD vs. cognitively normal subjects. From left to right 

are the raw t-map and the thresholded t-map in the flat-map space, and the t-map in the anatomical 

space and the 3D surface space. In the 3D surface map, the cyan color indicates amygdala, the 

yellow arrows point to the full range of transentorhinal cortex (Augustinack et al., 2013), the AD 

effect localizes to the anterior TEC at the level of amygdala. ...................................................... 13 

Figure 2-3. Cortical thickness analysis of healthy APOE ε4 homozygous carriers. From left 

to right are the raw t-map and the thresholded t-map at flat-map space, and the t-map in the 

anatomical space and 3D surface space. There are two significant clusters: one in superior frontal 

cortex, the other in anterior entorhinal cortex. In the 3D surface space, the cyan color indicates 

amygdala, the yellow color indicates hippocampus. .................................................................... 14 

Figure 2-4. The neuroimaging finding helped guide molecular analysis of ex vivo brain tissue 

in AD-vulnerable region. (Left) Pixels that show the greatest and most reliable volumetric loss 

compared to controls are indicated in yellow/red. The TEC defect is shown on a coronal MRI slice. 

(Right) A representative human postmortem brain tissue slice, matching the precise anatomical 

coordinates of the neuroimaging finding, with a higher magnification illustrating the subregions 

of the entorhinal cortex isolated for protein profiling:  the TEC, the lateral EC (LEC), intermediate 

EC (IEC) and medial EC (MEC). ................................................................................................. 15 



xi 

 

Figure 2-5. Dataset selection process for the Columbia and ADNI cohorts in the normal aging 

study. ............................................................................................................................................ 21 

Figure 2-6. Demographic information of the subjects in the CBV-fMRI normal aging study.

....................................................................................................................................................... 21 

Figure 2-7. Demographic information of the subjects in the structural normal aging study 

covering 20-85 years old. ............................................................................................................ 22 

Figure 2-8. Mapping normal aging with CBV-fMRI from 20-72 years of age. (A) A vertex-

based analysis of the cortex (VBA; left image) and a region-of-interest analysis across cortical 

regions (ROI; right image) identified the greatest age-related decline of cerebral blood volume 

(CBV) in the inferior frontal gyrus. (B) The t-value distribution of age-related CBV decline across 

cortical regions shows that two regions of the inferior frontal gyrus (indicated in red, the pars 

orbitalis and the pars triangularis) are most reliably vulnerable to aging. The entorhinal cortex 

(indicated in blue) was found most resistance to aging. The dashed red line indicates the t-value 

threshold at α = 0.05 adjusted for Šidák multiple comparison. (C) A voxel-based analysis of the 

hippocampus (VBA; left image) and a region-of-interest analysis across hippocampal regions (ROI; 

right image) identified the greatest age-related CBV decline in the dentate gyrus. (D) The t-value 

distribution of age-related CBV decline across hippocampal regions, shows that the dentate gyrus 

(indicated in red) is most reliably vulnerable to aging. The dashed red line indicates the t-value 

threshold at α = 0.05 adjusted for Šidák multiple comparison. .................................................... 27 

Figure 2-9. Mapping aging with CBV-fMRI from 20-72 years of age using percentage CBV.

....................................................................................................................................................... 28 

Figure 2-10. Mapping normal aging with volumetric MRI from 20-72 years of age. The t-

value distribution of age-related decline in volume, measured by structural MRI, across cortical 



xii 

 

regions. While not most reliably affected, volumes of regions of the inferior frontal gyrus 

(indicated in red) decline significantly with age. The volume of the entorhinal cortex (indicated in 

blue) was found most resistance to aging. The dashed red line indicates the t-value threshold at α 

= 0.05 adjusted for Šidák multiple comparison. ........................................................................... 29 

Figure 2-11. The relationship between volumetric MRI and CBV-fMRI. A significant 

concordant relationship between CBV and volume is observed for the dentate gyrus and the 

inferior frontal gyrus, consistent with the MRI profile of dendritic spine loss, but not for the 

paracentral lobule as an example. ................................................................................................. 30 

Figure 2-12. A summary graph of the partial correlation coefficients of tCBV versus age, 

volume versus age, and tCBV versus volume. Gender and ICV were included as covariates. The 

dashed red line indicates the correlation coefficient threshold at α = 0.05 adjusted for Šidák 

multiple comparison...................................................................................................................... 31 

Figure 2-13. Mapping normal aging with volumetric MRI in AD-free subjects from 62 - 85 

years of age. The t-value distribution of age-related decline in volume across cortical and 

hippocampal region, shows that the dentate gyrus (indicated in red, right graph) is most vulnerable 

to aging and the inferior frontal gyrus (indicated in red, left graph) is not reliably associated with 

aging. The entorhinal cortex (indicated in blue, left graph) is least affected by aging. The dashed 

red line indicates the t-value threshold at α = 0.05 adjusted for Šidák multiple comparison. ...... 32 

Figure 2-14. Mapping normal aging with volumetric MRI from 62-85 years of age with 

tau/Aβ as covariate. The t-value distribution of age-related volume decline across cortical and 

hippocampal region with tau/Aβ as covariate, from 62-85 years of age, shows that the dentate 

gyrus (indicated in red, right graph) is most vulnerable to aging (although not crossing threshold 

of multiple comparisons) and the inferior frontal gyrus (indicated in red, left graph) is not reliably 



xiii 

 

associated with aging. The entorhinal cortex (indicated in blue, left graph) is among regions least 

affected by aging. The dashed red line indicates the t-value threshold at α = 0.05 adjusted for Šidák 

multiple comparison...................................................................................................................... 33 

Figure 2-15. Mapping longitudinal age-related change with volumetric MRI from 62-85 

years of age with tau/Aβ as covariate. The p-value distribution of longitudinal age-related 

volume decline across cortical and hippocampal regions with tau/Aβ as covariate, from 62-85 

years of age, illustrates that no region is showing reliable longitudinal age-related atrophy. The 

dashed red line indicates α = 0.05. ................................................................................................ 33 

Figure 2-16. Mapping longitudinal age-related change with volumetric MRI from 62-85 

years of age using tau/Aβ cutoff. The p-value distribution of longitudinal age-related volume 

decline across cortical and hippocampal regions with baseline tau/Aβ under cut-off threshold, from 

62-85 years of age, illustrates that no region is showing reliable longitudinal age-related atrophy. 

The dashed red line indicates α = 0.05.......................................................................................... 34 

Figure 2-17. Mapping normal aging with volumetric MRI across the adult age-span. The t-

value distribution of age-related decline in volume across cortical and hippocampal region in AD-

free subjects across the full age-span, shows that the dentate gyrus (indicated in red, right graph) 

is most vulnerable to aging and the inferior frontal gyrus (indicated in red, left graph) is reliably 

associated with aging. The entorhinal cortex (indicated in blue, left graph) is the region least 

affected by aging. The dashed red line indicates the t-value threshold at α = 0.05 adjusted for Šidák 

multiple comparison...................................................................................................................... 35 

Figure 2-18. Trajectories of brain regions vulnerable and resistant to normal aging across 

the age-span. (A) The aging trajectory of dentate gyrus volume (left image) shows a linear decline 

across the age-span. The trajectory of inferior frontal gyrus volume (middle image) shows a 



xiv 

 

curvilinear decline. The trajectory of entorhinal cortex volume (right image) shows that it is 

unaffected by aging across the age-span. (B) A graphic summary of the two regions differentially 

vulnerable to normal aging, the dentate gyrus and the inferior frontal gyrus (red), and the region 

most resistant to normal aging, the entorhinal cortex (blue). ....................................................... 36 

Figure 3-1. Illustration of data augmentation or inclusion of longitudinal scans specific to 

longitudinal neuroimaging studies for machine learning models. The whole plane is a 

simplified representation of the data space. Each large circle indicates one individual subject, each 

small circle indicates one MRI session. Each coronal slice of MRI scan represents one scan. The 

objective of the deep learning algorithm is to find the “boundary” (dashed line) that best 

differentiates cognitively normal subjects and AD patients. Enriching our data by using 

longitudinal scans from subjects helps to increase the data coverage from the small circle to the 

large circle. .................................................................................................................................... 51 

Figure 3-2. The convolution neural network architecture for AD classification. The inputs are 

3D brain volumes. Each cubic represents one 3D feature map, the size reflects the spatial 

dimension of the feature map, and the number reflects the number of feature maps (channel 

dimension). The blue arrows are 3D convolutional operations, the green arrow represents batch 

normalization (BN) followed by rectified linear unit (ReLU), the yellow arrow denotes the max 

pooling operation. The basic unit enclosed in the bracket is repeated N = 5 times with increasing 

number of features and decreasing spatial dimension. The final convolutional output is flattened 

and fed into one fully-connected (FC) layer with sigmoid activation function (red arrow), 

generating the final AD score, a value between 0 and 1 reflecting the likelihood of diagnosis. .. 52 

Figure 3-3. ROC curves for AD classification on the test set at (Left) scan level and (Right) 

subject level. The AUROCs are annotated in the figures. ........................................................... 56 



xv 

 

Figure 3-4. ROC curves for MRI-based AD classification in an independent dataset MIRIAD 

at the (Left) scan-level and (Right) subject-level. The AUROCs are annotated in the figures. 57 

Figure 3-5. ROC curve for MRI-based MCI progression prediction, with the AUROC 

annotated in the figure................................................................................................................ 58 

Figure 3-6. Average class activation map of AD classification overlaid on the MNI152 MRI 

template. The hotspot is on the hippocampal formation. The class activation map is thresholded 

at 0.8. ............................................................................................................................................. 59 

Figure 3-7. 3D rendering of the AD class activation map. The iso-surface is at the level of 0.8.

....................................................................................................................................................... 60 

Figure 3-8. The average regional AD class activation values. The left MTL regions indicated 

with red color show prominence, not as prominent, the right MTL regions are also among the first 

quarter with around 0.5 regional values. ....................................................................................... 60 

Figure 3-9. The average regional MCI class activation values. Similar to the AD class 

activation map, the left MTL regions indicated with red color show prominence. However, the 

activation map is overall more scattered with the highest regions only reaching 0.5 level. Besides 

the left MTL blob, there are two additional prominent blobs in parietal and frontal lobes. ......... 61 

Figure 3-10. MRI 2D slice based AD classification. (Top row) The classification AUROC on 

the test set using 2D slices at different locations, the red lines indicate the location with highest 

AUROC. (Bottom row) The illustration of slices at the red lines in the top row from the MNI152 

template and the corresponding regional segmentation (the colors follow the FreeSurfer color 

lookup table: yellow - hippocampus, red - entorhinal cortex). ..................................................... 62 

Figure 3-11. MRI sessions per subject: (left) scans of cognitively normal subjects, (right) 

scans of AD subjects.................................................................................................................... 67 



xvi 

 

Figure 3-12. Participant selection flow-chart. .......................................................................... 73 

Figure 3-13 . Distribution and demographics of study participants. Distribution frequencies of 

the patients with amnestic mild cognitive impairment (MCI) at baseline, who either remained 

stable (MCI stable) or progressed to Alzheimer’s dementia (MCI progression), organized by latest 

follow-up years and conversion years. The dark blue bars indicate subjects included in the study. 

Demographic and baseline biomarker data are listed in the table for the MCI stable and MCI 

progression groups. ....................................................................................................................... 75 

Figure 3-14. An illustration of the longitudinal measure derivation for a sample participant. 

The follow-up change measures from baseline were illustrated in the blue circles with the 

corresponding visits annotated. Based on the follow-up change measures, a linear fit with slope β 

passing through the origin was estimated and illustrated as a red line. The DLMRI score at last 

visit (ΔDLMRIlast, x-coordinate) and the corresponding fitted change (βΔDLMRIlast, y-

coordinate), indicated as the diamond in the figure, can be calculated for each participant regardless 

of frequency of follow-up. ............................................................................................................ 79 

Figure 3-15. Longitudinal analysis pipeline with MMSE vs. DLMRI score as an example. 

(Left) The raw longitudinal data with each colored line indicating one subject and each dot 

representing one visit time-point; (Mid) The linear fit of each individual, each line segment starts 

from (0, 0) and ends at (DLMRIlast , DLMRIlast ); (Right) The linear fit of (DLMRIlast , 

DLMRIlast ) across subjects. ................................................................................................... 80 

Figure 3-16. Classifying prodromal Alzheimer’s disease. By comparing the ‘MCI stable’ to the 

‘MCI progression’ groups, ROC curves show that the ‘deep learning MRI’ (DLMRI) scores were 

found superior in classifying prodromal Alzheimer’s disease (indicated in red). DLMRI scores 

outperformed (left panel) CSF measures of Aβ, tau, or tau/Aβ; MRI measures of hippocampal (HC) 



xvii 

 

or entorhinal cortex (EC) volume or thickness; clinical measures using the modified mental status 

exam (MMSE), the retention of the Rey Auditory Verbal Learning Task (RAVLT) (left panel); 

and, in a smaller subset (right panel), PET measures of amyloid using the AV45 radioligand or 

metabolism using fluorodeoxyglucose (FDG). Specific area under the curve (AUROC) values for 

each measure, and statistical probability values for each comparison, are shown in the table on the 

bottom panel.................................................................................................................................. 82 

Figure 3-17. Predicting progression to Alzheimer’s Dementia. Survival analyses were 

performed comparing the DLMRI scores to other measures, and example curves illustrate that the 

DLMRI score (left panel) outperformed the CSF measure of the tau/Aβ ratio (right panel). The 

high risk (indicated by red) and low risk (indicated by blue) curves were fitted from 75% and 25% 

percentile of the measures respectively. The shaded area indicates the 95% confidence interval. 

The DLMRI scores outperformed CSF Aβ, tau, or tau/Aβ, HC volume, EC volume, EC thickness, 

MMSE, RAVLT retention, amyloid-PET measure, and is comparable to FDG-PET measure, as 

shown in the table on the bottom panel. ....................................................................................... 83 

Figure 3-18. The “deep learning MRI” score correlates with tau pathology. The scatter plots 

illustrate the relationship between changes over time in the DLMRI scores vs. changes in Aβ (left 

panel), changes in tau (middle panel) and changes in tau/Aβ (right panel). Each data point indicates 

one participant’s change of last DLMRI score from baseline (DLMRIlast), plotted against their 

change in biomarkers measures. The black solid lines are the linear fits across participants, 

showing that changes in the DLMRI score is most strongly correlated with changes in tau over 

time. The table on the bottom panel lists the correlations between antemortem DLMRI scores to 

postmortem-derived Braak stage of neurofibrillary tangles and the Thal phase of amyloid plaques, 



xviii 

 

with an MRI-autopsy interval of either 1 year or 2 years, showing that DLMRI scores are most 

strongly correlated with tau pathology. ........................................................................................ 85 

Figure 3-19. The convolution neural network architecture for age estimation. The only 

difference compared with Figure 3-2 is that the final convolutional output is flattened and fed into 

one fully-connected (FC) layer with linear output (red arrow). ................................................... 93 

Figure 3-20. The age distribution of the age estimation study population. A) The age 

distribution of the raw dataset consisted of 10,158 scans; B) the age distribution of the dataset 

consisted of 6,142 unique subjects; C) the age distribution of the evenly sampled dataset. ........ 94 

Figure 3-21. The estimated age vs. chronological age in an independent test set. .............. 100 

Figure 3-22. The distribution of predicted ages in test-retest scans. .................................... 101 

Figure 3-23. Distribution of MAE of age estimation across life-span. (A) Age estimated using 

the balanced dataset. Each step in the red line indicate the MAE in that age group, the black dashed 

line indicates the overall MAE. (B) Age estimated using the unbalanced dataset. (C) Age estimated 

using the unbalanced dataset but with sample re-weighting. ...................................................... 102 

Figure 3-24. The partial correlation coefficients of agediff and cortical thickness measures.

..................................................................................................................................................... 103 

Figure 3-25. The age activation maps at different age groups. The age activation maps overlaid 

on the (Left) MNI152 template, and (Right) average T1w image within each age group, both with 

threshold at 0.8. ........................................................................................................................... 105 

Figure 3-26. The 3D iso-surfaces (0.8) of the age activation maps at different age groups.

..................................................................................................................................................... 106 

Figure 3-27. MRI 2D slice based age estimation. (Top row) The mean absolute error (MAE) of 

the estimated age on the test set using 2D slices at different locations, the red lines indicate the 



xix 

 

location with lowest MAE. MAEs larger than 10 are cut to 10 for illustration purpose. (Bottom 

row) The illustration of slices at the red line in the top row from the MNI152 template and the 

corresponding segmentation (the colors follow the FreeSurfer color lookup table). ................. 107 

Figure 3-28. A framework of workflow in neurological condition evaluations................... 110 

Figure 4-1. The retrospective CBV pipeline. .......................................................................... 116 

Figure 4-2. Post/pre-contrast ratio values (mean ± std) for regions from FreeSurfer 

automatic subcortical segmentation pipeline. The regions are sorted in the order of the 

coefficient of variation (CV) of post/pre-contrast ratio. ............................................................. 120 

Figure 4-3. The rCBV (left) and volume (right) of hippocampus contralateral and ipsilateral 

to the seizure onset. There is significant ipsilateral rCBV decrease but not significant structural 

difference for hippocampus. ....................................................................................................... 121 

Figure 4-4. The rCBV (left) and volume (right) of hippocampal subfields contralateral and 

ipsilateral to the seizure onset. There is statistically significant ipsilateral rCBV decrease in 

subiculum but no significant structural asymmetry for hippocampal subfields. The error-bars show 

the standard error of the mean. ................................................................................................... 122 

Figure A-1. An illustration of hippocampal subregions. ....................................................... 151 

Figure A-2. An illustration of IFG subregions. ...................................................................... 151 

Figure A-3. Brain lobe and cerebellum probability maps..................................................... 152 

Figure A-4. Demographic information and baseline measure of the ADNI MCI cohort. .. 153 

Figure A-5. Correlation of DLMRI score with in vivo CSF biomarker measures. ............. 154 

Figure A-6. Correlation of DLMRI score with neuropathological summary measures. ... 154 

Figure A-7. Correlation of DLMRI score with morphometric measures. ........................... 155 



xx 

 

Figure A-8. Age-related changes of left cortical volumes and the hippocampal subfield 

volumes in Cam-CAN dataset. ................................................................................................. 157 

Figure A-9. Age-related changes of left cortical volumes and the hippocampal subfield 

volumes in DLBS dataset. ........................................................................................................ 158 

Figure A-10. Age-related changes of the left cortical volumes and the hippocampal subfield 

volumes in IXI dataset. ............................................................................................................. 158 

Figure A-11. The specificity of the AD prediction model in the presence of various brain 

disorders..................................................................................................................................... 161 

Figure A-12. The structural profile of Parkinson’s disease. ................................................. 162 

Figure A-13. The structural profile of FTD with all subtypes aggregated. ......................... 163 

Figure A-14. The structural profile of semantic variant FTD. ............................................. 164 

Figure A-15. The structural profile of Schizophrenia. .......................................................... 165 

Figure A-16. The distribution of the CSF biomarkers. ......................................................... 167 

Figure A-17. The predicted CSF biomarker measures versus the ground truth. The red line 

indicates the linear fit. ................................................................................................................. 168 

Figure A-18. Framework of merging features from multi-modal data at different depth of 

the network. ............................................................................................................................... 173 

Figure A-19. ROC curves of different measures: (Left) Covariates age, gender, APOE ε4 

frequency; (Right) No covariate. ............................................................................................. 177 

Figure A-20. Association between the deep learning derived PET summary scores and the 

prior-based composite scores. The red lines are the linear fits. ............................................... 178 



xxi 

 

Figure A-21. The AD class activation map of the FDG classification model overlaid on the 

average FDG map from the population. The class activation map localizes to medial 

occipitotemporal gyrus and inferior part of precuneus. .............................................................. 179 

Figure A-22. The AD class activation map of the AV45 classification model overlaid on the 

average AV45 map from the population. There are two prominent blobs in the class activation 

map, the more prominent one localizes to right parietal lobe (top), the lesser prominent blob 

localize to left medial orbitofrontal lobe (bottom). Note the range of the color-maps are different 

in the two sub-figures to best visualize the individual blob........................................................ 180 

 

  



xxii 

 

Table of Tables 

Table 2-1. The demographic information of the subjects used in the analysis to localize AD-

vulnerable region. ....................................................................................................................... 11 

Table 2-2. Demographic information of the subjects from WHICAP study used to investigate 

the structural cortical characteristics of healthy APOE ε4 homozygous subjects. ............... 11 

Table 3-1. AD classification performance achieved using individual lobes and cerebellum.

....................................................................................................................................................... 63 

Table 3-2. Partial-correlation statistics between cortical regional tau-PET measures and 

DLMRI score. The partial correlations control for age, gender, and APOE ε4 frequency. The 

regions are sorted in the order of correlation coefficients. ........................................................... 86 

Table 3-3. Partial-correlation statistics between subcortical regional tau-PET measures and 

DLMRI score. The partial correlations control for age, gender, and APOE ε4 frequency. The 

regions are sorted in the order of correlation coefficients. ........................................................... 87 

Table 3-4. Multi-center datasets used in deep learning and age estimation. ......................... 95 

Table 3-5. Test-retest reproducibility experiment results. .................................................... 101 

Table 3-6. Association with Benton face recognition scores ................................................. 104 

Table 3-7. Age estimation performance achieved using individual lobes and cerebellum. 108 

Table A-1. Dataset information of the deep learning age estimation study. ....................... 156 

Table A-2. The demographical information of the data used in the specificity study. ....... 160 

Table A-3. Demographical and summary information of the MCI progression dataset with 

both PET scans and PET composite measures available. ..................................................... 174 

Table A-4. The classification performance using individual PET modalities. .................... 175 

Table A-5. Classification performance using common scans of FDG and AV45................ 176 



xxiii 

 

Table A-6. Classification performance stacking FDG and AV45 at different depth.......... 176 

Table A-7. AUROCs of the ROC analyses.............................................................................. 177 

Table A-8. Cox proportional hazards regression survival analyses statistics. .................... 177 

Table A-9. The correlation statistics between deep learning derived PET summary scores 

and the prior-based composite scores. .................................................................................... 179 

 

  



xxiv 

 

Acknowledgments 

I acknowledge all the investigators and funding agencies who provide valuable local and external 

datasets that made this thesis possible. 

 Data used in preparation of this thesis were in part obtained from the Washington Heights-

Inwood Columbia Aging Project (WHICAP). Data collection and sharing was supported by the 

WHICAP funded by the National Institute on Aging (NIA) (PO1AG07232, R01AG037212, 

RF1AG054023). 

 Data used in preparation of this thesis were in part obtained from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). Data collection and sharing was 

funded by the ADNI (National Institutes of Health Grant U01 AG024904) and DOD ADNI 

(Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National 

Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through 

generous contributions from the following: AbbVie, Alzheimer’s Association; Alzheimer’s Drug 

Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb 

Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; 

EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; 

GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; 

Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck 

& Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; 

Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda 

Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health 

Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions 



xxv 

 

are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee 

organization is the Northern California Institute for Research and Education, and the study is 

coordinated by the Alzheimer’s Therapeutic Research Institute at the University of Southern 

California. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of 

Southern California. 

 Data used in the preparation of this thesis were in part obtained from the Australian 

Imaging Biomarkers and Lifestyle flagship study of ageing (AIBL) funded by the Commonwealth 

Scientific and Industrial Research Organisation (CSIRO) which was made available at the ADNI 

database (www.loni.usc.edu/ADNI). 

 Data used in preparation of this thesis were in part obtained from the Frontotemporal Lobar 

Degeneration Neuroimaging Initiative (FTLDNI) database (4rtni-ftldni.ini.usc.edu). Data 

collection and sharing was funded by the FTLDNI (National Institutes of Health Grant R01 

AG032306). The study is coordinated through the University of California, San Francisco, 

Memory and Aging Center. FTLDNI data are disseminated by the Laboratory for Neuro Imaging 

at the University of Southern California. 

 Data used in the preparation of this thesis were in part obtained from the Parkinson’s 

Progression Markers Initiative (PPMI) database (www.ppmi-info.org/data). For up-to-date 

information on the study, visit www.ppmi-info.org. PPMI - a public-private partnership is funded 

by the Michael J. Fox Foundation for Parkinson’s Research and funding partners, the full names 

of all of the PPMI funding partners can found at www.ppmi-info.org/fundingpartners. 

 Data used in the preparation of this thesis were in part provided by the Cambridge Centre 

for Ageing and Neuroscience (Cam-CAN). Cam-CAN funding was provided by the UK 



xxvi 

 

Biotechnology and Biological Sciences Research Council (grant number BB/H008217/1), together 

with support from the UK Medical Research Council and University of Cambridge, UK. 

 Data were provided in part by IXI, accessed from http://brain-development.org/ixi-dataset/. 

 Data were provided in part by OASIS. OASIS Cross-Sectional: Principal Investigators: D. 

Marcus, R, Buckner, J, Csernansky J. Morris; P50 AG05681, P01 AG03991, P01 AG026276, R01 

AG021910, P20 MH071616, U24 RR021382. OASIS: Longitudinal: Principal Investigators: D. 

Marcus, R, Buckner, J. Csernansky, J. Morris; P50 AG05681, P01 AG03991, P01 AG026276, R01 

AG021910, P20 MH071616, U24 RR021382. 

 Data were provided in part by the Brain Genomics Superstruct Project of Harvard 

University and the Massachusetts General Hospital, (Principal Investigators: Randy Buckner, 

Joshua Roffman, and Jordan Smoller), with support from the Center for Brain Science 

Neuroinformatics Research Group, the Athinoula A. Martinos Center for Biomedical Imaging, and 

the Center for Human Genetic Research. 20 individual investigators at Harvard and MGH 

generously contributed data to the overall project. 

 Data used in preparation of this thesis were in part obtained from the SchizConnect 

database (schizconnect.org). Data collection and sharing was funded by NIMH cooperative 

agreement 1U01 MH097435. 

 Other datasets that contribute to this thesis work include Southwest University Adult life-

span Dataset (SALD), Consortium for Reliability and Reproducibility (CoRR), Dallas life-span 

Brain Study (DLBS), Southwest University Longitudinal Imaging Multimodal Brain Data 

Repository (SLIM). 

  



xxvii 

 

Preface 

This dissertation is the result of numerous collaborative efforts with exceptional colleagues. I 

would like to take this chance to express my gratitude for all the helps I have received over the 

past five years, which are great gifts I will carry in my future life. 

 First and foremost, I would like to thank my advisor Dr. Scott Small for providing me with 

this valuable opportunity to pursue my interest in neuroimaging and machine learning research in 

my PhD study. Dr. Small has been an attentive mentor and a role model with his diligence, 

character, scientific insights and his perpetual momentum to learn and embrace new things. 

