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ABSTRACT

The Computational Attitude in Music Theory

Eamonn Bell

Music studies’s turn to computation during the twentieth century has engendered particular habits

of thought about music, habits that remain in operation long after the music scholar has stepped

away from the computer. The computational attitude is a way of thinking about music that is

learned at the computer but can be applied away from it. It may be manifest in actual computer

use, or in invocations of computationalism, a theory of mind whose influence on twentieth-century

music theory is palpable. It may also be manifest in more informal discussions about music, which

make liberal use of computational metaphors. In Chapter 1, I describe this attitude, the stakes

for considering the computer as one of its instruments, and the kinds of historical sources and

methodologies we might draw on to chart its ascendance. The remainder of this dissertation considers

distinct and varied cases from the mid-twentieth century in which computers or computationalist

musical ideas were used to pursue new musical objects, to quantify and classify musical scores as

data, and to instantiate a generally music-structuralist mode of analysis.

I present an account of the decades-long effort to prepare an exhaustive and accurate catalog

of the all-interval twelve-tone series (Chapter 2). This problem was first posed in the 1920s but was

not solved until 1959, when the composer Hanns Jelinek collaborated with the computer engineer

Heinz Zemanek to jointly develop and run a computer program. Recognizing the transformation

wrought on modern statistics and communications technology by information theory, I revisit

Abraham Moles’s book Information Theory and Esthetic Perception (orig. 1958) and use its

vocabulary to contextualize contemporary information-theoretic work on music that various evokes

the computational mind by John. R. Pierce and Mary Shannon, Wilhelm Fucks, and Henry Quastler

(Chapter 3). I conclude with a detailed look into a score-segmentation algorithm of the influential

American music theorist Allen Forte (Chapter 4). Forte was a skilled programmer who spent several

years at MIT in the 1960s, with cutting-edge computers and the company of first-rank figures in the

nascent fields of computer science and artificial intelligence. Each one of the researchers whose work



is treated in these case studies—at some stage in their relationship with music—adopted what I call

the computational attitude to music, to varying degrees and for diverse ends. Of the many questions

this dissertation seeks to answer: what was gained by adopting such an attitude? What was lost?

Having understood these past explorations of the computational attitude to music, we are better suited

ask of ourselves the same questions today.
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Introduction

A core objective of most introductory musical set-theory courses is to ensure that the student knows

how to compute the normal form of a pitch-class set. Loosely, the normal form of such a set is the

ordering of that set (with duplicates removed) that is most densely packed. A concrete, if dog-eared

example: the normal form of the pitch-classes that represent the pitches in the “Tristan chord” is [3,

5, 8, e].1 This ordering does not relate to either the horizontal or the vertical order of the notes

as they might occur in a particular pice of music: say, Wagner’s Prelude to Tristan und Isolde (or

indeed some other, for that matter). Nor does it reflect any functional hierarchy in which the notes

with those pitches might be situated: their relation to a key, pitch center or axis of symmetry, or a

linear (contrapuntal) progression.

Rather, it is a purely conventional representation of an isolated, contextless musical

phenomenon; its studied indifference to certain sonic matters is by design. In a passage from

the fourth edition of Joseph Straus’s Introduction to Post-Tonal Theory that has remained relatively

unchanged since the appearance of the first edition almost thirty years ago, the author motivates the

introduction of such a music-theoretical concept in the following fashion:

A pitch-class set can be presented musically in a variety of ways. Conversely, many
different musical figures can represent the same pitch-class set. If we want to be able
to recognize a pitch-class set no matter how it is presented in the music, it will be helpful
to put it into a simple, compact, easily grasped form called the normal form. The normal

1. For a brief overview of the copious theoretical literature on this example, see Nathan Martin, “The Tristan Chord
Resolved,” Intersections: Canadian Journal of Music 28, no. 2 (2008): 6–30, https://doi.org/10.7202/029953ar, 15. See
also, Milton Babbitt, “Responses: A First Approximation,” Perspectives of New Music 14/15, nos. 2-1 (1976): 3–23,
https://doi.org/10.2307/832619, 21–22.

1
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form—the most compressed way of writing a pitch-class set—makes it easy to visualize
a set and to compare it to other sets.2

According to Straus, there are two reasons to be interested in the normal form of a pitch-class set,

then. First, it makes that set easy to visualize; second, it makes it easy to compare that set to other

sets. John Rahn amplifies the second of these reasons in his earlier Basic Atonal Theory (1980),

writing: “in order to be able to compare sets easily, it has been found necessary to choose one

particular standard order to list them in.”3 It is typical to describe the process of arriving at the normal

form—this “particular standard order”—as a sequence of imperative directions to the student. Straus

again:

1. Excluding doublings, write the pitch classes as though they were a scale[.] […]
2. Choose the ordering that has the smallest interval from first to last[.] […]
3. If there is a tie […] choose the ordering that is most clustered away from the top.

[…] If there is still a tie, compare the intervals between the first and second-to-last
notes[,] […] and so on.

4. If [this process] still results in a tie, then choose the ordering beginning with the
pitch class represented by the smallest integer.4

In this description, an ordered sequence of imperatives directs the student to manipulate

a musical representation of the pitch-class set, notation, without direct reference to an overall

goal. Each instruction stands alone as a direction to fiddle with the pitch-class set on the level

of its constituent parts: write its pitch class representatives as a scale, compare this interval

with that, choose an ordering based on the tie-breaking pitch-class magnitude. The desired

global property—dense packing or “normality”—is the result of the faithful application of local

manipulations. Additionally, this description asks the student to intermittently stop the process to

evaluate whether certain facts obtain: “if there is a tie,” “if there is still a tie.” If the conditional is

true, then the student performs further steps; if not, they do not. Finally, we note that this procedure

is implied by the author to guarantee the correct outcome when applied to any pitch-class set. That is,

it is insensitive to the particular pitch-class set under consideration: it is asserted that all pitch-class

2. Joseph Nathan Straus, Introduction to Post-Tonal Theory (New York: W.W. Norton & Company, 2016), 45.
3. John Rahn, Basic Atonal Theory (New York: Longman, 1980), 31. My emphasis.
4. Joseph Nathan Straus, Introduction to Post-Tonal Theory (Upper Saddle River, NJ: Prentice Hall, 2005), 36.
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sets we might encounter will yield up their normal form if these steps are followed; there are no edge

cases.

The distinctive descriptive register that such a description adopts sits somewhere between recipe

book, ordered checklist, and computer code is one of pseudocode, “a notation resembling a simplified

programming language, used in program design.”5 The use of pseudocode is a commonplace

of contemporary computer science literature, since it provides a way to express computational

procedures in a way that is agnostic of the reader’s fluency in any one programming language. This

makes for wider comprehension and, importantly, implementation by as many readers as possible.

Implementation is the process by which a programmer bridges the gap between algorithm and

computer by taking a specification of the algorithm—such as that (hopefully) provided by a clear

and accurate pseudocode description—and translate it, line-by-line, into the statements of a specific

computer programming language, for a specific system, in a specific context of production. To

foreshadow the later use of a useful term, implementation is the process by which an algorithm is

reified in a particular platform.

Pseudocode texts are indeed computational scripts, but they are, first and foremost, intended for

humans. Robert Morris’s description of the normal form responds to a similar reading, even more

proudly displaying its computational colors in pared-down language, evidencing yet other tropes

characteristic of real computer code: variable assignments (“Let D = #D -1”), cryptic variable names

(“call this E”), pruning and deletion. This all along with control flow statements, such as “if…then”

conditional branching and “go to” statements that reference specific individual steps of the procedure.

Morris does not represent this process as anything other than an algorithm, naming it so in his text,

even though it is—again—a text primarily intended for a human interpreter.6

As they appear in music theory textbooks, these explanations of the normal form show how

pseudocode functions in two rhetorical registers at once: it serves both as a template for the student

interested in computational implementation of the concepts in described therein, and as a portable

5. “pseudocode, n.” Oxford English Dictionary Online. March 2019. Oxford University Press.
http://www.oed.com/view/Entry/267555 (accessed May 05, 2019).

6. Robert Morris, Class Notes for Atonal Music Theory (Hanover, NH: Frog Peak Music, 1991).
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and intersubjectively robust set of procedures that can be used by hand, even without expertise in

a specific programming language. In so doing, these descriptions of the normal form procedure

make the concept of the normal form more algorithmic, in a way that views students as needing to be

programmed with a particular routine for the normal form, as well as being themselves the potential

programmers of some future computational machine—perhaps a computer, but maybe even—by

induction—yet another student in turn. This double emploi is symptomatic of the computational

attitude. The normal form, as it is presented here, is just such a specification of some musical process

that is amenable to computer implementation, yet is also mooted as the kind of thing we might believe

we can and ought to know how to do ourselves, as analysts.

Whether school students should be equipped with certain basic algorithms—for example,

learning how to compute long division by hand—became a flashpoint in debates among

educationalists in the US, as the virtue of rote learning in mathematics education fell under

suspicion during the late 1980s. Arguments for and against the inclusion of imperative, algorithmic

specifications of musical processes in the music classroom similarly balance the need for drilling

the basics of the mathematics that appear to be useful for the description of certain kinds of music

with a desire for other ways to encourage investigation and play with musical materials. These other

ways are, perhaps, less structured: their guarantees of intersubjectivity are less robust; their claims

to generality more tenuous; their dependability as tools for thinking about music more suspect.

Becoming sensitized to the notion that there are algorithms of music theory is the first step toward

designing musical pedagogies and practices that are—for better or worse—less algorithmic.

Today, one of the most common uses of the normal form algorithm is as a mechanism for

determining the set-class (or Tn/TnI–type) of a given pitch-class collection. The prime form of a

pitch-class set can be used as a unique identifier for the set-class, orienting the analyst to just one

line in the catalog of prime forms distributed—among many other places—with Forte’s monograph

summary of the results of his set theory research, The Structure of Atonal Music (1973).7 But

this is not the only way to navigate tonal space: indeed, Forte himself initially defined the notion

7. The prime form of a pitch-class set is the most normal (in the sense just defined) of: (a) its normal form
transposed such that it begins with pc0; (b) its normal form, inverted, and transposed such that it begins with pc0.
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of equivalence between pitch set on the basis of shared interval content, and not as an equivalence

relations over the operations of transposition and inversion. It is the latter definition which fully

justifies the connection between the prime form of a set and the modern set-class catalog. Forte tacitly

adopted the revised definition in his 1973 text, following some critical observations by John Clough.8

This episode in the history of twentieth-century music theory seems like inside baseball but

it takes on a critical character here because it serves as a reminder that the definition of pitch-class

set equivalence need not necessarily be tied to the notion of prime form or normal form. Yet

the computational attitude—here expressed in both Straus’s choice regarding the exposition of

the concept, but also in the competencies it aspires to impart to its readers—still finds value in

the algorithmic specification of the normal form, because it allows the analyst to repeatably and

deterministically draw musical objects into close relationships to each other. It’s notable that we

much more readily ascribe such adverbs to the behavior of machines than that of human individuals.

Because of the guarantee—implied but not proven in Straus’s description—that the procedure

will generate an accurate normal form for all pitch-class sets, the procedure can be written down once

in a sufficiently general way and reused, no matter what particular pitch-class set is to hand. The

process is modular and reusable: specified and learned once, then reused ad lib throughout the useful

lifespan of a computer program. In his pseudocode exposition of the normal form procedure, Straus

avoids referring to any one pitch-class set, but instead refers to a variable pitch-class set, considered

in the abstract. This ensures that the procedure is understood by the reader to be useful with all

pitch-class sets, not just some finite subset of all possible pitch-class sets: it is a general procedure

that works all the time.

In Chapter 2 below, we will see how successive computational framings of the same problem

in musical combinatorics—the enumeration of the all-interval twelve-tone series—are used by

researchers to move from a naive, exhaustive search (brute-force) strategy, to an optimized search

algorithm that ultimately solved that forbidding problem. The very first setting of the problem framed

8. Michiel Schuijer, Analyzing Atonal Music: Pitch-Class Set Theory and Its Contexts (Rochester, NY:
University of Rochester Press, 2008), 98–101. See also, Aaron Robert Girard, “Music Theory in the American Academy”
(PhD diss., Harvard University, 2007), https://search.proquest.com/docview/304847428, 298.
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it as one of enumerating series made up of notes (more accurately, pitch classes), while the second

enumerates sequences made up of intervals. This doesn’t bother the mathematical structuralist, to

whom such superficially distinct specifications of the all-interval series problem are equivalent. Both

framings ultimately achieve the same enumeration of the twelve-tone universe, with equal precision.

Neither framing is less faithful as a model of the problem.

Depending on our outlook and our formation we curate this mathematical structuralism in our

musical attitude to a greater or lesser extent. Whether we are fully acclimated to concepts such as the

pitch/order-number isomorphism, or have the precepts of total serialism somewhere in our peripheral

musical vision, we can recognize how mathematical constructs facilitate the interchangeability of

diverse musical parameters that from another perspective seem “naturally” distinct. Nevertheless, it

may still be the case that some framings, are computationally, and in some contexts, financially, more

expensive, and are strongly preferred over others for that reason. That is: it matters to the machines

that implement the calculations required to make it possible. This is part of the story told in Chapter

2: certain specifications of a theory are, in practice, hostile to computation on certain platforms. As

computational technology develops, this situation may become better—but there are no guarantees,

especially in the neighborhood of combinatorial explosions that is inhabited by twentieth-century

post-tonal music theory.

Perhaps most importantly, however, conflating different ways of thinking about of twelve-tone

composition flattens real distinctions in the expression of an active rhetorical point of twelve-tone

theorists and composers, who sought to implicate the study of musical materials and the development

of musical theories with contemporary scientific theories. The persuasiveness of their claims

hinged, in part, on the identification of atomic elements of compositional practice and discourse with

commensurately fundamental components of scientific theories. Such identifications were analogical:

what was thought irreducible in music could be identified with what was thought irreducible in

physics. Thus, tones could be considered atomic, quite literally, as Ernst Krenek discusses in

connection with the problem of enumerating the all-interval twelve-tone series.9

9. See Chapter 2 below.
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In a sense, these composers were realists about the objects of their musical theories. As our

own thought experiment, we could think about composers and critics as being, say, tone atomists,

interval atomists, or row atomists depending on the fundamental unit of music analysis to which

they prefer to refer. Algorithm 1, the framing of a solution to the all-interval series problem is

tone-atomic, whereas Algorithm 2, is interval-atomic. Joseph Dubiel, writing to dispatch the canard

that systematic theories of twelve-tone composition are necessarily deterministic of a single way of

thinking about music, claims a specific interpretative function for Milton Babbitt’s descriptions of

hexachordal combinatoriality. Precisely, analysis in terms of combinatoriality affords the possibility

that the statement “the row upside-down, transposed to start on F, and turned backwards” might be

reformulated as the apparently referentially equivalent, yet somehow more vibrant, statement: “the

same sequence of intervals, in reverse order, such that the entire passage presents a regular alternation

of two hexachords.”10

Again, playing the atomist game for a moment, we find the first framing to be resolutely

row-atomic, while the second distributes its emphasis over pitch-class intervals and hexachords; we

might say it is trope-atomic. The point is that while it doesn’t always matter whether we are row

atomists, trope atomists, or pitch-class–set atomists, or so forth, it is that it can matter. When it does,

as the patent contrast in vitality between Dubiel’s two statements shows, drawing such distinctions

can matter to musical listeners now, as much as it matters to the authors of idiosyncratic histories

of serial music then. Indeed it can, and should matter, mutatis mutandis, to historians now, and

listeners “then.” This is an important point to bear in mind as we seek to develop less monolithic

understandings of twelve-tone music, and of music in general.

Leonard Meyer is perhaps most well-known for the arousal–inhibition theory of musical affect

that he introduced in Emotion and Meaning in Music (1956).11 Although Meyer looked into the

computation-adjacent discourse of information theory as a possible source for a mathematical

definition of the concept of expectancy that animates the model listener posited by his theory, it

10. Joseph Dubiel, “What’s the Use of the Twelve-Tone System?” Perspectives of New Music 35, no. 2 (1997):
33–51, https://doi.org/10.2307/833641, 40.

11. Leonard B. Meyer, Emotion and Meaning in Music (Chicago: University of Chicago Press, 1956).
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is Meyer’s later work on musical style that offers clear sympathy to contemporary computational

practices. Reflecting on decades of his own work from the vantage point of 1986:

Since all classification and all generalization about stylistic traits are based on some
estimate of relative frequency, statistics are inescapable. This being so, it seems prudent
to gather, analyze, and interpret statistical data according to some coherent, even
systematic, plan […]—in short, to employ the highly refined methods and theories
developed in the discipline of mathematical statistics and sampling theory. I should
add that I have no doubt about the value of employing computers in such studies,
not merely because they can save enormous amounts of time but, equally important,
because their use will force us to define terms and traits, classes and relationships with
precision—something most of us will seldom do.12

Meyer’s statistical conception of style was partly supported by contemporary psychological theories

of learning, which had developed in the decades that followed Meyer’s early work. This research

supported the notion that enculturated listeners derived their generic and stylistic expectations

from regularities in the music to which they were exposed. For Meyer, computers would allow the

statistical investigation of style in notated music, premised on this theory of learning, to go ahead

because they could “save enormous amounts of time” that would otherwise have been expended on

the manual analysis and curation of melodic and harmonic patterns.

Not only a time-saving device, Meyer understood that computers seem to “force” the more

precise specification of music-theoretical terms in the encounter with the machine. This belief partly

depends on a received image of the computer as a kind of naive interlocutor, willing to work at

lightning speed but only on the precise task to which it is set and nothing more; Curtis Roads would

somewhat baldly encourage computer musicians to “accept the machine as a musical idiot savant.”13

The computer is a cast as a prophylactic against overcomplicated thought and hidden assumptions,

whose contextless, disembodied protocols demand the most explicit and unambiguous statement of

the problems with which it is expected to cope.

12. Leonard B. Meyer, Style and Music: Theory, History, and Ideology (1989; repr., Chicago: University of
Chicago Press, 1996), 64.

13. Curtis Roads, “Composition with Machines,” in Companion to Contemporary Musical Thought, ed. John
Paynter et al. (London: Routledge, 1992), 400.
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This latter position, somewhat ironically, was one that Meyer shared with Milton Babbitt,

elsewhere the object of Meyer’s critique of “acontextual formalism.”14 Babbitt too signaled his

sympathy with the idea that the constraints on problem specification imposed by working with

computers engendered a productive clarity of thought with regard to the particular problem domain,

claiming “the use of computers to test systems, particularly in the sense of demonstrating the

consequences of their constraints, is of fundamental importance in clarifying the notion of a system

and of not inconsiderable, if peripheral, importance in defining areas of ignorance.”15 Babbitt made

these remarks in 1965, as he stepped up to bat for the computer in a presentation, “The Use of

Computers in Musicological Research”, which serves here as the springboard from which Chapter

1 will depart. Later, Babbitt wrote approvingly (and evocatively) of “the fruits of formalization, the

mental mortising which rigor provides, its therapeutic aid in molding, and remolding the ‘intuition,’

supplying new insights with its cautions, necessary consequences along with its suspicions.”16 Along

these lines, the obvious limitations of computational research were recast—by Meyer and Babbitt

alike—as salutary, because they forced theorists to get to the putative “essence” of their musical

research questions.

As reductionist as these approaches were, the deliberate and sophisticated rhetorical

interpolation of the figure of the computer—and, importantly, the computational attitude toward

music that it engenders—in the arguments used to defend them suggests that such reductionism was

anything other than naive. In this way the rhetorical tactics of those advocates of the computational

attitude also comes into view in what follows. Just as important as what these computational

projects claimed to uncover about music is how those claims were made: how music scholars have

characterized their perpetually burgeoning relationship with computer technology. This optimistic

attitude toward the computer would persist: Forte (whose work with the computer is discussed in

14. Meyer, Style and Music, 345–346.
15. Milton Babbitt, “The Use of Computers in Musicological Research,” Perspectives of New Music 3, no. 2

(1965): 74–83, https://doi.org/10.2307/832505, 81. Reprinted as Milton Babbitt, “The Use of Computers in Musicological
Research,” in The Collected Essays of Milton Babbitt, ed. Stephen Peles (Princeton, NJ: Princeton University Press,
2003).

16. Babbitt, “Responses,” 20.
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more detail in Chapter 3 below). Bo Alphonce, one-time student of Forte , echoed similar sentiments

in his article “Music Analysis by Computer: A Field for Theory Formation” (1980), writing that “the

rigor of computer programming serves as a driving force toward completeness and precision in the

formulation of theory.”17

A common objection to the kind of critical position adopted here regarding computational

applications to music is to point out that though imperfect and partial by dint of their being

procedural, they have been repeatedly shown in practice to be “good enough.” They have, for certain,

been used to generate a considerable volume of undeniable statements about musical works. This is,

of course, an entirely instrumental response; it justifies computational applications by their ends, a

position that is worth contesting—if not entirely specious. But this is a response to a criticism I don’t

intend to lodge, since I do not deny that the assortment of computational applications to music are

leading to meaningful observations about music. Rather, it is—as it is with all the examples discussed

both here and in the chapter below—to point out that the computational way of creating knowledge

about music proceeds rather differently to the sustained, thoughtful, and personal multimodal

immersion in music that has appeared to serve music studies well to date. It appears highly mediated:

mediated by the various codes and platforms that happen to be available in certain local contexts;

mediated by predispositions to believe particular viewpoints about how listeners act and behave, about

how musical intuitions are acquired and curated; mediated, in short, by a computational attitude

to music. The present dissertation is more concerned with the character of these twentieth-century

claims about music than with judging their truth or their value with music scholarship over the same

period of time.

I have deliberately (perhaps even painfully so) tried to remain highly general in my

characterization of this mode of engaging with music in question so that it resonates with (at least)

the four current institutional manifestations of music’s sub-disciplinary priorities: musicology, music

theory, ethnomusicology, and composition. Maybe this is naive. After all, “sustained, thoughtful, and

personal” can be easily deconstructed as bourgeois (“sustained” to imply freedom from toil admitting

17. Bo H. Alphonce, “Music Analysis by Computer: A Field for Theory Formation,” Computer Music Journal 4,
no. 2 (1980): 26–35, https://doi.org/10.2307/3680080, 28.
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leisurely contemplation), logocentric or jaundiced in favor of cognitivism (“thoughtful” to imply the

bracketing of precognitive feelings about music), and solipsistic (“personal” to imply a concern for

one’s inner life at the expense of others). Nevertheless, what motivates this project is the doubt that

conversations or interactions with people on the topic of music who are willing to deny themselves

all of “sustained, thoughtful, or personal immersion in music” are of much interest to anyone: the

musical and non-musical alike. In this light, the central question of the present dissertation might

be formulated as follows: how much does one’s choice to adopt the computational attitude to music

amount to just such a self-denial?

Chapter summaries

Chapter 1, ”The computational attitude in music theory and where to find it” defines the computational

attitude to music: a set of habits of thought about music that have been influenced by the

twentieth-century twinned growth in use of computers and of popularity of computational theories

of mind. I argue that the computational attitude to music is discernable on three registers: first,

in the use of actual computers to analyze music and musical behavior; second, in music research

and scholarship that explicitly adopts computationalist premises; and third, in writing about the

experience of music more generally that makes use of everyday computational metaphors—absent

overt computational machines or methods.

Taking Milton Babbitt’s 1965 lecture “The Use of Computers in Musicology” as a departure

point, I describe how the computer has been turned to musicological and theoretical problems other

than the generation of sounds—direct digital synthesis—the role typically ascribed to the computer

in histories of computer music work during the early decades of digital computing. Computers

are here figured not only as musical instruments that produce new sounds but as instruments of

music theory that perform an epistemic function. To understand how they perform this function, we

must understand each computing application in relation to its platform, as being conditioned by the

particular features of both the software and the hardware available in a given context.
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In Chapter 2, ”Enumerating the all-interval twelve-tone series by computer in Vienna, Ispra, and

New York” I tell the story of how computers were used in the late 1950s to solve a problem of musical

combinatorics that dates to the “discovery” of the first all-interval twelve-tone series by the composer

Fritz Heinrich Klein in 1927. Klein wondered how many other such series existed, initiating the

pursuit of a comprehensive catalog that was first laboriously conducted by hand. Serial composers

and advocates, including Ernst Krenek and Herbert Eimert, were enchanted by the problem; Krenek

viewed it as one of the more interesting liaisons between mathematics and music to arise during the

twentieth century. They both coordinated an informal search beyond the handful of examples which

had accumulated over the years since the problem was first posed, a search that foundered in the face

of the combinatorial immensity of the task.

I describe how the earliest complete catalog of all-interval twelve-tone series was prepared

by 1959, in Vienna, by a computer engineer Heinz Zemanek and the composer Hanns Jelinek

with help of the experimental digital computer, Mailüfterl. A similar study of all-interval series

that came to similar results, was carried out independently of Zemanek’s work around 1963 by

André Riotte at the European atomic research agency’s research site at Ispra, Italy. Finally, in 1965,

Stefan Bauer-Mengelberg and Melvin Ferentz reported their enumeration of the class of all-interval

twelve-note rows by computer, apparently unaware of Jelinek or Riotte’s solution.

Chapter 3, ”Music, Information” temporarily suspends the explicit discussion of computer

technology to provide insight into a twentieth-century concept, which is critical to understanding

computer applications to music both then and now: information. I open with a short illustrative

example: Richard Pinkerton’s 1954 demonstration in Scientific American of the generation of

musical melodies. I briefly review the history of information and its applications in music. Then,

I move to a survey of the principles of an information theory fit for application to the arts, as

articulated in Abraham Moles’s Théorie de l’information et perception esthétique (1958). Moles’s

text provides a working summary of the key ideas of Claude Shannon’s mathematical theory of

communication, filtered through a pragmatic if idiosyncratic analyst of music and the arts as a

communication process.

12



I describe three applications of information-theoretic principles to music which evidence the

multiple interpretations that “information” could sustain in diverse musical contexts: John R. Pierce

and Mary Shannon’s experiments (1949) with the composition of four-part chorales using dice and

pre-computed tables of musical material; Henry Quastler’s studies of piano sight-reading ability

(1955/6) within the experimental rubric of the study of “human channel capacity”; and Wilhelm

Fucks’s early corpus studies of statistical patterns in scores (c. 1957), which was founded on the

explicit assumption that principles of thermodynamics—intimately related to the statistical quantity

of information—informed how literary texts and musical works were produced. Taken together,

these studies provide a cross-section through the various ways musical creation and performance

were being construed in scientific and quasi-scientific contexts as a species of a more general

information-processing activity.

The central figure of Chapter 4, ”Forte’s program, Forte’s programs” is Allen Forte, the music

theorist and sometime programmer who spent two years as a visiting researcher at MIT between

1965 and 1967, where he worked to develop a computer program for the automatic segmentation of

musical scores. Forte was affiliated to Marvin Minsky’s Artificial Intelligence (AI) Group within

Project MAC, a large-scale computing project at MIT that ran throughout the 1960s. I describe

the string-oriented programming language SNOBOL, and the string-based de facto standard for

representing scores, DARMS, which used character strings to represent score contents to the

computer as non-numeric data. Forte would make good use of certain technical features of this

particular combination of programming language and encoding scheme: SNOBOL’s focus on

pattern-matching and contemporary claims to DARMS being a lossless encoding of the musical

score.

Forte was a skilled programmer, whose knowledge of both of these technologies placed him in

good standing to exploit their features to code what was a broadly structuralist score-segmentation

program. I describe the segmentation algorithm that this program implements in some detail. I then

turn to place Forte’s work in the context of computer-based research in AI at MIT and demonstrate

some similarities between Forte’s work and that of his contemporaries and colleagues. Lastly, by
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considering Forte’s influence on his students and with reference to a some evidence of Forte’s

continued interest in computing long after he ended his relationship with Project MAC, I trace his

sustained interest and advocacy for the computational attitude to the analysis of atonal music that is

reflected in his score-segmentation program.
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1 | The computational attitude in music theory and where
to find it

1.1 Introduction

In this chapter, I set out to show that a distinct set of habits of thinking about music grows alongside

the use of computers by musicologists and music theorists during the twentieth century. These habits

of thought, here collectively referred to as the computational attitude to music, were facilitated not

only by access to actual computer utilities but also by parallel developments in the philosophy of

mind and psychology that viewed the computer as a model of mind. In tandem, they engendered

the computational attitude to music, which is today still detectable in research and writing about

music—especially in music theory—absent any overt use of the computer.

I open with a snapshot of music computing in 1965, drawing on a conference presentation by

the composer–theorist Milton Babbitt, which establishes some characteristic features of the first

research to evince the computational attitude in the first decades of computing. Next, in the first major

section, I define the computational attitude more formally as an eclectic set of techniques for thinking

about music that draw on the features and competencies of actual computers as well as computational

theories of mind. I argue that the computational attitude to music is discernable on three registers:

first, in the use of actual computers to analyze music and musical behavior; second, in music research

and scholarship that explicitly adopts computationalist premises; and third, in writing about the

experience of music more generally that makes use of everyday computational metaphors, even in the

absence of overt commitment to computationalism.

15



Computers, both as we know them today and as they once were, are figured here not only as

instruments that assist in the creation of new musical works but also as tools for thinking about music.

Then I revisit three registers of the computational attitude, pointing to instances of it in action on each

level, drawn not only from the computational research described in the following chapters (which

primarily dates from the period 1955 to 1968), but also from more recent writing about music that

evinces the computational attitude.

In the second section, I turn to more explicitly historiographical concerns, which have influenced

the method of the work described in the chapters that follow and motivated its particular scope.

The role that the digital-audio converter (DAC) has played in the production of computer music

has led to an emphasis on the use of the computer to generate sounds—direct digital synthesis—in

contemporary histories of mid-twentieth-century computer music. I advocate a focus on those

computer applications to music that do not require the DAC, as a complement to the received

account. The vast majority of the music computing work I describe in this dissertation fulfills this

requirement, since it proceeds to consider music not as a sounded phenomenon, but as something that

can be adequately represented symbolically—and silently. Lastly, I discuss the value of the study of

computer programs and other related technical documents as a primary source for such a history, and

suggest that neither code nor these documents may be completely understood without consideration

of the system in which they are intended to operate: their platform. This sets the stage for the three

chapters that follow, all of which draw on these kinds of evidence to sketch the first articulations of

the computational attitude to music.

1.2 Snapshot: Music computing 1965

In 1965, Milton Babbitt published “The Use of Computers in Musicological Research” in

Perspectives of New Music.1 In it, Babbitt provides a useful account of contemporary computer use

that emphasizes computer-music applications other than sound synthesis. Babbitt originally delivered

this paper at a conference dedicated to the use of computers in the humanities held at Rutgers

1. Babbitt, “The Use of Computers in Musicological Research,” 1965
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University in 1964. The conference was sponsored by Rutgers and IBM. Other participants in the

musicology panel included Stefan Bauer-Mengelberg (IBM), who chaired the session, Barry Brook

(Queens College, New York), and George Logemann (NYU). References to the use of the computer as

either a compositional aid or to engage in the direct synthesis of sound were minimal; indeed, Babbitt

explicitly bracketed them from consideration in his address.2 At a first pass, Babbitt’s paper provides

a “state of the art,” a snapshot of mid-sixties music computing in the USA, He describes (in varying

levels of detail) the following projects:

• determining the total stock of all-interval twelve-tone series (Bauer-Mengelberg and Melvin

Ferentz, Hubert Howe and Eric Regener)3

• determining that no all-interval twelve-tone series contains all ten twelve-tone distinct trichord

classes (Hubert Howe)4

• determining the properties of pitch-class collections of “all sizes and intervallic structures

which are transpositionally and inversionally independent” (Allen Forte, Hubert Howe)5

• determining the class of hexachords which, when subject to rotation and stacking (after

Stravinsky), give rise to non-degenerate “chords” having distinct pitch classes (Eric Regener)6

2. Babbitt, 80, 82. In the case of sound synthesis, Babbitt referred his reader helpfully to a representative (if highly
selective) bibliography including: Max V. Mathews, “An Acoustic Compiler for Music and Psychological Stimuli,” The
Bell System Technical Journal 40, no. 3 (May 1961): 677–94, https://doi.org/10.1002/j.1538-7305.1961.tb03237.x;
James C. Tenney, “Sound-Generation by Means of a Digital Computer,” Journal of Music Theory 7, no. 1 (1963): 24–70,
https://doi.org/10.2307/843021; J. K. Randall, “A Report from Princeton,” Perspectives of New Music 3, no. 2 (1965):
84–92, https://doi.org/10.2307/832506.

