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ABSTRACT

Contact Charge Electrophoresis:
Cooperative dynamics of particle

dispersions

Shashank Pandey

In 1745 a Scotch Benedictine monk Andrew Gordon discovered Contact Charge

Electrophoresis (CCEP) which remained in dormant state for centuries until gaining

renewed prominence in the field of particle manipulation and actuation. Contact

Charge Electrophoresis (CCEP) refers to the continuous to and fro motion of a con-

ductive object between two electrodes subject to an applied voltage. The continuous

motion of the conductive particle and the low power requirement provide an attrac-

tive alternative to traditional methods for particle manipulation techniques such as

dielectrophoresis. Recent efforts to understand and apply CCEP have focused on the

motion of single particles and we present dynamics of multiple conductive particles

dispersed in non-conducting media that utilize CCEP to perform tasks like pumping

and cargo transport operations as well as multiparticle clusters capable of tailored

trajectories.

Chapters 1 provides motivation for this work and background on CCEP. Providing

brief details on development of microfluidic devices and modeling that are covered

in more details in subsequent chapters. It also focuses on the historical aspect of

CCEP, relevant background, mechanism, physics, application strategies in literature,

strategies developed for single particle systems and possible extension to multiparticle

systems.

Chapters 2 and 3 talk about the dynamics and modeling of multiple conductive par-



ticles both in dispersion and aggregates/clusters powered by CCEP. In Chapter 2,

we propose a new hybrid approach based on image-based method proposed earlier

by Bonnecaze[18] for modeling CCEP. It covers challenges to modeling a multiple

particle system in confinement, dynamics of chain formation and dynamics of cluster

comprising conductive and non-conductive particles between two electrodes. While

Chapter 3 focuses on details of methods and techniques used in development of the

simulation for dispersion of conductive particles in confinement. We illustrate varia-

tion of conductivity for complete range of electrode separation with varying volume

fraction.

Chapter 4 expands on multiple particle CCEP and shows that when we physically

constrain particle trajectories to parallel tracks between the electrodes the emergence

of traveling waves is observed. These traveling waves of mechanical actuation can be

realized in linear arrays of electromechanical oscillators that move and interact via

electrostatic forces. Conductive spheres oscillate between biased electrodes through

cycles of contact charging and electrostatic actuation. The combination of repulsive

interactions among the particles and spatial gradients in their natural frequencies

lead to phase locked states characterized by gradients in the oscillation phase. The

frequency and wavelength of these traveling waves can be specified independently by

varying the applied voltage and the electrode separation. We demonstrate how trav-

eling wave synchronization can enable the directed transport of material cargo. Our

results suggests that simple energy inputs can power complex patterns of mechanical

actuation with potential opportunities for soft robotics and colloidal machines.

Chapter 5 systematically investigate the dynamics of cluster comprising multiple

spherical conductive particles driven via contact charge electrophoresis (CCEP). We

are specifically interested in understanding dynamics of closed packed cluster of par-

ticles with both conductive and non-conductive particles in three dimensions(3D).

Finally, Chapter 6 summarizes new ideas and proposes possible applications for mul-

tiple particle Contact charge electrophoresis motivated by this dissertation.
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Chapter 1

Contact Charge Electrophoresis:

Fundamentals and Microfluidic

Applications

1.1 Introduction

1In 1745, the Scotch Benedictine monk Andrew Gordon suspended a small metal

sphere by a fine silk thread between two electrified bells [169]. He marveled as the

sphere oscillated steadily between the bells, creating a gentle ringing sound (Fig. 1.1a).

Years later, Benjamin Franklin combined Gordon’s chimes with his recent invention,

the lightning rod, to provide audible warning of approaching thunderstorms to fur-

ther his own investigations of atmospheric electricity [74]. Franklin later noted the

1The material presented in this chapter has been reprinted with permission from Kyle J. M.

Bishop, Aaron M. Drews, Charles A. Cartier, Shashank Pandey, and Yong Dou, Langmuir 2018, 34,

63156327. Copyright 2018 American Chemical Society. Author responsibilities were as follows: All

the experiment designs reviewed were contributed by all the authors. All authors contributed to

final text specifically K.J.M.B.
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remarkably small amount of charge needed to drive the oscillator, and reported nearly

indefinite operation of the chimes if the air were removed by means of an evacuated

chamber. Legend has it that he left the bells audibly ringing during a trip to Europe,

to his wife’s great irritation [169].

These early investigations of Gordon’s chimes mark the first application of elec-

tricity to perform mechanical work – that is, the first electric motors. Franklin took

this new idea further with his “electric wheel”, which used the repeated charging

and electrostatic actuation of brass thimbles mounted on a carousel to drive steady

rotational motions (Fig. 1.1b) [73]. In a world of powerful steam engines and water

wheels, the electrostatic motor was merely a curiosity – Franklin himself suggested

its use in an autonomous turkey rotisserie. In 1821, Michael Faraday demonstrated a

superior electric motor based on electromagnetic forces, which continue to power our

electric appliances and vehicles today. By contrast, the electrostatic motor faded into

the annals of history, revived only for the occasional science demonstration [126].

Now this ca. 250 year-old technology has found new life in powering particle mo-

tions and mechanical functions at the micro- and nanoscales. In a process called con-

tact charge electrophoresis (CCEP), a conductive particle [200, 117, 122, 58, 32, 54, 52]

(or droplet [94, 114, 174, 113, 103, 4, 102, 105]) is first charged by contact with an

electrode surface in the presence of an electric field and then actuated by that field via

electrophoresis. Each time the particle contacts an electrode, its charge changes sign

and its velocity changes direction (Fig. 1.1c). CCEP offers several unique characteris-

tics that distinguish it from related forms of electric actuation such as electrophoresis

(EP) and dielectrophoresis (DEP). Most notably, CCEP allows for rapid, sustained

particle motion driven by constant voltages with small energy inputs. These at-
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Figure 1.1: (a) Gordon’s chimes as described in 1752[169]. (image is public domain)

A small metal clapper b was positioned between two metal bells (a and c). An elec-

trostatic voltage between the bells caused the clapper to oscillate continuously. (b)

Franklin’s electric wheel[73]. (image is public domain) (c) Experimental schematic of

a conductive particle immersed in a dielectric fluid between two electrodes. (Adapted

from reference [58] with permission of The Royal Society of Chemistry.) (d) Ba-

sic mechanism of contact charge electrophoresis. (Adapted from reference [58] with

permission of The Royal Society of Chemistry.) (e) Optical images of a 10mm silver-

coated glass particle subject to a constant electric field (E0 = 2.5V/mm) at intervals

of 24 ms. The particle oscillates indefinitely between the electrodes as long as the volt-

age is applied. (Reproduced from reference [54]; copyright 2015 American Chemical

Society.)
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tributes make CCEP an attractive mechanism for powering the active components

needed for mobile (i.e., small, battery powered) microfluidic technologies such as

those used in Point-of-Care diagnostics [82, 88]. To capitalize on these advantages,

one must look beyond simple oscillatory motions and develop strategies for rectifying

CCEP dynamics to perform useful functions.

This Feature Article presents our perspective on the coming renaissance of elec-

trostatic motors in microfluidics and active colloidal systems. We introduce the basic

characteristics of CCEP, highlighting the key distinctions between this mechanism

and more common forms of electric particle actuation such as EP and DEP. We

review the fundamental physics underlying contact charging and particle dynamics,

emphasizing open questions on the role of particle shape and on the collective be-

haviors of many-particle systems. We describe recent applications of CCEP motions

in powering microfluidic unit operations such as particle transport, separations, and

fluid mixing. Looking forward, we discuss two frontiers in the study and application

of CCEP: the realization of electrostatic motors and machines at the nanoscale and

the creation of active macroscopic materials based on coupled electrostatic oscillators.

Ultimately, it is our hope that the long-neglected phenomenon of CCEP will find its

place along side other widely used methods for electric particle manipulation.

1.2 Basic Characteristics of CCEP

The simplest realization of CCEP is illustrated in Figure 1.1e, which shows the rapid

oscillatory motion of a conductive sphere (radius, a = 5µm) immersed in mineral

oil between two electrodes subject to a constant voltage. The particle acts as a
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mechanical “shuttle” that transports charge between the two electrodes [117, 122].

When it makes electrical contact with the electrode surface, the particle acquires a

net charge such that its voltage is equal to that of the electrode. Now charged, the

particle migrates under the influence of the electric field with a velocity determined

by the balance of the electrostatic force and the hydrodynamic drag force. Each time

the particle contacts an electrode its charge changes sign, and its velocity changes

direction.

This basic mechanism – combining contact charging and electrostatic actuation

– is no different than that of Gordon’s chimes discovered more than two centuries

ago. More recently, the motion of conductive particles in dielectric liquids subject to

strong electric fields has been studied to understand how the presence of such particles

affects the conductivity and dielectric strength of insulating liquids [12, 200, 117].

Electromechanical “charge shuttles”, as they are sometimes called, have also been

studied for their potential relevance to micro- and nano-electromechanical systems

[87, 202]. In addition to solid particles, liquid droplets have been shown to “bounce”

off electrodes[144, 68, 94, 114, 103, 216] or even liquid interfaces [174, 91] by an

analogous mechanism. The electrophoresis of charged drops (ECD[103]) in dielectric

fluids enables new strategies for manipulating aqueous droplets within microfluidic

systems [134, 101]. Here, we focus our discussion on the motions of solid particles

moving in viscous fluids, in which the effects of fluid and particle inertia can be

neglected.
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1.2.1 Scaling Analysis

CCEP dynamics are governed primarily by two processes: contact charging, the ac-

quisition of charge by a conductive particle upon contact with an electrode, and

electrophoresis, the movement of the now-charged particle in the applied electric

field. The following order-of-magnitude analysis of these processes shows how CCEP

motions depend on system parameters such as the particle radius a, the electrode

separation L, and the electric field strength E0 = V0/L; a more rigorous analysis

is provided below. To estimate the charge acquired by the sphere, consider that

the charge density on the electrode surface is εE0 where ε is the permittivity of the

liquid. When the sphere makes electrical contact with the electrode, the charge in-

duced on its surface can be approximated as the charge density times the surface

area, q ∼ 4πa2εE0. The charged particle experiences an electric force in the field as

approximated by that on a point charge, FE ∼ qE0. At low Reynolds numbers, the

resulting motion of the particle through its viscous surroundings creates a drag force

that can be approximated by Stokes law FH ∼ 6πaηU , where η is the fluid visocity.

At steady-state, the particle velocity U is determined by equating the electrostatic

and hydrodynamic forces to obtain U ∼ εaE2
0/η. This approximate relation has

been confirmed by several experimental studies [112, 200, 117, 122, 54] and helps to

illustrate the key characteristics of CCEP motion.

1.2.2 Carrier Liquid

CCEP is only effective in dielectric fluids with sufficiently low electrical conductivity

(e.g., mineral oil[32], toluene [117], silicone oil[104]). A charged particle immersed in a
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fluid of conductivityK will discharge on a time scale, τd ∼ ε/K. To sustain continuous

motion, this charge relaxation time must be slow relative to the time between contact

charging “collisions” (typically, ∼1 ms). Consequently, CCEP is effective in mineral

oil (τd ∼ 10s) but ineffective in deionized water (τd ∼ 10µs) [32]. By contrast,

traditional electrophoresis is effective in high dielectric solvents (typically, water), in

which ions are soluble and particles can acquire a significant surface charge (e.g.,

by dissociation of ionizable surface groups). In low dielectric (nonpolar) solvents,

the spontaneous charging of particle surfaces requires additives such as surfactants

that stabilize dissociated ions and increase the electrical conductivity of the liquid

[76, 131, 172]; without such additives, electrophoresis becomes ineffective and/or

unreliable. CCEP therefore offers an attractive alternative to traditional EP for

the electric manipulation of particles in organic or organofluorine solvents – common

carrier fluids for droplet-based microfluidics.

1.2.3 Particle Material

CCEP can be used to manipulate electrically conductive particles that can charge

and discharge upon contact with the electrodes (or other particles). Examples include

metallic or metal-coated colloids, aqueous droplets[94, 114, 174, 113, 103, 4, 102, 105],

hydrogel particles [58], and even suspensions of living cells [104]. CCEP of dielectric

particles is also possible [52]; however, particle charging occurs much more slowly

through a different mechanism (presumably contact electrification [11, 11]). We limit

our discussion to conductive particles in insulating fluids, for which CCEP time scales

are much longer than the charge relaxation time of the particle but much shorter than

that of the fluid.
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1.2.4 Electrodes

The electrodes can be fabricated from any conductive material including metals, hy-

drogel electrolytes, or even aqueous solutions[174]. In contrast to EP and DEP, CCEP

requires direct (electrical) contact between the particle and the electrode surface to

allow for particle charging / discharging. Once charged, however, a particle can

be manipulated “remotely” via traditional EP. Notably, the surface charge acquired

by contact charging is much larger than that acquired spontaneously, resulting in

large electrophoretic mobilities. The characteristic surface potential due to the ap-

plied field, aE0, is often three orders of magnitude larger than the thermal potential,

kBT/e. Phenomena due to thermal motions such as the diffuse double layer and the

particle zeta potential are invariably neglected.

1.2.5 Continuous Motion

Most importantly, CCEP allows for continuous particle motion using constant volt-

ages; the particle shown in Figure 1.1e will “bounce” indefinitely as long as the voltage

is maintained. In this sense, CCEP is similar to a DC electric motor, which converts

electrical energy into sustained motion. By contrast, DEP of a polarizable particle in

an electric field gradient relaxes to a steady equilibrium state: the particle moves to

the region of highest (or lowest) field strength and stops. Similarly, in electrophoresis,

a charged particle moves from one electrode to the other and stops. As discussed be-

low, the ability to achieve continuous motion using CCEP can lead to rapid particle

transport, whereby strong electrostatic forces drive steady motions perpendicular to

the field over long distances.
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1.2.6 Low Power Operation

CCEP converts electrical energy into mechanical motion with high efficiency to enable

rapid particle motions at low input power. The electric current through the circuit

is due almost entirely to the motion of the charged particle. For a single particle,

the average current scales as I ∼ qU/L and the input power as P ∼ IV0, which is of

order 10nanoWatts for a 30mm sphere oscillating at 500Hz [54]. Little or no energy

is wasted in the absence of particle motion. By contrast, EP requires large faradaic

currents to maintain steady electric fields within conductive liquids; these currents

lead to significant dissipative losses even in the absence of particle motion [81]. The

low power requirements of CCEP is attractive for use in portable microfluidic systems.

1.2.7 Scalability

Like other forms of electrostatic actuation, CCEP is highly amenable to miniaturiza-

tion. For a constant applied voltage, the electrostatic force depends the ratio between

the particle size and the electrode separation, FE ∝ (a/L)2. By holding this ratio

constant, the size of the system can be reduced without altering the magnitude of

the electric force driving particle motion. By contrast, viscous drag and short-ranged

surface forces (e.g., van der Waals) scale linearly with size [106]; they decrease in

magnitude as the system is miniaturized. As a result, the particle velocity actually

increases as the size of the system is decreased – that is, U ∝ a−1 for constant a/L and

V0. For example, we’ve observed that the particle velocity increases from ∼7mm/s to

more than 100mm/s as its diameter is reduced from 13µm to 1.5µm. These scaling

laws highlight the potential of CCEP for actuation at the micro- and nanoscales.
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1.3 Fundamentals of CCEP

The charging of a conductive particle on contact with a biased electrode and its subse-

quent motion in the field are well described by a combination of classical electrostatics

[128, 107] and low Reynolds number hydrodynamics [92, 118]. In this section, we dis-

cuss the physics underlying the processes of contact charging and particle motion.

In addition to the well-studied case of a single sphere moving between parallel elec-

trodes [54], we highlight recent work on the study of asymmetric particles and of

many interacting particles.

1.3.1 Contact Charging

1.3.1.1 Thermodynamics of Charging

When a conductive particle makes electrical contact with an electrode surface, charge

flows to/from the particle until electric equilibrium is achieved. At equilibrium, the

electric potential difference between the particle and the electrode is equal to the

contact potential difference characteristic of the two materials. This finite potential

difference is often neglected due to the comparatively large voltages applied in CCEP

experiments (typically, 102 − 104 V). The charge acquired by the particle can be

estimated by first solving the Laplace equation for the electric potential φ within the

dielectric fluid

∇2φ = 0, (1.1)

subject to the follow conditions at the surfaces of the respective conductors

φ(x) = 0 for x ∈ particle, electrode 1, φ(x) = V0 for x ∈ electrode 2. (1.2)
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The net charge on the particle is then obtained by integrating the surface charge

density over the particle surface

q =

∫
Sp

−εn · ∇φdS, (1.3)

where n is the unit normal vector directed out from the particle surface. For a

conductive sphere in contact with a plane electrode and subject to an applied field

E0, the charge can be computed analytically to obtain [141, 182, 71, 44]

qm =
2

3
π3εa2E0. (1.4)

We refer to this result as the Maxwell charge as it was first obtained by Maxwell for

the closely related problem of two contacting spheres [141]. The presence of a second

co-planar electrode separated by a distance L results in an additional contribution of

order (a/L)3, which is typically neglected when L� a [56].

The Maxwell charge of equation (1.4) is often considered as the “ideal” charge

expected for a particle undergoing CCEP, and its accuracy has been evaluated for a

variety of systems. Experimental measurements on solid conductive spheres generally

agree with the theory [37, 40, 112, 200, 117, 122]; however, systematic deviations have

been observed under certain conditions. In particular, micron-scale particles moving

though viscous liquids at low Reynolds numbers (Re = ρaU/η � 1) acquire less

charge than predicted by equation (1.4) [122, 54] (see below). For liquid droplets, a

meta-analysis of recent literature showed that droplets regularly acquire more positive

than negative charge [67]; such anomalous charging behavior has been attributed to

perturbations in the applied field (e.g., due to charging of dielectric surfaces) [216].

Recent advances in measuring the charge acquired by particles during CCEP should
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help to identify and resolve remaining discrepancies between theory and experiment

[67].

1.3.1.2 Kinetics of Charging

When a charged particle approaches an oppositely biased electrode, the electric field

in the particle-electrode gap increases inversely with the size of the gap δ as Emax ∼

aE0/δ [54]. For small gaps (δ � a), the local field becomes much greater than the

applied field, eventually exceeding the dielectric strength of the fluid. The resulting

spark or microdischarge [200, 66] creates a conductive pathway between the two

surfaces prior to mechanical contact. For millimeter-scale particles or water drops,

these discharges can be observed as flashes of visible light and are further evidenced

by the formation of micron-scale craters on the electrode surface due to local melting

[66]. The degradation of the electrode surface by repeated contact charging may

contribute to deviations between the measured particle charge the predicted Maxwell

charge. For a constant applied field, the diameter of the crater d is predicted to scale

with the particle radius a and the electrode separation L as d ∝ (qV0)1/3 ∝ a2/3L1/3

– smaller particles produce smaller craters[66].

The CCEP motion of micron-scale particles (e.g., a ∼ 10mm) is characterized by

low Reynolds numbers at which the inertia of the fluid and the particle are negligible.

Under these conditions, particles can approach the electrode surface, transfer charge,

and move away without ever making mechanical contact with the surface (Fig. 1.2).

This putative mechanism is supported by experimental measurements of CCEP mo-

tions and the accompanying electric current combined with detailed theoretical pre-

dictions [54]. At low Reynolds numbers, changes in the particle charge and thereby
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Figure 1.2: Qualitative particle trajectory (black) through the position-charge phase

space. The surface separation δ is scaled by the particle radius a; the sphere charge

q is scaled by the Maxwell charge qm of equation (1.4). The blue curves show lines of

constant electric field Emax within the sphere-electrode gap as multiples of the applied

field, E0. The red curve shows the line of zero electric force: FE < 0 below the line

and FE > 0 above. (Adapted from reference [54]; copyright 2015 American Chemical

Society.)

the electric force result in almost immediate changes in the particle velocity. Follow-

ing the initiation of a microdischarge but prior to mechanical contact (Fig. 1.2b), the

charge on the particle begins to relax to its new equilibrium value. Prior to reaching

equilibrium, however, the electric force on the particle reverses direction, thereby in-

creasing the surface separation and extinguishing the electric discharge. As a result,

the charge on the particle is typically 60-80% less than that expected at equilibrium

[54].
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Charge transfer at finite surface separations (∼ 0.1mm for a 10mm sphere[54])

suggests that surface forces between the particle and the electrodes play a minimal

role in sustaining CCEP motions: the particle can oscillate between the two electrodes

without ever making mechanical contact with either surface. However, these forces are

likely relevant in initiating particle motions – especially at lower voltages. To initiate

CCEP motion, the electrostatic force must exceed the adhesion force (see below).

Consistent with this hypothesis, we have observed that the minimum voltage required

to initiate CCEP motions is greater than that required to sustain such motions.

1.3.2 Particle Dynamics

Once sufficiently charged, particles move in the electric field as determined by the

balance of electrostatic and hydrodynamic forces and torques (Fig. 1.3a). The move-

ment of the charged particle acts to redistribute charge on the electrodes, producing

measurable currents in the external circuit (Fig. 1.3b). One distinguishing feature

of CCEP motions is the asymmetry of particle-electrode “collisions”. Particles ap-

proach the electrode at a near constant velocity but depart slowly, accelerating to a

constant velocity on time scales of order η/εE0. These and other experimental trends

are captured quantitatively by the following models.

1.3.2.1 Electrostatic Forces & Torques

A charged conductor in a dielectric fluid experiences an electric force FE, which can

be calculated by integrating the Maxwell stress over the particle surface

FE =

∫
Sp

1

2
εE2ndS, (1.5)
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Figure 1.3: Synchronized particle trajectory h(t) and electrical current I(t) for a 28

µm sphere moving through mineral oil between two electrodes separated by a distance

L = 145µm and energized by a voltage V0 = 765V . (Reproduced from reference [54];

copyright 2015 American Chemical Society.)
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where E = −∇φ is the electric field. This exact expression is often approximated by

decomposing the field into two contributions: that due to charge on the particle Ep

and that due to charge on the electrodes (and other particles) E∞. By expanding

the particle field in a multipole expansion, the above integral can be expanded as

FE = qE∞ + p · ∇E∞ + . . . , (1.6)

where p is the particle dipole moment. The first two terms in the expansion cor-

respond to the electrophoretic and dielectrophoretic forces, respectively, within an

dielectric fluid.

As CCEP motions involve repeated contact between the particle and the elec-

trodes, it is often necessary to include contributions due to higher order moments of

the particle charge implicit in equation (1.5) to obtain an accurate description. Com-

plete analytical solutions are available for a spherical particle near a plane electrode

[44, 180, 108]. These solutions reveal a striking asymmetry between the approach

of a charged particle to an oppositely biased electrode and its departure from that

electrode after charge transfer [56]. In particular, the force on a positively charged

sphere (q = qm) departing the positively biased electrode is

FE = 0.832qmE0 +O(ξ) (departing), (1.7)

where qm is the Maxwell charge of equation (1.4), and ξ = δ/a is the dimensionless

surface separation [180]. The reduction in the force from the expected value of qmE0

is due to the attraction of the charged sphere to its image in the nearby electrode.

By contrast, the force on a negatively charge sphere (q = −qm) approaching the same

positively biased electrode is

FE = − 6.58

ξf 2(ξ)
qmE0 +O(ln ξ) (approaching), (1.8)
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where f(ξ) is a slowly varying logarithmic function [56]. The force increases asymptot-

ically with decreasing separation as ξ−1. It is this asymmetry in the electrostatic force

that causes the asymmetric particle trajectories observed in experiment (Fig. 1.3a).

Even when analytical solutions are unavailable, there exist efficient simulation

techniques based on Stokesian dynamics that accurately capture both the far field

and near field contributions to the electrostatic interactions [23, 19, 56]. Bonnecaze

and Brady applied this approach to describe the electrostatics of many, spherical

particles interacting in an unbounded medium [19]. More recently, we considered the

case of a single sphere bounded by two plane electrodes – the prototypical CCEP

geometry [56]. A logical next step is the integration of these approaches to describe

the dynamics of many particles moving between two electrodes. For non-spherical

particles, one must turn to more general (but less efficient) numerical methods such

as finite element solvers to compute the relevant electrostatic forces [52].

