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Multiple chromosomal regions are affected by deletions in cervical cancer (CC) genomes, but their consequence and target

gene involvement remains unknown. Our single nucleotide polymorphism (SNP) array identified 8p copy number losses

localized to an 8.4 Mb minimal deleted region (MDR) in 36% of CC. The 8p MDR was associated with tumor size, treat-

ment outcome, and with multiple HPV infections. Genetic, epigenetic, and expression analyses of candidate genes at MDR

identified promoter hypermethylation and/or inactivation of decoy receptors TNFRSF10C and TNFRSF10D in the majority

of CC patients. TNFRSF10C methylation was also detected in precancerous lesions suggesting that this change is an early

event in cervical tumorigenesis. We further demonstrate here that CC cell lines exhibiting downregulated expression of

TNFRSF10C and/or TNFRSF10D effectively respond to TRAIL-induced apoptosis and this affect was synergistic in combi-

nation with DNA damaging chemotherapeutic drugs. We show that the CC cell lines harboring epigenetic inactivation of

TRAIL decoy receptors effectively activate downstream caspases suggesting a critical role of inactivation of these genes in

efficient execution of extrinsic apoptotic pathway and therapy response. Therefore, these findings shed new light on the

role of genetic/epigenetic defects in TRAIL decoy receptor genes in the pathogenesis of CC and provide an opportunity to

explore strategies to test decoy receptor gene inactivation as a biomarker of response to Apo2L/TRAIL-combination

therapy. VC 2015 Wiley Periodicals, Inc.

INTRODUCTION

Genetic studies identified the short arm of chro-

mosome 8 (8p) as a frequent target of nonrandom

and recurrent deletion in cervical cancer (CC)

(Mitra et al., 1994; Hampton et al., 1996; Harris

et al., 2003; Bhattacharya et al., 2004; Rao et al.,

2004; Kloth et al., 2007; Ojesina et al., 2014).

These studies suggest the presence of tumor sup-

pressor genes on 8p and their involvement in the

development of CC. However, until now the bio-

logical impact or the relevant deregulated genes

and the mechanisms underlying 8p deletion has

not been known. 8p deletions also have been fre-

quently implicated in multiple other tumor types

including prostate, liver, kidney, bladder, and

colorectal carcinomas (Chang et al., 2007; Berou-

khim et al., 2009; Midorikawa et al., 2009;

Williams et al., 2010), and a number of tumor

suppressor genes have been suggested such as

NKX3-1, tumor necrosis factor-related family of

genes (TNFRSF10C, TNFRSF10D), NRG1,

UNC5D, ARHGEF10, DLC1 (Macartney-Coxson

et al., 2008; Xue et al., 2008; Chua et al., 2009),
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indicating that one or more genes residing on 8p

are commonly involved in a wide-variety of tumor

types.

Despite the advances in early detection, CC

remains a major cause of cancer deaths in women

worldwide due to treatment failure of invasive

cancer (Waggoner, 2003). CC progresses by dis-

tinct morphological changes from normal epithe-

lium to carcinoma through grades of squamous

intraepithelial lesions (SILs). While infection of

high-risk human papilloma viruses (HPVs) is rec-

ognized as an important etiologic agent in cervical

pathogenesis, other genetic alterations are needed

for the progression (zur Hausen, 2002). To date,

no genetic markers are available to predict

response to treatment of invasive CC. Therefore,

identification of critical “somatic genetic hits” in

CC is important in understanding its biology and

establishing clinically relevant biomarkers.

In this study, we identified recurrent 8p dele-

tions in invasive CC and inactivation of decoy

receptors TNFRSF10C and TNFRSF10D as major

target genes at this region. We demonstrate that

inactivation of decoy receptors elicits synergistic

TRAIL-Cisplatin induced cell death through

extrinsic apoptotic pathway in the presence of

DNA-damaging drugs. Additionally, the promoter

hypermethylation of TNFRSF10C occurs very

early during the tumor progression suggesting a

role for this gene in CC development.

MATERIALS AND METHODS

Patients, Tumor Tissues, and Cell Lines

A total of 264 samples of DNA representing var-

ious stages of CC progression were used in this

study. These include 123 invasive CC (nine cell

lines and 114 primary tumors), 141 cytological pap

smears from normal and precancerous lesions. The

cell lines HT-3, ME-180, CaSki, MS751, C-4I, C-

33A, SW756, HeLa, and SiHa were obtained from

American Type Culture Collection (ATCC) and

grown in culture as per the supplier’s specifica-

tions. All specimens were obtained from Columbia

University Medical Center (NY), Instituto Nacio-

nal de Cancerolog�ıa (Bogota, Colombia), and the

Department of Gynecology of Campus Benjamin

Franklin, Charit�e-Universit€atsmedizin Berlin

(Germany) with appropriate informed consent and

approval of protocols by institutional review

boards (Narayan et al., 2003b). All primary tumors

were diagnosed as squamous cell carcinoma but

six that were diagnosed as adenocarcinoma. Clini-

cal information such as age, stage, and size of the

tumor, follow-up data after initial diagnosis and

treatment were obtained for the majority of

tumors from the review of institutional medical

records. Tissues were frozen at 2808C im-

mediately after resection and were embedded

with tissue freeze medium (OTC) before macro-

dissection. All primary tumor specimens were

determined to contain at least 60% tumor by

examination of hematoxylin and eosin staining of

adjacent sections. Cytological specimens were

collected and processed as reported previously

(Narayan et al., 2009). Thirty-four pap smears

diagnosed as normal, 22 as atypical squamous cells

of undetermined significance (ASC-US), 43 as

low-grade SIL (LSIL), and 42 as high-grade SIL

(HSIL) were analyzed. The diagnosis of all HSILs

was also confirmed by a biopsy. High-molecular

weight DNA from frozen tumor tissues, cell lines,

and cell pellets from cytology smears was isolated

by standard methods. HPV types were identified

as described earlier (Narayan et al., 2003a).