3. Babbitt, “The Use of Computers in Musicological Research,” 1965, 76; See Stefan Bauer-Mengelberg and
Melvin Ferentz, “On Eleven-Interval Twelve-Tone Rows,” Perspectives of New Music 3, no. 2 (1965): 93–103, https:
//doi.org/10.2307/832507.

4. Babbitt, “The Use of Computers in Musicological Research,” 1965, 75.
5. Babbitt, “The Use of Computers in Musicological Research,” 1965, 77. For reports on this work, see Allen Forte,

“A Theory of Set-Complexes for Music,” Journal of Music Theory 8, no. 2 (1964): 136–183, https://doi.org/10.2307/
843079; Hubert S. Howe, “Some Combinational Properties of Pitch Structures,” Perspectives of New Music 4, no. 1
(1965): 45–61, https://doi.org/10.2307/832526.

6. Babbitt, “The Use of Computers in Musicological Research,” 1965, 77.
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• the ongoing encoding of the complete masses attributed to Josquin and some related works,

and a proposed “series of stylistic interrogations of this material” (Arthur Mendel and Lewis

Lockwood)7

• the use of the Music IV sound synthesis routines to perform “aural proofreading” [sic] for this

project8

• the “not yet computer-tested” formalization of Schenkerian musical transformations (Michael

Kassler)9

These computer applications had less to do with the use of the computer to produce sound, and

more to do with theorizing about materials either in the abstract (as in the case of the research into

serial and atonal theory) or relating scores (as in the case of the Josquin Research Project and Michael

Kassler’s work). Kassler, writing in Perspectives of New Music in 1972, noticed that these kinds of

applications were being excluded from contemporary inventories of the successes of computer music:

In recent years digital computers have become more efficient and more prevalent,
so that today, at least in computationally well-developed parts of the world, it is no
longer unreasonable to delegate, or to plan to delegate, musical processes to electronic
computing machinery. But many musical processes do not involve previously recorded
musical compositions: perhaps it is to the comparatively early success of a few such
computer-mediated processes that an unfortunate synecdochic misidentification of
“computer music” with “synthesizing sound through the use of a digital computer” has
arisen.10

The creators of the computer applications that I describe in this dissertation represent a set of

computer users who were less interested in the creation of new sounds than in the creation of

7. Babbitt, 79; See Arthur Mendel, “Some Preliminary Attempts at Computer-Assisted Style Analysis in Music,”
Computers and the Humanities 4, no. 1 (September 1969): 41–52, https://doi.org/10.1007/BF02393450.

8. Babbitt, “The Use of Computers in Musicological Research,” 1965, 79.
9. Babbitt, “The Use of Computers in Musicological Research,” 1965, 81. See Michael Kassler, “Decision of a

Musical System,” Communications of the Association for Computing Machinery 5, no. 4 (1962): 223; Michael Kassler,
“A Sketch of the Use of Formalized Languages for the Assertion of Music,” Perspectives of New Music 1, no. 2 (1963):
83–94, https://doi.org/10.2307/832106. See also, Michael Kassler, “A Trinity of Essays: Toward a Theory That Is the
Twelve-Note Class System, Toward Development of a Constructive Tonality Theory Based on Writings by Heinrich
Schenker, Toward a Simple Programming Language for Musical Information Retrieval.” (PhD diss., Princeton University,
1967), http://search.proquest.com/docview/288257906.

10. Michael Kassler, “Optical Character-Recognition of Printed Music: A Review of Two Dissertations,”
Perspectives of New Music 11, no. 1 (1972): 250, https://doi.org/10.2307/832471.
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new musical systems—for use with or without computational help—and new methods for the

computer-assisted analysis of music.

The picture of non-synthesis-centered research into music painted by Babbitt’s list is necessarily

a partial one. The bias toward non-tonal repertoire is conspicuous. This is partly a result of Babbitt’s

personal musical interests, but also of the contemporary disciplinary notion that there was a

“problematic” of atonal (non-serial) music: to Forte, for example, it was a repertoire in search

of a systematic theory. However, many of the applications cited here as being representative of

then-current work are also attested to in the proceedings of other workshops, conferences, and

symposia held around the same period as well as in contemporary bibliographies.11 Babbitt’s lecture

serves as a departure point for the current project because it cites a number of non-synthesis computer

applications considered to be representative of the field at that time by an influential figure in the

field—even if he did not personally make much use of the computer in the ways that he described in

the lecture.

For this reason, the computer work I describe here is most aligned with the traditional concerns

of twentieth-century musicology and, eventually, music theory: the study of written representations

of music and their paratexts. Of the efforts listed by Babbitt, I will treat two in greater detail below:

the calculation of the complete catalog of all-interval twelve-tone series, a project which began with

the first manual attempts at a solution in the 1920s (Chapter 2) and the sixties work of Allen Forte on

computer-assisted analysis of atonal music (Chapter 4). Spanning the temporal gap between these two

chapters is an account of the diverse uses of the concept of “information” in research involving music

in the 1950s that was inspired by Shannon’s mathematical theory of information (Chapter 3).

11. The following list of proceedings and related publications, in which computer-related music research can be
found reported, is partly based on Schuijer’s enumeration of these events. Schuijer, Analyzing Atonal Music, 241-242.
Gary Berlind et al., “Addendum: Writings on the Use of Computers in Music,” College Music Symposium 6 (Autumn
1966): 143–57, http://www.jstor.org/stable/40373186; James Pruett, “The Harpur College Music-Computer Seminar:
A Report,” Computers and the Humanities 1, no. 2 (1966): 34–38, http://www.jstor.org/stable/30199205; Gerald
Lefkoff, ed., Papers. Proceedings of the West Virginia University Conference on Computer Applications in Music.
(Morgantown, WV: West Virginia University Library, 1967); Robert D. Oudal, “The 1968 Introductory Seminar in
the Use of Computers in Musical Projects: A Summary Report of Reactions, Frustrations,” Student Musicologists at
Minnesota 3 (1968): 66–109; Sally Yeates Sedelow, “The Computer in the Humanities and Fine Arts,” ACM Computing
Surveys 2, no. 2 (1970): 89–110; Stefan M. Kostka, “Recent Developments in Computer-Assisted Musical Scholarship,”
Computers and the Humanities 6, no. 1 (1971): 15–21, https://doi.org/10.1007/BF02402318.
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In addition to flagging up this array of contemporary music-computing efforts and speculating

cogently (and presciently) about the future of the practice, Babbitt demonstrates an acute awareness

of his disciplinary situation and its corollary need to make the case for music computing on an a

particularly musicological basis, avoiding more general appeals to prevailing technological currents or

crisis narratives about the decline of the humanities. Instead, Babbitt motivates his talk by appealing

to the assembled audience’s sense of continuity between traditional musicological research and

its then-novel computerized forms; his was an incrementalist case for the adoption of this new

technology. Babbitt was well positioned to advance such a claim, even as he disclaimed any particular

expertise in either musicology or computing.12

He quipped that his experience as an advocate for electronic music and the RCA synthesizers—as

“as a confessed Synthesizer expert, and a convicted composer”—had exposed him to “on the one

hand, intellectual Luddites, and, on the other hand, non-intellectual Luddites.”13 He clearly thought

his audience to be free of Luddites of either kind, since their very presence at his talk allowed him

to impute to them a collective interest in being relieved of “tasks which can be far more quickly and

accurately accomplished by machines”; he lightly chastized those at those who would balk at such an

opportunity.14 After all, he continued:

I cannot but believe that all that need be said to such a group of music historians
and theorists to demonstrate not only the feasibility but the desirability of computer
utilization is to remind them of the nature of the investigations in which they are
customarily engaged, and the extent to which such investigations are or should be
dependent on procedures and techniques which have been and are being applied in
other fields; those procedures which are normally termed “substatistical”—indexing,
cataloging, and searching—and those which are genuinely statistical: the formulation
of attributive hypotheses in the interests of characterization and attribution, the testing
of hypotheses, the sampling of compositions from a compositional population, the

12. “I presume to speak on the subject of ‘Computers in Musicological Research’ by virtue of two unassailable
qualifications: I am not a computer expert, and I am not a musicologist. These, of course, are my qualifications to be
presumptuous, not my qualifications to speak.” Babbitt, “The Use of Computers in Musicological Research,” 1965, 202.

13. Milton Babbitt, The Collected Essays of Milton Babbitt, ed. Stephen Peles (Princeton, NJ: Princeton University
Press, 2003), 202.

14. Babbitt, 202.
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determining of correlations between dimensions of a work, between works, and between
collections of works, scaling, sequential testing, et cetera.15

This was a remarkable vision of things to come since, at the time of Babbitt’s address, musicologists

and theorists were not yet being widely trained in computer methods—though Allen Forte was

in the process of establishing a graduate course at Yale University for this purpose.16 Only a tiny

fraction of the scores now available for computational access had been encoded for digital processing;

software tools for the processing and analysis of scores were localized to particular research groups

and cumbersome to use, with each set of routines often requiring training in a particular encoding

language. Thus, Babbitt’s pitch for computational musicology was highly speculative, if only in the

sense that the infrastructure required to implement it—data, software, and skilled technicians—was

some years out. Babbitt characterized the use of the computer as just the right tool to prosecute

a research agenda already latent in music studies, at least as he represented it, embracing the

“substatistical” methods of Musikwissenschaft in its taxonomic and philological mood (“indexing,

cataloging, and searching”), as a well as the truly “statistical” methods of the rapidly crystallizing,

scientistic vision for doing music theory.

Babbitt forecasted that embracing the computational attitude could change how music analysis

will be done in the future. This opportunity was afforded by the computer’s power to reorder the

contents of scores, then the apparently self-evident data source for music analysis, to reveal structural

relationships. Babbitt explains:

The fact that statements of relatedness within a composition are usually totally or largely
without reference to temporal position when the events in question are not immediately
adjacent and extremely simple is another indication of the need for the resources of the
computer, for the notion that a theory of a body of music or of a single composition
could consist satisfactorily of statements founded on time independence contravenes our
whole conception of music as proceeding in time.17

Characteristically dense but precise, I understand Babbitt here as expressing his dissatisfaction

with analyses that can only definitively localize musical connections—motivic, tonal, rhythmic,

15. Babbitt, 202.
16. Girard, “Music Theory in the American Academy,” 286.
17. Babbitt, “The Use of Computers in Musicological Research,” 1965, 82.
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whatever—on the small scale. As the distance over which such associations between events are

made increases, the analyst’s specificity about their location decreases. At least, presumably, this

is the case when the analysis is conducted by hand. Since computer can apprehend thousands of

objects in seconds, it allows musical events at the lowest level—notes—that are distant in score-time

to be connected by the analyst, perhaps even promiscuously so, so that they become nearby in

analysis-time. A concrete example: in the case of tonal analysis, we may definitively speak about

harmonic progression with reference to a scale-degree theory of root motion, which specifies

normative sequences of “immediately adjacent and extremely simple” musical events: direct

successions of harmonies boiled down to their triadic representatives. The computer, on the other

hand, allows for nothing less than a new grasp on the temporality of music analysis. This vision for

a highly associative form of analysis, may only lately have been realized, if at all; the work of Dora

Hanninen, represented in her recent A Theory of Music Analysis: On Segmentation and Associative

Organization, comes immediately to mind.18

Babbitt also recognized the future usefulness of the computer in performing multidimensional

scaling (MDS), a powerful statistical tool that he suggested for use the design and analysis of

experiments on the perception of musical timbre.19 In practical terms, an experiment participant is

presented with many sequences of two computer-generated sounds, each pair differing only in timbre,

and asked to provide a numerical rating of the relative similarity of the sounds within each pair. MDS

can be used to aggregate such similarity judgments, summarizing the data thus generated by assigning

each stimulus to a location in some low-dimensional space, usually the two-dimensional Cartesian

plane.

Figure 1.1 shows the results of running one particular implementation of the MDS technique

(INDSCAL) on a set of similarity judgments collected during an experiment at Stanford. Though

this particular plot dates from 1977, earlier work on timbral similarity proceeded on much the

18. Dora A. Hanninen, A Theory of Music Analysis : On Segmentation and Associative Organization (Rochester,
NY: University of Rochester Press, 2012).

19. Babbitt, “The Use of Computers in Musicological Research,” 1965, 82ff.
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same basis.20 In this figure, small boxes indicate the position in perceptual space of the a sound of

a particular timbre, labeled by the instrument that the timbre is intended to invoke. Sounds nearby

in the three-dimensional plot are those that were, loosely speaking, rated as most similar by most

listeners. For example, the two oboe sounds O1 and O2 are close together, while sounds from

different instrument families occupy distinct regions of the inferred similarity space.

As Babbitt pointed out, the technique “does not require any prior assumption of dimensionality.”21

The timbre of a musical sound may be described as a combination of lower-level features

(harmonicity, loudness, amplitude envelope, etc.), with each feature or parameter contributing

a “dimension” to the complete specification of the sound. As an essentially exploratory data

analysis technique, MDS does not require the researcher to make any prior hypotheses about

the relative contribution of any of these dimensions to judgments of timbral similarity, as more

traditional correlational analyses would have done.22 The earliest experiments that trace the outlines

of the research program sketched by Babbitt followed in the 1970s.23 MDS was also used by

Carol Krumhansl in her landmark studies of pitch perception, which showed how pitch-similarity

20. John M. Grey, “Multidimensional Perceptual Scaling of Musical Timbres,” The Journal of the Acoustical
Society of America 61, no. 5 (May 1977): 1270–7, https://doi.org/10.1121/1.381428. INDSCAL was developed at the
Bell Telephone Laboratories. J. Douglas Carroll and J. J. Chang, “Analysis of Individual Differences in Multidimensional
Scaling via an N-Way Generalization of ‘Eckart-Young’ Decomposition,” Psychometrika 35, no. 3 (September 1,
1970): 283–319, https://doi.org/10.1007/BF02310791. Potentially see also, J. Douglas Carroll and J. J. Chang, “How
to Use INDSCAL, a Computer Program for Canonical Decomposition of N-Way Tables and Individual Differences in
Multidimensional Scaling,” Unpublished report (Murray Hill, NJ: AT&T Bell Laboratories, 1969).

21. Babbitt, “The Use of Computers in Musicological Research,” 1965, 83.
22. Cf. multivariate linear regression models, which hypothesize mathematical relationships between a dependent

variable (in this case, judged timbral similarity) and many independent variables (parameters of the sonic features of
the sounds being tested). These aspects of the sound have be specified in advance, by describing the sound in terms of a
“multidimensional” set of features, which the analyst must determine before the experiment begins.

23. See, for example: R Plomp, “Timbre as a Multidimensional Attribute of Complex Tones,” in Frequency
Analysis and Periodicity Detection in Hearing, ed. G. F. Smoorenburg (Leiden: Sijthoff, 1970), 397–414; David L.
Wessel, “Psychoacoustics and Music: A Report from Michigan State University,” PAGE: Bulletin of the Computer Arts
Society 30 (1973): 1–2, http://computer-arts-society.com/uploads/page-30.pdf; Grey, “Multidimensional Perceptual
Scaling of Musical Timbres.” For a modern survey of empirical studies of timbre, and the importance of MDS to early
research in this area, see Stephen McAdams, “Chapter 2. Musical Timbre Perception,” in The Psychology of Music, ed.
Diana Deutsch, Third edition (London: Academic Press, 2013), 35–67, https://doi.org/10.1016/B978-0-12-381460-9.
00002-X.
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Figure 1.1: Original caption: Three-dimensional spatial solution for 35 similarity matrices
generated by multidimensional scaling program INDSCAL (Carroll and Chang, 1970).
Hierarchical clustering analysis (Johnson, 1967) is represented by connecting lines, in
clustering strengths order: solid, dashed, dotted. Two-dimensional projections of the
configurations appear on the wall and floor. Abbreviations for stimulus points: O1, O2
= oboes; C1, C2 = clarinets; X1, X2, X3 = saxophones; EH = english horn; FH = French
horn; S1, S2, S3 = strings, TP = trumpet; TM = trombone; FL = flute; BN = bassoon. (In
John M. Grey, “Multidimensional Perceptual Scaling of Musical Timbres.” 1977, 1272.)
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judgments—and, she hypothesized, our mental representations of tonal space—depended on induced

diatonic-tonal contexts as well as on perceived pitch height.24

Discussing MDS, Babbitt broached some more general points about computer research methods

in the humanities. First, for Babbitt, MDS exemplified a pre-existing statistical technique that was

made tractable by the acceleration and precision of arithmetic performed by computer. The analytical

technique was understood in principle decades before the widespread availability of computing, but

it was impractical to compute manually, except for very small data sets.25 This example allowed

Babbitt to suggest to his audience that turning to the computer could be transformative, opening up

new areas of empirical research thanks to the new statistical techniques that it made available. What

MDS allowed in particular was that simple pairwise judgments between musical objects could be

statistically interpreted in ways theretofore impossible. Thus Babbitt propagandized for the computer

not only as a source of new knowledge but new kinds of knowledge about music, a favored theme of

writing in favor of humanities computing both then and now.

Second, and perhaps most strikingly, Babbitt argued that the computer allowed researchers

within music studies, and the humanities in general, to make use of advanced techniques from

other disciplines (such as statistics) without requiring more than a “passive” knowledge of them.

Foreshadowing—or even encouraging—the clientelist posture of the present-day digital humanities

with respect to its quantitative adjunct disciplines, he explains that:

these relative technicalities [regarding multi-dimensional scaling (MDS)] are mentioned
only to provide an instance of what would be a discouragingly formidable computational
task if computer routines were not readily available. Such availability not only makes
accessible to those who can only run the program without possessing the mathematical
techniques for formulating or arriving at such a solution, but provides reliable results to
those who do not even comprehend the mathematical procedures involved. This is a fact
of enormous pedagogical consequences, since easily and quickly acquirable computer
knowledge places one in the position to employ and apply advanced techniques and
results derived from a broad inter-disciplinary range without obliging one to undertake

24. Carol L. Krumhansl, “The Psychological Representation of Musical Pitch in a Tonal Context,” Cognitive
Psychology 11, no. 3 (July 1979): 346–74, https://doi.org/10.1016/0010-0285(79)90016-1.

25. The technique was first described comprehensively in Warren S. Torgerson, “Multidimensional Scaling: I.
Theory and Method,” Psychometrika 17, no. 4 (December 1, 1952): 401–19, https://doi.org/10.1007/BF02288916.
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the manifestly hopeless task of acquiring more than a passive knowledge of the material
of this range.26

Babbitt perhaps overstated how “easily and quickly” computer knowledge could be acquired, but

his point was that it was relatively easier than rising to the “manifestly hopeless” challenge of coming

to know the advanced mathematics behind MDS. There is a curious irony at play here, which will

turn out to be thematic. On the one hand, Babbitt made the case that computer technology offered

musicologists and music theorists new knowledge about compositional resources, the promise of

novel attributions of doubtful musical works based on their stylistic features, and the possibility of an

axiomatized theory (Schenker’s) of tonal analysis. On the other, in his advocacy for the computer as a

mathematical utility, he recognized its value for the way it relieved its users of the need to understand

the details of the techniques they wished to use. The advantage of the computer when it came to

MDS, then, was that the routines which implement it introduce a layer of abstraction between the user

and the statistical results that the computer results. In this way, the user is encouraged to bracket out

the computation, enacting a tactical ignorance—the engineering process of “blackboxing”—of the

mechanisms of an admittedly complex process, whose details nevertheless determine certain features

of the knowledge that can be produced therewith. This is a thumbnail sketch of the bargain at the core

of the computational attitude: we are entreated by its advocates to suspend, defer, or otherwise offload

our ability to interpret the computer’s actions in exchange for insights that appear novel in scale and

depth, and kind.

1.3 The computational attitude to music in the twentieth century

1.3.1 The computational attitude defined

The computational attitude to music has been accompanied by the use of computers, as well as the

rhetorical and experimental invocation of computationalism by computer musicians, musicologists,

and music theorists to account for musical behavior. Though the computational attitude to music has

26. Babbitt, “The Use of Computers in Musicological Research,” 1965, 83.
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some antecedents in the pre-digital age, it is primarily a mid-twentieth-century phenomenon, since

it results from both encounters with actual digital computers as well as the rise of computationalist

theories of mind. Computationalism was a philosophical theory of mind first articulated in

mid-twentieth century that analogizes the mind to a computer, whose on influence on music

criticism—via the cognitive sciences—I briefly describe below.

Musicians and music scholars may adopt the attitude at any one of three interrelated levels,

which increase in apparent distance from actual computers: on the first level, in their use of actual

computers to analyze music; second, in the use of computationalist explanations for how music is

performed, created, and experienced by people; and, finally, in the use of computational metaphors

in more informal writing about music. This order, however, is not designed to assign a particular

a historical priority to any one level; I do not claim that the computational attitude “originated” in

encounters with actual computers. Instead, these levels reflect a widening-out of focus. In working

“outward” from computers in this ordering, I seek to emphasize the importance of these machines as

tools or instruments and the concomitant focus on material evidence for these machines to a complete

account of the computational attiude. For this reason, the majority of the dissertation will focus on

building evidence of computational attitude as it appears in computer contexts. Ultimately, however, I

understand the computational attitude to be adopted by individuals or groups of individuals acting as

institutions: it is ultimately an attitude that people adopt. They may turn to particular technologies.

On the first level, the attitude can be discerned in computational implementations of musical

or music-analytic processes, as is the case with case of Allen Forte’s syntax-based segmentation

algorithm. Forte coded his algorithm in the programming language SNOBOL and executed it on

the IBM mainframe computers to which he had access at Yale and MIT (Chapter 4). In many

of the cases described in this dissertation, the computational attitude is incubated in the use of

programmable digital computers. While this is true of Forte’s research, it need not necessarily be

the case that the computational attitude on this level be evidenced in the recruitment of computers

as we recognized them today. For example, the composer Hanns Jelinek spent countless hours

working with pen and paper in search of more examples of the all-interval twelve-tone series, working
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with the integer model of pitch testing thousands of permutations of intervals for the all-interval

property. The elimination procedure he had settled on had a systematic, algorithmic quality to it; his

technical collaborator Heinz Zemanek recognized Jelinek’s procedure as a kind of computer program,

amenable to ready digital implementation (Chapter 2).

Second, the computational attitude is manifest in appeals to a computational model of the

human mind, absent any one computer or computing machine. This is exemplified below in Henry

Quastler’s information-theoretic studies of human musical ability (Chapter 3). Though Quastler did

not use a computer in the design or analysis of his experiments with sight-reading pianists, he did

invoke the mathematical concept of information to characterize the achievements of his subjects as

information-processing machines. Its many shades of meaning allowed researchers like Quastler,

operating under the sign of “information,” to adopt the language of computing was to hypothesize

the existence of mental processes that operated on internal representations of percepts, thoughts,

plans, and actions; the stuff of this mental computation was regularly spoken of as if it consisted in

information.27 Even as that particular belief waned, the mathematical toolkit of information theory

endured as a useful, medium-independent way to quantify cultural products including language and

music, as the early musical corpus analyses of Wilhelm Fucks show.

In such contexts that appear at furthest remove from the computer, careful attention to musical

discourse that leverages computational metaphors—including even metaphors that analogize music

itself to computing—will be rewarded by further evidence of computational thought. This is the

third and final level on which the computational attitude can manifest itself: in the use of metaphors

that have percolated into writing about music outside of the immediate experimental context of by

early music computing. Musicians and music researchers may be more or less explicit regarding the

computational attitude in their writings, thoughts, or other expressions of their aesthetic preferences.

Despite my optimism about the value of attending to documentary traces of the computational

attitude, including code and technical documentation but also more conventional sources (books,

27. Michael Rescorla, “The Computational Theory of Mind,” in The Stanford Encyclopedia of Philosophy, ed.
Edward N. Zalta, Spring 2017 (Metaphysics Research Lab, Stanford University, 2017), https://plato.stanford.edu/archives/
spr2017/entries/computational-mind/, sec. 6.
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articles, reviews, polemics, interviews, etc.), a “keyword” approach cannot suffice to account for

the attitude on these three levels, if only for the simple reason that each level has its proper lexicon:

computer jargon, in the case of the first; the argot of philosophers, in the second; and the common

fund of everyday metaphors in the last. We might instead attempt to draw some general features of the

computational attitude in terms of the beliefs held by the people who have adopted it.

Perhaps the hallmark of the computational attitude to music involves the manipulation of

symbolic representations of musical phenomena, and the attendant deferral of the interpretation

of those symbols as it might be heard, executed by a performer, or otherwise realized as music.

This is particularly evident in work that makes use of the lexical conception of representing

music as a message consisting of symbols drawn from some discrete and finite repertoire. This

theme is especially in the work of researchers who draw explicitly on the information-theoretic

communications model introduced by Claude Shannon immediately following the end of the Second

World War in order to study musical phenomena: among them were Abraham Moles, Henry Quastler,

and Wilhelm Fucks.28 It also figures in Forte’s description of a string-based algorithm for the

segmentation of musical scores, and in the reflections of Heinz Zemanek, the engineer who worked to

produce the computer-assisted catalog of all-interval series.

Having set out what is computational about the computational attitude, it remains to be

explained why this set of beliefs should be considered an attitude, and a singular one, at that. Most

readers will be familiar with David Lewin’s notion of the “transformational attitude,” Lewin’s

term for a renewed approach to mathematically-defined musical space that situates the auditor

somehow “inside” the space.29 Rather than viewing relations between musical objects—say triads

on a Tonnetz—on a flat, Cartesian map, the transformational attitude espoused by Lewin endorses

an action-oriented, first-person view of such a tonal space: as if one were traveling through it.30

I have adopted the vocabulary of “attitude” here to deliberately evoke some, but not all, of the

28. The music-related work of Moles, Quastler, and Fucks are all treated in detail below in Chapter 3.
29. David Lewin, Generalized Musical Intervals and Transformations (New Haven, CT: Yale University Press,

1987)
30. Lewin, 158-159. Also see Steven Rings, Tonality and Transformation, Oxford Studies in Music Theory (New

York: Oxford University Press, 2011), esp. chap. 1.
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attributes of Lewin’s (in)famous re-orientation. For instance, both the computational attitude and

the transformational attitude are voluntaristic: we may aspire to switch either one on or off at will.

This is not to say that such an attitudinal shift is easy, merely that it is possible.31 Twentieth-century

articulations of the computational attitude are inextricably linked to twentieth-century features and

conceptions of computing; were computing otherwise, so too would be the computational attitude to

music.

“Attitude” seems especially apt, because when we speak informally of a need for a change in

attitude toward a particularly vexing social challenge, we recognize the contingency of our state of

mind in such a circumstance. We might struggle to change our mood or our affect, but our attitude,

though seemingly fixed, seems more pliable: this is the common sense understanding of attitude

as a settled—but importantly, impermanent—way of thinking. Likewise for the computational

attitude. While it might require some movement—figuratively—to point out those features of the

computational attitude, with this movement, we gain a new perspective on things. After all, the root

of the word “attitude”-as-mindset derives from literal posture or orientation (as in “the attitude of

a dancer’s body”); this particular resonance with perspectivalism would not have escaped Lewin

either, an eager study when it came to phenomenology.32 There is, to close, is the most vernacular

sense of attitude—“don’t give me that attitude!”—a normative use implying that to have an attitude

(unqualified) is to have a problematic one. With tongue firmly in cheek, this too seems apt: as in,

“music theory’s got an attitude and it might be past time to snap out of it.”

31. The optionality of the transformational attitude comes from the mathematical similarity of the two formalisms
that animate Lewin’s Generalized Music Intervals and Transformations: the Cartesian, interval-based generalized
interval system (GIS) and the dynamic, progressive “transformation networks,” which Lewin advocates throughout
the course of GMIT as the alternative GIS-based models of music analysis. See Rings, chap. 1. See also the work of
Benjamin Hansberry, who presses on the mathematical similarity of GISes and transformational networks to rehabilitate
the GIS from its status as the poor relative of (or strawman to) the transformational network. Benjamin Konrad Hansberry,
“Phenomenon and Abstraction: Coordinating Concepts in Music Theory and Analysis” (Columbia University, 2017),
https://doi.org/10.7916/D83202T7, chap. 4.

32. See his latter-day exegetes: Brian Kane, “Excavating Lewin’s ‘Phenomenology’,” Music Theory Spectrum
33, no. 1 (2011): 27–36, https://doi.org/10.1525/mts.2011.33.1.27; Maryam A. Moshaver, “Telos and Temporality:
Phenomenology and the Experience of Time in Lewin’s Study of Perception,” Journal of the American Musicological
Society 65, no. 1 (2012): 179–214, https://doi.org/10.1525/jams.2012.65.1.179 See also, Henry Klumpenhouwer, “Essay:
In Order to Stay Asleep as Observers: The Nature and Origins of Anti-Cartesianism in Lewin’s Generalized Musical
Intervals and Transformations,” Music Theory Spectrum 28, no. 2 (October 2006): 277–89, https://doi.org/10.1525/mts.
2006.28.2.277.
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1.3.2 The status of the computer as a tool for thought

I implicate the computer in the history of music theory by recognizing not just its productive capacity

(its being a tool used to create new musical works in particular) but its epistemic capacity (its being

a tool used to create new knowledge about music in general). To claim that a particular computer

music application operates epistemically is a functional claim, in the sense that the computer, as with

any instrument (scientific, musical, or music-theoretical), is always mobilized by its user to produce

knowledge with respect to a particular end. This function can only be fully articulated when the

broader set-up—the larger context for the of the computer—is taken into consideration. First, I will

gloss some statements by computer music practitioners that suggest that the computer appears to

exerts a structuring force on the objects and operations of their personal theories of music. Then, I

briefly discuss some contemporary developments in music studies and the history of science which

clarifies the limitations of this force.

The musicologist and critic Robin Maconie strongly believed that the use of the computer in the

twentieth century has forced a particular theoretical conception of music:

A widespread misapprehension among scientists that western music consists exclusively
of stable tones, and is notated as a succession of steady states, has been invoked to justify
imaginative fictions of music computing intelligence in recent history (Lejaren A. Hiller,
Allen Forte, et al.) in which it is asserted that the twelve-tone equal-tempered chromatic
scale corresponds to a law of nature, and that classical music aspires to the disembodied
perfection of a musical box.33

Maconie cites both the computer music experiments of Lejaren Hiller, who with Leonard Isaacson

composed the Illiac Suite (1955/6), a an early computer-assisted composition whose output was

curated and notated for string quartet, as well as the attempts by Allen Forte to design algorithms for

the automated analysis of atonal music during the 1960s at MIT. Forte’s work will be discussed at

length in Chapter 4 below; Hiller’s will only be touched on briefly. Maconie’s point is not far from

the truth: both Forte and Hiller chose to use music representation formats that conceive music as

a sequence of “stable tones”—that is, they did not take into consideration the evolving, dynamic

33. Robin Maconie, Avant Garde: An American Odyssey from Gertrude Stein to Pierre Boulez (Lanham, MD:
Scarecrow Press, 2012), 290.
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acoustic profile of musical events when considered as sounds—and they assume, in general, a

twelve-tone equal-tempered scale. As we will see, Maconie’s implication that Hiller and Forte were

plain naive about their responsibility to select an appropriate representation is unjustified.

In his disciplinary history of music theory in the United States, Aaron Girard describes computer

use as one of “three academic contexts for the exclusion of tonal language in Forte’s theory of atonal

music,” pinpointing one reason as “the theory’s background as a project in computer science.”

The perils of Girard’s posture toward the computer are apparent from the implicit passivity of the

programmer (i.e. Forte):

To a computer, a trichord is a trichord—set 3-11 can get no special treatment for
its being equivalent in content to a “triad.” In practical terms, to make allowances
for such distinctions would complicate (at best) the scripting of a program. […] In
sum, traditional terms are inappropriate for Forte’s theory because […] they are
counter-productive for applications in computer science[.]34

That the “trichord is just a trichord” (which is what I take Girard really to mean) is not a

proposition properly attributable to either the computer alone, nor to Forte alone.35 The narrative

motor that comes from this characterization of computer programming as the act of attempting to

navigate the technological constraints of the machine is tempting, but it comes at a cost: a creeping

disciplinary determinism. Girard interprets Forte’s paraphrase of the traditional terms of theory

(“major and minor triad”) in the vocabulary of set classes (“3-11”) as a forced choice to avoid an

otherwise computationally “counter-productive” analytical decision. Forte was a skilled computer

programmer. He may not have mastered all aspects the computing environments in which he

worked—though he was viewed as a sufficient authority on SNOBOL3 that he wrote an introductory

text for it—but he certainly knew what he was doing.