Non-spherical particles also experience an electric torque about the particle center

xp defined as

LE =

∫
Sp

1

2
εE2(x− xp)× ndS. (1.9)

To first order, this torque can be approximated as the cross product between the

dipole moment and the field,

LE = p×E∞ + . . . . (1.10)

The dipole moment on a conductive particle is a linear function of the field: p = q(xq−

xp) +α ·E∞, where xq is the center of charge, and α is the symmetric polarizability

tensor [128]. Note that the particle center xp (e.g., the center of hydrodynamic

reaction [26]) need not coincide with the center of charge xq. Physically, particles
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rotate to induce the largest dipole moment aligned with the field. As discussed

below, these rotational motions can serve to rectify CCEP oscillations and drive

steady motions of asymmetric particles.

1.3.2.2 Hydrodynamic Drag

At low Reynolds numbers, the electrostatic forces and torques are balanced by equal

and opposite hydrodynamic forces FH and torques LH due to motion of the par-

ticle through its viscous surroundings. Owing the linearity of the Stokes equations

governing fluid motion, the hydrodynamic forces and torques are linearly related to

the translational and rotational velocities of the particle(s) [119]. The so-called re-

sistance (or mobility) tensors relating these quantities depend on the position and

orientation of the particle(s) relative to the bounding electrodes. In general, these

tensors must be computed numerically by integrating the Stokes equations subject

to no-slip conditions at the surfaces of the particle(s) and electrodes. However, there

are few special geometries relevant to CCEP dynamics, for which analytical solutions

and/or efficient numeric solutions are available.

Arguably, the most important case is that of a sphere moving in an unbounded

fluid; the hydrodynamic drag is given by Stokes’ law [190]

FH = −6πηaU . (1.11)

This expression provides a useful approximation when the particle is separated from

either electrode by many particle radii. When the particle is near either electrode, the

hydrodynamic resistance increases significantly due to fluid flow into or out from the

particle-electrode gap. These effects are accurately captured by analytical solutions
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for a solid sphere moving near a solid plane boundary [109, 25, 153, 47]. Of particular

interest is motion normal to a plane surface, for which equation (1.11) is modified

by a multiplicative factor λ(ξ) that depends on the surface separation ξ = δ/a [25].

For small separations (ξ � 1), the resistance increases as λ = ξ−1 + ln(ξ). When a

charged particle approaches contact with an electrode, the increase in the hydrody-

namic resistance is almost exactly balanced by a similar increase in the electric force

(see equation (1.8)). Upon charging, however, the electric force is greatly reduced (see

equation (1.7)), and the particle moves slowly to escape from the electrode surface.

Even at large separations, the approach to Stokes’ law occurs slowly as λ =

1 + 9
8
ξ−1 due to long range hydrodynamic interactions with the wall. In general,

such interactions with the bounding electrodes and other particles are not pairwise

additive. Accurate treatments require efficient techniques such as Stokesian dynamics

to capture the many body interactions between the particle(s) and the electrodes as

well as the lubrication forces near contacting surfaces [191, 193, 194].

1.3.2.3 Other Forces: Gravity, Inertia, Adhesion

The above analysis of particle motions neglects several forces that can be relevant to

CCEP depending on the experimental conditions. The significance of these forces can

be assessed by comparing their magnitude to that of the electric forces driving CCEP

motions, FE ∼ 4πεa2E2
0 . Forces due to gravity and inertia scale as the particle

volume and are therefore significant for larger particle sizes. As an example, we

consider the motion of a steel sphere (ρp = 8000kg/m3) in mineral oil (ρ = 840kg/m3,

η = 0.027Pa/s, ε = 2.5ε0) due to an applied field of E0 = 2V/µm. The gravitational

force FG ∼ 4
3
πa3(ρp−ρ)g becomes comparable to the electric force only for millimeter-
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scale particles. Similarly, forces due to particle inertia FI ∼ 4
3
πa3ρpU

2/a become

significant for particle sizes of order 100 mm or larger [122].

By contrast, forces due to surface adhesion scale with the linear dimension of

the particle and are therefore significant for smaller particle sizes. In the Hamaker

approximation, the van der Walls force between a sphere and a plane scales as FvdW ∼

aA/6δ2 where A is the Hamaker constant [106]. Continuing the example above, this

force is comparable to the electric force for 10 µm particles, assuming A = 10−19J

and δ = 1nm [106]. When the electric force is smaller than adhesive surface forces,

the particle remains “stuck” to the electrode surface. A finite “lift-off” voltage is

therefore required to initiate particle motion [117, 122]. As the particle size decreases,

larger electric fields are required to induce CCEP motions. Notably, by increasing

the field to E0 ≈ 16V/µm, we were able to drive the motion of a 1 mm gold sphere

between two gold wires at speeds of 100 mm/s (105 body lengths per second). The

application of larger fields is limited by the dielectric strength of the fluid; however, it

may be possible to manipulate smaller particles by tailoring their surface chemistry to

mitigate adhesion. Further study is required to investigate the role of surface forces

in initiating and sustaining CCEP motions.

1.3.3 Dynamics of Anisotropic Particles

The motion of spherical particles is relatively simple due to the absence of electric

torques and the symmetry of the resistance tensor. The motion of anisotropic par-

ticles is considerably more complex – even in uniform fields and unbounded fluids.

Here, we discuss the dynamics of two specific particle types: a conductive rod and a

Janus sphere with a conductive hemispherical cap [52]. The generalization of these
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specific examples to describe the motions of other particle shapes and symmetries is

an interesting topic for further study.

1.3.3.1 Preferred Orientations

When subject to a uniform electric field, an uncharged conductive particle of anisotropic

shape adopts a preferred orientation that maximizes the particle’s dipole moment.

Conductive rods rotate to align their long axis parallel to the applied field; Janus

spheres rotate to align their axis perpendicular to the applied field (Fig. 1.4a). The

addition of charge to the rod does not influence its preferred orientation but causes it

to move parallel to the field. In this case, the particle’s center of charge and its center

of hydrodynamic reaction [26] are one an the same. By contrast, the center of charge

on the Janus particle is displaced from the center of the sphere towards the conductive

cap. As a result, the addition of charge to the Janus sphere alters its dipole moment

an thereby its preferred orientation. Figure 1.4a shows the stable orientation of the

Janus particle as a function of the charge q on its conductive hemisphere. Impor-

tantly, the dipole moment due to charge acquired by contact charging is comparable

to that due to polarization (i.e., qa ∼ p when q ∼ 4πεa2E0 and p ∼ 4πεa3E0)[107].

As a result, the particle adopts a stable orientation with its axis oblique to the applied

field. Moreover, as the particle oscillates between two electrodes, its orientation also

oscillates between two stable values.

1.3.3.2 Rectified Motions

CCEP oscillations of Janus particles between parallel electrodes are accompanied by

steady motions directed perpendicular to the applied field [52] (Fig. 1.4b). These lat-
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Figure 1.4: (a) Stable orientation α of a metallodielectric Janus sphere in a uniform

electric field depends on the particle’s charge q. Uncharged particles align perpen-

dicular to applied field E0; highly charged particles align parallel to the field. (b)

Top view of a gold-silica Janus sphere oscillating between two transparent electrodes.

Over many oscillation cycles, the particle moves in the direction opposite its conduc-

tive hemisphere. (c) Illustration of the propulsion mechanism showing one oscillation

cycle. (Adapted from reference [52]; copyright 2016 American Chemical Society.)
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eral motions are caused by successive particle rotations following each charge transfer

at the electrode surface (Fig. 1.4c). Each time the particle contacts an electrode,

its charge changes sign, thereby altering its preferred orientation in the field. The

field-induced rotation of the particle in the vicinity of the electrode surface results

in a lateral displacement, which is qualitatively similar to that of a sphere “rolling”

along the surface. Successive rotations occur in a common direction toward the non-

metallic hemisphere, causing a steady motion over the course of many oscillations.

This mechanism is supported both by experiments with fluorescent particles that

reveal their rotational motions and by simulations of CCEP dynamics that capture

the electrostatic and hydrodynamic forces and torques outlined above. This strategy

for rectifying particle oscillations to achieve directed motion is not limited to Janus

spheres. Similar motions are observed for other anisotropic particles (e.g., clusters

of spherical particles); however, further work is needed to understand and optimize

particle shapes to maximize directed motion.

1.3.4 Dynamics of Multiple Particles

The vast majority of CCEP studies have focused on the dynamics of individual par-

ticles, and there remains much to explore when many particles move and interact

with one another. Particles interact over large distances through both electrostatic

and hydrodynamic forces. Additionally, particle “collisions” can serve to redistribute

charge among particles in contact. To date, these effects have been shown to guide

the formation of dynamic chains (so-called bucket brigades[165]), the synchronization

of neighboring oscillators [142], and the emergence of collective motions[52].
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1.3.4.1 Bucket Brigades

The phrase “bucket brigade” refers to a method of transporting items wherein items

are passed from one stationary member of the “brigade” to the next. A conceptu-

ally similar behavior occurs during CCEP of multiple particles, which organize to

pass charge from one electrode to the other. In one realization, multiple aluminum

discs were distributed randomly on the surface of a dielectric liquid between two elec-

trodes (Fig. 1.5a) [165]. Upon application of the field, the discs organized to form

linear chains which oscillated continuously passing charge from neighbor to neighbor.

Similar behaviors have been observed for water drops moving in oil between two elec-

trodes [174]. Importantly, the number of particles in the chain cannot exceed L/2a;

otherwise, they will span the gap between the electrode and short the circuit.

We have observed similar chains of spheres moving in mineral oil between two elec-

trodes. Interestingly, particles appear to collide “elastically” despite the absence of

inertia at low Reynolds numbers (Fig. 1.5b). During a collision between two spheres,

the total charge is conserved and redistributes between the spheres to achieve a com-

mon electric potential. The amount of charge acquired during a sphere-sphere colli-

sion is the same as that acquired by contact with either electrode [46, 107]. These

dynamical behaviors are well captured by Stokesian dynamics simulations of CCEP

motions that incorportate the electrostatic and hydrodynamic contributions detailed

above.

1.3.4.2 Synchronization

Prior to the formation bucket brigades, neighboring particles moving by CCEP begin

to oscillate with a common frequency – that is, they synchronize[142]. Unlike many
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Figure 1.5: (a) Dynamic formation of a “bucket brigade” of aluminum disks in a E0 =

0.3V/µm field. (Reproduced from reference [165]; copyright 2014 IEEE Computer

Society.) (b) Successive images of two spheres colliding “elastically” at lows Reynolds

numbers; the time between successive images is 40 ms.

types of coupled oscillators which move in phase, CCEP oscillators prefer to move

in an anti-synchronous fashion with a phase difference of 180◦. As a result, the two

particles always have charge of opposite polarity and attract one another. These

synchronized Coulombic interactions along with dipole-dipole forces are ultimately

responsible for the organization of dynamic particle chains. Unfortunately, the syn-

chronization of dynamic assemblies by CCEP is limited by the particles’ propensity

to form chains that span the electrodes and short the circuit. Short circuits can be

eliminated by constraining particle motions along dielectric “tracks”, which do not in-

terfere with the electrostatic interactions driving synchronization. The exploration of

synchronization and dynamic pattern formation among CCEP oscillators is exciting

direction for further study – both for its interesting physics and its potential relevance

in coordinating the motions of many particles for useful functions (see below).
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1.4 Microfluidic Applications

The attributes of contact charge electrophoresis make it potentially attractive for

powering the active unit operations of microfluidic devices using portable battery

power. Despite their small size, “lab-on-a-chip” (LoC) devices are often accompa-

nied by bulky external equipment used for fluid transport[129], mixing[150], and

detection[136]. This lack of self-containment can limit the use of LoC devices in

point-of-care diagnostic systems, which seek to address health care challenges in re-

gions without centralized medical facilities [82, 88]. The development of mobile mi-

crofluidic platforms for fast, accurate, and inexpensive medical diagnostics remains

an important challenge for global health [205]. To help address this need, we have

developed CCEP-based systems for rapid particle transport [58, 30], separations [58],

and fluid mixing [32]. These demonstrations motivate the pursuit of other microflu-

idic operations such as pumping fluids and controlling heat/mass transfer via CCEP

motions.

We note that the low power requirements of CCEP do not imply low voltage

operation directly accessible by standard battery technologies. The unit operations

below rely on relatively high voltages (typically, 102 − 103V ) to achieve maximum

performance. Such voltages are readily supplied by miniature, battery-powered am-

plifiers [69], which are ca. 1 cm3 in size and commercially available. These amplifiers

are commonly used to improve the performance of on-chip electrophoretic separations

which benefit from high voltages (∼ 103V ) but require little current (∼1 µA, as in

capillary electrophoresis [80]).
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1.4.1 Ratcheted Transport

Most studies of CCEP have been limited to simple oscillatory motions between two

electrodes. To realize the full potential of this mechanism (e.g., for particle trans-

port or droplet manipulation), effective strategies are required for rectifying particle

oscillations to achieve directed linear or rotational motions.

We developed one such strategy that uses ratcheted microfluidic channels to direct

CCEP motions perpendicular to the applied field [58]. As illustrated in Figure 1.6,

the oscillatory motion of a conductive particle between two parallel electrodes can be

biased by a series of inclined dielectric barriers (“teeth”) that translate the electric

force in the “vertical” direction into directed motion along the “horizontal” direction.

This microfluidic ratchet is fabricated in polydimethylsiloxane (PDMS) using soft

lithography [213]. To create electrodes that connect directly to the center channel,

we flow liquid gallium (at 40◦C) into the electrode channels using capillarity to prevent

flow into the center channel [184]. After cooling to solidify the electrodes, we flow in

particles suspended in mineral oil, apply a DC voltage between the two electrodes,

and monitor the motion of the particles using a high speed camera. Remarkably,

this CCEP ratchet allows for rapid particle transport (velocities of few cm/s) over

arbitrary distances using DC voltages and very low power (typically, ∼1 nW). By

contrast, DEP requires complex electric fields that vary in space and time (e.g.,

traveling wave DEP [89, 147]) to achieve comparable performance.

The same approach also enables the rapid transport of hydrogel capsules and

aqueous droplets, which can serve as containers for chemical and biological cargo.

We recently described how CCEP can be used both to generate and transport aque-
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Figure 1.6: (a) Ratcheted microfluidic channel for directed particle transport. As

the dielectric constant of PDMS is similar to that of mineral oil, the applied electric

field remains nearly uniform throughout the interelectrode region (inset). (b) Re-

constructed particle trajectories show the directed motion of a single 20 µm particle

(silver coated glass sphere) for E0 = 4.6V/µm. Each image is a composite of 16

individual frames collected at intervals of 0.67 ms; the position of the shuttle at each

of those 16 time points is denoted by the black circle. The red line traces the shuttles

trajectory in time. The speed of the particle through the fluid is 50,000 mm/s; the

average speed of the particle in the horizontal direction is 5,000 mm/s. (Reproduced

from reference [58] with permission of The Royal Society of Chemistry.)
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ous droplets within a microfluidic system powered by a single, constant voltage input

[30]. Drop generation is achieved through an electrohydrodynamic dripping mecha-

nism by which conductive drops grow and detach from a grounded nozzle in response

to an electric field. The now-charged drops are then transported down the ratcheted

channel by CCEP in a manner similar to that of solid particles. By contrast, however,

drops can deform in response to electric stresses acting at their surface. Such defor-

mations are opposed by surface tension, which favors spherical drops that minimize

the interfacial area. Ratcheted transport of drops requires sufficiently small capillary

numbers (typically, Ca = εE2
0a/γ < 1), which limits the magnitude of the applied

field and thereby the speed of drop transport.

1.4.2 Separations

The use of dielectric barriers to direct CCEP motions can be generalized to perform

other functions such as separating and collecting particles[58]. This approach is illus-

trated in Figure 1.7, which shows a ratcheted microfluidic system for the separation

of particles from a fluid stream. In the design process, we start with the desired func-

tionality – particles will enter from channel 1 and exit from channel 2 – and choose

the positon and polarity of the electrodes to ensure that the particle will only oscillate

in the appropriate channels (e.g., not in channel 3; Fig. 1.7a). We then calculate the

electric field between the electrodes for the proposed geometry using a finite element

solver (Fig. 1.7b). Provided the dielectric constants of the PDMS barriers are similar

to that of the fluid, the electric field lines will not be affected by the placement of the

dielectric teeth.

The design of the dielectric barriers is guided by three heuristic rules for predicting
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Figure 1.7: (a) Ratcheted CCEP system for separating particles from a fluid stream.

(b) Schematic illustration showing the dielectric barriers (grey), electrodes (black),

electric field lines (blue), and the anticipated particle trajectory (red). (c) Experi-

mental realization of this design showing the dynamics of a 20 mm particle. The red

line shows the reconstructed particle trajectory; the black circles denote the position

of the particle at regular intervals of 0.2 ms. (Reproduced from reference [58] with

permission of The Royal Society of Chemistry.)
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particle motions: (i) a particle moves along the electric field lines until it contacts

a surface, (ii) it slides / rolls along inclined dielectric barriers, and (iii) it reverses

direction when it contacts an electrode surface. The key function of the dielectric

barriers is to move a charged particle from one field line to another in programmed

manner. With these rules, the PDMS teeth are designed by tracing field lines and

adding barriers to direct particle motion. Implementing the design in a microfluidic

system (Fig. 1.7c), we find remarkable agreement between the actual particle motion

and that predicted by the simple heuristics [58].

Importantly, the rapid motion of particles via CCEP (∼100 mm/s) effectively

decouples their motion from that of the surrounding fluid (∼1 mm/s); this enables

particles to be transported upstream or downstream regardless of fluid flow [58].

Looking forward, we envision the development of CCEP-based transport systems for

several useful applications including (i) the recycling of high-value catalyst particles

in microfluidic reactors through “upstream” particle transport, (ii) capture and ac-

cumulation of particles in dead-end channels for isolation and analysis, as well as (iii)

transport, manipulation, and merging of microfluidic droplets.

1.4.3 Mixing

The programmed transport of micron-scale particles within microfluidic systems can

also be harnessed to rapidly mix laminar streams. Mixing two or more fluids within

a microfluidic device can be challenging due to the absence of turbulence at low

Reynolds numbers [155, 189]. Within laminar flows, mixing is achieved through

molecular diffusion, which requires a characteristic time τ ∼ `2/D to homogenize the

fluid composition over a length scale ` (here, D is the diffusion coefficient). Effective
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mixers act to stretch and fold the flowing streams to reduce the length over which

diffusion must act and accelerate the rate of diffusive mixing. Active microfluidic

mixing using applied electric fields is often achieved through electrohydrodynamic

flows [36, 93] caused by the action of the field on ionic space charge. While effective

in aqueous systems, electrohydrodynamic mixers do not function in most organic

fluids due to the absence of dissolved ions. By contrast, CCEP enables the rapid

oscillatory movement of particles through dielectric fluids. These particle motions

can be applied to mix organic liquids, which are used in the context of combinatorial

syntheses and drug discovery[51, 149].

Figure 1.8 illustrates a simple mixer designed to mix two laminar streams [32]. Ap-

plication of a DC voltage to the gallium electrodes creates a non-homogeneous electric

field that enables the dielectrophoretic capture of a conductive particle, which then

oscillates between the electrodes via CCEP. Perhaps surprisingly, we found that lin-

ear particle motions perpendicular to the direction of flow does not result in effective

mixing due to the kinematic reversibility of low-Reynolds number flows [173, 92]. The

mixing achieved by the “upward” movement of the particle is almost entirely reverse

by its “downward” motion. By contrast, orbital particle motions guided by dielectric

barriers (analogous to those used in the ratchets of the previous section) break the

time-reversal symmetry and allow for effective mixing over lengths comparable to the

width of the channel. Complete mixing requires that the speed of the particle be

much larger than the fluid velocity such that the particle completes many orbits as

the fluid flows through the mixing region. The extent of mixing also depends strongly

on the size of the particle and the shape of its trajectory; effective mixers relied on

larger particles (comparable to the size of the channel) moving along non-reciprocal

32



Figure 1.8: Schematic illustration of a microfluidic mixer based on CCEP. Two di-

electric fluids (here, mineral oil with and without dye) flow laminarly into the channel

and are mixed by the orbital motion of the particle. (b) Image of the mixer before

introducing the particle and applying the electric field; the average fluid velocity is

u ≈ 1 mm/s. (c) Application of a constant voltage drives the oscillatory motion of

the particle, which thoroughly mixes the two streams. The red curve denotes the

particle trajectory. (Reproduced from reference [32] with permission of The Royal

Society of Chemistry.)
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orbits.

1.5 Future Directions

Contact charge electrophoresis is a promising technique for the electric manipulation

of micron-scale particles and droplets. There remain outstanding opportunities to

advance both our fundamental understanding of CCEP and our ability to apply it for

microfluidic systems. More broadly, we recognize two frontiers for CCEP research:

one based on further miniaturization to sub-micron dimensions, another based on the

integration of many CCEP oscillators to form active, macroscopic materials. We close

with a discussion of these complementary pursuits.

1.5.1 Go Smaller

Our study of CCEP was originally inspired by the catalytic nanomotors of Sen and

Mallouk, who showed how electrochemical reactions could be harnessed to power

the autonomous motion of colloidal particles [164]. Using catalytic materials, these

nanoscale machines convert chemical energy from their surrounding environment into

steady electric currents that lead to self-electrophoresis of the particles [210]. Im-

portantly, only a tiny fraction of the chemical energy used is converted into the fluid

flows that drive particle motions [208]. In this context, CCEP may provide an efficient

electric motor, with which to realize the potential of chemically-powered colloidal ma-

chines. Of course, there remain many fundamental and technical challenges that must

first be overcome.

CCEP motions described in the sections above were powered by large voltages –
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Figure 1.9: (a) Illustration of chemically powered, active emulsion droplets powered

by CCEP. (b) Ratcheted CCEP transport is effective even at low Péclet numbers,

Pe = aFe/kBT � 1. Blue curves show individual particle trajectories; the colormaps

and streamlines show the steady-state particle density and flux, respectively. (Repro-

duced from reference [125]; copyright 2016 AIP Publishing LLC). (c) Electrostatically

coupled CCEP oscillators synchronize to form traveling waves capable of transport

and actuation.
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significantly greater than that provided by a single electrochemical reaction (ca. 0.1−

1V ). Rapid particle motions are possible at these smaller voltages provided the

electrode separation is also reduced to maintain large electric fields (ca. 1 V/µm).

Perhaps the greater challenge is preventing particle adhesion at the electrodes, which

becomes increasingly problematic at smaller scales (see above). There are two main

strategies for reducing adhesive forces: change the surface chemistry and/or reduce

the contact area. For example, by coating both the electrodes and the particle with

a self-assembled monolayer of 1-octadecanethiol, we observed that the lift-off voltage

for CCEP motion was reduced by a factor of ∼5. It is desirable to identify molecular

surface coatings that both reduce adhesion forces and allow facile charge transfer on

contact. Additionally, one can modify the geometry of the particle and/or electrode

to reduce the contact area without significantly altering the electric forces driving

CCEP motions. So-called “hedgehog particles” with an armor of rigid spikes are a

particularly attractive candidate to investigate [7].

Another challenge is linking CCEP motions in dielectric fluids to autonomous

functions in aqueous environments. One possible approach is to embed CCEP mo-

tors within emulsion droplets and rely on the hydrodynamic coupling of particle

motions inside the drop to drive external flows (Fig. 1.9a). Such active droplets could

convert chemical energy into motion with efficiency improvements of up to seven or-

ders of magnitude over existing motors [208]. Dramatic improvements in the energy

efficiency of colloidal machines could enable their autonomous operation in low fuel

environments. In addition to improved efficiency, ratcheted transport using CCEP is

predicted to be remarkably robust to Brownian motion [125]. Buffeted by an inces-

sant assault of thermal noise, nanoscale ratchets continue to function effectively, in
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sharp contrast other ratcheting mechanisms (Fig. 1.9b).

1.5.2 Go Bigger

At the other end of the spectrum, the collective motions of many CCEP oscillators

may provide a basis for soft actuator materials inspired by biological muscle. Muscles

are motors: they convert chemical free energy into mechanical motion and generate

large forces through the steady repetition of small steps namely, those of myosin

motor proteins. By orchestrating the coordinated action of these many elemental

motors, living organisms perform a diverse range of mechanical functions. Similarly,

the electrostatic and hydrodynamic interactions among arrays of CCEP oscillator can

lead to self-organized motions such as traveling wave synchronization (Fig. 1.9c). The

distributed actuation of many CCEP oscillators can be harnessed to perform useful

mechanical functions such as cargo transport and locomotion.