 I would like to thank my co-advisor Dr. Andrew Laine for his encouragement and 

invaluable advice over the years. I really appreciate the support when I first started the explorations 

of deep learning, and the opportunities participating into the engineering communities. 

 I am very thankful for my thesis proposal and defense committee members: Dr. Paul Sajda, 

Dr. Thomas Vaughan, Dr. Adam Brickman. Thanks to Dr. Sajda for being on my committee from 

qualification exam to thesis proposal and defense, and all the helpful suggestions and critical 

thinking along the way, in addition to what I have learned being a student and a teaching assistant 

for his classes. Dr. Vaughan’s research of promoting MRI to the world is an encouragement and 

inspiration for my research into the widely-available structural MRI. Dr. Brickman has provided 

me with numerous thoughtful comments and insights, and we have been involved in many helpful 

discussions over the years. 

 I would like to specially thank two former BME PhD students in the lab and now Professors 

at Columbia: Dr. Frank Provenzano and Dr. Jia Guo, with whom I had countless interesting and 

thoughtful conversations from neuroscience, imaging, machine learning to every aspect of daily 



xxviii 

 

life. Dr. Provenzano developed solid work in CBV-fMRI processing. Dr. Guo developed a set of 

sophisticated analytic tools in mouse imaging that enabled our translational research. 

 I would like to extend my thanks to all the great Small lab members: Andrea Urban, Hannah 

Sigmon, Melanie Jalloh, Jeanelle France, Dr. Rakshathi Basavaraju, Dr. Diego Berman, Dr. 

Sabrina Simoes, Dr. Yasir Qureshi, Dr. Jessica Neufeld, who together have made PH-18-400 area 

a vibrant working place. 

 I would also specially thank Dr. Elsa Angelini, co-director of Heffner Biomedical Imaging 

Lab. Dr. Angelini has provided me with many methodological insights and concrete solutions. 

 I would like to extend my thanks to senior members from Heffner Biomedical Imaging 

Lab: Dr. Ming Jack Po, Dr. Viktor Gamarnik, Dr. Guillaume David, Dr. Arthur Mikhno, Dr. 

Jingkuan Song, for making ET-373 a geeky and vigorous base. 

 I am grateful for all my extraordinary collaborators: Dr. Marla Hamberger from 

Department of Neurology for the valuable data that helped validate our idea about retrospective 

CBV; Dr. Ray Razlighi from Department of Neurology for all the fMRI knowledge I have learnt 

in his class as a student and a teaching assistant; Dr. Jeffrey Lieberman, Dr. Richard Sloan, Dr. 

Melanie Wall, Dr. Ragy Girgis from New York State Psychiatric Institute for all the insightful 

meetings; Dr. Zachary Lipton from Carnegie Mellon University for sharing with me rich 

knowledge of deep learning and scientific writing. 

 I am indebted to my family, especially to my parents Guichen Feng and Ruimin Wang for 

the academic environment since childhood, and their wholehearted love and support. Most 

importantly, I am heartily grateful for my loving wife Jie Yang, for the seven years we have been 

advancing together, for the five years of PhD voyage sharing scenery and storm, for all your 



xxix 

 

patience, support, inspiration and love, which together make me a better person. This thesis is 

dedicated to my family. 

New York, NY, May 12th, 2019 

Xinyang Feng 

 



1 

 

1 Introduction 

1.1 Background 

1.1.1 Neuroimaging 

Neuroimaging, more specifically brain imaging, is the technique to image the structure and 

function of the brain. Neuroimaging serves as a critical tool in neurological clinical practice as 

well as neuroscience investigations. Some of the commonly used neuroimaging modalities are 

shown in Figure 1-1. In this thesis, I will mainly focus on two of the modalities: T1 weighted 

structural MRI and steady state exogenous contrast cerebral blood volume functional magnetic 

resonance imaging (CBV-fMRI). 

 

Figure 1-1. Sample neuroimaging modalities, with focuses on T1w structural MRI and CBV-

fMRI in this thesis work. 
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1.1.2 Cerebral blood volume 

Functional neuroimaging refers to studying the function and metabolism of the brain using imaging 

method, and broadly covers different variants of fMRI, positron emission tomography (PET), 

single-photon emission computed tomography (SPECT), electroencephalogram (EEG), 

magnetoencephalography (MEG), etc., among which fMRI is especially suitable to study brain 

regional functions because of its high spatial resolution and other practical aspects. FMRI can be 

roughly categorized into CBV, cerebral blood flow (CBF), Blood-oxygen-level dependent (BOLD) 

fMRI based on different underlying imaging measures. 

 Cerebral blood volume is a measure of the quantity of blood in a unit of tissue. A variant 

of MRI generated from steady-state exogenous contrast brain imaging using intravenous contrast 

agent (e.g. gadolinium-based contrast agents, GBCAs) can be used to generate CBV values on a 

voxel by voxel basis (Lin, Celik, & Paczynski, 1999). Values of percentage CBV extracted from 

these scans have been shown to reflect a basal state of cerebral activity, and CBV has been shown 

to strongly correlate with 18-flourodeoxyglucose PET (FDG-PET) measuring glucose metabolism 

(González et al., 1995). 

 CBV-fMRI enjoys the advantage of high spatial resolution, compared with other fMRI 

modalities, which is crucial to investigate complex neuroanatomical circuits such as the 

hippocampal subfields. Our lab has utilized CBV-fMRI to study the hippocampal dysfunctions in 

various brain disorders including Alzheimer’s disease (Khan et al., 2014), schizophrenia (Schobel 

et al., 2013), Huntington’s disease (Lewandowski et al., 2013), and also normal aging (Brickman 

et al., 2014). 
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1.1.3 Structural measurement of brain 

Besides brain function and metabolism measured using CBV-fMRI and other functional 

neuroimaging modalities, the structural measurement of brain is also crucial to phenotype the brain 

pathophysiology, as it reflects the volume and composition of various cellular elements. Among 

different imaging modalities to quantify brain structures, I mainly focus on T1-weighted structural 

MRI, which is one of the most widely available and standardized imaging modalities and 

commonly has high spatial resolution and large contrast to noise ratio (CNR). 

 

1.1.4 Alzheimer’s disease and normal aging 

Alzheimer’s disease (AD) is a progressive neurodegenerative disease accounting for the majority 

cases of dementia (Alzheimer's Association, 2018), there are more than 50 million people living 

with dementia worldwide (Patterson, 2018). AD patients present progressive metabolic changes 

and atrophy in brain regions. Neurofibrillary tangles (NFTs) starting from entorhinal cortex (EC) 

or more focally transentorhinal cortex (TEC) characterize the early stage of AD according to 

postmortem studies (Braak & Braak, 1991). Amyloid, tau, and neurodegeneration are the major 

categories of AD biomarkers (Clifford R. Jack et al., 2018). 

 Normal aging in the context of this thesis refers to age-related changes in the brain that 

occur independent of any brain diseases. And the underlying pathophysiology is primarily 

dendritic spine loss without neuronal death (Morrison & Hof, 1997). Hippocampus is a subcortical 

structure heavily implicated in normal aging (Burke & Barnes, 2006; Scott A Small, 2011). 

Prefrontal cortex is another major region involved in normal aging (Gazzaley, Cooney, Rissman, 

& D'Esposito, 2005). 
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1.1.5 CBV-fMRI studies on regional vulnerability in Alzheimer’s disease and 

normal aging 

Prior studies in the lab have pinpointed transentorhinal cortex as the vulnerable region in 

Alzheimer’s disease (Khan et al., 2014) and dentate gyrus (DG) as the vulnerable region in normal 

aging (Brickman et al., 2014) in the hippocampal formation using CBV-fMRI. Pioneering and 

impactful in our understanding of the underlying pathophysiology of Alzheimer’s disease and 

normal aging, the findings from these prior studies could still be validated and extended using 

larger-scale datasets and different measurements such as structural measures. 

 

1.1.6 Large-scale neuroimaging 

There are increasing high-quality large-scale neuroimaging datasets with the advancement of MRI 

hardware, data storage, and the continuous efforts of numerous investigators. Some of the 

prominent projects with well-characterized participants include Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) 1 , the Washington Heights-Hamilton Heights-Inwood 

Community Aging Project (WHICAP), etc. Over the years, our lab has collected the largest 

collection of research CBV-fMRI scans. And there are numerous large-scale studies focusing on 

other neurological diseases not listed here. These large-scale neuroimaging datasets greatly enrich 

the study population and cover more clinical and neurophysiological heterogeneity, allowing not 

only more reliable validation studies, but also more practical biomarker and diagnostics 

                                                 

1 http://adni.loni.usc.edu/ 
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development. It should be noted that, “large-scale” itself is a relative term that depends on the 

availability of the data modality, and is heuristically defined in (Fritsch et al., 2015) as more than 

100. 

 

1.1.7 Deep learning 

Besides the interest of mechanistic understanding of brain disorders and normal aging, large-scale 

datasets also empower computer-aided imaging-biomarker discovery for diagnosis. Recent years 

have witnessed the rise of deep learning techniques (Goodfellow, Bengio, & Courville, 2016; 

LeCun, Bengio, & Hinton, 2015), the core of current artificial intelligence (AI) techniques. Deep 

learning, aka deep neural network, relies on the deep hierarchical representation enabled by 

efficient algorithm and hardware and large-scale datasets, and has revolutionized many aspects of 

research and everyday life including medical imaging (Gulshan et al., 2016; Hazlett et al., 2017). 

In the context of deep learning, “large-scale” manifests in both data and feature dimensions. Deep 

convolutional neural network (CNN) is the dominant class of deep learning model in image 

recognition field, and characterized by its efficiency at extracting patterns from images with 

weight-sharing and local connectivity properties, inspired by some early neuroscience studies in 

visual cortex (Hubel & Wiesel, 1962, 1968). And besides the superior discrimination performance, 

the interpretability of the machine learning models is receiving increasing attention (Lipton, 2018), 

especially in the medical diagnosis domain. It is possible, through interpretability analysis, the 

highly accurate machine learning model trained with broad population distribution can extract and 

summarize disease-defining patterns and inform potential disease pathophysiology. 
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1.2 Motivation 

The advent of large-scale datasets, together with high-performance computing hardware and 

advanced machine learning algorithms, have opened up many new possibilities in neuroimaging 

research. In this thesis, I focus on the utilities of large-scale neuroimaging and demonstrate their 

feasibility and effectiveness as applied in Alzheimer’s disease and normal aging studies: 1) 

validation and extension of prior studies using large-scale dataset; 2) neuroimaging based 

diagnosis and regionality analyses empowered by large-scale datasets and advanced deep learning 

algorithms; 3) enhancement of cerebral blood volume (CBV) fMRI utility with retrospective CBV. 

 

1.3 Specific aims 

More specifically, I target three specific aims in this thesis, which correspond to the three utilities 

of large-scale neuroimaging datasets listed in the motivation section. 

 Specific Aim 1 investigates large-scale validation and extension of prior studies using 

classical image processing and statistical methods, including 1) a large-scale structural 

neuroimaging study of AD that validates and localizes more reliably and with better anatomical 

resolution the AD-vulnerable region, and a structural neuroimaging study of healthy APOE ε4 

homozygous subjects screened from a large-scale community-based study following a similar 

approach; 2) a large-scale joint functional and structural neuroimaging study of normal aging 

covering age 20-70s, and a structural neuroimaging study of normal aging covering the full age-

span, with the elder group screened from a large-scale clinic-based study ensuring no evidence of 

AD using both longitudinal follow-up and CSF biomarkers evidences. 
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 Specific Aim 2 focuses on deep learning neuroimaging. Without the time- and labor-

consuming MRI post-processing and manual editing steps, the scale of the dataset can be further 

boosted. In this study, I proposed an AD diagnosis method using a 3D convolutional neural 

network model trained and evaluated on ~4,600 structural MRI scans and investigated a series of 

novel regionality analyses. This study constitutes a general analytic stream/framework, which was 

followed to perform a study on age estimation in normal aging population using more than 6,000 

structural MRI scans. I demonstrated that a deep learning neuroimaging approach can achieve high 

classification and regression performance and also reveals patterns conforming to 

neuropathphysiological priors. The deep learning derived MRI measure demonstrated potential 

clinical utility, outperforming other AD pathology measures and biomarkers. In addition, I 

explored the utility of deep learning on PET data for AD diagnosis and regionality analyses, further 

demonstrating the broad utility and generalizability of the method. 

 Specific Aim 3 introduced retrospective CBV generation from clinical contrast-enhanced 

scans. The derivation of meaningful functional measures from such clinical scans is only possible 

through calibration to a reference, which was built from the collection of research CBV-fMRI 

scans from our lab. Validated in an epilepsy study, the method is also applicable to AD and normal 

aging studies. This technique is also applicable to AD and normal aging studies, and potentially 

enables deep learning based analytic approaches applied on CBV-fMRI with similar pipelines used 

in structural MRI. 
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1.4 Innovations 

This thesis work has the potential to advance neuroimaging studies using large-scale datasets by 

demonstrating the feasibility and utility of extracting mechanistic and diagnostic information on 

brain disorders using both classical statistical and advanced machine learning methods. Large-

scale studies could validate and extend the findings in prior studies in a more reliable and 

generalizable way. Large-scale datasets also enable studying low prevalence conditions and 

subjects screened with stringent criteria, through large well-characterized populations. Deep 

learning neuroimaging demonstrates superior performance in AD classification and age estimation, 

enjoys practical advantages, and is supported by the neuropathological priors, thus could 

potentially be developed into a practical multi-faceted neurological disease and normal aging 

evaluation system. The large-scale collection of CBV-fMRI scans makes it possible to mine 

underutilized clinical contrast-enhanced scans, and could greatly enhance the utility of CBV-fMRI, 

with the potential of applying advanced machine learning model in the future. 
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2 Specific Aim 1: Large-scale validation and extension of prior 

studies 

In this section, I mostly relied on classical image processing and statistical methods to perform 

mechanistic studies of AD and normal aging with large-scale neuroimaging datasets. 

 I performed a study localizing AD-vulnerable regions more reliably and with better 

anatomical resolution using data from more than 350 subjects. Following a similar approach, I 

investigated the structural characteristics of cognitively normal APOE ε4 homozygous subjects 

screened from a large-scale community-based study. 

 To study the neuroimaging signatures of normal aging, we performed a large-scale joint 

CBV-fMRI and structural MRI study covering age 20-70s, and a structural MRI study of normal 

aging covering the full age-span, with the elder group screened from a large-scale clinic-based 

study ensuring no evidence of AD using both longitudinal follow-up and CSF biomarkers 

evidences. 

2.1 Alzheimer’s disease 

2.1.1 Introduction 

2.1.1.1 Transentorhinal cortex 

Prior studies have pinpointed TEC as a vulnerable region in AD using CBV-fMRI, but because of 

the trade-off of CBV-fMRI in its high in-plane resolution (0.78 mm × 0.78 mm) and low slice 

thickness (3 mm), it would be less accurate when trying to interrogate the long axis, which also 

present specialization (Poppenk, Evensmoen, Moscovitch, & Nadel, 2013). We collected 

structural MRI scans with isotropic 1mm spatial resolution in a large-scale dataset comprised of 
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188 AD scans and 169 cognitively normal control scans from ADNI to localize the structurally 

AD-vulnerable region.  

 

2.1.1.2 APOE 

Apolipoprotein E (APOE) ε4 is one major genetic risk factor for AD. APOE ε4 homozygous 

subjects were shown to have medium-to-high risk of developing AD and low population 

prevalence (Scheltens et al., 2016). Studying the brain morphology of cognitively normal subjects 

in this high-risk group is important to understand the mechanism of the increased risk, 

disentangling from the effect of the developed AD pathology. Few studies investigate the 

cognitively normal elder APOE ε4 homozygous subjects because of the low prevalence. A number 

of previous studies on cognitively normal APOE ε4 carriers have mainly relied on middle-aged 

(Cacciaglia et al., 2018; Fennema-Notestine et al., 2011) and adolescent cohort (P. Shaw et al., 

2007) to exclude the confound of AD, but age is arguably another risk factor that might interact 

with genetic risk factors.  

 

2.1.2 Methods 

2.1.2.1 ADNI dataset 

The demographic information of the subjects used in the cortical thickness analysis to localize 

AD-vulnerable region is shown in Table 2-1. The details of the ADNI MRI acquisition protocols 

(Clifford R. Jack et al., 2008) can be found in the project website2. The T1w structural images 

                                                 

2 http://adni.loni.usc.edu/adni-mri-methods/ 
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were processed using FreeSurfer, generating individual cortical thickness maps (Bruce Fischl & 

Dale, 2000). The individual surfaces were registered into the FreeSurfer fsaverage space for inter-

subject analysis. At each vertex, I performed linear regression with thickness as the dependent 

variable, AD vs. cognitively normal diagnosis as testing variable, with gender and age as covariates. 

The t-values of the regression analyses were rendered as t-maps in difference spaces. 

Table 2-1. The demographic information of the subjects used in the analysis to localize AD-

vulnerable region. 

 AD (N=188) Normal (N=169) 

Age mean±std 75.18±7.50 75.64±5.18 

Gender M/F 99/89 83/86 

 

2.1.2.2 WHICAP dataset 

In a large well-characterized cohort from WHICAP study, we identified 7 cognitively normal 

APOE ε4 homozygous carriers from 383 cognitively normal subjects, who have stayed cognitively 

normal during the follow-up period. The demographic information can be found in Table 2-2. I 

carried out the analysis in a similar way as described in the previous section, where the testing 

variable is substituted to APOE ε4 homozygous carriers vs. others. 

Table 2-2. Demographic information of the subjects from WHICAP study used to investigate 

the structural cortical characteristics of healthy APOE ε4 homozygous subjects. 

 APOE ε4 homozygous carriers (N=7) Others (N=376) 

Age range 67.2 - 80.7 62.5 - 96.1 

Age mean  std 72.5  5.0 73.7  5.7 

Gender M/F 4/3 156/220 

APOE #ε4 2/1/0 7/-/- -/121/255 
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2.1.2.3 Flat-map representation 

In this study, I also proposed using the flat-map representation of the cortical surface (Bruce Fischl, 

Sereno, & Dale, 1999; David C Van Essen, Drury, Joshi, & Miller, 1998). Flat-map is the most 

compact way to represent the cortex, which provides unbiased visualization of the whole cortex in 

one single view, with no discontinuity or distortion (e.g. foreshortening) especially at the margin 

of the view. This representation facilitates observation and summarization of results, identification 

of clustered parcellation of interest (POI) and the comparison of the anatomical locations and 

spatial extents of the effects across different analyses. It also has computational merits because of 

the 2D representation. An illustration is shown in Figure 2-1. 

 

Figure 2-1. An illustration of flat-map representation of human cortex. (Left) Multiple 3D 

views are required for the full view of brain surface. (Right) Flat-map instead provides an unbiased 

single view of the whole cortex which facilitates identification of patterns and clusters. 
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2.1.3 Results 

2.1.3.1 AD-vulnerable region 

The results of the cortical thickness analysis of AD vs. cognitively normal subjects are summarized 

in Figure 2-2. In the flat-map representation, there presents a very focal AD-related atrophy in the 

anterior lateral entorhinal region. The affected region is rendered in other spaces as well. This 

points to the precise location within the full range of trans-entorhinal cortex (Augustinack et al., 

2013) (indicated by the yellow arrows in the rightmost 3D surface space of Figure 2-2) that is 

especially vulnerable in AD pathology. And facilitated with the flat-map representation, there are 

other interesting observations, e.g. the involvement of temporal, frontal, and parietal lobes and the 

relative sparing of primary motor, sensory, visual cortices. 

 

Figure 2-2. Cortical thickness analysis of AD vs. cognitively normal subjects. From left to right 

are the raw t-map and the thresholded t-map in the flat-map space, and the t-map in the anatomical 

space and the 3D surface space. In the 3D surface map, the cyan color indicates amygdala, the 
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yellow arrows point to the full range of transentorhinal cortex (Augustinack et al., 2013), the AD 

effect localizes to the anterior TEC at the level of amygdala. 

 

2.1.3.2 Structural characteristics of healthy APOE ε4 homozygous subjects 

The results of the cortical thickness analysis of healthy APOE ε4 homozygous carriers in the left 

hemisphere are summarized in Figure 2-3. There are two clusters with significant lower thickness 

that characterize the healthy APOE ε4 homozygous subjects: one is in superior frontal cortex, and 

the other is in anterior entorhinal cortex, as shown. 

 

Figure 2-3. Cortical thickness analysis of healthy APOE ε4 homozygous carriers. From left 

to right are the raw t-map and the thresholded t-map at flat-map space, and the t-map in the 

anatomical space and 3D surface space. There are two significant clusters: one in superior frontal 

cortex, the other in anterior entorhinal cortex. In the 3D surface space, the cyan color indicates 

amygdala, the yellow color indicates hippocampus. 
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2.1.4 Discussion 

2.1.4.1 AD-vulnerable region 

The cortical thickness analyses pinpoint the transentorhinal cortex at the level of amygdala along 

the long axis that is prominent in AD pathology, see Figure 2-2. This observation helped provide 

evidence for further immunoblotting analysis in ex vivo human brain tissue samples, as shown in 

Figure 2-4. 

 

Figure 2-4. The neuroimaging finding helped guide molecular analysis of ex vivo brain tissue 

in AD-vulnerable region. (Left) Pixels that show the greatest and most reliable volumetric loss 

compared to controls are indicated in yellow/red. The TEC defect is shown on a coronal MRI slice. 

(Right) A representative human postmortem brain tissue slice, matching the precise anatomical 

coordinates of the neuroimaging finding, with a higher magnification illustrating the subregions 

of the entorhinal cortex isolated for protein profiling:  the TEC, the lateral EC (LEC), intermediate 

EC (IEC) and medial EC (MEC). 
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2.1.4.2 Mechanistic implications from the healthy APOE ε4 homozygous subjects analysis 

A previous study on healthy middle age subjects has shown significantly thinner cortex in superior 

frontal region of APOE ε3/4 group compared with ε3/3 group, with no significant effects of ε4 

status on any temporal lobe measures (Fennema-Notestine et al., 2011). Whereas, a study in 

healthy adolescents reported thinner left entorhinal cortex in APOE ε4 carrier and suggested that 

the thinner entorhinal cortex in ε4 carriers might contribute to the risk of Alzheimer’s disease (P. 

Shaw et al., 2007). In our analysis of elderly healthy APOE ε4 homozygous subjects, we observed 

significantly thinner regions in both superior frontal region and entorhinal cortex region. These 

results might imply complex genetic-age interaction. 

 For APOE gene, the regions with the highest expression levels are entorhinal cortex, 

parahippocampal cortex and temporal pole according to the data from Allen Brain Atlas3 and the 

analytic method developed in (French & Paus, 2015). And a previous mouse study has reported 

ApoE4 protein exacerbates tau-mediated neurodegeneration (Shi et al., 2017). Taking into 

consideration the postmortem study of neurofibrillary tangles, where tauopathy starts from 

transentorhinal cortex (Braak & Braak, 1991), the observations might provide evidence explaining 

the risk of Alzheimer’s disease in APOE ε4 carrier from a genetic-molecular co-localization point 

of view. 

  

                                                 

3 http://human.brain-map.org 
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2.2 Normal aging  

2.2.1 Introduction 

Extending prior studies in normal aging, we performed a more thorough functional and structural 

investigation of normal aging using data from an aging study our lab recently completed, in which 

both CBV and volume were mapped in over 100 carefully-screened cognitively normal individuals 

spanning 20-72 years of age (Figure 2-6). This cohort will be denoted as Columbia cohort 

hereinafter in this chapter. We analyzed the age-related changes in both CBV and volume. 

 We further relied on a mouse study to establish an MRI-based profile reflective of dendritic 

spine loss, and provide mechanistic evidence for the findings in the human normal aging study. 

 We further set out to broaden the age-span to older subjects, which is important for 

understanding how the brain is affected throughout the full age span. We relied on longitudinal 

clinical follow-up and CSF biomarker data to ensure the study population is free of AD. 

 Collectively, the studies show that the dentate gyrus within the hippocampus and the 

inferior frontal gyrus across the cortex are the two brain regions differentially affected by normal 

aging structurally and functionally and fulfil the MRI-based profile of dendritic spine loss, 

suggesting dendritic spine loss as the underlying pathophysiology. The entorhinal cortex, a region 

most vulnerable to AD, turned out to be the region most resistant to normal aging. 

2.2.1.1 Concordant changes in functional and structural MRI reflect dendritic spine loss 

Both functional and structural neuroimaging should be sensitive to dendritic spine loss in normal 

aging, since dendritic spines are known to have high metabolic needs (Z. Li, Okamoto, Hayashi, 

& Sheng, 2004). This is validated by various functional imaging studies in both cerebral cortex 

(de Leon et al., 2001; Gazzaley et al., 2005; Martin, Friston, Colebatch, & Frackowiak, 1991) and 
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hippocampus (Brickman et al., 2014; Pavlopoulos et al., 2013; Scott A Small, Chawla, Buonocore, 

Rapp, & Barnes, 2004; Yassa, Mattfeld, Stark, & Stark, 2011). Structural imaging is also expected 

to be sensitive to spine loss because of the space-occupying spine-related cell elements. Studies 

have shown that variables derived from structural MRI are sensitive to dendritic spine loss 

(Kassem et al., 2013; Keifer Jr et al., 2015).  

 While both functional and structural imaging could be sensitive to dendritic spine loss, they 

are not necessarily specific. This is particularly the case for structural measures, as there are 

numerous elements that can contribute to volumetric changes independent of spine loss. And 

neuronal death is a neuropathological process that can drive decreases in both functional and 

structural measures. We hypothesized that, in the absence of neuronal death, a concordant change 

in functional and structural measures might represent a neuroimaging profile reflective of dendritic 

spine loss. This hypothesis was validated in an unilateral whisker cutting experiment in young 

mice led by Dr. Jia Guo, where the intervention induces dendritic spine loss in select barrel cortex 

layers (Y. Zuo, Yang, Kwon, & Gan, 2005).  

 In the mouse study, CBV in each layer was measured in two ways. The first is %CBV, 

which is an estimate of CBV density within a unit volume of brain, similar to density estimates 

used in prior functional imaging studies (de Leon et al., 2001; Khan et al., 2014). However, as 

established for other functional readouts of the brain, for example neurons or synapses, density 

measures introduce potential biases (Kempermann, Kuhn, & Gage, 1997; Morrison & Hof, 1997; 

Napper, 2018; West, 1999). When possible, “total” measurements are proven superior, typically 

generated by multiplying density and regional volume (Kempermann et al., 1997; West, 1999). 