Neither Hiller nor Forte had access to the computational power or the technical proficiency to

work “directly” with sound; they both lacked access to a crucial piece of hardware: the digital-analog

converter. As I will describe below, at Hiller’s time of writing, such work was limited in the USA to

34. Girard, “Music Theory in the American Academy,” 310.
35. What else could he have meant? “trichord is a trichord” is a tautology. I think the context makes it clear that the

computer program doesn’t distinguish between “[037] as triad” and “[037] as trichord.”
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Bell Labs; by Forte’s time, this equipment remained expensive. Within the Artificial Intelligence (AI)

Lab at MIT, computer music would not take off until some years after his departure.36 The kinds of

computational representations used by Hiller and Forte were not entirely freely chosen. The technical

capabilities of the systems to which they had ready access also played a part in—but did not entirely

dominate or override (pace Maconie)—the decisions of the users themselves.

Hiller and Forte were doing computer music work at a time when there was no standard way to

represent music or music notation to computers; one of today’s de facto standards for representing

music with all its flaws (such as its basic assumption of equal temperament) is MIDI, the specification

for which was ratified in 1983. The lack of a standard representation for even such a basic musical

element as a note led to a degree of reinventing the wheel.37 By revisiting such fundamental

questions, however, those researchers who defined their own formats for representing music to the

computer expressed a particular set of values about what the essential features of an accurate musical

representation should be. Curtis Roads, himself a computer music practitioner, explains:

Underneath the languages and the graphics of the machine is a thick layer of
intercommunicating automated processes that manipulate representations of music.
The procedures and underlying representations define the musical games that are
possible with the system. As we shall see, every machine-assisted composition develops
from fundamental assumptions about a music that has been encoded within the
machine.38

Roads goes on to elaborate his position in more forceful terms, with an analysis that is striking in

its dependence on visual metaphors: “At the core of the problem is the need for more powerful

representations for music that support multiple viewpoints. […] Every system constrains the

composer to a restricted set of operations; every ‘view’ provided by a music system is a filter that

biases the viewer’s attention to a particular perspective of the piece.”39

36. With the music work of Minsky, Smoliar, Winograd et al.
37. A fact attested to by the weight alone of the 655 pages of Beyond MIDI: The Handbook of Musical Codes,

a Rosetta Stone of music encoding standards. Since its publication in 1997, things have only gotten worse as encoding
format proliferate along with new music computing software. Eleanor Selfridge-Field, ed., Beyond MIDI: The Handbook
of Musical Codes (Cambridge, MA: MIT Press, 1997).

38. Roads, “Composition with Machines,” 400–401.
39. Roads, 421.
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Hiller did indeed use various ad hoc integer encoding schemes for pitch, depending on the

idiom of composition he was intending to simulate, which reflect what Roads would call “a particular

perspective of the piece.” For the experiments that set out to emulate modal species counterpoint,

the white notes between C3 and C5 were mapped to the integers 0 through 14; for the experiments

in “serial” composition, all piano keys between C3 and F#5 were coded between 0 and 30.40 Forte,

on the other hand, working many years later with a more sophisticated computer platform could

draw on the relative richness of alphanumeric representations of musical objects—in his case, strings

of alphabetic characters and numerals—and designed his analytical routines around an emerging

encoding format for the digital representation of notated scores: DARMS. Forte would appeal

explicitly to what he considered the information-richness of DARMS to justify his choice. This, in

turn, depended on the assumption that the twentieth-century communications theory could be turned

to analyze musical activity–composing, performing, listening—under the computational metaphor

that the mind is a human information-processing mechanism.

Alexander Rehding has recently argued that we ought to pay closer attention to the epistemic

functions of musical instruments, particularly as they relate to music theory.41 Rehding understands

the monochord and the piano to be “instruments of music theory” in a rather peculiar sense of the

word “instrument,” punning on its musical sense. Monochord and piano are musical instruments

in the common sense, in that they sound when interacted with. But they may also be considered

as scientific instruments, as tools to be used in conducting empirical research in more or less

laboratory-like settings.42 Both monochord and piano have been used for centuries by theorists,

pedagogues, and practical musicians to instantiate specific concepts of music theory. The monochord

serves as both an aural and material demonstration of the principles of harmonic divisions of

40. Lejaren Hiller and Leonard Isaacson, Experimental Music: Composition with an Electronic Computer (New
York: McGraw-Hill, 1959), 90, 118.

41. Alexander Rehding, “Three Music-Theory Lessons,” Journal of the Royal Musical Association 141, no. 2 (July
2, 2016): 251–82, https://doi.org/10.1080/02690403.2016.1216025; See also, Alexander Rehding, “Instruments of Music
Theory,” Music Theory Online 22, no. 4 (December 2016), http://mtosmt.org/issues/mto.16.22.4/mto.16.22.4.rehding.
html; John Tresch and Emily I. Dolan, “Toward a New Organology: Instruments of Music and Science,” Osiris 28, no. 1
(January 2013): 278–98, https://doi.org/10.1086/671381, 283.

42. At least this is the most common sense of the word “instrument” in music studies.
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the octave. Similarly, the piano—at least when it is tuned to the equal-tempered twelve-tone

scale—instantiates both a rationalized set of pitch resources and can be used to demonstrate (or

problematize) theories of compositional grammar that are premised on the composer’s access to these

resources.43

Rehding depends on recent work in the history of science by Hans-Jörg Rheinberger to elucidate

precisely how certain musical instruments may function in an epistemic capacity. Rheinberger’s study

of laboratory science performed by molecular biologists described how knowledge is produced in

twentieth-century contexts of empirical investigation that Rheinberger calls “experimental systems.”44

Rheinberger’s goal is to historicize scientific epistemology, by showing how “local, technical,

instrumental, institutional, social, and epistemic aspects” interact to make particular kinds of scientific

knowledge possible.45 Of heightened interest are “epistemic things,” objects of scientific scrutiny

which can only be disclosed by a particular experimental system. Epistemic things are “targets” of

inquiry which may only present themselves to researchers as viable objects in the moment that an

experimental system is put into operation; the unforeseeability of epistemic things is an important

consequence of their being materialized by experiment, rather than by prior theorization.46

Rehding provides an adequate gloss of the concept of the epistemic thing:

What is particularly attractive about the notion of the epistemic thing is its essential
blurriness (“Verschwommenheit”). There is no predetermined form of knowledge that
inheres in the object [thing]. Its role makes sense, or rather comes into focus, only within
the particular experimental system within which it is employed—it is ultimately an
interpretation that is simultaneously materialized and idealized.47

43. The equal-tempered piano was the locus for the ire of the German theorist Moritz Hauptmann (1792–1868), who
viewed its inability to reproduce just major thirds as a critical failure to faithfully render the basic objects of his idealized
tonal theory: the major and minor Klänge (loosely, “triads”). Rehding, “Three Music-Theory Lessons,” 268.

44. Hans-Jörg Rheinberger, Toward a History of Epistemic Things: Synthesizing Proteins in the Test Tube
(Stanford, CA: Stanford University Press, 1997).

45. Rheinberger, 238.
46. This puts Rheinberger’s model of scientific research at odds with the view of the history of scientific knowledge

production as primarily consisting in the experimental confirmation (or disavowal) of the predictions of some dominant
theory, or paradigm, a view most famously associated with Thomas Kuhn.

47. Rehding, “Three Music-Theory Lessons,” 263–64.
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As Benjamin Steege points out, a “germane” example of an epistemic thing that is readily available

to historians of music theory is “the upper partial tone, some of whose phenomenal qualities were

to be sure indexed in texts dating back to antiquity, but which emerged as an unforeseen by-product

of other concerns within the highly particular material, institutional, historical conditions of

mid-nineteenth-century acoustics.”48 Importantly, it was the continuing uncertainty to whether

the source of the upper partial was physical, physiological, or psychological and, crucially, the

mobilization of laboratory demonstrations intended to resolve its attendant “blurriness,” that kept the

upper partial “open” as an epistemic thing.

We have already been introduced to an example of an epistemic thing of music theory, namely

the timbral similarity space by postulated by Babbitt, made possible by the development of computer

and used in music-psychological experiments in the years that followed. As I have described,

the precise contours of such a map of perceived timbral similarity are not known in advance; the

technique of MDS allows for its emergence as the results of listener judgments are collated and

embedded in this new space. In Chapter 2, I describe in detail how music theorists and technicians

worked together to determine the total stock of all-interval twelve-tone series, a catalog of musical

objects. The overall extent of this catalog was, until an exhaustive search of all possible permutations

was completed with the computer in the 1950s, indeterminate. These theorists who took on the

all-interval series problem departed from having just a handful of examples to hand, and set out on

their search without knowing initially how many to expect, nor with any definitive ideas about what

other structural features that these permutations of the twelve tones shared.49 Despite their occluded

view on their target of inquiry, and the absence of a predictive theory that would generate rules for

the construction of all-interval series, they shared the closely related convictions that more examples

existed and that these examples would be disclosed by the relentless pursuit of the epistemic thing at

stake; this persistence typifies experimental work, on Rheinberger’s view of scientific research.

48. Benjamin Steege, “Between Race and Culture: Hearing Japanese Music in Berlin,” History of Humanities 2,
no. 2 (September 2017): 361–74, https://doi.org/10.1086/693319, 368. For the account of precisely those “particular”
conditions, see Benjamin Steege, Helmholtz and the Modern Listener (Cambridge; New York: Cambridge University
Press, 2012).

49. Apart, of course, from the all-interval property.
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If we accept the premise that musical instruments may also serve a scientific-instrumental

function in the construction of theories, then given the undeniable use of the computer as a musical

instrument, it follows that computer music programs and computational analysis routines attest

not only to how a particular piece of computer music or computer-aided analysis came into being

but also to a latent ontology of music-theoretical objects that are “simultaneously materialized

and idealized” by these configurations of researchers and their computational tools. This claim

in particular about the role of scientific instruments and “epistemic things” is situated in webs of

contention proper to their originating disciplines. For example, the sociologist of science David

Bloor shares Rheinberger’s basic position—which is essentially a constructivist account of scientific

knowledge—but believes that Rheinberger’s insistence on the materiality of the “thing” is a

distraction; Bloor’s deflationary tactic is to read the “epistemic thing” an overly literal misreading of

a metonym: “To say that epistemic objects have a fragile and fluctuating existence is to say (correctly)

that our understanding is a fluctuating and changing thing. The fugitive status of the one is just an

idiom for describing the instability of the other.”50 Bloor maintains the position that the proper objects

of study are people, the scientists, and the “understanding” they report, not the tools they use: his is a

sociology of scientific knowledge.

Suffice to say that I cannot be, and do not intend to be, programmatic with respect to any single

theory of the production of scientific knowledge and media, or their philosophical corollaries. The

broader implications of such commitments—salutary or otherwise—can only be sketched in the

present context. That said, the case made here for the epistemic function of the computer in music

theory, as an instrument—just one part of an experimental system—at a minimum amounts to a call

to abandon certain idealist assertions that the various music-theoretical objects of twentieth century

music theory are simply “out there” somewhere, just waiting to be discovered by mathematical or

computational means.51 On the alternative account that I provide here, they are constructed by the

50. David Bloor, “Toward a Sociology of Epistemic Things,” Perspectives on Science 13, no. 3 (Autumn 2005):
311, https://muse.jhu.edu/article/188183.

51. Many of these notions I will discuss in the chapters which follow: pitch-class sets, all-interval twelve-tone series,
musical information, and so on.
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instruments that we use to enumerate, classify, and otherwise manipulate them with.52 The history

of these concepts is inseparable from that of the tools used to instantiate them. This motivates, if not

an exclusive focus on, at least careful attention, to the instruments themselves. Here, these are the

computational devices that animate the computational attitude.

1.3.3 Levels of the computational attitude

The computational attitude toward music is manifest today in some theoretical discussions of music

that are seemingly distant from actual computer use, owing to computational metaphors that have

appeared in a selection of critical writings about music by authors who otherwise appear not to be

invested in pursuing music with the help of the computer. In this section, I show how it was possible

that computers have performed many services to music studies: from functioning as an instrument

of music theory (for a select few operators), to being the dominant inspiration for a particular theory

of mind that was widely adopted in cognitive science and music psychology, and consequently the

source of a rich fund of metaphors for writing about music (for a much wider community). In doing

so, I make a second pass through levels on which computational attitude works that I articulated

above, in the same order. To wit: the use of computers to analyze music, the turn to computationalism

as a resource for explanations about music and musical behavior, and the adoption of computational

metaphors in writing about music more generally.

Up to this point, I have kept the precise definition of “computer” in abeyance. While this might

seem like an abdication of responsibility, there is good reason to continue to defer the question.

Since “computer” has now become effectively synonymous with “programmable, digital, electronic

computer” in current usage, there is a real risk that a discussion of computing in the history of

twentieth-century theory omits the pre-digital past of computation.53 Debates about whether these

52. This is closely related to a position in the philosophy of science called instrument realism, which holds, inter
alia, in Ian Hacking’s memorable description of subatomic particles: “if you can spray them, they are real.” Ian Hacking,
Representing and Intervening: Introductory Topics in the Philosophy of Natural Science (Cambridge: Cambridge
University Press, 1983), 23.

53. Curtis Roads has noted that “behind modern efforts in algorithmic composition is a long tradition of viewing
music procedurally.” Curtis Roads, The Computer Music Tutorial (Cambridge, MA: MIT Press, 1996), 822.
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pre-digital computers are “true” computers or not are rarely only about what functional or mechanical

features that such things have. Candidate definitions for “computer” just as often delimit who may

or may not use them, where they may be used, how they may be interacted with, who may sell and

possess them, what disciplinary or industrial associations are postulated by the histories of design,

production, and use, and so forth.

For instance, Milton Babbitt, who worked with the paper-tape controlled RCA Mark II

synthesizer at the Columbia-Princeton Electronic Music Center, would take pains to remind his

interlocutors that the Mark II was not a computer, its appearances and interfaces to the contrary. In an

interview from 1985 Babbitt notes that

[i]t is a large, large, large machine. It cannot be played on in the usual sense. It would
look like a computer to most people. However, I do point out that it is not a computer; it
has no capacity to compute. It has no memory, for which it is probably grateful. When
you go to the synthesizer, you basically have to program it, and, therefore it does sound
like a computer. But it should not be confused with the computer production of sound,
which is the dominant way in which electronic music is now being produced by our
composers.54

The Mark II, like other electronic instruments that predate it by several decades, was an electronic

synthesizer that was controlled by sequences of musical instructions stored on punched tape or

cards. When Babbitt suggested that it did compute in any sense, he meant that it did not perform

arithmetic, the fundamental operation of all digital computers, on some level; when he suggested

that it didn’t have memory, he meant that the synthesizer did not store any representation of the

data with which it was presented—that resided only on the punched paper. It simply responded to

pre-programmed scores, which were laboriously punched by hand onto a paper medium. Yet, the fact

that Babbitt felt the need to make the claim suggests that some of its most conspicuous features—to

wit, its requiring several racks of equipment, the technical barrier to interacting with it, and the

punched-paper programming interface—made it seem like it was much like the “electronic brains”

of the 1950s popular imagination. This reminder that computers have their own history guards

against the presentist conflation of our contemporary vernacular experience of computing with the

54. Anne Swartz and Milton Babbitt, “Milton Babbitt on Milton Babbitt,” American Music 3, no. 4 (1985): 468,
https://doi.org/10.2307/3051833.
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varied and differently mediated computational techniques of the past. In particular, what counts as a

computer, as it were, is something that changes over time and does not really begin to align with the

contemporary sense of the term until the rise of the personal computer (PC) in the 1980s.

John Agar’s discussion of pre-computer computational devices in the context of the early

twentieth-century chemistry laboratory suggests that digital computing does necessarily bring about

entirely new forms of knowledge-production. Agar has argued that computerization “has only been

attempted in settings where there already existed material and theoretical computational practices

and technologies.”55 Agar describes how Beevers-Lipson strips, paper computers inscribed with

pre-computed Fourier transform results, were routinely used by X-ray crystallographers starting in

the 1930s. Eventually, punch-card tabulators and later computer technology rendered these strips

redundant. Importantly, however, “the algorithm […] remained the same from Beevers-Lipson strips,

to punched cards and to electronic computers.”56 Though faster by several orders of magnitude,

computerization of these techniques did not involve a recognizably novel solution to the particular

problem. Rather, it effected an acceleration of already existing computational practices.

Beevers-Lipson strips recall a similar, more widely known material computational device:

Napier’s bones, so-called for their popularizer, Scotsman John Napier (1550–1617). Napier’s bones

were a physical implementation of a multiplication technique first described by the thirteenth-century

mathematician Fibonacci, whose intellectual debts (in this case, and many others) are most clearly

owed to Arabic mathematical treatises. Napier was especially influential on the Jesuit polymath

Athanasius Kircher, whose Musurgia Universalis (1650) describes a material apparatus to assist in

the composition of musical material by rule.57 This box of numbered cards, the “Arca musarithmica,”

could be used by the musically naive to produce fully-harmonized metrical realizations of religious

texts; thus it was conceived of as practical tool for missionaries, but served its users and owners as

55. Jon Agar, “What Difference Did Computers Make?” Social Studies of Science 36, no. 6 (December 1, 2006):
873, https://doi.org/10.1177/0306312706073450.

56. Agar, 889.
57. M. R. Williams, “From Napier to Lucas: The Use of Napier’s Bones in Calculating Instruments,” Annals of the

History of Computing 5, no. 3 (July 1983): 279–96, https://doi.org/10.1109/MAHC.1983.10080, 289–291.
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well as an intellectual and spiritual curiosity.58 It was the combinatorial explosion of possibilities

afforded by the Arca which lent it its curiosity. This was the same curiosity that inspired both the

heroic computational investments of Marin Mersenne, who preceded and influenced Kircher, and the

reception of diverse Galant-era musical dice-games (Musikalische Würfelspiele) that came in the

century that followed.59

These physical devices could be made to seem infinitely generative, by (literally) manipulating

them according to a set of computational protocols, and recording the transcribing the result into

a musical product. Often, they channeled a source of apparent randomness—casting lots, a dice,

or simply the whim of the untutored—in to a piece. Dice, as for the Würfelspiele, were by 1949

still a convenient source of randomness for John R. Pierce and Mary Shannon, who used three

specially-made dice in their experiments with automated generation of simple four-part chorales. For

the experimental psychologist Henry Quastler, a pre-computed table of random numbers sufficed to

prepare musical stimuli for experiments designed to measure the “channel capacity” of sight-reading

human pianists. Wilhelm Fucks, whose fifties statistical work on music is also described below, even

turned to the outcomes of roulette games at the spa town of Bad Neunahr, Germany, as a source of

randomness for a tongue-in-cheek musical composition. I will return to each of these three examples

in detail in Chapter 3.

Of course, not all pre-digital computing devices used for musical composition were used as

generative devices. In 1940, Joseph Schillinger supervised the preparation of the “Reharmonization

Dial,” a rotating paper disc (a type of device called a volvelle) that served as simple computer,

allowing its user to determine which harmonies are shared between pairs of key areas, implicitly

58. Eric Bianchi, “Prodigious Sounds: Music and Learning in the World of Athanasius Kircher” (PhD diss., Yale
University, 2011), https://search.proquest.com/docview/884260435, 25–28.

59. On Mersenne’s combinatorics, see Eberhard Knobloch, “The Sounding Algebra: Relations Between
Combinatorics and Music from Mersenne to Euler,” in Mathematics and Music (Berlin: Springer, 2002), 27–48,
https://doi.org/10.1007/978-3-662-04927-3_2, 28–36. On musical dice-games, see: Stephen A. Hedges, “Dice Music
in the Eighteenth Century,” Music and Letters 59, no. 2 (1978): 180–87, https://doi.org/10.1093/ml/59.2.180; Leonard
Ratner, “Ars Combinatoria: Chance and Choice in Eighteenth-Century Music,” in Studies in Eighteenth-Century Music:
A Tribute to Karl Geiringer on His Seventieth Birthday, ed. H. C. Robbins Landon and Roger E. Chapman (New York:
Oxford University Press, 1970), 343–63.
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defining paths between one key and another.60 Even Schillinger’s use of gridded paper in his

compositional pedagogy can be considered a kind of pre-digital computation: Schillinger described

how the stair-steps of graph paper can be used to quantize musical melodies and rhythms so they

may be subsequently subdivided and permuted to generate new, derived musical material. These

symbolic representations of pitch and rhythm feature prominently in his exposition of the techniques

of permutation, combination, and transformation that characterize his compositional method.61 The

Brazilian composer Heitor Villa-Lobos also used graph paper, to render continuous images—of

buildings, of family friends, and of the Manhattan skyline—into discrete musical melodies, as in his

short piano composition New York Sky Line (1939, pub. 1957).62

As I have shown above, there has been an enduring interest in musical computation, even absent

computers as we know them today. This interest predates the invention of the digital electronic

computer, and will likely postdate its heyday, though it is difficult to predict precisely what features

that computation in a post-digital society will have. We therefore have good reason to keep an open

mind about what kinds of things can be considered computers: they range from simple paper devices,

up to the complex facilities of the 1960s computer utility, and even through the speculative fantasies

of future computing. In the following chapters, which focus on mid-twentieth century computation,

computing should in the main be understood to refer to using programmable, digital, electronic

computers. However, invoking the material past of pre-digital computing serves to remind us that

such resources should not be taken for granted: what counts as a computer (as it were) has not always

been as it is now. Indeed, as a rapidly growing group of philosophers and cognitive scientists in the

1950s argued, there is a case to be made that our minds are, in particular senses, computers. It is to

60. “Joseph Schillinger’s Reharmonization Dial (1940) and a Bit More,” The Hum Blog (blog), September 21, 2016,
https://blogthehum.com/2016/09/21/joseph-schillingers-reharmonization-dial-1940-and-a-bit-more/. I am grateful to
Marc Hannaford for his informed explanation of what this device can do.

61. Joseph Schillinger, The Schillinger System of Musical Composition (1941; repr., New York: Da Capo Press,
1978).

62. Described in Carlos Kater, “Villa-Lobos e a ‘Melodia das montanhas’: Contribuição à revisão crítica da
pedagogia musical brasileira,” Latin American Music Review/Revista de Música Latinoamericana 5, no. 1 (1984):
102–5, https://doi.org/10.2307/780115.
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give a hearing to this case, and its consequences for the computational attitude to music, that we now

turn to consider computational theories of mind.

Developments in diverse scientific contexts during the mid-twentieth century have led to the

idea that the mind, too, may be understood as a computer. This notion is so widespread today that

we may not notice the extent to which folk psychology depends on metaphors that are ultimately

computational in origin. When a friend confides in us that they are “still processing” their grief at

the death of a loved one, a colleague complains of “information overload,” or a student struggles

to “commit to long-term memory” the basic principles of voice-leading, all avail themselves of

the language of a computational theory of mind. These metaphors were co-opted from a number

of disciplines—among them, cybernetics, philosophy, psychology, and (nascent) computer

science—into cognitive science, the dominant paradigm for understanding human and animal

behavioral research since the 1950, whose influence is only lately waning. This turn is commonly

called the “cognitive revolution,” while the term for the basic form of the metaphor on which this

turn hinged—that the mind is, in some sense to be made more precise shortly, a computer—is

computationalism.

For philosophers, the first computational theories of mind (CTMs) offered an alternative to the

two competing accounts of how thought and action might be linked: behaviorism, which held that

every mental state could be identified with a disposition to act in certain ways, was contrasted with

“type-identity” theory, which identified mental states with (neuro)physiological states.63 As theories

of mind, both behaviorism and the type-identity theory have their drawbacks, while the functionalist

perspective espoused in print by Hilary Putnam in 1960—which drew on Alan Turing’s 1940s work

on the theory of computation for inspiration—seemed to remedy at least some of their deficiencies.

Functionalism identifies mental states with a disposition for action and, crucially, other mental

63. Rescorla, “The Computational Theory of Mind.” The discussion which follows closely tracks Rescorla’s
exposition until Baars’s work is picked up below. Computationalism can be viewed as an entry into the venerable
mind-body problem. A problem whose terms and long history cannot be broached here except to say that very much
of the philosophical debate on computationalism has moved forward with some ambivalence as to how the brain might
actually implement computation on the physical level. Thus we can dispense with the apparent distinction between body
(or brain) and mind, at least for the moment.

43



states.64 It posits that mental states interact not only with input and output, but also other mental states.

This justifies theoretical inquiry into and speculation about those states and their interactions in se,

since they are no longer reducible to either dispositions to act (per behaviorism) or to physical states

of the brain or (central) nervous system (per type-identity theory).

Putnam’s first articulation of this position drew heavily on the image of the mind as a Turing

machine, a stripped-down manipulator of abstract symbols, advancing a theory of mental states that

stressed its analogies to computing technology. His “machine functionalism” led to the articulation

of the first theories of mind that explicitly asserted that mental states were computational states. The

philosopher Jerry Fodor, with whom this position is widely associated, posited a “Language of the

Mind,” a symbol system that the mind manipulates in accordance with a set of mechanical rules. He

characterized reasoning as the computational manipulation of compositions of the symbols which

make up this mental language—the manipulation of mental representations. Fodor’s account may be

representative, but it was not without its detractors; a critical literature blossomed as the notion of

mental representation was taken upbe researchers outside of philosophy.

Two natural questions arise. First, how do these mental representations capture both the

perceptible qualities of the world beyond our bodies and of our inner lives? Second, what are the

rules that govern the manipulation of representations and hence mediate our relationship with

our environment, and potentially even our own conscious experience? These twin concerns with

hypothesizing mental representations of phenomenal experience and postulating candidate rulesets

that govern their manipulation by the mind are hallmarks of computationalism.65 Computationalism’s

interest in these questions of evident import to the human and animal sciences led to its adoption as

the dominant paradigm in psychological research, since mental representations could be hypothesized,

64. His first statement of this position was Hilary Putnam, “Minds and Machines,” in Dimensions of Mind: A
Symposium, ed. S. Hook (New York: New York University Press, 1960), 148–79; Putnam would refine and defend this
position in many publications that followed.

65. At least until the 1980s, at which point a new approach to modeling the brain—or, a revival of an old
idea—called connectionism grew in popularity both as a theoretical framework for CTM and as a practical set of
techniques for computational modeling. Connectionism raised important questions about the character of mental
representations: would they share any features with the phenomena that they are alleged to represent? Would
representations under connectionism have the character of symbols, and if not, could they be said to be representational
at all?
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their effects predicted, tested and falsified. As Bernard Baars claims in his The Cognitive Revolution

in Psychology (1986), “cognitive psychology is primarily a metatheory for psychology, one

that simply encourages psychologists to do theory, relatively free from prior philosophical

constraints.”66 In Baars’s view, cognitive science is an act of theoretical imagination “that permits

wider latitude in explanations for behavior” than behaviorism.67 Put more bluntly: computationalism

allowed psychologists to speculate and posit new theoretical constructs—representations—which, on

the functionalist view, needed only be related to each other and not necessarily tied to any detectable

or reportable behavior. Relieved from the obligation to account every postulated mental states with

some observable sign of behavior, the apparent fecundity of the discipline followed: its manifold

candidates for mental representations and its directory of hypothetical cognitive processes. This

conceptual productivity extended beyond the domain of mainstream experimental psychology into

other human sciences, clinical psychological settings, and—as we will shortly see—into musical

aesthetics.

Recent work by the philosopher Gualtiero Piccinini has complicated some of the story retold

above here, which has charted the historical development of beliefs about computationalism, and

glosses over their various mutual misunderstandings.68 From his contemporary vantage point,

Piccinini detaches computationalism from Putnam’s original machine functionalism, arguing both

that computationalism is compatible with many metaphysics of mind, and that there is no necessary

relationship between the elements of Turing’s theory of computation (especially Turing’s concept of

the Universal Turing Machine, or UTM) and computationalism. This latter connection is frequently

asserted outside of the philosophical literature, in which the UTM is held up as the mathematical

model that most exhaustively describes mind or the digital computer.69 Many computationalist

66. Bernard J. Baars, The Cognitive Revolution in Psychology (New York: Guilford Press, 1986), 144. Emphasis in
original.

67. Baars, 145.
68. Gualtiero Piccinini, “Computationalism in the Philosophy of Mind,” Philosophy Compass 4, no. 3 (2009):

515–32, https://doi.org/10.1111/j.1747-9991.2009.00215.x.
69. For a debunking of the overblown role of the UTM in the history of early computing, see T. Haigh, M. Priestley,

and C. Rope, “Los Alamos Bets on ENIAC: Nuclear Monte Carlo Simulations, 1947-1948,” IEEE Annals of the History
of Computing 36, no. 3 (July 2014): 42–63, https://doi.org/10.1109/MAHC.2014.40.
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theories of mind happen to be representational, but Piccinini denies that computationalism

necessarily implies the existence of representations and argues for a non-representational version

of computationalism that is nevertheless mechanistic. Of course, much work in cognitive science

and psychology has had and will maintain an interest in representations, despite their tendentious

relation to computationalism. Piccinini sees no contradiction here, either. Since non-computational

accounts of cognition are possible, representations will remain “a staple of mainstream psychology

and neuroscience. They are not likely to be eliminated from our explanations of cognition.”70 He

concludes with a relatively disunified view of computationalism today: not a single theory, then,

[c]omputationalism is a family of theories about the mechanisms of cognition. The
main relevant evidence for testing it comes from neuroscience, though psychology and
AI are relevant too. Computationalism comes in many versions, which continue to
guide competing research programs in philosophy of mind as well as psychology and
neuroscience.71

Though there are thus many computationalisms, I am mostly concerned here with expressions of

sympathy with computationalism that provided rhetorical support for the notion that musical behavior,

as a particular form of human activity, could benefit from explanations that appealed to explicitly

symbolic representational models of musical phenomena, normally thought to be processed or

manipulated by the mind. Or, they could appeal to less formal metaphorical uses of the language of

computing, that were none the less conceptually powerful for it. Piccinini also makes it quite clear

that support for such a position may also come from psychology, artificial intelligence (AI), and

neuroscience, all fields whose influence is also detectable on much of the musical research I describe

in the chapters that follow.

Computationalist writing about music, however, does not always make use of the philosophical

terms of art of CTM that we have used above. The reason for this is straightforward: the precision

afforded by that particular technical lexicon offers more to debates about the philosophy of mind than

to musical polemics. Instead, the consequences of computationalist positions, as they are expressed

in most music criticism or analysis is more likely to be manifest in common-sense metaphors than

70. Piccinini, “Computationalism in the Philosophy of Mind,” 526.
71. Piccinini, 526.
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in the philosopher’s argot.72 In the shadow of Lakoff and Johnson’s pioneering work on conceptual

metaphor, the musicologist Amy Bauer has described how a “Mind as Computer” metaphor operates

in two of pieces of twentieth-century music criticism which have taken on “difficult” modernist music

(serialism, atonal music, aleatory music) as their target: George Rochberg’s “The Structure of Time

in Music” (1973) and Fred Lerdahl’s “Cognitive Constraints on Compositional Systems” (1988).73

Bauer writes that

Lerdahl and Rochberg’s theories tacitly present tonal and other hierarchically structured
musics as metaphoric models of “normal” cognition, with the implication that atonal and
other non-hierarchically structured musics model “abnormal” states of mind. In effect,
cognitive constraints function less as a requirement for, than a description of, ordinary
cognition.74

Though I diverge from Bauer’s argument from this point on, she is nevertheless justified in

concluding that both these theories are normative in the sense that they predicate a particular kind of

musical listener: a computational one, as it turns out.75 Bauer argues that Lerdahl and Rochberg’s

critiques might be schematized as follows: “Hierarchical Systems of Musical Organization [Tonal

Music] Represent Normal Cognition.”