SNP Array and Fluorescence

In Situ Hybridization Analysis

The Affymetrix 250K NspI SNP chip was used

for copy number analysis as per the manufacturer’s

protocol. SNP array was performed on 80 CC

specimens (9 cell lines and 71 primary tumors)

selected based on high tumor content and 7 mac-

rodissected normal cervical squamous epithelia as

controls. Acquisition and analysis of copy number

data for chromosome 8 using CytoBand informa-

tion files from the dChip website (http://biosun1.

harvard.edu/complab/dchip/chromosome.htm#ref-

gene) was performed as described (Scotto et al.,

2008a,b). Copy numbers <1.5 were considered as

deletion, 2.5–4.0 as gain, and >4.1 as amplification

in the raw copy number view.

Affymetrix U133A array (Santa Clara, CA) was

hybridized using RNA from 42 CC cases (33 pri-

mary tumors enriched by macrodissection and 9

cell lines) and 20 macrodisssected normal cervical

squamous epithelial cells using the standard proto-

cols (Li and Wong, 2001; Lin et al., 2004; Scotto

et al., 2008a; Scotto et al., 2008b) (GEO accession

numbers: GSE9750 and GSE10092). A total of 671

probe sets on Chr8 were present in U133A array

representing 6% of the genome (2.4% on 8p). To

obtain differentially expressed gene signatures, we

compared all normal with all tumor samples

using the criteria of 1.75-fold change between the

group means at 90% confidence interval and a
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significance level of P <0.05. All negative expres-

sion values for each probe set were truncated to 1

before calculating fold changes and <10% of sam-

ples with present call in each group were

excluded. The differentially expressed probe list

was used in all subsequent supervised analyses

using the same criteria between various groups to

obtain relevant gene signatures.

Fluorescence in situ hybridization (FISH) anal-

ysis was performed by standard methods using

BAC clones (RP11-875O11 and RP11-109B10)

that span the 8p21 common region of deletion and

centromere 8 as control.

Methylation-Specific polymerase chain reaction

(PCR) and Sequencing

Tumor and control DNAs were treated with

sodium bisulphite as described (Narayan et al.,

2003a). Primer sets used for amplification of methyl-

ated and unmethylated DNA spanning the CpG

Island of promoter regions are shown in Supporting

Information Table 1. Additional primer set spanning

32 CpG sites at 2149 to 1222 bp in relation to tran-

scription start site of the TNFRSF10C cDNA clone

NM_003841, and the sequence common to both

methylated and unmethylated templates was used

for cloning and sequencing (Supporting Information

Table 1). PCR was performed using standard condi-

tions for 30 cycles on primary invasive cancer and 35

cycles for precancerous lesions with annealing tem-

peratures varying between 56 and 628C. PCR prod-

ucts were run on 2% agarose gels and visualized

after ethidium bromide staining. All methylation-

specific PCR (MSP) experiments were performed in

triplicate, and the promoter hypermethylation was

considered positive when present in replicate experi-

ments. MSP products were subcloned into pCR2.1-

TOPO vector (Invitrogen) followed by sequencing

of multiple clones using M13 primers.

Drug Treatment

Cells in culture were treated with 5-mM 5-Aza-

20deoxycytidine (5-aza dC) (Sigma-Aldrich) for 5

days by replacing the medium daily, trichostatin

(Sigma-Aldrich) at a final concentration of 200 nM

for 24 hr and a combination of both as described

(Narayan et al., 2009). Human recombinant

TRAIL (Invitrogen) dissolved in distilled water,

Actinomycin D (Invitrogen) dissolved in DMSO,

Cisplatin (LKT laboratories) dissolved in N,N-

dimethylformamide were used at the indicated

concentrations and exposure times. By testing sev-

eral concentrations on CC cell lines, we found 500

ng/ml each of TRAIL and Actinomycin D as opti-

mal for detecting cell death. We determined

ICD50 value of Cisplatin by testing concentrations

from 0.5 to 50 mg/ml, which varied from 2.5 to 16.0

mg/ml in cell lines used in this study, except SW-

756 that was resistant even at 50 mg/ml (Support-

ing Information Fig. 1). Based on this, we used 3-

mg/ml final concentration of Cisplatin.

Reverse Transcription Polymerase Chain Reaction

(RT-PCR) and Western Blot Analyses

Total RNA from normal cervical squamous epi-

thelium (three from commercial sources and five

from hysterectomy specimens), tumor tissues, and

cell lines was reverse transcribed as described

elsewhere (Narayan et al., 2003a). Relative quanti-

tation of expression of NKX3-1 (Assay ID

Hs00171834) and Human GAPDH as endogenous

control (FAM/MGB Probe) genes was performed

in triplicate experiments using TaqMan Gene

Expression Assay using the Applied Biosystems

7500 Fast Real-Time PCR system (Foster City,

CA). Semiquantitative expression of TNFRSF10A,

TNFRSF10B, TNFRSF10C, TNFRSF10D, and

NKX3-1 was performed in duplicate RT-PCR

TABLE 1. Frequency of Promoter Hypermethylation of Decoy Receptor Genes in CC Progression

TNFRSF10C TNFRSF10D

Tissue type No. studied Methylated (%) No. studied Methylated (%)

Normal cervix 34 0 ND ND
ASC-US 22 5 (22.7) ND ND
LSIL 43 8 (18.6) ND ND
HSIL 42 5 (11.9) ND ND
Primary invasive cancer 114 48 (42.1) 114 5 (4.4)
CC cell lines 9 8 (88.9) 9 2 (22.2)
All Invasive cancer 123 56 (45.5) 123 7 (5.7)

ASC-US, atypical squamous cells of undetermined significance; LSIL, low-grade squamous intraepithelial lesion; HSIL, high-grade squamous intraepi-

thelial lesion; ND, not done.
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experiments using the primers shown in Support-

ing Information Table 1 and standard thermal

cycle conditions. Immunoblot analysis was per-

formed by standard methods using the antibodies

for DR4, DR5, DcR1 and DcR2 (Thermo

Scientific, Pierce), CASP8, CASP9, CASP10 (Cell

Signalling Technology), and CASP3 (BD Trans-

duction Laboratories). Secondary antibody conju-

gated with horseradish peroxidase was obtained

from Santa-Cruz Technology. Blots were reprobed

with ß-actin as control. Detection was performed

by ECL-Western Lightning Chemiluminescence

reagent (Amersham Pharmacia).