In particular, the fabrication of oscillator arrays in soft, elastomeric materials

could provide a basis for new types of actuator materials – so-called artificial mus-

cles. Soft materials are readily deformed by electric stresses, which can vary in time

due to motions of charged particles. In this way, traveling waves of particle motion

can be translated into traveling waves of material deformation. Such self-organized

deformations are potentially useful for driving the locomotion of soft robots (e.g.,

inchworm-type motions) at the scale of microns to millimeters [100, 175]. Like bi-

ological muscle, active materials based on many elemental actuators are robust to

failure of individual components and allow for complex collective motions.

37



1.5.3 Coda

From its humble beginnings more than 250 years ago, the electrostatic motor and

its colloidal analogs are well positioned to contribute to a new industrial revolution

at the micro- and nanoscales. The realization of active microfluidic systems and

colloidal machines[186] that organize in space and time to perform useful functions

requires efficient mechanisms for converting energy into motion. Applied creatively,

contact charge electrophoresis can be engineered to power an increasingly diverse set

of mechanical operations that meets these needs.

38



Chapter 2

Dynamic modeling of Multiparticle

contact charge electrophoresis in

confined electro-rheological

environment

2.1 Introduction

1A 250 year technology first introduced by a Scotch Benedictine monk Andrew Gor-

don to demonstrate continuous oscillation of a small metal sphere suspended via a silk

thread between two electrified bells[206]. After its first conception by Andrew Gordon

and improvements by Benjamin Franklin[75] this idea remained largely dormant for

1The material presented in this chapter is being prepared for submission to Physics of Fluids with

permission from Shashank Pandey, Mikolaj Kowalik, Charles Cartier and Kyle J. M. Bishop. Author

responsibilities were as follows: S.P. and K.J.M.B. developed the algorithms and performed simu-

lations. All authors contributed to final text. Supplementary Information is available in appendix

A.
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couple of centuries, has reignited recently into a great way to power motion of par-

ticles at micro and nanoscales. This process of charging of particles by contact and

their actuation by the electric field is called Contact charge electrophoresis[54, 14].

Over the years CCEP has evolved into powering mechanism for uses in simple mi-

crofluidic system that is capable of enabling steady generation and efficient transport

of aqueous drops [34], dynamics of metallodielectric Janus particles moving via con-

tact charge electrophoresis[52], simple and effective ratcheted microfluidic mixer that

uses contact charge electrophoresis (CCEP) of a micron-scale particle to rapidly mix

nonpolar liquids[33] and ratcheted electrophoresis of contact-charged particles allow-

ing for high speed transport through microfluidic channels over large distances[59].

Despite several experimental studies dealing with CCEP, there are no computa-

tional many-body simulations that take into account the effect of confinement which

drastically changes the property and dynamics of passive and active colloidal sus-

pensions confined between pair of electrodes. A general method was proposed by

Bonnecaze & Brady [20, 18] to predict the effective conductivity of an infinite, statisti-

cally homogeneous suspension of particles without considering effects of confinement.

There approach closely followed the ideas of Stokesian dynamics[24] and extended it

to an analogues electrostatic system. It captured both far-field and near-field electro-

static particle interactions accurately with no convergence difficulties. Introducing a

capacitance matrix which relates the moments of charge with potential moments of the

particles, where the moment expansion of the integral equation for the potential gener-

ates the far-field approximation to the capacitance matrix and the near-field effects are

added via exact two-body interactions. Emergence of anisotropic particles in colloidal
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science has lead to development of several methodologies for colloids with anisotropic

dielectric properties include auxillary field simulation methods[135, 70, 162] which

introduce local algorithm with a propagating field that evolve with its own intrinsic

dynamics locally. Building on similar idea Iterative dielectric solver developed by

Lujiten [212, 77] which utilizes Boundary Element Method to specifically tackle po-

larization of anisotropic particles with the multiple dielectric contrasts. BEM-based

approach is effective for cases with sharp dielectric interfaces[215] compared to image-

based approach suggested by Bonnecaze which performs robustly for isotropic and

planar interfaces, furthermore BEM-based solver’s accuracy and convergence rates

are dependent on conditioning of BEM equations. Most computational methods are

developed taking into account specific physical scenarios so as to keep the computa-

tional complexity low, which most general methods fail to achieve.

The effect of confinement in colloids for an electrostatic system has yet to be ex-

plored computationally, though confinement has been studied in detail for hydrody-

namics. Most notable being the study by Swan & Brady[194] of low-Reynolds-number

hydrodynamic forces on particles comprising a suspension confined by two parallel

walls. Building on the accelerated Stokesian dynamics(ASD) approach with inclusion

of wall-effects into the formulation. Another popular approach was developed for hy-

drodynamic interactions in suspensions of rigid particles in a half-space bounded by an

infinite no-slip wall have been efficiently[8] simulated by Donev[187] using multiblob

approach and recently for fully confined suspensions of rigid particles[188]. Describes

a fingering hydrodynamic instability in a suspension of active rollers[48] including

the effect of the wall on the hydrodynamic interactions. Considering only the RPY
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tensor that captures the far-field hydrodynamic interactions but does not accurately

model near-field hydrodynamics. Utilizing simple direct summation implemented in

Graphical Processing Units (GPUs) parallelised PyCUDA[121] to compute the matrix

vector product. Parallellization of GPUs[124] compensate the O(N2) computational

cost of this method. Fnite element method(FEM) and direct numerical simulations

via Lattice blotzmann method(LBM) use discretization os sptial domain that inher-

ent allows for inclusion of effect of confinement and arbitrary shape of particles when

modeling particulate suspensions. In FEM discretized stokes equation are solved

based on Galerkin’s formulation and fields for velocity and pressure are computed on

highly resolved structured/unstructured meshes. While numerical scheme for LBM

involves fictious fluid elements that move around with a probability distribution func-

tion and collisions[96] are tabulated at lattice nodes. A comparative analysis of FEM,

LBM and ASD was performed by Schlauch[177] concluding that for ASD since only

integrals on the particle surfaces are evaluated, the method is fast and efficient when

compared with FEM and LBM.

The study of suspensions and clusters of conductive passive and active particles

in presence of two confining electrodes has become ubiquitous particularly for un-

derstanding the dynamics of Contact Charge Electrophoresis. So here we develop

efficient numerical methods based on hybrid image-based approach with green’s func-

tions for performing many-body electro-rheological dynamic simulations of suspen-

sions and clusters of electrically conductive colloidal particles dispersed in dielectric

media. This approach removes the computational bottlenecks of traditional image-

based approach and add contribution of confining electrodes.
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Figure 2.1: (a) Schematic of the simulation domain with periodic boundaries and

random dispersion of conductive particles and semi-conductive cluster of particles

sandwiched between two parallel plate electrodes with constant potential in a dielec-

tric media. (b) When a set of particles approach contact with each other or with the

walls they experience contact charging.

2.2 Model of CCEP Dynamics

2.2.1 Electrostatics

We consider a collection of conductive spheres of equal radius a dispersed in a viscous

dielectric fluid between two parallel electrodes separated by a distance L3. The electric
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potential φ(x) in the dielectric is governed by the Laplace equation

∇2φ = 0, (2.1)

subject to boundary conditions on the particle surfaces and the bounding electrodes.

A constant potential difference is applied across the electrodes

φ(x) = 0 for x3 = 0, (2.2)

φ(x) = −L3E
∞ for x3 = L3, (2.3)

where E∞ is the applied field. At the surface of particle β (denoted Sβ), the potential

is constant and equal to the particle potential Φβ

φ(x) = Φβ for x ∈ Sβ. (2.4)

During its motion, the net charge on the particle remains constant between collisions

and is given by the following integral over the particle surface

qβ = −ε
∫
Sβ
n · ∇φdS, (2.5)

where ε is the permittivity of the fluid, and n is the unit normal vector directed into

the fluid. Given the N -dimensional vector q of particle charges, the above equations

can be used to determined the particle potentials Φ and the potential φ(x) within

the surrounding dielectric.

Each sphere experiences an electrostatic force that drives particle motion through

the viscous fluid. The force Fβ on particle β can be obtained by integrating the

Maxwell stress over the conductive particle surface

Fβ =
1

2
ε

∫
Sβ
|∇φ|2ndS, (2.6)
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Alternatively, the force can be computed by differentiating the electrostatic free en-

ergy U with respect to the particle position xβ

Fβ = − ∂U
∂xβ

∣∣∣∣
q,E∞

, (2.7)

where the particle charges q and the applied field E∞ (i.e., the electrode potentials)

are held constant. The relevant free energy is given by

U =
1

2
ε

∫
V

|∇φ|2dV +QL3E
∞ (2.8)

where the integral is carried out over the volume of the dielectric, and Q is the net

charge on the electrode at x3 = L3. The second term accounts for the electric work

that is needed to maintain the potential difference between the two electrodes.[128, 54]

Rather than solve for the potential directly, we make use of the linear relation

between the moments of the charge density and those of the potential on the particle

surfaces[18] q
p

 =

CqΦ CqΦ

CqE CpE

 ·
Φ−Φ∞

E∞

 . (2.9)

Here, Φ−Φ∞ is an N -dimensional vector containing the particle potentials less the

external potential evaluated at the particle centers xβ in their absence (e.g, Φ∞β =

−xβ3E∞ for sphere β). Similarly, E∞ is a 3N -dimensional vector containing the

external electric field evaluated at the particle centers (E∞β = E∞e3). The 3N -

dimensional vector p contains the dipole moments of each sphere defined as

pβ = −ε
∫
Sβ

(x− xβ)(n · ∇φ)dS. (2.10)

These quantities are related by the grand capacitance tensor C, which is symmetric

and positive definite.[18] As detailed below, we use the Stokesian dynamics method to
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estimate the capacitance tensor for a given particle configuration. Given the particle

charges q and the applied field E∞, we compute the particle potentials Φ and dipole

moments p. With these quantities, the electrostatic energy U of equation (2.8) can

be computed as

U =
1

2
q ·Φ +QL3E

∞. (2.11)

Using this expression for the energy, the 3N -dimensional vector of forces F is evalu-

ated using equation (2.7).

2.2.2 Hydrodynamics

At small Reynolds numbers, these forces drive particle motion with linear velocities

U and angular velocities Ω as described by the linear relation[63, 194]F
L

 =

RFU RFΩ

RLU RLΩ

 ·
U

Ω

 , (2.12)

where R is the grand resistance tensor. The electric torques L are zero for conductive

spheres. The resistance tensor is approximated using the Stokesian dynamics method

to determine the particle velocities. The particle positions evolve in time as

∂xβ
∂t

= Uβ, (2.13)

where the velocity depends on the particle positions, the particle charges, and the

applied field.

2.2.3 Contact Charging

When particles approach contact with one another or either electrode, the local elec-

tric field between the nearly contacting surfaces diverges, causing an electric discharge.
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Charge flows rapidly between the two surfaces to equalize their respective potentials.

Here, we assume that contact charging occurs instantaneously and to completion. For

two spheres α and β, the new charges q′α and q′β are given by

Φ′α = Φ′β and q′α + q′β = qα + qβ, (2.14)

where Φ′ denotes the new potential after charge transfer. When a particle contacts

either electrode, its potential is set equal to the electrode potential thereby specifying

its new charge q′β. In the simulations, we initiate charge transfer when particles

approach closer than a critical surface separation δ—that is, when |xα−xβ| < 2a+δ.

2.3 Simulation method

2.3.1 The grand potential tensor

We consider a collection of N charged, dielectric particles positioned within an un-

charged, dielectric medium between two parallel electrodes of infinite extent. The

particles are spherical in shape, and their respective charges are distributed uni-

formly throughout their interiors. The case of conductive spheres will be treated as

a limiting case, in which the permittivity of the particles greatly exceeds that of the

surrounding medium, λ = εp/ε→∞. The electric potential φ(x) in and around the

particles can be expressed as

φ(x)− φ∞(x) =
N∑
n=1

∫
Vn

G(x,x′)ρn(x′)dx′, (2.15)

where φ∞(x) is the external potential, ρn and Vn are, respectively, the charge density

and the volume of particle n, and G(x,x′) is the relevant Green’s function for the

potential at position x due to a unit charge at position x′ between two grounded
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planes.[170] By expanding the Green’s function in a Taylor series about the center

of each particle and integrating over the particle surfaces, Bonnecaze & Brady[18]

derived the following linear relationship between the moments of the charge density

and those of the potential on the particle surfaces
Φ−Φ∞

E∞

...

 =


PΦq PΦq . . .

PEq PEp
...

. . .

 ·

q

p
...

 . (2.16)

Here, Φ − Φ∞ is an N -dimensional vector containing the potentials at the particle

centers less the external potential present in their absence. Similarly, E∞ is a 3N -

dimensional vector containing the external electric field evaluated at the particle

centers. For the present case of parallel electrodes, the external field is uniform and

directed normal to the electrode surface. These quantities are related to the vectors

of particle charges q and dipole moments p by the so-called grand potential tensor

P , which is symmetric and positive definite.[18]

From the quantities in equation (3.4), one can readily determine the effective

permittivity of the particle dispersion and/or the electrostatic free energy of the

system. In other words, this relation is all we need to compute the macroscopic

material properties or the field-induced forces that drive particle dynamics. The

primary purpose of the present work is to accurately and efficiently evaluate equation

(3.4) for an arbitrary distribution of spherical particles between two grounded planes.

Our approach follows closely that of Swan & Brady [194] who solved an analogous

hydrodynamic problem posed by a collection of solid spheres moving between parallel

walls. We build on previous work[56] on the electrostatics of a single conductive

particle between parallel electrodes, which provides analytical expressions for the ‘self’
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components of the potential tensor. Here, these self contributions are augmented by

those due to neighboring particles, which modify the local potential and field.

In the simulation method, we do not solve for the grand potential tensor directly

but instead rely on iterative methods (e.g., GMRES) to solve for the unknown quan-

tities (e.g., the particle potentials Φ and dipoles p). Such methods rely on the rapid

and repeated evaluation of the right-hand-side of equation (3.4). To this end, it is

convenient to focus on a particular particle n and clearly distinguish the self contri-

butions from those due to the other particles. We therefore write the inegral solution

of equation (3.3) as

φ(x)− φ∞(x) =

∫
Vn

G(x,x′)ρn(x′)dx′ + φ′n(x), (2.17)

where φ′n(x) represents the disturbance potential due to the other particles. Integrat-

ing the potential over the surface of particle n, one can show that

Φn − Φ∞n =
(
P

(S)
Φq qn + P

(S)
Φp · pn + . . .

)
+ φ′n(xn), (2.18)

where Φn = φ(xn) and Φ∞n = φ∞(xn) are evaluated at the particle’s center xn, and

P (S) is the self potential tensor for a single particle between two parallel electrodes.

The relevant components of the self potential tensor for the case of uniformly charged,

dielectric spheres are detailed in Appendix A. Similarly, by integrating the product

of φ(x) and x− xn over the particle surface, one can show that

E∞n =
(
P

(S)
Eq qn + P

(S)
Ep · pn + . . .

)
+∇φ′n(xn), (2.19)

where E∞n is the electric field at the center of particle n. Higher order moments of the

potential can be constructed in a analogous manner; however, we limit our present

analysis at the level of particle dipoles.
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To make use of equations (3.6) and (3.7), we require a strategy to compute the the

disturbance potential and its gradient at the particle centers given the particle charges

and dipole moments. In Section 3.2.2, we derive a general solution for the electric

potential due to an arbitrary charge distribution positioned between two grounded

planes using a novel approach of pseudo-periodic charge distribution. In Section

2.3.3, we describe how this solution can be implemented efficiently using a the Ewald

method for periodic distribution of charge. Importantly, the resulting solution of the

Ewald method is only accurate in the far field owing to the truncation of the multipole

expansion in equation (3.4). In Section 3.2.3, we describe how the stokesian dynamics

approach can be applied to accurately incorporate near field contributions for the

important limiting case of conducting particles. We further discuss the technical

details of implementing the simulation approach in practice.

2.3.2 Pseudo-periodic distribution of charge and electric po-

tential between two grounded planes

We consider the potential due to a periodic charge distribution ρ(x) with periods L1

and L2 in the e1 and e2 directions (Fig. 3.2). The charge is sandwiched between two

grounded planes positioned at x3 = 0 and x3 = L3. The resulting potential φ(x) is

similarly periodic with the additional condition that φ = 0 on the upper and lower

boundaries. This problem can be approached in two different ways. The first approach

uses the method of image charges[107] to construct an equivalent three-dimensionally

periodic charge distribution on a larger domain (Fig. 3.2); the potential is then solved

using standard methods for Ewald summation.[41] The second approach uses the

Green’s function for a point charge between grounded planes to derive an analogous
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Ewald method for the two-dimensionally periodic system. The focus of this paper

would be on utilizing first approach considering cost of computing green functions for

wall contributions greatly slow down the computation in second approach.

Figure 2.2: Schematic illustration of a two-dimensionally periodic charge distribution

between two grounded planes. The zero potential conditions at x3 = 0 and x3 = L3 are

satisfied by an infinite system of image charges obtained by reflecting the charge and

its images about both planes. Reflection about two planes separated by a distance

L3 is identical to translation over a distance of 2L3; consequently, this problem is

identical to that of a three-dimensionally periodic charge distribution with periods

L1 × L2 × 2L3 (dotted lines).

We first expand the charge density and the potential in Fourier series along all

the three directions

ρ(x) =
∑

k1,k2,k3

e−2πikαxαρ(k), (2.20)

φ(x) =
∑

k1,k2,k3

e−2πikαxαφ(k), (2.21)
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where kj = n/Lj for n = 0,±1,±2, . . . are the wavevectors, and repeated Greek

indices signify summation over the index values (1, 2, 3). The Fourier coefficients are

related to one another through equations (3.1) and (3.2) as

(2πk)2φ(k) = −ρ
(k)

ε
, (2.22)

where k2 = kαkα. This equation can be solved to obtain the following solution

φ(k) = G(k)ρ(k), (2.23)

in which the Fourier coefficients of the Green’s function Gk are given by

G(k) = − 1

(2πk)2ε
. (2.24)

This term describes the contribution due to a point charge in an unbounded medium.

2.3.3 Ewald summation technique

The potential generated by a three-dimensionally periodic charge distribution in a

dielectric medium is

εφ(x) =
∑
ξ 6=0

e−2πiξ·x(2πξ)−2ρ(ξ), (2.25)

where the ξ are the three-dimensional reciprocal lattice vectors, and the ρ(ξ) term

represents the three-dimensional Fourier coefficients of the charge distribution. To

accelerate this otherwise slowly converging summation, the Ewald technique carries

out one part of the summation in real space and the other in reciprocal space

εφ(x) =
1

4π

∫
V

1

r
erfc

(√
πr2/α

)
ρ(x′)dx′

+
∑
ξ 6=0

e−2πiξ·x(2πξ)−2e−παξ
2

ρ(ξ), (2.26)
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where r = x − x′, and α is the so-called splitting parameter[194]. Notice that the

summation in (2.26) is the exact solution for the potential due to a charge distribution

with Fourier coefficients e−παξ
2
ρ(ξ). This charge distribution – denoted ρg for ‘global’

charge distribution – contains the long-range contributions to the potential, while the

remaining charge ρ− ρg gives rise to short-ranged effects.

2.3.4 Reflections in real space

In an unbounded medium, the local potential φl governed by equation (??) can be

written as

φl(x) =

∫
V

1

4πεr
(ρ(x′)− ρg(x′))dx′, (2.27)

where r = x − x′. Substituting equation (??) for the global charge density, we can

rewrite equation (2.27) to obtain

φl(x) =

∫
V

1

4πεr

[∫
V

(
δ(r′)− e−πr

′2/α

α3/2

)
ρ(x′′)dx′′

]
dx′, (2.28)

where r′ = x′ − x′′. Changing the order of integration and evaluating the integral

over x′, we find

φl(x) =

∫
V

Gl(r
′′;α)ρ(x′′)dx′′, (2.29)

where r′′ = x−x′′ and Gl(r;α) is a Green’s-like function for a point charge neutralized

by a Gaussian envelope

Gl(r;α) =
1

4πεr
erfc

(√
πr2/α

)
. (2.30)

This result is simply the real-space contribution to the Ewald summation of equation

(2.26). Importantly, the potential disturbance due to a charge at x′′ decays faster

than exponentially over a distance
√
α/π.
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To account for boundary condition φl = 0 on the electrode surface usually we

introduce a fictitious ‘image’ charge distribution ρi(x) = −ρ(x + 2x3e3) which is

added to the actual charge to satisfy the boundary condition but instead we consider

pseudo-periodic simulation box as described in 3.2.2 which emulates the method of

images.

2.3.5 Computations in wave space

In the particle-mesh approach, the charge distribution ρ(x) due to the particles is

approximated by a collection of point charges

ρ(x) =
∑
n

δ(x− xn)qn, (2.31)

where qn is the magnitude of the nth point charge. Applying the Gaussian filter of

equation (??) yields the global charge density

ρg(x) =
∑
n

eπr
2
n/α

α3/2
qn, (2.32)

where rn = x − xn and r2
n = rn · rn. where q

(k)
n = e2πikαx

(n)
α qn. Substituting ρ

(k)
g

into equation 3.12 yields a rapidly converging summation describing the long-range

contribution to the potential denoted φg(x).

φ
(k)
g =

∑
nG

(k)
g (r, α)q

(k)
n , where the Green’s-like function for G

(k)
g (r, α) = 1

4πkε

erfc
√
πr2/α

r
,

2.4 Results and discussion

Accurately accounting for electrostatic interparticle forces for a multiparticle system

by considering many body potential problem and the integration of Maxwell stresses
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over each particle becomes very tidious so we utilize an alternative strategy sug-

gested by Bonnecaze[21] that uses electrostatic energy of the system to calculate the

electrostatic interparticle forces.

2.4.1 Dynamics of chain formation or ’Bucket Brigade’ dur-

ing multiparticle CCEP

The term ”Bucket Brigade” here refers to the transporting items over large distances

by transferring it between multiple members of brigade that are either stationary

or moving. Analogues behavior is observed during the CCEP of multiple particle

systems where conductive particles form chain like assembly to transfer charge from

one electrode to another. One experimental realization of such phenomenon has

been reported with multiple aluminum discs distributed randomly on the surface of

a dielectric liquid between two electrodes. Upon application of the field, the discs

organized to form linear chains which oscillate continuously, passing charge from

neighbor to neighbor. Similar behaviors have been observed for water drops moving

in oil between two electrodes. If the number of particles in the system are equal to

or more than L/2a the chain connects the oppositely charged electrodes and lead to

short circuit. Here we use our simulation to predict and validate the existence of these

chain formations that have been observed and reported in experiments. Figure 2.3

illustrates the formation of chain like structures when multiple spherical conductive

particles are dispersed in dielectric media between set of plate electrodes, as shown

in snapshots the system of particles starts with multiple chains which coalesce over

time to form a single chain. Particles appear to collide elastically despite the absence

of inertia at low Reynolds numbers as was also shown in experimental results from
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Chapter 1. During a collision between two spheres, the total charge is conserved

and redistributes between the spheres to achieve a common electric potential. All

these observations from the experiments are well captured by our simulation that

incorporate both the electrostatic and hydrodynamic contributions.

2.4.2 Dynamics of cluster of particles between two electrodes

Utilizing particle shape to direct the motion of active colloids is generally applicable

to any energy input or propulsion mechanism either it be chemical, electrical or

magnetic. CCEP can be used to continuously power the up and down motion of

the cluster if cluster consist of at least one particle with different dielectric value

(conductive particle for our case). The shape of the cluster determines what trajectory

the cluster is going to assume. Though the introduction of electrostatics of CCEP

the cluster trajectory becomes more complex since the electrostatic force and torques

experienced by the particle are off center while the hydrodynamic drag experienced

by the cluster is at the center. An interesting example of such a system is a six

particle cluster with an octahedron geometry and three conductive particle as shown

in Figure 2.4.

2.5 Conclusion

An accurate and efficient approach has been developed to successfully simulate dy-

namics of system of multiple particles dispersed between two parallel grounded elec-

trodes. Taking into account confinement with both the electrostatic and hydrody-

namic effects, this is tackled by deploying accurate and computationally efficient
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Figure 2.3: (a) Instantaneous snapshots of multiple particles interacting with each

other while performing Contact charge electrophoresis leading to formation of chain

like structure. (b) Computed electric current registered on upper electrode due to the

movement of a charged spherical particles via CCEP. The current takes into account

the collision of particles with the upper wall and collision between the particles.