Drawing on the work of Diego Fernandez-Duque and Mark L. Johnson, who described how

computational metaphors pervade cognitive-science accounts of attention, Bauer clarifies that Lerdahl

and Rochberg levy a set of objections to “difficult” music that use the same suite of computational

metaphors used in contemporary cognitive psychology: that the mind is an information-processor,

that (cognitive) attention is a filter, and ultimately, that mind is computer.76 As Fernandez-Duque

and Johnson note, “metaphors are not merely crude ‘folk models’ used only by ordinary people in

their uncritical thinking. They are just as central to our best scientific theorizing as they are to our

72. Assuming that this criticism is non-technical with respect to the philosophy of mind.
73. Amy Bauer, “‘Tone-Color, Movement, Changing Harmonic Planes’: Cognition, Constraints, and Conceptual

Blends in Modernist Music,” in The Pleasure of Modernist Music: Listening, Meaning, Intention, Ideology, ed. Arved
Mark Ashby, Eastman Studies in Music (Rochester, NY: University of Rochester Press, 2004), 121–52.

74. Bauer, 124.
75. Bauer next suggests that (appearing to yield some ground to Lerdahl’s position, which she otherwise out to

refute) music that is not hierarchically structured—her example is Ligeti’s Lontano—can be heard as evincing some
features of psychotic or schizophrenic experiences

76. Bauer, 132–33.
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shared cultural models.”77 This is nothing more than the standard account of the structuring force of

conceptual metaphors, but it bears repeating because it raises the stakes in the case of critical writing

about music: the computational metaphor is no mere metaphor. On the contrary, it use implies a

particular commitment not only to a way of thinking about how the human mind operates, but also

to a way of thinking about music that flows from it. Departing from this premise, shared to various

degrees by not only Rochberg and Lerdahl but also the researchers whose work I describe below,

speeds very particular way of thinking that this project aims to lay bare: what I have here dubbed the

computational attitude.

Computational metaphors, pressed into service to account for musical behavior, have percolated

through to common usage. This is suggested by the following remarks made by bassist Barry Guy

after a 2006 improvised performance. Guy, the composer–performer George Lewis, and Lewis’s

computer-based improvising agent Voyager have just completed a musical engagement at Queen’s

University, Belfast. At the post-concert talk, Guy recounted his experience:

Well, in the three-way conversation, I’m picking up information from your machine. I’m
trying to decode things as much as possible. I have anticipations of things working. I’m
working with you on what you’re doing in real time. So it’s a three-way conversation.
I’m going through the same process that George is going through – adding up the
information, analyzing it, anticipating – all of these things happen in real-time
improvisation anyway. I’m kind of thrown into the middle of it, and you make the best
of that situation because that’s the life that we’re in as improvisers, which is to try and
make the story add up, and be surprised.78

Guy’s account makes liberal use of a number computational metaphors, indicated by my emphases

in the above-quoted passage: listening is “picking up information”; the process of in-the-moment

analysis is “decoding”; he is “adding up” the musical information which emanates, notably, not

only from Lewis’s computer-implemented creative machine, but from Lewis himself—it is a

“three-way” conversation. By characterizing improvisation as “real time,” Guy invokes a thoroughly

twentieth-century conception of in-the-moment musical making.

77. Diego Fernandez-Duque and Mark L. Johnson, “Attention Metaphors: How Metaphors Guide the Cognitive
Psychology of Attention,” Cognitive Science 23, no. 1 (1999): 85, https://doi.org/10.1207/s15516709cog2301_4.

78. George E. Lewis, “Mobilitas Animi: Improvising Technologies, Intending Chance,” Parallax 13, no. 4 (October
2007): 114, https://doi.org/10.1080/13534640701682867. My emphasis.

48

https://doi.org/10.1207/s15516709cog2301_4
https://doi.org/10.1080/13534640701682867


The first usage of “real time” recorded by the Oxford English Dictionary is in 1946, and is

attributed to the electrical engineer and digital computer pioneer J. Presper Eckert, who with John

Mauchly, designed and built what is widely considered to be the earliest general-purpose digital

computer: ENIAC.79 In fact, the sole sense for real time (as a noun) given by Oxford is “chiefly

computing,” and refers to “the actual time during which a process or event occurs, esp. one analyzed

by a computer, in contrast to time subsequent to it when processing may be done, a recording

replayed, etc.”80

The context here—Guy performing an improvisation with a computer—might justify his

adoption of a computational attitude toward his own performance; it may even be the right only to

adopt in such a context. Guy, however, is not alone in turning to this particular metaphor to describe

improvised musical performance: it is common currency, even absent an explicitly computationalist

theory of musical behavior, or, indeed, a computer at all. The music theorist Karim Al-Zand writes,

of improvisation, “in a live performance situation, the improviser faces many competing influences

at every point in a solo—the challenge for the soloist is to regulate these in a real-time context.”81

Simon Rose and Raymond MacDonald go further, recently defining improvisation “as real-time

composition” after conducting interviews with ten practitioners.82

1.4 Remastering the history of music computing

The practice of music computing considered most broadly, as it ought to be, includes both the digital

synthesis of new pieces of music with the computer—which is usually the referent of “computer

music”—but also extends to cover other non-sounding applications, such as the use of the computer

79. Martin Campbell-Kelly and William Aspray, Computer: A History of the Information Machine, Third edition,
The Sloan Technology Series (Boulder, CO: Westview Press, 2014), chap. 4 (“Inventing the Computer”).

80. “real time, n., adj., and adv.” Oxford English Dictionary Online. March 2019. Oxford University Press.
http://www.oed.com/view/Entry/238662 (accessed May 05, 2019).

81. Karim Al-Zand, “Improvisation as Continually Juggled Priorities: Julian ‘Cannonball’ Adderley’s ‘Straight, No
Chaser’,” Journal of Music Theory 49, no. 2 (2005): 232, http://www.jstor.org/stable/27639399.

82. Of their interviewees, not one is quoted as has having referred to their musical practice as “real time” in any way.
Simon Rose and Raymond MacDonald, “Improvisation as Real-Time Composition,” in The Act of Musical Composition:
Studies in the Creative Process, ed. Dave Collins (Farnham, UK: Ashgate, 2016).
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in service of music history, analysis, and even music-theoretical explorations of musical space. In

keeping with this desideratum, none of the computational approaches to music that I will discuss

in the three following chapters necessitate access to a DAC. In order to identify sources for a such

a history of music computing, one that comes out from under the sound-synthesis telos, we turn to

first to an area of music computing research sometimes called algorithmic composition or automatic

composition.

In the early 2000s, Christopher Ariza coined the useful term “computer-aided algorithmic

composition” (CAAC) to refer to a wide variety of computer applications that generate entire or

partial music compositions, admitting systems on a wide spectrum of autonomy.83 Ariza, himself a

computer musician, did extensive historical research into CAAC systems from the earliest decades

of digital computing, as part of the groundwork for a novel algorithmic composition platform of

Ariza’s own design: athenaCL.84 His Trojan work is attested to in an extensive and authoritative

online resource, algorithmic.net, which includes hundreds of bibliographic references to CAAC and

CAAC-adjacent writings that Ariza uncovered over the course of his research.85 The value of Ariza’s

taxonomy to the present project that it is more or less indifferent to the means by which a given

CAAC system synthesizes a sound, or whether it does so at all.

Computer music texts that focus chiefly on digital sound synthesis by computer, such as Roads’s

Computer Music Tutorial, nevertheless sometimes provide an overview of CAAC applications.86

There are also a number of self-standing histories of computer-aided analysis in the twentieth century,

of which the most sweeping in temporal scope is Nico Schüler’s two-part review in the multilingual

Slovenian journal Musicological Annual (2005, 2006).87 Other historical reviews of algorithmic

manipulations of score-based representations of music can be found incidental to the presentation

83. Christopher Ariza, “Navigating the Landscape of Computer Aided Algorithmic Composition Systems: A
Definition, Seven Descriptors, and a Lexicon of Systems and Research,” in Proceedings of the International Computer
Music Conference (International Computer Music Conference, Barcelona, Spain, 2005), 765–72.

84. Christopher Ariza, “An Open Design for Computer-Aided Algorithmic Music Composition: athenaCL” (PhD
diss., New York University, 2005), https://search.proquest.com/docview/305469710.

85. Christopher Ariza, “Algorithmic.Net | Algorithmic.net,” accessed May 5, 2019, http://algorithmic.net/.
86. Roads, The Computer Music Tutorial, chap. 18 (“Algorithmic Composition Systems”).
87. Nico Schüler, “Reflections on the History of Computer-Assisted Music Analysis I: Predecessors and the

Beginnings,” Musicological Annual 41, no. 1 (2005): 31–43, https://doi.org/10.4312/mz.41.1.31-43; Nico Schüler,
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of new computer-based techniques of analysis.88 Surveys of various CAAC algorithms from the past

century or so can also be found frequently in the contemporary artificial intelligence literature that

is focused on the autonomous generation of musical sounds.89 However, the chief purpose of such

publications is rarely historical. Such reviews tend to be partial and internalist in that they reflect

a rather selective and instrumental use of these older works. Their main purpose is to bolster the

case for the novelty of the applications they propose by gesturing towards prior art, rather than to

understand the set of relations between the computer applications there described and the history of

musical thought more generally, as we attempt to do here.

Starting with Babbitt, and passing through Ariza, we have picked up several examples of the

music computing applications of the kind that I will turn to below. I now move to describe the

kinds of historical evidence that can be brought to bear on understanding these applications. With

reference to recent progressive histories of the history of computer music, the history of computing,

and adjacent topics, I make the case for the careful study of the computer applications themselves.

I will take a particular interest how computer applications are documented in code or technical

documentation, with the important caveat that such primary sources cannot be fully understood

independent to the particular computer system that they are designed to relate to: we must also

consider the entire computational system—hardware, software, and the broader context: its platform.

Working on a much larger project to understand the role of collaboration in the creation of

computer music, Laura Zattra’s recent ethnographic work at IRCAM (Institut de Recherche et

“Reflections on the History of Computer-Assisted Music Analysis II: The 1960s,” Musicological Annual 42, no. 1 (2006):
5–24, https://doi.org/10.4312/mz.42.1.5-24.

88. See, for example, Reiner Krämer, “Algorithmic Music Analysis: A Case Study of a Prelude from David
Cope’s ‘From Darkness, Light”’ (Ph.D., University of North Texas, 2015), https://digital.library.unt.edu/ark:/67531/
metadc801959/; John Ashley Burgoyne, Jonathan Wild, and Ichiro Fujinaga, “Compositional Data Analysis of Harmonic
Structures in Popular Music,” in International Conference on Mathematics and Computation in Music (Springer,
2013), 52–63, https://doi.org/10.1007/978-3-642-39357-0_4. Rather imaginatively, Krämer has recently shown how
a computer programming environment of his own design can be used to perform an algorithmic analysis of a piece
that itself was algorithmically composed: a work by David Cope. On the analysis of algorithmic musical works, see
Nick Collins, “The Analysis of Generative Music Programs,” Organised Sound 13, no. 3 (December 2008): 237–48,
https://doi.org/10.1017/S1355771808000332.

89. See, for example, Jose D. Fernández and Francisco Vico, “AI Methods in Algorithmic Composition: A
Comprehensive Survey,” Journal of Artificial Intelligence Research 48 (2013): 513–82.
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Coordination Acoustique/Musique)builds on the earlier work of Georgina Born at the same site.90

Zattra tells the history of IRCAM’s idiosyncratic job title of the “Réalisateur en informatique

musicale” (RIM).91 Zattra shows how the role of RIM appeared for the first time in 1997, stabilizing

and consolidating the responsibilities of the more informal—but equally influential—roles of

assistant, tutor, and “musical assistant” that predated it.92 Her account mines internal memoranda and

meeting notes from IRCAM in order to trace the emergence of this role, showing how consideration

of this kind of evidence shifts the historical focus to the cooperation required by the production of

computer music, away from composer-pioneer narratives that attenuate the social realities of how

such work gets done.

Zattra has described how the computer exceeds conventional physical media, such as the

written word or traditional music notation: “The computer is much more than a medium [support]

for writing: it is a source for the study of a process of programming, it attests to the phase of

transitioning/translating between the musical universe of the composer and the digital universe,

it produces”texts” that schematize and operationalize compositional choices.93 This notion finds

considerable support from computer music practitioners, and concords with the notion that computers

afford certain perspectives on musical phenomena, and suppress others. Max Mathews, the designer

of the influential Music N computer music environments, explains how the Music V language—that

is, its lexicon, syntax, and semantics considered separately to the computer program that interprets

it—stands as an independent contribution to musical thought.

In some sense, I think today the Music V language is much more important than the
Music V program, in that almost anyone involved in computer music can read a Music V

90. Georgina Born, Rationalizing Culture: IRCAM, Boulez, and the Institutionalization of the Musical
Avant-Garde (Berkeley, CA: University of California Press, 1995).

91. Laura Zattra, “Les origines du nom de RIM (Realisateur en Informatique Musicale),” in Actes des Journées
d’informatique musicale (Journées d’informatique musicale (JIM), Paris, France, 2013), 113–20.

92. Zattra, 119.
93. Original: “L’ordinateur est bien plus qu’un support pour l’écriture: il est une source pour l’étude d’un

processus des programmation, il atteste la phase de transition/traduction entre l’univers musical du compositeur et
l’univers numérique, il produit des «textes» qui schématistent et opérationnalisent des choix compositionels.” Laura
Zattra, “Génétiques de la computer music,” in Gèneses Musicales, ed. Nicolas Donin, Almuth Grésillon, and Jean-Louis
Lebrave (Paris: Presses Universitaires de Paris Sorbonne, 2015), 213–38, https://doi.org/10.13140/RG.2.1.1829.2249,
220.

52

https://doi.org/10.13140/RG.2.1.1829.2249


score or read a description of a Music V instrument with unit generators and understand
it, and translate it into whatever language he or she is using, whether it be Music 11,
Music 10, or Music 360. It provides a well-documented and universally understood way
of describing a sequence of notes and their interpretation and musical instruments94

Mathews finds the value of his programming language in the standardizing effect that it exerts on how

pieces of music are represented. According to Mathews, Music V provides a common language in

which works can be constructed and understood by composers, serving not only as a language in

its own right but also as a common interchange format. That is, even if the composer chooses not

to use Mathews’s software to realize the piece, the description of the piece provided by Music V is

held to be sufficiently complete that it could serve as the basis for a translation or “port” to another

computer music environment.95 As an example, one feature of the Music languages which was reified

in Music IV and persisted through its subsequent incarnations (and even in indirect descendants, such

as Csound) is the distinction in code that Music N languages make between “score” and “orchestra.”96

Score files specify the note events that make up a Music V work; orchestra files define the synthesis

functions to which these events will be assigned, effectively specifying the “virtual instruments” that

realize the musical work. In this way, the Music N languages articulate a distant echo of the notion of

the orchestra, a way of organizing musical material and labor that began to be codified many centuries

before the first experiments at Bell Labs.

Annette Vee has analyzed the rhetoric of twenty-first-century “learn to code” campaigns,

describing the ways in which they construe coding as a form of literacy.97 When these programs do

so, they invite equivalences between computational literacy and traditional literacy: some mixture

of reading and writing competency in one’s native language(s). This is most commonly articulated

94. Curtis Roads and Max Mathews, “Interview with Max Mathews,” Computer Music Journal 4, no. 4 (1980): 18,
https://doi.org/10.2307/3679463.

95. Below I discuss in more detail the various versions and adaptations of Mathews’s program to which he briefly
alludes (Music 11, Music 10, Music 360)

96. Victor Lazzarini, “The Development of Computer Music Programming Systems,” Journal of New Music
Research 42, no. 1 (2013): 98, https://doi.org/10.1080/09298215.2013.778890.

97. Annette Vee, Coding Literacy: How Computer Programming Is Changing Writing, Software Studies
(Cambridge, MA: The MIT Press, 2017); Annette Vee, “Understanding Computer Programming as a Literacy,” Literacy
in Composition Studies 1, no. 2 (2013): 42–64, https://doi.org/10.21623/1.1.2.4.
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in the form “code is just another language.”98 Specifically, computer coding-as-literacy taps into a

rich, extant discourse about the salutary aspects postulated of mass literacy. The last several centuries

have seen the motivations for mass-literacy programs shift from the explicitly moral (that is, the

Reformation ideal that enables wider access to liturgical texts and their moral codes) to the explicitly

technological (that is, literacy facilitates efficient participation in the workforce). Vee is justifiably

concerned that co-option of the rhetoric of “literacy” by advocates for coding risks perpetuating a

narrow understanding of what coding is and what—and who—it is considered to be good for, one that

is constrained by instrumental and, ultimately, discourses of efficiency and productivity. As Vee puts

it: “Values espoused in computer science, while productive in professional contexts, are too narrow

for a future where programming might become a generalized rather than specialized practice—a

literacy.”99

Overstating the similarity between code and language—considering it merely a constrained or

stilted form of written language—has been shown to lead to partial accounts of computing, just as the

apparent stability of the score has been unsettled in contemporary musicology. This score-centered

ecology evinces what Nicholas Cook (borrowing from theater scholar Susan Melrose) has called

the “page-to-stage model” of musical production, a historically specific practice that emerged during

the nineteenth-century.100 This older perspective which nevertheless today holds some purchase,

endows the written musical text, the score, with considerable ontological force: it is the content of the

score which is identified with the work. According to this view, the performer’s contribution, while

necessary, is surplus to the musical works thought to be captured by the final version of the score that

defines them.

But viewed in a different light, both computer code and musical scores are more like scripts

for action than bearers of content; the former normally being thought of as specifying the behavior

98. For a complementary perspective from a classicist on this question, see Patrick J. Burns, “The
Ancient Case Against Programming ‘Languages’,” EIDOLON (blog), April 24, 2017, https://eidolon.pub/
the-ancient-case-against-programming-languages-b8d253ea6e64.

99. Vee, “Understanding Computer Programming as a Literacy,” 44.
100. Nicholas Cook, “Between Process and Product: Music and/as Performance,” Music Theory Online 7, no. 2

(April 2001): para. 22, http://www.mtosmt.org/issues/mto.01.7.2/mto.01.7.2.cook.html.
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of a digital computer, and the latter as specifying the behavior of human performers.101 That

computer-music code might sometimes conflate these two is not so much a problem for this

distinction as a delight, so long as we can maintain a firm grasp on both disciplinary threads. As

Roger Moseley and others have shown, this particular point of contact between computer code and

music notation has existed for some time, and is manifest in the common material forms of early

computing and automatic music.102 The punched-card system for representing data first used in

automatic tabulators in the late nineteenth century, and later as a de facto standard for data input

by the manufacturers of digital computers, is thought to have been directly inspired by the use of

similar rolls of punched card to specify textile patterns for automatically controlled looms. These

looms, though refined and popularized by Joseph Marie Jacquard (1752–1834), were first fully

automated some decades earlier by Jacques de Vaucanson (1709–1782), an avid and renowned builder

of automata—including musical ones.

As Rebecca Cypess writes, Vaucanson was intimately familiar with analogous contemporary

practices for storing musical patterns in various physical media.103 Works of music were routinely

encoded during the eighteenth-century on pinned cylinders: for barrel organ, musical automata,

musical clocks, and church carillons. Any sense that these curious automata were diversions

exclusively reserved to post-Enlightenment Europeans that may arise from the relatively small

number of examples marshaled here is dispelled by considering the still-longer history of these

machines. Teun Koetsier describes how the ninth-century Persian designs of the Banū Mūsā (the

three “sons of Musā [ibn Shākir]”) describe a programmable musical automaton: the water-powered

101. This is precisely the course-correction for which Cook advocates, noting the critical consequence “the shift from
seeing performance as the reproduction of texts to seeing it a cultural practice prompted by scripts results in the dissolving
of any stable distinction between work and performance.” Cook, para. 16.

102. Roger Moseley, Keys to Play: Music as a Ludic Medium from Apollo to Nintendo (Oakland, CA: University
of California Press, 2016), https://doi.org/10.1525/luminos.16, 49–59. See also, David Suisman, “Sound, Knowledge, and
the ‘Immanence of Human Failure’ Rethinking Musical Mechanization Through the Phonograph, the Player-Piano, and
the Piano,” Social Text 28, no. 1 (102) (March 1, 2010): 13–34, https://doi.org/10.1215/01642472-2009-058.

103. Rebecca Cypess discusses how one of the most famous treatises describing the practice of “pinning” musical
cylinders (in French, “notage”), Marie-Dominique-Joseph Engramelle’s La tonotechnie, ou l’art de noter les cylindres
(1775), appealed to his readers’ assumed familiarity with Vaucanson’s automata in order to ground the approach
to recording and realizing musical performances that it describes. Rebecca Cypess, “‘It Would Be Without Error’:
Automated Technology and the Pursuit of Correct Performance in the French Enlightenment,” Journal of the Royal
Musical Association 142, no. 1 (2017): 1–29, https://doi.org/10.1080/02690403.2017.1286115
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“Instrument Which Plays By Itself.”104 Despite the valuable eighties work of Jan Haspels, which

remains authoritative, a comprehensive, global, and critical history of these devices has yet to be

written.105 For now, it suffices to note these most early mechanisms suggest that no sooner than there

were machines, there was mechanical music.

Musicologists that cite these automata view them as valuable evidence of lost styles of musical

execution (as they are for Cypess) or, quite literally, animated documents of contemporary musical

aesthetics, more generally.106 Musical automata promise researchers faithful transcription—what

Nicholas Seaver calls “re-performances”—of expected modes of musical engagement from an

era before verisimilar audiovisual recording technology; we might say that they seem to encode

prescriptive codes that have been lost to history, to pun on Peter Kivy’s formulation.107 In the long

history of computing machines, however, machines controlled by punch card serve a different

purpose. The support the hypothesis of continuity between industrialization practices of the

eighteenth century—represented by the programmable loom—and the mechanization of statistical

thought at the turn of the nineteenth, epitomized in the automated tabulating machines. Few

historians of the prehistory of modern computing fail to point out that Charles Babbage’s unrealized

Analytical Engine was to use punched cards for numerical data entry; Hermann Hollerith, who

104. Teun Koetsier, “On the Prehistory of Programmable Machines: Musical Automata, Looms, Calculators,”
Mechanism and Machine Theory 36, no. 5 (May 2001): 590–91, https://doi.org/10.1016/S0094-114X(01)00005-2.

105. Jan Jaap Haspels, Automatic Musical Instruments: Their Mechanies and Their Music, 1580-1820 (Koedijk:
Muziekdruk C.V., 1987).

106. For examples of the latter, see Emily I. Dolan, “The Origins of the Orchestra Machine,” Current Musicology,
no. 76 (2003): 7–23, 8ff. See also, Emily I. Dolan, “E. T. A. Hoffmann and the Ethereal Technologies of ‘Nature Music’,”
Eighteenth-Century Music 5, no. 1 (March 2008): 7–26, https://doi.org/10.1017/S1478570608001176.

107. Nicholas Patrick Seaver, “A Brief History of Re-Performance” (MSc (Comparative Media Studies) Thesis,
Massachusetts Institute of Technology, 2010). In “Making the Codes and Breaking the Codes: Two Revolutions in
Twentieth-Century Music,” Peter Kivy plays on the multiple senses of the word “code” to characterize what he sees as
two successive moments of rupture in the history of music listening practices in the West. Serialism rang the changes
of music’s “expressive code,” which in Kivy’s sense refers to the potential—shared in common by suitably predisposed
listeners—for music to be understood as signifying. But it did not disrupt music’s “prescriptive code,” which since at least
the second half of the eighteenth century (according to Kivy) is “a way prescribed in which listening is to be done.” Peter
Kivy, “Making the Codes and Breaking the Codes: Two Revolutions in Twentieth-Century Music,” in New Essays on
Musical Understanding (Oxford: Clarendon Press, 2001), 44–67, 44. The job upturning of music’s prescriptive code was
left to minimalism, to whose listening community Kivy attributes an allegedly new set of norms for experiencing music.
Kivy, 62ff.
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designed the tabulators first used in the 1890 US Census on similar principles, was reportedly also

inspired by Jacquard’s programmable looms.108

Here, pre-digital musical automata serve yet another, if complementary, end. Contemplating

the material dimension of musical automata plants the seed for the idea that seemingly abstract

computational descriptions of musical processes always suggest a particular executor. While we

might be happy to read these encoded pieces of music off the various cylinders and treat them as raw

musical data supporting the excavation of lost practices of division and ornamentation or a certain

aesthetic of interestedness, they are by contrast no more and no less than set of scripts for a particular

piece of hardware. Excepting deliberate attempts to develop representations that work on more than

one device—what we might anachronistically call a format—each pinned cylinder, each piano roll,

each source code artifact runs on a machine with its own technical properties, whether it be a certain

musical automaton or a certain computer system. These encoded scripts for action may not adequately

understood in isolation; they must always be related to the system that executes them. This leads

rather directly to the concept of the platform, to which I now turn.

The notion of the platform goes some way towards correcting for the partiality of the view that

musical ideas—whether pinned on a revolving cylinder or manifest in the code of a computer-assisted

analysis—are fully exhausted by their description as a symbol set, as mythologically “raw” musical

data. Evidence of the lateral and vertical co-ordination of knowledge required for computer

music—of the kind which interested Born and Zattra—can be deduced from traditional documentary

sources. For example, Born uses organizational charts that depict hierarchical relations between

computer musicians, technicians, and stagaires. Contemporary technical documentation records how

technical information is codified and distributed within and between computer utilities; all this prior

to the description of the first protocol for the Internet in the 1970s. Importantly from our perspective,

however, it may also be reflected in features of the platforms—that is, the joint cooperation of

computer software (for example: programming language, operating system, utility programs), and

108. Matthew L. Jones, Reckoning with Matter: Calculating Machines, Innovation, and Thinking About Thinking
from Pascal to Babbage (Chicago: The University of Chicago Press, 2016), 47; Geoffrey Austrian, Herman Hollerith,
Forgotten Giant of Information Processing (New York: Columbia University Press, 1982), 16–17.
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hardware (for example: processors, storage facilities, physical interfaces)—that are used to realize

them.109

Thus, software—the code—is only a single part an assemblage of things that constitutes each

music computing application, including but not limited to: the programming language in which

the code is written, the encoding formats (that is, the specific digital representation of the score and

other data) used, the physical computer system it is executed on, the operating system that such a

computer uses, and so on. This kind of analysis is adumbrated by Born in her ethnographic study

of computer music at IRCAM, when she recounts the 1980s work of interactive computer-music

pioneer “BL” (George Lewis), who spurned the special-purpose 4X real-time synthesizer, which

had been designed and built at great expense for the institute, and preferred instead to work with

the Apple II computer.110 According to Born, through his technical choices, Lewis “expressed his

willful marginality through symbolic, spatial, and temporal means.”111 The status of the 4X as a

one-off prototype platform contrasts with that of the Apple II, a consumer microcomputer that sold no

fewer than 2 million units.112 As a voracious autodidact, Lewis drew on the wide user-base and rich

documentation associated with Apple’s commodity small-office/home computers. The (relatively)

low cost of the Apple II, its popularity relative to its competitors, and the portability of its magnetic

diskette removable storage meant that Lewis could leave the physical confines of IRCAM for his Paris

109. The term “platform studies” was coined by Nick Montfort and Ian Bogost, two new media scholars who sought
to intervene upon a tendency to describe and analyze new media works on the level of content or form—say, from
the perspective of a player of a particular home video game. Platform studies is an interdisciplinary enterprise which
embraces the technical challenge of describing new media artifacts at the level of the underlying systems which are used
to realize them—for example, paying attention to the from the perspective of a developer writing code for the particular
games console on which many games are realized. The adaptation of this framework as way to re-orient the study of
music computing works is appealing, and it was anticipated by its designers. Montfort and Bogost note in a response
to some early critics of their research program that platform studies accommodates precisely such an extension of the
field to other diverse new media forms: platform studies is not just for video-game geeks. Ian Bogost and Nick Montfort,
“Platform Studies: Frequently Questioned Answers,” in Proceedings of the Digital Arts and Culture Conference (Digital
Arts and Culture, Irvine, CA, 2009)

110. Born, Rationalizing Culture, 189ff.
111. Born, 191.
112. Estimates of the sales of Apple microcomputers from this period vary widely; Apple did not release any official

sales figures and there were a number of variants and upgraded versions of the Apple II. 2 million represents a relatively
conservative estimate made by the National Museum of American of History. “Apple II Personal Computer,” National
Museum of American History, accessed May 5, 2019, https://americanhistory.si.edu/collections/search/object/nmah_
334638.
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apartment and yet continue to work on his project; programmers and composers who chose (or were

assigned) to work with the 4X were tied to the IRCAM premises.

In a later reflection on his platform choices, Lewis recognized that decisions that appear chiefly

“technical” have significant political consequences. Of Forth, the programming language in which he

chose to implement Voyager, the creative music agent described above, Lewis writes:

Seemingly anti-authoritarian in nature, during the early 1980s Forth appealed to a
community of composers who wanted an environment in which a momentary inspiration
could quickly lead to its sonic realization—dialogic creative process, emblematic of an
improviser’s way of working. As the Forth culture developed […] Forth and its dialects
[became] perhaps the most widely used language group for interactive music before
the advent of Max, a language that similarly centers the dialogic as part of the software
construction process.113

In Lewis’s work the alleged politics of a computer platform are manifest in the human–computer

interaction paradigms (“dialogic,” “interactive”) that are made possible within a given programming

language, Forth, which runs on a given system: the inexpensive and relatively portable Apple II.

Another example of the richness of the platform perspective can be seen in the case of the Music

N languages. Music IV was considered to be sufficiently feature-rich by researchers outside of Bell

Laboratories, so they took an interest in rewriting it to work on computer hardware other than that

for which it was originally designed. This is a kind of utility programming called “porting.”114 Such

extra programming work was necessary since during the 1960s (and indeed well into the 1980s),

many computer installations varied in such significant ways that code written to be executed on one

platform would rarely—if ever—run without modification. Alex Di Nunzio has carefully traced the

relations between various members of the Music N languages, and has represented them faithfully in a

family tree, shown here in Figure 1.2.115

From a platform studies perspective, we consider this diagram as simply one of many

cross-sections through a dense network of affiliations between computer installations, institutions, and

113. George E. Lewis, “Too Many Notes: Computers, Complexity and Culture in Voyager,” Leonardo Music Journal
10, no. 1 (December 1, 2000): 34, https://doi.org/10.1162/096112100570585.

114. Roads and Mathews, “Interview with Max Mathews,” 60.
115. Alex Di Nunzio, “Genesi, sviluppo e diffusione del software ‘Music N’ nella storia della composizione

informatica” (Tesi di Laurea, Università degli Studi di Bologna, 2008).
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Figure 1.2: “Family tree” depiction of the variants, ports, and descendant programming
languages of the Music N family, beginning with Music I. (In Alex DiNunzio. “Genesi,
Sviluppo e Diffusione Del Software ‘Music N’ Nella Storia Della Composizione
Informatica.” Tesi di Laurea, Università degli Studi di Bologna, 2008.)
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computer workers that is traced by the various acts of porting. Music IV was ported to FORTRAN for

use on the CDC-3600 at Argonne National Laboratory by the physicist and composer Arthur Roberts

(Music IVF), for reuse at Princeton University by Hubert Howe and Godfrey Winham (Music IVBF),

and to the PDP-6 at the Stanford University Artificial Intelligence Laboratory (SAIL) by Dave Pool

(Music 6).116 Were we to take at face value Mathews’s claims for the Music V environment’s value as

an abstract, symbolic lingua franca, the Music N family tree collapses into a single line. Its various

versions would be misunderstood as incremental improvements—point revisions—on the same

fundamental technical fantasy: a fully standardized digital specification of works of computer music.

On the other hand, attending to the platforms for which each of these “ports” of Music IV were

targeted reveals a transcontinental network of computers, their owners, and their operators and speaks

to the variety of local arrangements that are possible in the sites of music computing. The various

ports of Music IV found users not only in the Department of Music at Princeton, but also in the early

AI labs of the West Coast and the nuclear research establishment of the United States. Describing the

platforms on which this code ran provides a fuller view of the “experimental system,” as Rheinberger

has it, in which the computer-as-instrument functions.

In short, any music computing document—code itself, a more abstract algorithmic specification,

or a manual that documents a programming language—could well be productively analyzed on its

own terms for the kinds of representations of musical objects it affords and the relationships between

them that it admits. However, to recall Rheinberger’s words one final time, attending to these sources’

“local, technical, instrumental, institutional, social, and epistemic” embedding provides a fuller

account of how they function as a vector for the computational attitude. Accordingly, just as the

performance studies turn in musicology has productively decentered the score-centered ontology of

the musical work, so too may careful attention to platforms direct our attention through—but not

beyond—the simple, if crucial, instrument of the computer itself, and on to the attitude toward music

it engenders.