Mutation Analysis

Sanger sequencing was performed to identify

mutations on DNA amplified using the two sets of

primers spanning exons 1 and 2 of NKX3-1 gene

(Supporting Information Table 1).

Cell Survival and Apoptosis Analysis

Cell viability and cytotoxicity against TRAIL

and other drugs was assessed by standard 3-(4,5-

dimethylthiazol-2-yl)22,5-diphenyltetrazolium

bromide (MTT; Invitrogen) colorimetric assay.

Briefly, 5,000 cells were seeded in 96-well-cell cul-

ture plate, grown overnight at 378C in 5% CO2,

treated with indicated concentrations of drugs for

24 hr. After incubation of cells in 5 mg/ml of

MTT in phosphate buffer saline for 3.5 hr, the

dye was dissolved in 150 ml of MTT solvent and

the optical density of solubilized formazan was

assessed using microplate reader (BioTek Quant).

All treatments were performed in four replicate

wells and repeated three times.

To measure apoptosis, we used Pacific BlueTM

Annexin VSYTOXVR AADvancedTM Apoptosis

Kit (Invitrogen). Briefly, one million cells were

seeded in 6-well-tissue culture plates, grown over-

night at 378C at 5% CO2 incubator, replaced with

new culture medium and added the indicated

concentration of drugs. Cells collected after 16 or

24 hr of incubation were analyzed by LSR II flow

cytometry (BD Biosciences) using 405 and

488 nm excitation and 455 and 647 nm emission.

A total of 20,000 events were analyzed using

Flowjo software (Tree Star, OR) in duplicate

experiments.

Statistical Analysis

ANOVA and t-test statistics were calculated

using the GraphPad Prism software (LaJolla, CA).

RESULTS

Identification of 8p12-21.3 Minimal Deleted Region

and Candidate Downregulated Genes in CC

SNP array analysis of 71 primary tumors and 9

cell lines identified copy number alterations

(CNA) on chromosome 8 in 38 (47.5%) cases,

losses in 30 (37.5%), and gains in 23 (28.8%) cases.

Gains were frequently seen on 8q and the losses

on 8p. Amplification at 8q24.12 was seen in a sin-

gle case. Analysis of the dataset with losses on

chromosome 8 showed monosomy in three cases

and partial deletion in 27 cases (Fig. 1A). Among

the tumors that exhibited partial deletions, losses

on 8p were only seen in 16 (53.3%) cases, on both

chromosomal arms in 10 (33.3%) cases, and only

on 8q in one case. Overall, 8p was affected by

deletion in 29 of 30 (96.7%) of all the deleted

cases, suggesting 8p is the frequent target of dele-

tion in CC. To identify common minimal deleted

region (MDR) on 8p, we examined the SNP data

for smaller regions of loss. Notably, we found 2

cases (T-117 and T-194) defining the MDR on 8p.

The MDR was involved in all cases with 8p dele-

tions, except 3 (Fig. 1A), which spans an 8.4 Mb

region between 22,941 and 31,338 kb genomic

interval on chromosome 8p. All cell lines that had

8p deletion by SNP array were also showed

decreased copies by FISH using a probe spanning

the MDR, except in HeLa cell line (data not

shown). HeLa cell line showed most part of chro-

mosome 8 loss except distal 8q gain, while the

FISH did not reveal relative decrease of 8p21

region compared to control centromere probe.

Based on these results, we hypothesized that

this decreased 8p genomic dosage results in loss of

function of one or more genes relevant to CC

tumorigenesis. The 8p12-21.3 MDR contains 92

probe sets comprising 53 known genes. To exam-

ine the consequence of 8p deletion on gene

expression, we used gene expression profiling of

chromosome 8 probe dataset from Affymetrix

U133A array on 20 normal (age range, 27–64 year;

mean 6 standard deviation (SD) 5 46.9 6 7.6) squa-

mous epithelial samples (including the seven sam-

ples used in SNP array), 33 primary tumors (age

range 28–70 year, mean 6 SD 5 48.9 6 12.3; 22 of

these tumors were also analyzed by SNP array), and

9 cell lines (all analyzed by SNP array). To identify

differentially expressed gene signatures of 8p MDR

in CC, we performed supervised analyses using the

92 probe set between tumors and normal, and

between 8p deleted and undeleted tumors using the

criteria described in methods. This analysis identified
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only NKX3-1 as a down regulated gene in tumors

compared to normal (Fig. 1B). Among the cell

lines studied, 7 of 8 had 8p MDR and all cell lines

showed NKX3-1 downregulated expression includ-

ing C-33A that did not show 8p deletion. Of the

22 primary tumors studied by both SNP and

U133A arrays, all 9 tumors that showed 8p dele-

tions had downregulated expression and 12 of 13

tumors that did not show 8p deletion also showed

decreased expression of the NKX3-1. Therefore,

no correlation of NKX3-1 downregulation with 8p

deletion was found suggesting other mechanisms

may play a role in its inactivation. Furthermore,

we ruled out promoter methylation or mutations

as potential mechanisms of downregulated expres-

sion (Supporting Information Fig. 2 and data not

shown).