We therefore used this approach to also generate total CBV (tCBV) for each layer. Only layers 

containing synapses have a loss in both CBV and volume in the contralateral barrel cortex after 
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unilateral whisker cutting, and have a correlation between both measures. And as anticipated, 

tCBV was found superior to %CBV in mapping these changes.  

 Together, we concluded that when it is known that a condition is not associated with 

neuronal death, as is the case with normal aging (Morrison & Hof, 1997), an MRI-based profile 

reflective of dendritic spine loss should fulfill two criteria: a reduction in regional tCBV and 

regional volume, and a correlation between both MRI-based variables.  

 We relied on these insights from the mouse findings to map correlates of dendritic spine 

loss in normal aging in human. We found dentate gyrus and the inferior frontal gyrus were both 

differentially affected by normal aging structurally and functionally and showed concordance, 

suggesting dendritic spine loss as the underlying neurophysiological mechanism of the age-related 

changes in these two regions. 

2.2.1.2 Necessity and method to exclude the confound of AD 

For normal aging studies, one challenge has been excluding AD, especially preclinical AD which 

occurs years before its clinical onset and is usually undetectable by conventional clinical measures 

(Sperling et al., 2011). The AD confound is particularly acute when attempting to cover the tail 

end of the age-span. Preclinical AD’s prevalence is estimated to begin its dramatic age-related rise 

during the 8th - 9th decades of life (Brookmeyer, Abdalla, Kawas, & Corrada, 2018), with the 

estimated prevalence of preclinical AD reaching as high as 50%. 

 Only a few subjects of the Columbia cohort were in the high prevalence age range, and the 

fact that the entorhinal cortex was found to be unaffected by aging, supports the interpretation that 

the Columbia cohort was not dominated by subjects with occult AD dementia. 
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 To investigate an older cohort in whom the AD confound can be excluded, we turned to 

the ADNI. ADNI includes a large population of cognitively normal participants who have been 

followed longitudinally and who have, among extensive clinical and neuropsychological testing, 

CSF biomarkers of AD. While ADNI does not acquire high-resolution functional imaging data, it 

does acquire high resolution structural MRI. We derived volumetric measurements in participants 

who met strict clinical and CSF biomarker criteria against AD. Two CSF cutoffs were established 

by ADNI (L. M. Shaw, Figurski, Waligorska, & Trojanowski, 2016), one that relies on CSF A 

alone and the other that relies on a combination of CSF tau and A. We opted for the later, as 

recent studies have shown that AD-associated elevations in CSF tau, and tau pathology itself, are 

strong determinants of regional dysfunction and atrophy (Tarawneh et al., 2015; Thaker et al., 

2017). In addition, we also performed analyses using tau/Aβ as a continuous covariate instead of 

setting a binary grouping using the cut-off value. 

 

2.2.2 Methods 

2.2.2.1 Columbia cohort 

For Columbia cohort, subjects are healthy adults between age 20 and 72, recruited from the 

Columbia University Medical Center/New York Presbyterian Hospital campus. MRI acquisition 

was part of a Columbia University Medical Center Institutional Review Board approved study, 

with explicit written consent obtained from each participant. The data selection process is 

illustrated in the left panel of Figure 2-5, with the demographic information of the CBV-fMRI 

dataset summarized in Figure 2-6, the demographic information of the structural MRI dataset 

summarized in Figure 2-7. 



21 

 

 

Figure 2-5. Dataset selection process for the Columbia and ADNI cohorts in the normal aging 

study.  

 

Figure 2-6. Demographic information of the subjects in the CBV-fMRI normal aging study. 
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2.2.2.2 Cross-sectional cohort of normal aging elderlies from ADNI 

As described in the introduction of the chapter, we adopted two strategies to deal with the AD 

confound as indicated best by the composite of CSF tau/Aβ ratio. From ADNI, we identified 80 

subjects who were cognitively normal at baseline and stayed normal during at least 4 years of 

clinical follow-up and who have baseline CSF biomarker. In the first analysis, we only included 

the 52 subjects who were CSF biomarker negative for AD, using the combined tau/Aβ cutoff 

(tau/Aβ < 0.39) (L. M. Shaw et al., 2016; L. M. Shaw et al., 2009). The demographic information 

of the 52 subjects is summarized in  

Figure 2-7. In another analysis, we included all 80 subjects and included the tau/Aβ ratio as a 

covariate. The data selection process is illustrated in the right panel of Figure 2-5.  

 

Figure 2-7. Demographic information of the subjects in the structural normal aging study 

covering 20-85 years old. 

 

2.2.2.3 Longitudinal cohort of normal aging elderlies from ADNI 

From the 80 subjects in the cross-sectional analysis, we further identified 62 subjects who have 

five longitudinal MRI scans at baseline, month 6, 12, 24, and 48 for longitudinal analysis. In the 

similar manner as the cross-sectional analysis, we identified 40 subjects who were CSF biomarker 
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negative for AD using the tau/Aβ cutoff. And additionally, we included all 62 subjects and 

included the tau/Aβ ratio as a covariate in the analysis. 

 

2.2.2.4 MRI acquisition 

For the CBV-fMRI, we used a steady-state contrast enhanced CBV technique as previously 

described (Brickman et al., 2014; Khan et al., 2014). MRI scans were acquired with a Philips 

Achieva 3.0 T MRI scanner using an 8-channel SENSE head coil. In each scan session, a T1-

weighted structural scan (TR = 6.7 ms, TE = 3.1 ms, FOV = 240 × 240 × 192 mm3, voxel size = 

0.9 × 0.9 × 0.9 mm3) was first acquired using a Turbo Field Echo (TFE) gradient echo (GRE) 

sequence; a pair of un-scaled T1-weighted images (TR = 7 ms, TE = 3 ms, FOV = 240 × 240 × 

162 mm3, voxel size = 0.68 × 0.68 × 3 mm3) were acquired afterwards with a bolus injection of 

gadolinium contrast agent in between. 

 

2.2.2.5 MRI processing 

The T1-weighted structural images were processed using FreeSurfer, generating cortical 

parcellation (Desikan et al., 2006; B. Fischl et al., 2004) and hippocampal subregions segmentation 

(Iglesias et al., 2015) in the individual space. The list of cortical regions can be found in the 

parcellation protocol documented in (Desikan et al., 2006). The primary hippocampal subregions 

labeled include presubiculum (PRESUB), subiculum (SUB), CA1, CA3, CA4 (hilus), granule cell 

molecular layer of DG (DG), molecular layer of subiculum and CA fields (MLSUBCA).  

 CBV-fMRI processing followed the steps applied in previous studies (Brickman et al., 

2014; Khan et al., 2014) and included registration of the pre-contrast and the post-contrast T1-
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weighted scans, subtraction of the co-registered post-contrast and pre-contrast scans, and CBV 

value normalization with the mean signal in the superior sagittal sinus. The raw CBV values 

are %CBV measures in a unit voxel. 

 Individual structural images were registered into template space with a symmetric 

diffeomorphic algorithm using ANTS (Avants et al., 2011). Individual CBV images were linearly 

registered into the individual structural image space. The CBV images were registered to the 

template space with the transformation field composed of the linear transformation matrix and the 

diffeomorphic transformation field.  

 In ROI analyses, total CBV (tCBV) measures the total amount of cerebral blood volume in 

an anatomically defined ROI and was calculated as the product of the regional %CBV density and 

the ROI volume. In voxel/vertex-based analyses, tCBV measures the voxel/vertex-wise local total 

amount of cerebral blood volume and is the voxel/vertex-wise product of CBV and volumetric 

measures. 

 

2.2.2.6 Image Analysis 

2.2.2.6.1 Total CBV voxel-based analysis in the hippocampus 

For each voxel, the tCBV value is the product of %CBV and the Jacobian determinant, which 

measures the relative volume change warping from unit volume element into the template space. 

Voxel-wise linear regression with age as regressor, gender and ICV as covariates was performed 

using SPM84. The results were thresholded at p < 0.05 and spatial cluster size larger than 10.  

                                                 

4 http://www.fil.ion.ucl.ac.uk/spm/software/spm8 
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2.2.2.6.2 Total CBV vertex-based analysis in the cortex 

Vertex-based analysis was used for cortical tCBV analysis. Individual CBV-fMRI images were 

registered into individual structural image space using linear registration. The cortical surface in 

individual structural image space was reconstructed using FreeSurfer (Dale, Fischl, & Sereno, 

1999). The co-registered CBV-fMRI image was projected onto the reconstructed cortical surface 

along the surface normal with projection fractions from 0 to 1 in the step of 0.1. The projected 

maps were then averaged into a single map generating robust measures of surface-based cortical 

CBV. The individual surfaces along with the projected CBV maps were registered into the 

FreeSurfer fsaverage space for inter-subject analysis. Cortical volume maps in the same space 

were generated using FreeSurfer, where the volume measure at each vertex is the volume of the 

local truncated tetrahedron. The tCBV at each vertex is the product between the %CBV and 

volume. Vertex-wise linear regression with age as regressor, gender and ICV as covariates, was 

performed using custom scripts. The results were thresholded at p < 0.01 and spatial cluster size 

larger than 500. 

2.2.2.6.3 ROI analysis 

The cortical parcellation and hippocampal subregion segmentation label maps were registered into 

the CBV-fMRI image space with the transformation matrix from registering individual CBV 

image into the individual structural image space. Regional %CBV is the average %CBV within 

each ROI. Regional tCBV is the product of the regional %CBV and the ROI volume. Linear 

regression with age as regressor, gender and ICV as covariates was performed for each ROI. It has 

to be noted that the frontal pole labeled in the segmentation protocol was not fully covered in a 

small portion of the CBV-fMRI scans because of the field of view (FOV) thus were not included 
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in the results. In the volume ROI analyses, for each ROI, I used linear regression with ROI volume 

as dependent variable, age as regressor, gender and ICV as covariates. 

2.2.2.6.4 Longitudinal ROI analysis 

In the longitudinal volume ROI analysis, I performed repeated measure ANOVA with baseline 

age, gender, ICV, and baseline tau/Aβ ratio as covariates; and in the other analysis with subjects 

below tau/Aβ cut-off, I performed repeated measure ANOVA with baseline age, gender, ICV as 

covariates. The p-value of the effect of time on regional volumes with lower bound adjustment 

were reported. 

 

2.2.3 Results 

In the exploratory analysis, the most reliable age-related changes were observed in the left brain, 

similar to what has been previously described (Chetelat et al., 2013; de Leon et al., 2001; Martin 

et al., 1991). We, however, cannot exclude technical reasons for this lateralizing effect. All 

analyses were conducted on measurements derived from the left brain. 

2.2.3.1 Brain regions vulnerable and resistant to normal aging from 20-72 years of age 

2.2.3.1.1 CBV-fMRI 

Results revealed that across the cortex the most reliable age-related tCBV decrease was observed 

in the vicinity of the inferior frontal gyrus (Figure 2-8A). For the complimentary ROI analysis, the 

only two regions that showed significant age-related CBV decreases at significance level α = 1e-

6, after applying a Šidák correction, were two constituent subregions of the inferior frontal gyrus 

(pars orbitalis: t = -6.28, p = 1.04e-8; pars triangularis: t = -6.08, p = 2.61e-8, two-tailed, N = 98) 

(Figure 2-8B). Unexpectedly, the entorhinal cortex was the cortical region that was least affected 
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by aging (t = 0.411, p = 0.682, two-tailed, N = 98) (Figure 2-8B). Within the hippocampus, the 

most reliable age-related decline was observed in the dentate gyrus (Figure 2-8C). For the ROI 

analysis, the dentate gyrus was found to be the dominant site of age-related CBV decline (t = -

6.19, p = 1.53e-8, two-tailed, N = 98) (Figure 2-8D). 

 

Figure 2-8. Mapping normal aging with CBV-fMRI from 20-72 years of age. (A) A vertex-

based analysis of the cortex (VBA; left image) and a region-of-interest analysis across cortical 

regions (ROI; right image) identified the greatest age-related decline of cerebral blood volume 

(CBV) in the inferior frontal gyrus. (B) The t-value distribution of age-related CBV decline across 

cortical regions shows that two regions of the inferior frontal gyrus (indicated in red, the pars 

orbitalis and the pars triangularis) are most reliably vulnerable to aging. The entorhinal cortex 

(indicated in blue) was found most resistance to aging. The dashed red line indicates the t-value 
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threshold at α = 0.05 adjusted for Šidák multiple comparison. (C) A voxel-based analysis of the 

hippocampus (VBA; left image) and a region-of-interest analysis across hippocampal regions (ROI; 

right image) identified the greatest age-related CBV decline in the dentate gyrus. (D) The t-value 

distribution of age-related CBV decline across hippocampal regions, shows that the dentate gyrus 

(indicated in red) is most reliably vulnerable to aging. The dashed red line indicates the t-value 

threshold at α = 0.05 adjusted for Šidák multiple comparison. 

 The corresponding analysis results using percentage CBV are shown in Figure 2-9, 

revealing similar localization results. 

 

Figure 2-9. Mapping aging with CBV-fMRI from 20-72 years of age using percentage CBV. 
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2.2.3.1.2 Volumetric MRI 

For volumetry results, across the cortex, subregions of the inferior frontal gyrus were found 

significantly associated with aging (pars orbitalis: t = -7.50, p = 2.62e-11; pars triangularis: t = -

6.88, p = 5.38e-10, two-tailed, N = 104), although, unlike for CBV, their volumes were not the 

ones most reliably affected by aging (Figure 2-10). As with CBV, the entorhinal cortex was the 

cortical region least affected by aging (t = -0.445, p = 0.657, two-tailed, N = 104). Within the 

hippocampus, the dentate gyrus was again the region differentially affected by aging (t = -5.04, p 

= 2.08e-6, two-tailed, N = 104). 

 

Figure 2-10. Mapping normal aging with volumetric MRI from 20-72 years of age. The t-

value distribution of age-related decline in volume, measured by structural MRI, across cortical 

regions. While not most reliably affected, volumes of regions of the inferior frontal gyrus 

(indicated in red) decline significantly with age. The volume of the entorhinal cortex (indicated in 

blue) was found most resistance to aging. The dashed red line indicates the t-value threshold at α 

= 0.05 adjusted for Šidák multiple comparison.  
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2.2.3.1.3 CBV-Volume relationships 

Guided by the mouse study, we found a significant correlation between tCBV and volume in the 

dentate gyrus (r = 0.524, p = 3.14e-8, two-tailed, N = 98) and the inferior frontal gyrus (r = 0.563, 

p = 2.00e-9, two-tailed, N = 98) (Figure 2-11), and so both regions fulfill the criteria for MRI-

based profile reflective of dendritic spine loss. In an exploratory analysis, we found that some 

regions fulfilled one criterion but not both, e.g. the paracentral lobule showed significant age-

related volume reduction (t = -4.48, p = 2.13e-5, two-tailed, N = 98) but not tCBV reduction (t = -

0.123, p = 0.902, two-tailed, N = 98) or a reliable correlation between tCBV and volume (r = 0.054, 

p = 0.601, two-tailed, N = 98) (Figure 2-11). The correlation values of the whole set of regions can 

be found in Figure 2-12. 

 

Figure 2-11. The relationship between volumetric MRI and CBV-fMRI. A significant 

concordant relationship between CBV and volume is observed for the dentate gyrus and the 

inferior frontal gyrus, consistent with the MRI profile of dendritic spine loss, but not for the 

paracentral lobule as an example. 
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Figure 2-12. A summary graph of the partial correlation coefficients of tCBV versus age, 

volume versus age, and tCBV versus volume. Gender and ICV were included as covariates. The 

dashed red line indicates the correlation coefficient threshold at α = 0.05 adjusted for Šidák 

multiple comparison. 

 

2.2.3.2 Brain regions vulnerable and resistant to normal aging from 62-85 years of age 

We generated cortical and hippocampal volumes as with the Columbia cohort and then applied the 

same linear regression model to each volume (Figure 2-13). Across the cortex, regions of the 

inferior frontal gyrus were found unaffected by aging in this age-span, but here again the entorhinal 

cortex was one of the regions least affected by aging. Within the hippocampus, the dentate gyrus 

was again the region most reliably affected by aging (t = -2.37, p = 0.0217, two-tailed, N = 52), 

however, likely because of the constrained age-range, the effect in the dentate gyrus did not meet 

the Šidák-corrected threshold for significance at α = 0.05. The regional pattern was similar in the 

analysis with the inclusion of tau/Aβ ratio as a covariate (Figure 2-14). 
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Figure 2-13. Mapping normal aging with volumetric MRI in AD-free subjects from 62 - 85 

years of age. The t-value distribution of age-related decline in volume across cortical and 

hippocampal region, shows that the dentate gyrus (indicated in red, right graph) is most vulnerable 

to aging and the inferior frontal gyrus (indicated in red, left graph) is not reliably associated with 

aging. The entorhinal cortex (indicated in blue, left graph) is least affected by aging. The dashed 

red line indicates the t-value threshold at α = 0.05 adjusted for Šidák multiple comparison. 
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Figure 2-14. Mapping normal aging with volumetric MRI from 62-85 years of age with 

tau/Aβ as covariate. The t-value distribution of age-related volume decline across cortical and 

hippocampal region with tau/Aβ as covariate, from 62-85 years of age, shows that the dentate 

gyrus (indicated in red, right graph) is most vulnerable to aging (although not crossing threshold 

of multiple comparisons) and the inferior frontal gyrus (indicated in red, left graph) is not reliably 

associated with aging. The entorhinal cortex (indicated in blue, left graph) is among regions least 

affected by aging. The dashed red line indicates the t-value threshold at α = 0.05 adjusted for Šidák 

multiple comparison. 

 

2.2.3.3 Longitudinal analysis of brain regions vulnerable and resistant to normal aging  

No region, including entorhinal cortex and dentate gyrus, showed significant longitudinal atrophy 

when controlling for the covariates (Figure 2-15, Figure 2-16). 

 

Figure 2-15. Mapping longitudinal age-related change with volumetric MRI from 62-85 

years of age with tau/Aβ as covariate. The p-value distribution of longitudinal age-related 
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volume decline across cortical and hippocampal regions with tau/Aβ as covariate, from 62-85 

years of age, illustrates that no region is showing reliable longitudinal age-related atrophy. The 

dashed red line indicates α = 0.05. 

 

Figure 2-16. Mapping longitudinal age-related change with volumetric MRI from 62-85 

years of age using tau/Aβ cutoff. The p-value distribution of longitudinal age-related volume 

decline across cortical and hippocampal regions with baseline tau/Aβ under cut-off threshold, from 

62-85 years of age, illustrates that no region is showing reliable longitudinal age-related atrophy. 

The dashed red line indicates α = 0.05. 

 

2.2.3.4 Brain regions vulnerable and resistant to normal aging across age span 

To map aging independent of AD across the full adult lifespan — from young adulthood, through 

midlife, to old age, we merged the Columbia cohort with the ADNI cohort, as shown in  

Figure 2-7. By mapping the age-related volumetric changes (Figure 2-17), the most remarkable 

result is that among all brain regions investigated, the entorhinal cortex is the region most 
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resistance to normal aging (t = 1.21, p = 0.227, two-tailed, N = 156). Not surprisingly, based on 

the previous analyses, the dentate gyrus was the hippocampal region most reliably affected by 

aging (t = -6.61, p = 6.24e-10, two-tailed, N = 156). The inferior frontal gyrus, while not the region 

most affected, was still found significantly affected by aging (pars orbitalis: t = -9.63, p = 1.99e-

17; pars triangularis: t = -7.67, p = 1.96e-12, two-tailed, N = 156). 

 

Figure 2-17. Mapping normal aging with volumetric MRI across the adult age-span. The t-

value distribution of age-related decline in volume across cortical and hippocampal region in AD-

free subjects across the full age-span, shows that the dentate gyrus (indicated in red, right graph) 

is most vulnerable to aging and the inferior frontal gyrus (indicated in red, left graph) is reliably 

associated with aging. The entorhinal cortex (indicated in blue, left graph) is the region least 

affected by aging. The dashed red line indicates the t-value threshold at α = 0.05 adjusted for Šidák 

multiple comparison. 

 We relied on the combined dataset to explore the trajectories of the dentate gyrus, the 

inferior frontal gyrus, and the entorhinal cortex across the full age-span. Interestingly, the 
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vulnerable regions appear to have different aging trajectories. While the age-related effect of the 

dentate gyrus worsens linearly across the full age-span (page = 1.25e-8), the inferior frontal gyrus 

was better modeled by a quadratic curve (page = 3.79e-4, page^2 = 1.81e-2) (Figure 2-18 A) than a 

linear model, where the effect of aging on this brain region appears to taper off during normal 

aging. The Akaike information criterion (AIC) of the quadratic regression model is lower than the 

linear regression model. The entorhinal cortex was best modelled as a flat line across the full age 

span (page = 0.261) (Figure 2-18 A).  

 

Figure 2-18. Trajectories of brain regions vulnerable and resistant to normal aging across 

the age-span. (A) The aging trajectory of dentate gyrus volume (left image) shows a linear decline 

across the age-span. The trajectory of inferior frontal gyrus volume (middle image) shows a 



37 

 

curvilinear decline. The trajectory of entorhinal cortex volume (right image) shows that it is 

unaffected by aging across the age-span. (B) A graphic summary of the two regions differentially 

vulnerable to normal aging, the dentate gyrus and the inferior frontal gyrus (red), and the region 

most resistant to normal aging, the entorhinal cortex (blue). 

 

2.2.3.5 Cross-sectional volumetric analyses in independent life-span normal aging studies 

I also performed cross-sectional volumetric analyses in three independent normal aging studies 

covering full adult age-span: Cam-CAN (Taylor et al., 2017), IXI, DLBS (Rodrigue et al., 2012). 

The results show similar patterns as those revealed in our cohort: dentate gyrus shows the most 

reliable age-related decrease within hippocampus, whereas the entorhinal show little age-related 

difference, IFG shows age-related decrease but superior frontal region shows the most reliable 

age-related decrease. The detailed results are included in the appendix A.1. 

 

2.2.4 Discussion 

In hippocampal formation, dentate gyrus was observed to be differentially vulnerable to normal 

aging. This agrees with previous imaging studies in non-human mammals (Moreno et al., 2007; 

Scott A Small et al., 2004), who develop age-related hippocampal dysfunction without the 

confound of AD, and also agrees with a recent post-mortem analysis of the disease-free human 

hippocampus (Adler et al., 2018). Across the cortex, the inferior frontal gyrus is the region most 

reliably affected by normal aging. This too agrees with previous studies (de Leon et al., 2001; 

Herholz et al., 2002; Kalkstein, Checksfield, Bollinger, & Gazzaley, 2011; Martin et al., 1991). 
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 Since we used a high-resolution CBV-fMRI technique, we were able to map, for the first 

time, age-related dysfunction in the dentate gyrus and inferior frontal gyrus in the same cohort. 

More importantly, since both the dentate gyrus and the inferior frontal gyrus fulfilled MRI-based 

criteria for spine loss, our findings provide primary evidence that age-related dendritic spine loss 

is the likely driver of dysfunction. 

 Both cohorts and the combined analysis provide definitive evidence that within the 

hippocampus the dentate gyrus is the region most dominantly affected by normal aging (Figure 

2-18). Findings from the ADNI cohort and the combined analysis suggest that age-related inferior 

frontal gyrus dysfunction tapers off in older age (Figure 2-18). However, as this observation was 

based only on volumetric information, we are less certain about this result. In both cohorts and in 

the combined analysis, the entorhinal cortex turned out to be the brain region differentially resistant 

to normal aging (Figure 2-18). We consider this a remarkable and unexpected finding, as this is 

the same region that is differentially vulnerable to AD (Braak & Braak, 1991; Gómez-Isla et al., 

1996; Khan et al., 2014; Miller et al., 2015). Our study is not the first to suggest that the entorhinal 

cortex is impervious to the effects of normal aging. This observation has been shown by studies 

imaging aging animal models (Moreno et al., 2007; Scott A Small et al., 2004), who are 

unconfounded by AD, that have focused on the hippocampal formation. But beyond the 

hippocampal formation, these previous studies did not perform a more comprehensive comparison 

of the entorhinal cortex to the multiple regions of the cortical mantle. 

 The results from the current study imply that normal aging targets our cognitive faculties 

more than others. Practically, the DG, IFG, EC function and structure and the related 

neuropsychological tests could be used collectively for cognitive aging subject screening and 

intervention read-out. We also make several propositions based on our findings: 1) the spatio-



39 

 

temporal pattern identified in the inferior frontal gyrus is potentially important to isolate molecular 

or cellular causes of age-related frontal cortex dysfunction; 2) the mechanisms that account for the 

entorhinal’s resistance to normal aging is likely linked to its vulnerability to AD.  
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3 Specific Aim 2: Alzheimer’s disease diagnosis and normal aging 

evaluation based on deep learning neuroimaging 

In this section, I performed a series of deep learning neuroimaging studies for diagnosis and 

regionality analyses. I proposed an AD diagnosis method using a 3D convolutional neural network 

model trained and evaluated on ~4,600 structural MRI scans and investigated a series of novel 

regionality analyses. The summary measures derived from the deep learning model has 

demonstrated potential clinical utility outperforming other AD pathology measures and 

biomarkers. 

 The AD deep learning study constitutes a general analytic framework, which I followed to 

perform a study on age estimation in normal aging using more than 6,000 scans. The deep learning 

neuroimaging approach demonstrated high classification and regression performance and also 

revealed regional patterns conforming to neuropathological priors. In addition, I explored the 

utility of deep learning on AD diagnosis and regionality analysis using PET, further demonstrating 

the broad utility and generalizability of the method. 

3.1 Alzheimer’s disease diagnosis 

3.1.1 Introduction 

3.1.1.1 AD diagnosis using MRI 

Because of the degenerative nature of Alzheimer’s disease and the current limit in therapy options, 

much research focuses on developing accurate diagnosis techniques. Our work applies deep 

learning to classify clinical diagnosis of AD from MRI, building upon recent studies that have 

demonstrated the usefulness of MRI in diagnosing AD and mild cognitive impairment (MCI) 
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(overlap with the corresponding prodromal stage of AD), and in categorizing biomarkers 

associated with neurodegeneration in AD (Clifford R. Jack et al., 2016). 

 Among different brain MRI modalities, T1-weighted structural MRI is one of the most 

widely acquired and enjoys the additional benefit of being relatively standardized across scanners 

and protocols. Consequently, diagnosis algorithms based on T1w structural MRIs are appealing as 

a potential tool to assist in disease screening given the wide availability of research scans for model 

training, and the ubiquity of MRI scanners in the world potentially enabling the rapid deployment 

of learned models. 