116. Arthur Roberts, “MUSIC4F, an All-Fortran Music-Generating Computer Program,” in Proceedings of the AES
Convention (Preprints), 1965, http://www.aes.org/tmpFiles/elib/20190320/1043.pdf.
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1.5 Conclusion

As I have argued here, the computational attitude amounts to explicit and implicit engagement by

musicians and music scholars with two twentieth-century developments outside of the traditional

disciplinary province of music—the computer and computationalism. These developments are

technological and intellectual, respectively; this liaison couples the history of twentieth-century music

theory to both the history of computing technology and to the intellectual history of the cognitive

sciences. Though it is difficult to disentangle these two disciplinary histories, in this chapter, I

have opted to set out how particular instances of the computational attitude—at each of the three

levels on which I hold it can operate—might be substantiated with careful use of a particular kind

of documentary evidence: traces of computer code and information about their platforms. Such a

focus on the documents of computing may seem like an idiosyncratic place to start for a history of

music theory. This evidentiary focus is justified in part by the case that I have made for the epistemic

function of the computer, which, after Rehding and Rheinberger, argues that computers function

not only musically in their capacity as sound-producing instruments, but also theoretically, as the

instruments of the music theory latent in their code.

Recognizing this role for the computer gives us a new site to look for further evidence of the

constructedness and contingency of music-theoretical knowledge, during the twentieth-century: a

period in the history of music theory which, in North America especially, endured an influential and

consequential turn to scientism that—at first glance—appears to have import an epistemic “hardness”

for its claims by invoking the apparently objective language and protocols of computation. Rather

than understand the decades of computer use by some musicians and musician scholars (for instance

Forte) as evidence of a desire for to piggyback on the objectivity of “computer science” (as Girard

has it) inter alia, leaving music theory as a client of another discipline I suggest instead that there is

a computational attitude to music that is, first and foremost, an attitude proper to music studies. On

this view, the computer applications that I discuss below are figured as voluntary and strategic uses of

the computational attitude which in many cases, advance agendas already fully ramified within music
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theory: in the case of Forte’s score-segmentation program (Chapter 4), this is Forte’s score-centered,

music-structuralist perspective on analysis; in the case of the information-theoretic work described

in Chapter 3, this is the notion that musical behavior is not sui generis but rather a language-like or

information-processing behavior that might be accounted for in a general framework of human mental

activity; in the case of the international search for the elusive all-interval series, to which we now turn

in Chapter 2, it is a collective belief held by modernist composers and their advocates in the inherent

value of catalogs of new musical resources.
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2 | Enumerating the all-interval twelve-tone series by
computer in Vienna, Ispra, and New York

2.1 Introduction

There are 1,928 transformationally distinct all-interval twelve-tone series. How—and why—do we

know this fact? This chapter answers these two questions by describing how digital computers were

employed to enumerate this class of twelve-tone series in the period between 1959 and 1963. Though

the problem of enumerating the full stock of all-interval twelve-tone series was first clearly articulated

in the 1920s, it remained unsolved until almost forty years later. The 1950s saw especially rapid

progress on a solution to this problem. In 1952 Herbert Eimert could publish just eighteen all-interval

twelve-tone series in the second edition of his Lehrbuch der Zwölftontechnik, despairing that the

completion of an exhaustive list would require much, much manual work. By 1959, however, a

complete catalog of all-interval series was prepared in Vienna, under the supervision of the composer

Hanns Jelinek thanks to the help of the first fully-transistorized digital computer to be built in Europe,

Mailüfterl. By the time Eimert published Grundlagen der Musikalischen Reihentechnik in 1964, he

could proudly include a complete list of the all-interval twelve-tone series along with scores of pages

of theorizing about their musical properties. He raved:

Vier Jahrzehnte lang hat diese Reihenfestung jedem Eingriff standgehalten, nur
diesen und jenen kleinen Zipfel preisgebend, und nun liegt sie geöffnet vor einem wie
die verbotene Frucht vom Baum der Erkenntnis.
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For four decades, this serial fortress has resisted every encroachment, only disclosing
this or that little corner, and now it is open before us like the forbidden fruit from the
Tree of Knowledge.1

In this chapter, I describe how the task of enumerating all possible all-interval series was taken on by

twelve-tone composers since its framing in the 1920s, and how it was repeatedly solved between 1959

and 1963—apparently independently–in at least three geographically distinct centers of research by

recourse to the programmable digital computer.

The problem of enumerating the total set of all-interval series was easy to express concisely,

but it was quickly revealed to be decidedly non-trivial to solve. Even today, despite its formal

framing as a problem of proper to the mathematical field of group algebra, there is no practical

way to produce such a list without the help of a computer.2 These features of the problem helped

bring about the coordination of musical and computational expertise necessary for its solution. The

intelligibility of the problem to computer experts made use of combinatorial techniques that were, by

then, well-established as tools of twelve-tone theory. By drawing on this accumulated knowledge of

compositional technique, the musicians and scholars whose work is described in this chapter would

make aspects of the theory of twelve-tone composition legible as computation to their technical

collaborators, to themselves, and to their readers.

Although the introduction of programmable digital computers made a computerized solution to

the all-interval series problem more accessible, it remained the case throughout the 1960s that access

to such a computer was conditioned on having a working relationship with institutions that could

afford them. Even within such institutional settings, access to computing resources for musical ends

was by no means a foregone conclusion. It required researchers who were skilled both in music and in

other disciplines, and entailed the explicit reformulation of musical research in service of more widely

accepted institutional priorities or depended upon the use of surplus computer time, when computing

resources were underused by the supporting institution.

1. Herbert Eimert, Grundlagen der musikalischen Reihentechnik, Bücher der Reihe 1 (Wien: Universal Edition,
1964), 45. All translations are my own, unless otherwise indicated.

2. Harald Fripertinger and Peter Lackner, “Tone Rows and Tropes,” Journal of Mathematics and Music 9, no. 2
(May 4, 2015): 111–72, https://doi.org/10.1080/17459737.2015.1070088.
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This chapter reports in detail on the results of the three groups of researchers who arrived at

accurate and exhaustive lists, evidently working independently of each other, within the space of less

than ten years. First, I present a history of the all-interval series up until the time of the exhaustive

enumeration of its members, and argue for its status as a privileged musical object in the eyes of two

composers who wrote about the all-interval series problem in the pre-digital age: Fritz Heinrich Klein

and Ernst Krenek. Next, I focus on each of the three groups who solved the all-interval problem in

chronological order. The work of Stefan Bauer-Mengelberg and Melvin Ferentz is regularly cited

when the list of all-interval series is discussed in later literature, but, by the time of its publication

in 1965, was already behind the work of Andre Riotte (1963) and the joint effort of Jelinek and

Heinz Zemanek (1959). To Klein and Krenek, who could only imagine a complete list, the catalog

of all-interval series promised detail about the structure of the newly-proposed twelve-tone system,

and solutions for open questions about their rarity and their internal structure. To those who had

it to hand by the end of the 1950s, the catalog became the starting point for further theoretical

investigation, as they parsed it for any signs of useful structure, hoping to demonstrate more general

and hand-computable methods that would generate series having this particular property. The chapter

concludes with a brief consideration of this more recent research on all-interval series.

It is tempting to describe these research efforts by locating them somewhere on the axes

of several familiar oppositions. Consider the apparent step change between analog and digital

computing. Since the all-interval series problem was not solved until programmable digital computers

were used to prepare an exhaustive catalog, we might be inclined to characterize the knowledge

thus attained as a milestone in music studies’ (and the humanities’) slow but steady migration to

digital forms of knowledge creation, leaving the antediluvian methods of hand-computation behind

in the “analog” age.3 Other dichotomies blossom: Krenek’s assessment of the computer’s impact

on composition seems to vacillate between techno-optimism and techno-pessimism; Jelinek’s work

transfers computational skills practiced in laborious hand-calculation to automated computation;

3. For a concise and well-argued expression of deep skepticism about the value of precisely such a narrative, see
Jonathan Sterne, “Analog,” in Digital Keywords: A Vocabulary of Information Society and Culture, Princeton Studies
in Culture and Technology (Princeton, NJ: Princeton University Press, 2016).
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Bauer-Mengelberg and Ferentz’s work revels in the theoretical techniques of computational

optimization and refinement, rather than in talk of the pragmatics of engineering a working

implementation. Though they may well arise as topics of concern, such a priori paired themes should

not be felt to predetermine the course of the discussion that follows.4 The leitmotifs of the story of the

all-interval twelve-tone series may not be so easily coordinated in a space of such dichotomies. Our

focus, rather, is on those artifacts that provoke us to think in such terms in the first place.

By drawing on the historical record to demonstrate twelve-tone theory’s legibility to computer

programmers and the contemporary dependence of computer music research upon largely

non-musical institutions and the charismatic figures who coordinated access to computational

resources and expertise, I support the thesis-at-large that computer applications to music

simultaneously cultivate and exploit a computational attitude toward music that has affected the

intellectual orientation of its canonical achievements and its practitioners.

2.2 The problem

2.2.1 Specifying the problem

Since this chapter centers a history of a problem in musical combinatorics, recounting our current

understanding of the problem and its solutions will be the first move. This retelling serves two

functions. First, it fully specifies the problem and its solutions to those readers for whom it is

unfamiliar. Second, it emphasizes how the solution to the all-interval problem can be expressed as

an algorithm: an imperative procedure, often involving some repetition, for solving mathematical

problems.

The all-interval series problem can be stated succinctly:

4. Contrast with Taruskin on the history of twentieth-century music: “The contradictory or ‘dialectical’ themes
broached in these introductory paragraphs—triumph vs. insecurity, responsibility vs. escape, science-as-savior
vs. science-as-destroyer, esotericism vs. utility, intellect vs. barbarism, faith in progress vs. omnibus suspicion—will be
the cantus firmi of the next several chapters, along with the all-pervading image of rubble and waste, and the paralyzing
(or inspiring) prospect of rebuilding. All of the bizarre and contradictory musical events and phenomena to be recounted
must be understood as counterpoints against these intractable and irresolvable dilemmas that unbalanced the world’s
mind.” Richard Taruskin, The Oxford History of Western Music (Oxford: Oxford University Press, 2005), vol. 5, 3.
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Which twelve-tone series contain all (distinct and unique) eleven ordered pitch-class
intervals between directly successive pairs of notes?5

Take the following series: <E♭, G♭, D♭, G, C, D, B, B♭, A♭, F♭, F, A>. Listing the size in semitones

of the intervals between directly successive pairs of notes in this series gives: <3, 7, 6, 5, 2, 9, 11,

10, 8, 1, 4>, an interval sequence in which no such ordered pitch-class interval is repeated. Now

that we know that at least one such series exists, a composer interested in exploiting the features of

an all-interval series in her own piece, would reasonably wonder if any others exist. By the natural

application of a sufficient number of rounds of the four canonical serial operations (transposition,

inversion, retrograde, and retrograde-inversion), we can obtain, at most, 47 other all-interval series.6

Recall the effect of applying transposition to a twelve-tone series: the pitch level of the melody (the

“row”) standing for the series changes, but the order of its intervals does not. Accordingly, it suffices

to summarize the effects of these operations on the interval sequence in Table 2.1.

Table 2.1: Forms of an all-interval series (S) under the canonical twelve-tone operators
(transposition, inversion, retrograde, retrograde-inversion) showing the all-interval
property is preserved.

Form Pitches Intervals

T0(S) <E♭, G♭, D♭, G, C, D, B, B♭, A♭, F♭, F, A> <3, 7, 6, 5, 2, 9, 11, 10, 8, 1, 4>

I0(S) <E♭, C, F, B, G♭, E, G, A♭, B♭, D, D♭, A> <9, 5, 6, 7, 10, 3, 1, 2, 4, 11, 8>

R6(S) <E♭, B, B♭, D, E, F, A♭, G♭, D♭, G, C, A> <8, 11, 4, 2, 1, 3, 10, 7, 6, 5, 9>

RI6(S) <E♭, G, A♭, E, D, D♭, B♭, C, F, B, G♭, A> <4, 1, 8, 10, 11, 9, 2, 5, 6, 7, 3>

.

If original series has the all-interval property, then so too do its canonical serial transformations.

Pre-college mathematics tells us that there are no fewer (and no more!) than 12! (12 x 11 x 10 … 2

x 1) twelve-tone series and we’ve only accounted for 48, a mere fraction of a percent. But the way

5. This problem makes sense for other equal-tempered systems as well. Subsequently, unqualified references to the
all-interval series problem should be understood to refer the framing in the twelve-tone equal temperament case.

6. “At most,” since certain rows are symmetrical under certain operations.
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forward is clear. We know how to measure intervals in a n-tone equal temperament system, and

we can recognize when the set of successive intervals exhausts the (n-1) equal-tempered intervals

possible in that system. Given these two competencies, it is trivial to specify a deterministic process,

which when followed, guarantees a complete list of the all-interval twelve-tone series. This process

can be summarized as a series of imperative statements, structured to facilitate computational

implementation: as an algorithm.

Expressing the solution to a problem as an algorithm can lead to ready computational

implementation, since programmable computers consume imperative instructions (in the form of

program code) and excel at uncomplainingly completing repetitive calculations at high speed. Nathan

Ensmenger and Paul Ceruzzi have noted the rising importance of algorithms around the time that

the all-interval series catalogs were generated. The study of algorithms became the central concern

of the inchoate subject of computer science.7 Algorithms may be analyzed and optimized, using a

combination of the tools of discrete mathematics, technical expertise with specific computer systems,

and an understanding of the domain-specific affordances of the problem to which a given algorithm

promises a solution.

If algorithms seem to be interlopers as objects of music theory, consider the process by which

students are taught to identify the quality of chords in open position, or indeed, the process for

determining the “prime form” of an arbitrary pitch-class set. Many readers will be aware that there

are at least two popular definitions of “prime form” which diverge in that they prefer different

prime-form representatives for a small number of pitch-class sets. Some might know that one is

preferred by computer programmers: it requires, on average, fewer lines of code to implement

(though this always depends on the exact programming language used). This is a concrete, and

familiar, example of how computational criteria pervade the tools of music theory that we continue to

use, even when we are away from the (computer) keyboard.

In some cases, optimization can precipitate computational applications that were previously

impractical. The naive formulation of an algorithm to compute an exhaustive catalog of all-interval

7. Nathan Ensmenger, The Computer Boys Take over: Computers, Programmers, and the Politics of Technical
Expertise (Cambridge, MA: MIT Press, 2012), 131.
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for each permutation of the twelve pitch classes:

compute the sequence of intervals between successive pitch classes in the permutation

if the sequence contains exactly and only the eleven intervals of the system
...then add the permutation to the list of all-interval series

otherwise
...consider the next permutation

Figure 2.1: Algorithm 1; Brute force, tone set test

series would not just take an inconveniently long time to run, it would take an impracticably long

time to run, and perhaps voraciously consume finite computational resources, for example, the data

storage capacity of short- or long-term memory.8 Naive, first-time-round solutions can be improved

upon by the application of optimization techniques that exploit domain expertise pertaining to

the specific problem to be solved. The optimization of algorithmic solutions to music-theoretical

problems—exemplified by the all-interval series problem—involves the encounter between two kinds

of expertise: the computational and the musical.

This algorithm requires exactly 12! tests to be performed; we check the sequence of intervals

induced by every single permutation of the twelve pitch classes to see if it exhausts what might be

called the interval aggregate (that is, the eleven equal-tempered directed intervals). Now, knowing

that if we have a single all-interval series, we can just apply the canonical serial transformations and

get a handful for free, why not cut down the number of tests we have to perform by switching our

focus to the interval sequences themselves? Instead of generating over 479 million permutations of

the twelve tones, we can consider the 11! permutations of the eleven ordered pitch-class intervals.

Then, for each such permutation, we ask if those intervals can appear in a twelve-tone series that

exhausts the aggregate. Algorithm 2 reflects this change of focus.

8. Some music researchers were all too aware of these limitations: Herbert Eimert pointed out the technical
impossibility (at that time) of generating and storing on magnetic drum memory all possible permutations of the
twelve-tone aggregate. Eimert, Grundlagen der musikalischen Reihentechnik, 43.
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for each permutation of the eleven intervals:

compute the pitch-class set that arises from applying the permuted intervals
as successive transpositions of a fixed starting pitch class

if the pitch-class set contains exactly and only the twelve notes of the system
...then add the permutation to the list of all-interval series generators

otherwise
...consider the next permutation

Figure 2.2: Algorithm 2; Brute force, interval set test

When Algorithm 2 is coded in a programming language (antiquated or modern, the result must

be the same if the algorithm is correctly implemented), 3,856 interval patterns result. In other words,

there are exactly 3,856 permutations of the eleven ordered pitch-class intervals that can generate

a number of equivalent all-interval twelve-tone series. But whereof 1,928? Inspecting the table

above, consider the relationship between the interval sequences of series related by inversion. Most

who implemented a computational search for all-interval series noticed that if an interval sequence

generated the aggregate as required, then so too would the sequence consisting of the complement

(mod 12) of its constituents. Thus, the computer programs they used would stop precisely mid-way

through the total list of valid interval sequences, since the second half of the list could be recovered

by complementation, a computer operation that is trivial compared to a lengthy search through the

remaining permutations. This chapter, in part, shows how this trick and others like it were used to

optimize the algorithmic specification of the all-interval series problem.

Both of these algorithms can be described as implementing a brute-force or exhaustive search

strategy, the most naive and computationally expensive approach to such a problem. A strength of the

brute-force strategy is its relative ease of implementation: simply generate all possible permutations

and test each one. A significant weakness of such brute-force strategies is that they do not scale

well as the search space grows. Imagine we were interested in all-interval series in the 24-tone equal

temperament universe. How long would such an algorithm take to run to completion, assuming

the test at each iteration remained the same length? If a gut response suggests “twice as long,” the
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correct response—it would be 1.3 quadrillion times as long—comes as a sobering correction. The

computational complexity of the task is indeed a function of the number of distinct pitch classes in

the tonal system, but it is not a linear function. As the size of the tonal universe under consideration

grows, so too do the number of tests required, given by the factorial function (n! = n x n-1 x

... 2 x 1). The combinatorial explosion represented by this dependency can also be exploited to

improve running time.

Despite the superficial similarities between Algorithm 1 and Algorithm 2, Algorithm 2

represents a significant “win” for the implementer, because it operates on permutations of intervals,

rather than permutations of notes. Again, assuming a fixed duration for each test, it reduces the

computer time required by a factor of 12 (that is, more than one order of magnitude). Such speed-ups

could make a difference when it came to the allocation of finite computing resources: a twelve-week

computation might dominate computer time in a university computing center for an entire academic

semester, whereas a one-week computation would not. And, as we shall see, even before the

computer was introduced to the problem, Krenek recognized the pedagogical virtue in restricting his

attention to a hypothetical 6-tone musical system, to help make the problem more manageable, more

thinkable.9

2.2.2 Histories of the problem and its relation to twelve-tone composition

In his twelve-tone instructional treatise Grundlagen der musikalischen Reihentechnik (1964), Eimert

renders a short history of efforts to establish an accurate and complete enumeration of the all-interval

twelve-tone rows.10 Since it offers an account of the problem from its conception by Klein through

to its solution by computational means, it serves as a capsule history by a practitioner that can yield

to historiographical scrutiny. Notably, Eimert’s sensitivity to the limitations of early computers in

dealing with naive formulations of the all-interval problem supports the claim that the scale of the

9. For a recent application of small-modulo spaces as pedagogical aids in music theory, see Richard Cohn,
“Teaching Atonal and Beat-Class Theory, Modulo Small,” MusMat: Brazilian Journal of Music and Mathematics 1,
no. 1 (December 2016): 15–24, https://musmat.org/wp-content/uploads/2016/12/02-cohn.pdf.

10. Eimert, Grundlagen der musikalischen Reihentechnik.
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all-interval series problem required an awareness of the limitations of early computer hardware and

their potential remedies. It provides some insight into Eimert’s conception of the significance of

the all-interval problem. This concern is often expressed in a register nothing short of rhapsodic.

Witness the quote from his Grundlagen at the beginning of the chapter: the successful solution as a

victorious assault on “the serial fortress.” Lastly, it sketches the outlines of a correspondence network

of researchers working on the all-interval problem, including those who made use of new computer

technology to definitively solve it. Eimert’s history begins with an account of the discovery and

compositional application of Klein’s Mutterakkord and its various transformations. Eimert attributes

to Krenek the insight that Krenek’s asymmetric example from 1936 disproved Klein’s assertions that

the Mutterakkord was the sole possible all-interval series.11 Eimert extensively quotes a personal

communication from Krenek, in which Krenek describes his joint work with Nicolas Slonimsky

on the problem in 1939, and his personal difficulty in constructing other examples of asymmetrical

all-interval series.12

Eimert goes on to describe his own efforts to manually arrive at further examples during

the preparation of his earlier Lehrbuch der Zwölftontechnik, between 1947 and 1948. Eighteen

all-interval series were forthcoming, and were published in the Lehrbuch.13 He describes how “young

musicians and students sometimes took part in the task,” under his guidance.14 Such co-ordination

may have included the circulation of known all-interval series between the computing parties, in

order to avoid redundancy and provide examples to help with hypothesizing rules of construction. In

connection with this enterprising use of student labor, Eimert mentions the help of a young Karlheinz

Stockhausen, who added eight suitable series to the stockpile (of which three were asymmetrical); and

that of the musicologist and critic Marion Rothärmel, to whom Eimert assigns a significant part in the

discovery of so-called axis-symmetrical series. Another protagonist, an enigmatic (and regrettably

unnamed) university professor from Erlangen, reportedly showed up at the Darmstadt summer course

11. Eimert, 42. Eimert did not know that Klein had in the interim discovered another all-interval series, which he
reported in a letter to Berg.

12. Eimert, 42.
13. Eimert, 42.
14. Eimert, 43.
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in 1953 touting a “complete table of all-interval series.”15 After a brief conversation, Eimert was

confident that the mysterious visitor had mastered the topic, and had no doubts as to the accuracy of

his assertions that he had computed 3,488 unique all-interval series.16

Following the publication of his Lehrbuch, Eimert reports that he received a raft of

correspondence reporting further all-interval series from a “mathematician from Aachen, an

orchestral musician from Innsbruck, and two American students.”17 Crucially, Eimert reports how

the application of the computer to the enumeration problem definitively concluded these ad hoc

efforts, citing two separate computer-based projects. First in Vienna, the total number was computed

by the Austrian computer engineer Heinz Zemanek (at the instigation of composer Hanns Jelinek) in

1959. Jelinek exchanged letters with Eimert at the start of 1961, delighting Eimert with news of the

solution.18 Jelinek’s work will be described in detail below as the first focus of three.

In Cologne, the catalog was computed by the head of the Remington computer center, Paul

Schmitz, and his co-worker Wolfgang Wirtz. Eimert, the presenter of the long running and influential

Musikalische Nachtprogramm, prepared a 45-minute episode which discussed the history of

all-interval series and its eventual computational solution. The episode was broadcast on November

30, 1961 on Westdeutscher Rundfunk (WDR), and featured Paul Schmitz, who explained to a lay

audience the principles of the UNIVAC digital computer that they used to solve the problem.19

Little else about the Cologne solution is available in the public record; it was most likely computed

after Eimert had heard from Jelinek of his computational success in Vienna. Recounting these

15. Eimert, 43.
16. Eimert, 44. This total suggests that the professor was distinguishing between interval sequences that are

inversionally equivalent. 3,488 represents just over 90% of the total stock of 3,856 such series, if counted in this way.
17. The mathematician from Aachen was probably Wilhelm Fucks (1902–1990), whose musical work is described in

some detail in Chapter 4, below. Eimert, 44.
18. “Über die Allintervallreihen kam es zwischen Eimert und Jelinek Anfang 1961 zu einem aufschlußreichen

Briefweschel, als Eimert von Jelineks erfolgreichem Bemühen erfuhr, über den Mathematiker Dr. Zemanek die
lange Zeit gesuchte Zahl der Allintervallreihen zu ermitteln.” Helmut Kirchmeyer, Kleine Monographie über Herbert
Eimert, vol. 6, Philologische-historische Klasse 75 (Leipzig: Verlag der Sächsischen Akademie der Wissenschaften,
1998), 31 fn. 66.

19. Herbert Eimert and Paul Schmitz, “Von Alban Bergs ‘Mutterakkord’ bis zur Gesamttabelle der Intervallreihen.
Eine Betrachtung zum Abschluss einer 40-jährigen Reihenentwicklung.” NWDR Musikalische Nachtprogramm.
Broadcast November 30, 1961. WDR Archives.
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efforts, Eimert traces the outlines of a geographically and professionally diffuse community of

common interest in the all-interval series problem, coordinated via a correspondence network

that had Eimert at its nexus. Given the diversity of expertise—compositional, mathematical, and

computational—solicited and received by Eimert in pursuit of a solution to the all-interval problem,

he exemplifies an ability to successfully recruit expertise in distinct fields that I consider critical to

developing a solution to the all-interval series problem.

Manuel Gervink has much more recently retold the history of the all-interval series problem,

drawing substantially on Eimert’s chapter. Gervink views attempts to solve the problem as part of

a broader program of attempts to “structure tonal space” in the twelve-tone system from the 1920s

to the 1970s.20 Like Eimert, Gervink traces interest in the all-interval series problem back to Fritz

Heinrich Klein, who first described the all-interval series in detail. Gervink extends his account to

include the more recent computational work of Bauer-Mengelberg and Ferentz, which was not known

to Eimert at the time his Grundlagen was prepared, as well as later computational attempts to grapple

with the structure of the newly enumerated all-interval series. Bauer-Mengelberg and Ferentz’s paper

will be discussed at length below; research that has been undertaken since the completion of the first

catalogs will be briefly discussed at the end of the chapter. In his short survey, Gervink affords little

space to consideration of the technological conditions that allowed for the ultimate solution to the

all-interval problem, nor on the effects of the cross-pollination of experiences and methods from

composition, music theory, and computer science.

Despite its brevity, Gervink’s account of the all-interval series problem goes beyond Eimert’s

by beginning to unpick the motivations behind the search for a solution. For instance, I concur with

Gervink’s diagnosis of such a flush of interest in the search for all-interval series as a symptom

of a larger contemporary agenda of enumerating compositional possibilities. Gervink also recalls

that Schoenberg himself was alternately pessimistic and defensive about systematic attempts to

describe twelve-tone composition, remarking that the “unlimited abundance of possibilities” that

20. Manuel Gervink, “Die Strukturierung des Tonraums. Versuche einer Systematisierung von Zwölftonreihen in
den 1920er bis 1970er Jahren,” in Perspektiven und Methoden einer Systemischen Musikwissenschaft: Bericht über
das Kolloquium im Musikwissenschaftlichen Institut der Universität zu Köln 1998, ed. Klaus W. Niemöller (Frankfurt:
Peter Lang, 2003), 323–34.
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the technique promises militates against any systematic presentation of twelve-tone technique.21

Schoenberg’s explicit defense of composerly responsibility in the twelve-tone world finds that the

massively enlarged field of possibilities, instead of guaranteeing novel compositions as a consequence

of its fertility, demands his reassertion of the composer’s authority. The sheer scale of the space of

twelve-tone series is a guarantee of its resistance to theorization. Conversely, a theory of twelve-tone

music must be predicated on the existence of techniques to make this space governable. Computing

machines made tractable the laborious calculations that promised to make the tonal space of

twelve-tone compositions more navigable. The successful search for the elusive catalog of all-interval

series exemplifies this research program for twelve-tone composition.

Arved Ashby has problematized the notion of “the twelve-tone idea” (my emphasis), by pointing

out that as a totalizing category it fails to reflect the evident diversity in method of composers before

Schoenberg (Hauer, Klein), and, when employed as a normative construct in a historical narrative,

threatens “historical as well as conceptual damage,” since “the only way [a historian] can prove the

validity of a normative (Schoenbergian) twelve-tone construct is by misrepresenting […] divergent

example[s], in short by doing violence to actuality.”22 Ashby came to this conclusion bearing a

specific case in mind: how to describe, analyze, and otherwise musically situate those works of Berg

that make use of an all-interval series, which was first discovered by the Austrian composer Fritz

Heinrich Klein.

Ashby identifies an issue with twelve-tone historiography: the “peculiar conflation of

compositional and historical heuristic” which inheres in the “twelve-tone” epithet.23 The history

of twelve-tone theory, whose focus has been “almost exclusively on [its] empirical aspects”

(note-counting, group structure, and the like), is long overdue a historicist turn, Ashby argues.24

21. Arnold Schoenberg, Arnold Schönberg, Stil und Gedanke: Aufsätze zur Musik, vol. 1 (1966; repr., Frankfurt
am Main: S. Fischer, 1976), 82; Cited in Gervink, “Die Strukturierung des Tonraums. Versuche einer Systematisierung
von Zwölftonreihen in den 1920er bis 1970er Jahren.”, 323.

22. Arved Ashby, “Schoenberg, Boulez, and Twelve-Tone Composition as ‘Ideal Type’,” Journal of the American
Musicological Society 54, no. 3 (Autumn 2001): 585–625, https://doi.org/10.1525/jams.2001.54.3.585, 617.

23. Ashby, 586. Even referring to a singular “twelve-tone” historiography begs the question Ashby attempts to call
attention to.

24. Ashby, 587.
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Such a reorientation would bring “heuristic” contributions to twelve-tone theory to the fore, and

de-emphasize “empirical” frameworks for twelve-tone composition. Ashby’s distinction is worth

restating, since it depends on specific senses of these potentially slippery concepts. For Ashby,

“heuristic” contributions to the emerging body of twelve-tone theory have the character of possibilities

of new directions for musical thought. On the other hand, “empirical” theories attempt to specify

fully ramified predictive systems that determine musical content.25 An exhaustive enumeration,

that is, a “mere” catalog, of all-interval series is hardly a fully ramified predictive system. On the

contrary, it offers little more than new directions for musical thought: 1,928 new musical spaces to

explore, without specific mandate to explore them in any particular way. Following Ashby, then,

the solution to the all-interval series problem is precisely the kind of “heuristic” contribution to the

theory of twelve-tone composition that is liable to be overlooked because it appears empirically inert,

in the strict sense that it cannot easily be understood to make useful predictions about how musical

compositions are put together.

Being a directory, the catalog of all-interval series can only function as a resource: it requires

further analysis and selection by its consumers before it can be used. As it will be seen, this attitude

towards the all-interval series catalog is adopted as early as Riotte and Jelinek, who, no sooner

than they had an accurate list in hand, began to analyze the all-interval series for any patterns or

subfamilies of musical interest. Though they were not ultimately responsible for preparing a complete

list, so too did Herbert Eimert, as did Robert Morris and Daniel Starr. Jelinek and Forte both used the

computer to make exhaustive catalogs of musical stuff: the former, a list of the all-interval series; the

latter, a list of pitch-class set types. This work sits in a long tradition of enumerating basic musical

materials for use by the readers of theoretical treatises. Our familiarity with this tradition means we

sometimes forget to question the ethical dimension of such catalog-building.

Catherine Nolan described this process as the exploration of “combinatorial space,” inviting the

analogy of such catalogs to maps of the musical domain.26 Theorists advance “cartographies” of such

25. Ashby, 586.
26. Catherine Nolan, “Combinatorial Space in Nineteenth- and Early Twentieth-Century Music Theory,” Music

Theory Spectrum 25, no. 2 (September 1, 2003): 205–41, https://doi.org/10.1525/mts.2003.25.2.205.
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a space, and composers are its navigators—whether they are lucky enough to possess an accurate map

of the territory or not.27 Recalling that analysts are wont to describe music-theoretical constructions as

“compositional resources” to be “exploited,” this metaphorical fund is apparently operative without

qualification in the mainstream of music theory.28 This serves to naturalize the preparation of such

speculative catalogs with reference to the familiar extractive discourse of colonial misadventure.