A family of four TNFRSF10 genes

(TNFRSF10A, TNFRSF10B, TNFRSF10C, and

TNFRSF10D) that play role in apoptosis map to

the MDR at 8p21. Expression of none of the

three genes (TNFRSF10B, TNFRSF10C, and

TNFRSF10D) present on U133A array showed a

complete correlation with 8p deletion. However, a

high frequency of tumors (29/42, 69%) showed

downregulated expression of TNFRSF10D com-

pared to normal (Fig. 1B). Therefore, this inte-

grative analysis did not identify a candidate target

downregulated gene as a consequence of 8p

deletion.

To further examine the significance of 8p dele-

tion, we evaluated its association with clinical

parameters such as age, stage, and size of the

tumor, treatment outcome, and HPV type by uni-

variate analyses. 8p deletions were found to be sig-

nificantly associated with tumor size (10% cases in

<5 cm vs. 36% in >6 cm; P 5 0.04), outcome of

the treatment (18.2% patients were alive or with

complete remission vs. 39.4% of patients died of

disease between 1 and 72 month follow up), and

multiple HPV infections (63.6% in multiple HPV

infections vs. 28.9% in HPV16 alone cases).

Although not statistically significant, Kaplan–

Meier survival analysis showed a 2-fold risk of

death in patients carrying 8p deletions (Fig. 1C).

These findings thus suggest that 8p deletion may

serve as a predictor of clinical outcome to conven-

tional therapies.

Figure 1. Genetic analysis of 8p deletion in CC. (A) Identification
of 8p12-21.3 minimal deletion by 250K NspI SNP array. Each vertical
column represents a sample with genomic regions representing from
pter (top) to qter (bottom) on chromosome 8. Prefix “T” indicates
primary tumor; “CL” indicates cell line. The blue–red scale bar (21 to
11) at the bottom represents the copy number changes relative to
mean across the samples. The intensities of blue and red indicate rela-
tive decrease and increase in copy numbers, respectively. G-banded
ideogram of chromosome 8 is shown on the extreme right. All tumors
that exhibited chromosome 8 losses are shown from largest to small-
est region of deletion. Inferred copy number view of T-194 showing 8p

minimal deletion from normal (2N) (red line) is shown on right. (B)
Gene expression using U133A array and analysis of genes mapped to
MDR in CC cell lines and primary tumors. Significantly differentially
expressed genes were identified by comparing normal, cell lines and
primary tumor groups. In the matrix, each row represents the gene
expression relative to group mean and each column represents a sam-
ple. The genes are shown on right. The scale bar (22 to 12) on the
bottom represents the level of expression with intensities of blue rep-
resents decrease and red for increase in expression. (C) Kaplan–Meier
curves showing survival differences between 8p deleted and undeleted
cases.
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Promoter Hypermethylation-Mediated

Inactivation of Decoy Receptor Genes

at 8p12-p21.3 MDR

TNF receptor superfamily decoy receptor genes

are known to be epigenetically inactivated in mul-

tiple tumor types (Shivapurkar et al., 2004). As

stated above, the 8p MDR contains a cluster of

four TNFRSF10 family genes. TNFRSF10C
(DcR1) and TNFRSF10D (DcR2) act as potentially

antiapoptotic genes since they lack active death

domains, whereas TNFRSF10A (DR4) and

TNFRSF10B (DR5) act as proapoptotic genes

(Gonzalvez and Ashkenazi, 2010). Based on their

function, these genes might be potential targets of

8p MDR. To understand their role, we examined

the promoter hypermethylation status of these

genes in 123 invasive cancers (9 cell lines and 114

primary tumors) by MSP analysis. Promoter meth-

ylation was identified in TNFRSF10C and

TNFRSF10D, while it was absent in TNFRSF10A
and TNFRSF10B. Hypermethylation of

TNFRSF10C was found in 56 (45.5%) of the 123

CC cases (cell lines, 88.9%; primary tumors,

42.1%; Table 1). The other decoy receptor

TNFRSF10D showed promoter hypermethylation

in 5.7% tumors. DNA isolated from 34 normal cer-

vical epithelia did not reveal hypermethylation in

these promoters. To validate the MSP data, we

performed bisulfite sequencing of a region cover-

ing 32 CpGs within the CpG island of

TNFRSF10C in one unmethylated and five meth-

ylated primary tumors, chosen randomly to repre-

sent each of these classes, along with the controls

confirmed the MSP results (Fig. 2A).

Of the 9 cell lines studied, 8 were MSP positive

for TNFRSF10C without evidence for the pres-

ence of an unmethylated allele. These data com-

bined with SNP array (Fig. 1A) suggest that 7 of 8

cell lines with 8p deletion had methylation of the

second allele. The remaining cell line (MS751)

that harbor 8p deletion by SNP array did not show

promoter methylation of TNFRSF10C. The C-33A

cell line that had disomy for chromosome 8p by

SNP array exhibited both methylated alleles.

Therefore, these data supports that TNFRSF10C
is one of the targets of chromosome 8p deletion.

Thus, the cell line data suggest that the

TNFRSF10C inactivation follow the “two-hit”

hypothesis (Knudson and Strong, 1972). However,

only 9 of 21 (43%) primary tumors showed simul-

taneous loss of 8p and TNFRSF10C promoter

methylation. Similarly, 18 (36%) of 50 tumors

Figure 2. Analysis of TNFRSF10C methylation and expression in CC.
(A) Bisulphite MSP cloning and sequencing. U, unmethylated; M, meth-
ylated. CpG sites examined are numbered sequentially as shown
above. Filled circles indicate methylated CpG sites and empty circles
indicate unmethylated CpGs. Each row represents a clone and each
panel represents a tumor or control. (B) and (C) RT-PCR analysis of
TNFRSF10C and TNFRSF10D in CC. (B) Box plot showing semiquantita-
tive analysis in normal, primary tumors and CC cell lines. ANOVA,
normal versus tumor, not significant; normal versus cell line P< 0.0001,
significant. (C) Box plot showing semiquantitative analysis in normal,

unmethylated, and methylated tumors. ANOVA, normal versus unme-
thylated, not significant; normal versus methylated P< 0.0004, signifi-
cant. Box plots show median, 25th and 75th percentile, minimum and
maximum values. (D) Immunoblot analysis showing expression of
TNFRSF10 receptors. Actin was used as a loading control. (E) Effect of
drug treatment using inhibitors of methylation and HDAC on gene
reactivation by RT-PCR analysis in CC cell lines. Bracketed M and UM
indicates methylated and unmethylated cell lines, respectively. ACTB,
beta actin; U, untreated; A, 5-Aza-20-deoxycytidine; T, TSA; A/T, 5-Aza-
20-deoxycytidine and TSA.
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without 8p deletion also showed promoter methyl-

ation. Therefore, no strict association between

methylation and 8p deletion could be established

in primary tumors.