The results are presented in dimensionless form using the characteristic scales qs =

4πεε0a
2E0 and ts = 3/2εε0E

2
0 . Note that as the chain forms at t = 380ts and the

amount of charge transferred to the upper electrode spikes as shown by blue solid

line, suggesting increased transfer of charge on chain formation.
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(a)

(b)

Figure 2.4: (a) Schematic illustration of two-dimensional dynamics of alignment and

trajectory for a Janus Octahedron particle cluster with three conductive and three

non-conductive particles in the cluster, non-conductive particles are represented by

grey while positively charged and negatively charged particles are shown in red and

blue respectively. (b) The trajectory of Janus Octahedron is shown using a three

dimensional ribbon plot of the movement of cluster centroid.
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methodology similar to the Stokesian dynamics approach. Typical to a Stokesian

dynamics like approach, the electrostatic interactions of multiple particle suspension

is broken down into far-field and near-field components. The effect of confinement

is introduced by considering a pseudo-periodic lattice with twice the size of original

configuration to emulate the method of images. Previously reported observations of

chain formation in experiments have been modeled using the described simulation

approach and all the dynamic behaviors illustrated. Apart from dispersion of con-

ductive particles results for partially conductive clusters have also been illustrated

for the case of Janus octahedron cluster which also points towards the importance of

presence of walls on trajectory of cluster.
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Chapter 3

Confinement induced effective

conductivity variations in random

suspensions of spherical particles

3.1 Introduction

1Computational prediction of effective conductivity over wide range of volume frac-

tions covered by Bonnecaze(1991) has been applied to simulate the dynamics of

electro- and magnetorheological fluids[21, 17] comprised of dispersions of colloidal

particles interacting via dipolar forces. Previous simulation studies of these systems

have focused almost exclusively on the bulk properties of the dispersions. Finite size

effects due to the presence of confining boundaries are typically neglected. There are,

1The material presented in this chapter is being prepared for submission to Journal of Chemical

Physics with permission from Shashank Pandey, Mikolaj Kowalik and Kyle J. M. Bishop. Author

responsibilities were as follows: S.P. and K.J.M.B. developed the algorithms and performed simu-

lations. All authors contributed to final text. Supplementary Information is available in appendix

B.
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however, scenarios in which these boundary effects are important. For example, in the

context of heat transfer fluids, the effective conductivity depends on the thickness of

the layer through which heat is conducted since presence of film can lead to formation

of microstructures that can drastically change electro-thermomechanical properties

of material over very small changes in film thickness as shown by Wei and Takele

[196, 211] which correlate between the electrical conductivity of Ag/polymer matrix

nanocomposites in thin-film form and their microstructures as a function of both

film thickness and metal loading. There are other phenomena in which the bounding

electrodes play a critical role -e.g., in contact charge electrophoresis (CCEP) [60, 33].

Micro- and nanoscale particles are often incorporated within otherwise homoge-

nous media to modify their macroscopic material properties. For example, nanoparti-

cles are commonly added to heat transfer fluids to increase their effective thermal con-

ductivity [43, 199] or to polymeric materials to modify their dielectric properties.[127]

A wide variety of physical problems involving such two-phase media can be described

using the following continuum equations within both the dispersed and the continuous

phases [18]

∇ ·D = ρ(x), (3.1)

D = −ε∇φ. (3.2)

The first equation is a conservation equation that relates the flux D to spatially

distributed sources and sinks described by ρ(x). The second is a linear constitu-

tive equation that connects the flux D to the corresponding potential gradient ∇φ

by means of a coefficient ε. In the context of electrostatics,[128] D is the electric

displacement, ρ is the charge density, φ is the electric potential, and ε is the per-
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mittivity. For reasons of mathematical analogy, this formalism can also describe the

steady transport of heat, mass, and charge through two-phase media as well as the

linear magnetic response of such materials (Table 3.1).

The macroscopic properties of particle dispersions (e.g., the effective permittivity)

depend on the properties of each phase and on their microscopic arrangement. This re-

lationship was originally addressed by Maxwell,[141] who recognized that the change

in permittivity due to the addition of particles was related to their average dipole

moment in the applied field.[9, 18] For macroscopically homogeneous and isotropic

dispersions, there exists rigorous upper and lower bounds on the effective permittiv-

ity εeff in terms of the volume fractions and permittivities of each phase.[95] These

bounds agree to within ca. 2% across all particle volume fractions φ when the permit-

tivity of the particles is similar to that of the continuous phase (i.e., when εp ≈ ε).

When, however, the properties of the dispersed phase differ significantly from those

of the continuous phase (e.g., when εp � ε), the upper and lower bounds offer diver-

gent predictions, which can be resolved only by careful consideration of the particle

microstructure. The sensitive dependence of macroscopic properties on microscopic

structure is well illustrated by the case of heat transport in nanofluids, where fractal

particle aggregates give rise to large enhancements in the effective conductivity at

low volume fractions. [116]

Beyond predicting macroscopic material properties, accurate microscopic models

of particle dispersions are essential in describing their dynamic response to applied

electric and magnetic fields. The electric or magnetic dipoles induced by the field give

rise to dipolar interactions among the particles, which can mediate their assembly

into chains and fibers. Such field-induced changes in the particle microstructure
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Table 3.1: Conductive-type transport phenomena governed by equations (3.1) and

(3.2).[18]

material flux, D gradient, ∇φ transport coefficient, ε

heat flux temperature gradient thermal conductivity

mass flux concentration gradient diffusion coefficient

current density electric field electrical conductivity

electric displacement electric field permittivity

magnetic induction magnetic field permeability

can increase the effective viscosity of the fluid by up to 105 times and provides the

basis for electro- and magneto-rheological fluids.[90, 161, 29] In addition to electric

polarization, conductive particles dispersed in dielectric (perfectly insulating) fluids

can acquire electric charge on contact with the bounding electrodes and/or each other.

The resulting back-and-forth motions of such contact-charged particles in the applied

field is termed contact charge electrophoresis (CCEP).[59, 54] While the oscillatory

motion of individual particles is well understood,[54] the collective dynamics of many

interacting particles moving by CCEP is less explored. Such particles are known to

organize spontaneously to form oscillating particle chains – so called bucket brigades

– that transport charge from one electrode to the other.[166, 52] Accurate numerical

simulations of such processes must account for (1) far-field many body interactions

among the particles, (2) near-field interactions governing contact charge transfer, and

(3) the effects of confinement by the bounding electrodes. Moreover, the simulation

methodology must be efficient as to allow for rapid and repeated computation of the

electrostatic forces driving the particle dynamics.

In this context, the ‘stokesian dynamics’ method is particularly well-suited to de-
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scribe the electrostatics of many conductive spheres dispersed in a dielectric medium.[18]

Rather than solve for the electric potential directly, this approach seeks to approx-

imate the capacitance matrix, which relates the charge and dipole moment on each

particle to the external field and the corresponding particle potential. To achieve

an accurate and efficient approximation, the calculation of the capacitance matrix is

divided into far field and near field contributions. In the far field, the charge dis-

tribution of each particle is approximated by a truncated multipole expansion; the

self-consistent calculation of the multipole moments captures the many body electro-

static interactions among the conductive spheres. In the near field, the contributions

due to higher order moments are introduced in a pairwise fashion using analytical re-

sults for the interaction between two conductive spheres.[44] This approach has been

applied to compute the effective conductivity of random particle dispersions[20] and

to simulate particle dynamics in electrorheological fluids.[21, 17] In these previous re-

ports, periodic boundary conditions are used to approximate unbounded, bulk disper-

sions; however, it is sometimes necessary to consider the effects of system boundaries.

Examples include the dielectric response of thin film polymer nanocomposites, heat

transfer through lubricating films of nanofluids, as well as CCEP between parallel

plane electrodes. In each case, the effective properties of the film or the dynam-

ics of the dispersion can depend on the extent of confinement between the parallel

boundaries.

Here, we extend the ‘stokesian dynamics’ approach to describe the electrostatics of

particles dispersions sandwiched between two plane boundaries at constant potential.
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Figure 3.1: Schematic of the simulation domain.

3.2 Methods

3.2.1 The grand potential tensor

We consider an collection of N charged, dielectric particles positioned within an

uncharged, dielectric medium between two parallel electrodes of infinite extent. The

particles are spherical in shape, and their respective charges are distributed uniformly

throughout their interiors. The case of conductive spheres will be treated as a limiting

case, in which the permittivity of the particles greatly exceeds that of the surrounding

medium, λ = εp/ε→∞. The electric potential φ(x) in and around the particles can

be expressed as

φ(x)− φ∞(x) =
N∑
n=1

∫
Vn

G(x,x′)ρn(x′)dx′, (3.3)

where φ∞(x) is the external potential, ρn and Vn are, respectively, the charge density

and the volume of particle n, and G(x,x′) is the relevant Green’s function for the

potential at position x due to a unit charge at position x′ between two grounded

planes.[170] By expanding the Green’s function in a Taylor series about the center

of each particle and integrating over the particle surfaces, Bonnecaze & Brady[18]
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derived the following linear relationship between the moments of the charge density

and those of the potential on the particle surfaces
Φ−Φ∞

E∞

...

 =


PΦq PΦq . . .

PEq PEp
...

. . .

 ·

q

p
...

 . (3.4)

Here, Φ − Φ∞ is an N -dimensional vector containing the potentials at the particle

centers less the external potential present in their absence. Similarly, E∞ is a 3N -

dimensional vector containing the external electric field evaluated at the particle

centers. For the present case of parallel electrodes, the external field is uniform and

directed normal to the electrode surface. These quantities are related to the vectors

of particle charges q and dipole moments p by the so-called grand potential tensor

P , which is symmetric and positive definite.[18]

From the quantities in equation (3.4), one can readily determine the effective

permittivity of the particle dispersion and/or the electrostatic free energy of the

system. In other words, this relation is all we need to compute the macroscopic

material properties or the field-induced forces that drive particle dynamics. The

primary purpose of the present work is to accurately and efficiently evaluate equation

(3.4) for an arbitrary distribution of spherical particles between two grounded planes.

Our approach follows closely that of Swan & Brady [194] who solved an analogous

hydrodynamic problem posed by a collection of solid spheres moving between parallel

walls. We build on previous work[56] on the electrostatics of a single conductive

particle between parallel electrodes, which provides analytical expressions for the ‘self’

components of the potential tensor. Here, these self contributions are augmented by

those due to neighboring particles, which modify the local potential and field.
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In the simulation method, we do not solve for the grand potential tensor directly

but instead rely on iterative methods (e.g., GMRES) to solve for the unknown quan-

tities (e.g., the particle potentials Φ and dipoles p). Such methods rely on the rapid

and repeated evaluation of the right-hand-side of equation (3.4). To this end, it is

convenient to focus on a particular particle n and clearly distinguish the self contri-

butions from those due to the other particles. We therefore write the inegral solution

of equation (3.3) as

φ(x)− φ∞(x) =

∫
Vn

G(x,x′)ρn(x′)dx′ + φ′n(x), (3.5)

where φ′n(x) represents the disturbance potential due to the other particles. Integrat-

ing the potential over the surface of particle n, one can show that

Φn − Φ∞n =
(
P

(S)
Φq qn + P

(S)
Φp · pn + . . .

)
+ φ′n(xn), (3.6)

where Φn = φ(xn) and Φ∞n = φ∞(xn) are evaluated at the particle’s center xn, and

P (S) is the self potential tensor for a single particle between two parallel electrodes.

The relevant components of the self potential tensor for the case of uniformly charged,

dielectric spheres are detailed in Appendix A. Similarly, by integrating the product

of φ(x) and x− xn over the particle surface, one can show that

E∞n =
(
P

(S)
Eq qn + P

(S)
Ep · pn + . . .

)
+∇φ′n(xn), (3.7)

where E∞n is the electric field at the center of particle n. Higher order moments of the

potential can be constructed in a analogous manner; however, we limit our present

analysis at the level of particle dipoles.

To make use of equations (3.6) and (3.7), we require a strategy to compute the the

disturbance potential and its gradient at the particle centers given the particle charges
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and dipole moments. In Section 3.2.2, we derive a general solution for the electric

potential due to an arbitrary charge distribution positioned between two grounded

planes. In Section 2.3.3, we describe how this solution can be implemented efficiently

using a variant of the Ewald method that respects the boundary conditions on the

electrode surfaces. Importantly, the resulting solution of the Ewald method is only

accurate in the far field owing to the truncation of the multipole expansion in equation

(3.4). In Section 3.2.3, we describe how the stokesian dynamics approach can be

applied to accurately incorporate near field contributions for the important limiting

case of conducting particles. We further discuss the technical details of implementing

the simulation approach in practice.

3.2.2 Pseudo-periodic electric potential and charge distribu-

tion between two grounded planes

We consider the potential due to a periodic charge distribution ρ(x) with periods L1

and L2 in the e1 and e2 directions (Fig. 3.2). The charge is sandwiched between two

grounded planes positioned at x3 = 0 and x3 = L3. The resulting potential φ(x) is

similarly periodic with the additional condition that φ = 0 on the upper and lower

boundaries. This problem can be approached in two different ways. The first approach

uses the method of image charges[107] to construct an equivalent three-dimensionally

periodic charge distribution on a larger domain (Fig. 3.2); the potential is then solved

using standard methods for Ewald summation.[41] The second approach uses the

Green’s function for a point charge between grounded planes to derive an analogous

Ewald method for the two-dimensionally periodic system. The focus of this paper

would be on utilizing first approach considering cost of computing green functions for
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wall contributions greatly slow down the computation in second approach.

Figure 3.2: Schematic illustration of a two-dimensionally periodic charge distribution

between two grounded planes. The zero potential conditions at x3 = 0 and x3 = L3 are

satisfied by an infinite system of image charges obtained by reflecting the charge and

its images about both planes. Reflection about two planes separated by a distance

L3 is identical to translation over a distance of 2L3; consequently, this problem is

identical to that of a three-dimensionally periodic charge distribution with periods

L1 × L2 × 2L3 (dotted lines).

We first expand the charge density and the potential in Fourier series along all

the three directions

ρ(x) =
∑

k1,k2,k3

e−2πikαxαρ(k), (3.8)

φ(x) =
∑

k1,k2,k3

e−2πikαxαφ(k), (3.9)

where kj = n/Lj for n = 0,±1,±2, . . . are the wavevectors, and repeated Greek

indices signify summation over the index values (1, 2, 3). The Fourier coefficients are
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related to one another through equations (3.1) and (3.2) as

(2πk)2φ(k) = −ρ
(k)

ε
, (3.10)

where k2 = kαkα. This equation can be solved to obtain the following solution

φ(k) = G(k)ρ(k), (3.11)

in which the Fourier coefficients of the Green’s function Gk are given by

G(k) = − 1

(2πk)2ε
. (3.12)

This term describes the contribution due to a point charge in an unbounded medium.

3.2.3 Simulation procedure

We are now prepared to apply the above results using the stokesian dynamics ap-

proach to compute the electrostatic interactions among a collection of charged dielec-

tric spheres between two parallel electrodes. For this electrode geometry, the applied

field E∞ is spatially uniform such that higher order derivatives of the external po-

tential are identically zero. As a result, equation (3.4) can be inverted to obtain the

following exact relation for the particle charges q and dipoles pq
p

 = C ·

Φ−Φ∞

E∞

 , (3.13)

where C is the grand capacitance matrix. [18] Knowledge of the capacitance ma-

trix allows one to compute, for example, the particle potentials and dipole moments

given their charges and the applied field. In principle, the capacitance tensor can be

computed as the inverse of the potential tensor C = P−1; however, in practice, such
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computation requires large numbers of multipole moments to achieve an accurate

approximation. The stokesian dynamics method overcomes this challenge by decom-

posing the capacitance tensor into near field and far field contributions, which can be

computed in an efficient manner.

In particular, we decompose the particle charges and dipoles asq
p

 =

qff
pff

+ Cnf ·

Φ−Φ∞

E∞

 , (3.14)

where the first term represents the far field contribution and the second the near field

contribution. The former is obtained from equation (3.4) by truncating the potential

tensor at the dipole level such thatΦ−Φ∞

E∞

 = P∞ ·

qff
pff

 , (3.15)

where P∞ denotes far field approximation to the potential tensor. This relationship

captures the long-ranged, many-body interactions among the spheres but fails to

describe near-field effects that arise between nearly contacting particles. The near

field contributions to the capacitance tensor Cnf are computed in a pairwise fashion

using analytical results for two spheres in an applied field.[45] The details of the far

field and near field calculations are discussed in the following sections. For specificity,

we will assume that the particle charge q and the applied field E∞ are known; our

objective is to compute the dipole moments p and the particle potentials Φ. Other

variations of the problem can be solved in an analogous manner. As noted above, the

linear system of equations (3.13) are solved in an iterative fashion using the GMRES

method. We start with an initial guess for the far field charges qff and dipole moments

pff . The particle potentials and fields are then computed in accordance with equation
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(3.15) using a particle-mesh Ewald implementation of the general solution derived in

section 2.3.3. These provisional quantities are then used to evaluate the particle

charges q and dipoles p accounting for the near-field contributions of equation (3.14).

The far-field charges and dipoles are subsequently refined to minimize the residuals

in the charge from equation (3.14) and in the field from equation (3.15).

The value of splitting parameter,
√

α
π

governs the rate of decay. Since far-field

electrostatic contribution is broken down by Ewald summation into two fast converg-

ing summations comprising far-field real space part and far-field wave space part,

identifying the important length scales involved during both these summation pro-

cedures establishes the constraint on the system. For ’wave’ space part where cal-

culations are performed on discreet mesh points according to Particle-Mesh-Ewald

approach(PME)[41], the constraint ∆x �
√

α
π

is established which implies that the

width of Gaussian cloud,
√

α
π

for a particle should be should be equal to several mesh

spacing so as to accurately capture the interaction with particles on nearby mesh

points. Similarly for the computations in the ’real’ part of far-field, the radius of in-

fluence of disturbance should be smaller than half the domain length since minimum-

image convention must be followed. Leading to constraint given by, L
2
�
√

α
π
. The

prominence of disturbance reduces to negligible amount on moving far away from the

specific particle so it makes most sense to only consider disturbance effect on nearby

particles in
√
α extent of the specific particle. From both these constraints we deduce

the following bounds on the value of splitting alpha

∆x =
L

Ngrid

�
√
α

π
� L

2
.

Taking into consideration the bounds on value of splitting parameter,α, we come to
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conclusion that there exist a relation between value of optimal beta and number of

grid points.

For the case of random particle dispersion, the Stokesian dynamics like approach

is used in conjugation with the High Performance Monte Carlo method for hard par-

ticles (HPMC) developed by Glotzer group[5, 83]. HPMC is a recent extension of

HOOMD blue capable of performing parallel on several multicore CPUs and GPUs

which drastically reduces the computational time required for generating random con-

figurations of dispersion of particles. The HPMC code for random particle position

generates equilibrated configuration averaged over 50 different realizations with each

configuration tuned till it reaches optimal move size over 200,000 sweeps then the op-

timal move size is utilized for further 100,000 sweeps to obtain the final equilibrated

configuration for a single realization. For every case of particle dispersion 50 real-

izations have been used to calculate the pair correlation function compared against

the analytical solution of Percus-Yevick(an approximate closure of Ornstein-Zernike

equation) as illustrated in Bonnecaze[20] and developed by[181, 168] for the case of

hard-particle distribution in periodic media. Similarly for the case of confined media

particle density analysis was performed similar to described in [50] where they provide

tangible evidence for complete wetting based on rigorous simulations and observe that

the portion of film near wall experiences crystalline ordering which increases with in-

creasing ”bulk” density of suspension, ρp. The choice of HPMC for our Monte Carlo

procedure enables us to generate computationally efficient random particle positions

which are easily reproducible.
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3.3 Results and discussion

For a confined media we illustrate variation of conductivity for complete range of

electrode separation with varying volume fraction. For this case of confined media,

particle density variation as described in Dijkstra[50] should show complete wetting

based on their rigorous simulations and we should observe that the portion of film

near wall experiences crystalline ordering which increases with reduction in channel

width leading to lower value of effective conductivity. Studying an analogues sys-

tem, Swan[194] suggested for hydrodynamic interactions at low volume fractions the

particle-wall interactions make the predominant contribution to the viscous dissipa-

tion while at high volume fractions the particle-particle hydrodynamic interactions

dominate and the bulk rheology is recovered.

3.3.1 Drastic increase in conductivity at extreme confine-

ment

At extreme confinements Ξ − 2a < 2a, we observe a drastic increase in the value

of effective electrical conductivity of the dispersion due to the chaining of particles

between the two electrodes.

3.3.2 Gradual increase in conductivity at moderate confine-

ment

At moderate values of separation 2a < Ξ−2a < 10a, the effective electrical conductiv-

ity shows gradual increase with the increase in electrode separation, since due to the

presence of walls particles near the walls arrange parallel to the walls that is perpen-
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Figure 3.3: Effective conductivity of system for variation in particle volume fraction at

different values of conductivity ratio represented by λ(= εp
εm

) is plotted. The results for

effective conductivity against particle volume fraction in unbounded periodic simple

cubic lattice have been previously demonstrated by Bonnecaze (1990)[18], have been

reproduced in our calculation for both periodic (4) and confined (©) lattice.

dicular to the electric field leading to reduced conductivity compared to the case of

bulk unbounded dispersion, as was also explained by Dijkstra[50] who made a system-

atic study of the effect of plate separation and was able to distinguish a regime where

complete wetting of the hard-sphere crystal appears to occur at the wall-dispersion

interface. The oscillatory variation of effective conductivity with the increase in elec-

trode separation can be explained by changing of the lattice from buckled state to

rhombic state as has been previously reported in [178]. During the rhombic state the

effective conductivity spikes while in buckled state the value of effective conductivity

diminishes, giving a oscillatory variation to effective conductivity.
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3.3.3 Conductivity asymtotes at large electrode separation

Confinement induces glassiness or high local density of particles near the walls but as

the separation of walls increases bulk properties are restored. At electrode separation

Ξ − 2a > 10a, the effective electrical conductivity of the dispersion asymtotes to

the unbounded periodic random dispersion results for respective volume fraction of

particles as shown in figure 3.4.

Figure 3.4: Equilibrated suspension of randomly distributed particles in un-

bounded media. Effective conductivity (◦) for unbounded periodic random configu-

ration against the particle volume fraction, φ is plotted and compared with the results

demonstrated by Bonnecaze(1991)[20]; Note the difference in results for λ = 10 and

∞ at high volume fraction, φ = 0.6.
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Figure 3.5: Effect of confinement on the effective conductivity of randomly

distributed particles; Effective conductivity is plotted across channels of varying

width covering entire range of values for different volume fractions, plot depict effec-

tive conductivity asymptotes to the unbounded periodic random configuration results

from Figure 3 at large value of L3.

3.4 Conclusion

To accurately account for all the electrostatic interactions involved in the system of

multiple particles dispersed between two parallel grounded electrodes is a huge chal-

lenge, this electrostatic problem is tackled by deploying accurate and computationally

efficient methodology similar to the Stokesian dynamics approach. The use of grand

capacitance tensor representation allows for high level abstraction and breaks down

this complicated problem to the relationship between different components of charge

and potential moments on the particle, which allows us to utilize first and second
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order Madelung constants to verify the relationships between charge-potential and

dipole-field in order to validate the method. Typical to a Stokesian dynamics like ap-

proach, the electrostatic interactions of multiple particle suspension is broken down

into far-field and near-field components which are furthermore differentiated on basis

of presence of wall to include the particle-particle and particle-wall contributions sep-

arately. Utilizing this method, its possible to accurately quantify the dependence of

effective conductivity of the dispersion of conductive particles on the channel width

and particle volume fraction at low, moderate and high conductivity ratios. Cur-

rently we have been working to combine this approach with the Stokesian dynamics

allowing us to understand more complex coupling of electric field and shear effects on

suspension microstructure.
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Chapter 4

Emergence of traveling waves in

linear arrays of electromechanical

actuators

4.1 Introduction

1Traveling waves of mechanical actuation provide a versatile strategy for locomotion

and transport in both natural[39, 16, 198] and engineered[99, 158, 160, 140, 217]

systems across many scales. In vertebrates such as the aquatic lamprey [39, 38],

these and other rhythmic motor patterns are orchestrated by networks of neurons

called central pattern generators (CPGs) [138], which are often idealized as systems

1The material presented in this chapter is reproduced from Ref. Shashank Pandey, Yong Dou,

Charles Cartier, Olivia Miller and K. J. M. Bishop, Communications Physics volume 1, Article

number 85, 2018. S.P., Y.D. and C.A.C. contributed equally to this work. Reproduced by permission

of Nature Communication Physics and with permission from the authors. Author responsibilities

were as follows: Y.D. and S.P. performed the experiments and analyzed the results. K.J.M.B. and

S.P. developed the theoretical model. Y.D., S.P., C.A.C., O.M., and K.J.M.B. conceived the project

and wrote the paper. Supplementary Information is available in appendix C.
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of coupled oscillators [39, 38]. The rhythmic output of these oscillators is relayed to

actuators (e.g., muscles) to produce complex motions without the need for sensory

feedback. Similar control strategies based on CPGs are used to direct locomotion in

macroscopic robots [99]. At smaller scales, however, it becomes increasingly challeng-

ing to accommodate centralized control systems capable of directing the coordinated

actions of multiple actuators. Instead, microorganisms such as ciliated protozoa in-

tegrate pattern generation and mechanical actuation within a single material system.