 

3.1.1.2 Deep learning 

Following applications in computer vision, deep learning techniques have emerged as effective 

tools for analysing medical images. On standard computer vision tasks such as classification 

(Krizhevsky, Sutskever, & Hinton, 2012), object detection (Girshick, 2015) and semantic 

segmentation (Long, Shelhamer, & Darrell, 2015), deep learning algorithms based on 

convolutional neural network (CNN) (LeCun et al., 1990) have achieved undisputed dominance. 

Over the last few years, these techniques have been widely applied in image-aided medical 

diagnosis. Successful applications of deep learning in medical imaging include segmenting 

electron microscopy images (Ronneberger, Fischer, & Brox, 2015), detecting diabetic retinopathy 

from 2D retinal fundus photographs (Gulshan et al., 2016), and recognizing skin cancer from 

photographs (Esteva et al., 2017). 

 However, learning from 3D scans, such as MRI, presents a number of additional challenges. 

While the number of voxels corresponding to the 3D volume representing a single patient can be 
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large, we still have just one label per scan, raising technical questions about how to prevent 

overfitting. However, since many brain disorders correspond to both focal and diffuse involvement 

and brain regions span 3D spaces, machine learning models capable of acting upon the whole 

volume are appealing. To that end, I explored the use of 3D convolutional neural networks for 

diagnosing Alzheimer’s disease, considering a variety of techniques and including some 

unconventional data sources in order to learn good representations without overfitting. Although 

3D CNNs have been explored in the medical imaging (Çiçek, Abdulkadir, Lienkamp, Brox, & 

Ronneberger, 2016; Dou et al., 2016; Milletari, Navab, & Ahmadi, 2016) for segmentations, they 

are relatively underutilized compared to 2D CNNs and thus best practices for deploying these 

models are less firmly established. 

 

3.1.1.3 Previous works 

This work was built upon several earlier works applying 3D CNNs to AD diagnosis, which were 

summarized below. Note that various papers address different datasets and different subsets even 

within the same cohort, making direct performance comparison across papers difficult. (Payan & 

Montana, 2015) proposed MRI-based AD diagnosis using 2265 scans from ADNI and achieved 

95.39% accuracy in AD vs. CN classification. The weights of the convolution filters are learned 

by training an autoencoder. While their study provides promising support of the efficacy of 3D 

CNNs for diagnosing AD from brain MRI, it leaves open many modelling questions. For instance, 

they consider only shallow networks consisting of a single convolutional layer, followed by a 

pooling operation and one fully-connected layer. Moreover, they leave the autoencoder-derived 

filters fixed, optimizing only the weights of the fully-connected layer on the AD classification task. 

Following similar ideas, (Hosseini-Asl et al., 2018) presented a model using unsupervised 
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autoencoding followed by (supervised) fine-tuning on a comparatively small dataset consisting of 

just 210 subjects (70 each for AD, MCI, CN) and showed impressive predictive performance with 

an area under the receiver operator characteristic (AUROC) of 0.993 and 99.3% accuracy in AD 

vs. CN classification. (S. Korolev, Safiullin, Belyaev, & Dodonova, 2017) apply a 3D network 

architecture, achieving AUROC of 0.88 with an accuracy of 79% in 50 AD and 61 CN subjects. 

They also attempt to interpret the network, introducing a heuristic technique for feature attribution. 

The method consists of generating predictions while obstructing various regions in the image to 

determine which regions impact the model’s predictions in multiple passes. A recent large-scale 

study (Wegmayr, Aitharaju, & Buhmann, 2018) proposed using 3D CNNs directly, training 

weights from scratch (no unsupervised pre-training) and achieved 86% accuracy in AD/CN 

classification in a merged ADNI+AIBL dataset consisting of 6618 scans from CN subjects and 

4476 scans from AD subjects. These studies demonstrate the promise of modern CNN 

architectures for extracting patterns from brain MRI. 

 Despite generating accurate predictions, deep learning has long been described as a black-

box. Studies have been proposed to interpret or explain the classifications produced by various 

deep learning techniques. A recent study (Yang, Rangarajan, & Ranka, 2018) utilized multiple 

methods to generate visual explanations for AD classification despite relatively low classification 

performance (0.863 AUROC, 76.6% accuracy) on a small dataset consisting of 47 AD and 56 CN 

subjects. Ablation tests constitute one classic method for probing a predictive problem to assess 

the usefulness of various features by dropping the features from consideration. Our study 

complements the saliency map based analyses with ablation tests to assess the predictiveness of 

each region to AD. 
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 Most previous studies on AD classification with CNNs (Hosseini-Asl et al., 2018; S. 

Korolev et al., 2017) exploit the (single) baseline scan for each subject and train their models to 

predict the cross-sectional diagnosis labels (assessed at scan time). (Payan & Montana, 2015) 

utilizes multiple scans but did not explicitly address potential data leakage and disease progression 

problems. (Wegmayr et al., 2018) explicitly addresses the data leakage problem (they refer to it as 

subject duplication), ensuring non-overlapping subjects in training and test sets, however, the 

disease progression is not explicitly discussed while stating several scans of an individual subject 

typically have the same disease label, which could be potentially problematic especially for their 

three-way classification task including MCI. Another difference from this previous study is that 

we opted to only include multiple scans from different sessions rather than within-session duplicate 

scans to leverage the data richness vs. data redundancy. 

 

3.1.1.4 Contributions 

In this study, we particularly focus on two specific aspects: (i) incorporating longitudinal scans as 

an unconventional data source, and (ii) a thorough investigation aimed at localizing the most 

predictive regions. Generally, data augmentation helps to prevent models from overfitting. In 

typical photographic images, such transformations include random crops, translations, rotations, 

etc. (Krizhevsky et al., 2012). Here, instead, we enrich the data by including images captured from 

the same patient across multiple visits. Inclusion of longitudinal scans raises two important issues: 

the data leakage problem and the disease progression problem. Data leakage occurs when the 

training and test sets contain the different scans from the same subject, the model might make the 

prediction by memorizing and retrieving the label from the same person and is likely to result in 

over-optimistic performance. This issue is dealt with easily by ensuring that the partition into 
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train/validation/test splits takes place at the level of the individual patients instead of at the level 

of the scan. The disease progression problem relates to the fact that the disease status of subjects 

might change in follow-ups, and the cross-sectional diagnosis labels for a certain scan might be 

different from the baseline label, this is especially important in prodromal disease status, e.g. MCI 

in AD pathology. 

 Our model achieved high classification performance in AD classification in a large dataset 

consisting of 2817 scans/sessions from CN subjects and 1874 scans/sessions from AD subjects. 

Moreover, we found that by applying model trained on AD vs. CN classification to baseline scans 

of MCI subjects, we could accurately predict progression from MCI to AD. Furthermore, I studied 

the neuroanatomical underpinning in AD classification with a series of novel regional analyses 

following the regional vulnerability idea (Scott A. Small, 2014). The analyses pinpointed 

hippocampal formation as a most predictive driver for our deep learning-based AD diagnosis 

model, which further affirms the prominence of hippocampal formation in AD classification. I 

explored regional significance in a number of ways. In one approach, I generated a 3D saliency 

map post hoc without any changes to the model or input data, presenting the whole brain volume 

to the classifier and inferring regions that contribute most to the classification using a 3D class 

activation mapping (CAM) technique (Zhou, Khosla, Lapedriza, Oliva, & Torralba, 2016). 

Gradient-weighted CAM (grad-CAM) (Selvaraju et al., 2017) generalize the CAM to broader 

CNN families by flowing the gradients of the target label into the last convolutional layer. In this 

study, I utilized 3D grad-CAM to determine which specific 3D regions most indicate a prediction 

of AD. I also explored two “ablation”-based methods that explicitly focus on specific brain regions. 

The first method consists of training models to predict AD using 2D MRI slices (in each of the 

three coordinate planes), and evaluate the pattern of the capabilities of slices differentiating AD. 
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The second method, more informed of neuroanatomy, consists of masking specific regions using 

masks generated from a sub-population with segmentation, training on the masked regions, and 

comparing the classification accuracy. 

 The CAM method reveals a preponderance of activation overlap containing the left anterior 

hippocampal formation (HF). Evaluation on 2D MRI slices demonstrates the importance of slices 

covering the HF in the classification of AD using deep 2D CNN model. And evaluation on isolated 

brain lobes also demonstrates the importance of temporal lobe, which contains the HF. These 

findings have implications for both the interpretability of CNNs used in image-based disease 

diagnosis and also the prospective MRI acquisition protocols targeting AD diagnosis. Even for 

highly complex and nonlinear models, regionality and the underlying pathology revealed still 

manifests importance. 

 Importantly, it should be noted that our proposed 3D CNN model and regional analyses 

constitute a highly general framework that can potentially be applied to other brain disorders and 

imaging modalities. 

 

3.1.2 Methods 

3.1.2.1 Data 

The dataset used in this study is from the Alzheimer’s Disease Neuroimaging Initiative5. The 

details about the MRI data acquisition can be found in ADNI website6. The T1-weighted structural 

                                                 

5 http://adni.loni.usc.edu/ 
6 http://adni.loni.usc.edu/methods/documents/mri-protocols/ 
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MRI scans were pre-processed with the standard Mayo Clinic pipeline7. The AD diagnosis was 

based on clinical evaluations. The MRI and diagnosis data were queried and accessed at August 

2017. The diagnosis includes AD, MCI, and cognitively normal (CN). The dataset used to generate 

the regional masks includes 382 scans from unique elderly subjects in ADNI-2 and 1113 scans 

from unique young subjects in Human Connectome Project (HCP)8 (David C. Van Essen et al., 

2013). The subjects cover age 25-90, and clinical diagnosis of young normal control (N = 1113), 

elderly normal control (N = 120), MCI (N = 138) and AD (N = 124). 

 For the experiment of AD vs. CN classification, we sought to include as many MRI 

sessions as possible that correspond to AD or CN diagnosis at scan time. Specifically, I included 

the baseline and follow-up scans of patients diagnosed as AD at baseline, the baseline and follow-

up scans of subjects diagnosed as cognitively normal at baseline before the conversion to AD or 

MCI if ever happened, and the after-conversion follow-up scans of subjects who were CN or MCI 

at baseline but later progressed to AD. In total, I included 4691 scans (2817 CN, 1874 AD) from 

1189 subjects under these criteria. This experiment setup basically sets an upper limit to the amount 

of data for cross-sectional AD vs. CN classification in ADNI cohort. The inclusion of scans after 

conversion also helps enrich the samples around the “classification boundary” as will be more 

thoroughly discussed in the 3.1.2.3 “Inclusion of longitudinal scans” section. 

 I used 8/10 of the subjects as training set consisted of 3709 scans (2240 CN, 1469 AD) 

from 952 subjects, 1/10 as validation set consisted of 456 scans (279 CN, 177 AD) from 119 

subjects, and 1/10 as test set consisted of 526 scans (298 CN, 228 AD) from 118 subjects. As 

                                                 

7 http://adni.loni.usc.edu/methods/mri-analysis/mri-pre-processing/ 
8 https://humanconnectome.org/ 
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discussed in the Introduction section in this chapter, the training, validation and test sets split was 

partitioned at subject level through stratified random sampling on baseline diagnosis labels so that 

the groups have non-overlapping subjects and approximately even distribution of baseline 

diagnosis labels. The final model is selected as the one that has the highest validation accuracy (i.e. 

classification accuracy in validation set). 

 For the experiment of MCI progression prediction on baseline scans, I trained another 

model only using subjects whose baseline diagnosis are cognitively normal or AD to prevent data 

leakage. I included scans from 796 subjects under this criterion. Similarly, 2918 scans (1943 CN, 

975 AD) from 626 subjects were used as training set, 382 scans (251 CN, 131 AD) from 80 subjects 

were used as validation set, 325 scans 229 CN, 96 AD) from 80 subjects were used as test set. I 

used the same neural network training setup. I included 318 MCI stable subjects and 311 MCI 

progression subjects for MCI progression prediction. The MCI stable subject are those who 

remained MCI during a follow-up period of at least 3 years from the initial visit. The MCI 

progression subjects progressed to AD at follow-up visits, among which 256 subjects progressed 

to AD within 3 years. 

 We further evaluated our model on an independent AD dataset MIRIAD9 (Malone et al., 

2013). MIRIAD includes 455 MRI scans from 46 AD subjects, and 243 MRI scans from 23 

cognitively normal subjects. 

                                                 

9 https://www.ucl.ac.uk/drc/research/methods/minimal-interval-resonance-imaging-alzheimers-disease-miriad 
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 We also derived AUROC using bilateral hippocampal volume normalized by intracranial 

volume generated from FreeSurfer (Bruce Fischl et al., 2002) on the subject-level evaluations for 

comparison. 

 

3.1.2.2 Preprocessing 

Basic pre-processing steps include nonparametric nonuniform intensity normalization (N3) based 

bias field correction (Sled, Zijdenbos, & Evans, 1998), brain extraction using FreeSurfer (Ségonne 

et al., 2004), and 12 degree of freedom affine registration (using FSL FLIRT (Jenkinson, Bannister, 

Brady, & Smith, 2002) with normalized mutual information cost function) to the 1mm isotropic 

MNI152 brain template. The dimension of the 3D volume is 182 × 218 × 182 (LR×AP×SI). 

 Bias field correction is generally robust, fast, and based on physics models which act as a 

strong prior (Sled et al., 1998). There are brain extraction methods using deep learning techniques, 

but there is not one that is well-validated and widely-available. Skull-stripping using FreeSurfer 

provides consistently high-quality brain extraction. 

 The registration is to ensure same orientation and roughly same spatial correspondence of 

different images. Although there are techniques such as spatial transformer network (Jaderberg, 

Simonyan, & Zisserman, 2015) to learn transformation within the network, it would involve more 

parameters to learn and add burden to the data. All the brain extracted, affine-transformed images 

were checked by a well-trained reviewer with visual inspection. Scans having severe MRI artefacts, 

brain extraction failure or poor registration were excluded. 
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3.1.2.3 Inclusion of longitudinal data 

Commonly, computer vision practitioners synthetically augment their datasets, applying random 

transformations to existing training images. However, unlike natural images or certain kinds of 

medical image, where objects of interest might vary in location and rotational orientation, MRI 

images of brains are approximately at the same position through registration, with the brain regions 

roughly aligned. Thus, in this setting, learning rotational and translational invariances is not well 

motivated. 

 There is another form of data augmentation or more precisely “data source” specific to 

medical imaging applications. For longitudinal studies, test-retest studies and just ordinary studies, 

there might be multiple scans per subject. By including time as a factor in subject identification, 

we can increase the amount of data. In a sense, by including these data sources, we are seeking 

natural forms of data augmentation. The corresponding “transformations” would be normal aging, 

disease progression or both (longitudinal scans with a significant interval between scans), subject 

re-positioning (scans acquired at different sessions and within a short period of time) and subject 

motion (scans acquired at the same session). The variability present in the scans or the data 

coverage in the data space decreases in this order. The illustration of the general idea is shown in 

Figure 3-1. As discussed in the Introduction section in this chapter about disease progression, 

special attention is required for the first kind, where the different time points of the same individual 

might be at different health or disease stages. Moreover, those scans, lying on the verge of different 

diagnosis, constitute informative cases for the classification. 

 In this study, I opted for using scans from different sessions, which already provides a 

significant increase in the amount of data: from 796 baseline scans to 4691 scans. And scans from 

the same scanning session present very low variability. 
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Figure 3-1. Illustration of data augmentation or inclusion of longitudinal scans specific to 

longitudinal neuroimaging studies for machine learning models. The whole plane is a 

simplified representation of the data space. Each large circle indicates one individual subject, each 

small circle indicates one MRI session. Each coronal slice of MRI scan represents one scan. The 

objective of the deep learning algorithm is to find the “boundary” (dashed line) that best 

differentiates cognitively normal subjects and AD patients. Enriching our data by using 

longitudinal scans from subjects helps to increase the data coverage from the small circle to the 

large circle. 

 

3.1.2.4 Convolutional neural network 

I used a general CNN architecture similar to the VGG classification architecture (Simonyan & 

Zisserman, 2014) with multiple interleaved convolutional blocks and max pooling layers and 

increasing number of features along the depth. The main differences include having just one fully-
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connected layer to significantly reduce the number of parameters and replacing 2D operations with 

3D operations. For convolutional layers, I used a convolutional kernel size of 3 × 3 × 3, a batch 

size of five, rectified linear unit (ReLU) as the activation functions. The output from the last 

convolutional layer is flattened and fed into a fully-connected (FC) layer with sigmoid as the 

activation. I used batch normalization (BN) before the activation function.  

 

Figure 3-2. The convolution neural network architecture for AD classification. The inputs are 

3D brain volumes. Each cubic represents one 3D feature map, the size reflects the spatial 

dimension of the feature map, and the number reflects the number of feature maps (channel 

dimension). The blue arrows are 3D convolutional operations, the green arrow represents batch 

normalization (BN) followed by rectified linear unit (ReLU), the yellow arrow denotes the max 

pooling operation. The basic unit enclosed in the bracket is repeated N = 5 times with increasing 

number of features and decreasing spatial dimension. The final convolutional output is flattened 

and fed into one fully-connected (FC) layer with sigmoid activation function (red arrow), 

generating the final AD score, a value between 0 and 1 reflecting the likelihood of diagnosis. 
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 The algorithm was optimized using Adam method with cross-entropy loss function. The 

initial learning rate was tuned in the range from 1e-4 to 1e-6 including [1e-4, 5e-5, 2e-5, 1e-5, 5e-

6, 2e-6, 1e-6] and was set at 2e-5. The algorithm was implemented using Keras and TensorFlow. 

As early stopping criteria, I set the patience parameter on validation accuracy to 10 epochs. I 

included weight l2 regularization to prevent overfitting with a factor of 1.0. An illustration of the 

framework is shown in Figure 3-2. In this study, I used five (N in Figure 3-2) stages. The feature 

dimension of the first layer is 16 and increases by a factor of two in each subsequent stage. 

 

3.1.2.5 Application to MCI progression prediction 

The classification was trained on AD vs. CN, which presents the largest neuroanatomical contrast 

in the AD spectrum. Whether the model learned using the two ends of the spectrum could inform 

the differentiation of patients in the middle of the spectrum is critical. The model was directly 

applied on the baseline scans of patients diagnosed with MCI since MCI patients are not part of 

the training dataset of the model. AUROC was used to evaluate the prediction performance. 

 

3.1.2.6 Class activation map 

Class activation map (CAM) original proposed by (Zhou et al., 2016), extended and generalized 

in gradient-weighted CAM (grad-CAM) (Selvaraju et al., 2017), has been used in medical image 

analysis field to inform the “attention” of the 2D classification (Feng, Yang, Laine, & Angelini, 

2017). In this study, I generated 3D grad-CAMs to visualize the predictive contribution of brain 

regions to the AD classification task. Importantly, since the map can be generated individually, it 

can be used as an individual neuroanatomical validity report without sacrificing the prediction 
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power of whole-brain based prediction model. I generated the average class activation map for all 

AD patients to demonstrate the average “attention” of the algorithm. 

 For class activation mapping, the classification score can be formulated as follows: 

 

where σ is softmax function,𝑤𝑖  is the learned weight for each feature map 𝐴𝑖 , and 𝑎𝑖 =

∑ 𝐴𝑖(𝑥, 𝑦)(𝑥,𝑦) . Following this formulation, the class activation map can be expressed as follows: 

   

 

3.1.2.7 MRI 2D slice based classification 

Besides the post hoc saliency map based class activation map method, I also propose ablation 

analyses focusing on part of the input data. I tested the classification using 2D CNN with the input 

being three consecutive slices as three channels. This design takes the inter-subject alignment 

precision into consideration (i.e. not extracting just one slice) and also ensuring relative similarity 

among different channels (i.e. not extracting five slices). The network architecture is the same as 

the 3D CNN architecture described above except that the 3D operations are all replaced with the 

corresponding 2D operations. The classification performance on different groups of 2D slices as 

the indication of predictive importance were reported. 

 

𝐴𝐷𝑠𝑐𝑜𝑟𝑒 = 𝜎 (∑ 𝑤𝑖 ∙ 𝑎𝑖
𝑛

𝑖
) 

𝐴𝐷𝐶𝐴𝑀 =∑ 𝑤𝑖 ∙ 𝐴𝑖
𝑛

𝑖
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3.1.2.8 Brain lobe based classification 

Slice-based regional analysis method investigates the predictive regions of the classification from 

imaging perspective, as the coordinate planes are imaging planes. But each slice still represents a 

mixture of multiple regions located at a certain spatial level. It is more appealing to generate 

neuroanatomically meaningful regions and perform classification focusing on these regions 

separately. A probabilistic spatial distribution of different regions was derived from the affinely 

co-registered FreeSurfer segmentations (Bruce Fischl et al., 2002; B. Fischl et al., 2004) from 

1,495 scans as detailed in the 3.1.2.1 Data section. An occurrence probability of 0.5% was used as 

the threshold for the lobe mask generation. The definition of lobes in FreeSurfer segmentation 

nomenclature is referenced in FreeSurfer10, with the exception that temporal lobe also includes 

medial temporal lobe structures (hippocampus, amygdala). I focused on the lobe-level ablation 

study because the brain lobes are functionally and structurally distinct units, and also because finer 

region parcellation results in poor overlap across subjects and inevitable involvement of 

neighbouring regions. 

 

 

3.1.3 Results 

3.1.3.1 AD classification 

The classification performance of AD vs. CN task is shown in Figure 3-3. I evaluated the model 

both on unique MRI sessions and the first scans of unique subjects. Our model achieves 0.980 

                                                 

10 https://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation/ 
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AUROC and 93.3% accuracy at scan level, and 0.990 AUROC and 96.6% accuracy at subject 

level. The AUROC evaluated using hippocampal volume is 0.916. 

 For the independent MIRIAD dataset, the ROC curves can be found in Figure 3-4, showing 

similar performance: 0.980 AUROC and 92.7% accuracy at subject level and 0.987 AUROC and 

94.4% accuracy at scan level. The AUROC evaluated using hippocampal volume is 0.895. 

 The high overall classification accuracy of our model lays a solid foundation for our 

subsequent results investigating regional attribution. The model training process with only baseline 

scans under identical training settings stuck at uniform classification label. 

 

Figure 3-3. ROC curves for AD classification on the test set at (Left) scan level and (Right) 

subject level. The AUROCs are annotated in the figures. 
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Figure 3-4. ROC curves for MRI-based AD classification in an independent dataset MIRIAD 

at the (Left) scan-level and (Right) subject-level. The AUROCs are annotated in the figures. 

 

3.1.3.2 Application to MCI progression prediction 

Remarkably, we found that the classifier trained exclusively on AD and CN patients can also be 

used post hoc to differentiate among those MCI patients who will and will not progress in the near 

term to AD. The ADNI dataset contains MCI patients whose subsequent progression or not to AD 

has been noted retroactively. Ideally, we might train a model exclusively on MCI patients whose 

subsequent progression status has been observed, directly learning to distinguish AD’s prodromal 

stage from other causes of MCI. However, the subset of MCI patients (around 600) is not sufficient 

to train such a classifier but is sufficiently large to serve as an evaluation set. 
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Figure 3-5. ROC curve for MRI-based MCI progression prediction, with the AUROC 

annotated in the figure. 

 To determine the usefulness of our AD vs. CN classifier for recognizing those MCI cases 

that will progress to AD, the imaging data of MCI patients was fed through an AD vs. CN binary 

classifier, interpreting a higher probability of AD as more likely to progress to AD and a higher 

probability of CN as less likely to progress. For this experiment, we trained the AD vs. CN model 

using only baseline scans from subjects diagnosed as either AD or CN at baseline (as detailed in 

the 3.1.2.1 Data section) achieving an AUROC of 0.973 on i.i.d. holdout data. Then we fed our 

evaluation set of MCI patients through the classifier, achieving an AUROC of 0.787 (0.808 when 

including only MCI patients who progressed or stayed stable within 3 years), matching state-of-

the-art performance while using structural MRI data only (I. O. Korolev, Symonds, & Bozoki, 

2016). In Figure 3-5, we plot the performance of our classifier as applied post hoc to the task of 

predicting MCI progression. Note that this evaluation procedure applies the CNN out-of-sample 

to a subset of patients that are not represented in the training set. In general, machine learning are 

liable to break under distribution shift and thus our performance, despite matching the previous 
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state-of-the-art, might still have margin from the ceiling of what we might achieve given adequate 

data. This result supports the concept that the neuroanatomical pattern of MCI partially lies on the 

normal-to-AD continuum. 

 

3.1.3.3 Regionality analyses 

3.1.3.3.1 Class activation map 

The average class activation map for all AD patients overlaid on the MNI152 brain template was 

illustrated in Figure 3-6. A 3D rendering of the iso-surface of the AD class activation map is shown 

in Figure 3-7. We can see from the figures that the average AD/class activation map shows large 

“activation” in hippocampal formation, suggesting the importance of hippocampal formation in 

differentiating AD in our 3D deep CNN model. Since it is not as straightforward to show scattered 

activations in the figure, I generated regional class activation map values to show the extent of less 

focalized regions both for AD (Figure 3-8) and MCI (Figure 3-9). 

 

Figure 3-6. Average class activation map of AD classification overlaid on the MNI152 MRI 

template. The hotspot is on the hippocampal formation. The class activation map is thresholded 

at 0.8. 
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Figure 3-7. 3D rendering of the AD class activation map. The iso-surface is at the level of 0.8. 

 

Figure 3-8. The average regional AD class activation values. The left MTL regions indicated 

with red color show prominence, not as prominent, the right MTL regions are also among the first 

quarter with around 0.5 regional values. 
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Figure 3-9. The average regional MCI class activation values. Similar to the AD class 

activation map, the left MTL regions indicated with red color show prominence. However, the 

activation map is overall more scattered with the highest regions only reaching 0.5 level. Besides 

the left MTL blob, there are two additional prominent blobs in parietal and frontal lobes. 

3.1.3.3.2 MRI 2D slice-based classification 

We also explored a slice-based classification scheme to determine which slices are most predictive 

of AD (Figure 3-10), running the analyses three times, using 2D slices along the sagittal, coronal, 

and axial dimensions. Along each dimension, those slices achieving highest classification 

performance include voxels belonging to hippocampal formation. 
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Figure 3-10. MRI 2D slice based AD classification. (Top row) The classification AUROC on 

the test set using 2D slices at different locations, the red lines indicate the location with highest 

AUROC. (Bottom row) The illustration of slices at the red lines in the top row from the MNI152 

template and the corresponding regional segmentation (the colors follow the FreeSurfer color 

lookup table: yellow - hippocampus, red - entorhinal cortex). 