Since the TNFRSF10C expression using U133A

array was unclear in relation to 8p deletion, we

extended the expression studies using real time

RT-PCR to examine if aberrant promoter hyper-

methylation is associated with transcriptional down-

regulation. TNFRSF10C expression on a panel of 20

normal cervical epithelia, 9 CC cell lines, and 25

tumor specimens showed no significant downregu-

lation relative to ß-actin between primary tumors

(mean 6 SD 5 0.81 6 0.33) and normal epithelium

(mean 6 SD 5 0.94 6 0.15). However, the expres-

sion in the cell lines (mean 6 SD 5 0.36 6 0.34) was

significantly decreased compared to normal

(P< 0.0001) and primary tumors (P 5 0.0017; Fig.

2B). Further analysis to examine the relationship

between methylation and gene expression showed

significant differences in TNFRSF10C levels

between normal and methylated tumors (mean-

6 SD 5 0.58 6 0.40; P< 0.0004), while no differ-

ence between normal and unmethylated tumors

(mean 6 SD 5 0.99 6 0.11; P 5 0.48) was found.

Similarly, the expression levels were also signifi-

cantly (P 5 0.004) lower in methylated tumors com-

pared to unmethylated tumors (Fig. 2C). Thus, the

RT-PCR data suggest that promoter hypermethyl-

ation of TNFRSF10C results in transcriptional

downregulation. Furthermore, western blot analysis

of cell lines showed all methylated cell lines exhib-

ited decreased protein levels of TNFRSF10C,

while the unmetylated cell line (MS751) expressed

high levels of protein (Fig 2D). For TNFRSF10D

gene, six of the 9 cell lines showed relatively low

protein. Two of 3 methylated cell lines and four of

6 unmethylated cell lines showed decreased levels

of TNFRSF10D protein (Fig. 2D). Of note,

TNFRAF10A showed relative low levels of protein

in four of 9 cell lines, while TNFRSF10B showed

no detectable decrease. Overall, these data suggest

that promoter methylation or other epigenetic

mechanisms results in downregulation of TRAIL

decoy receptors in the majority of CC cell lines.

To examine the role of DNA hypermethylation

and histone modifications in gene silencing, we

treated eight methylated and one unmethylated

cell lines with 5-aza dC and TSA. RT-PCR analy-

sis of these cells showed various levels of reactiva-

tion of TNFRSF10C and with Aza or Aza with

TSA treatments, but not with TSA alone, in all

methylated cell lines. However, no reactivation

was found in unmethylated cell line MS751 (Fig.

2E). These data confirm that the methylation of

TNFRSF10C promoter results in downregulated

expression and demethylation effectively reacti-

vates the gene expression by reversing the methyl-

ation affect.

To examine the prognostic role of TNFRSF10C
hypermethylation, we performed a correlative

analysis of methylation with clinicopathologic fea-

tures such as age, tumor stage, and size of the

tumor, clinical outcome, and HPV type in primary

tumors and found no significant associations (data

not shown).

DNA Damaging Agents Cisplatin and Actinomycin

D Sensitizes TRAIL Mediated Apoptotic Response

in 8p-Deleted CC Cell Lines

TNF-related apoptosis-inducing ligand or

Apo2L (TRAIL) binds to its agonistic receptors

triggering apoptosis. TRAIL therapy is evaluated

as a promising tool in several cancer clinical trails.

However, the efficacy of TRAIL varies among

tumors owing to defects in death-inducing signal-

ing complex (DISC) formation. Since 8p deleted

CC cases showed adverse outcome to standard

therapies, we examined if the efficiency of

TRAIL-induction of apoptosis is 8p deletion

dependent. Treatment of TRAIL showed higher

apoptotic response in 8p-deleted cell lines (SiHa,

C-4I, CaSki, SW-756, HeLa, ME-180, HT-3, and

MS-751) compared to an undeleted cell line (C-

33A) (P 5 0.0002; Fig. 3A, lane 1). Exposure to

antineoplastic DNA-intercalating agents Cisplatin

or Actinomycin D significantly increased apoptosis

in 8p-deleted cell lines compared to undeleted

cell line (Fig. 3A, lanes 2 and 3). To examine

whether these drugs enhance the TRAIL-

mediated apoptosis, we tested TRAIL combined

with Cisplatin or Actinomycin D, and identified a

synergistic effect by both the drugs showing sig-

nificant increase in 8p-deleted cell lines (Fig. 3A,

lanes 4 and 5). Although the differences were less

significant by cytotoxicity assays (Supporting

Information Fig. 3) these results indicate that 8p

deletion effectively enhances lethality of Cisplatin

or Actinomycin D combination with TRAIL treat-

ment in CC cells.