Such an association might be considered glib were it not for the continued use of empirical surveys to

instrumentalize and legitimate colonial projects of control: these are the same strategies, after all.29

Considered in this light, the ethical dimension of the processes of music-theoretical map-making

and cataloging is suggested. Herbert Eimert figured the successful creation of an exhaustive catalog

of all-interval series in militaristic terms: “for four decades, this serial fortress has resisted every

encroachment [Eingriff ].”30 The acts wrought on music identified by Fred Maus in his excavation

of the discourse of “penetration” (Eingriff ) befit a heart of darkness at the core of a contemporary

analytical project whose ramifications extend beyond how we treat individual works in isolation.31

These achievements of musical computation have been long derided for their apparent

irrelevance to practical composition. Mel Powell wrote in 1963:

[T]here is at present a notable proliferation of perfectly concrete charts, counting the
notes, listing this-or-that as the statistical universe requires. Despite all the good reasons
for welcoming gentlemanly tabulation, it is a major and too familiar mistake nowadays to
view this most modest of musical indices as the one true key to a new kingdom.32

27. Justin Hoffman, “On Pitch-Class Set Cartography Relations Between Voice-Leading Spaces and Fourier Spaces,”
Journal of Music Theory 52, no. 2 (Autumn 2008): 219–49, https://doi.org/10.1215/00222909-2009-016.

28. See for example, this language in used Joseph Auner, “Reich on Tape: The Performance of Violin Phase,”
Twentieth-Century Music 14, no. 1 (February 2017): 77–92, https://doi.org/10.1017/S147857221700007X; Philip
Stoecker, “Aligned Cycles in Thomas Adès’s Piano Quintet,” Music Analysis 33, no. 1 (March 2014): 32–64, https:
//doi.org/10.1111/musa.12019; J. Philip Lambert, “Interval Cycles as Compositional Resources in the Music of Charles
Ives,” Music Theory Spectrum 12, no. 1 (1990): 43–82, https://doi.org/10.2307/746146.

29. Duncan F. Kennedy, Rethinking Reality: Lucretius and the Textualization of Nature (Ann Arbor, MI:
University of Michigan Press, 2002), 107ff.

30. Original: “Vier Jahrzehnte lang hat diese Reihenfestung jedem Eingriff standgehalten.” Eimert, Grundlagen
der musikalischen Reihentechnik, 45.

31. Fred Everett Maus, “Masculine Discourse in Music Theory,” Perspectives of New Music 31, no. 2 (1993):
264–93, https://doi.org/10.2307/833390

32. Mel Powell, “A Note on Rigor,” Perspectives of New Music 1, no. 2 (1963): 121–24, http://www.jstor.org/
stable/832109, 122.
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“Tabulation” is the pejorative of choice of Richard Taruskin, who making a similar case twenty-five

years later, assails “the product of pitch-class theory as”a tabulation that can just as well be carried on

in the presence of analysis as in its absence.”33 We need not share Powell and Taruskin’s pessimism

and righteous frustration with musical system-building for its own sake, since we are no longer

embroiled in their polemic context. With the benefit of some historical distance we can accept

John Tresch’s invitation to view such documents (“maps, diagrams, buildings, calendars, poems,

encyclopedias,” to which we add catalogs of musical materials) as materialized “cosmologies”: an

instantiation of the “facts, concepts, and arguments [forming] a world, a nature, a cosmos.”34 This

is alternative view on what a historian of music theory might learn from musical catalogs, catalogs

that we would otherwise (productively, it must be said) analyze for their reception by composers, their

use in specific compositions, or their accuracy as reckoned with respect to later, more comprehensive

analysis.

Such a document-oriented approach to early catalogs and charts of tonal space informs Neff and

Nolan’s historical accounts as they show how precursors to atonal theory like Loquin, Vincent, Bacon,

and Klein almost—but not quite—apprehend the underlying structure of the twelve-tone universe that

was only clarified in the middle decades of the twentieth century. Rather than assessing preliminary,

partial, or plain inaccurate attempts to compute the extent of tonal spaces as unfortunate blunders or

necessary “course-corrections” on the way toward the canonical right answer, we can instead dwell

on the material features of these documents seeking insight into the environment that made them

possible. Computational catalogs along with the code and platforms behind them evidence the work

done by their creator to bring them into existence. In turn, their labor is inextricable from the social

formations and technical systems in which they find themselves. We are invited to view the whole

world as it might be reflected in such documents. The first such document relating to the all-interval

33. Richard Taruskin, “Reply to van Den Toorn,” In Theory Only 10, no. 3 (1987): 47–59, 57. See also, James
K. Wright, “Schoenberg, Wittgenstein, and the Vienna Circle: Epistemological Meta-Themes in Harmonic Theory,
Aesthetics, and Logical Positivism” (PhD diss., McGill University, 2001), 167ff.

34. John Tresch, “Cosmologies Materialized: History of Science and History of Ideas,” in Rethinking Modern
European Intellectual History, ed. Darrin M. McMahon and Samuel Moyn (Oxford: Oxford University Press, 2014),
162.
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series that we will treat in this way is an early twentieth-century article with the plainly suggestive

title “Die Grenze der Halbtonwelt” (The Boundaries of the Semitonal World).

2.2.3 From Fritz Heinrich Klein’s Musikstatistik

Fritz Heinrich Klein (1892–1977), was briefly a student of Arnold Schoenberg, well known by Alban

Berg, and was responsible for the first composition to use an all-interval series, his Die Maschine:

Eine extonale Selbstsatire, op. 1.35 If Klein plays a role in received twelve-tone historiography,

it is usually as the source of the all-interval series used by Berg in his Lyric Suite and elsewhere.

Scholarship in English at the end of the last century has rescued Klein from this blind spot.36 Dave

Headlam and Arved Ashby have described the few available traces of Klein’s theoretical remarks on

the all-interval series. Headlam translated and contextualized Klein’s expository article on the topic

of musical combinatorics, “Die Grenze der Halbtonwelt,” which was published in Die Musik in 1925.

Ashby has also uncovered a reprographic copy of a musical work by Klein—his Variations for piano,

Op. 14 (1924)—the score of which is accompanied by an extended analytical preface revisiting the

topic of the all-interval series and situating the topic in a conceptual history of row derivation.

Klein opens “Die Grenze der Halbtonwelt” with a table that summarizes the results of his

enumeration of all possible chord types, up to pitch-class content, before going on to introduce the

all-interval series and its use in his composition. Here, two remarks on Klein’s work will be added to

those of Headlam and Ashby. First, Klein’s compositional and theoretical interest in the all-interval

series inaugurates the all-interval series as a privileged musical object, a status that is attested to by its

rhetorical treatment by many of the musicians to be studied in this chapter. Second, the fact that Klein

35. Günther Hofstetter, Fritz Heinrich Klein: Leben und Werk (n.p., [1988?]), 12.
36. Dave Headlam, “Fritz Heinrich Klein’s ‘Die Grenze Der Halbtonwelt’ and Die Maschine,” Theoria 6 (1992):

55–96, Arved Ashby, “Of ‘Modell-Typen’ and ‘Reihenformen’: Berg, Schoenberg, F. H. Klein, and the Concept of Row
Derivation,” Journal of the American Musicological Society 48, no. 1 (Spring 1995): 67–105, https://doi.org/10.2307/
3128851 which draws extensively from Arved Ashby, “The Development of Berg’s Twelve-Tone Aesthetic as Seen in the
Lyric Suite and Its Sources” (PhD diss., Yale University, 1995), its author’s PhD dissertation that includes a translation
of the preface to Klein’s op. 14. Headlam belabors history’s neglect of Klein. Jonathan W. Bernard, “Chord, Collection,
and Set in Twentieth-Century Theory,” in Music Theory in Concept and Practice, ed. James M. Baker, David W. Beach,
and Jonathan W. Bernard (Rochester, NY: University Rochester Press, 1997), 11–51 and Nolan, “Combinatorial Space in
Nineteenth- and Early Twentieth-Century Music Theory.” discuss Klein’s combinatorics in the context of the development
of atonal and serial music theory.
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stakes claim to his search for all-interval series as part of a larger musical research program, which

he called Musikstatistik (“musical statistics”), should be read as ideologically contrastive to earlier

feats of musical combinatorics, given Klein’s explicit rationale for Musikstatistik. Klein neither took

advantage of or imagined the application of a computing machine to make progress on the all-interval

series catalog. However, his use of the exhaustive manual enumeration of chord types in order to

provide the statistics with which he opens his article, shows that his conception of Musikstatistik is

compatible with the brute-force, exhaustive-search computational strategies eventually identified as

perfect fodder for the digital computer.

Both Jonathan Bernard and Michiel Schuijer have traced the genesis of certain music-theory

commonplaces, including the pitch-class set, during the twentieth century, describing diverse

efforts to enumerate musical objects and to categorize them for use a the burgeoning style of atonal

composition, with the help of taxonomies of chords and scales.37 Catherine Nolan, confronting

Bernard’s reliance on twentieth-century primary sources, has claimed that “the conceptual

preparation for the pitch-class set can be traced yet further back in time to the mid-nineteenth

century.”38 Nolan invokes several examples of nineteenth-century musical combinatorics (including

Klein’s work) to point out, correctly, that it is not necessary to derive the conditions for the

conceptual preparation required for the notion of the pitch-class set from the imperatives of any

one particular compositional style, not least the musical language of the first half of the twentieth

century. In the eighteenth century, the rubrics of the musical ars combinatoria, epitomized by

Riepel, were evaluated for their combinatorial possibilities.^39 Even earlier still are the herculean feats

of calculation in Marin Mersenne’s Harmonie universelle (1636) and Athanasius Kircher’s Musurgia

37. Bernard, “Chord, Collection, and Set in Twentieth-Century Theory.”; Schuijer, Analyzing Atonal Music; See
also Bryan Simms, “The Theory of Pitch-Class Sets,” in Early Twentieth-Century Music, ed. Jonathan Dunsby, Models
of Musical Analysis (Oxford: Blackwell, 1993), 114–31, 117.

38. Nolan, “Combinatorial Space in Nineteenth- and Early Twentieth-Century Music Theory,” 206.
39. Ratner, “Ars Combinatoria: Chance and Choice in Eighteenth-Century Music”; cited in Julian Hook, “Why Are

There Twenty-Nine Tetrachords? A Tutorial on Combinatorics and Enumeration in Music Theory,” Music Theory Online
13, no. 4 (December 2007), http://www.mtosmt.org/issues/mto.07.13.4/mto.07.13.4.hook.html.
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universalis (1650), designed to demonstrate the permutational fecundity of the even simplest musical

materials.40

It is proper to be wary of such attempts to construct an extended intellectual lineage from

Forte and Babbitt via Klein back to the likes of Mersenne and Kircher. These seventeenth-century

churchmen, like Pascal and Leibniz, shared a contemporary interest in the work of Ramon Llull

(c. 1232–1315), a thirteenth-century church doctor whose systematic study of logic and knowledge

nevertheless catalyzed later mechanistic approaches to the discovery of physical and metaphysical

facts. The fact that Klein chose to christen his new discipline “Musikstatistik” is redolent of a

different, ostensibly more modern way of accounting for the world, eschewing number mysticism and

theology in favor of emerging, anti-metaphysical theories of causation. Statistik was not introduced

to the German language until the first half of the eighteenth century and was limited in reference to

those facts about a citizenry collected by governments or their agents in pursuit of modern strategies

of state control, such as the results of cadastral surveys for the purpose of taxation. This observation

that statistics made a certain governmentality possible is by now an familiar one.41

By 1925, in “Die Grenze der Halbtonwelt,” Klein advanced the goal of his computational

researches with transparent zeal: “[musical statistics] are designed to investigate scientifically

and quantitatively all musical phenomena, free from all dogmatic and aesthetic considerations.”42

In the preface to his later op. 14, Klein redeems the state-statistical metaphor for its face value:

governmentality with regard to musical objects, construed as the subjects of a tonal realm.

40. Knobloch, “The Sounding Algebra.”
41. The notion of “governmentality” is due to Foucault; the relationship between biopower, governmentality, and the

development of modern statistics is discussed in Ian Hacking, The Emergence of Probability: A Philosophical Study
of Early Ideas About Probability, Induction and Statistical Inference, 2nd ed (Cambridge; New York: Cambridge
University Press, 2006) and James C. Scott, Seeing Like a State: How Certain Schemes to Improve the Human
Condition Have Failed, Yale Agrarian Studies (New Haven, CT: Yale University Press, 1998). Incidentally, Klein himself
had been introduced to the practicalities of state-statistical oversight in the months leading up to the First World War.
Due to his “unsuitability for service as an officer,” he was trained for and assigned to a military accounts function of the
Imperial and Royal War Ministry, a position in which he remained by the close of the war. See Hofstetter, Fritz Heinrich
Klein: Leben und Werk, 11–12.

42. Headlam, “Fritz Heinrich Klein’s ‘Die Grenze Der Halbtonwelt’ and Die Maschine,” 93. Headlam’s translation;
Original Fritz Heinrich Klein, “Die Grenze der Halbtonwelt,” Die Musik 17 (January 1925): 281.
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Since in my statistics of music all chords, from the simple triad to the complex
Mutterakkord, are equal citizens in a realm of tones (the only fair estimation!),
their consequences, namely tonality and extonality, are also to be considered equal
manners of expression. […] My “statistics of music” has taught me exactly this, to
treat all manifestations of music with the same love and humility; it has given me the
Mutterakkord, so neither can I scorn the triad. This my conviction, and this conviction
strengthens me toward all-encompassing, free creation!43

This passage resonates with Josef Rufer’s later gloss on Schoenberg’s conception of the

“emancipation of the dissonance”:

Emancipation means the guaranteeing of equal rights and equal entitlements. The
moment one note claims rights equal to those of all the other notes, it no longer
recognises the domination of any other note.44

Klein’s remark insinuates that the hard-won freedom of new harmonies as equal citizens in a realm

of tones is contingent on an operative statistical method to enumerate and manage the explosion

of musical possibilities. The function of Musikstatisik in a program to include the “emancipation

of dissonance” faintly recalls the tension between liberalism and paternalism: only with careful

state-statistical oversight and method can tonal liberation be guaranteed as a premise of the new

musical language.

Klein closes “Die Grenze der Halbtonwelt” with the following claims for his Musikstatistik:

Ich möchte nur noch darauf hinweisen, daß der Pyramidenakkord insbesondere
deswegen eine Ausnahmestellung unter allen vom Mutterakkord ableitbaren
Akkorden einnimmt, weil man im Sinne der Musikstatistik durch mathematische
Funktionen wie Addition oder systematische Permutation seiner Glieder nicht
nur alle gebräuchlichen, sondern auch bisher gänzlich unbekannte musikalische
Erscheinungen erzielen kann.

[T]he pyramid chord has an exceptional place in all the chords derivable from the mother
chord, specially because through mathematical operations like addition or systematic
permutation of its members, one can, in the sense of musical statistics, arrive not only at
all musical phenomena that are currently in use, but also others yet entirely unknown.45

43. Ashby, “The Development of Berg’s Twelve-Tone Aesthetic as Seen in the Lyric Suite and Its Sources,” 265.
Ashby’s translation. Emphasis is Klein’s.

44. Josef Rufer, Composition with Twelve Tones, trans. Humphrey Searle (New York: MacMillan, 1954), 50–51.
45. Headlam, “Fritz Heinrich Klein’s ‘Die Grenze Der Halbtonwelt’ and Die Maschine,” 96. Headlam’s translation.
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The “exceptional place” that Klein puts on the pyramid chord (referring to a particular registral

arrangement of the all-interval series he discovered) singles out all-interval constructions as a

privileged class of musical object precisely because of its generative capacity.46 We can find the entire

world of tones reflected there: familiar triadic harmonies and as-yet-undiscovered combinations alike.

Klein’s idea that the systematic exploration of musical materials would reveal objects “yet entirely

unknown” was echoed almost forty years later by Milton Babbitt when he discussed the prospects of

computer applications to musicology:

[T]he use of a known formal system as the model of a musically interpreted theory
or system makes possible the interpretation of theorems of the formal system to yield
interpreted generalities that would otherwise very likely go undiscovered.47

Given the apparent dissimilarities of vocabulary, method, and tone of these two claims, juxtaposing

them and claiming a resonance seems to commit anachronism, raising more questions than it answers.

But this tension is generative, since there is neither an obligation to “explain away” their differences

as the idiolect of their respective times, nor is there an obligation to enforce their difference, not

least since each of Klein and Babbitt claims for himself a position in the same progressive musical

tradition, as, indeed, did the next theorist to treat the all-interval series at some length: Ernst Krenek.

2.2.4 To Ernst Krenek and the axiomatization of musical thought

In the winter of 1936, the composer Ernst Krenek delivered a series of lectures on contemporary

music. Collected and published in 1937 as Über neue Musik, these lectures were heavily revised

by Barthold Fles and published in English by Norton in 1939 as collection entitled Music Here

and Now.48 The preparation of this version was supervised by Krenek. Although it has been

variously referred to as a “translation,” and “revised and expanded,” Music Here and Now lacks a

discussion of the all-interval series problem that originally appeared in Über neue Musik.49 The fifth

46. Klein’s interest conforms with music theory’s concern for “generative” objects as one possible focus of theory:
Rameau’s corps sonore, Schenker’s Ursatz, special pitch-collections as “source sets,” a Generative Theory of Tonal
Music, and so forth.

47. Babbitt, “The Use of Computers in Musicological Research,” 1965, 81.
48. Ernst Krenek, Music Here and Now, trans. Barthold Fles (New York: W. W. Norton & Company, 1939)
49. By, for example, the editors of Babbitt, The Collected Essays of Milton Babbitt, 2003.
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lecture in the series, the chapter entitled “Music and Mathematics,” dealt in detail with the problem

before proceeding to the more general comparison of axiomatic thought in music, geometry, and

contemporary physics, which is common to both versions.50

In both this chapter and its revision in Music Here and Now Krenek provocatively paraphrases

the opening statements of the mathematician David Hilbert’s treatise on the axiomatic foundations of

geometry:

Wir denken drei Systeme von Dingen, die Dinge des ersten nennen wir Töne, die
Dinge des zweiten nennen wir Akkorde, die Dinge des dritten Melodien. Wir denken
die Dinge der drei Systeme in verschiedenen Beziehungen, die wir mit Worten wie
‘Intervall’, ‘Konsonanz’, ‘Dissonanz’, ‘Bewegung’, ‘Umkehrung’, und anderen
bezeichnen.

We imagine three different categories of things. The things in the first category we shall
call tones, the things in the second category chords, and the things in the third category
melodies. We conceive of the tones, chords, and melodies as having certain mutual
relationships which we indicate by means of such words as “interval”, “consonance”,
“dissonance”, “motion”, “inversion”, and so forth.51

To Krenek’s biographer John L. Stewart, the mathematical content of the lecture—that is, the

extended discussion of the all-interval series—is computational bluster: the revised version reflects

the victory of Krenek’s better judgment.52 Krenek explicitly asserts the contrary:

Auch daraus ergibt sich eine Fülle von Bezeihungsmöglichkeiten, die keineswegs eine
papierene Spielerei bilden, sondern von unmittelbarer Bedeutung für das Musikwerk
sein können, da wir wissen, welchen Einfluß die Beschaffenheit der Reihe auf die
Entwicklung des musikalischen Gedankens hat.

This [computation] also gives rise to a wealth of possibilities of expression, which
by no means constitute a paper amusement, but can be of direct significance to the

50. Ernst Krenek, Über neue Musik: Sechs Vorlesungen zur Einführung in die theoretischen Grundlagen (Wien:
Ringbuchhandlung, 1937), 71–89.

51. Krenek, 83–84. The translation here is based on the translation offered for the corresponding passage in Ernst
Krenek, “Musik und Mathematik,” Der Auftakt 13, no. 9/10 (October 1933): 125–27, and is provided only for reference.
Its internal inconsistency and its divergence from the authorized English translation of Hilbert’s text is quite remarkable,
but not of immediate concern here.

52. John L. Stewart, Ernst Krenek: The Man and His Music (Berkeley: University of California Press, 1991), 195.
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musical work, since we know what influence the constitution of the series has on the
development of musical thought.53

From Krenek’s perspective, some relationship between the series and the musical thought of

its user guarantees the relevance of the preceding pages of calculation and arithmetic speculation.

Stewart dismisses the computations as mathematical logorrhea, and gives no positive account for

their inclusion; Krenek embraces them as fundamental research, but relies on a strong determinism

to justify them. Regardless of the dubious merit of either of these arguments, as a record of the 1936

lectures, the revised version fails to preserve that Krenek once considered the all-interval problem

central to a more general discussion of compositional method under the mathematical rubric.

In his lecture, Krenek reused material from at least two earlier magazine articles, both titled

“Musik und Mathematik,” which were published in Frankfurt and Prague in April and October 1933,

respectively.54 These articles develop the more general discussion of the axiomatization of musical

thought that appears in the second half of the lecture recorded in Über neue Musik, and, like the

later English revision, make no mention of the all-interval series. Krenek apparently developed

significant portions of the lecture’s content independently. Perhaps he thought the mathematical

content more appropriate to the assembled audience of engineers than the more general readership of

the Frankfurter Zeitung.

In the first part of the lecture Krenek specifies the criteria for an all-interval series in terms of

the “clock-face” model, before moving on to discuss the special characteristics of the all-interval

series. The second part of the lecture is a more general meditation on mathematical method and

music. Krenek opens with the compositional rationale for the construction of all-interval series as the

consequence of musical realization that the interval content of the series is of “greatest significance

for the structure of the composition.”

Ist dies dem Komponisten klar geworden, so wird er bald einmal den Wunsch
verspüren, mit einer Reihe zu arbeiten, deren Intervall ihn für den gesamten Verlauf

53. Krenek, Über neue Musik: Sechs Vorlesungen zur Einführung in die theoretischen Grundlagen, 1937, 79.
54. Krenek, “Musik und Mathematik.”; Ernst Krenek, “Musik und Mathematik,” Frankfurter Zeitung 77, no.

271/272 (April 11, 1933): 10.
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möglichst wenig festlegen, ihm möglichst viele Chancen geben. Das ist aber offenbar
eine Reihe, in der all Intervalle vorkommen, so daß keines die Oberhand hat.

If this has become clear to the composer, he will soon feel the desire to work with a
series whose intervals determine him as little as possible over the entire course, giving
him as many prospects as possible. But this is obviously a series in which all intervals
occur, so that none has the upper hand.55

For Krenek, despite the diatonic construction of the most well-known example of such a series,

the statistical uniformity of the intervallic content all-interval series promised a liberation from

the strictures of series whose disposition contained latent references to traditional tonal materials,

wittingly or unwittingly. Krenek describes an all-interval series of his own construction, different

from the series described by Klein, which Klein had believed to be the sole such specimen. Krenek’s

new example disproves this assertion, opening the door to the natural question: how many such series

are there?

Despite the musical stakes, the question is, according to Krenek, “a purely mathematical one

from the field of permutations.”56 Crediting Willi Reich with the introduction of the “clock-face”

model of the twelve-tone space, Krenek draws on this visual aid to develop a geometrical formulation

of the all-interval series problem.57 Imagine a clock face with a rotatable outer ring, marked with a

point A at the twelve o’clock position. Since an all-interval series contains one representative of each

of the eleven interval types, the sum of directly successive intervals will equal 66 semitones for every

all-interval series. This distance corresponds to five and a half complete revolutions of the outer ring.

The task is to rotate the outer ring clockwise, while meeting two criteria, namely:

• the point A must visit each numeral on the clock face exactly once

• each angle of rotation must be unique

55. Krenek, Über neue Musik: Sechs Vorlesungen zur Einführung in die theoretischen Grundlagen, 1937, 72.
56. Krenek, 72.
57. Willi Reich (1898–1890) was an Austria-born musicologist, former student of Berg and Webern and advocate

for new music. See, Jürg Stenzl. “Reich, Willi.” Grove Music Online. Oxford Music Online. Oxford University Press,
accessed October 12, 2017, http://www.oxfordmusiconline.com/subscriber/article/grove/music/23092.
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Despite the existence of clear geometric formulation of the problem, Krenek writes, no formula

for the total number of such series has yet been found. Mathematical experts with whom Krenek

shared the problem pointed away from a closed-form solution to the method of brute force testing.

Die gesuchte Formel ist tatsächlich noch nicht gefunden; mathematische Autoritäten,
denen das Problem vorgelegt wurde, verwiesen auf den Weg des Probierens, wozu
Professor Duschek (Wien) eine sehr praktische Anregung gab, die man freilich zuerst
besser an einem System von weniger als zwölf Elementen versucht.

The sought-after formula is really not yet found. Mathematical authorities, to whom
the problem was presented, pointed to the way of trial-and-error, for which Professor
Duschek (Vienna) gave a very practical proposal, which is of course, best tried first on a
system of less than twelve elements.58

Krenek dutifully describes an imaginary six-tone system, and develops the criteria for an all-interval

six-tone series analogously: a six-position clock face must be traversed two and a half times.

Imagining unrolling such a clock face, Krenek describes how this representation of the six tones can

be used to keep track of valid and invalid sequences of intervals. But Krenek is aware of the explosion

of possibilities to be tested in the case of the 12-tone universe:

Eine Eigenart dieses mathematischen Gebietes besteht aber bekanntlich darin,
daß auch bei geringen Vermehrungen der Elemente die Zahl der Möglichkeiten
beängstigend gt.

A characteristic of this mathematical domain, however, is—as is well known—the fact
that the number of possibilities increases alarmingly, even in the case of small increases
in the number of elements.59

Krenek goes on to discuss the significance of the tritone to the formulation of the conditions for

the all-interval series, and describes how certain order-number transformations on twelve-tone series

preserve the all-interval property. All these mathematical clarifications of the musical materials of

the new music, contends Krenek, are, on the one hand, part of a lineage of “far-reaching speculation,”

a capacious history of musical-mathematical thought extending from the musical universalis to

58. Krenek, 74–75.
59. Krenek, 76.
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contemporary acoustic theories of consonance. But since the mathematical methods of the new music

contemplate not “physical experiments on the individual tone,” the relata they seek to explain are

“quite different in nature.”60

For Krenek, the individual tone considered in isolation is not the most meaningful level of

description for a composer. The contents of genuinely musical thought, according to Krenek, are not

the rarefied physical phenomena of the acoustician. Krenek rejects the idea that “the musical work

is not the result of a summation of such atoms […] but is created by a holistic conception of musical

thought.”61 Formalisms that go beyond the description of the properties of the individual tone–say

those acoustic theories of consonance–and characterize musical events in the aggregate, such as the

series, are much more representative of how composers ought to think. Accordingly, they “have a

much less abstract and speculative character than those that are geared towards the facts of physics.”62

When Roger Sessions reviewed Über neue Musik for Modern Music, he praised Krenek’s

eloquence and sincerity of purpose, but could not condone his aesthetic position. Sessions

triangulated his concern with Krenek’s position to Krenek’s claim that composition should not

be founded on a natural (Naturgegeben) basis, but on an intellectual one.63 Nature furnishes us

with criteria for distinguishing between consonance and dissonance says Sessions; a compositional

technique that forsakes such givens for artificial constructions remains impoverished and unrelatable

to listeners. The issue at the heart of the broader debate indexed by Sessions’s critique of Krenek

is often framed as a debate about the methodology proper to music composition. In caricature: the

empiricism of the defenders of traditional compositional technique founded on the results of aural

observation is contrasted with the rationalism of an avant garde that aspired to loose the shackles of

theories that bottom out with empirical judgment.

The mathematics of permutations promise a formal solution to new musical problems involving

musical objects at a musically salient level: it traffics in grammatical units of the new music

60. Krenek, 79.
61. Krenek, 79.
62. Krenek, 79.
63. Roger Sessions, “Exposition by Krenek: Review of Über {N}eue Musik,” Modern Music 15, no. 2 (1938):

123–28
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(hexachords, rows), rather than in raw sonic materials (tones). It could, Krenek hoped, form part of a

coherent research program for new music, whose objects are not acoustic brute facts but composite

units of greater meaning to the composer. To take an interest in the all-interval problem, then,

was not to renounce an “empirical” foundation for the rules of composition and mine the abstract

permutational richness of the materials of twelve-tone composition. Rather, it was to reconfigure the

objects of a mathematized music theory and consider the possibility that the relationship between

number and sound could model hypotheses other than those about the relative consonance and

dissonance of pure tones, the traditional explanatory domain of the relationship between mathematics

and music.

Krenek remained interested in the all-interval problem in the years following the publication of

Über neue Musik. Milton Babbitt has recollected his first meeting with Krenek, at a Christmas dinner

at the home of Roger Sessions in 1938, writing that the problem “was still very much on his mind[.]

[…] Above all, he wished to know the number of (independent) all-interval twelve-tone series.”64

Recalling visits to the Los Alamos Scientific Laboratory on the invitation of his fellow expatriate,

Ernst Kalmus, Krenek said of the all-interval problem: “When I discussed it in the 1940s with my

physicist friends at Los Alamos, they found it to be perfect nourishment for the early computer

they were building.”65 This was the first intimation that electronic computers were an apt fit for the

all-interval series problem. Despite this prescient recognition of the potential of such a collaboration,

Krenek would have to wait at least another five years for a complete solution.

64. Milton Babbitt, “‘My Vienna Triangle at Washington Square,’ Revisited and Dilated,” in The Collected Essays
of Milton Babbitt, ed. Stephen Peles (Princeton, NJ: Princeton University Press, 2012), 466–87, 481.

65. Ernst Krenek, Horizons Circled: Reflections on My Music (Berkeley: University of California Press, 1974), 87.
Krenek’s dating might be slightly faulty: Stewart records that this visit took place in July 1955. Stewart, Ernst Krenek,
281. In any case, Krenek was no stranger to New Mexico, holding guest teaching positions at the University of New
Mexico, Albuquerque between 1947 and 1949. Ernst Kalmus was the nephew of an officer at Universal Edition, but
apparently unrelated to Alfred Kalmus, founder of that publishing house.
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2.3 Solution(s)

2.3.1 ‘A Viennese May Breeze’: Hanns Jelinek and Heinz Zemanek (1959)

Hanns Jelinek (1901–1969) was an Austrian composer whose collaboration with a computer engineer

led to the first complete enumeration of the catalog of all-interval series. Jelinek, who had studied

with Schoenberg and Berg in his teens (1918–1919), supported himself for the first half of his life as a

jobbing pianist and composer of music in a variety of styles, including symphonic music for orchestra

and settings for jazz band. Careful study of Schoenberg’s music in the 1930s in tandem with a

narrowing focus on twelve-tone composition—despite a return to popular and popular music roughly

coeval with the Second World War—equipped Jelinek with the competence to produce a nine-volume

compendium of music based on a single tone row: Zwölftonwerk, op. 15 (completed 1951).66

Jelinek’s systematic experience with the twelve-tone idiom was recognized with his invitation to teach

twelve-tone technique at the Darmstadt summer course in 1952, and his first salaried engagement

as a musician at the Musikhochschule in Vienna in 1958.67 Universal Edition published Jelinek’s

theoretical supplement to his Zwölftonwerk: a treatise on twelve-tone composition, drawing heavily

on the work of Schoenberg and Webern—in addition to his own music—for musical examples. This

two-part treatise, Anleitung zur Zwölftonkomposition (1952/1958), was praised by Hans Redlich

as “the first manifestation of an organic system of speculative thought” about “twelve-note music.”68

Redlich emphasizes the Anleitung’s modesty of scope—the first sentence of Jelinek’s foreword to

the reprint: “Dieses Buch ist keine allgemeine Kompositionslehre”—and its “absolute absence

of any doctrinaire attitude.”69 In an English-language review for the audience of The Musical

Quarterly, Krenek praised Jelinek’s “alert technical imagination” and his “enviable ability to present

66. Dubkinsky, Gregory. “Jelinek, Hanns.” Grove Music Online. Edited by Deane Root. Accessed 19 August, 2017.
http://www.oxfordmusiconline.com.

67. “Österreichischer Kunstsenat - Hanns Jelinek,” accessed August 19, 2017, http://www.kunstsenat.at/preistraeger/
CV/jelinek.htm.

68. Hans F. Redlich, “Hanns Jelinek,” The Music Review 21 (1960): 66–72, 69.
69. Redlich, 71
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his judgment […] in clearly intelligible yet purely technical language.”70 Krenek, however, did not

go without noting Jelinek’s “penchant for systematization” and that “the pleasure that a logical mind

takes up in setting up elaborate classifications is frequently not proportionate to the actual result, since

it easily engenders pedantry and red tape.”71

In 1961, Jelinek published an article in Archiv für Musikwissenschaft entitled “Die

krebsgleichen Allintervallreihen,” which contains the earliest published reference to an accurate

total number of all-interval series, and describes some of the properties of the subset of symmetrical

all-interval series.72 By way of introduction, Jelinek explains:

Im Laufe meiner Befassung mit den Zwölftonreihen traten manche Probleme an mich
heran, deren erschöpfende Behandlung in meiner Anleitung zur Zwölftonkomposition
sich aus verschiedenen Gründen als unzulässig erwies: sei es, daß ihre gründliche
Durchforschung eher den Wissenschafter interessierte als den Komponisten, für
den doch die Anleitung in erster Linie bestimmt ist, sei es, daß ihre vollständige
Darstellung einen verhältnismäßig größeren Raum beansprucht hätte, als ihr in einer
Anleitung zugestanden werden konnte.