3.1.3.3.3 Brain lobe based classification 

In addition to the evidence for the importance of hippocampal formation provided by our 2D slice-

based analysis, I also explored a more anatomically-informed method. Here, I explicitly train the 

model on different lobes and cerebellum, masking the others with the masks derived from a 

population probabilistic map. As shown in Table 3-1, the model trained on the temporal lobe, 

which includes hippocampal formation, achieves the highest AUROC of 0.944 and accuracy of 

88%. The next most predictive lobe is the frontal lobe (0.899 AUROC and 83% accuracy). 
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Table 3-1. AD classification performance achieved using individual lobes and cerebellum. 

Lobes Frontal Parietal Temporal Occipital Cerebellum Whole-brain 

AUROC 0.899 0.857 0.944 0.836 0.687 0.980 

Accuracy 83% 78% 88% 74% 67% 93% 

 

3.1.4 Discussion 

3.1.4.1 AD staging and dysfunction spread 

In Braak staging of AD (Braak & Braak, 1991), the dysfunction represented by neurofibrillary 

tangles starts from transentorhinal cortex (TEC) (stage I, II) to limbic regions (stages III and IV) 

and spreads to neocortical at stage V and VI. Additionally, a previous fMRI study has suggested 

cortical spread of dysfunction originating from lateral entorhinal cortex (LEC) (Khan et al., 2014). 

While our findings cannot by themselves establish pathophysiological primacy, they provide 

evidence of structural prominence for the hippocampal formation. These results support the theory 

that the area circumscribing the anterior hippocampal formation is one most affected structural 

region in AD (Killiany et al., 2002). 

 

3.1.4.2 Localization 

Our regional analyses showed that multiple approaches of localization, including class activation 

maps, slice and brain lobe level ablation experiments, suggest that the hippocampal formation is 

the region most predictive of AD. While the interpretation of traditional statistical parametric 

mappings generated from mass-univariate methods (Friston et al., 1994) may be more familiar in 

the medical imaging community, CNNs are often considered harder to interpret, owing to complex 

nonlinear patterns and interactions among voxels that these models capture. As a result, they are 
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often considered to be black-boxes, useful for pattern recognition and classification but less 

amenable to interpretation. The trade-offs between separability and interpretability have already 

been discussed in multivariate based analysis, and is becoming more obvious with the more 

complex architecture of deep neural networks. 

 However, this work highlights that through a combination of evidence produced by both 

heuristic saliency-map-based interpretations and rigorous slice and lobe level ablation studies, 

CNNs can be used not only for predictions but also to provide insights with likely neurobiological 

underpinnings. This work presents an important case study bridging the separability and 

interpretability. 

 While the hippocampal region does appear especially predictive of AD, we emphasize that 

all regions offer predictive values. Thus, in practice, for building tools to aid in the diagnosis of 

AD, and for predicting progression to AD among the MCI population, we recommend training 

models that act upon whole brain volumes. Indeed, our models acting upon whole brain volumes 

achieved the best AUC as compared to those acting upon any single slice or lobe. 

 This work relates to the multiple pathologies observations in AD (Power et al., 2018), and 

argues the focal neuroanatomical atrophy in hippocampal formation potentially unifies 

Alzheimer’s disease in the presence of multiple pathologies. Since there is not a quantitative and 

meaningful local measure of structural information from structural MRI to do simple whole-brain 

voxel-based analysis or linear multivariate analysis, we deem our current approach best suited for 

validating this argument. 
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3.1.4.3 Prodromal disease classification using progressed cases 

This study suggests the value of training a model on anchored disease or non-disease states with 

the utility of applying that model on classifying prodromal disease states; in this case MCI subjects 

who progress to AD. Many neurological and psychiatric diseases have known prodromal states, 

reflecting either mitigated or absent symptoms, or biomarkers that do not meet criteria for disease. 

These individuals are considered in a “high-risk” category, whereby only future classification (or 

failure to convert within a time frame) determines whether an individual had prodromal disease or 

another distinct illness. Neuroimaging may be sparse for these groups (due to difficulty in 

recruiting, for example, especially for rarer diseases) and such neuroimaging findings may be too 

subtle for traditional volumetric or segmentation based single subject analysis. By using a deep 

learning network enriched with data from confirmed disease states and controls, such a network 

may have value in screening for disease in broad populations, where the advanced disease has a 

distinct structural imaging signature which can easily and quickly be applied to high-risk states. 

 

3.1.4.4 Applicability and Practicality 

One advantage of our approach compared to many other neuroimaging methods is the range of 

MRI images onto which this technique can be feasibly applied. Given that the only pre-processing 

steps required are brain extraction and registration, this technique could provide a classification in 

a few minutes for any comparable T1-weighted image. Furthermore, the model can be retrained 

with more data, including data with noise or potential artefact that might prevent other standard 

imaging analytic techniques. It is possible that the retrained model could account for such artefacts 

better than traditional analytic streams. 
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 The localization observations also have potential practical implications for acquisition. 

Acquisition targeting a focal field of view can facilitate diagnosis of specific disorders in the event 

of any time or condition constraints. And, it is important to note that the proposed method is able 

to generate a summary score for the structural AD-like pattern with very low computational cost 

at inference comparing with most of the current segmentation-based models. This is very critical 

in timely diagnosis and evaluation. Additionally, the computational requirement for a study this 

size was modest, both in cost and time, and easily adaptable into a pipeline. 

 

3.1.4.5 Limitations 

This study has several important limitations. Firstly, each MRI, even when multiple scans from 

the same subject are available, are treated individually. Thus our dataset contains multiple scans 

from the same individual and thus those individuals that have received many scans are over-

represented relative to those who undergo fewer scans in model training and evaluation. 

Distribution of the number of scans per subject can be found in Figure 3-11. In order to ensure that 

the multiple scans per person do not introduce any target leaks into our learning problem, we take 

care to construct our training, validation and testing splits on a per-individual (vs. per-scan) basis, 

isolating each subject to only one split. Still it is worth noting that the most heavily scanned 

individuals contribute more heavily to the learned model and to the evaluation. Conceivably, if 

one were interested in assessing the accuracy of predictions on a per-individual level, one might 

re-weight the scans in the test set so that each individual contributed equally to the final score. 
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Figure 3-11. MRI sessions per subject: (left) scans of cognitively normal subjects, (right) 

scans of AD subjects. 

 Additionally, we note that our labels used in both training and evaluation are not ground 

truth per se as they are based on physicians’ assessments via clinical criteria in vivo while true 

diagnosis can only be confirmed at present through neuropathology, requiring post-mortem brain 

biopsy. Although ante- and post-mortem concordance is generally found to be high, the availability 

of ground truth labels might help improve diagnosis (Beach, Monsell, Phillips, & Kukull, 2012). 

 The current study aims to make predictions about the diagnosis at the time of scan, which 

permits different diagnosis labels of multiple scans of the same subjects. Future studies with the 

goal of predicting longitudinal progression may define the class labels based on the most recent 

diagnosis label and the follow-ups. 

 The probabilistic spatial distribution used in brain lobe based classification experiment can 

be further optimized to be more reflective of general population but is not the aim and beyond the 

scope of this study. 
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3.1.4.6 Implications for the present AD biomarker system 

The current AD biomarker system mainly consists of amyloid, tau, and neurodegeneration (A/T/N) 

(Clifford R. Jack et al., 2016), and some emerging biomarkers (Scott A. Small, Simoes-Spassov, 

Mayeux, & Petsko, 2017), although studies have shown the limitation of the current classification 

system reaching enough consistency to be used in the clinical setting (Illán-Gala et al., 2018). 

Machine learning could potentially bridging different biomarkers. In structural MRI, we can 

develop multiple models that provide structural correlates of different categories of biomarker 

including tau, Aβ. In this way, we are generating tau-informed or Aβ-informed neurodegenerative 

biomarkers. Similarly, we could derive Aβ measures from tau-PET, this way generating Aβ-

informed tau biomarkers. When used for prodromal state detection, one way to interpret the 

measures is to extract and limit information relevant to the characteristics of an earlier phase. A 

preliminary analysis of generating CSF biomarker correlates from structural MRI was included in 

the appendix, the estimation performance still has room to improve but demonstrate the proof-of-

concept. 

 This also has further practical implications. We can transfer the rich biomarker information 

from large-scale initiatives such as ADNI to other small-scale applications. 

 

3.1.4.7 Future work 

Our framework is sufficiently general that it can be easily extended to other diseases such as 

schizophrenia, Parkinson’s disease (PD), etc. and to other MRI contrasts such as CBV, CBF or 

even to other imaging modalities such as PET, SPECT. One promising direction is a large-scale 

CBV study enabled by the recently proposed retrospective CBV technique (Feng, Hamberger, et 

al., 2018). Moreover, our ability to learn good representations for AD prediction could be brought 
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to bear on other problems that might be supported only by smaller datasets. Following a number 

of successes in deep learning applications ranging from computer vision to natural language 

processing, we might employ transfer learning, fine-tuning the representations from our AD 

predictor, together with other sources of information such as age, gender, functional imaging 

measures, neuropsychological measures, CSF biomarkers, etc. to new tasks. 

 

3.1.4.8 Conclusion 

In this study, we proposed an AD diagnosis framework based on deep 3D CNN model using 

structural MRI, empowered with the inclusion of longitudinal scans. The proposed framework 

demonstrates high classification performance in AD vs. CN. In addition, we demonstrated high 

accuracy in MCI progression prediction applying the model trained on AD vs. CN classification 

to the MCI subgroup. Furthermore, through class activation map and rigorous slice and lobe-level 

ablation analyses, we pinpointed hippocampal formation as the most predictive regions for AD 

classification, affirming the prominence of hippocampal formation in AD diagnosis, and 

demonstrating the importance of regionality even in highly complicated deep neural network 

models. And importantly, the proposed classification and regional analyses methods constitute a 

general framework that can easily be applied to other disorders and imaging modalities. 
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3.2 Comparative studies to other AD pathology measures in prodromal AD 

detection 

3.2.1 Introduction 

Alzheimer’s disease (AD) progresses through a prodromal stage that presents clinically as mild 

cognitive impairment (MCI), before progressing to dementia (Petersen et al., 1999). MCI’s 

prevalence ranges between 7% to 25% of the aging population, depending on age-group and other 

demographics (Sachdev et al., 2015; Vos et al., 2015; Ward, Arrighi, Michels, & Cedarbaum, 

2012), but only a portion of MCI patients have prodromal AD. With increased awareness and 

concern over AD, a growing number of MCI patients are presenting to health care providers, 

wanting to know whether their symptoms are caused by early stages of the AD, and if so how 

quickly they will progress to dementia.  

 Biomarkers hold promise in aiding the clinical evaluation of MCI, and biomarkers 

currently exist for the three core neuropathologies of AD—amyloid pathology, tau pathology, and 

neurodegeneration (Clifford R. Jack & Holtzman, 2013; Olsson et al., 2016). The first two can be 

estimated from CSF levels of Aβ and tau, or by indirect visualization using PET-sensitive 

radioligands. Neurodegeneration, a term currently used to encompass neuronal or synaptic loss 

(Khan et al., 2014), can be estimated from PET-based measures of parietal cortex metabolism, or 

MRI-based measurements that reflect the structural integrity of the hippocampal formation.  

 Large scale studies in patients with AD dementia are beginning to establish reliable 

diagnostic cutoffs from their parametric distributions. Applying these dementia cutoffs to 

dichotomize MCI patients into those who are biomarker “positive” or “negative” is one approach 

to determine which biomarker category (amyloid, tau, neurodegeneration) using which biomarker 
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technology (biofluidics or neuroimaging) best classifies patients with prodromal AD. Survival 

analyses can then be used to determine which biomarkers best predict progression to AD dementia. 

This approach, however, is potentially problematic since the cutoffs are derived from patients in 

the dementia stage of disease (L. M. Shaw et al., 2009). Biomarkers shift over the chronically 

progressive course of the disease, particularly dynamic during its early stages (Anne M. Fagan et 

al., 2014) so that this design is prone to both type I and type II errors.  

 An alternative approach that can sidestep this problem is to rely on conversion to dementia 

information to retroactively dichotomize MCI patients into those with and without prodromal AD 

at baseline, and use receiver operating analyses to determine which biomarker best classifies 

disease. The challenge with this design is that, based on current estimates, approximately 5 years 

of clinical follow-up is needed in order to allot sufficient time for the majority of prodromal AD 

patients to clinically manifest (Mitchell & Shiri-Feshki, 2009; Visser, Kester, Jolles, & Verhey, 

2006). Thanks to the ADNI, which has been acquiring biomarker data in MCI patients since 2005, 

this design is now possible. Here, we apply this second experimental design to ADNI data. Based 

on the understanding of disease pathophysiology and previous studies (Vemuri et al., 2009), we 

hypothesize that biomarkers of amyloid and tau pathology would outperform other biomarkers in 

classifying prodromal AD, but that biomarkers of neurodegeneration might outperform others in 

predicting time to progression.  

“Deep learning” is a subset of machine learning that has proven successful in categorical 

image classification (LeCun et al., 2015), and when applied to MRI might prove useful in AD 

detection (Feng, Yang, Lipton, Small, & Provenzano, 2018). We have recently developed a deep 

learning algorithm that is distinguished by two assumptions: that a classifier based on individual 

voxels would be superior over one based on anatomical parcellation; and, that given the complex 
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three-dimensional organization of the brain, a classifier based on 3D information would be 

superior over one based on 2D information. We have used this algorithm to derive from 

conventional MRIs individual “deep learning MRI scores” (DLMRI scores), and have found that 

it classifies AD with high accuracy (Feng, Yang, et al., 2018). Remarkably, the DLMRI scores are 

dominated by differences in the medial temporal lobe, which contains the entorhinal cortex and 

hippocampus. We hypothesize that, compared to other MRI-based measures of the entorhinal 

cortex or hippocampus, DLMRI scores will improve MRI’s clinical utility.  

  

3.2.2 Methods 

3.2.2.1 ADNI cohort 

Five subsets of subjects from ADNI cohort were tested in this study: 1) ADNI MCI cohort with 

baseline structural MRI and in vivo CSF biomarker (N = 384); 2) ADNI MCI cohort with baseline 

structural MRI, in vivo CSF biomarker, FDG-PET and amyloid-PET (AV45-PET) measures (N = 

248); 3) ADNI MCI longitudinal cohort with at least one follow-up measure of in vivo CSF 

biomarker and structural MRI from the same visit in addition to the baseline structural MRI and 

in vivo CSF biomarker (N = 238); 4) ADNI cohort with antemortem MRI and postmortem 

neuropathology (N = 44); 5) ADNI cohort with tau-PET (AV1451-PET) (N = 296). The detailed 

criteria in each subset are introduced in the following sections. A diagram with subject inclusion 

and exclusion criteria for the main dataset used in this study, subset 1 and 2, can be found in Figure 

3-12. 
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Figure 3-12. Participant selection flow-chart. 
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3.2.2.1.1 ADNI MCI cohort with in vivo CSF biomarker 

Among all MCI patients with follow-up, we further confined our cohort by constraining the MCI 

stable criteria. The raw distributions of the follow-up lengths in the MCI-stable group, and the 

conversion time of MCI-progression group are shown in Figure A-4. We essentially excluded the 

left tail of the distribution in the MCI-stable group to decrease the proportion of potential 

prodromal AD incidence in the MCI-stable group.  

 We identified 384 baseline MCI subjects who have both MRI and in vivo CSF biomarkers 

at baseline (L. M. Shaw et al., 2009). Patients in MCI-stable group stayed stable in the follow-up 

visits and have a follow-up period of at least 4 years. The demographic information and the 

baseline measures compared are summarized in Figure 3-13 (and for more details, see Figure A-4). 

In this constrained cohort, MCI-progression takes up 53.4% of the whole population. Within this 

large cohort, we generated and compared with measures including: in vivo CSF biomarkers, 

morphometric measures, and neuropsychological measures.  

3.2.2.1.2 In vivo CSF biomarker 

CSF tau levels, reflective of neurofibrillary tangle, and CSF Aβ levels, reflective of amyloid 

pathology, were included in the analysis (Tapiola et al., 2009). Additionally, the tau/Aβ ratio, 

which has been shown to best capture AD (A. M. Fagan et al., 2007), was also included.  CSF was 

acquired at ADNI sites in accordance to the ADNI acquisition protocols and analyzed as 

previously described (L. M. Shaw et al., 2009).  The median values provided by ADNI were used. 

3.2.2.1.3 Morphometric measures 

We used FreeSurfer 6.0 (Bruce Fischl et al., 2002; B. Fischl et al., 2004) to segment the same set 

of scans and derive regional morphometric measures. Hippocampal (HC) volume, entorhinal 
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cortex (EC) volume, entorhinal cortex thickness were used as AD vulnerable structural measures. 

Hippocampal and entorhinal volume were normalized by the intra-cranial volume (ICV). 

 

Figure 3-13 . Distribution and demographics of study participants. Distribution frequencies of 

the patients with amnestic mild cognitive impairment (MCI) at baseline, who either remained 
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stable (MCI stable) or progressed to Alzheimer’s dementia (MCI progression), organized by latest 

follow-up years and conversion years. The dark blue bars indicate subjects included in the study. 

Demographic and baseline biomarker data are listed in the table for the MCI stable and MCI 

progression groups. 

3.2.2.1.4 Neuropsychological measures 

All participants have neuropsychological measures available. For neuropsychological batteries, 

we tested the MMSE (Mini-Mental State Examination) score and the RAVLT (Rey Auditory 

Verbal Learning Test) retention score. RAVLT retention measure equals the number of delayed 

recalled words divided by the number of words learned in trial 5 and has been found to be one of 

the most sensitive to AD (Chang et al., 2010). 

3.2.2.1.5 ADNI MCI cohort with PET measures 

To compare DLMRI score with FDG and amyloid-PET measures, we further confined the subset 

into subjects who also had received baseline FDG and AV45-PET. We identified N = 248 subjects 

in this subset, including 154 in MCI stable group and 94 in MCI progression group. We used the 

composite FDG and composite AV45 scores provided by ADNI for analyses (Jagust et al., 2015). 

The FDG composite measure is the average FDG uptake of angular, temporal, and posterior 

cingulate (Susan M. Landau et al., 2011). The AV45 composite measure is the average AV45 

SUVR (standard uptake value ratio) of the frontal, anterior cingulate, precuneus, and parietal 

cortex relative to the cerebellum (S. Landau & Jagust, 2015). 



77 

 

3.2.2.1.6 ADNI MCI longitudinal cohort 

To investigate the longitudinal association of DLMRI score with CSF biomarkers, among the 384 

subjects with baseline CSF biomarkers, we identified 238 subjects with at least one follow-up 

measure of CSF biomarkers and structural MRI from the same visit. 

3.2.2.1.7 ADNI cohort with neuropathology 

Among 64 subjects with brain autopsy data, we identified 44 and 29 subjects with an antemortem 

MRI scan within two and one years before death, respectively. The closer to autopsy the last MRI 

was acquired, the more consistency we would expect for the measures from the two different 

sources. We derived DLMRI scores on the last antemortem structural MRI scans in this cohort. 

We analyzed the association with neuropathological measures including the Braak stage for 

neurofibrillary tangles (Braak & Braak, 1991) and the Thal phase for amyloid plaques (Thal, Rüb, 

Orantes, & Braak, 2002). Additional neuropathological measures include density of neocortical 

neuritic plaques (CERAD score, Consortium to Establish a Registry for Alzheimer's Disease) 

(Mirra et al., 1991), and the Alzheimer's disease neuropathologic change (ADNC) score (Hyman 

et al., 2012). 

3.2.2.1.8 ADNI cohort with tau-PET 

ADNI began acquiring PET scan using the AV1451 radioligand, which binds neurofibrillary 

tangles (Marquié et al., 2015), in the late phase of ADNI2 and resumed in ADNI3. Due to the 

smaller number of subjects with available longitudinal data or follow-up, we performed cross-

sectional analyses on these subjects with tau-PET. We used the regional tau measures generated 

by the UC Berkeley group provided by ADNI (Jagust et al., 2015). 
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3.2.2.2 Deep learning derived MRI score 

The deep learning model is a 3D convolutional neural network (CNN) model, and was trained on 

the brain-extracted T1-weighted structural MRI scans from the ADNI cohort of AD and 

cognitively normal subjects (Feng, Yang, et al., 2018). The continuous output from the model is 

reflective of the progressive structural patterns of AD pathology. We refer to it as a deep learning 

derived MRI (DLMRI) score. All subsequent analyses were performed using DLMRI score. More 

information about the deep learning model development and validation can be found in section 3.1 

and in our previous paper (Feng, Yang, et al., 2018). 

 

3.2.2.3 Statistical analysis 

3.2.2.3.1 ROC analysis 

We performed receiver operating characteristic (ROC) analysis for MCI progression prediction. 

We analyzed the standardized residuals controlling for age, sex, and APOE ε4 frequency using 

linear regression. We used DeLong test (DeLong, DeLong, & Clarke-Pearson, 1988) to test for the 

significance of the differences in the AUROCs (area under the ROC curve) from different 

measures using pROC R package (Robin et al., 2011). 

3.2.2.3.2 Survival analysis 

Cox proportional hazards regression models were fit to examine the association between baseline 

measures and time to conversion to AD dementia from MCI, controlling for age, sex, and APOE 

ε4 frequency, using survival R package (Therneau & Grambsch, 2013). MCI-stable subjects are 

included in the model as censored data with the last visit as the censored point. The high-risk and 
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low-risk survival curves were generated with 75% percentile and 25% percentile of the observed 

measures, respectively. 

3.2.2.3.3 Longitudinal analysis 

The longitudinal association between DLMRI score and CSF biomarkers was studied by 

examining the deviation from baseline measurements for each participant over time. The changes 

in either CSF biomarker or DLMRI score of all follow-up visits from baseline were used to 

estimate the slope  of the change in tau (tau), Aβ (Aβ), and tau/Aβ ratio (tau/Aβ) versus the 

change in DLMRI score (DLMRI) for each participant using linear regression through the origin. 

Each participant was represented by the point based on the last follow-up visit’s DLMRIlast (x-

coordinate) and the fitted change DLMRIlast (y-coordinate) of the respective measure. The last 

follow-up visit was used to anchor the representation of the participant in order to reflect the full 

follow-up. A correlation analysis was performed across participants. A linear regression model 

was fit across participants and illustrated. A single-subject illustration is shown in Figure 3-14.  

 

Figure 3-14. An illustration of the longitudinal measure derivation for a sample participant. 

The follow-up change measures from baseline were illustrated in the blue circles with the 



80 

 

corresponding visits annotated. Based on the follow-up change measures, a linear fit with slope β 

passing through the origin was estimated and illustrated as a red line. The DLMRI score at last 

visit (ΔDLMRIlast, x-coordinate) and the corresponding fitted change (βΔDLMRIlast, y-

coordinate), indicated as the diamond in the figure, can be calculated for each participant regardless 

of frequency of follow-up. 

 And the longitudinal analysis pipeline with MMSE vs. DLMRI score as an example is 

shown in Figure 3-15. 

 

Figure 3-15. Longitudinal analysis pipeline with MMSE vs. DLMRI score as an example. 

(Left) The raw longitudinal data with each colored line indicating one subject and each dot 

representing one visit time-point; (Mid) The linear fit of each individual, each line segment starts 

from (0, 0) and ends at (DLMRIlast , DLMRIlast ); (Right) The linear fit of (DLMRIlast , 

DLMRIlast ) across subjects. 

3.2.2.3.4 Correlational analysis 

We performed partial correlation between baseline DLMRI score and in vivo CSF biomarkers, 

regional tau-PET measures, controlling for age, sex, and APOE ε4 frequency. As the Braak staging 
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of neurofibrillary tangles and the Thal phase of amyloid plagues are both rank ordinal measures, 

we correlated the DLMRI score with the neuropathological measures using Spearman correlation. 

 

3.2.3 Results 

3.2.3.1 Classifying prodromal Alzheimer’s disease 

The ROC analyses revealed that the DLMRI score outperformed all other morphometric, 

neuropsychological, and CSF biomarker based measures at classifying MCI-stable group and 

MCI-progression group, with a 0.788 AUROC. AUROC (DeLong Test p values) for other 

measurements are Aβ: 0.0702 (0.0141), tau 0.682 (0.0161), tau/Aβ 0.703 (0.0161), hippocampal 

volume 0.733 (0.0484), entorhinal cortex volume 0.648 (2.01E-6), entorhinal cortex thickness 

0.685 (1.71E-4), MMSE 0.648 (6.70E-5) and RAVLT retention 0.686 (2.28E-3).  
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Figure 3-16. Classifying prodromal Alzheimer’s disease. By comparing the ‘MCI stable’ to the 

‘MCI progression’ groups, ROC curves show that the ‘deep learning MRI’ (DLMRI) scores were 

found superior in classifying prodromal Alzheimer’s disease (indicated in red). DLMRI scores 

outperformed (left panel) CSF measures of Aβ, tau, or tau/Aβ; MRI measures of hippocampal (HC) 

or entorhinal cortex (EC) volume or thickness; clinical measures using the modified mental status 

exam (MMSE), the retention of the Rey Auditory Verbal Learning Task (RAVLT) (left panel); 

and, in a smaller subset (right panel), PET measures of amyloid using the AV45 radioligand or 

metabolism using fluorodeoxyglucose (FDG). Specific area under the curve (AUROC) values for 

each measure, and statistical probability values for each comparison, are shown in the table on the 

bottom panel. 

 We observe from the ROC curves in Figure 3-16 that the ROC curve of DLMRI score has 

higher overall sensitivity and specificity compared to the other measures for almost all levels. The 

differences in AUROC are statistically significant as described above and shown in Figure 3-16.  

 In the subset of subjects with PET measures available, we show the DLMRI score achieves 

better classification performance (AUROC of 0.815) than the amyloid-PET composite score 

(0.751) and FDG-PET composite score (0.782), though the difference is not statistically significant 

(p = 0.154 and 0.330, respectively), as shown in Figure 3-16. 

 

3.2.3.2 Predicting progression to AD dementia 

Demonstrating superior performance at identifying prodromal AD, we further compared the 

association of different measures with the time to conversion to AD dementia in Figure 3-17.  



83 

 

 

Figure 3-17. Predicting progression to Alzheimer’s Dementia. Survival analyses were 

performed comparing the DLMRI scores to other measures, and example curves illustrate that the 

DLMRI score (left panel) outperformed the CSF measure of the tau/Aβ ratio (right panel). The 

high risk (indicated by red) and low risk (indicated by blue) curves were fitted from 75% and 25% 

percentile of the measures respectively. The shaded area indicates the 95% confidence interval. 
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The DLMRI scores outperformed CSF Aβ, tau, or tau/Aβ, HC volume, EC volume, EC thickness, 

MMSE, RAVLT retention, amyloid-PET measure, and is comparable to FDG-PET measure, as 

shown in the table on the bottom panel. 