The oscillatory motions of beating cilia couple to one another through hydrodynamic

interactions to produce metachronal waves that drive cellular locomotion through vis-

cous surroundings [16, 151, 65]. This biological example illustrates how the coupled

motions of many mechanical oscillators can organize spontaneously and autonomously

to perform dynamic functions.

The realization of synthetic systems that mimic such functions requires experi-

mental strategies for powering mechanical oscillators and for coupling their motions

to achieve the desired dynamics. One approach relies on coupling reaction-diffusion

patterns to the mechanical deformation of responsive gels, for example, to achieve

traveling wave motions in excitable media[217, 140]. Despite fascinating demonstra-

tions of this approach on millimeter length scales, it remains challenging to miniatur-

ize due to the need for faster reactions that compete with diffusion at smaller scales.

To achieve scalable mechanisms of pattern formation, the processes that drive oscil-

lations should scale in the same way as those used to couple neighboring oscillators.

In this context, electromechanical oscillators based on contact charge electrophoresis

(CCEP) [13, 53] can provide a useful model on length scales spanning millimeters[142]

to microns[52] (perhaps even nanometers [159, 125]).
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CCEP refers to the back-and-forth motion of a conductive particle through an

insulating fluid separating two electrodes subject to a constant voltage. The parti-

cle charges on contact with either electrode and moves down the applied potential

gradient, thereby transporting charge between the biased electrodes. This type of

electromechanical oscillator is fundamentally distinct from the weakly damped har-

monic oscillators of micro-electromechanical systems (MEMS)[204, 218], which rely

on resonant excitation by time-varying fields. By contrast, CCEP oscillators are pow-

ered by a constant thermodynamic driving force and operate even under conditions

of strong damping, which arise at small scales and in viscous environments. Similar

to those of molecular motors[123, 125], CCEP motions can be rectified to perform

mechanical work or to transport material cargo[57, 125]. Moreover, the charge ac-

quired by the particle and the forces driving its motion are well described by classical

electrostatics, which is invariant to changes in scale. The discovery of new CCEP

motions at the macroscale is therefore transferable to emerging applications at the

microscale[13].

Here, we investigate the collective dynamics of many CCEP oscillators positioned

along a linear array between two (nearly) parallel electrodes (Fig. D.1a). Each os-

cillator is comprised of a conductive sphere that moves back and forth between the

electrodes along a dielectric track. Oscillatory motions are driven by the repeated

charging of the particles on contact with either electrode and their subsequent move-

ment in the applied field. The dynamics of neighboring oscillators are coupled to

one another through the electrostatic interactions between the charged particles. We

show how this electrostatic coupling mediates the organization of phase-locked states

in which all oscillators move with a common frequency. Interestingly, the distribution
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of oscillator phases at steady state corresponds to traveling waves of particle motion

with a characteristic wavelength comparable to the electrode separation. These ex-

perimental observations are explained by a Kuromoto-like model[1, 201] that accounts

for weak repulsive coupling between neighboring phase oscillators and for small sys-

tematic variations in their natural frequencies. We demonstrate how traveling wave

synchronization can be used to transport material cargo along the length of the os-

cillator array. More generally, our approach shows how simple energy inputs can

power complex patterns of mechanical actuation, which may be useful in powering

the motions of soft robots[176, 2] and colloidal machines[183, 214, 139, 86, 62].

4.2 Experiment

Copper spheres (a = 1 mm in radius) immersed in mineral oil were positioned within

an array of dielectric tracks connecting two plane electrodes separated by a distance

L (Fig. D.1a). The tracks were spaced evenly with a period W = 3a and aligned

perpendicular to the electrode surfaces and to the direction of gravity. Each track

contained a single particle, which was free to move back and forth between the two

electrodes. Application of a constant voltage (typically, V = 10 kV) caused the parti-

cles to oscillate continuously between the electrodes via contact charge electrophoresis

(CCEP) [13, 53]. The conductive particles acquired an electrostatic charge on contact

with the biased electrodes and moved under the influence of the applied field. This

periodic cycle of contact charging and electrostatic actuation continued for as long

the voltage was applied.

Figure D.1b shows the reconstructed trajectory of a single sphere oscillating be-
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Figure 4.1: Travelling wave synchronization. (a) Conductive spheres immersed

in mineral oil oscillate along dielectric tracks connecting two plane electrodes subject

to a constant voltage V . Particles charge on contact with each electrode and move

in the electric field E. (b) Oscillatory dynamics of a single particle; yellow markers

denote contacts with the electrodes. The applied voltage is V = 19 kV; the electrode

separation is L = 25 mm. (c) Oscillation frequency ωn as a function of the position

n along the array. The natural frequency of each oscillator varies with position (solid

markers); all oscillators move with a common frequency in the synchronized state

(open markers). (d) Image of the experiment showing particle positions at successive

times; scale bar is 3 mm. See also Supplementary Movie 1. (e) Space-time plot

showing the emergence of traveling wave synchronization for the N = 23 oscillators

in (c) starting from a random initial configuration. Here, the track period is W = 3

mm; other parameters are listed in (b). See also Supplementary Movie 2 and Figure

S1.
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tween the two electrodes. Each time the particle contacts an electrode, its charge

changes sign and the particle reverses direction under the influence of the field. To

facilitate the analysis of multiple particles over many oscillation cycles, we record

the times at which each particle contacts one of the electrodes. From this data, we

approximate the phase of each oscillator by interpolating between successive contacts

as ϕ(t) = 2π(t − tk)/(tk+1 − tk) where tk denotes the time of the kth contact and

tk ≤ t < tk+1. By definition, the oscillator phase increases at a constant rate equal

to the natural frequency, dϕ/dt = ω, which is approximated by averaging over many

oscillation cycles as ω = 〈2π/(tk+1 − tk)〉k. Repeating this analysis for each particle

in isolation (i.e., one track at a time), we observed small systematic variations in

the natural frequency ωn with respect to the oscillator position n along the array

(Fig. D.1c, solid markers). The spatial gradients in the oscillator frequency were

caused by small deviations in the electrode alignment, which was controlled only to

within ca. 1◦ of parallel. Particles oscillated faster where the electrodes were closer

together due to an increase in field strength at those locations.

Despite variations in their natural frequencies, linear arrays of N particle oscil-

lators moving simultaneously evolved in time to a phase-locked state, in which each

particle moved with a common frequency (Fig. D.1c). Interestingly, the synchronized

particles did not move in phase with one another but rather organized to form a single

traveling wave, which remained stable for hundreds of oscillation cycles (Fig. D.1d;

Supplemental Movie 1). Space-time plots of the oscillator phase ϕn(t) show how this

wave-like pattern emerged from a disordered initial configuration (Fig. D.1e; Sup-

plementary Movie 2). The direction of wave propagation was related to the spatial

gradient in the oscillators’ natural frequencies: waves traveled from slower to faster
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oscillators. Notably, the travelling wave patterns were robust to disturbances and

recovered when disrupted by external perturbations (Supplementary Movie 3).

4.3 Results and Discussion

The stability of the synchronized state and the distribution of oscillator phases therein

depended on the number of oscillators N in the array. For N = 2 oscillators, the par-

ticles moved in antiphase as reported previously [142] (Fig. D.2a). Such antiphase

synchronization suggests that neighboring oscillators are coupled together by repul-

sive interactions such as the Coulombic forces between like-charged particles. As the

number of particles was increased, the average phase difference between successive

oscillators decreased giving rise to stable traveling waves with wavelengths spanning

many oscillators (Fig. D.2b; see also Fig. S2 and Supplementary Movie 4). Be-

yond some critical number of oscillators N∗, the synchronized state became unstable

(Fig. D.2c). Above this threshold, traveling waves were observed to grow and break

near the center of the array in a periodic fashion (Supplementary Movie 5). Such

breaking events are characterized by dislocation-like defects in the space-time plots

for the oscillator phases (Fig. D.2c). The breaking frequency increased as the number

of oscillators was increased beyond the stability threshold N∗ (Fig. S3). For N � N∗,

wave breaking was no longer periodic but rather occurred at irregular intervals and

at different locations (Fig. S4 and Supplementary Movie 5).

To better understand the synchronized state, we quantified the distribution of

oscillator phases for N = N∗ as a function of the electrode separation L and the

oscillator spacing W . For each electrode configuration, we started with N > N∗ os-
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Figure 4.2: Characterization of travelling waves. (a) N = 2 oscillators moving in

antiphase. The plot shows the sine of the oscillator phases (bottom); the space-time

image shows the same data in a different way (top). (b) Space-time plot for N =

N∗ = 15 oscillators showing 20 oscillation cycles. (c) Space-time plots for N > N∗

showing defects that occur at regular time intervals. The markers show points in the

space-time lattice with five-fold (purple) and seven-fold (yellow) coordination. (d)

Time-averaged phase difference χn as a function of position n for N = N∗ oscillators.

Data for (a-d) were collected with L = 25 mm, W = 3 mm, and V = 18 kV. (e)

Characteristic wavelength λ as a function of the electrode separation L for N = N∗

and different oscillator spacings W . Error bars represent the standard deviation from

five independent experiments.
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cillators and removed one particle at a time from the end of the array until reaching

a stable synchronized state, at which the phase difference between neighboring oscil-

lators was constant in time. Figure D.2d shows the time-averaged phase difference

χssn = 〈ϕn+1(t)− ϕn(t)〉t at the stationary state for a typical experiment. The phase

difference was smallest (in magnitude) near the center of the array and largest near

the edges. For each such state, we defined a characteristic wavelength in terms of

the average phase difference as λ = 2πW/〈χssn 〉n. This wavelength increased linearly

with the electrode spacing L but was independent of the oscillator spacing W over

the range explored (Fig. D.2e).

The experimental observations are reproduced by a Kuramoto-like model [1] that

accounts for the local repulsive coupling between neighboring oscillators and the sys-

tematic variations in their natural frequencies. In the model, we adopt the following

simplified description of CCEP dynamics[125]. On contact with either electrode, a

conductive sphere acquires a charge q = ±2
3
π3εa2E, where E is the electric field at

the electrode surface, and ε is the permittivity of the surrounding dielectric. This

expression—first derived by Maxwell[141]—assumes that charge flows to/from the

particle until its potential equals to that of the contacting electrode[55]. The elec-

trostatic force on the particle is approximated as F = qE, which drives motion with

velocity U = F/γ, where γ is a constant friction coefficient. Figure D.4a shows how

the charge q and position h of a single oscillator depend on its phase ϕ = ωot, where

ωo = πqoEo/γL is the natural frequency defined in terms of the applied field Eo = V/L

and the Maxwell charge qo = 2
3
π3εa2Eo. By comparing the measured frequency in

Fig. D.1c to the prediction of the model, the friction coefficient can be estimated to be

γ = 1.8× 10−3 N·s/m, which ca. 4 times larger than the Stokes drag, γs = 6πηa. The

87



increased drag is attributed to the solid boundaries formed by the patterned tracks

and the planar electrodes (Fig. S5)[84].

The presence of neighboring oscillators influences both the charge that a parti-

cle acquires and the speed at which it moves. To describe these interactions, we

decompose the electric field as E = Eo + E ′, where Eo is the applied field and E ′

is a disturbance field due to neighboring particles, which are approximated as point

charges (see Methods). In the limit of weak interactions (i.e., when E ′ � Eo), the

moving particles are well approximated as phase oscillators with weak repulsive cou-

pling between nearest neighbors. The phase of the nth oscillator evolves in time as

∂ϕn
∂t

= ωn + f(ϕn − ϕn−1) + f(ϕn − ϕn+1), (4.1)

where ωn is the natural frequency, and the function f( ) describes the phase-averaged

interactions between neighboring oscillators as a function of their phase difference

χn = ϕn+1 − ϕn. The boundaries of the array are open such that oscillators at the

edges (n = 1, N) interact with only one neighbor [156]. We assume a uniform gradient

in the natural frequency: ωn = ωo + ∆
[
n− 1

2
(N + 1)

]
for n = 1 . . . N , where ωo is

the mean oscillator frequency, and ∆ is the frequency difference between successive

oscillators due to a small angle θ between the electrodes (∆/ωo ≈ 3(W/L)θ � 1).

Interestingly, this model was investigated previously as a possible explanation for

traveling wave oscillations in the central pattern generator of the aquatic lamprey

[39].

In the present context, the primary interaction between neighboring oscillators is

electrostatic in origin; other interactions are neglected. In particular, the neglect of

hydrodynamic interactions was supported by experiments in which neighboring parti-
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Figure 4.3: Minimal model of traveling wave synchronization. (a) Charge q

and position h of a idealized CCEP oscillator as a function of phase ϕ. (b) Phase-

averaged electrostatic interaction between two weakly-coupled CCEP oscillators as a

function of their phase difference χ. The interaction is scaled by fo = q2
o/εW

2Lγ;

the oscillator spacing is W = 0.12L as in Fig. 2. (c) Stable stationary solution for

the phase difference χn of N = 15 oscillators. Experimental data from Fig. D.2d is

reproduced for comparison; the predicted phase differences are plotted also in (b) to

show their relationship with the interaction function f( ). (d) Sine of the oscillator

phase ϕn showing the wave-like pattern. (e) Dynamics of the N = 15 oscillators

starting from random initial conditions. (f) Oscillator dynamics for N = 20 showing

the periodic breaking of the traveling waves comparable to that in Fig. D.2c. In

(c)–(e) the critical oscillator number is N∗ = 15.5 as in Fig. D.2b, corresponding to a

frequency gradient ∆ = 0.0096fo. The natural frequency is ωo = 3
2π2 (W/a)2fo = 1.4fo

where W/a = 3 as in experiment; the ratio ∆/ωo = 0.0070 implies an electrode angle

of θ = 1.1◦.
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cles were separated by solid walls without altering their collective dynamics (Fig. S6).

Approximating the particles as point charges, we compute the electrostatic interaction

averaged over one oscillation cycle for a constant phase difference χ (see Methods).

These repulsive interactions are described by an odd function characterized by the

location χmax and height fmax of its maximum (Fig. D.4b). For large electrode separa-

tions (L� W ), these quantities are well approximated as fmax ≈ 1
2
√

3
(q2
o/εW

2Lγ) and

χmax ≈ π√
2
(W/L). Our assumption of weak coupling implies that the phase velocity

due to interactions is small compared to the natural frequency—that is, fmax � ωo or,

equivalently, a/W � 0.72. Additional simulations incorporating the full amplitude

dynamics provide further support for the phase oscillator approximation under the

experimental conditions of a/W = 0.33 (Fig. S7).

The competition between the repulsive interactions and the frequency gradient

leads to stable stationary solutions described by f(χn) = −1
2
∆n(N−n) (see Methods).

This solution exists provided that the number of oscillators is below some critical

value N∗ =
√

8fmax/|∆|. Figure D.4c,d shows the stable solution in terms of the

phase difference and the sine of the phase for N = 15 oscillators—just below the

chosen critical value of N∗ = 16. The addition of more particles (N > N∗) causes

the waves to break periodically in the center of the array (Fig. D.4f). Physically,

faster oscillators pile up behind the slower ones and are prevented from passing by

the local repulsive interactions. In this way, the frequency gradient acts to compress

the oscillator phases together to create longer waves that travel always from slower to

faster oscillators. When compression by the frequency gradient exceeds the repulsive

barriers between neighboring oscillators, global synchronization is lost and the waves

break.
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At the critical oscillator number (N = N∗), repulsive interactions are at their

maximum (χssn ∼ χmax), and the characteristic wavelength scales linearly with the

electrode separation in agreement with experimental observations (Fig. D.2e)—that

is, λ ∼ 2πW/χmax ∼ L for W � L. Moreover, the critical oscillator number observed

in experiment implies a certain angle between the electrodes, which can be estimated

from the model as θ = 1
3
(L∆/Wωo) = 8π2

9
√

3
(a2L/W 3N∗2). For the conditions of Figure

D.2, this angle is predicted to be θ = 1.1◦, which agrees well with that measured from

the experimental images (Fig. D.1b). Smaller angles allow for stable waves containing

more particles.

The average phase within the wave evolves in time at a constant rate equal to the

average frequency ωo, which is specified independently of the wavelength. In experi-

ment, the oscillator frequency could be altered by changing the applied voltage; how-

ever, the range of accessible frequencies was limited by dielectric breakdown at higher

voltages and by particle sticking at lower voltages[53]. Notably, the frequency of the

phase locked state was slightly faster than the average natural frequency (Fig. D.1d).

Dipolar interactions among the particles (neglected here) break the odd symmetry of

the interaction function thereby altering the frequency of the synchronized state.

4.4 Conclusion

We have shown how arrays of electromechanical oscillators can organize spontaneously

to form synchronized traveling waves of particle motion powered by a constant in-

put voltage. The direction of wave propagation is determined by small gradients

in the natural frequencies of the oscillators and can be controlled by introducing a
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small angle between the otherwise parallel electrodes. The characteristic wavelength

is approximately equal to the electrode separation L and corresponds to the largest

possible wave that can be stabilized by repulsive interactions among the charged

particles. The traveling wave motions are robust to perturbations and can be har-

nessed to direct the transport of material cargo. In particular, Figure 4 shows how

traveling waves can direct the motion of gas bubbles floating at the interface just

above the oscillating particles (see also Supplementary Movie 6). Bubbles are trans-

ported in the direction of wave propagation at speeds comparable to the wave velocity

(Fig. D.5b). In contrast to previous strategies for rectifying CCEP motions based on

ratcheted channels[57] or asymmetric particles[52], the present approach relies on the

self-organization of multiple particles working in concert.
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Figure 4.4: Transport of air bubbles via travelling waves. (a) Schematic

illustration of the experimental set-up from the side. (b) Trajectories of four bub-

bles (white) superimposed over the space-time plot of the oscillator phase. See also

Supplementary Movie 6.
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Beyond this initial demonstration, traveling wave synchronization of CCEP os-

cillators may be useful for peristaltic pumping within microfluidic systems. Unlike

standard pressure pumps, those based on traveling wave motions allow for recirculat-

ing flows[197] and would complement existing applications of CCEP in microfluidic

cargo transport[57, 35], separations[57], and fluid mixing[31]. These CCEP-powered

unit operations rely on constant voltages at low input power, which makes them at-

tractive for use in portable, battery-powered microfluidic devices[13]. One important

limitation of these oscillators is their reliance on the dielectric environment provided

by non-polar fluids; CCEP motions cannot be sustained in even weakly conductive

liquids such as deionized water[31]. However, recent advances in soft robotics suggest

one strategy for circumventing this limitation by encapsulating non-polar liquids in

stretchable, impermeable compartments[2]. These soft composite materials can be

deformed by applying voltages to stretchable electrodes patterned on their surfaces.

By incorporating arrays of CCEP oscillators within such dielectric compartments, it

should be possible to create self-organized motions that drive transient deformations

and thereby locomotion of soft robotic materials.

4.5 Methods

4.5.1 Experiment Set-up.

Periodic arrays of dielectric tracks were 3D printed in acrylonitrile butadiene styrene

(ABS) with a period of W = 3 − 5 mm. The array was sandwiched between two

copper plates separated by a distance L = 10 − 30 mm (McMaster-Carr 3350K201)

and immersed in mineral oil (Sigma Aldrich CAS No. 8042-47-5). The tracks were
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aligned perpendicular to the electrode surfaces and to the direction of gravity. Each

track contained a single copper sphere (McMaster-Carr No. 64715K16, radius a = 1

mm), which rolled freely between the two electrodes (Fig. D.1a). Prior to use, the

system was heated in a 60oC oven for several hours to remove any moisture. The

copper electrodes were connected to a amplifier (Trek 20/20C) with an output voltage

V = 0 − 20 kV. The particles were illuminated from below by a Light-emitting

diodeLEDlight and their motions captured by a high-speed camera (Phantom V310).

During each experiment, the electrodes were energized to a specified voltage and

the resulting particle motions captured. The voltage was switched off for at least

one minute between successive experiments to allow for the dissipation of any space

charge accumulated on the surfaces of the tracks and/or the electrodes. Particle

location data were extracted using standard image tracking routines in MATLAB.

Bubble Transport. Bubbles were generated within the oscillator array by a con-

tinuous flow of air supplied by a syringe pump at a rate of 0.2 ml/min. The air was

delivered through a tube that connected to a hole in the base of one of the tracks

(Fig. D.5a). The bubbles (ca. 4 mm in diameter) were transported down the length

of the array by the coordinated motions of N = 17 particles of radius a = 1.5 mm

(Supporting Video 6). In these experiments, the applied voltage was V = 18 kV,

the electrode separation was L = 20 mm, and the height of the mineral oil above

the base of the track was 4 mm. Bubbles were always transported in the direction of

wave propagation, which was controlled by introducing a finite angle between the two

electrodes. Control experiments with no applied voltage showed no bubble motion in

either direction.
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4.5.2 Electrostatic Interactions.

We first consider a single point charge q positioned at a height z = h between two

grounded planes at z = 0 and z = L. The resulting electrostatic potential at point x

is

φ(x) =
q

πLε

∞∑
m=1

sin

(
mπh

L

)
sin
(mπz

L

)
K0

(mπr
L

)
, (4.2)

where r =
√
x2 + y2 is the radial distance from the charge, and K0( ) is the zeroth

order modified Bessel function of the second kind. For large arguments, the Bessel

function decays exponentially as K0(s)→ e−s
√
π/2s; the infinite series can be trun-

cated for some m � L/πr to obtain an accurate approximation. The corresponding

electric field in the z-direction is given by Ez = −∂φ/∂z.

We now consider how the disturbance field E ′ due to one oscillator i influences

the dynamics of another oscillator j in the limit of weak coupling. At zeroth order

in E ′, the phase of each oscillator increases at a constant rate ωo such that ϕi = ωot

and ϕj = ωot + χ, where χ = ϕj − ϕi is the constant phase difference. The charge

q = q(ϕ) and position h = h(ϕ) of each oscillator depends on the phase as shown in

Figure D.4a. At first order in E ′, the disturbance in the phase of oscillator j evolves

as

dϕ′j
dt

=
πn(ϕj)

Lγ
[q(ϕj)E

′(ϕi, ϕj) + q′(ϕi, ϕj)Eo + . . . ] , (4.3)

where the factor πn(ϕj)/Lγ relates the electric force to the corresponding phase

velocity with n(ϕj) = ±1 indicating the direction of travel. The bracketed terms

describe two types of electrostatic interactions. First, the disturbance field due to

particle i drives particle j to move faster or slower between the electrodes. Using the
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point charge solution (4.2), this disturbance E ′(ϕi, ϕj) is given by

E ′(ϕi, ϕj) = −q(ϕi)
L2ε

∞∑
m=1

m sin

(
mπh(ϕi)

L

)
cos

(
mπh(ϕj)

L

)
K0

(
mπW

L

)
, (4.4)

where W is the oscillator spacing. Second, the disturbance field due to particle i alters

the charge acquired by particle j on contact with either electrode; the disturbance

charge q′(ϕi, ϕj) is given by

q′(ϕi, ϕj) =

+2
3
π3εa2E ′(−χ, 0) 0 ≤ ϕj < π

−2
3
π3εa2E ′(π − χ, π) π ≤ ϕj < 2π

. (4.5)

Physically, the charge on particle j is determined by its most recent contact with

either electrode (ϕj = 0 or π); the field due to particle i at the time of that contact

determines the disturbance charge.