During the course of my engagement with twelve-tone series many problems
offered themselves to me, the exhaustive treatment of which in my Anleitung zur
Zwölftonkomposition proved to me unacceptable for several reasons: whether it be that
their thorough investigation was more interesting to the scientist than to the composer,
for whom the Anleitung was primarily intended; or that their complete presentation
would have consumed comparatively larger space than could be allowed for in a manual
[Anleitung].73

Along with several other topics, writes Jelinek, the treatment of the all-interval series will be

deferred to his forthcoming Systematik zur Zwölftonreihen, for which the materials had been

prepared and were in use as teaching materials but have not been yet drafted in a form suitable for

publication.74 Thus, the results reported in the 1961 article form part of a larger book project, which

70. Ernst Krenek, “Review of Anleitung Zur Zwölftonkomposition by Hanns Jelinek,” The Musical Quarterly 40,
no. 2 (April 1954): 250–256, 251ff.

71. Krenek, 253ff.
72. Hanns Jelinek, “Die krebsgleichen Allintervallreihen,” Archiv für Musikwissenschaft 18, no. 2 (1961): 115–25,

https://doi.org/10.2307/930340
73. Jelinek, 115.
74. Jelinek, 115
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Jelinek hoped would provide a venue to report the findings of his more abstract explorations of

twelve-tone compositional possibilities, in a form of presentation unconstrained by the desiderata of a

composition manual.75

As we have learned, the problem of enumerating all-interval series is refractory to manual

computation. Jelinek concurs:

Daß es für die AIR im allgemeinen und für K=AIR [Krebsgleichen Allintervallreihen]
im besonderen eine solche einefache Herstellungsanweisung nicht gibt, hatte ich
längst vermutet und fand ich nun bestätigt. […] Wolle ich diese lösen, blieb mir
keine andere Möglichkeit, als alle derartigen Reihen aufzufinden und entsprechend
geordnet (“katalogisiert”) wiederzugeben.

The fact that there is no such simple preparation for the AIR in general, and for the
K=AIR in particular, had long been suspected by me, and I now found this to be
confirmed. […] If I wanted to solve this, I had no other option than to find all such series
and reproduce them in an orderly fashion (a “catalog”)76

This is the moment of defeat for a “simple preparation,” for an elegant and dependable set of rules

for the construction of all-interval series, marked by Jelinek’s turn to a laborious systematic search

method, that, in theory, allowed him to systematically enumerate the all-interval series by hand.

Although several dozen all-interval series had been discovered by this point, it was not known what

fraction of the total number was represented by these specimens. Therefore, there was no recourse

to using the total number discovered as a stopping criterion.77 In the worst case, all permutations of

the eleven intervals would have to be checked manually. But completing this in a reasonable time,

as Jelinek became aware, was impractical. Back-of-the-envelope calculations apparently based on

his experience of calculating a small portion of the results by hand make for pessimistic reading:

durations ranging from 22 working weeks to 2,112 days of daily calculations are suggested.78

75. For an overview of the planned structure of the Systematik see Marion Noell, Hanns Jelineks kompositorischer
Weg zur Zwölftontechnik in seinem Ersten Streichquartett op. 10: archivalische, biographische und analytische
Untersuchungen, KulturReihe aktuell, Bd. 1 (Kiel: Vauk, 1998), 238ff.

76. Jelinek, “Die krebsgleichen Allintervallreihen,” 116.
77. That is, to stop the exhaustive search once the predicted number of all-interval twelve-tone sequences was

discovered.
78. Untitled estimate of work required for all-interval series calculation. Hanns Jelinek Nachlass. Österreichische

Nationalbibliothek, Musiksammlung. Vienna, Austria. (ÖNB) F16.Jelinek.141 Mus.
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Concluding that a machine would be necessary to exhaustively enumerate the contents of such

a catalog, Jelinek eventually sought technical help with his problem. Jelinek recruited an Austrian

academic named Heinz Zemanek to help with the solution. Zemanek, an engineer with expertise

in computer applications, led a small team of engineers that designed and built several electronic

computers at the Technische Hochschule in Vienna. Their signal achievement, however, was the first

fully transistorized, digital electronic computer to be built in Europe, named Mailüfterl. Transistors,

invented in 1948, came to entirely replace the vacuum-tube in circuits used in early computers,

because of their improved reliability and energy efficiency. They were also less bulky. Transistors

used in the amplifying component of hearing aids were the focus of miniaturization processes during

the 1940s and 1950s, in part to mitigate the stigma of being seen to require a prosthetic by making the

devices less conspicuous.79 In fact, many of the several thousand transistors used in Mailüfterl, which

Zemanek sourced at no cost from Phillips, were originally destined for hearing aids.80

This was the computer used to compute the Vienna solution to the all-interval problem. Their

project began to materialize in the summer of 1956; the first “non-trivial” (Zemanek’s words)

calculation was undertaken in May 1958: the computation of a (then-)large prime number. The

all-interval-row calculation was undertaken in the following year, some time in August 1959.81

Zemanek has recounted that the all-interval calculation was, “the first giant application” of Mailüfterl

or, indeed somewhat inaccurately “the first program we ran,”82 But Mailüfterl had been set to

other tasks in the months between the first prime-number calculation and the musical application,

including tasks in linear programming and the automatic testing of the validity of simple logical

79. Mara Mills, “Media and Prosthesis: The Vocoder, the Artificial Larynx, and the History of Signal Processing,”
Qui Parle: Critical Humanities and Social Sciences 21, no. 1 (Fall/Winter 2012): 107–49, https://doi.org/10.5250/
quiparle.21.1.0107.

80. Heinz Zemanek, Oral history interview with Heinz Zemanek, interview by Philip Davis, June 11, 2005,
Computer History Museum/Society for Industrial and Applied Mathematics, http://history.siam.org/%5C/pdfs2/Zemanek_
final.pdf, 20.

81. Heinz Zemanek, “‘Mailüfterl’ - Eine Retrospektive,” Elektronische Rechenanlagen mit Computer-Praxis 25,
no. 6 (December 1983): 91–99.

82. Heinz Zemanek, Oral history interview with Heinz Zemanek, interview by Henry Tropp, December 12, 1972,
Computer Oral History Collection, 1969-1973, 1977, Archives Center, National Museum of American History, https:
//amhistory.si.edu/archives/AC0196_zema721212.pdf, 27.
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expressions, racking up 1,880 operational hours as early as January 1959.83 These computations were

the result of Zemanek’s turn to contracting for the European Research Office (ERO) of the American

Army for the years 1959 to 1961 to support the Mailüfterl group at the rate of around $8,000 per

year.84 In a tongue-in-cheek document sent to Jelinek, Zemanek “invoiced” the composer for 63,600

Austrian shillings, the total nominal cost of 60 hours of computer time and 36 hours of programming

time.85 For comparison, the next largest computation that is an early significant application of

Mailüfterl took only 30 hours.86 Perhaps it was the outsize allocation of computer time that lent the

all-interval-row computation its relative significance to Zemanek in his recollections of the early

history of Mailüfterl.

Like other early electronic computers, Mailüfterl could have a loudspeaker attached to critical

junctions in its electrical circuits so as to jerry-rig an auditory monitor of its internal operation.87

Siphoning off the electrical activity and routing it to a loudspeaker effectively sonifies the activity

of the machine, and this can be used to identify when the machine has stopped computation without

supervising the console.88 The lab had reportedly developed a coupling with the telephone network

to allow engineers to hear this signal from offsite, which facilitated a rudimentary form of remote

supervision. Experienced engineers “could sometimes guess from the melody in which part of

the program the machine was just running.”89 This improvised arrangement reduced the staffing

83. Zemanek, “‘Mailüfterl’ - Eine Retrospektive.”
84. Heinz Zemanek, Oral history interview with Heinz Zemanek, interview by William Aspray, Transcript, February

14, 1987, OH 127, Charles Babbage Institute: The Center for the History of Information Processing, http://hdl.handle.net/
11299/107723, 42.

85. At 100 shillings per hour and ten shillings per hour, respectively. “Symbolische Rechnung.” dated 4 September
1959. ÖNB F16.Jelinek.141 Mus. The title can be understood to mean both “symbolic invoice” and “symbolic
calculation.”

86. Zemanek, “‘Mailüfterl’ - Eine Retrospektive.”
87. Heinz Zemanek, “‘Mailüfterl’: Der Volltransistor-Rechenautomat des Instituts für Neiderfrequenztechnik der

Technischen Hochschule in Wien,” Unternehmensforschung 3, no. 1 (1959): 37–49, https://doi.org/10.1007/BF01922379,
48. A typical site, for example, would be the machine register in working memory (today’s RAM) that contains the current
processor operation.

88. This practice stretches back to the earliest stored-program computers, designed by Turing and built in
Manchester, UK in the 1940s. Paul Doornbusch, “Early Computer Music Experiments in Australia and England,”
Organised Sound 22, no. 2 (August 2017): 297–307, https://doi.org/10.1017/S1355771817000206.

89. Zemanek, Oral history interview with Heinz Zemanek, February 14, 1987, 40. On the practice of aural
debugging of early computer hardware, see Shintaro Miyazaki, “Algorhythmics: Understanding Micro-Temporality
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required to steward long-running computations through to completion, such as the 60-hour all-interval

catalog program. Zemanek contacted Jelinek on the completion of the all-interval task—“näturlich

telephonisch! wir waren ja beide furchtbar gespannt!”—whereupon Jelinek found that the

computer had dutifully printed out a catalog of 1,928 all-interval series.90

Jelinek’s access to the technological expertise at the Technische Hochschule may have

been contingent upon his affiliation with a peer cultural and academic center in Vienna, the

Musikhöchschule. Jelinek acceded relatively late to institutional life in Vienna, spending many

decades of his early years performing and composing music for bars and light music venues under

the pseudonym Hanns Elin. He did not receive a full-time income from music until his appointment

at the Musikhöchschule in 1958. By way of contrast, Krenek, who was born one year earlier than

Jelinek in 1900, completed Jonny spielt auf in 1926, and took miscellaneous teaching appointments

in the United States in the early 1930s. Whereas Krenek tossed the all-interval problem back and forth

between friends and experts in his growing musical correspondence network, until his breakthrough

collaboration with Zemanek, Jelinek spent uncountable hours working alone on page after page of

calculations, which now fill several folders in the Jelinek Nachlass at the Austrian National Library.

According to the 1961 article, Jelinek had provided Zemanek with a specification of the

all-interval problem that was particularly amenable to computational implementation. This

specification, according to the composer, accounted for Zemanek’s enthusiasm for assisting him in the

first place.91 Zemanek corroborated this in a 1987 interview, describing work on a preliminary version

of the program:

He came already with a kind of program, not an elaborated program, but a logical idea
for it. He had also computed one block. We transformed his idea into a real Mailüfterl
program, and we started by doing the first block. To our satisfaction, there were, like on
his sheet, thirteen results. Only, it turned out after the first glory that there were mistakes
in it. Of course, it was not machine mistakes [sic]. Doing it by hand, he was bound to

in Computational Cultures,” Computational Culture, September 28, 2012, http://computationalculture.net/
algorhythmics-understanding-micro-temporality-in-computational-cultures/.

90. Jelinek, “Die krebsgleichen Allintervallreihen,” 117. A computer printout of the complete list is held in ÖNB
F16.Jelinek.140 Mus.

91. Jelinek, 117.
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make mistakes: he had one series twice and didn’t see it. And he lacked one and he
didn’t see it.92

Zemanek’s recollection encapsulates the encounter between the hand-computation techniques of the

twelve-tone composer, facilitated by the identification of musical intervals with the integers modulo

12, and the automated, digital computation techniques of the computer engineer. Jelinek’s method

was “already […] a kind of program” from Zemanek’s perspective: the combinatorics at the heart

of twelve-tone technique, especially in connection with the all-interval series, were familiar to a

computer engineer. Put another way, the account of this interaction describes how the exploration

of the musical materials of twelve-tone technique was made legible as computer programming to

Zemanek.

It also thematizes the pitfalls of computing the all-interval catalog by hand. First, without a

precise bound on the hypothesized number of distinct all-interval series, it is not obvious when the

catalog is complete. Even with a process supposed to generate the entire catalog, guaranteed to stop

upon its completion, the possibility for mistakes in hand computation could lead to both omissions

(“he lacked one”) and duplication (“he had one series twice”).93 Generating and testing all possible

interval sequences—despite being theoretically possible but practically intractable by hand, according

to Jelinek’s time estimates—resolved these shortcomings.

Though the present discussion has emphasized the latent computationality of Jelinek’s

groundwork on the all-interval problem, this collaboration was no less dependent on Zemanek’s

initial openness to consider the problem and his having the basic musical knowledge required to

understand it. Zemanek describes growing up in a musical family: having attempted to learn violin

as a child, he persisted playing piano into adulthood and even played accordion for his fellow soldiers

during his wartime posting in Greece.94 Zemanek’s musical interests also stoked his imagination of

musical applications for the vocoder while working on an implementation of the signal-processing

92. Zemanek, Oral history interview with Heinz Zemanek, February 14, 1987, 37.
93. The combination of both of these errors is particularly pernicious, since the effect upon the total of a missing

entry is concealed out by that of an erroneous duplication and is accordingly less easily spotted.
94. Zemanek, 5.
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technique in the mid-1950s.95 Zemanek maintained an interest in the effects of computational thought

on art throughout his professional life, which included a chapter on computer art in his 1992 survey

of information technology. He would repeatedly refer fondly to his collaboration with Jelinek in his

writing, and, as we have seen, in the oral history interviews already cited.96

In this connection, Zemanek develops an extended and explicitly atomic analogy to describe

the application of computers to art production, and ties it to his understanding of serial composition,

activating many of the themes developed up to this point.

Man wählt also ein Feld der Kunst aus und sucht dort die Atome, die Töne
(Grundschwingungen) der Musik, die Farbpunkte eines Gemaldes, die Grundbewegungen
des Tanzes und so fort. […] Wenn man Atome und Gesetzmaßigkeiten beherrscht,
dann kann man zurentsprechenden Produktionstechnik übergehen. Tut man dies mit
Computerhilfe, dann steht der computerhergestellten Kunst nichts mehr im Wege.
[…] In der Musik sind die Zwölftonserien ein sehr typisches Beispiel: Sie werden
wie Moleküle verstanden, mit denen man die Komposition aufbaut, mit Methoden der
Informationsverarbeitung.

Thus, one chooses a field of art and looks there for atoms: the tones (the fundamental
frequencies) of music, the points of color of a painting, the basic movements of dance,
and so on. […] If one masters atoms and regularities, then one can move on to the
corresponding technologies of production. If this is done with the help of the computer,
then nothing stands in the way of computer-generated art any more […] In music, the
twelve-tone series are a very typical example: they are to be understood as molecules,
with which a composition is built, using the methods of information processing.97

Zemanek’s account demonstrates that computer music collaborations inform conceptions and

activate metaphors that construe art (generally) and serial composition (specifically) as a species of

information processing (Informationsverarbeitung). As later chapters will show, such metaphors

can persist in musical discourse long after the initial encounter that inspired them. And, as the next

section shows, such inspirational moments were not particular to the collaboration between Jelinek

and Zemanek.

95. Zemanek, 24.
96. Heinz Zemanek, Das geistige Umfeld der Informationstechnik (Berlin: Springer-Verlag, 1992), 252.
97. Zemanek, 251.
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2.3.2 Unused cores, balanced cycles: André Riotte (1963)

In 1960, IBM Italy received an order for several digital computers from the European Atomic Energy

Community (Euratom), to be delivered to its principal research site, then under construction in the

small town of Ispra, northern Italy.98 There, the Joint Research Center (JRC) would become the home

of several experimental nuclear reactors, operational until the 1980s, and the workplace of 2,300 staff

at the peak of employment at the site in 1968.99 One of those employees was a young French engineer,

André Riotte. Riotte joined the JRC in 1961 and worked for four years at the center’s data-processing

division, known as CETIS (Centre Européen de Traitement de l’Information Scientifique).100 As a

result, Riotte had access to a number of analog and digital computers at CETIS that were primarily

designed to support research activities at the JRC in nuclear physics and engineering. Analog

computers, which used bespoke electronic circuits to realize computations of models of physical

processes, were still in use at the JRC, alongside their newer, more flexible digital counterparts.

Analog computers were generally purpose-built for specific, predetermined computational

applications. Example applications include: the prediction of tides, the computation of the trajectories

of ballistic missiles, the solution of differential equations in a fixed number of variables. These

machines would be specified, designed, and constructed for a relatively narrow class of problems. If a

new kind of problem arose, a new computer was commissioned to solve it. Thus, computing machines

from the pre-digital era reflect the precise needs of the institutions that could afford to commission

and maintain them. An analog computer purpose-built to enumerate the all-interval series was out of

the question. Digital computers, on the other hand, represented their operands using discrete symbols

from a fixed vocabulary, usually the binary number system. The development of this abstraction

facilitated a number of novel paradigms of computing, including the idea that computer applications

could be modeled, not as the fixed specification of some (electro)mechanical computing machine

98. IBM, “IBM Archives: Italy Chronology 1950 - 1969,” January 23, 2003, http://www-03.ibm.com/ibm/history/
exhibits/italy/italy_ch2.html.

99. European Commission and Joint Research Centre, JRC Ispra: A 50 Years Pictorial History (Luxembourg:
EUR-OP, 2009), 13.

100. André Riotte, “Computer Music: A New Meeting-Point of Art and Science,” Euro Spectra: Scientific and
Technical Review of the Commission of the European Communities, March 1974, 2.
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designed a priori, but as a series of fundamental operations that could be composed, stored, and

retrieved ad hoc. This property of digital computers from this period—programmability—greatly

improved the chances that the all-interval series problem would be solved computationally, because

pre-existing computer facilities could be used. What once required the design and construction

of bespoke machines could be completed commissioning and executing of a program—the

intellectual labor of symbol manipulation, by now familiar to the diligent twelve-tone student—on

a programmable digital computer to which the inquisitive composer had access. While he was

employed at the JRC, Riotte worked on a project to connect analog and digital computers so that

the digital computers could be used to improve the effectiveness of analog modeling by using the

digital computer to check the analog model specification for errors before it was programmed and run,

effectively playing the strengths of both computing paradigms off each other.101

Ensuring that an algorithm performs as expected is a core competency of programming in

general. In particular, it is a skill necessary to design a demonstrably correct algorithm for the

generation of the all-interval series catalog. Riotte’s work on this project positions him at the

meeting-point of the analog-digital divide, and he was tasked with bridging this divide at CETIS.

Riotte had other interests and expertises, which positioned him at the intersection of two other

domains: music and the sciences. As a one-time student of composition, Riotte had studied under

Arthur Honegger, Olivier Messaien and Jean Barraqué.102 Riotte’s dual formation served him well

both before and after his tenure at the JRC. He sustained a professional career as a data processing

engineer while enjoying a healthy number of performances as a composer, until he ultimately

dedicated himself to music in 1982. Riotte attributed his interest in serial composition to his studies

with Barraqué, and this interest found its expression not only in Riotte’s compositions but in his use of

computer time in Ispra to develop new musical resources. In 1963, Euratom published a short internal

report by Riotte entitled “Génération des cycles équilibrés,” in which Riotte defines the concept

101. André Riotte, “CANDIDE: Overall Plan for Possible Developments of Linked of the CETIS Analog and Digital
Computers,” Translation of CETIS Report No. 33, 1963 “CANDIDE - Plan d’ensemble sur les dévelopements possibles
du couplage des calculateurs analogiques et digitaux du CETIS” (Washington, D.C: National Aeronautics and Space
Administration, January 1964)

102. Riotte, “Computer Music: A New Meeting-Point of Art and Science,” March 1974, 2.
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of a “balanced cycle” (cycle équilibré).103 “A balanced cycle is a series of twelve tones, which is

also a series of eleven intervals, all different,” writes Riotte, effectively describing the criteria for

an all-interval series, though he did not use this term.104 Riotte goes on to accurately report the total

number of all-interval series, up to transposition and inversion: 1,928. Unlike the earlier Vienna

solution, or the later New York solution, Riotte published very few of his examples, and so we cannot

say for sure that his catalog was accurate—but, as agreement on the total figure suggests, it was very

likely to have been comprehensive.

When and how did Riotte achieve this enumeration? Riotte remarks that a computer program

was written to determine the total number of “balanced cycles” by the programmer–analyst André

Debroux, Riotte’s colleague at CETIS, who also worked on analog-digital coupling projects at the

computer center.105 A later publication by Riotte suggests that he had developed the “balanced cycles”

concept by 1962; elsewhere, it is suggested by Riotte’s report that the investigations of balanced

cycles were written in FORTRAN II, and executed on an IBM 7090.106 The IBM 7090 at Ispra was

part of the 1960 order placed with IBM Italy, and we know that it arrived sometime in late 1961.107

This suggests Riotte and Debroux completed the calculations some time between late 1961 and the

publication of the Euratom report in 1963, at least two years before Bauer-Mengelberg and Ferentz’s

publication.

Riotte’s access to the computer was in part guaranteed by his employment in a service-providing

role that saw him mediate other researchers’ access to the computing installation at CETIS. But his

access was also facilitated by the fact that the computer was not so heavily used that it could not be

used for his extra-curricular calculation—research into serial music was hardly a priority at Euratom,

but it seemed that there was little demand on the machine that Riotte used to produce his catalog.

103. André Riotte, “Génération des cycles équilibrés,” Internal report (Ispra, Italy: Euratom, 1963), 139.
104. Riotte, 139.
105. Riotte, 139.
106. Riotte, “Computer Music: A New Meeting-Point of Art and Science,” March 1974, 2; André Riotte, “Il

nanosecondo ben temperato,” Rivista IBM 5, no. 2 (1969): 40–45, 44.
107. W. John Hutchins, ed., Early Years in Machine Translation: Memoirs and Biographies of Pioneers,

Amsterdam Studies in the Theory and History of Linguistic Science Series 3, Studies in the History of the Language
Sciences 97 (Amsterdam: Benjamins, 2000), 132.
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One reason that the IBM 7090 was purchased by Euratom was that this hardware supported a revised

version of the translation software known as Georgetown Automatic Translation (GAT). At that

time, machine translation was relatively rudimentary, but nevertheless supported the translation of

short texts between widely-spoken language pairs that dealt with a relatively constrained conceptual

vocabulary. The Georgetown system sufficed, for example, to provide legible translations into English

of abstracts of Russian research, which were enthusiastically consumed by users of the system at Ispra

until GAT was retired in 1976.108 In the first months of operation of the 7090, it was reportedly so

underused that machine translation experts were induced to travel to Italy to work on the system, in

exchange for their free use of the computer.109

Riotte’s use of the IBM 7090 exemplifies how computational resources, when they are surplus

to institutional requirements, can be appropriated by technically skilled users for their own ends, with

little or no retribution. In a later article from 1974, reviewing developments in computer music for a

wider—if scientifically literate—audience, Riotte shows a sensitivity to such practical impediments to

pursuing computer research about music. Riotte writes:

Of course, the computer is still a costly tool for the composer. With few exceptions,
computer music is not yet counted among the interdisciplinary studies in Europe, and
it suffers from a lack of information and research. It meets with the usual difficult
difficulties—confidential research, justifications for access to facilities, non-transferable
programs, inadequate attempts at programming.110

The necessity of negotiating computer access to pursue musical research remained an issue. Even in

the early 70s, as less-expensive minicomputers provided a commercial alternative to the mainframe

computer installation, Riotte’s comments suggest that securing computer time for musical ends

required justification to supervisors of computer utilities. Part of Riotte’s solution to this problem of

access is a systemic one: to include the “development and reform of music teaching, putting stress on

the new means of formalization and processing of data.”111 Resembling Zemanek’s comments cited

108. Michael D. Gordin, Scientific Babel: How Science Was Done Before and After Global English (Chicago: The
University of Chicago Press, 2015), 261.

109. Hutchins, Early Years in Machine Translation, 132.
110. Riotte, “Computer Music: A New Meeting-Point of Art and Science,” March 1974, 14.
111. Riotte, 14.
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above, Riotte’s speculative plan also develops the idea of music as a species of data processing as the

solution to an apparent lack of computational attention.

Though Riotte wastes little ink explaining the implementation of his computer program, he

does indulge in extensive discussion of its relevance to contemporary musical thought. Riotte writes

transparently about the continuity in which he situates his work: “it may be noted that an algorithmic

awareness had already surfaced in music, in particular in the person of Olivier Messiaen.”112 Riotte

describes the composer’s imperative to respect new fundamental musical objects not as compositional

determinants but as conditions of possibility:

Il est clair que le matériau des sons dans lequel on va puiser, s’il ne garantit en
aucune façon l’expression et la qualité des œvures musicales qui l’utiliseront,
oriente au moins, par ses virtualités plus ou moins riches, l’éventail des réalisations
possibles.

It is evident that the sonic material upon which we will draw, if it does not guarantee in
any way the expression and the quality of the musical works that make use of it, will by
way of its more or less rich virtualities, does at least orient the wide range of possible
realizations of these works.113

Accordingly, though the data processing techniques at the heart of the all-interval series generation

algorithm are robustly deterministic, composition remains a negotiation of the “rich virtualities” that

a catalog of the balanced cycles (or, indeed, any musical material) provides. On Riotte’s view, the

special property of the all-interval series, its maximal diversity of melodic interval content, exerts no

more influence over how a composition goes than could any other of its properties.114 Riotte’s talk

of “virtualities” and “possible realizations” demonstrates his sensitivity to traditional compositional

processes, speaking to the unpredictability of musical creation. Reading of the co-option of high

technology by twelve-tone composers as a symptom of a broader depersonalized musical aesthetic

112. “[O]n peut remarquer qu’une conscience algorithmique s’était déjà fait jour dans la musique, en particulier
chez Olivier Messiaen.” Riotte, “Génération des cycles équilibrés,” 1963, 141.

113. Riotte, 135.
114. Compare this with Krenek’s view, expressed in “Musik und Mathematik,” that use of such a maximally diverse

series would free the composer from latent tonal allusions in such a series.
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is questionable, when Riotte can assert—explicitly—the provisional status of the results of his

computational investigations.

Years later, in 1982, Riotte was invited to address a colloquium funded by the European

Commission, on the topic of “the civilization of the microprocessor and microelectronics,” Riotte,

who for several decades programmed computers used in experimental nuclear research for a living,

was not exaggerating when he claimed that “[a]ny technique that extends our capacities implies

potential dangers. The resources that can be tapped in microelectronics are immense. […] Shall

we be able to meet the challenge? Yes, if we are convinced that the future of our civilization is at

stake.”115 In context of this discussion of his “balanced cycles” program, such talk seems hyperbolic.

But an important lesson lies behind this irony. The juxtaposition of the banal and the life-threatening

applications of the computer is facilitated by the flexibility of the programmable digital computer.

Unlike its analog predecessors the same device, at the hands of the same programmer, at the same

institution, can be switched from musical to non-musical use at a moment’s notice. Riotte’s work

demonstrates how access to computer platforms maintained by powerful institutions can determine

where innovative computational work is done. Often, that work is easily aligned with the goals of

thsoe institutions; the case of Riotte shows that this not always the case.

2.3.3 At last, an American solution: Bauer-Mengelberg and Ferentz (1965)

This same flexibility would allow an IBM man to appropriate computer time from his employer

in New York, and work with a physicist to prepare yet another exhaustive catalog of all-interval

series. Their work exhaustively documented in an article to appear in a journal that would continue

to provide a venue for practitioners of the computational attitude to music for several decades to

come. Stefan Bauer-Mengelberg and Melvin Ferentz, appeared in Perspectives of New Music in 1965.

Though this article also reports yet another accurate total number of all-interval series, it stands apart

from the other research described above, because of its explicit exposition of the computational tricks

used to optimize its calculations. The structure of this short article leads the reader from a brute-force

115. “Welcoming the Future,” Women of Europe, no. 25 (March-April 1982): 52.
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solution to the ingenious, time-saving final implementation, which would allow the calculation to be

completed in a total time of seven minutes. Since the majority of their paper is concerned with these

tricks of optimization, and because of its carefully didactic form of presentation, its is perhaps best

viewed less as an essay in music theory, than as a tutorial or case study introducing the potentials

of new applications of computers to the field. Unlike the perfunctory reports of Jelinek and Riotte,

this article shifts the algorithmic optimization of the problem to the fore, and, starting with a naive

brute-force solution, iteratively develops intermediate computational solutions, performatively

assessing their benefits and limitations.

It will be recalled from the introduction to this chapter that pseudocode representations of

algorithms helped us compare two versions of the solution to the all-interval series enumeration

problem: the naive tone series version (Algorithm 1) and the naive interval series version (Algorithm

2). This is the first improvement introduced by Bauer-Mengelberg and Ferentz, allowing them to

conclude that “without loss of generality we have cut the problem down by a factor of 12, which,

of course, reflects the fact that we are willing to settle for structures that by a natural interpretation

determine twelve interval rows each.”116

Improved versions of the solution build on the basic structure of Algorithm 2, which can be

viewed as consisting of two distinct steps: the generation of candidate interval sequences, and the

testing for the all-tone condition. The solutions presented by Bauer-Mengelberg and Ferentz are

therefore instantiations of the “generate-and-test” pattern, a basic but effective approach. Both

the generate step and the test step become targets of optimization thinking in their paper. Their

final solution attacks both of these steps at once, carefully designing both a generate step and a

test step that together minimize the total number of computations required to generate the catalog.

To understand the ingenuity of this solution requires careful understanding of these two steps

independently, which they duly develop, in the requisite order, in their paper. By building on a

naive brute-force solution, they show how musical and mathematical features of the problem can be

116. Bauer-Mengelberg and Ferentz, “On Eleven-Interval Twelve-Tone Rows,” 96.
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leveraged to reduce the total computation time required to produce an exhaustive list of all-interval

twelve tone series

The test step is optimized first. The goal at each invocation of the test step is to check if a

sequence of all intervals (that is, a permutation of the intervals 1 through 11) actually generates a

twelve-tone series. The authors successively test sums of contiguous subsequences of the interval

pattern under consideration to determine if this is the case. Consider the series of intervals that

makes up the series used by Alban Berg in his Lyric Suite: [E, 8, 9, T, 7, 6, 5, 2, 3,

4, 1]. No interval-pattern that generates all-interval twelve-tone series (what Riotte would call

a “balanced cycle” of intervals) may contain contiguous subsequences whose sums are congruent

to 0 mod 12. If they were, this would indicate that the interval between the notes corresponding to

the start and end of the subsequence would be separated by an octave thereby duplicating the note

name, and thus failing to exhaust the twelve-tone aggregate.117 There are 54 contiguous subsequences

in each interval sequence to be tested, and accordingly up to 54 sums to be computed for each of

the 11! interval-sequence permutations.118 The authors note that they can do better, and restrict

their interest to contiguous sums of the first n digits, defining such a sum as the nth “partial sum,”

Bauer-Mengelberg and Ferentz noticed that no contiguous sum (excluding the first digit) can be

congruent to 0 mod 12 if and only if two partial sums are congruent to each other mod 12. Thus,

testing the residues mod 12 of the eleven partial sums (i.e. eleven sums) suffices to conclude that an

interval sequence is an all-interval row generator.119 This refinement can be integrated into a new

protocol, shown here as Algorithm 3. Recall that this refinement applies only to the test step; the

generate step (the for-each-permutation directive) remains the same as in Algorithm 2.