 The patterns are similar to the classification results in the previous section. DLMRI score 

shows better prediction capability (|z| = 11.0, p = 4.35E-28) than structural morphometric measures 

(HC volume |z| = 8.80, p = 1.35E-18, EC volume |z| = 6.02, p = 1.75E-09, EC thickness |z| = 7.42, 

p = 1.21E-13) neuropsychological measures (MMSE |z| = 5.72, p = 1.07E-08, RAVLT retention 

|z| = 6.88, p = 6.12E-12), CSF biomarkers (Aβ |z| = 6.37, p = 1.87E-10, tau |z| = 5.70, p = 1.18E-

08, tau/Aβ |z| = 5.41, p = 6.29E-08), and amyloid-PET composite scores (DLMRI PET cohort |z| 

= 9.05, p = 1.40E-19, AV45 |z| = 7.12, p = 1.04E-12); and comparable to the predictive 

performance of FDG-PET (|z| = 9.11, p = 8.14E-20). We illustrate the survival curves of both high 

and low DLMRI scores and tau/Aβ ratios in Figure 3-17, at 75% and 25% percentile of the baseline 

measures. 

 

3.2.3.3 Correlations with AD pathology 

Besides comparative studies with other measures in the prodromal AD classification and time to 

conversion prediction, we also studied the association of DLMRI score with reported AD 

pathology measures. It was important to determine whether the DLMRI score is linked to amyloid 

or tau pathology. Cross-sectionally, DLMRI score is significantly correlated with both Aβ level (r 

= -0.190, p = 1.86E-4), tau level (r = 0.225, p = 9.00E-6), and the tau/Aβ ratio (r = 0.209, p = 

3.90E-5), as also visualized in Figure A-5. The correlation with tau is marginally stronger than Aβ. 

Longitudinally, as shown in Figure 3-18, the DLMRI change is significantly associated with the 
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longitudinal change in tau levels (r = -0.205, p = 1.50E-3) and tau/Aβ ratio (r = -0.208, p = 1.26E-

3), but not with Aβ (r = -8.18E-3, p = 0.900). 

 And we further studied the association with the neuropathological measures, which are the 

most definitive way of characterizing AD, though with various time lag from the clinical visits in 

the lifetime. We show DLMRI score is more associated with Braak staging of neurofibrillary 

tangles than the Thal phase of amyloid plagues, as shown in Figure 3-18 and also visualized in in 

Figure A-6. 

 

Figure 3-18. The “deep learning MRI” score correlates with tau pathology. The scatter plots 

illustrate the relationship between changes over time in the DLMRI scores vs. changes in Aβ (left 

panel), changes in tau (middle panel) and changes in tau/Aβ (right panel). Each data point indicates 

one participant’s change of last DLMRI score from baseline (DLMRIlast), plotted against their 

change in biomarkers measures. The black solid lines are the linear fits across participants, 

showing that changes in the DLMRI score is most strongly correlated with changes in tau over 
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time. The table on the bottom panel lists the correlations between antemortem DLMRI scores to 

postmortem-derived Braak stage of neurofibrillary tangles and the Thal phase of amyloid plaques, 

with an MRI-autopsy interval of either 1 year or 2 years, showing that DLMRI scores are most 

strongly correlated with tau pathology.  

 Overall, we demonstrate DLMRI score strongly linked to global levels of both ante- and 

postmortem tau measurements. Thus, we further analyzed the regionality of the link with tau levels 

by looking into a tau-PET dataset, and show strongest correlations in MTL, particularly entorhinal 

cortex (r = 0.449, p = 1.66E-15). The full list of analysis results can be found in Table 3-2 for 

cortical regions and Table 3-3 for subcortical regions. 

Table 3-2. Partial-correlation statistics between cortical regional tau-PET measures and 

DLMRI score. The partial correlations control for age, gender, and APOE ε4 frequency. The 

regions are sorted in the order of correlation coefficients. 

cortical regions corr p-value 
 

cortical regions (cont.) corr p-value 

entorhinal 0.449 1.66E-15 
 

insula 0.347 1.79E-09 

inferiortemporal 0.440 7.45E-15 
 

lateralorbitofrontal 0.346 2.04E-09 

fusiform 0.428 4.16E-14 
 

precentral 0.337 5.41E-09 

temporalpole 0.427 5.16E-14 
 

medialorbitofrontal 0.324 2.39E-08 

parahippocampal 0.422 1.01E-13 
 

lateraloccipital 0.321 3.06E-08 

middletemporal 0.420 1.49E-13 
 

rostralmiddlefrontal 0.318 4.25E-08 

inferiorparietal 0.416 2.63E-13 
 

lingual 0.317 4.65E-08 

precuneus 0.416 2.66E-13 
 

cuneus 0.317 4.79E-08 

isthmuscingulate 0.416 2.77E-13 
 

parstriangularis 0.307 1.30E-07 

bankssts 0.415 3.03E-13 
 

paracentral 0.296 3.83E-07 

caudalmiddlefrontal 0.410 6.01E-13 
 

pericalcarine 0.293 4.89E-07 
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superiorparietal 0.389 1.06E-11 
 

parsorbitalis 0.291 5.83E-07 

posteriorcingulate 0.388 1.17E-11 
 

caudalanteriorcingulate 0.277 2.06E-06 

superiorfrontal 0.380 3.48E-11 
 

postcentral 0.271 3.63E-06 

superiortemporal 0.379 3.79E-11 
 

rostralanteriorcingulate 0.270 3.75E-06 

supramarginal 0.377 5.33E-11 
 

frontalpole 0.222 1.57E-04 

parsopercularis 0.351 1.19E-09 
 

transversetemporal 0.193 1.09E-03 

 

Table 3-3. Partial-correlation statistics between subcortical regional tau-PET measures and 

DLMRI score. The partial correlations control for age, gender, and APOE ε4 frequency. The 

regions are sorted in the order of correlation coefficients. 

Subcortical regions corr-coef p-value 

amygdala 0.454 7.82E-16 

putamen 0.336 6.37E-09 

hippocampus 0.272 3.34E-06 

pallidum 0.270 4.03E-06 

ventral DC 0.121 0.0420 

caudate 0.0923 0.121 

thalamus-proper 0.0889 0.135 

 

3.2.4 Discussion 

Supporting one hypothesis of this study, we find that DLMRI scores outperformed other MRI-

based measures in both classifying prodromal AD and in predicting progression to dementia. 

While strongly influenced by changes in the entorhinal cortex and hippocampus, the DLMRI 

scores are distinguished from other MRI-based measures by incorporating the entire brain in its 



88 

 

classification, agnostic of tissue type, volume or other pre-processing steps, likely accounting for 

its superior performance. Additionally, compared to measures of volume or thickness, the DLMRI 

scores are based on signal variability within individual voxels, and so is predicted to be more 

sensitive to synaptic loss, an earlier step in the neurodegenerative process (Khan et al., 2014).  

 Refuting another hypothesis, we found that DLMRI scores performed at least as well and 

typically outperformed biomarkers of amyloid and tau pathology in classifying prodromal AD. We 

do not consider this unexpected finding a challenge to the primacy of amyloid and tau pathology 

in the pathophysiology of AD (Clifford R Jack et al., 2013). DLMRI scores are found strongly 

linked to tau pathology in the entorhinal cortex, a region where AD pathology begins (Braak & 

Braak, 1991). The DLMRI scores’ superior performance likely reflects this sensitivity. It is 

possible, therefore, that tau-PET would outperform DLMRI score and other biomarkers. ADNI 

has only begun acquiring tau-PET in 2015, and there is currently insufficient data to test this 

prediction in our experimental design.  

 The fact that DLMRI scores outperformed biomarkers of amyloid and tau pathology in 

predicting time to dementia prediction is less surprising. As a biomarker of neurodegeneration, 

this finding agrees with prior studies (S.M. Landau et al., 2010; Vemuri et al., 2009) and with the 

current model for the temporal sequence of AD pathophysiology (Clifford R Jack et al., 2013). 

Since neurodegeneration occurs last, accurate biomarkers of it are most proximal to the 

development of dementia.  

 The strength of this study is also its potential weakness. Relying on progression to AD 

dementia as a way to retroactively identify patients with prodromal AD sidesteps the limitation 

that precise biomarker cutoffs for prodromal AD are not yet known. We designed the analysis 

based on prior studies, that suggest that the majority of MCI patients with prodromal AD will 
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progress within 4-5 years (Visser et al., 2006). Our analysis confirmed this assumption Figure A-4. 

Furthermore, approximately half of the MCI cohort ended up having prodromal AD, which agrees 

with previous approximations (Vos et al., 2015). Still, there are likely a minority patients in the 

stable MCI category who are harboring prodromal AD at baseline. The number of misclassified 

patients is likely to be low (Vos et al., 2015), and so this potential imprecision would not be 

expected to significantly alter our results. Tracking stable MCI patients for longer periods might 

address this concern, but would in fact raise a new one. Because of AD’s high incidence in older 

populations, when tracking patients for a decade or more, some are expected to develop AD de 

novo after the baseline evaluation. At the very least, we can conclude that the results are beyond 

reproach for a 5-year time window after initial evaluation, a clinically meaningful epoch for both 

patients and health care providers.  

 Validating that deep learning can enhance the clinical utility of MRI is the most important 

implication of this study, we consider this study a proof-of-principle for deep learning, and not 

necessary for our specific version of it.  

 The current standard of care when evaluating a patient with MCI suspected of having AD 

is to order “neuroimaging studies” (Albert et al., 2011), most typically the conventional MRIs from 

which the DLMRI scores are derived. The rationale for this recommendation and its routine 

clinical implementation is not to “rule in” AD, but rather to exclude other non-neurodegenerative 

causes of dementia, such as strokes, bleeds, and tumors. Deep learning algorithms that can extract 

useful information from MRI’s already acquired, for prodromal AD detection, have the additional 

advantage of reducing patient burden and cost incurred by lumbar punctures, injection of 

radioactive ligands, or other additional testing.  
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3.3 Age estimation in normal aging 

3.3.1 Introduction 

Age estimation is a way to study normal aging from a discriminative perspective, summarizing the 

age-related patterns of individuals and can also reveal the underpinnings that characterize the aging 

process. Besides normal aging, age factors into most diseases. Patterns that occur through the 

normal aging process must be accounted for when studying the diseases-specific patterns. The 

deviance of the estimated age from the chronological ages have shown utility in certain diseases, 

especially those thought to emulate advanced age state. 

 Brain age can be specifically defined as the estimated age using brain characteristics based 

on normal aging population. It can be regarded as fitting a complicated normal reference equation 

of age, deviance of which reflects abnormality. Brain age derived this way has been linked to 

education and self-reported physical activity (Steffener et al., 2016), and has been utilized in 

disease characterization including AD (Gaser et al., 2013), schizophrenia (Hugo G. Schnack et al., 

2016), traumatic brain injury (Cole, Leech, & Sharp, 2015), etc., where deviation from normal 

aging trajectory implicates disease state. 

 There are three factors embedded in the definition of brain age: 1) the brain characteristics, 

2) normal aging population, 3) estimation. 

 The brain characteristics can be derived from many sources, neuroimaging is the most 

common and comprehensive way to characterize the brain state in vivo. Within neuroimaging, 

there are studies using EEG (Electroencephalogram) (Al Zoubi et al., 2018), DTI (diffusion tensor 

imaging) (Mwangi, Hasan, & Soares, 2013), resting state BOLD fMRI (H. Li, Satterthwaite, & 

Fan, 2018), which focus on different aspects of brain states. 
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 But the most common modality in brain age estimation is T1w structure MRI which reveal 

anatomical characteristics of the brain. Neuroanatomical characteristics are sensitive and robust 

biomarkers for aging process (Walhovd et al., 2011). Practically, as one most widely available and 

standardized neuroimaging modality, T1w structural MRI can be easily acquired for a large 

population. And within structural MRI modality, studies have utilized derived summary variables 

such as regional volumes or thickness (Valizadeh, Hänggi, Mérillat, & Jäncke, 2017), and also raw 

MRI scans (Cole et al., 2017). 

 And secondly, a dataset that best represent the studying sample is crucial since the model 

reflects the knowledge distilled from the training population. In this study, we propose using a 

dataset aggregated from publicly available multi-center neuroimaging datasets, which represent a 

diverse healthy population. This healthy study population is both in a larger scale than any of the 

age estimation studies before and is also carefully designed to be best suited for age estimation 

task with even age distribution across adult life span. 

 Lastly, with adequate study population and brain characteristics, the age is estimated based 

on statistical machine learning frameworks. Another way to formulate this problem is to extract 

generalizable features from the brain that can best capture the chronological age of a person given 

that the person is experiencing typical aging process that is present in general healthy population. 

Numerous traditional machine learning methods have been proposed for age estimation including 

relevance vector machine (Ashburner, 2007; Franke, Ziegler, Klöppel, & Gaser, 2010), Gaussian 

process (Gutierrez Becker, Klein, & Wachinger, 2018; Lancaster, Lorenz, Leech, & Cole, 2018), 

random forest (Konukoglu, Glocker, Zikic, & Criminisi, 2013), hidden Markov model (B. Wang 

& Pham, 2011), non-negative matrix factorization (Varikuti et al., 2018), etc.. Deep learning based 
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methods are very suited for this task provided enough training data, and has been previously 

applied in (Cole et al., 2017) and demonstrated good performance.  

 Similar to the deep learning AD classification study, we also plan to explore the predictive 

regions in the regression task with ablation experiments and activation map based post hoc 

interpretation method. 

 In summary, we utilize a 3D deep convolutional neural network based regression model to 

estimate age using T1w structural MRI volumes from a diverse multi-study population that is 

sampled with even age distribution across adult age span. We demonstrate superior performance 

both in the hold-out test set from the same custom population and also in an independent life-span 

test set reported in previous studies. 

 

3.3.2 Methods 

We describe the population and the experimental setup used in this study. The MRI preprocessing 

steps, and the CNN (Figure 3-19) used to estimate age are very similar to the AD study, and are 

thus referring to sections 3.1.2.2 and 3.1.2.4. We also explored different variants of 3D ResNet 

models (He, Zhang, Ren, & Sun, 2015) ('resnet18', 'resnet34', 'resnet50', 'resnet101', 'resnet152') 

but did not show better performance. We then propose regionality analysis to interpret the model 

using ablation experiments and extending class activation map method. 
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Figure 3-19. The convolution neural network architecture for age estimation. The only 

difference compared with Figure 3-2 is that the final convolutional output is flattened and fed into 

one fully-connected (FC) layer with linear output (red arrow). 

 

3.3.2.1 Study Population 

It is necessary to build an adequate neuroimaging dataset for age prediction in the full adult life 

span, especially given study recruitment criteria that are not necessarily evenly distributed. Recent 

progress in open imaging dataset greatly facilitates the possibility. In this work, we collect more 

than 30,000 T1w MRI scans from multiple open neuroimaging datasets. The list of the datasets 

used in this study with the full names and sources are listed in Table A-1. Among those, we only 

include subjects with clear indication of normal neurological evaluations. Basically, we exclude 

subjects with any neurological or psychiatric disease, and also subjects with no clear diagnosis 

label documented. We also chose 18 as the minimum age to cover the adulthood and also to avoid 

the neurodevelopment stage. 
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Figure 3-20. The age distribution of the age estimation study population. A) The age 

distribution of the raw dataset consisted of 10,158 scans; B) the age distribution of the dataset 

consisted of 6,142 unique subjects; C) the age distribution of the evenly sampled dataset. 

 This results in 10,158 MRI sessions, reflecting one of the largest and most heterogeneous 

structural brain MRI study ever conducted, the statistics are summarized in Table 3-4. However, 

as shown in Figure 3-20 (A), where we illustrate the raw age distribution, the age distribution of 

the population is highly unbalanced. Although there are studies covering the full age span 

including normal aging studies Cam-CAN (Taylor et al., 2017), IXI, SALD (Wei et al., 2018), 

DLBS (Rodrigue et al., 2012), OASIS-1 (Marcus et al., 2007), and consortium based studies such 

as CoRR (X.-N. Zuo et al., 2014), SchizConnect (L. Wang et al., 2016), many of the public imaging 

studies either focused on age-related disease in the elder population including ADNI, AIBL (Ellis 

et al., 2009), OASIS-2 (Marcus, Fotenos, Csernansky, Morris, & Buckner, 2010), PPMI (Marek 
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et al., 2011), NIFD; or focused on young subjects including BGSP (Holmes et al., 2015), SLIM 

(Liu et al., 2017). 

Table 3-4. Multi-center datasets used in deep learning and age estimation. 

Dataset  Nsessions Nsubjects age range agesession  

mean±std 

gendersession  

M/F 

gendersubject 

M/F 

ADNI  2423 438 56.3 - 95.8 76.64±6.05 1223/1192 217/221 

AIBL  781 457 60 - 92 72.86±6.53 359/421 199/258 

NIFD  428 136 36.9 - 85.2 65.76±7.66 185/243 59/77 

IXI  561 561 20.0 - 86.3 48.67±16.47  248/313 248/313 

BGSP  1566 1566 19 - 35 21.54±2.89  661/905 661/905 

Cam-CAN  652 652 18 - 88 54.30±18.59  322/330 322/330 

OASIS-1  316 316 18 - 94 45.09±23.90  119/197 119/197 

OASIS-2  145 56 60 - 97 76.54±7.99 52/93 19/37 

SALD  467 467 19 - 80 45.07±17.39  168/297 168/297 

SLIM  972 561 18 - 28.5 20.68±1.40  425/547 244/317 

PPMI  130 74 30.6 - 81 60.95±10.85  91/39 48/26 

SchizConnect  742 567 18 - 70 35.36±12.76  429/313 338/229 

DLBS  301 301 20.6 - 89.1 53.62±19.92 115/186 115/186 

CoRR  1326 642 18 - 83 28.78±12.39  689/637 343/299 

total  10158 6142 18 - 97 47.92±24.89 4764/5783 2780/3362 

 To alleviate the potential bias toward a certain age group, we need to balance the age 

distribution in the training population. In this study, we adopt both oversampling and 

undersampling. Specifically, we oversample age ranges with less subjects by including the 

longitudinal follow-up sessions from the same subjects, which could be regarded as a natural 

augmentation. For age ranges with more subjects, we only include one scan per subject to increase 

the variability of the sample, and if the number is still much larger, we further undersample 

stratified on study and gender. 
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 We divided the populations into age bins and use the bin with the minimum number of 

subjects as the basis number. The age bins used in this study are [18, 20), [20, 25), [25, 30), ... , 

[85, 90), [90, 100). One interesting observation is that the [35, 40), [40, 45) are the two age ranges 

with fewest number of subjects, so we regard these two bins as one, and allowing repeated scans 

from same subjects, and use the number of scans as the base level. The other age bins having 

multiple scans per subject are [85, 90) and [90, 100] because of the relative lower number in the 

two age bins. We undersample the subjects in other bins. The final dataset consists of 2856 MRI 

sessions from 2694 subjects covering age range 18-97, with the mean age 54.34 years old, standard 

deviation 21.16 years old. The age distribution of the evenly sampled adult age span dataset is 

shown in Figure 3-20 (C).  

 

3.3.2.2 Experimental setup 

We design training, validation and test sets of subjects for model training and evaluation. Since 

validation set is used to choose the optimal parameters of the model, we need to build a diverse 

validation set reflecting general MRI scan distribution and population distribution. Similarly, a test 

set representative of the same population as the training and validation sets is important for 

evaluation. Given the even age-distributed dataset we described in the section above, we perform 

stratified split based on study and gender within each age bin: 8/10 as training set, 1/10 as 

validation set, 1/10 as test set, ensuring non-overlapping subjects and similar distribution of age, 

study, gender in the training, validation and test sets. 

 We also evaluated our model by testing it on an independent test set. In this study, we use 

the Cam-CAN study as an independent test sample. Aiming to study normal aging process, Cam-

CAN provided very even age-distribution across adult life-span and has been previously used as 
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an independent testing sample in (Lancaster et al., 2018). We have to point out that, ideally, the 

trained model should be able to apply to all kinds of population. But the result on an independent 

sample which usually reflects a homogeneous population or acquisition setting, might be over- or 

under-optimistic. 

 We also perform a test-retest experiment using an independent dataset of three subjects 

scanned 40 times in 30 days (Maclaren, Han, Vos, Fischbein, & Bammer, 2014) to test the 

reproducibility of the model. 

 

3.3.2.3 Comparison with model trained on unbalanced dataset 

We also trained the model using all scans from unique subjects (N = 6,142, Figure 3-20 B). We 

apply the trained model on the independent Cam-CAN dataset and study the distribution of MAE 

over chronological age groups. 

 Besides, a simple way to potentially correct the imbalance without adjusting the sampling 

of the dataset is re-weighting the samples, specifically, we assign different weights to different 

sample, with the weights in proportional to the inverse of the frequency of specific age segments. 

 

3.3.2.4 Neuropsychological and morphometric associations 

To test the utility of the estimated age in studying cognitive functions across adult life-span, we 

evaluate the association between the summary scores of Benton face recognition test (BFRT) and 

the estimated age in Cam-CAN dataset. 
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 Specifically, we use the difference of the estimated age and chronological age to measure 

the deviance of individual brain age from their chronological age, and we refer to this value as 

agediff hereinafter. 

 The BFRT is a commonly used neuropsychological instrument that can be easily and 

reliably administered in adult patients to test baseline visual memory and perception. We adopted 

the SubScore-1, SubScore-2, TotalScore (SubScore-1 + SubScore-2) as dependent variables in 

individual linear regression models incorporating gender, chronological age, agediff, and the 

interaction of chronological age and agediff: 

 

 Additionally, we evaluate the association between agediff with cortical thickness generated 

using FreeSurfer (Bruce Fischl & Dale, 2000), by performing a partial correlation with gender and 

chronological age as covariates. FreeSurfer parcellates the cortex into 68 regions, and can be 

combined bilaterally into 34 regions. 

 

3.3.2.5 Age activation map 

Class activation mapping (Selvaraju et al., 2017; Zhou et al., 2016) reflects a commonly used 

method for interpreting the classification using CNNs and has been previously used in CNN based 

medical image analysis (Feng et al., 2017) to marry potential disease pathology with classification 

findings. In this work, we use the idea of a class activation map in a regression setting by 

highlighting the small-valued gradient in grad-CAM framework. We used functions in the keras-
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vis package11. We generate the average activation map within each age group to investigate the 

age-specific pattern of underlying substrates for age estimation. 

 

3.3.2.6 Slice based age estimation 

Besides the post hoc saliency map based activation map method, we also propose ablation analyses 

methods focusing on part of the input data. We apply serial 2D CNNs for age estimation with the 

input being three consecutive slices along each axis. The network architecture of the 2D CNN is 

the identical to the 3D CNN architecture described in the previous section with the 3D operations 

replaced with the corresponding 2D operations. We report the estimation performance on the 

different set of 2D slices as the indication of predictive importance. 

 

3.3.2.7 Lobe based age estimation 

Besides sliced based age estimation, we proposed using another more neuroanatomically-informed 

way to study the regionality through ablation experiments at the lobe level. The individual lobe 

masks were generated following the section 3.1.2.8 or our previous study (Feng, Yang, et al., 2018). 

The ages were estimated focusing on each lobe individually. 

 

                                                 

11 https://github.com/raghakot/keras-vis/ 
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3.3.3 Results 

3.3.3.1 Age prediction 

In the hold-out test set from the same population distribution as the training and validation set, our 

model achieves an MAE of 4.06 years and r = 0.970. For the independent Cam-CAN test set, the 

model proposed in (Lancaster et al., 2018) achieved MAE = 6.08 years and r = 0.929 when the 

Cam-CAN data were pre-processed with the optimal parameters selected from the independent 

training sample. We tested out our model in Cam-CAN data, processing the T1w MRI images 

using the proposed pipeline. The relationship between the estimated age and chronological age in 

Cam-CAN is shown in Figure 3-21, where r = 0.96, MAE = 4.21 years, which outperforms the 

result in (Lancaster et al., 2018). We also observe two obvious “outliers” among the 652 subjects 

tested, further investigation is needed to pinpoint whether they are due to methodological reasons 

or pathological reasons. The results demonstrate our proposed model achieve an accurate 

estimation in all age segments. 

 

Figure 3-21. The estimated age vs. chronological age in an independent test set. 
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3.3.3.2 Reproducibility 

We evaluate the reproducibility of the algorithm in test-retest scans. We show the statistics in Table 

3-5 and Figure 3-22. We observe that there is a difference in the estimated age and actual reported 

age. But the difference is consistent over the sessions with around 1 year old standard deviation, 

demonstrating good reproducibility of the proposed model. 

Table 3-5. Test-retest reproducibility experiment results. 

Subject Actual age Estimated age mean Estimated age std 

Subj-1 26 25.19 1.07 

Subj-2 31 33.02 1.14 

Subj-3 30 27.06 0.81 

 

 

Figure 3-22. The distribution of predicted ages in test-retest scans. 
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3.3.3.3 Comparison with results using unbalanced dataset 

We compare the results using unbalanced dataset with the MAE performance in Cam-CAN dataset. 

Using the unbalanced dataset achieves comparable overall MAE (4.27 years) as the balanced data. 

Re-weighting the samples helps slightly improves the MAE (4.17 years) than the balanced dataset 

despite using many more scans. Additionally, we observe the MAE using the unbalanced dataset 

is not evenly distributed across life-span: MAE is lower in the young age with more abundant data, 

as shown in Figure 3-23 (B). 

 This could introduce potential bias in life-span studies. Using sample re-weighting (Figure 

3-23 (C)) alleviates the problem, and using balanced dataset generates even distribution across 

age-span (Figure 3-23 (A)). 

 

Figure 3-23. Distribution of MAE of age estimation across life-span. (A) Age estimated using 

the balanced dataset. Each step in the red line indicate the MAE in that age group, the black dashed 

line indicates the overall MAE. (B) Age estimated using the unbalanced dataset. (C) Age estimated 

using the unbalanced dataset but with sample re-weighting. 
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3.3.3.4 Neuropsychological and neuromorphometric association 

The association of the cortical thickness measures with the agediff is illustrated in Figure 3-24. 

The thickness of cortical regions are significantly associated with the agediff. In addition, out of 

the 68 regions measured, 51 regions have a stronger correlation with the estimated age than the 

chronological age. This is expected as the age estimated through structural MRI image is in 

principle more coupled to structural phenotypes. 

 

Figure 3-24. The partial correlation coefficients of agediff and cortical thickness measures. 

The red dashed line indicates α under multiple comparison of N=34 regions. 