We can now average these two interactions over one oscillation cycle to obtain the

phase-averaged interaction function,

f(χ) =
π

Lγ

1

2π

∫ 2π

0

n(ϕj) [q(ϕj)E
′(ϕj − χ, ϕj) + q′(ϕj − χ, ϕj)Eo] dϕj. (4.6)

Carrying out the integration, each of the two electrostatic interactions produce con-

tributions of the same mathematical form with the second term contributing twice

that of the first,

f(χ) =
3πq2

o

2εL3γ

∞∑
m=1

m sin(mχ)K0

(
mπW

L

)
. (4.7)

This final expression is plotted in Figure D.4b for the case of W/L = 0.12.

4.5.3 Stationary Solution.

Starting from Eq. (4.1), we recast the oscillator dynamics in terms of the phase

difference χn = ϕn+1−ϕn and the average phase Φ = 1
N

∑
n ϕn. Taking the difference
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in the phase dynamics of successive oscillators, we obtain the following equation for

the phase difference

∂χn
∂t

= ∆− f(χn−1) + 2f(χn)− f(χn+1) for n = 2, . . . , N − 2, (4.8)

which makes use of the fact that f( ) is an odd function. At the open boundaries of

the array, the phase difference evolves as

∂χ1

∂t
= ∆ + 2f(χ1)− f(χ2) and

∂χN−1

∂t
= ∆− f(χN−2) + 2f(χN−1). (4.9)

In addition to these N − 1 equations, the dynamics of the N oscillators is described

by the that of the average phase, ∂Φ/∂t = ωo, which is fully decoupled from the

phase differences. Setting the time derivatives in Eqs. (4.8) and (4.9) equal to zero,

the resulting recurrence equation can be solved to obtain the stationary solution,

f(χn) = 1
2
∆n(n−N), presented in the main text. As detailed in the Supplementary

Information, this solution exists provided that fmax > 1
8
N2|∆| and is stable when

f ′(χn) < 0. The characteristic relaxation time for approaching the stationary state

is given by the diffusive-like scaling relation τ ∼ χmaxN
2/π2fmax.
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Chapter 5

Shape directed colloidal clusters

via Contact Charge Electrophoresis

5.1 Introduction

1Simple energy inputs via Contact Charge Electrophoresis are capable of driving

complex particle motions through dielectric environments due to symmetry and shape

of colloidal particles. The capability to taylor trajectories of colloidal cluster by

coupling their shape to hydrodynamics and electrostatics of the system gives us tools

to design complex microfluidic systems that can perform operations like sensing,

transport, mixing etc. In this chapter we systematically investigate the dynamics of

cluster comprising multiple spherical conductive particles driven via contact charge

electrophoresis (CCEP). We are specifically interested in understanding dynamics of

1The material presented in this chapter is in process of preparation with permission from

Shashank Pandey, Ghanim Hableel and K.J.M. Bishop. Author responsibilities were as follows:

K.J.M.B, G.H. and S.P. performed the simulations. G.H. and S.P. developed the theoretical model

and performed the experiments. S.P., G.H., and K.J.M.B. conceived the project and wrote the

paper.
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closed packed cluster of particles with or without few non-conductive particles in

three dimensions (3D).

5.2 Theory and Formulation for rigid body dy-

namics

The equation of motion for the cluster of closed particles is represented in the form

shown below:

U = MUF · F +MUT · T, (5.1)

Ω = MΩF · F +MΩT · T. (5.2)

where U and Ω represent the velocity and angular velocity of the cluster while F and

T denote the force and torque on the cluster with their relation represented in form of

Mobility tensors eg. ”MUF” for the tensor relating velocity and force on the cluster.

Since the cluster consist of few or all conductive particles placed in a dielectric

media between two parallel electrode, the force and torque represented in 5.1 and 5.2

are generated due to the electrostatics and are given as shown below.

We consider a conductive particle immersed in a dielectric medium and subject

to a uniform external field E∞. The disturbance potential φ(x) due to the particle

is governed by the Laplace equation

∇2φ = 0 (5.3)

Far from the particle, the disturbance potential decays to zero

φ(x) = −x ·E∞ for x→∞ (5.4)
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Along the particle surface S, the potential is constant and equal to the particle

potential Φ less the external potential Φ∞

φ(x) = Φ− Φ∞o for x ∈ S (5.5)

where the external potential is evaluated at the particle origin, Φ∞o = −xo ·E∞. This

problem can be decomposed into two sub-problems:

∇2φ′ = 0 (5.6)

φ′(x) = 1 for x ∈ S (5.7)

φ′(x) = 0 for x→∞ (5.8)

and

∇2φ′′o = 0 (5.9)

φ′′o(x) = 0 for x ∈ S (5.10)

φ′′o(x) = −(x− xo) · δ for x→∞ (5.11)

where δ is the identity tensor. The total electric potential is then given by

φ = φ′(Φ− Φ∞o ) + φ′′o ·E∞ (5.12)

The subscripts o serve to remind us that these quantities depend on the location of

the origin xo.

5.2.1 Hydrodynamics of Rigid Particles

We consider a rigid particle moving through an unbounded quiescent fluid at low

Reynolds numbers. The linear velocity U and angular velocity Ω are linearly related
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to the external force F and torque T acting on the particle asF
T

 =

RUF RUT

RΩF RΩT

 ·
U

Ω

 (5.13)

where the R are resistance tensors. The translation tensor RUF and the rotation

tensor RΩT are symmetric; the coupling tensors RΩF and RUT are related as

RUF = M †
UF , MΩT = M †

ΩT , MΩF = M †
UT , (5.14)

where † denotes the transpose. Importantly, these tensors share the symmetry of the

particle and are uniquely specified by its shape and orientation.

To describe the rigid-body motion of the particle, we introduce two coordinate

systems: a stationary system and a moving system, which is fixed to the particle and

participates in its motion. The origin of the moving system is chosen such that the

coupling tensor M to be the ‘center of hydrodynamic resistance’.

A vector v′ expressed in the moving system is related to the same vector v in

the stationary system as v′i = Rijvj where R is an orthogonal rotation matrix that

depends on the orientation of the particle. Similarly, the components of the mobility

tensors in the stationary system are related to those in the moving system as

Mij = RpiRqjM
′
pq. (5.15)

The components M ′
pq are independent of particle orientation and depend only on

particle shape. Knowledge of these constants allows for computation of the parti-

cle trajectory in accordance with equations (5.13) and the kinematics of rigid-body

motion.

Within the particle frame of reference, the mobility tensors are constant but de-

pend on the choice of origin, denoted xO in the laboratory frame.
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These mobility tensors share the symmetry of the particle and are therefore in-

variant to symmetry operations that leave the particle unchanged.

5.2.2 Electrostatics of Conductive Particles

We consider a conductive particle immersed in a dielectric medium and subject to

a uniform external field E∞. The disturbance potential φ(x) due to the particle is

governed by the Laplace equation

∇2φ = 0 (5.16)

Far from the particle, this disturbance decays to zero

φ(x) = 0 for x→∞ (5.17)

Along the particle surface S, the particle potential is constant Φ such that the dis-

turbance in the externally applied potential is

φ(x) = Φ + x ·E∞ for x ∈ S (5.18)

This problem can be decomposed into two sub-problems:

∇2φ′ = 0 (5.19)

φ′(x) = 1 for x ∈ S (5.20)

φ′(x) = 0 for x→∞ (5.21)

and

∇2φ′′o = 0 (5.22)

φ′′o(x) = x− xo for x ∈ S (5.23)

φ′′o(x) = 0 for x→∞ (5.24)
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where xo is the particle origin. The disturbance potential is given by

φ = φ′(Φ− Φ∞o ) + φ′′o ·E∞ (5.25)

where the external potential is evaluated at the particle origin, Φ∞o = −xo ·E∞. The

subscripts o serve to remind us that these quantities depend on the location of the

origin xo.

Charge and Dipole. By Gauss’s law, the charge on the particle is

q = −ε
∫
S
n · ∇φdS (5.26)

where n is the unit normal vector directed out from the particle, and ε is the per-

mittivity of the dielectric medium. Substituting equation (5.25) for the potential, the

charge is linearly related to the particle potential and to the applied field as

q = CqΦ(Φ− Φ∞o ) +Co
qE ·E∞ (5.27)

where the capacitance coefficients are

CqΦ = −ε
∫
S
n · ∇φ′dS (5.28)

Co
qE = −ε

∫
S
n · ∇φ′′odS (5.29)

Similarly, the dipole moment po relative to the particle origin xo is

po = −ε
∫
S
(x− xo)n · ∇φdS (5.30)

Like the monopole, the dipole depends linearly on the particle potential and the

external field

po = Co
pΦ(Φ− Φ∞) +Co

pE ·E∞ (5.31)
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where the capacitance coefficients are

Co
pΦ = −ε

∫
S
(x− xo)n · ∇φ′dS (5.32)

Co
pE = −ε

∫
S
(x− xo)n · ∇φ′′odS (5.33)

Capacitance Tensor. To summarize, the moments of the surface charge are lin-

early related to the particle potential and the external field by a grand capacitance

tensor C  q
po

 =

CqΦ Co
qE

Co
pΦ Co

pE

 ·
Φ− Φ∞o

E∞

 (5.34)

The tensor C is symmetric such that

Co
qE,i = Co

pΦ,i (5.35)

Co
pE,ij = Co

pE,ji (5.36)

The first of these results follows from the definitions (5.29) and (5.32) and the recip-

rocal relation ∫
S
n · (φ′∇φ′′o,i − φ′′o,i∇φ′)dS = 0 (5.37)

Similarly, equation (5.36) follows from the definition (5.33) and a different reciprocal

relation (5.32) ∫
S
n · (φ′′o,i∇φ′′o,j − φ′′o,j∇φ′′o,i)dS = 0 (5.38)

Center of Charge. The components of the capacitance tensor depend on the choice

of the particle origin. The vector Co
pΦ can be written as

Co
pΦ = CpΦ − xoCqΦ (5.39)
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where CpΦ is defined relative to the origin xo = 0

CpΦ = −ε
∫
S
x (n · ∇φ′) dS (5.40)

Similarly, the vector Co
qE can be written as

Co
qE = CqE − xoCqΦ (5.41)

where CqE is defined as

CqE = −ε
∫
S

(n · ∇φ′′) dS (5.42)

with φ′′(x) = x on the surface of the particle. Finally, the tensor Co
pE can be

expressed as

Co
pE,ij = CpE,ij − xoiCqE,j − xojCpΦ,i + xoix

o
jCqΦ (5.43)

where CpE is defined as

CpE = −ε
∫
S
x (n · ∇φ′′) dS (5.44)

There exists a particular choice of origin such that the coupling vector, Co
qE = Co

pΦ,

between the charge and the dipole vanish—namely,

xc = CqE/CqΦ (5.45)

We refer to this position as the particle’s ‘center of charge’. Substituting this result

into equation (5.43), we obtain the following expression for the polarizability tensor

relative to the center of charge

Cc
pE,ij = CpE,ij − CpΦ,iCpΦ,j/CqΦ (5.46)
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Electric Force and Torque. For a particle of constant charge q in a constant field

E∞, the force and torque on the particle are

F = qE∞ (5.47)

To = po ×E∞ (5.48)

In general, the dipole moment can be expressed in terms of the known charge q and

field E∞ as

po =
Co
pΦ

CqΦ

(
q −Co

qE ·E∞
)

+Co
pE ·E∞ (5.49)

If the particle origin is chosen to be zero, then the dipole becomes

p = qxc +Cc
pE ·E∞ (5.50)

where xc is the location of the center of charge. The torque about the origin at zero

is

T = p×E∞ = xc × qE∞ + pc ×E∞ (5.51)

Particle Symmetry. When the origin of the particle is taken as the center of charge

xc, the relation between the moments of the surface charge, the particle potential,

and the external field becomes q
pc

 =

CqΦ 0

0 Cc
pE

 ·
Φ− Φ∞c

E∞

 (5.52)

In general, the capacitance tensor is characterized by seven parameters. Invariance of

the particle shape with respect to the operation Q implies the following relationship

among the components of the capacitance tensor

Cc
pE = QT ·Cc

pE ·Q (5.53)
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Chapter 6

Future of Multiple particle Contact

Charge Electrophoresis systems

6.1 Introduction

All the previous chapters have shown the modeling[Chapter 2, 3] and utilization of

multiple particle contact charge electrophoresis systems leading to an emergent orga-

nization for dispersion of particles[Chapter 4] like chain formation for the unrestricted

system of dispersion of colloids and formation of traveling waves in the case of re-

stricted dispersion as well as controlled actuation of clusters/aggregates[Chapter 5]

using the shape of the particles and effect of confinement on their trajectory. I have

demonstrated in the prior chapters the advantage of coupling the CCEP motion with

shape of the colloidal cluster and how restricted dispersion of particles that interact

via electrostatic force can lead to emergent behaviours that can be utilized for vari-

ous applications in mixing, pumping and cargo transport at micro-scale. Furthermore

CCEP is independent of scale so most of these ideas can be transferred to much larger

or much smaller scales in contrast to other traditional electrostatic manipulation tech-
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niques like Dielectrophoresis(DEP) and Induced charge electrophoresis(ICEP).

6.2 Emergence of traveling waves in restricted mul-

tiple particle systems

Chapter 4 discusses the emergence of traveling wave like patterns that emerge when an

array of conductive particles are restricted from direct contact, by making racetrack

like grooves perpendicular to pair of electrodes. This dynamic self assembly of CCEP

oscillators was shown to perform cargo transport tasks illustrated via bubble transport

example. Here we explore an extension of this idea and other more sophisticated tasks

this mechanism is capable of performing.

6.2.1 Soft robotic applications

Electroactive polymers are soft composite materials that can be deformed by apply-

ing voltages to stretchable electrodes patterned on their surfaces. By incorporating

arrays of CCEP oscillators within such dielectric compartments, it should be pos-

sible to create self-organized motions that drive transient deformations and thereby

locomotion of soft robotic materials.

6.2.2 Pumping and propulsion

Unlike standard pressure pumps the pumps based on traveling wave motions allow for

recirculating flows and would complement existing applications of CCEP in microflu-

idic unit operations. Also we performed some preliminary experiments that reveal

using the traveling waves generated on a movable platform with the linear assembly of
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Figure 6.1: Traveling wave propulsion of mobile setup(a) Schematic of setup

showing conductive particles sandwiched between two parallel plate electrodes with

constant potential on racetrack like groves free to move on the petridish filled with

dielectric media, where V= 8kV, Particle radius = 1.25mm, W = 3mm, H = 10mm.

(b) The timestamp illustrates the motion of the setup in the petridish due to the

propulsion by traveling waves.

oscillators to propel the platform itself when whole setup is placed in a non-conducting

fluid. The setup with fewer number of particles is placed on fluorinated high den-

sity oil-mineral oil interface and the voltage is switched on leading to formation of a

traveling wave in a particular direction which leads to fluid being ejected in opposite

direction hence propelling the setup as shown in Figure 6.1. Maybe this idea can be

further explored leading to more sophisticated microfluidic robotic applications.
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6.2.3 Extension to two dimensional systems of oscillators

Chapter 4 discusses illustrates the idea that traveling waves created via assembly of

linear oscillators can perform intricate tasks like propulsion, transport and pumping so

here we explore bit further into the regime of two dimensional oscillator that showcase

even more abundant emerging patterns and frustrations due to accommodation of

multitude of these patterns.

6.2.3.1 Frustration in phase repulsive oscillators

Before we talk about possible applications of 2D oscillator systems lets dive into how

and what kind of patterns can be generated as well as what kind of complications need

to be expected. First of all it should be kept in mind that these system of oscillator

have a phase-repulsive dynamics in its oscillator network that leads to a positive total

frustration and whose value strongly depends on the details of network topology. So

in order to quantify it, we resort to a different link-based measure of the collective

dynamics. Now taking the ideas from disordered systems terminology, the frustration

has been defined in work of other authors as localfrustration, fijk = 1 − cos(ijjk)

and totalfrustration, F = 1/L
∑
fijk providing a good way to quantify the state

of the dynamical system with either travelling waves or anti-phase or mixer of two,

for the cases of complete anti-phase at all oscillator or traveling waves the value of

frustration would be 0 while for the case with traveling waves with different phase

differences or mixer of traveling wave and anti-phase mode the value of frustration

would be non-zero. Determining the frustration in system can help us understand

which and how many different kind of stable states exist in our system, which can

further be utilized to tailor patterns that can in turn perform tasks like manipulation
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(a)

(b)

Figure 6.2: 2D Manipulation of blob (a) Conductive spheres immersed in min-

eral oil oscillate along dielectric tracks connecting two plane electrodes subject to a

constant voltage V with a small blob trapped between the surface of electrode and

the CCEP performing particle. The other diagram on the right illustrates the hon-

eycomb lattice being used as well as the black square focuses the region of interest

for presented result. (b) The snapshots illustrate that as the particles in the adjacent

tracks perform anti-synchronous motion they change the position of the suspended

blob/particle.

as illustrated in Figure 6.2.

6.2.3.2 Stability of emergent states and patterns

We also explored specifically the system of ring lattice with nearest neighbor. Con-

sidering a generalized case for attractive;K < 0 and repulsive oscillator;K > 0

which have fixed point solutions for all values θequi = 2πn/N . To determine the

stability of these solutions we note that the Jacobian is a circulant matrix , for

which the eigenvalues are easily computable And for ring topology we find m =
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4Ksin2(mπ/N)cosθequi;m = 0, 1, ..., N1. Since sin(m/n) is always positive and K

is positive because of repulsive interaction, the stability depends only on the phase

difference θequi. For values of K > 0, all values of θequi between π/2 and 3π/2 are

stable, It should be noted that while θequi = π is the most stable phase configuration

for K > 0, it is not accessible for systems with odd numbers of oscillators. Contrast

this with the case of K < 0 where the most stable state, θ = 0, is accessible for any

number of oscillators.

6.3 Chain formation or bucket brigade system for

unrestricted multiple particle system

When a collection of multiple conductive particles are dispersed in a non-conducting

dielectric media between two electrodes they tend to form chain like structures at

low particle volume fractions, these formations are also known by the phrase bucket

brigade (from Chapter 1). Which refers to a method of transporting items wherein

items are passed from one stationary member of the brigade to the next. A concep-

tually similar behavior occurs during CCEP of multiple particles, which organize to

pass charge from one electrode to the other. In one realization, multiple aluminum

discs were distributed randomly on the surface of a dielectric liquid between two elec-

trodes. Upon application of the field, the discs organized to form linear chains which

oscillate continuously, passing charge from neighbor to neighbor. Similar behaviors

have been observed for water drops moving in oil between two electrodes. Impor-

tantly, the number of particles in the chain cannot exceed L/2a; otherwise, they will

span the gap between the electrode and short the circuit. This phenomenon of chain
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formation begins with formation of multiple chains which finally collapse together to

generate a large single chain there by short circuiting the system. Understanding the

timescale of rate at which these smaller chains merge to form larger ones can possi-

bly be utilized to control and manipulate the short circuits in transformer oils with

metallic impurities etc. Another idea involves considering these particles as charge-

phonons since they carry charge in a periodic manner and lead to change in amount

of current that flows through the circuit leading to controlled conduction or current

in the device (discussed in Chapter 2).

6.4 Future of CCEP in clusters and aggregates

Utilizing particle shape to direct the motion of active colloids is generally applicable

to any energy input or propulsion mechanism either it be chemical, electrical or

magnetic. As discussed in Chapter 5 we utilize CCEP to power these aggregates that

rectify their motion both due to their shape and presence of walls leading to very

interesting trajectories. These tailored trajectories can be used to several microfluidic

tasks like sensing, tracking, mixing and transport.

6.5 Conclusion

In the presented dissertation I explored the various cases involving dynamics and

modeling of multiple particles using simple CCEP mechanism as the motor. Starting

off in Chapter 1 which covered the motivation for both single particle and multiple

particle CCEP and how it can be used for tasks like mixing, actuation, separation and

transport while predicting new horizons for the multiple particle systems. Chapter 2
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and Chapter 3 explore those horizons for all possible cases of multiple particle systems

for e.g. restricted dispersion, unrestricted dispersion and aggregates. Finally Chapter

4 and Chapter 5 explore in more details about formation of these emergent behaviours

and their utility in microfluidic applications.
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Appendix A

A.1 Electrostatics of Particle Dispersions

A.1.1 Grand Potential Tensor

Consider a collection of N conductive particles dispersed in an unbounded dielectric

medium and subject to an external potential φ∞(x). The electric potential φ(x) in

the dielectric is governed by the Laplace equation

∇2φ = 0. (A.1)

Far from the particles, the potential approaches the external potential present in the

particles’ absence; at the surface Sβ of particle β, the potential is equal to the particle

potential Φβ

φ(x) = φ∞(x) for |x| → ∞, (A.2)

φ(x) = Φβ for x ∈ Sβ. (A.3)

In general, the disturbance potential can be expressed by a series of integrals over the

particle surfaces as

φ(x)− φ∞(x) =
N∑
β=1

∫
Sβ

[−G(x,y)∇φ(y) + φ(y)∇yG(x,y)] · n(y)dSβ(y), (A.4)
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where n is the unit vector directed out from the particles, and G(x,y) is the Green’s

function for the potential at point x due to a point charge at point y.Bonnecaze1990,Pozrikidis2002

For an unbounded medium, the Green’s function is simply

G(x,y) =
1

4πεr
, (A.5)

with r = |x− y|.

Expanding the Green’s function in a Taylor series in y about the center of each

particle xβ, we can write equation (A.4) in terms of the charge moments

φ(x)− φ∞(x) =
N∑
β=1

[
qβG(x,xβ) + pβ · ∇yG(x,y)|y=xβ + . . .

]
(A.6)

where qβ and pβ are the charge and dipole of particle β

qβ =

∫
Sβ
−∇φ(y) · n(y)dS(y), (A.7)

pβ =

∫
Sβ

[−(y − xβ)∇φ(y) + δφ(y)] dS(y). (A.8)

Higher order charge moments can be obtained in a similar fashion.

When x is located on a Integrating equation (A.9) for the potential φ′(x) over the

surface of particle α, we obtain

φ′(x) =
N∑
β=1

[
qβG(x,xβ) + pβ · ∇yG(x,y)|y=xβ + . . .

]
(A.9)

Equation (A.4) also implies that the integrals over the particles surface containing

the external potential are also zero. To see this,

The expression for the dipole moment assumes that the particles are conductive;

the more general case was described previously by Bonnecaze and Brady.Bonnecaze1990

Additionally, Porzikidis equation (4.2.11) can be used to show that the double

layer potential is zero for conductive particles.
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For conductive particles, the potential at the surface of particle β is constant and

equal to the particle potential; as a result, the second term of equation (A.4) (the

so-called double-layer potential) is identically zero.

Derivation. Integrating equation (A.9) for the potential φ′(x) over the surface of

particle α, we obtain∫
Sα
φ′(x)dS(x) =

∫
Sα

N∑
β=1

[
qβG(x,xβ) + pβ · ∇yG(x,y)|y=xβ + . . .

]
dS(x) (A.10)
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A.1.2 Two-Body Capacitance Tensor, C2B

We consider two conductive spheres of equal radius a located at positions xα and

xβ within an unbounded dielectric medium of permittivity ε. The two spheres are

subject to an external potential

φ∞(x) = −x ·E∞ (A.11)

The charges qα and qβ and dipole moments pα and pϕ on the two spheres are related

to the sphere potentials Φα and Φβ and to the external field E∞ by the linear relation
qα

qβ

pα

pβ

 =


Aαα Aαβ B̃αα B̃αβ

Aβα Aββ B̃βα B̃ββ

Bαα Bαβ Cαα Cαβ

Bβα Bββ Cβα Cββ

 ·


Φα − φ(xα)

Φβ − φ(xβ)

E∞

E∞

 (A.12)

where the capacitance coefficients depend only on the displacement vector r = xβ −

xα. The two-body capacitance tensor C2B is symmetric and positive definite; this

tensor is also invariant to rotation about the axis connecting the two spheres and

to permutation of the two (identical) spheres. Accounting for these symmetries, the

capacitance coefficients can be expressed as

Aαα = Aββ = XA
αα (A.13)

Aαβ = Aβα = XA
αβ (A.14)

Bαα = B̃αα = −Bββ = −B̃ββ = XB
ααr̂ (A.15)

−Bαβ = B̃αβ = Bβα = −B̃βα = XB
αβr̂ (A.16)

Cαα = Cββ = XC
ααr̂r̂ + Y C

αα(δ − r̂r̂) (A.17)

Cαβ = Cβα = XC
αβr̂r̂ + Y C

αβ(δ − r̂r̂) (A.18)
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where δ is the identity tensor, r̂ = r/r is the unit vector directed from sphere α to

sphere β, and the scalar quantities XA
αα, XA

αβ, XB
αα, etc. are functions of the sphere

separation r.