Epigenetic Inactivation of Decoy Receptor

Expression Effectively Mediates TRAIL-Induced

Apoptosis

Since 8p-deleted CC cells are sensitive to

TRAIL-induced apoptosis and TRAIL mediated
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apoptotic response depend on the balance of

expression of its death receptor (DR4 and DR5)

and antagonistic decoy receptor (DcR1 and DcR2)

genes, we next want to elucidate the role of decoy

receptor inactivation in drug response. Of the 8

cell lines that showed 8p deletion, four (SiHa, C-

4I, SW-756, MS-751) had normal levels of

TNFRSF10D expression, while the remaining four

(CaSki, HeLa, ME-180, HT-3) showed decreased

expression (Figs. 1B and 2D). We found that treat-

ment of TRAIL alone or combined with Cisplatin

or Actinomycin D showed a significantly high apo-

ptosis and reduced cellular viability in cell lines

with decreased expression of TNFRSF10D com-

pared to the cell lines that expressed normal levels

of TNFRSF10D (Fig. 3B and Supporting Informa-

tion Fig. 3B). The cell line (ME-180) that showed

8p deletion and TNFRSF10D methylation also

showed high-apoptotic response and sensitivity to

cell death as compared to 8p deleted but

TNFRSF10D unmethylated cell lines (Fig. 3C,

Supporting Information Figs. 3C and 4). The cell

lines (C-33A and ME-180) that exhibited

TNFRSF10D methylation showed a similar sensi-

tivity to cell death irrespective of 8p deletion sta-

tus (Fig. 3D and Supporting Information Fig. 3D).

These data, thus, suggest that TRAIL-induced

cell death response is dependent on either the sta-

tus of methylation and/or the levels of expression

of TNFRSF10D. This affect was synergistic in the

presence of Cisplatin or Actinomycin D (Fig 3,

Supporting Information Fig 3).

We then examined changes in TNFRSF10C
gene in response to these drugs. When compared

CC cell lines with the combination of 8p deletion,

promoter methylation with down regulated

expression (SiHa, C-4I, CaSki, SW-756, HeLa,

ME-180, and HT-3) and an unmethylated with

Figure 3. Decoy receptor inactivation is a positive biomarker in
mediating TRAIL-induced apoptosis in CC cell lines. Cells were treated
with indicated drugs and concentrations for 2 hr. The percent total
cell death was measured as sum of Annexin V positive, Annexin V/
SYTOX AADvanced double positive and SYTOX AADvanced positive
cells using Annexin V/SYTOX AADvanced kit (Invitrogen) and FACS
analysis. (A) Comparison of cell death between with or without 8p-
deleted CC cell lines. (B) Analysis of cell death in relation to
TNFRSF10D expression levels in 8p deleted CC cell lines. (C) Analysis

of cell death in relation to TNFRSF10D methylation in 8p-deleted CC
cell lines. (D) Analysis of cell death in relation to TNFRSF10D methyla-
tion independent of 8p deletion in CC cell lines. (E) Analysis of cell
death in relation to TNFRSF10C methylation and expression in 8p-
deleted CC cell lines. (F) Analysis of cell death in relation to
TNFRSF10C methylation and expression independent of 8p deletion in
CC cell lines. Statistically significant differences are indicated at the top
for each group.
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normal levels of expression (MS-751), the data fur-

ther revealed that the unmethylated cell line

exhibits resistance to cell death to TRAIL- and

other combination drug treatments. This effect

was significantly synergistic to TRAIL combined

with Cisplatin or Actinomycin D (Figs. 3E and 3F,

Suppl Figs. 3E, 3F, and 4).

Therefore, these in vitro experiments establish

that the tumor cells carrying a combination of

methylated alleles and/or downregulated transcrip-

tion of one or both decoy receptors elicit efficient

antitumor effects against TRAIL-combination

treatments.

Epigenetic Inactivation of Decoy Receptors

Facilitates Efficient Activation of Extrinsic

Apoptotic Pathway

Since we observed enhanced cell death

response to TRAIL-combination drug treatments

in cell lines expressing low levels of DcR1 and

DcR2, as well as apoptotic resistance in cell line

expressing low level of death receptor DR4, we

wanted to examine the relation between receptor

expression, and caspase activation to TRAIL-

Cisplatin treatments. To test this, we chose four

cell lines with variations in decoy receptor methyl-

ation/downregulated expression exhibiting

extreme sensitivity or resistance to TRAIL/Cispla-

tin treatment. ME-180 cells carrying promoter

hypermethylation/inactivation of DcR1 and 2 as

well as normal expression of death receptors was

the cell line that exhibited maximum response to

TRAIL, Cisplatin, or Actinomycin treatments.

Upon treatment of ME-180 cells with TRAIL,

Cisplatin, or combination of both resulted in acti-

vation of initiator CASP8. However, other initiator

caspase CASP10 showed no evidence of activation

(Fig. 4). The effector caspase CASP3 is also highly

activated after treatment with TRAIL combined

with Cisplatin (Fig. 4). Of note, in addition

CASP9 that plays a role in mitochondrial apoptotic

pathway, is also activated. These data thus suggest

active apoptotic pathway in this cell line. In

Figure 4. Activation of extrinsic apoptotic pathway after TRAIL-
Cisplatin combination treatment in CC cell lines depends on the meth-
ylation/inactivation status of TRAIL receptors. Western blot analysis
showing Caspase-8, caspase-9, caspase-3, caspase-10, DR4, DR5, DcR-
1, DcR-2, and TP53 expression after treatment with Cisplatin, TRAIL,
or combination of both. Cleaved fragments with molecular size

markers are shown on the right in kDa. These results confirmed on at
least 3 independent experiments. Right panel: Western blot analysis
showing activation of caspases-8, 29, and 23 in ME180 cell line;
caspase-8 and 29 activation in MS751 cell line. Left panel showing lack
of caspase activation in C-4I (only caspase-8 activated) and C-33A cell
lines.
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addition, proapoptotic receptor DR4 levels were

elevated after treatment with Cisplatin alone or in

combination with TRAIL, while DR5 levels

remain unchanged. Thus the TRAIL 1 Cisplatin

treatment activates DR4 leading to active caspase

pathway in this cell line (Fig. 4). Thus, we assume

that the inactivated decoy receptors in ME-180

facilitate high sensitivity to cell death via extrinsic

apoptotic signaling. A second cell line C-4I with

promoter methylation associated inactivation of

DcR1 that also exhibited high rate of cell death

after the drug treatment, showed activation of only

initiator caspase, 8, but no detectable activation of

downstream caspases CASP3 or 9 was found.