 The association of the BFRT scores with the difference in the estimated age and the 

chronological age, and its interaction with chronological age are summarized in Table 3-6. 
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Table 3-6. Association with Benton face recognition scores 

 

 

3.3.3.5 Age activation maps 

It is expected the anatomical patterns characterizing different age groups to be different throughout 

lifetime but are consistent within a local age range. Thus the age activation maps were generated 

and illustrated every 5 years, in the same way as preparing the dataset. The 3D iso-surfaces of the 

average age activation maps are shown in Figure 3-26. The average age activation maps overlaid 

on the MNI152 template are shown in Figure 3-25 (Left). To accommodate the anatomical 

differences in different age groups, average T1w images within each age group were generated, 

and the corresponding age activation maps were overlaid, as shown in Figure 3-25 (Right). In the 

20s, the predictive region localizes to orbital-frontal regions, which are the regions having most 

significant age-related volume decline across life-span as shown in Figure 2-17 in the previous 

aging chapter. With increasing age, the predictive regions still localize to the vicinity, but there is 

a trend moving superiorly in 30s - 60s. In 60s - 80s, the pattern stays at similar location but becomes 

more diffuse (revealed as smaller iso-surface). In the 80s, the overlapped areas are mostly anterior 

cingulate cortex and lateral ventricle. 
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Figure 3-25. The age activation maps at different age groups. The age activation maps overlaid 

on the (Left) MNI152 template, and (Right) average T1w image within each age group, both with 

threshold at 0.8. 
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Figure 3-26. The 3D iso-surfaces (0.8) of the age activation maps at different age groups. 

 

3.3.3.6 Slice based age estimation 

The age estimation performance using 2D MRI slabs sliced at different coordinate planes is shown 

in Figure 3-27. The slices with the best performance are also illustrated. The patterns are more 

diffuse. But from the results in the coronal orientation, the anterior side or the frontal regions are 

more predictive. 
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Figure 3-27. MRI 2D slice based age estimation. (Top row) The mean absolute error (MAE) of 

the estimated age on the test set using 2D slices at different locations, the red lines indicate the 

location with lowest MAE. MAEs larger than 10 are cut to 10 for illustration purpose. (Bottom 

row) The illustration of slices at the red line in the top row from the MNI152 template and the 

corresponding segmentation (the colors follow the FreeSurfer color lookup table). 

 

3.3.3.7 Brain lobe based age estimation 

The age estimation performance of models trained on different lobes and cerebellum are shown in 

Table 3-7, the model trained on the frontal lobe achieves the best age estimation performance, but 

inferior to the performance using whole brain. And temporal lobe achieved marginally lower 

performance. 
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Table 3-7. Age estimation performance achieved using individual lobes and cerebellum. 

Lobe Frontal Temporal Parietal Occipital Cerebellum Whole-brain 

Age MAE 5.33 5.81 6.37 7.66 6.20 4.06 

 

3.3.4 Discussion 

In this study, a large heterogeneous dataset of structural neuroimaging across the adult lifespan 

was aggregated from multiple publicly available data sources, from which we curated a uniformly 

distributed dataset, which is able to achieve estimation not biased toward certain age group, while 

maintaining training efficiency comparing with training with all the data weighted according to 

the abundance. 

3.3.4.1 Regionality 

The regionality analysis in this study revealed patterns of neuroanatomical contributions of normal 

aging. All analyses provide evidence for the prominence of frontal regions in age estimation. 

Frontal regions have been shown to be selectively implicated in normal aging through both 

neuropsychological studies and neuroimaging studies (Chetelat et al., 2013; Gazzaley et al., 2005; 

Shamchi et al., 2017). In addition, the pattern shifts reflected in the class activation map based 

analysis imply the complexity of age-related structural changes. Neuropsychological evaluations 

targeting different cognitive domains and brain regions could help reveal the complexity in the 

aging-process, and might be required to evaluate different aging stages. 
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3.3.4.2 Open questions 

One limitation comes from the definition of healthy subjects. The set of subjects might include 

subjects with pre-clinical AD or other disease at prodromal state that were not manifested in the 

clinical evaluation. However, this is not easily resolvable for cross-sectional studies. 

 Our analysis revealed the association between the divergence of estimated age from 

chronological age and BFRT performance. This suggests the potential utility of the estimated age 

at normal aging evaluation, in complement to other cognitive test and neuroimaging based 

measures. The utility relates to an open question of the aging process. It still requires further 

validation how the deviance would tell an individual's brain health status or even trigger clinical 

evaluations, since inter-subject differences in normal aging process definitely exist but are not well 

understood. And it is unclear whether this inherent variability increases with age or stays constant.  

 

3.3.4.3 Study sample composition 

Finally, while this study aims to study adult life-span, other studies aiming at different neurological 

conditions might benefit from other training dataset inclusion criteria, for example, autism and 

prodromal psychosis studies would definitely require the inclusion of subjects below 18, and 

subjects in middle and old age are less informative for the condition being explored. 

 

3.3.4.4 An overarching framework 

The Alzheimer’s disease diagnosis and age estimation studies constitute the key parts of a deep 

learning powered neurological condition evaluation workflow using T1w structural MRI. The 

workflow is designed with the inspiration from general neurological practice. In the deployment 
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scenario, given a new MRI from scanner, quality check and basic preprocessing will first be 

performed. And then the preprocessed image is fed into different models. At this stage, the deep 

learning inference can be done in less than a second for each model. With more data and more 

models, we can derive more variables. Taking together the wide availability of T1 weighted 

structural MRI, this pipeline has special practical advantage, and could be especially useful given 

limited resources. 

 One of the implications of supervised learning is that the desired properties of the model 

are largely determined by the input data and the associated labels. Thus, the workflow parallels 

the introduction of available datasets, and proposes potential future plans of data collection to 

complete the system. The specific algorithm also depends on the deployment scenario whether 

might it be inclusion/opt-in or exclusion/opt-out. 

 

Figure 3-28. A framework of workflow in neurological condition evaluations. 



111 

 

 The first step is to detect clear structural lesions such as brain tumor and stroke. This can 

be a supervised learning task using available datasets on brain tumor such as BRATS (Brain Tumor 

Segmentation) (Menze et al., 2015) from The Cancer Genome Atlas (TCGA) collection and stroke 

such as ATLAS (Anatomical Tracings of Lesions After Stroke) (Liew et al., 2018). These datasets 

also include manual segmentation of the lesions from experts. Thus, another way of utilizing these 

“dense” annotations is to train a stroke/brain tumor segmentation model. If no obvious (large 

cluster of) segmentation is predicted when applied on the new incoming data, the brain deems 

patent-lesion free. Another potential solution can be based on an unsupervised anomaly detection 

method, but is beyond the scope of current study. Patients with clear structural brain lesion would 

then be directed to clinical cares for further evaluation. 

 The next step is to test the existence of anatomical pattern of neurodegenerative disease. 

The ideal training dataset should consist of patients with different kinds of neurodegenerative 

disease versus healthy controls. If the anatomical pattern falls into neurodegenerative disease 

pattern, the next step is to further classify the specific disease including Alzheimer’s disease (AD), 

Parkinson’s disease (PD), Huntington’s disease (HD), frontotemporal dementia (FTD), Lewy 

Body Dementia (LBD), etc… And it has to be noted that some of the diseases can be further 

divided into subtypes, and certain diseases have overlapping pathological anatomical patterns, and 

might only be differentiated with the information from other data modality. 

 In section 3.1, I focused on Alzheimer’s disease diagnosis. Although not specifically 

designed to be specific to Alzheimer’s disease, the algorithm shows specificity in HD, PD, 

schizophrenia, and certain subtypes of FTD. In the future, it is possible to train a multi-class model 

with AD, control and other non-AD neurological disease. When a patient comes to the clinic and 
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presents MCI symptoms, the model can classify prodromal AD and evaluate time to conversion to 

AD. 

 If a subject is free of clear structural lesion and neurodegenerative pattern, then the subject 

lies in the spectrum of normal aging structurally. The location within the normal aging spectrum 

can be evaluated using the age estimation model. 

 The same set of system can be easily generalized to other MRI contrasts such as CBV, CBF 

or other imaging modalities such as PET, SPECT, CT. The model can always be used as a pattern 

extraction/recognition system with the probability simply interpreted as the similarity to a specific 

pattern (e.g. AD pattern). So it can always be used together with other sources of evidence such as 

age, gender, functional imaging measures, neuropsychological measures, CSF biomarkers, etc. 
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4 Specific Aim 3: Enhancing the utility of CBV with retrospective 

CBV 

In this section, I introduced a technique enabling CBV generation retrospectively from clinical 

contrast-enhanced scans. The derivation of meaningful functional measures from such clinical 

scans is only possible through calibration to a reference, which was built from the largest collection 

of research CBV-fMRI scans from our lab. The method was validated in an epilepsy study and has 

demonstrated the potential to enhance the utility of CBV-fMRI by enriching the CBV-fMRI 

dataset. This technique is also applicable to AD and normal aging studies, and potentially enables 

deep learning based analytic approaches on CBV-fMRI with a similar pipeline used in structural 

MRI. 

4.1 Introduction 

Contrast-enhanced-MRI (CE-MRI) is a valuable and well-established diagnostic imaging tool used 

clinically to reveal signal changes reflective of oncological or inflammatory origin, as well as other 

underlying pathologies. CE-MRI is used annually in ~30 million procedures, and more than 300 

million procedures have been performed as of 2015 since 1988 (Lohrke et al., 2016). Many of the 

protocols for these scans overlap with the protocols of the requisite scans necessary for research 

CBV. 

 At its core, what distinguishes CBV-fMRI from other fMRI measures is the introduction 

of contrast agents, which provide higher spatial resolution and increase in intravascular signal to 

noise ratio (SNR) (Lin et al., 1999). Moreover, the majority of clinically ordered CE-MRI reflect 

intact vasculature (radiologically noted as “non-contrast enhancing”). As such, the signal changes 
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after contrast enhancement reflect the passive (venule and capillary) component of blood capacity, 

same as the research CBV-fMRI. 

 However, in a clinical setting, dynamic ranges of the signal in pre-contrast and post-

contrast acquisition may vary, especially if parameters related to the MRI voxel intensity values 

are left to scanner default parameters (as is common for MRI scanners unless otherwise specified), 

resulting in scaling problem. Whereas in research CBV-fMRI scans, the post-contrast and pre-

contrast image are in the same intensity translation and scaling system to accurately calculate the 

contrast uptake and determine voxel level CBV values. In certain experimental practices, an 

external intensity fiducial marker may be scanned at the same time to help with intermodal co-

registration (Woods, Mazziotta, & Cherry, 1993), where the intensity of the fiducial marker may 

be used to correct gross image intensity differences (Simor et al., 1995). But for most scan sessions, 

there are no external fiducial markers. In these scenarios, there is not a straightforward way to 

correct the image for potential quantitative CBV processing. But we can borrow the idea of 

external fiducial marker by finding an internal fiducial marker and validate the fiducial marker in 

a dataset with known dysfunction. 

 In this case study, I found an internal reference with the guidance from the largest collection 

of research CBV-fMRI, and explore this method on a unilateral temporal lobe epilepsy (TLE) 

lateralization task using MRI scans acquired for surgical evaluations. For TLE patients who are 

potential candidates for surgical treatment, lateralization of the epileptogenic zone is essential, and 

presents a challenge in the context of an unremarkable clinical structural MRI scan. Temporal lobe 

epilepsy laterality has been studied using many different imaging modalities including PET 

(Theodore, Sato, Kufta, Gaillard, & Kelley, 1997), ASL (Wolf et al., 2001), and DSC-MRI (Wu 

et al., 1999) for metabolism studies and structural MRI for structural studies (Mueller et al., 2009). 
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I interrogated the sub-regions of the hippocampus within this TLE group and potentially provide 

insight into the pathophysiology of the hippocampal circuit in epilepsy using an approach that can 

be retrospectively and prospectively applied to patients who would receive these scans regardless.  

 

4.2 Methods 

4.2.1 Data 

We included 304 pairs of correctly scaled pre-contrast scans and post-contrast scans in the study 

acquired from a collection of studies, which cover a broad population of subjects across different 

studies and age ranges, including follow-up scans of the same subjects. Both healthy subjects and 

subjects with various diseases, including schizophrenia, post-traumatic stress disorder, 

Alzheimer's disease, are included. The scans were acquired using CBV-fMRI sequence as 

described previously in normal aging study. Those reference scans are used to determine an 

appropriate reference region.  

 The research scan database is used to identify which class or region could be used as an 

internal reference region, as shown in the top. That finding is then applied to our clinical research 

scans shown in the bottom. For the research stream, brain extractions, regional and tissue 

segmentation are performed on the pre-contrast T1 weighted image. Post-contrast images are co-

registered to pre-contrast images and pre and post ratios are generated arithmetically on a voxel 

by voxel basis. For the clinical database, post-contrast scans are also co-registered in the same 

manner as the research database, in addition to brain extraction and tissue segmentation. White 

matter post/pre ratios, as further described in the text, were used to generate the scaling correction 
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factor (SCF). The SCF was then used to correct the post-contrast image which was used to generate 

the properly scaled CBV scans. 

 

Figure 4-1. The retrospective CBV pipeline. 

 For the retrospective clinical study, 34 unilateral TLE patients with pre-contrast and post-

contrast T1-weighted scans were screened from an internal database via retrospective chart review 

from 2011 to 2016. The laterality was determined based on video-scalp EEG recording of seizure 

onset with no evidence of seizures arising from the contralateral hemisphere. Other inclusion 

criteria include age>18 and IQ>70. Predicting a similar level of effect, the number of patients 

included exceeds an existing study demonstrating potential hypometabolism effect (Wolf et al., 

2001). Four patients were excluded from study due to space-occupying hippocampal lesions as 
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noted by a radiologist through clinical evaluation. Four additional patients were excluded due to 

MRI technical issues including significant mismatch of MRI acquisition parameters of pre and 

post-contrast scans (one case: pre-contrast image TE 3ms TR 16.67ms, post-contrast image TE 

5ms TR 19ms), severe artifact, prohibitive field of view or inadequate segmentation. The exclusion 

process was blind to patient diagnosis information. The receiver gain calibration was on all scans. 

Mesial temporal sclerosis (MTS) is not an exclusion criterion in this study, 5/26 patients have MTS. 

 

4.2.2 Scaling correction factor estimation with brain region segmentation 

A diagram demonstrating both the research and clinical databases and streams is shown in Figure 

4-1. The first step in attempting to identify a way to correct scaling within clinical scans is to align 

each of the clinical scan’s intensity. Borrowing the idea from external fiducial markers, we 

expected there might be an appropriate internal reference region relatively unaffected by contrast 

agent, which would be resilient to post-contrast signal change. In that case, the ratio of the intensity 

value of post-contrast image to pre-contrast image in the region of interest (ROI) would approach 

1.  

 The pre-contrast images are segmented using FreeSurfer (Bruce Fischl et al., 2002; Van 

Leemput et al., 2009) with the hippocampal subfield segmentation applied. All scans were quality 

checked by a trained reviewer. The post-contrast image was co-registered to the pre-contrast image 

through intra-subject linear co-registration using FSL FLIRT with six degrees of freedom and 

correlation ratio cost function (Jenkinson et al., 2002). Although both scans are of the same 

sequence parameters, we considered the presence of contrast enhancement to require a cost 

function befitting an inter-modal registration vs. intra-modal registration. The FreeSurfer 

segmentation masks were also resliced to the pre-contrast image space. The segmentation masks 



118 

 

were applied to the pre-contrast and co-registered post-contrast images. Mean values for post/pre-

contrast ratio values within ROIs were computed and used as features for subsequent processing. 

 Forty-five regions are segmented and labelled. To further refine the results, only regions 

with at least 100 voxels across scans are regarded robust and valid, which results in 38 regions. As 

shown in Figure 4-2, every region has increased signal with respect to the application of contrast 

agent.  

 Ideally, a region wholly unaffected by contrast uptake could be used to correct scaling. 

However, there is no consistent region within the brain with unequivocal preservation of signal. 

As such, we wish to find a region that can be consistently segmented with the lowest signal change 

e.g. coefficient of variation. WM would be expected to have the lowest based on its known cerebro-

vasculature. The coefficient of variation for cerebral WM (both left and right) post/pre-contrast 

ratio is the smallest of all the regions (Figure 4-2). 

4.2.3 Scaling correction factor estimation with tissue class segmentation 

Since white matter show consistency across scans, I explored the post/pre-contrast ratio on coarser 

tissue type segmentations. This provides advantages in computational time and robustness, which 

are very important for large-scale applications. 

 The pre-contrast image is first brain extracted using FSL BET (Smith, 2002). The brain 

extraction image is then segmented into WM, GM, and CSF using FSL FAST (Zhang, Brady, & 

Smith, 2001). To exclude the possible influence of GM on WM, the WM mask was eroded using 

a morphological 3-dimensional kernel. The post/pre-contrast ratio for each tissue type is generated 

the same way as described in the previous section. 
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 The ratios for all the scans in the training set are fitted to a normal distribution separately 

for each tissue type (or region). For a new test scan, the same processing steps are implemented, 

generating ratio for each tissue type. The ratios are substituted into the probability distribution 

functions fitted using the training set, generating normalized likelihood. Each ratio can be used to 

predict the scaling correction factor (SCF): 𝑆𝐶𝐹𝑅 = 𝜇̂𝑅/𝑟𝑅, where 𝜇̂𝑅 denotes the mean ratio value 

of the tissue R in the training set; 𝑟𝑅 denotes the ratio value for tissue R from the new scan. 

 

4.2.4 Retrospective TLE analysis 

The pre-contrast image was subtracted from the co-registered, scaling corrected post-contrast 

image to generate a raw subtracted image. The raw subtracted image was normalized by the mean 

value of grey matter to generate the relative CBV (rCBV) map. 

 I measured the rCBV in hippocampus and hippocampal subfields. The difference of 

contralateral and ipsilateral rCBV was used to study the epilepsy lateralization. In the individual 

analysis, raw data were first visualized with boxplots, and outliers were excluded outside of 1.5 

times the interquartile range (IQR). 

 

4.3 Results 

4.3.1 Screening internal reference region 

The results of screening using FreeSurfer segmentation are shown in Figure 4-2 and suggest that 

there is not an unaffected anatomically well-defined region with a ratio distributed around 1 in the 

FreeSurfer segmentation protocol. The scaling correction factor for each scan was estimated in 
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leave-one-out manner. The lowest mean squared error 0.00014, mean absolute error 0.00888 and 

standard deviation 0.01193 are achieved with left cerebral WM alone.  

 

Figure 4-2. Post/pre-contrast ratio values (mean ± std) for regions from FreeSurfer 

automatic subcortical segmentation pipeline. The regions are sorted in the order of the 

coefficient of variation (CV) of post/pre-contrast ratio. 

 For scaling correction using tissue segmentations. Using WM provides the best estimation 

regarding mean absolute error (0.00998), mean squared error (0.00017); whereas WM/CSF 

achieves slightly lower standard deviation (0.01292) and similar mean squared error (0.00017). 

The mean squared error, mean absolute error, and standard deviation levels are close to those 

achieved using regional segmentations. 
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4.3.2 Retrospective TLE analysis 

All clinical scans were within two standard deviation of the mean of the reference SNR distribution 

of our existing database. I found a statistically significant relative CBV decrease in the 

hippocampus ipsilateral to seizure-onset (paired t-test, NLeft-TLE = 17, NRight-TLE = 6, p < 0.05) with 

a mean contralateral ipsilateral difference 0.082 (standard deviation, 0.174). This finding is in line 

with previous studies suggesting ipsilateral hypometabolism in mesial temporal lobe using PET 

(Sarikaya, 2015; Theodore et al., 1997), ASL (Wolf et al., 2001) and DSC-MRI (Wu et al., 1999). 

 I found statistically significant mean rCBV change in the ipsilateral subiculum (paired t-

test, NLeft-TLE = 15, NRight-TLE = 6, p < 0.05) with a mean contralateral ipsilateral difference 0.177 

(standard deviation, 0.289). The results are trending when examining the left (p = 0.07) and right 

TLE (p = 0.11) patients respectively. I found no significant differences in hippocampal volumes 

or hippocampal subfield volumes (paired t-tests, p > 0.05) consistent with a recent large-scale 

study on brain region volumes in epilepsy without patent lesions (Whelan et al., 2016).  

 

Figure 4-3. The rCBV (left) and volume (right) of hippocampus contralateral and ipsilateral 

to the seizure onset. There is significant ipsilateral rCBV decrease but not significant structural 

difference for hippocampus. 
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Figure 4-4. The rCBV (left) and volume (right) of hippocampal subfields contralateral and 

ipsilateral to the seizure onset. There is statistically significant ipsilateral rCBV decrease in 

subiculum but no significant structural asymmetry for hippocampal subfields. The error-bars show 

the standard error of the mean. 

 

4.4 Discussion 

In the clinical contrast-enhanced MRI scans, I demonstrated that tissue segmentation based 

methods can achieve accurate scaling correction. WM plays the primary part in the estimation. 

The use of white matter as a reference region is also supported by results from brain volume 

measurement (Maclaren et al., 2014). However, in the event this method was to be used in a cohort 

with suspected WM signal changes like WM lesions or potential demyelinating diseases, this 

estimation model can incorporate other tissue classes to improve the robustness potentially 

mediated by non-uniform WM. 

Physiologically speaking, the white matter and cerebrospinal fluid should uptake little gadolinium; 

while grey matter being more densely vascularized should lead to increased contrast uptake. The 
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different uptake within the GM tissue class across regions across scans renders the ratio of GM 

more variant than WM. Partial volume effects may also contribute to this variance, though would 

likely affect the entire image uniformly. The segmentation of GM is likely to include regions of 

both micro and macro vasculature, which reflects the greatest contrast after contrast agent 

application. Though in principle, CSF uptakes little gadolinium; the segmentation of CSF is also 

prone to the influence of epicortical vasculature signal change or GM. The mean intensity ratio 

calculated using the eroded WM masks is similar to the value using the uneroded WM mask, which 

suggests a relative consistent distribution of gadolinium uptake across the periphery of the white 

matter and robust segmentation of white matter. 

 

4.4.1 Finer segmentation of white matter 

As white matter shows better homogeneity, I further explored the finer structure of cerebral white 

matter using the FreeSurfer parcellation results. For the WM voxels, the labels are assigned as the 

label of the closest GM voxel (Salat et al., 2009). As the number of labels is relatively large, the 

result is not shown here. The coefficients of variation are not significantly smaller than using WM 

as a whole. 

 

4.4.2 Epilepsy Lateralization 

Refractory TLE patients with structurally normal MRI scans often present a challenge to the 

surgical team with regard to lateralization of seizure onset. Our results suggest that CBV 

measurements may provide supportive information regarding the laterality of the epileptogenic 

region. Future studies may explore the role of CBV-fMRI. Additionally, our work suggests the 
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subiculum could be a driver of the metabolic dysfunction, supporting existing research on the 

subiculum’s role in epileptogenesis (Stafstrom, 2005). Electrophysiological studies on extracted 

hippocampal lesions in TLE have implicated the subiculum as the potential origin of interictal 

activity (Cohen, Navarro, Clemenceau, Baulac, & Miles, 2002).  

 

4.4.3 Limitations 

For inter-subject analysis, it is important to process all of the data in the same pipeline, as there is 

systematic bias using different methods (Klauschen, Goldman, Barra, Meyer‐Lindenberg, & 

Lundervold, 2009). The validity of the method depends on the stability of the within-method 

variation. Given the evaluation in publicly available software, FAST and FreeSurfer are likely to 

provide accurate and reproducible results for this analytical stream (Valverde, Oliver, Cabezas, 

Roura, & Lladó, 2015). With regards to FreeSurfer segmentations not revealing an unaffected 

region for contrast, it is possible that other structures (such as maxillary sinus) not defined in the 

segmentation template used in this study could be potentially accurate internal reference regions. 

 By using relative CBV, we are assuming the absence of global changes in CBV. Although 

hemispheric global grey matter CBV changes are unlikely, it will be important to examine those 

mean values more carefully to ensure that those do not inaccurately affect the results.  

 

4.4.4 Conclusions 

In this study, we provide evidence for ipsilateral hippocampal CBV changes in patients with 

unilateral TLE using intensity corrected steady state contrast enhanced CBV-fMRI. This was 

achieved with an analytical stream that was agnostic of scanner brand, type and protocol and can 
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be potentially implemented in an informatics system. Since these scans were acquired not for an 

imaging research study but for potential pre-surgical evaluation, this work demonstrates the 

potential of the proposed framework to characterize the functional profile of patients who may 

have retrospective contrast-enhanced scans. This analysis permits generating high-resolution 

metabolic maps using scans that would already be acquired for clinical evaluation. This applies 

not only to focal hippocampal metabolic dysfunction, but also to any indication where contrast 

enhanced MRI is standard or warranted. This analysis and methodological investigation serve as 

a case study of how novel analytical approaches may serve as a lens to refocus scan protocols to 

generate clinically relevant imaging measures. Additionally, future studies may focus on 

hippocampal sub-regional analysis and cognitive correlates, as certain sub-regions have been 

shown to exhibit selective vulnerability in different disease states. 

 

4.5 Future work 

Demonstrating its utility in a TLE lateralization task, the retrospective CBV technique opens up 

the possibility of standardizing CBV-fMRI from clinical scan database thanks to the large-scale 

research CBV collection. Future work includes collaboration with clinicians to expand the usage 

into other neurological conditions including Alzheimer’s disease and normal aging. 

 Another direction of enriching CBV-fMRI harvesting the current collection of CBV-fMRI 

scans and large-scale structural MRI scans is to learn a mapping between structural MRI and CBV-

fMRI. There are previous works working on synthesizing high-dose contrast-enhanced MRI scans 

from low-dose contrast-enhanced MRI scans (Gong, Pauly, Wintermark, & Zaharchuk, 2018) for 

tumor evaluation, but the practicality is still limited, and the utility for more subtle functional 
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changes was not demonstrated. Given the mapping, the structural MRIs can be first transformed 

to CBV-fMRI space and then first processed. This mapping could potentially improves the 

diagnosis despite deriving all information from structure because of the search space constraints 

set by this prior. 

 The enrichment of CBV-fMRI dataset potentially enables deep learning based analytic 

approaches on CBV-fMRI with a similar pipeline used in structural MRI. 

 

 

  



127 

 

5 Discussion and conclusion 

In this thesis, I developed a study protocol of using large-scale neuroimaging data to study 

Alzheimer’s disease and normal aging from univariate parametric mapping based characterization 

to advanced machine learning based discrimination. Univariate parametric mapping can be best 

used for localization-based interpretation, which is important for understanding underlying 

neuroanatomical and neurophysiological by extracting mechanistic information. Whereas machine 

learning approach is best at discriminative analysis, which is important for accurate disease 

diagnosis. Both are important in terms of biomarker development. I further investigated 

localization through machine learning models, and the linkage of the machine learning derived 

measures with other biomarkers. Utilizing large-scale datasets, the developed protocol has the 

potential to advance the neuroscientific understanding and inform the clinical practice of 

Alzheimer’s disease and normal aging. 