Here and throughout, it will be convenient make use of dimensionless quantities

where lengths are scaled by the particle radius a, electric fields by E∞, electric po-

tentials by aE∞, charges by 4πεa2E∞, and dipoles by 4πεa3E∞. Using the analytical

solution of DavisDavis1964b, the scalar functions can be expressed as

XA
αα = 2bS0(µ) (A.19)

XA
αβ = 2bS0(0) (A.20)

XB
αα = 2b2

[
−S1(µ) +

r

2b
S0(µ)

]
(A.21)

XB
αβ = 2b2

[
−S1(0) +

r

2b
S0(0)

]
(A.22)

XC
αα = 2b3

[
S2(µ)− r

b
S1(µ) +

r2

4b2
S0(µ)

]
(A.23)

XC
αβ = 2b3

[
S2(0)− r

b
S1(0) +

r2

4b2
S0(0)

]
(A.24)

Y C
αα = 8b3S ′0(µ) (A.25)

Y C
αβ = 8b3S ′0(0) (A.26)

Here, b and µ are geometric quantities defined as

b =
1

2

√
r2 − 4 and µ = ln

(
r +
√
r2 − 4

)
(A.27)

The function Sm(ξ) is given by the infinite sum

Sm(ξ) =
∞∑
n=0

(2n+ 1)me(2n+1)ξ

e(4n+2)µ − 1
(A.28)

The sum S ′m(ξ) is that given in equation (A.28) but with the first term omitted.
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Far Field Approximation, C2B,∞

In using the pairwise capacitance functions outlined above, we must subtract the

far field contribution C2B,∞ which is already included (correctly) within the many

body induction tensor P . This correction is obtained by truncating the induction

tensor for the two-sphere at the dipole level and then inverting to obtain C2B,∞. The

components of this truncated induction tensor relate the sphere charges and dipoles

to the potentials and field as

aαα aαβ b̃αα b̃αβ · · ·

aβα aββ b̃βα b̃ββ

bαα bαβ cαα cαβ

bβα bββ cβα cββ · · ·
...

...


·



qα

qβ

pα

pβ
...


=



Φα − φ(xα)

Φβ − φ(xβ)

E∞

E∞

...


(A.29)

These induction coefficients share the same symmetries as the capacitance coefficients

and can be expressed in a form analogous to that of equations (A.13) to (A.18). The

associated scalar functions are given by

Xa
αα = 1 (A.30)

Xa
αβ = r−1 (A.31)

Xb
αα = 0 (A.32)

Xb
αβ = −r−2 (A.33)

Xc
αα = 1 (A.34)

Xc
αβ = −2r−3 (A.35)

Y c
αα = 1 (A.36)

Y c
αβ = r−3 (A.37)
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It is possible to invert the truncated induction tensor analytically to obtain the far-

field approximation to the two-sphere capacitance functions

XA,∞
αα =

−4r2 − r4 + r8

1− 4r2 − 2r4 − r6 + r8
(A.38)

XA,∞
αβ =

2r − r7

1− 4r2 − 2r4 − r6 + r8
(A.39)

XB,∞
αα =

2r3 + r5

1− 4r2 − 2r4 − r6 + r8
(A.40)

XB,∞
αβ =

r2 + r6

1− 4r2 − 2r4 − r6 + r8
(A.41)

XC,∞
αα =

−r4 − r6 + r8

1− 4r2 − 2r4 − r6 + r8
(A.42)

XC,∞
αβ =

−r3 + 2r5

1− 4r2 − 2r4 − r6 + r8
(A.43)

Y C,∞
αα =

−r6

1− r6
(A.44)

Y C,∞
αβ =

r3

1− r6
(A.45)

Sphere-Wall Interactions

The near-field interaction between a sphere α and an a planar wall of constant poten-

tial at can be computed from the two-sphere results summarized above by considering

an image sphere of charge qβ and dipole pβ located at position xβ. We assume that

the wall is oriented normal to the e3 direction at a height xw3 above the origin. The

resulting charge, dipole, and position of the image sphere are given by

qβ = −qα (A.46)

pβ = −pβ + 2(pβ · e3)e3 (A.47)

xβ = xα − 2(xα · e3 − xw3 )e3 (A.48)
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A.1.3 Electric Current

The electric current I is defined as the time rate of change of the excess charge qu on

the upper electrode (x3 = L3) due to the motion of the charged polarizable particles

I =
dqu
dt

(A.49)

The excess charge qu is related to the particle charges and dipoles as

qu = − 1

L3

N∑
β=1

(
xβ3qβ + pβ3

)
(A.50)

This result can be derived using Green’s second identity∫
V

(
φ∇2u− u∇2φ

)
dV =

∫
S
n · (φ∇u− u∇φ) dS (A.51)

where the control volume V contains the entire interelectrode region, and n is the

unit normal vector pointing out from this volume. The two functions are the electric

potential φ(x) and u(x) = −x3. Substituting these functions and making use of the

Poisson equation, ∇2φ = −ρe/ε, we obtain∫
V
x3ρe(x)dV = ε

∫
S
n · (φe3 − x3∇φ) dS (A.52)

The left-hand-side is the total dipole moment in the 3-direction within the inter-

electrode region. The right-hand-side must be evaluated over the lower and upper

electrodes (x3 = 0 and x3 = L3, respectively). Assuming the electrodes potentials are

φl = 0 and φu = −L3E
∞, the above relation can be written as∫

V
x3ρe(x)dV = −L3

∫
Su
εe3 · (∇φ+E∞) dS (A.53)

The integral on the right-hand-side corresponds to the excess charge qu on the upper

electrode due to the charge distribution ρe(x) between the electrodes. The total dipole
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moment on the left-hand-side can be written as a sum over the particle charges and

dipoles to obtain the desired result (A.50).

Equation (A.49) for the electric current is appropriate during the intervals between

charge-transfer “collisions” among the particles. Such collisions make additional con-

tributions to the current, which are modeled as instantaneous pulses of magnitude

∆qu = q′u − qu (A.54)

where q′u is the new charge on the electrode after the collision. Additionally, when

a particle α makes contact with the upper electrode and its charge changes from

qα to q′α, that difference is transferred directly to the upper electrode and does not

contribute to the flow of current through the external circuit. The overall current can

therefore be written as

I(t) =
dqu
dt

+ ∆qu(tk)δ(t− tk)− (q′α − qα)δ(t− t∗k) (A.55)

where tk refers to the time of the kth collision of any kind. Those collisions between

a particle α and the upper electrode (at time t∗k) involve an additional correction to

avoid double counting the direct charge transfer event.
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Appendix B

B.1 Validation via Madelung Constants

To validate the method introduced in Chapter 3, we examine four classic problems:

(1) the first order Madelung constant for NaCl crystal with alternating positive and

negative point charges on lattice points, (2) second order Madelung constant for the

simple cubic lattice of point dipoles on lattice points (3) the conductivity of simple

cubic periodic lattice, and (4) the conductivity of random particle dispersions. Each

of these problems has been considered previously for three-dimensionally periodic

(“bulk”) systems.

Here, we reproduce these known results in the limit as L3 → ∞ and compare with

results from the case of confining boundaries that is finite L3 as well as discuss the

effects of the confining boundaries for smaller separations. Since all the classic prob-

lems from (1)-(3) involve simple cubic lattice, the method of image charges allows us

to create a pseudo three dimensional periodic lattice by maintaining a distance of half

the lattice constant (c/2) between the particles close to the wall and the wall. Thus

comparing the three dimensionally periodic lattice with the above described confined

two dimensionally periodic lattice must yield the same results for the problems (1)-(3).
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B.1.1 First order Madelung constant

We apply the above method to compute the first order Madelung constant of NaCl

crystal with ions approximated by point charges placed at lattice points sandwiched

between two grounded electrodes.

• Charge density of ions is approximated by point charge.

• Simulation cell must be charge neutral.

The value of first order Madelung constant for a neutral ionic NaCl lattice is

represented as,

MNaCl =
∑
b

zab
rab/r0

= 〈Φp〉 · r0, (B.1)

where ro represents the nearest neighbour distance, value of Madelung constant for

NaCl lattice is evaluated from (B.1) and compared against the exact value mentioned

in Kittel[120](≈ 1.74756 . . . ). Results from the literature agree very well with our

simulation results which validates charge and potential relation accounted by our

approach for periodic and confined systems.

B.1.2 Second order Madelung constant

The problem of calculating field for a lattice of point dipoles on a cubic lattice was

first studied by Ornstein and Zernike[154] and relates closely to the calculation of

internal field from Lorentz’ classical theory of dielectric constant.

Ś = p
∑
λ

2P2(cos θλ)/rλ
3, (B.2)
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(a)

E

L1

(b)

Figure B.1: Validation of charge-potential relation for far-field calculation using First

order Madelung constant. (a) Schematic depicts the NaCl lattice with 2x2x2 supercell

of alternating charges within a confined media. (b) Exact value of Madelung constant

for NaCl crystal has been calculated by Kittel(1976)[120]; Variation of First order

Madelung constant against splitting parameter, has been plotted for different number

of mesh points, Nmesh where solid lines indicate the results for periodic media while

dots depict the confined media.

where Ś represents the dipole sum for the simple cubic dipole lattice while p denotes

the polarisation. As suggested in Nijboer[152], care must be taken when performing
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the dipole sum as the sum represented in (B.2) is conditionally convergent and order

of summation impacts the value of dipole sum. Taking the correct order of summation

for the simple cubic lattice of equal point dipoles in z-direction yields constant value

of 8π/3 according to the Lorentz’ theory.

The variation of second order Madelung constant at different values of number of

mesh points as shown in Figure B.2(b) is due to the fact that wave part contribution

of far-field interaction represents dipole as decomposition into opposite charges placed

on succeeding and preceding mesh points in the direction parallel to the direction of

dipoles hence smaller mesh spacing better captures the approximation compared to

larger mesh spacing as has been illustrated by Figure B.3.

B.1.3 Conductivity of simple cubic lattice

The first order and second order Madelung constants described above are respectively

helpful in validating the relationship between charge-potential and dipole-field pairs

for the calculations involved in far-field interactions. The near-field interactions in the

above described method are validated through calculation of effective conductivity for

simple cubic lattice of particles at three different values of conductivity ratio λ = 0.01,

λ = 10 and λ → ∞. The method described above precisely calculates the value of

effective conductivity even though contributions till the dipoles are considered. This

relates to the fact that the quadrupole inclusion doesn’t contribute to the grand

potential matrix in this particular case as,

• Due to symmetric properties of simple cubic lattice.

• Neutrally charged particles in cubic array lead to zero quadrupole contribution.
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(b)

Figure B.2: Validation of dipole-potential gradient relation for far-field calculation

using second order Madelung constant. (a) Schematic illustrates the confined 2x2x2

supercell containing point dipoles at the simple cubic lattice sites. (b) Analytical

value of internal field generated by the lattice of point dipoles was demonstrated by

Nijboer(1958)[152] ; Variation of Second order Madelung constant at varying value

of splitting parameter represented by has been plotted for different number of mesh

points, Nmesh ; Solid lines indicate the results for periodic media while dots depict

the confined media.
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(b)

(a)

Δx/2Δx

Figure B.3: Source of Error in Second order Madelung constant. (a) Schematic depicts

a course and a fine grid points with grid spacing ∆x and ∆x/2, where ∆x = L3

Ngrid
.

For a lattice of point dipoles, dipole at a particle center is represented by distributing

opposite point charges on the grid points directly above and below the grid point with

particle center. (b) The solid line with blue dots represent the deviation of second

order Madelung constant value from the constant value of (8π/3)p with the variation

of grid spacing depicted by ∆.

B.2 Self-potential tensor Calculations

Here, we derive the self-potential tensor P(S) for a single dielectric sphere n positioned

between two parallel electrodes. The potential due to the particle’s charge density
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Figure B.4: Validation of Near-Field capacitance tensor for periodic and confined sim-

ple cubic lattice. Effective conductivity of system for variation in particle volume frac-

tion at different values of conductivity ratio represented by λ(= εp
εm

) is plotted. The re-

sults for effective conductivity against particle volume fraction in unbounded periodic

simple cubic lattice have been previously demonstrated by Bonnecaze (1990)[18],

have been reproduced in our calculation for both periodic (4) and confined (©)

lattice.

ρn(x) is given by

φn(x) =

∫
V

G(x,x′)ρn(x′)dx′, (B.3)

where G(x,x′) is the Green’s function for a point charge between parallel electrodes.

The Green’s function can be divided in two contributions: (1) that due to a point

charge in an unbounded medium, J(x,x′) = 1/4πεr, and (2) a correction due to the

reflection off the two walls, Jw(x,x′), such that

G(x,x′) = J(x,x′) + Jw(x,x′).
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Inspection of equation (3.12) reveals that the Fourier coefficients of these two contri-

butions are given by

J (k)(x3, x
′
3) =

e−2πk|x3−x′3|

4πkε
, (B.4)

J (k)
w (x3, x

′
3) = −e

−2πkx3

4πkε

sinh(2πk(L3 − x′3))

sinh(2πkL3)

−e
−2πk(L3−x3)

4πkε

sinh(2πkx′3)

sinh(2πkL3)
. (B.5)

Expanding (B.3) in a Taylor series about the center of the particle and integrating

the potential over the spherical surface of particle n, one can show that

φn(xn) = P
(S)
Φq qn + P

(S)
Φp · pn + . . . ,

where the elements of the self-potential tensor P(S) are given by

P
(S)
Φq =

1

4πεan

(
1 +

1

2λ

)
+ Jw(xn,xn),

P
(S)
Φp = ∇x′Jw(x,x′)|x=xn

x′=xn
,

with λ = εp/ε. Here, we have assumed that the charge on the particle is distributed

uniformly throughout its interior[18]; the special case of a conductive particle[56]

corresponds to the limit as λ→∞.

Similarly, by integrating the product of x− xn and φn(x) over the surface of the

sphere, one obtains

0 = P
(S)
Eq qn + P

(S)
Ep · pn + . . . ,

where the elements of P(S) are given by

P
(S)
Eq = ∇xJw(x,x′)|x=xn

x′=xn
,

P
(S)
Ep =

1

4πεa3
n

(
λ+ 2

λ− 1

)
+ ∇x∇x′Jw(x,x′)|x=xn

x′=xn
.
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Using the Fourier coefficients (B.5) for the reflected component of the Green’s func-

tion, the components of the self-potential tensor P(S) can be written more explicitly

as

P
(S)
Φq =

1

4πεan

[(
1 +

1

2λ

)
+

1

2

(
ψ(0)(Ξ) + ψ(0)(1− Ξ) + 2γ

)(an
L3

)]
, (B.6)

P
(S)
Φp = P

(S)
Eq =

1

4πεa2
n

[
1

4

(
ψ(1)(Ξ)− ψ(1)(1− Ξ)

)(an
L3

)2
]

e3, (B.7)

P
(S)
Ep =

1

4πεa3
n

{[
λ+ 2

λ− 1

]
I +

[
1

8

(
ψ(2)(Ξ) + ψ(2)(1− Ξ)− 4ζ(3)

)( a

L3

)3
]

e3e3

−

[
1

16

(
ψ(2)(Ξ) + ψ(2)(1− Ξ) + 4ζ(3)

)( a

L3

)3
]

(I− e3e3)

}
. (B.8)

Here, ψ(m)( ) is the polygamma function of order m, γ is Euler’s constant, ζ( ) is the

Riemann zeta function, and Ξ = x
(n)
3 /L3.
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B.3 Wave-space contribution to the self-potential tensor

The potential due to the global charge distribution of a single particle n is given by

φg(x) =

∫
V

Gg(x,x
′;α)ρn(x′)dx′,

where Gg(x,x
′;α) is the Green’s function for a single Gaussian envelope between

parallel electrodes. Expanding in a Taylor series about the center of the particle, we

can write

φg(x) = qnGg(x,xn;α) + pn · ∇x′Gg(x,x
′;α)|x′=xn + . . . .

Evaluating the potential and the potential gradient at the center of the particle, the

elements of the self-potential tensor due to the global charge distribution are identified

as

P
(Sg)
Φq = Gg(xn,xn;α),

P
(Sg)
Φp = ∇x′Gg(x,x

′;α)|x=xn
x′=xn

,

P
(Sg)
Eq = ∇xGg(x,x

′;α)|x=xn
x′=xn

,

P
(Sg)
Ep = ∇x∇x′Gg(x,x

′;α)|x=xn
x′=xn

,

where the Green’s function is computed from equation (2.3.5) by application of the

inverse Fourier transform. These have the general form

P
(Sg)
Φq =

1

4πεL3

f
(Φq)
1 (Ξ, β), (B.9)

P
(Sg)
Φp = P

(Sg)
Eq =

1

4πεL2
3

f
(Eq)
2 (Ξ, β)e3, (B.10)

P
(Sg)
Ep =

1

4πεL3
3

[
f

(Ep)
3 (Ξ, β)e3e3

+g
(Ep)
3 (Ξ, β)(I− e3e3)

]
, (B.11)
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where Ξ = x
(3)
n /L3 and β = α/L2

3. The dimensionless functions f( ) and g( ) are

illustrated in figure XXX.
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B.4 Pairwise capacitance functions

B.4.1 Sphere-sphere functions

Near-field contributions to the grand capacitance tensor are computed in a pairwise

fashion using analytical results for two conductive spheres subject to an electric field.

For two equally-sized spheres (1 and 2) located at x1 and x2, respectively, within an

external potential ϕ∞(x) = −x ·E∞, the sphere charges q and dipole moments p can

be expressed as 
q1

q2

p1

p2

 =


A11 A12 B̃11 B̃12

A21 A22 B̃21 B̃22

B11 B12 C11 C12

B21 B22 C21 C22




Φ1 − ϕ∞(x1)

Φ2 − ϕ∞(x2)

E∞

E∞

 , (B.12)

where the capacitance coefficients A, B, and C depend only on the displacement

vector r = x2 − x1. Using the solution of Davis [45], the capacitance coefficients A

can be written as

A11 = A22 = 8πεbS0(µ), (B.13)

A12 = A21 = −8πεbS0(0), (B.14)

where b and µ are geometric quantities defined as

b =
1

2

√
r2 − 4a2text and µ = ln

(
r +
√
r2 − 4a2

a

)
, (B.15)

and the function Sm(ξ) is given by the infinite sum

Sm(ξ) =
∞∑
n=0

(2n+ 1)me(2n+1)ξ

e(4n+2)µ − 1
. (B.16)
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Similarly, the B coefficients can be written as

B11 = B̃11 = −B22 = −B̃22 = XB
11r̂, (B.17)

−B12 = −B̃21 = B21 = B̃12 = XB
12r̂, (B.18)

where r̂ is the unit vector directed from sphere 1 to sphere 2, and XB
11 and XB

12 are

the scalar functions

XB
11 = −8πεb[bS1(µ)− 1

2
rS0(µ)], (B.19)

XB
12 = −8πεb[bS1(0)− 1

2
rS0(0)]. (B.20)

Finally, the C coefficients are given by

Cαβ = XC
αβ r̂r̂ + Y C

αβ(I− r̂r̂), (B.21)

where I is the identity tensor and the functions XC
αβ and Y C

αβ are given by

XC
11 = XC

22 = 8πεb
[
b2S2(µ)− rbS1(µ) + 1

4
r2S0(µ)

]
, (B.22)

XC
21 = XC

12 = 8πεb
[
b2S2(0)− rbS1(0) + 1

4
r2S0(0)

]
, (B.23)

Y C
11 = Y C

22 = 16πεb3S ′(µ), (B.24)

Y C
21 = Y C

12 = −16πεb3S ′(0), (B.25)

where the function S ′(ξ) is given by the infinite sum

S ′(ξ) =
∞∑
n=1

n(n+ 1)e(2n+1)ξ

e(4n+2)µ − 1
. (B.26)

B.4.2 Sphere-plane functions

The interaction between a conductive sphere 1 and a grounded plane subject to a

field normal to its surface is readily obtained using the sphere-sphere results from

164



the previous section. The boundary condition on the grounded plane is satisfied by

adding a fictitious “image” particle of equal size, opposite charge, and equal dipole

moment on the opposite side of the plane. These conditions imply that the potential

on the image particle (denoted 2) satisfies Φ2 − ϕ∞(x2) = −Φ1 + ϕ∞(x1), where x2

is the position of the image. For a sphere above the lower boundary at x3 = 0, the

image particle is located at x2 = x1 − 2x
(1)
3 e3. In this way, we obtain the following

“self” contribution to the capacitance tensorq1

p2

 =

A11 − A12 B̃11 + B̃12

B11 −B12 C11 −C12

Φ1 − ϕ∞(x1)

E∞

 , (B.27)

where the capacitance coefficients A, B, and C are defined in the previous section.

The contribution of the upper boundary at x3 = L3 is obtained in similar fashion by

introducing an image particle at x2 = x1 + 2(L3 − x(2)
3 )e3.
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Appendix C

C.0.1 Evolution of traveling waves
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Figure C.1: (a) Full length space-time plot showing the development of traveling

wave synchronization (see Figure 1d and Supplemental Movie 1). (b) Instantaneous

oscillation frequency of each oscillator as a function of time during the development of

synchronization. The onset of the fully synchronized state is denoted by the change

in color from purple to yellow. (c) Average phase difference as a function of time

during the development of synchronization. Error bars represent standard deviations

in the phase difference. Data were collected for N = 23, a = 1 mm, W = 3 mm,

L = 25 mm, and V = 19 kV.
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C.0.2 Dependence of wavelength on the number of oscillators

Figure C.2: Wavelength λ (defined in the main text) as a function of the number of

oscillators N < N∗ = 15. Error bars denote the standard deviation obtained over 50

cycles. Data were collected with a = 1 mm, L = 25 mm, W = 3 mm, and V = 18

kV.
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C.0.3 Dependence of breaking frequency on oscillator num-

ber N > N ∗

Figure C.3: Breaking frequency frequency ωB as a function of the oscillator number

N > N∗ = 15. Error bars denote standard deviations obtained over at least five

breaking events. Data were collected with a = 1 mm, L = 25 mm, W = 3 mm, and

V = 18 kV.
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C.0.4 Space-time plot for N � N ∗

t

n

N = 30

Figure C.4: Space-time plot for N � N∗ showing wave breaking at different locations

and irregular time intervals. Wave breaks are characterized by edge dislocations

highlighted by the markers, which show points in the space-time lattice with five-fold

(purple) and seven-fold (yellow) coordination. Data were collected with a = 1 mm,

L = 25 mm, W = 3 mm, and V = 18 kV. See also Supplemental Movie 5.
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C.0.5 Control experiments on the role of hydrodynamic in-

teractions

b

z

x

g oil

tracks
n

t

a

Figure C.5: (a) Experiments were performed in which particles were separated by

solid walls to eliminate hydrodynamic interactions between neighboring particles. (b)

Space-time plot showing traveling wave synchronization in the absence of hydrody-

namic interactions. Data were collected with N = 8, a = 1 mm, W = 4 mm, L = 25

mm, and V = 19 kV.
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Appendix D

Directed motion of

metallodielectric particles

bycontact charge electrophoresis

Introduction

1Self-propelled colloidal particles harness energy from their environment to power

directed motions relative to their fluid surroundings [64, 132, 49]. Inspired by the

locomotion of micro-organisms [130], these artificial swimmers are actively pursued

for their potential to navigate complex environments [195, 42] and deliver cargo to

targeted locations[79, 10]. Fluid flows induced by particle motions can also serve to

enhance rates of mass transfer to/from the particle surface with emerging applications

1The material presented in this chapter has been reprinted with permission from Yong Dou,

Charles A. Cartier, Wenjie Fei, Shashank Pandey, SepidehRazavi, Ilona Kretzschmar, and Kyle J.

M. Bishop, Langmuir 2016, 32, 49, 13167-13173. Copyright 2018 American Chemical Society.
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in water remediation[185, 133] and chemical detection[145, 115]. When many self-

propelled particles get together, they often interact to form dynamic assemblies[209]

such as swarms[98, 150], flocks [27], clusters[111], and crystals [157]. Synthetic re-

alizations of such active matter[137] provide useful models by which to explore the

many forms of self-organization that arise outside of thermodynamic equilibrium. Im-

portantly, the diverse behaviors of motile particles depend critically on the specific

mechanism of self-propulsion and on the associated interactions among the particles.