Treatment did not result in any detectable

changes in DR4 or DR5 levels in this cell line.

Therefore, high sensitivity to TRAIL/Cisplatin

resulting in activated caspase pathway in ME-180

is due to concomitant inactivation of both decoy

receptors. However, the second cell line C4-I that

also exhibits high sensitivity to TRAIL did not

effectively activate downstream caspases. Since

only one decoy receptor is inactivated in this cell

line, other alternative pathways such as mitochon-

drial pathway may also play role in sensitizing the

these cells. Of note, TP53 is activated on treat-

ment with Cisplatin or Cisplatin combined with

TRAIL in C-4I supporting TP53-dependent path-

way may be active.

The MS751 cell line carrying unmethylated pro-

moters and detectable levels expression of DcR

genes exhibited highest resistance to TRAIL/Cis-

platin. Treatment of this cell line with TRAIL/

Cisplatin results in activation of caspases 8 and 9,

but no evidence of CASP3 activation was found.

Thus, this finding suggests defective activation of

caspase pathway in this cell line (Fig. 4). A second

cell line C-33A despite downregulated expression

of both DcR genes was resistant to TRAIL/Cispla-

tin treatment (Fig. 4). No evidence of caspase acti-

vation was seen in this cell line after treatment.

This cell line carries TP53 mutation and exhibits

complete lack of DR4 expression. Thus, the apo-

ptotic resistance in this cell line is due to DR4

absence and possibly TP53 also plays a role in

resistance, which may override the advantage con-

ferred by decoy receptor inactivation promoting

cell death response. Thus, these data suggest that

decoy receptor inactivation promotes cell death

response to TRAIL-Cisplatin treatment, in the

presence of active death receptors, by activating

the caspases that play role in extrinsic apoptotic

pathway.

TNFRSF10C Promoter Hypermethylation Occurs

at an Early Stage in CC Development

To identify the role of promoter hypermethyl-

ation of TNFRSF10C gene in CC progression, we

studied methylation status in DNA obtained from

141 cytological smears diagnosed as normal

(N 5 34), ASC-US (N 5 22), LSIL (N 5 43), or

HSIL (N 5 42). We found no evidence of methyla-

tion in DNA from cytologic smears diagnosed nor-

mal. In contrast, 5 (22.7%) of 22 cases diagnosed

as ASC-US, 8 (18.6%) of 43 LSILs and 5 (11.9%)

of 42 HSILs showed promoter hypermethylation

by MSP analysis (Table 1). Thus, these data pro-

vide evidence that promoter hypermethylation of

TNFRSF10C initiate at an early developmental

stage during CC tumorigenesis.

DISCUSSION

Chromosome arm 8p suffers frequent deletions

in many human epithelial and hematologic malig-

nancies (http://cgap.nci.nih.gov/Chromosomes/

RecurrentAberrations). Here, we show that the

8p12-21.3 as the MDR in CC and the deletion

prognosticates a 2-fold increased risk of death.

Therefore, it is likely that one or more

proliferation-regulated genes are situated in the

deleted region and their inactivation plays a role

in CC. The MDR at 8p12-21.3 contains a number

of genes known to play a role in human cancer. In

this study, we identified TNFRSF10C and

TNFRSF10D spanning the MDR as target inacti-

vated genes by genetic and/or epigenetic

mechanisms.

The proteins encoding TNFRSF10C and

TNFRSF10D belongs to the TNF-receptor fam-

ily containing an extracellular TRAIL-binding

domain and a transmembrane domain, but lacks

the cytoplasmic death domain. Thus, these recep-

tors are not capable of inducing apoptosis.

Although DcR1 and DcR2 express on cell surface

lack functional intracellular death domain, they

are fully functional. DcR1 and DcR2 inhibit

TRAIL-induced apoptosis by competing with

proapoptotic TRAIL receptors DR4 and DR5 in

binding TRAIL, thus act as antagonistic molecules

that protect cells from TRAIL-induced apoptosis

by preventing the assembly of death-inducing sig-

naling complex (DISC) (Sheridan et al., 1997;

Micheau and Merino, 2004). TNFRSF10C and

TNFRSF10D genes have been shown to be inacti-

vated by promoter hypermethylation in multiple

tumor types (van Noesel et al., 2002; Shivapurkar

et al., 2004; Yang et al., 2007; Hornstein et al.,
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2008; Braga Lda et al., 2012; Mahapatra et al.,

2012). Here, we identified functional inactivation

of TNFRSF10C and TNFRSF10D in a high propor-

tion of CC by promoter hypermethylation or

downregulated expression as shown by the previ-

ous reports (Shivapurkar et al., 2004, 2007). Thus,

the decoy receptor inactivation identified in this

study suggests that TRAIL-induced apoptosis

may be an effective treatment option in patients

exhibiting inactive TNFRSF10C and/or

TNFRSF10D combined with the conventional

chemoradiotherapy in CC. Although TRAIL-

induced apoptosis is a promising approach in can-

cer therapy, not all tumors are sensitive to TRAIL.

The mechanisms involved in TRAIL resistance

are not fully understood. One postulated mecha-

nisms have been that overexpression of DcR1 or

DcR2 protect tumor cells from TRAIL-induced

apoptosis (Sheridan et al., 1997). In this study, we

have demonstrated that inactive DcR1 and DcR2
genes can enhance TRAIL-mediated apoptosis in

CC. Our studies further suggest that combination

of chemotherapeutic agents such as Actinomycin

D or Cisplatin with TRAIL are highly effective in

achieving increased TRAIL-induced apoptosis in

tumor cell lines with 8p deletion or inactivated

DcR1 and DcR2 genes. Thus, our data demonstrate

that patients carrying 8p deletion and/or decreased

expression of decoy receptors in their tumor cells

may benefit from combination chemotherapeutic

drugs with recombinant TRAIL. Many previous

studies focused on mechanisms of TRAIL resist-

ance and the mechanisms of tumor sensitivity are

largely ignored. This study demonstrates that at

least one of the mechanisms of sensitivity is decoy

receptor downregulation. However, a better

understanding of biologic mechanisms underlying

tumor response with logical combination of drugs

in CC is needed to identify and enrich responsive

patient selection.