 The protocol set up through this thesis work is able to transfer to other neurological disease, 

and neuroimaging modalities, some preliminary explorations along this route are demonstrated in 

the appendix. 
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7 Abbreviations 

Aβ: β-amyloid 

AD: Alzheimer’s disease 

ADNC: Alzheimer's disease neuropathologic change score 

ADNI: Alzheimer’s Disease Neuroimaging Initiative 

AI: artificial intelligence 

AIC: Akaike information criterion 

ANOVA: Analysis of variance 

ANTS: Advanced normalization tools 

ApoE: Apolipoprotein E 

AUC: area under the curve 

AUROC: area under the receiver operating characteristic curve 

BFRT: Benton face recognition test 

BN: batch normalization 

BOLD: blood oxygen level dependent 

bvFTD: behavioral variant FTD 

CA: Cornu Ammonis areas 

CAM: class activation mapping  

CBS: Corticobasal syndrome 

CBF: cerebral blood flow 

CBV: cerebral blood volume 

CE-MRI: contrast-enhanced MRI 
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CERAD: Consortium to establish a registry for Alzheimer's disease score 

CN: cognitively normal 

CNNs: convolutional neural networks 

CNR: contrast-to-noise ratio 

CSF: cerebrospinal fluid 

CV: coefficient of variation 

DG: dentate gyrus 

DLMRI: deep learning derived MRI score 

DLPET: deep learning derived PET score 

DLAV45: deep learning derived AV45-PET score 

DLFDG: deep learning derived FDG-PET score 

EC: entorhinal cortex 

EEG: electroencephalogram 

FBB: Florbetaben 

FC: fully-connected 

FDG: fluorodeoxyglucose 

FOV: field of view 

FTD: Frontotemporal dementia 

GRE: gradient echo 

HC: hippocampus 

HCP: Human Connectome Project 

HP: hippocampal formation 

ICV: intracranial volume 
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IFG: inferior frontal gyrus 

IQR: interquartile range 

LEC: lateral entorhinal cortex 

MAE: mean absolute error 

MCI: mild cognitive impairment 

MCIp: mild cognitive impairment progression  

MCIs: mild cognitive impairment stable 

MET: magnetoencephalography 

MLSUBCA: molecular layer of subiculum and CA fields 

MMSE: mini-mental state examination 

MPRAGE: magnetization prepared rapid acquisition gradient echo 

MRI: magnetic resonance imaging 

MTS: medial temporal sclerosis 

PD: Parkinson’s disease 

PET: positron emission tomography 

PIB: Pittsburgh Compound B 

PNFA: Progressive non-fluent aphasia, aka non-fluent/agrammatic variant primary progressive 

aphasia (nfvPPA) 

POI: parcellation of interest 

PRESUB: presubiculum 

PSP: Progressive supranuclear palsy 

RAVLT: Rey auditory verbal learning test 

ReLU: rectified linear unit 
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ROC: receiver operating characteristic 

ROI: region of interest 

RMSE: root mean squared error 

SCF: scaling correction factor 

SNR: Signal to Noise Ratio 

SPECT: Single-photon emission computed tomography 

svFTD: Semantic variant FTD, aka semantic variant primary progressive aphasia (svPPA) 

SUB: subiculum 

SUVR: Standardized uptake value ratio 

T1w: T1-weighted 

TEC: trans-entorhinal cortex 

TFE: Turbo Field Echo 

TLE: temporal lobe epilepsy 

VBA: voxel-based analysis 
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A Appendix 

A.1 Supplementary figure and tables 

A.1.1 Specific aim 1 

 

Figure A-1. An illustration of hippocampal subregions. 

 

Figure A-2. An illustration of IFG subregions. 
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A.1.2 Specific aim 2 

 

Figure A-3. Brain lobe and cerebellum probability maps. 
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Figure A-4. Demographic information and baseline measure of the ADNI MCI cohort. 
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Figure A-5. Correlation of DLMRI score with in vivo CSF biomarker measures. 

 

Figure A-6. Correlation of DLMRI score with neuropathological summary measures. 
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Figure A-7. Correlation of DLMRI score with morphometric measures. 
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Table A-1. Dataset information of the deep learning age estimation study. 
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A.2 Cross-sectional volumetric analyses in independent life-span normal aging 

studies 

Following the normal aging study covered in specific aim 2, we also performed cross-sectional 

volumetric analyses in three independent normal aging studies covering full adult age-span: Cam-

CAN (Taylor et al., 2017), IXI, DLBS (Rodrigue et al., 2012). The results show similar patterns 

with our cohort: dentate gyrus show most reliable age-related decrease within hippocampus, 

whereas the entorhinal show little age-related difference, IFG show age-related decrease but 

superior frontal region shows the most reliable age-related decrease. The demographic information 

of the three datasets are summarized in Table A-1 in section 3.3. 

 

Figure A-8. Age-related changes of left cortical volumes and the hippocampal subfield 

volumes in Cam-CAN dataset. 
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Figure A-9. Age-related changes of left cortical volumes and the hippocampal subfield 

volumes in DLBS dataset. 

 

Figure A-10. Age-related changes of the left cortical volumes and the hippocampal subfield 

volumes in IXI dataset. 
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A.3 AD classification specificity evaluation 

A.3.1 Introduction 

In real-world clinical evaluation, we might not be doing binary classification as the settings in the 

AD classification study. Besides the specificity concept in binary classification, there is a broader 

concept of specificity in the presence of other neurological conditions. In this section, we evaluate 

the specificity of the model directly applying the AD model on the data from patients who had 

other disease types.  

 In this section, I also present the structural profile of the diseases studied to explain the 

specificity. The structural profiles are generated in similar ways as the structural profile of AD. 

 

A.3.2 Methods 

The specificity was tested on as diverse disease population as possible, including frontotemporal 

lobe dementia and its different subtypes, Parkinson’s disease, and schizophrenia. Additionally, I 

analyze the structural profile of the different disease to understand the specificity together with 

what we learned from the interpretation result in AD classification. Specifically, the structural 

profile is the regional contrast with normal controls. 

 The FTD dataset is from frontotemporal lobar degeneration neuroimaging initiative and 

includes the subtypes of FTD: behavior-variant FTD (BV), semantic-variant FTD (SV), 

progressive nonfluent aphasia (PNFA), corticobasal syndrome (CBS), and progressive 

supranuclear palsy (PSP). The Parkinson’s disease dataset is from PPMI and includes Parkinson’s 

disease, and scans without evidence of dopaminergic deficit (SWEDD) patients. The schizophrenia 

dataset is from SchizConnect and includes patients with full-blown schizophrenia. Normal control 
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subjects are included in each dataset pertaining to each project’s inclusion criteria, and are used to 

generate the contrast patterns of the individual brain disorders. The basic demographical 

information is shown in Table A-2. 

Table A-2. The demographical information of the data used in the specificity study. 

FTD 

N = 365 

Control 

N = 165 

BV 

N = 61 

SV 

N = 29 

PNFA 

N = 35 

CBS 

N = 45 

PSP 

N = 60 

Age 63.3±7.2 61.6±6.6 63.2±6.6 68.6±7.5 66.7±6.8 71.0±7.6 

Gender M/F 58/77 40/21 16/13 16/19 21/24 28/32 

 

PD 

N = 275 

Control 

N = 65 

SWEDD 

N = 41 

PD 

N = 169 

Age 60.5±10.7 60.8±10.5 61.1±9.5 

Gender M/F 43/22 27/14 108/61 

 

 

A.3.3 Results 

A.3.3.1 Specificity 

The specificity results are shown in Figure A-11, as boxplots of the probabilistic outputs applying 

the AD model on the scans from other disease types. Semantic variant FTD show very tight 

distribution at high probability of being AD, while behavioral variant FTD and PNFA show large 

variance. The other syndromes generally show good specificity. 

Schiz 

N = 921 

Control 

N = 470 

Schizophrenia 

N = 451 

Age 34.6±12.4 35.8±12.5 

Gender M/F 286/184 332/119 
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Figure A-11. The specificity of the AD prediction model in the presence of various brain 

disorders. 

 

A.3.3.2 Structural profile of other neurological diseases 

The structural profile of Parkinson’s disease is shown in Figure A-12. Patients with Parkinson’s 

disease show little brain atrophy, agreeing with a previous small-scale study (Worker et al., 2014). 

 The structural profile of FTD including subtypes (SV, BV, PNFA, PSP, CBS) is shown in 

Figure A-13. Semantic variant FTD is shown in Figure A-14. It’s noted that left entorhinal cortex, 

which overlaps with the region indicated by the class activation map from the AD classification 

model, is strongly implicated in SV. This explains the low specificity of our model in classifying 

SV. This structural pattern is consistent with previous studies showing primarily left lateralized 

atrophy of the anterior temporal lobe regions (Landin-Romero, Tan, Hodges, & Kumfor, 2016). 

 The structural profile of schizophrenia is shown in Figure A-15. Schizophrenia patients 

show moderate hippocampal atrophy. The patterns in general agree with previous works (T. van 
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Erp et al., 2015; T. G. M. van Erp et al., 2018). In addition, this group of schizophrenia patients 

are in a relative younger age than AD patients. 

 

Figure A-12. The structural profile of Parkinson’s disease. 
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Figure A-13. The structural profile of FTD with all subtypes aggregated. 
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Figure A-14. The structural profile of semantic variant FTD.  
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Figure A-15. The structural profile of Schizophrenia. 
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A.3.4 Discussion 

In brain disorders including dementia, the segmentation of atrophic brains is subject to large error. 

And it is the actual atrophic region that is the hallmark of the diseases. This is less of a problem 

for machine learning algorithms directly applied on the brain image. The parametric mappings 

shown in this chapter thus should be interpreted as a reference. 

 

  



167 

 

A.4 CSF biomarker estimation from structural MRI 

A.4.1 Introduction 

In this chapter, I performed a preliminary analysis of estimating in vivo CSF biomarker levels from 

T1-weighted structural MRI, demonstrating a proof-of-concept for a data-driven approach of AD 

biomarker generation, mixing information from different categories and modalities. 

 

A.4.2 Methods 

I included 2954 MRI sessions from 1228 subjects, with valid Aβ and tau measures from CSF at 

the same visit as the MRI acquisition. The tau levels are log-transformed to alleviate the right-

tailed distribution. An illustration of the distribution is shown in Figure A-16. The convolutional 

neural network structure is the same as the one used in age estimation study. 

 

Figure A-16. The distribution of the CSF biomarkers. 
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A.4.3 Results 

The root mean squared error (RMSE) of the Aβ estimation in the test set is 52.4, the correlation 

coefficient is 0.300 with a p-value 3.09E-7. The RMSE of the tau estimation in the test set is 50.4, 

the correlation coefficient is 0.416 with a p-value 3.88E-13. The scatterplots and linear fit are 

shown in Figure A-17. 

 

Figure A-17. The predicted CSF biomarker measures versus the ground truth. The red line 

indicates the linear fit. 

 

A.4.4 Discussion 

The current derived measures are still distance away from being used as a surrogate of CSF 

biomarkers, but they could be useful as correlates of CSF biomarkers, and at the same time reflect 

structural information as well. Although the correlation is significant showing the derived measure 

is reflective of the supervision signal, the actual estimated values still have large errors. One 

primary reason from the observation is the “regression toward the mean” phenomenon, which is a 

common problem in regression settings, and previously was described in age estimation studies 
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(Le et al., 2018). There could be potential ways to correct the trend e.g. assigning weights to each 

sample in proportion to the distance from mean in the training, and is a future direction of the study. 

 The Aβ estimation analysis showed relatively poor performance comparing with the tau 

analysis. While the potential methodology limitation cannot be ruled out, this might reflect the 

temporal sequence of the AD biomarkers as the structural MRI based biomarker is closer to tau 

biomarker than Aβ biomarker temporally. Or, this could reflect the relationship in the mechanism 

level: as previously revealed in a tau-PET study that pathological tau aggregation is closely linked 

to neurodegenerative patterns and clinical manifestations of AD (Ossenkoppele et al., 2016). But 

this is beyond the power of current evidences. 
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A.5 Diagnosis and regionality analysis of Alzheimer’s disease using PET 

A.5.1 Introduction 

In this study, I investigate diagnosing Alzheimer’s disease using PET with deep learning 

techniques, and perform corresponding regionality analysis. This study follows our previous study 

using deep learning on structural MRI for AD diagnosis and regionality analysis. Deep learning is 

known to be a general method incorporating feature engineering and classification in the same 

model, thus this work is also a proof of concept for the generalizability of the method. I have 

demonstrated in the previous study (Feng, Yang, et al., 2018), as also described in previous 

sections of thesis, that using deep learning technique on structural MRI can accurately diagnose 

Alzheimer’s disease from normal controls, and can predict MCI progression. Moreover, the 

predictive region identified through the deep learning technique overlaps with our prior knowledge 

about the pathophysiology of AD. The output probability (referred to as DLMRI score) can be 

used to summarize the structural information related to AD, and has shown potential clinical utility 

comparing with other measures. 

 Despite various practical advantages of structural MRI over other imaging modalities, 

structural MRI can only reflect regional atrophy by nature, while functional or other 

pathophysiological process might occur before atrophy. PET has long been explored for AD 

diagnosis. And there are several modalities of PET using different radioligands including FDG-

PET, AV45-PET, AV1451-PET, and so on. 

 In this study, I focus on using FDG and AV45 PET, which have been collected in a 

relatively large amount in ADNI. PET radioligand development is an active research area, and this 

study can be readily extended to other PET modalities in the future given abundant scans. In a 
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similar way to interpret the final output from the model on structural MRI, the output from the 

model on PET will be a data-driven summary score of the PET pattern related to AD. 

 FDG-PET is one of the most abundant PET modalities and has a long history of application 

in various areas of clinical research (de Leon et al., 2001; Herholz et al., 2002; Susan M. Landau 

et al., 2011). AV45-PET has demonstrated correlation with the presence and density of β-amyloid 

in the brain at autopsy (Clark et al., 2011).  

 2D deep learning has previously been applied on FDG-PET (Ding et al., 2018) and showed 

good performance. In this study, I investigated using 3D convolutional neural network. 

 

A.5.2 Methods 

A.5.2.1 Data 

The PET data was acquired from ADNI (Jagust et al., 2015). ADNI-1 includes FDG-PET and PIB-

PET. ADNI-GO/ADNI-2 includes FDG-PET, AV45 (Florbetapir)-PET, and AV1451-PET in the 

late stage. ADNI-3 includes FDG-PET, AV45-PET, FBB (Florbetaben)-PET, and AV1451-PET. 

FDG-PET is the most abundant modality within ADNI. AV45-PET is the second most abundant 

modality. PIB-PET from ADNI-1 has just 228 scans from 103 subjects. As of 04/02/2019, FBB-

PET has 239 scans from 236 subjects, AV1451-PET has 824 scans from 672 subjects, and are still 

actively acquiring, but the majority scans are from cognitively normal and MCI subjects. 

 In this study, I focused on FDG-PET from ADNI-1 and ADNI-GO/ADNI-2, AV45-PET 

from ADNI-GO/ADNI2. For FDG-PET, I included 1445 scans (484 AD, 961 CN) from 682 

subjects (241 AD, 441 CN). For AV45-PET, I included 906 scans (180 AD, 726 CN) from 515 

subjects (151 AD, 364 CN). 
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 ADNI also provides prior-based composite scores of the PET measures derived from 

multiple ROIs. FDG composite score is the average FDG uptake of angular, temporal, and 

posterior cingulate (Susan M. Landau et al., 2011). AV45 composite score is the average AV45 

SUVR of frontal, anterior cingulate, precuneus, and parietal cortex relative to the cerebellum (S. 

Landau & Jagust, 2015). These composite methods are based on the priors of AD pathology and 

prior imaging studies, instead of the data-driven way used in machine learning. 

 

A.5.2.2 Analysis 

Since different PET modalities have different numbers of scans, I performed two major analyses. 

In the first analysis, I performed individual analysis for each individual modality. This can take 

advantage of the data availability most effectively. In the second analysis, I gathered common 

scans for all modalities. In the present study, the modalities are FDG and AV45. But in the future, 

when the overlap among different modalities increase, it is possible and straightforward to include 

more modalities. Within this major analysis, I proposed two sub-analyses: the first one performing 

classification using one modality at a time, and the performance of different modalities can be 

compared; the second sub-analysis involves stacking the different modalities, to maximize the 

discriminative power. Practically, this poses more restriction on the acquisition side, and 

additionally need to ensure registration on the processing side. In ADNI, the AV45 scans were 

already co-registered to the baseline FDG scans, so it was possible to directly stack the two 

modalities. The registration quality was visually checked. 
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A.5.2.3 Modality Merge 

In a deep learning model, the information from the two modalities can start to merge at different 

depth. The simplest method is to stack the two modalities at the input level, similar to the channels 

in an RGB image. However, despite the two modalities share the same spatial location, the inherent 

patterns in the individual modality could be different. Thus, I further explored the performance 

when merging the two modalities at different depth in the model. An illustration of the framework 

is shown in Figure A-18. 

 

Figure A-18. Framework of merging features from multi-modal data at different depth of 

the network. 

 

A.5.2.4 Normalization 

Different from T1-weighted structural MRI, where the intensity of each individual pixel is a 

complicated reflection of the molecular composition of the underlying tissue and is not quantitative, 
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the value of each pixel in PET represents the level of specific binding targets. The normalization 

step, a standard preprocessing step in most image processing tasks, remains to be explored. Thus, 

in this study, I present results using both normalized and raw input images. 

 

A.5.2.5 DLPET scores 

Similar to the generation of DLMRI score, I can generate deep learning derived PET (DLPET) 

scores for analyses. I analyzed the DLFDG scores from FDG-PET and DLAV45 scores from 

AV45-PET in this study. 

 

A.5.2.6 MCI progression prediction 

I applied the model to the PET scans of baseline MCI subjects, and performed MCI progression 

prediction using ROC analysis and Cox proportional hazards regression survival analysis. The 

performance was compared with the PET composite measures and also DLMRI score derived from 

structural MRI. The table of demographical information is shown in Table A-3. The detailed 

analyses methods are similar and can be found in previous sections of DLMRI score analyses. 

Table A-3. Demographical and summary information of the MCI progression dataset with 

both PET scans and PET composite measures available. 

 MCI stable 

N = 154 

MCI progression 

N = 92 

Total 

N = 246 

age 70.9 ± 7.0 72.9 ± 6.6 71.7 ± 6.9 

sex M/F (%M) 88/66 (57.1) 51/41 (55.5) 139/107 (56.5) 

APOE ε4 frequency (2/1/0)  11/44/99 17/49/26 28/94/126 

Last visit FU year 4.43 ± 0.55 - - 

conversion year - 1.94 ± 1.16 - 
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DLMRI score 0.376 ± 0.163 0.632 ± 0.191 0.472 ± 0.214 

DLFDG score 0.109 ± 0.196 0.564 ± 0.362 0.279 ± 0.349 

DLAV45 score 0.174 ± 0.272 0.639 ± 0.328 0.348 ± 0.370 

FDG composite score 1.31 ± 0.11 1.16 ± 0.11 1.26 ± 0.13 

AV45 composite score 1.15 ± 0.19 1.41 ± 0.21 1.25 ± 0.23 

 

A.5.2.7 Association with the prior-based measures 

I further evaluated the association between the DLPET scores and the prior-based composite scores 

through correlational analysis. I used all available MCI baseline measures, with N = 660 for FDG-

PET, and N = 458 for AV45-PET. 

 

A.5.2.8 Class activation map 

The class activation maps were generated in a similar way as the one generated previously on 

structural MRI (Feng, Yang, et al., 2018). The average class activation map of AD cases was 

generated for interpretation. I also generated the average PET images of each PET modality to 

overlay with the class activation map to guide the localization in the class activation map. 

 

A.5.3 Results 

A.5.3.1 Individual modality classification performance 

The test AUROC values and accuracies using individual PET modalities including FDG and AV45 

are shown in Table A-4. 

Table A-4. The classification performance using individual PET modalities. 

 FDG AV45 

Normalized .932/88.0% .875/83.8% 
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Raw .910/92.0% .872/81.2% 

 

A.5.3.2 Classification performance using common scans of FDG and AV45 

The test AUROC values and accuracies using common FDG, AV45 scans, and stacking the FDG 

and AV45 at the input are shown in Table A-5. 

Table A-5. Classification performance using common scans of FDG and AV45. 

 FDG AV45 Stacking FDG, AV45 

Normalized .876/93.3% .896/90.0% .889/83.3% 

Raw .891/91.7% .893/86.7% .821/80.0% 

 

A.5.3.3 Classification performance merging FDG and AV45 features at different depth 

The test AUROC values and accuracies stacking the FDG and AV45 feature maps at different 

depth are shown in Table A-6. 

Table A-6. Classification performance stacking FDG and AV45 at different depth. 

Merge level 1 2 3 4 5 

Normalized .928/91.7% .872/91.7% .885/91.7% .882/90.0% .854/90.0% 

Raw .923/90.0% .901/91.7% .896/93.3% .892/91.7% .879/90.0% 

 

A.5.3.4 MCI progression prediction 

I derived DLPET scores from two models with highest accuracies indicated as bold in Table A-4 

and Table A-5. The ROC curves of MCI-progression and MCI-stable classification using 

composite PET scores, DLPET scores, and DLMRI score are show in Figure A-19, the AUROCs 

are shown in Table A-7. The Cox proportional hazards regression analyses statistics are shown in 

Table A-8. DLFDG scores show better time-to-conversion prediction performance. While DLFDG 
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and DLAV45 scores show better ROC performance than DLMRI score with no covariates, the 

performance is inferior after controlling for covariates. 

 

Figure A-19. ROC curves of different measures: (Left) Covariates age, gender, APOE ε4 

frequency; (Right) No covariate. 

Table A-7. AUROCs of the ROC analyses. 

 No covariate Controlling for covariates 

AV45 composite 0.820 0.752 

FDG composite 0.839 0.777 

DLAV45 score 0.859 0.783 

DLFDG score 0.877 0.789 

DLMRI score 0.845 0.810 

Table A-8. Cox proportional hazards regression survival analyses statistics. 

 
log HR SE z p-values Chi-

square 

25% 

quantile 

75% 

quantile 

AV45 composite  3.50 0.485  7.22 5.37E-13 49.6 1.03 1.43 

FDG composite -8.79 0.979 -8.98 2.76E-19 84.3 1.18 1.34 

DLAV45 score  2.72 0.341  7.97 1.55E-15 68.7 0.017 0.742 

DLFDG score  2.92 0.299  9.76 1.71E-22 95.3 0.013 0.555 
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DLMRI score  4.94 0.560  8.82 1.15E-18 81.8 0.297 0.623 

 

A.5.3.5 Association with the prior-based composite scores 

I showed the prior-based composite scores strongly correlated with the DLPET scores, suggesting 

the association and also discrepancy between the prior-based and data-driven summary scores of 

PET scans. The scatterplots between the two measures are shown in Figure A-20. As the 

distribution of the data is dense in the range of 0 – 0.05, I also zoomed in on this range, and 

performed correlation in this range. The correlation statistics are shown in Table A-9. 

 

Figure A-20. Association between the deep learning derived PET summary scores and the 

prior-based composite scores. The red lines are the linear fits. 
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Table A-9. The correlation statistics between deep learning derived PET summary scores 

and the prior-based composite scores. 

 corr-coef p-value 

FDG -0.614 1.54E-69 

 DLFDG (0 - 0.05) -0.368 1.41E-10 

AV45  0.712 4.96E-72 

 DLAV45 (0 - 0.05)  0.230 1.10E-03 

 

A.5.3.6 Class activation maps 

The class activation map of the FDG-PET model is shown in Figure A-21. The predictive region 

localizes to medial occipitotemporal gyrus (lingual gyrus), inferior part of precuneus. The class 

activation map of the amyloid-PET model is shown in Figure A-22, one prominent region localizes 

to the right parietal regions, the other lesser prominent region localizes to left medial orbitofrontal 

region. 

 

Figure A-21. The AD class activation map of the FDG classification model overlaid on the 

average FDG map from the population. The class activation map localizes to medial 

occipitotemporal gyrus and inferior part of precuneus. 
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Figure A-22. The AD class activation map of the AV45 classification model overlaid on the 

average AV45 map from the population. There are two prominent blobs in the class activation 

map, the more prominent one localizes to right parietal lobe (top), the lesser prominent blob 

localize to left medial orbitofrontal lobe (bottom). Note the range of the color-maps are different 

in the two sub-figures to best visualize the individual blob. 

 

A.5.4 Discussion 

Individually, FDG achieves good performance, AV45 achieves moderate performance, possibly 

because of more abundant training data for FDG-PET. Using the same set of data does show 

comparable performance between AV45 and FDG. Simply stacking two modalities as two 

channels of data did not lead to better classification performance than using individual modality 

alone. Intuitively, it increases the input dimensionality without change to the number of samples. 

Whereas, merging the feature maps of the two modalities after the first convolutional block but 
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not deeper layers improve the performance. One explanation could be that it is necessary to unify 

the latent representation of two modalities with some feature extraction operations before merging 

the information; however, it is beneficial to start the interaction between two modalities at lower 

representation. 

 The regions revealed through class activation map are consistent with previous studies and 

could potentially inform further neuroimaging studies. FDG hypometabolism in AD has been 

shown to localize to temporo-parietal regions (Hoffman et al., 2000). Amyloid accumulation 

revealed through AV45 Aβ has been shown to preferentially start in the precuneus, medial 

orbitofrontal, and posterior cingulate cortices (Palmqvist et al., 2017). 

 One limitation when interpreting the result is that the result is inevitably affected by 

structural information. This further complicates the attribution of the derived scores. However, on 

the other hand, this presents a natural way to merge different sources of information, which is 

important for biomarker or diagnostic tool development. 

 While the DLPET scores show better performance in ROC analysis without covariate than 

DLMRI score, the performance becomes inferior including covariates into the model. This could 

be potentially related to the sample composition. 

 One future work worth exploring is the explicit inclusion of interaction between two 

modalities into the model. Interaction is a term very commonly adopted in regression analysis, and 

can be explicitly included in the input. It could be potentially helpful for the classification if the 

interaction captures some pathophysiological signal, and it could also be helpful for interpretation 

purpose. 
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 The other future work is to apply the model to other datasets, e.g. OASIS-3, which has both 

FDG and AV45 scans. But preprocessing standardization across studies requires further 

exploration. 

 