Expanding the repertoire of colloidal self-propulsion can therefore enable the discov-

ery of new dynamical behaviors as well as the development of future applications.

A wide variety of physicochemical mechanisms have been applied to power the self-

propulsion of colloidal particles. Self-phoretic mechanisms[85] use asymmetries in par-

ticle shape and/or composition to create local gradients in the electric potential[28],

chemical composition[97], or temperature[110] that drive particle motions via in-

terfacial phoretic effects such as electrophoresis, diffusiophoresis, or thermophoresis,

respectively[6]. In a classic example[164, 72], bimetallic nanorods move autonomously

through a homogeneous liquid containing a suitable chemical fuel via reaction-induced

self-electrophoresis[210, 146]. Self-propelled motions of asymmetric particles can also

be powered by external fields. Alternating electric fields drive motions of polarizable

particles by induced charge electrophoresis [189, 78, 22]; alternating magnetic fields

power the swimming of flexible magnetic particles by inducing non-reciprocal beat-

ing motions [61]; acoustic fields propel dense metallic particles by directing steady

streaming flows[207, 148, 3]. These examples of field-driven particle motion are gen-

erally considered forms of self-propulsion, as they allow particles to move freely in

multiple directions (typically those perpendicular to the applied field). The use of
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external fields to power such motions is attractive for studies of active matter as their

magnitude is tunable in space and time.

Here, we describe a type of colloidal self-propulsion in which an electric field

drives the autonomous motion of metallodielectric Janus particles[167, 163] within an

insulating liquid between two plane electrodes (Fig. D.1a). Similar configurations have

been used to investigate particle motions powered by induced charge electrophoresis

within conductive liquids[22] and by Quicke rotation within weakly conductive liquids

[27]. By contrast, field-driven motions of conductive particles in insulating liquids are

driven by contact charge electrophoresis (CCEP) whereby particles acquire charge

on contact with a biased electrode and then move in the field emanating from that

electrode [57, 31, 53]. In one well studied example, a conductive sphere immersed in

mineral oil oscillates rapidly between two electrodes subject to a constant voltage [53].

Each time the particle contacts an electrode, it acquires charge of opposite polarity

and moves back towards the other electrode thereby transporting charge down the

applied potential gradient. Harnessing these motions for useful functions requires

strategies by which to rectify particle oscillations. One approach is to modify the

electrodes with asymmetric, ratchet-like features that enable directed transport of

conductive particles[57] or droplets[203]. Here, we introduce an alternative strategy

that relies on particle asymmetries to achieve similar directed motions.

We show that oscillations of Janus particles between two parallel electrodes is ac-

companied by steady motions directed perpendicular to the applied field. Through ex-

periment and theory, we develop and validate a mechanism of self-propulsion whereby

the field-induced rotation of the particle upon charge reversal at the electrode surface

results in its net displacement during each oscillation cycle. Repeated displacements
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in a common direction propel Janus particles at speeds of up to 600 µm/s along wide

circular arcs within the plane of the electrodes. Beyond the dynamics of individual

particles, we show how particles can both attract or repel one another depending on

their separation and on the phases of their respective oscillations. Together, these re-

sults demonstrate how particle symmetry can be used to direct the motions of active

colloids powered by CCEP. The ability to engineer the motions of individual particles

and their assemblies will ultimately contribute to the realization of colloidal machines

that organize and operate autonomously to perform useful functions [186].

Results and Discussion

In a typical experiment, a dilute suspension of Janus particles in mineral oil was

sandwiched between two transparent indium tin oxide (ITO) electrodes separated by

a distance H = 50 − 250 µm (Fig. D.1a). We used two types of Janus particles:

8 µm silica particles and 4 µm fluorescent polystyrene particles, each coated on one

hemisphere by a thin layer of gold. In the absence of an applied field, the particles

settled to the surface of the lower electrode where they were imaged from above by an

optical microscope. Application of a constant voltage V = 200 − 1000 V caused the

particles to oscillate rapidly between the electrodes, as evidenced by their periodic

appearance and disappearance from the focal plane (Fig. D.1b). Each time a particle

came into focus, its position was displaced slightly from that in the previous cycle.

The magnitude and direction of these displacements was relatively constant from one

cycle to the next resulting in steady particle motions perpendicular to the applied

field. Using high speed imaging, we quantified the frequency f of particle oscillations
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Figure D.1: (a) Schematic illustration of the experimental setup. A metallodieletric

Janus particle is immersed in mineral oil between two parallel ITO electrodes (left).

Application of a constant voltage V results in the oscillatory motion of the particle

via contact charge electrophoresis (CCEP; right). (b) When imaged from above, the

particle moves in and out of focus in time as it oscillates between the electrodes. (c)

Over many oscillation cycles, the particle moves steadily away from its conductive

hemisphere (top); the steady motion of the particle continues over hundreds of microns

(bottom). See supporting videos 1, 2, and 3.
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as well as the particle position (xp, yp) at each oscillation cycle. For example, at

V = 400 V and H = 200 µm, a silica Janus particle oscillated between the electrodes

at an average frequency of f = 29 Hz and moved perpendicular to the field at an

average speed of U⊥ = 25 µm/s (Fig. D.1c). Directed particle motion continued over

large distances for as long as the voltage was applied.

Figure D.2a shows the reconstructed trajectories of six different Janus particles

under identical conditions over the course of one hundred oscillation cycles. The

cumulative displacement of each particle increased roughly linearly with the number

of oscillations (Fig. D.2b) as the particles moved along wide circular arcs of radii

30 µm or greater. These observations are consistent with the spatial homogeneity of

the applied field, which suggests that particle motion be invariant to translation and

rotation in the xy plane of the electrodes. Although the majority of particles (ca. 70%

for V = 800 V and H = 200 µm) exhibited such directed motions, some Janus

particles were observed to oscillate between the electrodes with no lateral motion

whatsoever. Additionally, some particles (ca. 20%) remained “stuck” to the electrode

surface and did not move at all upon application of the field.

For the particles that moved, the oscillation frequency increased monotonically

with increasing voltage as f ∝ V 2 (Fig. D.2c). This observation is consistent with

previous studies of CCEP motion, which showed that the oscillation frequency scales

as f ∼ εaV 2/ηH3, where ε and η are the permittivity and viscosity of the fluid,

respectively, and a is the particle radius [53]. By contrast, the lateral displacement

of the particle during each oscillation cycle was largely independent of the applied

voltage; each oscillation contributed an average displacement of ∆ = 0.2a (Fig. D.2d).

Consequently, the lateral velocity of the particle, U⊥ ≡ f∆, also increased as the
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square of the applied voltage (Fig. D.2e). This velocity could be further increased

by decreasing the spacing between the electrodes H to increase the magnitude of the

applied field (Fig. D.2f). Using spacers of H = 50 µm, we observed particles velocities

up to U⊥ = 600 µm/s in the direction perpendicular to the applied field.

To explain these experimental observations, we propose the following propulsion

mechanism illustrated in Figure D.3a. As it moves across the channel, a charged

Janus particle adopts a preferred orientation in which its principal axis is oblique to

the applied field and its motion is directed towards the metallic hemisphere. When

it contacts either electrode, the charge on the particle changes sign thereby altering

its preferred orientation in the field. The field-induced rotation of the particle in the

vicinity of the electrode surface results in a lateral displacement, which is qualita-

tively similar to that of a sphere “rolling” along the surface. Successive rotations

occur in a common direction towards the non-metallic hemisphere causing a steady

lateral motion over the course of many oscillations. This putative mechanism is sup-

ported both by experimental observations of the transient particle orientation and by

a mathematical model that describes the electrostatics and hydrodynamics of CCEP

motion.

We used fluorescent particles to better visualize the orientation of Janus particles

moving by CCEP. Such particles appeared bright when the metallic hemisphere was

directed “down” (negative z direction; away from the microscope objective) and dark

when the metallic hemisphere was directed “up” (positive z direction; towards the

objective). For intermediate orientations, the fluorescent hemisphere of the particle

was partially visible like the bright side of the moon in different phases. By focus-

ing on planes in the middle of the two electrodes, we observed that particles moving
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Figure D.2: (a) Reconstructed particle trajectories of six Janus particles (radius a =

4 µm; voltage V = 800 V; electrode spacing H = 200 µm). Markers denote the

particle position at successive oscillations; curves are best circular fits to the data.

(b) The cumulative displacement of particles in (a) increases linearly with the number

of oscillation cycles. (c) The oscillation frequency of the particle scales quadratically

with the voltage. Markers show data for two independent particles with an electrode

spacing H = 200 µm; the curve is a fit of the form f ∝ V 2. (d) The lateral particle

displacement ∆ during each oscillation is largely independent of the applied voltage.

Markers show the mean displacement; error bars denote one standard deviation above

and below the mean. (e) The particle velocity perpendicular to the field scales as the

square of the voltage. Markers show data for one particle with an electrode spacing

H = 200 µm; the curve is a fit of the form U⊥ ∝ V 2. (f) Particle velocity increases

with decreasing electrode spacing. Each marker represents the velocity of a single

particle for an applied voltage V = 800 V.
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Figure D.3: (a) Schematic illustration of the propulsion mechanism showing one oscil-

lation cycle. Rotation of the particle near the electrodes results in a lateral displace-

ment ∆. (b-d) Fluorescent microscopy images highlight the non-metallic hemispheres

of fluorescent Janus particles. Images are captured from above; the icons show the

particles viewed from above using the color scheme from (a). Particles in the middle

region (b) adopt a stable orientation that depends on their direction of travel (falling

vs. rising). Upon contacting the lower (c) or upper (d) electrode, particles rotate in

time from one orientation to another. See supporting video 4.
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downward appeared bright (gibbous moon) while those moving upward appeared dark

(crescent moon) (Fig. D.3b). By focusing on the lower electrode, we directly observed

the rotation of the particle as it transitioned from the gibbous to crescent configura-

tion (Fig. D.3c). The opposite behavior was observed at the upper electrode where

the particle rotated from the crescent to gibbous configuration (Fig. D.3d). Impor-

tantly, the orientation of the Janus particle in the plane of the electrodes remained

relatively constant from one cycle to the next, which allowed the particle to move

steadily away from its metallic hemisphere.

To gain further insights into the propulsion mechanism, we use the equations

of classical electrostatics and low-Reynolds number hydrodynamics to describe the

dynamical trajectories of Janus particles moving by CCEP. In the model, both the

liquid and the non-metallic hemisphere of the particle are treated as dielectrics with a

common permittivity ε; the metallic hemisphere of the particle and the electrodes are

treated as perfect conductors. We first consider the case of a single Janus particle with

a net charge q in an unbounded medium subject to a uniform electric field E. We solve

for the electric potential within the dielectric and evaluate the electrostatic torque

L(α) on the particle as a function of its orientation α relative to the field. For each

charge, there exists one stable orientation for which the electric torque is zero L(α) = 0

and its derivative is negative L′(α) < 0 (Fig. D.4a). Uncharged Janus particles tend

to orient perpendicular to the applied field owing to the increased polarizability of

their metallic hemisphere in that orientation (α = π/2 for q = 0). The addition of

positive or negative charge, respectively, acts to rotate the particle towards or away

from the direction of the field. When the charge exceeds a critical magnitude, the

particle orients perfectly with or against the applied field. Importantly, this critical
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charge is similar in magnitude to that acquired by the particle during contact charging

(see Fig. S2).

We now consider the dynamics of a particle “collision” with the lower electrode

(Fig. D.4b). Initially, the particle is positioned far from the electrode surface (zp �

a) with some fixed charge q. We solve for the electrostatic force and torque on

the particle, which, when properly non-dimensionalized, depend only on the particle

charge q, orientation α, and height above the surface zp. The electric force and

torque induce both translational and rotational motions, which have been described

previously for spherical particles above solid surfaces in the limit of zero Reynolds

number [118]. We then integrate these dynamical equations of motion to describe the

position and orientation of a single particle as function of time. Following our previous

investigation of spherical particles [53], we assume that the particle makes electrical

contact with the electrode at a finite surface separation δ and that the particle charge

changes from q to −q. When suitably non-dimensionalized, this model has only two

parameters: the particle charge q/4πεa2E and the separation at contact δ/a.

Figure D.4b shows three different particle trajectories for different contact sepa-

rations and a common charge q = 0.5qs where qs = 4πεa2E is a convenient charge

scale. The trajectories are in qualitative agreement with the experimental observa-

tions: a particle moves towards the electrode with a preferred orientation, reverses its

charge on contact, rotates and translates as it adopts a newly preferred orientation,

and ultimately moves away from the surface. The net lateral displacement ∆ de-

pends on how closely the particle approaches the surface. For particles that approach

more closely to the surface, their rotational motion is more tightly coupled to their

lateral translation, and they move farther during each collision. The displacement
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Figure D.4: Results of the theoretical model. (a) The stable orientation α of a

Janus particle in a uniform electric field depends on the particle’s charge q (scaled

by qs = 4πεa2E). Uncharged particles align perpendicular to the applied field E

(α = π/2 for q = 0); highly charged particles align parallel to the field (α = 0, π

for |q| > 1.07qs). (b) Simulated particle “collisions” with the lower electrode for a

particle charge q = ±0.5qs. The solid curve shows the trajectory of the particle center;

the orientation of the particle at different points along the trajectory is illustrated

graphically. The net particle displacement ∆ depends on the surface separation δ at

contact when the particle charge reverses polarity. Note that for clarity the z and y

axes use different scales.
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also depends on the particle charge in an somewhat surprising way: highly charged

particles (q > qs) exhibit little or no displacement (Fig. S7). Such particles contact

the surface with their axis aligned parallel with field and therefore experience little

or no torque upon charge reversal. Instead, these particles move backward from the

surface before ultimately rotating into the new stable orientation; particle rotation far

from the surface, however, results in little or no lateral displacement. This prediction

of the model provides a plausible explanation for those particles that oscillate but do

not translate perpendicular to the field.

There are some experimental observations that are not captured by the idealized

model. Notably, the model predicts that particles should move along straight lines and

not the circular trajectories observed in experiment. We attribute this discrepancy

to defects on the Janus particles that break their axial symmetry. Imperfections in

the particles’ metallic hemispheres are known to arise during metal deposition due to

shadowing by neighboring particles [163]. Such defects can lead to electric torques

about the principle axis of the particle, which are otherwise prohibited by symmetry.

As a result, particles are permitted to change their orientation in the plane of the

electrode upon charge reversal. Understanding these effects requires further study of

non-axisymmetric particles of well defined shape. Interestingly, in some experiments,

the curvature of the particle trajectory changed abruptly during its motion (e.g.,

particle D in Fig. D.2a). This observation may imply that non-axisymmetric particles

are capable of multiple “modes” of self-propulsion; however, we cannot yet dismiss

alternative explanations based on adventurous dust particles.

As noted above, the propulsion velocity is equal to the product of the oscilla-

tion frequency and the rotation-induced displacement: U⊥ = f∆. This expression
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suggests two basic strategies for maximizing the particle velocity: (i) increase the

oscillation frequency, f ∼ εaV 2/ηH3, or (ii) increase the lateral displacement upon

charge reversal. The oscillation frequency can be enhanced by increasing the voltage

or by decreasing the spacing between the electrodes (Fig. D.2e,f). Of course, the

electrode spacing cannot be smaller than the particles themselves, and the electric

field cannot exceed the dielectric strength of mineral oil (ca. 5 V/µm). In Figure

D.2f, the applied field actually exceeds this threshold value for electrode spacings less

than H = 200 µm; however, device failure was avoided by limiting the current to

only 10 µA. Under these conditions, the electric field remains roughly constant, and

the velocity scales as U⊥ ∝ H−1 (not U⊥ ∝ H−3 as expected for a constant voltage).

To increase the rotation-induced displacement of the particle on charge reversal, it

is necessary to alter the geometry of the particle itself (e.g., the size of the metallic

patch). Such modifications can be challenging to achieve in practice and their con-

sequences difficult to anticipate. Ultimately, the magnitude of the displacement is

limited by the size of the particle (∆ < a).

Beyond the motions of individual particles, we observed several interesting behav-

iors in systems of two or more interacting particles (Fig. D.5). When two particles

were separated by a distance less than the electrode spacing (d < H), they influ-

enced one another at a distance through electrostatic interactions. These interactions

were either attractive or repulsive depending on the respective phases of the particle

oscillations[143]. Like-charged particles oscillating “in phase” repelled one another

as evidence by an increase in particle separation with time (Fig. D.5a). By contrast,

oppositely-charged particles oscillating “out of phase” moved toward one another in

time (Fig. D.5b). Due to slight differences in their oscillation frequencies, two par-

185



ticles often transitioned repeatedly between attractive and repulsive regimes. This

particle “dance” could end in two different ways: either the particles moved off in

different directions to find new partners, or they embraced one another to form a dy-

namic oscillating chain (a so-called bucket brigade [166]). Finally, we observed that

interacting particles often moved together in a common direction – typically, along

the line connecting the particle centers (Fig. D.5c). Such coordinated motions were

considerably faster that the propulsion velocity of individual Janus particles perhaps

suggesting an additional strategy for directing CCEP motions. Importantly, we con-

firmed that the above effects involving two or more particles were also observed among

spherically isotropic (non-Janus) particles. Understanding the complex dynamics of

multiple particles moving by CCEP will require further study beginning with the

simplest spherical particles.

Conclusions

Contact charge electrophoresis drives the rapid oscillatory motion of conductive mi-

croparticles within nonpolar fluids. Particle asymmetries can be used to rectify such

oscillatory motions to achieve directed transport perpendicular to the applied field.

Rectified motions derive from particle rotations near the electrode surface upon con-

tact charge transfer, which lead to repeated displacements in a common direction.

This type of self-propulsion exhibits several characteristics that distinguish it from

related systems based on self-phoresis, induced-charge electrophoresis, or Quicke ro-

tation. Owing to the negligible electric currents through the nonpolar fluid, particle

motions are highly efficient and require small energy inputs (ca. 1 nW / particle)
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Figure D.5: (a) The horizontal distance d between two particles oscillating in phase

increases during each oscillation cycle. (b) The distance between particles moving

out of phase decreases each cycle. (c) Image sequence corresponding to data shown

in (a) and (b). (d) Reconstructed trajectories for two interacting particles. Initially,

the particles are moving independently until their separation becomes less than the

electrode spacing (here, H = 150 µm). They then begin to move more quickly in a

cooperative manner. Ultimately, the particles come together to form an oscillating

chain. See supporting video 5.
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[53]. Rapid particle motions can enhance microscale mixing within nonpolar fluids

[31], which could be harnessed to accelerate catalytic reactions limited by mass trans-

fer. Long-ranged electrostatic interactions among the particles results in complex

collective motions relevant to the study of active matter. Importantly, the directed

CCEP motions of asymmetric particles can in principle be engineered by tuning the

particle shape and surface composition. The rational design of such active compo-

nents is a critical prerequisite for constructing dynamic colloidal assemblies capable

of useful functions – that is, colloidal machines.

Methods

Experimental details

Silica Janus particles were prepared by deposition of gold onto particle monolayers

supported on glass slides. Following Prevo and Velev [171], 10 µL of a concentrated

(30 wt%) suspension of 8 µm silica particles in water was placed between two acid-

cleaned microscope slides mounted at an angle on a motorized stage (Harvard Appa-

ratus PHD 2000). The trapped colloidal solution was dragged at a prescribed speed

by the motion of the top slide to achieve well-packed monolayers. Successive layers

of metal (5 nm Ti and 10 nm Au) were then deposited by physical vapor deposition

(Cressington 308).

Fluorescent Janus particles were prepared following a procedure adapted from

Kopelman et al. [179]. Briefly, sulfonated fluorescent polystyrene particles (Ther-

moFisher F8858) were washed three times in water by centrifugation and dispersed

in methanol at a concentration of 1% w/v. 0.5 ml of the particle suspensions was
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deposited onto a 4-inch silicon wafer wafer by spin coating at 2500 rpm for 15 min.

Successive layers of metal (5 nm Ti, 25 nm Ni, and 20 nm Au) were then deposited by

e-beam evaporation (Kurt J Lesker Co. Lab 18). The nickel layer was included for a

purpose unrelated to the present experiments and is unnecessary here. The particles

were gently brushed off the wafer using a damp brush.

The electrode setup was comprised of two indium tin oxide (ITO)-coated glass

slides (SIGMA-Aldrich, CAS:50926-11-9, surface resistivity 70-100 Ω/sq) separated

from one another by spacers made of glass (200 µm thick cover slides) or poly-

dimethylsiloxane (PDMS, 50 µm to 150 µm thick). The ITO electrodes were con-

nected to a high-voltage source (Keithley 2410 1100V SourceMeter) with a limiting

current of 10 µA to prevent damage to the system in the event of a short-circuit.

The Janus particles were dispersed in Nylon membrane-filtered mineral oil (SIGMA-

Aldrich, CAS:8042-47) at a concentration of 0.01 − 1 mg/ml and injected into the

inter-electrode region. We note that the charge relaxation time for mineral oil is

considerably larger the the timescale of particle oscillations, which is a necessary con-

dition for CCEP [31]. The field-induced motion of the Janus particles was captured

by a high speed camera (Phantom V310) mounted on an optical microscope (Zeiss

Axio Imager A1) operating in bright field mode with 10x and 50x objectives.

Particle tracking analysis

Movies were captured at frame rates of 1,000 – 5,000 fps and processed in MATLAB

to analyze particle oscillations and reconstruct particle trajectories. To determine

the oscillation frequency, we first identified a fixed window around a single particle

and computed the window-averaged pixel intensity for each frame. This average
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intensity oscillated in time as the particle moved into and out of focus, reaching its

local minimal value when the particle came into focus at the lower electrode. For each

oscillation cycle i = 1, 2, . . . , N , we identified the time ti when the particle contacted

the lower electrode. The mean oscillation frequency was then computed by dividing

the number of particle oscillations by the total observation time, f = N/(Σiti). To

reconstruct particle trajectories (xi, yi), we considered only those frames when the

particle was in focus (i.e., when the average intensity was minimal) and determined the

location of the particle center using standard algorithms [15]. The net displacement

for cycle i was computed as ∆2
i = (xi+1− xi)2 + (yi+1− yi)2; the average speed of the

particle (parallel to the electrodes) was computed as U⊥ = (Σi∆i)/(Σiti).

Theoretical model

The model of CCEP dynamics combines classical electrostatics and low Reynolds

number hydrodynamics [53]. The metallic hemisphere of the Janus particle as well as

the bounding electrodes are treated as perfect conductors. To facilitate our numerical

analysis, the conductive portion of the particle is modeled as a solid hemisphere with

rounded corners (radius 0.1a) in contrast to the thin hemispherical cap present in

experiment. Additionally, the non-metallic hemisphere and the surrounding fluid are

assumed to be dielectrics with a common permittivity ε. Given the particle charge q,

orientation α, and height zp above the electrode surface, we solve the Laplace equa-

tion numerically to determine the electric potential Φ and field E = −∇Φ throughout

the dielectric medium (see Supporting Information for details). We then integrate the

Maxwell stress over the surface of the conductive hemisphere to determine the electric

force and torque that drive particle motion. At low Reynolds numbers (in experiments
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Re ≤ 0.01), the translational and rotational velocities of the particle are linearly re-

lated to the external force and torque by the so-called resistance tensor [118, 192]. For

a spherical particle near a solid plane boundary, there exist exact analytical expres-

sions [118] for the components of this tensor, which, when suitably rescaled, depends

only on the separation between the sphere and the plane. Using these expressions, we

compute the particle velocity and integrate numerically to determine the position and

orientation of the particle as a function of time. We assume that the charge q on the

particle remains constant until the surface of the metallic hemisphere reaches some

critical separation δ from the plane electrode, at which point charge flows to/from

the particle instantaneously to reverse the particle polarity (q → −q). Physically,

the contact charging process is thought to occur by a type of dielectric breakdown;

the resulting charge on the particle is somewhat variable but consistently less than

that expected at equilibrium (i.e., when the potential on the particle equals that of

the electrode) [53]. After nondimensionalization, the computed particle trajectories

depend on just two parameters: the dimensionless charge q/4πεa2E and the dimen-

sionless separation at contact δ/a. Figure S6 shows how the net lateral displacement

per collision ∆ depends on these two parameters.
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