Combination therapies can affect more than one

death pathways. For example, expression of

TRAIL receptors and their decoy receptors can be

induced by wild-type TP53 and other transcription

factors upon treatment with DNA damaging

agents (Takimoto and El-Deiry, 2000; Liu et al.,

2005). Thus, the DNA damaging agents such as

chemotherapy and radiation can be more effective

in combination with TRAIL and synergistic effect

has been demonstrated in a number of tumor

types (Mahalingam et al., 2009).

Since TRAIL receptors are TP53-regulated

DNA damage-inducible genes, mutations in TP53
may impair TRAIL-induced apoptotic activity

(Ruiz de Almodovar et al., 2004; Liu et al., 2005).

The majority of CC are HPV 16 positive, where

high-risk HPV E6 protein causes TP53 degrada-

tion, and hence nonfunctional. In this scenario, it

is expected that the HPV16-positive cervical

tumors may have impact on TRAIL therapy

response. The present data in relation to HPV

infection and TP53-mutated CC cell lines showed

that TP53-mutated tumors exhibited slightly

higher resistance to TRAIL, but the difference

were not statistically significant between HPV

positive and negative cell lines (Supporting Infor-

mation Figs. 5A and 6A). This is consistent with

nonfunctional TP53 in mutated and HPV-negative

cell lines, while HPV-positive tumors may still

express low levels of functional TP53 and exhibit

slightly higher response to TRAIL. Our data sug-

gest that HPV-negative tumors carrying TP53
mutations may be more resistant to TRAIL ther-

apy. Whether the type of high-risk HPV deter-

mines response to TRAIL and combination with

DNA damaging agents is not known. Our in vitro

data showed that the tumors carrying HPV 16 and

HPV18/45 exhibited significantly higher resistance

to TRAIL and combination with Actinomycin D

or Cisplatin compared to cell lines carrying HPV

18, 16/18, 39/68 (Supporting Information Figs. 5B–

5F and 6B–6F). However, these observations and

the mechanisms of TRAIL resistance in relation

to HPV infection remain to be validated further in

a larger series of cell lines.

Synergy between DNA damaging agents and

TRAIL has been well established in a variety of

tumors (Morizot et al., 2011). Our present in vitro

studies provide evidence that decoy receptor inac-

tivation potentially enhances antitumor efficacy of

TRAIL by activating the extrinsic death pathway.

However, the relative contribution of signals that

trigger apoptosis by TRAIL sensitization depends

on large variety of events ranging from DISC for-

mation to more distal events. CFLAR, regulator of

apoptosis structurally similar to caspase-8 and a

critical molecular at DISC formation, is one such

gene. CFLAR downregulation of either full length

or short variants have been shown to either induce

or reduce TRAIL-induced apoptosis (Irmler et al.,

1997). We have previously reported that the chro-

mosomal region that maps CFLAR was deleted in

both precancerous and cancerous lesions of cervix,

and its downregulation in cell lines (Narayan

et al., 2003b). Although TRAIL-Cisplatin

inducted caspase activation correlate with inactiva-

tion of decoy receptor genes, the activation of cas-

pases is highly variable. One mechanism, as has
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been shown in C-33A cell line, is that lack of DR4

expression fails to activate the extrinsic pathway.

Downstream pathway gens such as CFLAR

remains to be assessed for their role in activation

of caspases. Thus, further analysis of downstream

pathway genes may clarify the mechanisms of

TRAIL sensitivity and/or resistance in CC.

In this study, we also identified TNFRSF10C
promoter methylation in all grades of precancerous

lesions (Table 1). The potential of individual cer-

vical precancers to progress to higher grades is cur-

rently unpredictable (Syrjanen, 1996; McCredie

et al., 2008; Schiffman and Rodriguez, 2008).

Whether the TNFRSF10C methylation and the

associated inactivation will serve as a potential sig-

nature in defining risk of progression or even serve

as biomarker of treatment of precancerous lesions

remains to be understood and warrants further

studies.

TNFRSF10C promoter methylation was found

in 23% of specimens with ASC-US diagnosis. A

cytological diagnosis of ASC-US is reported in

around 5% of women undergoing Pap screening

but the clinical relevance of ASC-US is largely

unclear. Follow-up studies of patients with this

unequivocal diagnosis show histologically high-

grade disease (CIN) lesions or even invasive can-

cer in a proportion of cases (The ASC-US-LSIL

Triage Study (ALTS) Group, 2003). However, no

optimal strategy for ASC-US triage to identify

high-grade disease that requires follow-up and

treatment is available in limiting the number of

women who receive unnecessary procedures.

Since we found TNFRSF10C methylation in 23%

patients with the diagnosis of ASC-US, whether

these patients represent already underlying high-

grade disease remains to be determined.

In conclusion, our present results clearly dem-

onstrate that patients with detectable 8p12-21.3

deletion harboring multiple tumor suppressor

genes are at risk for disease progression and poor

outcome. We identified inactivation of

TNFRSF10C and TNFRSF10D in majority of CC

cases. We also demonstrated that cell lines with

inactivated DcR1 and DcR2 showed enhanced

TRAIL-induced cell death in combination drug

therapy by efficient activation of extrinsic apopto-

tic pathway. Therefore, it is anticipated that

patients that lack expression of decoy receptors

may display enhanced response to TRAIL-

combination therapies. Strategies that down-

modulate decoy receptors might also be a viable

approach for an affective TRAIL therapy in CC

patients.
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