Next, the authors focus on reducing the total number of permutations to be tested, the generation

step. It is first noted, as Jelinek remarked, an all-interval sequence is a row generator if and only if

it is complement mod 12 is. This reduces the number of tests by half. Those starting with a tritone

117. Recall the “degeneracy” of the interval sequence [1, 2, 3, 4, 5, 6, 7, 8, 9, T, E], for example.
118. None of the length-one subsequences are congruent to 0 mod 12. Bauer-Mengelberg and Ferentz, 97.
119. We note in passing that this final refinement of the test step is tantamount to the application of the interval

sequences as a series of transpositions starting from some notes, and checking if the resultant set of notes exhausts the
aggregate.
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for each permutation of the eleven intervals:

compute the eleven partial sums

for each partial sum:
if the partial sum is congruent to 0 mod 12:

...then consider the next permutation
otherwise

...advance to the next partial sum

add the permutation to the list of all-interval series

Figure 2.3: Algorithm 3; Brute force, partial sum test

prepare permutations of the eleven intervals, excluding those
starting with 6 and above

for each such permutation of the eleven intervals:
for each partial sum in the permutation:

if the partial sum is congruent to 0 mod 12:
...then consider the next permutation

otherwise
...advance to the next partial sum

// at this point, we are sure that no partial sum is congruent to 0 mod 12
add the permutation to the list of all-interval series generators

Figure 2.4: Algorithm 4; First refinement, partial sum test

are also eliminated, a rule long-known, eliminating the possibility that 6 appears in the first position.

Thus, down from 12! (approximately 4.7 × 108), there remain 5 × 10! (approximately 1.8 × 107)

permutations to be tested. Algorithm 4 reflects this achievement.

The signal contribution of Bauer-Mengelberg and Ferentz to the all-interval problem, however,

is their recognition that careful selection of the permutation step could work with partial-sum test

step to potentially exclude entire families of permutations at each iteration of the algorithm. To

this end, the authors describe a method for systematically generating all permutations of a set of

elements that modifies the elements, making adjustments from the right edge only, to generate
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initialize an array [123456789TE] that holds the permutations
being tested

while the value of the first element of the array is strictly less than 6:
for each partial sum in the current permutation:

if the partial sum is congruent to 0 mod 12:
...then compute the next permutation
...jump to this next permutation

otherwise
...advance to the next partial sum

add the permutation to the list of all-interval series generators
compute the next permutation in the usual way

Figure 2.5: Algorithm 5; Final refinement, partial-sum test

successive permutations from an initial state. An advantage of their algorithm is that it produces the

permutations in strictly ascending order, so that the resulting list of all-interval series does not need

to be sorted after it is produced, saving further compute time. Other, faster, algorithms which result

in the generation of all permutations exist, but they do not make guarantees about the stability of

left-starting subsequences from step to step.

If a given permutation generated in such a fashion fails the sum test on the _n_th partial sum,

since no amount of reorganization of the digits after the nth digit can fix this problem and, crucially,

because by design the permutation generation scheme does not interfere with the first n digits, “we

can act as if all of these permutations had been generated, tested, and rejected, and we are free to

proceed to the next greater” permutation.120 Algorithm 5 summarizes this final refinement of their

solution to all-interval series problem.

Bauer-Mengelberg and Ferentz do not report the precise speedup that this strategy affords, but

it is straightforward to replicate their results using present-day programming languages. Testing all

permutations of the eleven intervals involves 11! test steps (39,916,800); Bauer-Mengelberg and

Ferentz’s scheme described above requires just 1,180,052 test steps, representing just under 3% of the

120. Bauer-Mengelberg and Ferentz, “On Eleven-Interval Twelve-Tone Rows.”, 102.
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number of tests required by the naive solution. Assuming a fixed-duration test step, the total compute

time is reduced identically. Table 2.2 summarizes the total number of tests required by each algorithm

discussed so far.

Table 2.2: Summary of the important features of the five algorithms to determine the total
collection of all-interval series discussed in this chapter, including their description and
the number of tests that they require to run to completion.

Algorithm # Short description

Number of tests

required

Algorithm 1 Generate and test all twelve-tone series 12!

Algorithm 2 Generate and test all eleven-interval series 11!

Algorithm 3 Generate all eleven-interval series, test using partial

sums

11!

Algorithm 4 Generate eleven-interval series starting with 1…5, test

using partial sums (cf. Jelinek/Zemanek, 1959)

5 × 10!

Algorithm 5 Generate eleven-interval series starting with 1…5 from

the left, test using partial sums, skipping ahead when

possible (Bauer-Mengelberg/Ferentz, 1965)

1,180,052

This algorithm was written for an IBM 7094 computer, probably hosted at the IBM Systems

Research Institute (SRI) in New York, with which both Bauer-Mengelberg and Ferentz were affiliated.

The SRI was founded in 1960 to educate select employees of IBM in topics in computer science.121

Having joined IBM in 1959, Bauer-Mengelberg taught mathematics and operations research at the

SRI, drawing on his training as a mathematician and as a prolific translator to English of key German

texts in symbolic logic.122 Like Riotte, Bauer-Mengelberg was also musical: he had held the post

of assistant conductor at the New York Philharmonic in 1959-60 along with other conducting posts

121. Andrew Pollack, “I.B.M.: A Giant Among Giants in the Classroom as Well,” The New
York Times, August 30, 1980, sec. Education, http://www.nytimes.com/1981/08/30/education/
ibm-a-giant-among-giants-in-the-classroom-as-well.html.

122. “Music and Mathematics,” IBM Business Machines, December 1961, 19.
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outside of New York in the years following, and would later serve as the president of Mannes College

of Music.123 Ferentz, on the other hand, held an academic position as professor of Physics at Brooklyn

College, and had worked in the late 1950s at Argonne National Laboratory, Illinois on computer

applications to nuclear physics.124 Nevertheless, by 1961, Ferentz had resolved to collaborate on a

music-phototypesetting project with Bauer-Mengelberg, leading to their later appointment as research

associates in the Department of Music at Columbia University under a joint-sponsorship agreement

between the university and the Ford Foundation.125

Like the best puzzles of recreational mathematics, the uncanny cleft between the relative ease

with which the all-interval series problem can be stated and the relative difficulty of arriving at its

solution gave the problem a certain appeal, inviting those who came to be preoccupied with it at

the SRI to describe their interest with the vocabulary of virality. In a footnote, the authors remark

that “the problem of obtaining the interval rows by a procedure other than one involving elimination

has proved to be highly contagious, and throughout 1963, the authors and many of their colleagues

kept reinfecting one another.”126 As with those earlier efforts to solve this problem, centered around

the figure of Eimert, the context for Bauer-Mengelberg and Ferentz’s solutions was collaborative.

Mr. F. S. Beckman and Dr. Pat H. Sterbenz, both of the IBM Systems Research Institute (SRI), are

both credited with the discovery of asymmetrical all-interval series; Mr. Charles Gold, also of IBM,

is credited with the preparation of the typeset list, using another computer, the IBM 1401.127 Copies

of this list, the editor of their article noted cheerfully, “will be mailed without charge to readers who

apply to the Editorial Office, until the available supply is exhausted.”128

123. “Stefan Bauer-Mengelberg, a Conductor, 69,” The New York Times, October 28, 1996, sec. Arts, https://www.
nytimes.com/1996/10/28/arts/stefan-bauer-mengelberg-a-conductor-69.html

124. Ferentz had experience with the IBM 7094 computer during his time at Argonne.
125. Stefan Bauer-Mengelberg and Melvin Ferentz, “Research Project in the Utilization of High-Speed Electronics

Computing Equipment for the Preparation of Photo-Masters for Music Printing,” Unpublished interim report, January 31,
1968.

126. Bauer-Mengelberg and Ferentz, “On Eleven-Interval Twelve-Tone Rows,” 95 fn. 3.
127. These methodological remarks are scattered throughout the footnotes of the article; the body of the

article is reserved for the plain-spoken and decidedly approachable explanation of the algorithm described above.
Bauer-Mengelberg and Ferentz, 97 fn. 4, 102, fn. 8.

128. Bauer-Mengelberg and Ferentz, “On Eleven-Interval Twelve-Tone Rows.”, 102.
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2.4 After the flood

With the enumeration of the all-interval series completed, theorists turned to systematic examination

of the catalog, in order to more fully understand this newly accounted class of musical objects.

Jelinek’s 1961 article represents an early effort. His article contains three tables, which, like the rest

of his article, were intended for inclusion in his unpublished Systematik der Zwölftonreihen:

1. Table I (Katalog der krebsgleichen Allintervallreihen): A catalog of symmetrical all-interval

rows, along with their classification into families based on the relationship of their interval

structure to a set of prototypes

2. Table II (Deszentorium der krebsgleichen Allintervallreihen): A compendium of forms that

can be derived from symmetrical all-interval series

3. Table III (Statistik der Intervallziffern bei den krebsgleichen Allintervallreihen): Summary

statistics about the occurrences of intervals in Table I.

Jelinek’s use of the word Deszentorium—a neologism rarely used today that refers to a

special kind of family tree—to describe his chart of derived forms of the all-interval series bears

witness to the continuing attractiveness of taxonomizing musical objects as family members, as

Klein and Slonmisky had shown with their earlier coinages (Mutterakkord and Großmutterakkord,

respectively).129 Eimert, too, would feature pages of analysis of the all-interval series catalog in his

Grundlagen das musikalisches Reihentechnik. He took particular care in pointing out redundancies

in his reprint of the catalog, noting those interval patterns that could be derived from other members

of the list by retrogression or by circle-of-fifths transformations.130

129. The term Deszentorium was coined by the genealogist Stephan Kekulé von Stradonitz (1863–1933) to refer to
a family tree with a particular labeling scheme. Stradonitz popularized a genealogical numbering system which can be
used to summarize the relationship between ancestors with simple arithmetic. Under the scheme proposed by Stradonitz,
the progenitor is assigned the digit 1; their male parent, the digit 2; and their female parent, the digit 3. Male ancestors
from preceding generations are indexed by the double of their direct descendant’s index and their spouses by their own
index plus one. cf. Robert Snarrenberg, “Competing Myths: The American Abandonment of Schenker’s Organicism,” in
Theory, Analysis and Meaning in Music, ed. Anthony Pople (Cambridge: Cambridge University Press, 1994), 29–56, 36.
Snarrenberg describes the latent genealogy in Heinrich Schenker’s theory of the Urklang.

130. Eimert, Grundlagen der musikalischen Reihentechnik, 71ff.
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In a prefatory chapter to Elliot Carter’s Harmony Book, John Link recalls how Carter, who

knew Bauer-Mengelberg, acquired a copy of his all-interval series catalog and began to write out the

series as chords, registrally distributed over their five-and-a-half octave span, as the Mutterakkord

had originally appeared in Klein’s monograph over 50 years previously.131 Link credits the

interval arrangement of the “expanded” forms of the chords to Bauer-Mengelberg. In fact, their

arrangement in Bauer-Mengelberg’s article is, in turn, based on their registral layout of Klein’s

original Mutterakkord. These all-interval twelve-tone chords were included as supplements to the

directory of chords constituting Carter’s notebook of harmonies, and Carter would make extensive use

of all-interval constructions—twelve-tone chords and hexachords alike—in his later music, including

his Night Fantasies (1980) for piano.

The computer would prove to be an invaluable tool for later research on the all-interval series.

A 1979 article by Robert Morris and Daniel Starr published in Journal of Music Theory includes a

source-code listing for a FORTRAN program that generates the complete list of all-interval series,

following the algorithm described by Bauer-Mengelberg and Ferentz. By that time, the enumeration

of the all-interval series took just 12 seconds, reflecting the increase in computational power available

to consumers in the university.132 They point out that their algorithm makes use of “a considerable

amount of trial and error or backtracking, for which reason it is not feasible” as a method for hand

computation.133 More general, and more concise, procedures for the construction of all-interval rows

were desired. To that end, Morris and Starr describe how knowledge of various invariant properties of

the all-interval series under various operations can be used to manually derive all-interval series from

source hexachords, using a “non-backtracking” algorithm.

The all-interval series problem has continued to attract attention from within and without the

field of music. In the early 1980s, John Link wrote BASIC and C programs to replicate the work of

Bauer-Mengelberg and Ferentz, and in 1992, extended his program to search for those all-interval

131. Elliott Carter, Harmony Book, ed. Nicholas Hopkins and John F. Link (New York: Carl Fischer, 2002), 14–15.
”The Combinatorial Art of Elliot Carter’s Harmony Book

132. The IBM 370/155 that Morris and Starr used to perform their computations was brought to market in 1970.
133. Robert Morris and Daniel Starr, “The Structure of All-Interval Series,” Journal of Music Theory 18, no. 2

(1974): 364–89, https://doi.org/10.2307/843642.
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series that contain all-trichord hexachords.134 Link then sent this list to Carter, who became

increasingly interested in such super-saturated harmonic objects, to the exclusion of other set types

in his music. In 1988, E. Randol Schoenberg—the composer’s grandson—revisited the all-interval

series problem in his undergraduate thesis, “Two Music-Related Problems in Combinatorics,”

supervised by the Princeton mathematician John Conway.135 The all-interval series problem was

even recollected as “the Bauer-Mengelberg problem” by the author of a column for the readers of a

specialist programming language called J.136 Perhaps most surprisingly, the all-interval series problem

has lately become a canonical problem used to benchmark of a family of computer programs called

“constraint solvers.”137

Constraint solvers use automated techniques to reason about objects that share properties

specified in advance where no procedure, other than brute-force exhaustive enumeration, to generate

a list of such objects is known in advance. The generalization of the all-interval series problem to

equal-systems with more than twelve notes provides an ample combinatorial challenge for constraint

programmers, even when equipped with today’s contemporary computing hardware, which outstrips

the performance of the computers described in this chapter by several orders of magnitude.138 As

we have already seen, as this dimension of the problem increases, the number of steps required to

perform an exhaustive search (that is, to check all permutations for the all-interval property) increases

factorially. In 2017, researchers reported an exhaustive enumeration of the catalog of “27-tone”

134. John Link, “John Link - the ‘Link Chords’,” accessed June 9, 2017, http://www.johnlinkmusic.com/linkchords.
html.

135. E. Randol Schoenberg, “Two Music-Related Problems in Combinatorics: The Classification of All-Interval Rows
and the Triad Content of Q of N Tones” (BA (Mathematics) thesis, Princeton University, 1988).

136. Eugene McDonnell, “At Play with J: The Bauer-Mengelberg Problem,” Vector 12, no. 2 (October 1995):
155–22, http://www.jsoftware.com/papers/play122.htm.

137. See the discussion in Louis Bigo, Jean-Louis Giavitto, and Antoine Spicher, “Building Topological Spaces
for Musical Objects,” in Mathematics and Computation in Music, ed. Carlos Agon et al., Lecture Notes in Computer
Science (Third International Conference on Mathematics and Computation in Music, Paris. France: Springer Berlin
Heidelberg, 2011), 13–28, s. 3.

138. Although this problem has been a standard example and target for optimization of constraint-solvers, the
literature is scattered and indeterminate about the first research within computer science to characterize the problem
in the language of constraint solvers. For a representative view of how the field of constraint programming views the
all-interval series problem, see Ian P. Gent et al., “Conditional Symmetry Breaking,” in Principles and Practice of
Constraint Programming—CP 2005, ed. Peter van Beek, vol. 3709 (Berlin: Springer, 2005), 256–70, https://doi.org/
10.1007/11564751_21, s. 4.
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all-interval series, beating the state-of-the-art at that time which extended only as far as the n = 24

case.139 In those rare occasions when constraint-programming researchers acknowledge the long

history of the problem, the musical origins of this computational workout are usually mentioned.

Krenek’s association with the problem dominates these marginal accounts; the story of what it took

Klein, Eimert, Jelinek and Zemanek, and their contemporaries to get to the complete catalog were

left—in the constraint-solving literature at least—as an exercise to the reader.

2.5 Conclusion

The problem of enumerating the all-interval twelve tone series was simple to state, and doing so

seemed natural to Klein: no sooner had he discovered the Mutterakkord than he began to wonder

aloud whether this permutation of the twelve tones was unique or not with regard to its profusion

of successive interval types. He embraced the calculation and computation of Musikstatistik as an

ethical imperative toward the citizens of his tonal realm: through enumeration and permutation he

granted all subjects equal status, even if some were harder to account for than others, a fact that must

have be come painfully apparent as the hours and days of manual calculation dragged on. For Krenek,

this lonely work was punctuated by the occasional exchange of letters—he sought and received

mathematical help but found it lacking—the problem of the all-interval series was unyielding. Eimert,

his correspondents, and his acolytes all chipped in; Riotte, Bauer-Mengelberg, and Ferentz sank time

into this problem despite not knowing of the Mailüfterl solution. Of all these researchers who tackled

the problem by hand, however, Jelinek made the greatest personal investment: he had calculated many

hundreds of series, if not thousands, by hand before he collaborated with Zemanek to bring about the

Mailüfterl solution. Their collaboration demonstrates how the computational attitude at the first level

can involve the translation of an existing set of pre-computer computational practices into an actual

computer application; the computerization of the solution implemented what John Agar identified as

the “mechanization” of an already-existing set of computational practices.

139. Md Masbaul Alam Polash, M. A. Hakim Newton, and Abdul Sattar, “Constraint-Directed Search for All-Interval
Series,” Constraints 22, no. 3 (July 2017): 403–31, https://doi.org/10.1007/s10601-016-9261-y.
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Their persisting with manual computation en route to a fully computerized solution evidences

the computational attitude to music approaching obsession. Their persistence is especially remarkable

considering the fact that they did not know in advance how many all-interval series they would

have to find before they could be certain of having exhausted the total stock. A closed-form,

algebraic solution for the total number of all-interval series—that is, for the size of the catalog,

saying nothing of what they were—was not achieved until the 1990s, when Harald Fripertinger

completed a group-theoretic analysis of the problem that provided such a bound without the need

for a generate-and-test procedure.140 It is because of these researchers’ relative blindness to the

precise scale and character of the solution that they sought that the notion of the “epistemic thing” is

especially germane in relation to the total catalog of the all-interval series.141 As the object of the ad

hoc, manual experiments of the pre-computer age, the problem yielded some clues: first, that there

was, indeed, more than one all-interval series; then, that asymmetrical examples of all-interval series

did indeed exist, despite suppositions that they were all necessarily symmetrical. With persistence,

the essential “blurriness” of their view on the matter resolved into a concrete object: a complete

and exhaustive catalog, which in turn was used by theorists as composers as fund both of musical

resources, as did Carter, and—in the work of Morris and Starr—the basis for yet further theorization

still.

140. Harald Fripertinger, “Enumeration in Musical Theory,” Beiträge Zur Elektronischen Musik 1 (1993).
141. See the discussion in Chapter 1 above.
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3 | Music, information

3.1 Laying the groundwork

3.1.1 BANAL TUNE-MAKER: A way into information

In 1956 Richard Pinkerton published a short article in Scientific American with the title “Information

Theory and Melody.”1 In this article, written for the general reader, Pinkerton describes a “banal”

monophonic melody generation procedure based on statistical patterns that he derived from a set of

39 “familiar nursery tunes.”2 A network diagram, its accompanying set of instructions, and a fair coin

suffice to recreate the results of Pinkerton’s experiments; readers of Scientific American had all the

materials at their disposal to do so.

BANAL TUNE-MAKER produces simple, redundant melodies that sound like nursery
tunes. A sequence of notes is obtained by following a path through the network, starting
at the top and writing down the note (or rest [represented by a O]) attached to each
segment traversed. Where there is a choice of paths, a coin is flipped. If it comes up
heads, the black path is taken; if tails the colored path. Broken lines show the path from
a junction where there is no choice.3

Shown in Figure 3.1 is the network diagram, while Figure 3.2 shows a transcription of the

melody that results from this process. Figure 3.3 overlays the steps taken to generate the first measure

of the notated music example, showing the sequence of coin flips that leads to the particular notated

example. Pinkerton’s article is often cited as the earliest application of information theory to music

1. Richard Pinkerton, “Information Theory and Melody,” Scientific American 194 (1956): 77–86.
2. The source material for these tunes was The Golden Song Book by Catherine Tyler Wessells (Simon and

Schuster), first published in 1945.
3. Pinkerton, 78.
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Figure 3.1: BANAL TUNEMAKER, corrected to show colored vertices where intended.
(Adapted from Richard Pinkerton, “Information Theory and Melody,” Scientific
American 194 (1956), 78.)

Figure 3.2: Pinkerton’s BANAL TUNE. (In Richard Pinkerton, “Information Theory and
Melody,” Scientific American 194 (1956), 84.)
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Figure 3.3: BANAL TUNEMAKER with overlay showing the results of following the coin flip
sequence HHT, which leads to the first measure of the tune that Pinkerton reproduced.
(Adapted from Richard Pinkerton, “Information Theory and Melody,” Scientific
American 194 (1956), 78.)
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in bibliographic litanies that establish a pedigree for contemporary statistical research into music.4

Modest as the generated melodies are, Pinkerton’s experiment evidences a new way of conceiving of

the composition of musical utterances in the twentieth century, one that allowed diverse features of

a musical composition—in this case, the style of composition that a composition represents—to be

described in terms of a statistical process.

Pinkerton introduces his basic, hand-computed algorithmic process with the following

deceptively straightforward claim: “Suppose we regard music simply as a form of communication.”5

At a glance, Pinkerton’s supposition might be mistaken for the kind of familiar platitude about

music’s power to communicate that we tend to explain away as the continuing reverberation of

centuries’ worth of baggage. However, the title’s invocation of information theory alone makes it

clear that Pinkerton’s “communication” does not intend its common-sense or music-sense meaning.

He does not posit musical communication as communication from some beyond or other (the

divine, the past, the sublime), a position that has traditionally drawn on arguments that assert the

language-like character of music.6 Neither is music to be understood as a non-linguistic space of

signification that nevertheless affords the interactive working-out of (homo)social, kinesthetic, or

affective–empathic interpersonal relations—all functions that might be considered communicative,

which have been ascribed to music by scholars in recent decades.7 In fact, Pinkerton’s claim is

one that is at once more narrow and more radical. Music is “simply a form of communication”

precisely as much as it may be described with the help of the recent invention of a “theory-of”:

Claude Shannon’s information theory of communication. In the large shadow cast by Shannon’s

theory, “communication” came to signify a very particular set of affairs, one which schematized the

4. Joel E. Cohen, “Information Theory and Music,” Behavioral Science 7, no. 2 (1962): 137–63. Hiller cites,
briefly, much of the work described below. Hiller and Isaacson, Experimental Music: Composition with an Electronic
Computer, chap. 2.

5. Pinkerton, “Information Theory and Melody,” 77.
6. Or, indeed, music’s non-language-like character.
7. For each of these modes respectively see, for example: Edward Klorman, Mozart’s Music of Friends: Social

Interplay in the Chamber Works (Cambridge: Cambridge University Press, 2016); Marc Leman, “Music, Gesture, and
the Formation of Embodied Meaning,” in Musical Gestures: Sound, Movement, and Meaning, ed. Rolf Inge Godøy
and Marc Leman (New York: Routledge, 2010), 126–53; Naomi Cumming, The Sonic Self: Musical Subjectivity and
Signification (Bloomington, IA: Indiana University Press, 2000).
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transmission of information-bearing messages between two parties under certain assumptions about

the character of these messages.

Inaugurated by Claude Shannon in the mid-1940s, information theory is a mathematical

field that provides a quantity for measuring the predictability of communications processes. Its

principal assumption is that communication systems can be idealized as sequence of draws from a

set of discrete symbols that is passed between sender and receiver.8 The relative likelihood of each

symbol in such messages mathematically determines the “information” of the message according to

a deceptively simple equation. Messages that are hard to predict are high in information; messages

that are easier to predict are low in information. This definition measures information in “bits,” a unit

that now alludes to its fundamental role in constructing digital communication channels. Shannon

developed the mathematics for this conception of information at Bell Labs in 1945 while working on

cryptanalysis and communications security for their various government contracts. Shannon’s work

was classified for the duration of the war; the earliest unclassified paper describing these concepts

idea dates from 1948.9

Shannon’s definition of information and other quantities derived from it can be used to quantify

and regulate properties of arbitrary signal sources. In turn, these mathematical techniques can be

used to demonstrate the limits of a communication system’s robustness in the presence of noise

or interference, to specify cryptographic systems that are provably secure against eavesdroppers,

to develop theorems about the maximum theoretical and effective capacity of transmission media,

and to design and prove the optimality of certain digital encoding and data compression schemes.10

These applications quickly showed that Shannon’s idea was highly generative within its originary

8. William Aspray, “The Scientific Conceptualization of Information: A Survey,” IEEE Annals of the History of
Computing 7, no. 2 (April 1985): 117–40, https://doi.org/10.1109/MAHC.1985.10018.

9. E. M. Rogers, “Claude Shannon’s Cryptography Research During World War II and the Mathematical Theory
of Communication,” in Proceedings of the 28th International Carnahan Conference on Security Technology
(Albuquerque, NM, 1994), 3, https://doi.org/10.1109/CCST.1994.363804. For shannon’s first unclassified paper, see
@shannon1948a.

10. For an overview of the development of various applications of Shannon’s theory, see James Gleick, The
Information: A History, a Theory, a Flood (New York: Pantheon Books, 2011). For a recent and accessible (though
stylized) biography of Shannon, see Jimmy Soni and Rob Goodman, A Mind at Play: How Claude Shannon Invented
the Information Age (New York: Simon & Schuster, 2017).
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field and its success stoked optimism that it would be equally generative if applied outside of

telecommunications engineering.

This thinking was partly justified by the fact that Shannon’s scheme modeled communication

as a sequential transmission from sender to receiver, so long as the message’s constituents are drawn

from some discrete symbol set: alphabetic characters, binary digits, ideographs, staff-notation signs,

and so on. Shannon built on earlier work, generalizing earlier results from telegraphy so that they

were applicable to “any system, physical or biological, in which information is being transferred

or manipulated through time and space.”11 The generality of Shannon’s definition of information

explains why a critical–interpretative tradition centered on his work could be initiated almost

immediately: in the landmark re-publication of this paper one year later as A Mathematical Theory

of Communication (1949), Shannon’s essay was preceded a short but profoundly influential essay

by Warren Weaver.12 In this essay, Weaver speculated about the broader applicability of information

theory to a variety of fields of cultural production:

The word communication will be used here in a very broad sense to include all of the
procedures by which one mind may affect another. This, of course, involves not only
written and oral speech, but also music, the pictorial arts, the theater, the ballet, and in
fact all human behavior. […] The language of this memorandum will often appear to
refer to the special, but still very broad and important, field of the communication of
speech; but practically everything said applies equally well to music of any sort, and to
still or moving pictures, as in television.13

Together, these two essays described the mathematical tools that are often interchangeably referred

to as information theory or communications theory. The mathematical generality of the model

that Shannon proposed, taken along with Weaver’s optimism about it, ensured that the theory was

fungible in hundreds of disciplines. In turn, its rapid adoption in diverse research context fueled

beliefs—warranted or otherwise—that the explanatory domain of information theory was boundless.

11. Aspray, “The Scientific Conceptualization of Information: A Survey,” 122.
12. Weaver’s essay first appeared in print as an article in Scientific American. It was prepared at the request of

Chester Barnard, then the president of the Rockefeller foundation. Rogers, “Claude Shannon’s Cryptography Research
During World War II and the Mathematical Theory of Communication.”, 3.

13. Weaver, (1964 [1949]), 3–4. By contrast, in the earlier target piece to which Weaver’s was the companion,
Shannon preferred the more neutral term “output” to describe the results of such communicative “procedures.”
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Extensions of the principles of information theory to describe natural or human communicative

processes have been justifiably viewed with some skepticism. Creative uses of information theory

beyond the immediate electro-technical dispostif imagined in Shannon’s analyses have been

characterized as a “misapplication” of the theory by scientists.14 By music historians and critics,

music-as-information has been viewed as symptomatic of the conceptual reductionism demanded by

scientistic investigation in order that it may measure and quantify; such denatured talk about music

has been dismissed as the consequence of indulging the physics envy of theorists.

These two families of objections share a kind of absolutism concerning the proper explanations

and explananda of their respective disciplines. In this chapter, I plot a course between these two

positions, with a view to showing that it is possible to adopt a critical posture on the matter without

committing either to a strict interpretation of information theory as properly pertaining only to

artificial communications systems or to the equally (yet differently) “strong” claims of music’s

resistance to codification or quantification. In fact, alternately giving credence to each of these

positions highlights those claims made by the authors that I discuss below that cannot be addressed

fully with reference to either scientific or musical justification alone. This separability problem

attests to the radical interdisciplinarity of their research program, and perhaps to that of scientific or

laboratory research with human subjects more generally.

Pinkerton’s experiments with the stochastic generation of melodies under the sign of information

theory raise the following questions, which are thematic to the discussion of the research which

follows. What features of music made it seem like a domain of human behavior worth applying

information theory to in the first instance? What arguments were marshaled to justify the

musical adaptations of experiments and demonstrations that were originally designed for the

analysis of artificial communications systems? Where were the sites—to include actual research

laboratories, music departments but also publication venues, and forums for music—in which this

“informatization” of musical behavior took place, and which advocates, critics, and institutions were

recruited in this process?

14. Rogers, 3.
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3.1.2 Chapter summary

In this chapter, I focus on how information theory was applied in the generation and analysis of

musical scores during the 1950s, in examples drawn from music criticism, music composition, and

empirical psychological research. The following discussion of musical applications of information

theory will be less concerned with concluding whether or not these scores were the proper object

of the formal models and mathematical techniques associated with Shannon.15 Whether or not this

turn to information in music research was successful or enduring—or properly justified at all—it

nevertheless instantiates a particular kind of musical experience, accounting for music’s causes,

effects, and qualitative aspects in terms of a new quantity, whose interpretative flexibility ensured it

had interdisciplinary traction: information.

I set out to find a music theory in these marginal writings about the relation between music

and information, while remaining open to influences from other disciplines and instruments. This

resolves into a picture of a relatively heterogeneous set of practices. The connection of this task with

the history of music theory may become clearer if we relax the expectation that music theories be

unifying, general or coherent; rather, they merely have to be particular.16 Not only is the information

perspective on music particular, it is peculiar. Here, I aim to recover both this perspective’s

particularity and its peculiarity by revisiting these writings as historical documents. I tentatively

connect the early period of music’s informatization to the widespread circulation of and extensions to

orthodox information theory in the decade following Shannon and Weaver’s publication.

To do this, I first review the connections between information theory and music that have already

been recognized by musicologists and music theorists. Turning to the growing critical literature

on the history of information theory more generally, I rehearse the many possible histories of

“information” that have been identified and justify my own, relatively narrowly scoped understanding

of information, which remains in operation in this chapter. Next, following Abraham Moles, I

15. A question better assessed with respect to the metalanguage of science.
16. That is, they should tell us something specific about the relationship between us and some musical act, utterance,

text, idea.
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provide a more detailed look at some of the mathematical elements of an information theory

that he considered fit for application to aesthetics. This equips us with a vocabulary that helps us

spot the hallmarks of the information-theoretical approach in action in a representative sample of

information-theory applications to music from the 1950s.

In order to emphasize the relative heterogeneity of information, particularly as it came to be used

in the arts, I look closely at work by three researchers from the history of computational approaches to

music. Their research sits squarely in the intersection of information theory and music. John R. Pierce

and Mary Shannon, some five years before Pinkerton, showed how random processes could be used

to generate plausibly tonal music. Pierce would later address how listening to these stochastically

generated pieces emphasized the individuality of particular reader (or, properly, listener) responses,

whose reactions to such works are subject to fewer constraints and second-guessing in the absence of

an author. For the molecular biologist-turned-behavioral psychologist Henry Quastler, the concept of

information guaranteed a certain medium-independence when interpreting the results of his laboratory

experiments with pianists. Information allowed him to test the limits of human subjects with the help

of tasks that stood as proxies for behaviors required of military operators in the stressful environments

of war. Quastler’s information was the dematerialized but nevertheless quantifiable “stuff” considered

to be transmitted in man-machine systems and could be described and optimized with the help of

cybernetics. Finally, the German physicist and quantitative linguist Wilhelm Fucks latched on to

the much remarked-upon similarity between Shannon’s information and the concept of entropy as it

was defined by mathematical physicists working in statistical thermodynamics. He made use of this

mathematical isomorphism to inspire an explicitly physical model of historical style, which he used in

his statistical studies of musical scores in the 1950s.

3.1.3 Information theory and music: A brief review

Information, the mathematical quantity defined in the 1945 by the communications engineer Claude

Shannon, was being used to model music as early as the beginning of the 1950s.17 Yet, ideas from

17. For modern summaries of applications of information theory in music see: Schüler, “Reflections on the History
of Computer-Assisted Music Analysis II.”; Marcus T. Pearce, “Early Applications of Information Theory to Music”
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information theory were more easily adapted for research into music than into some of other arts,

especially the visual arts. Music was still understood to pose special challenges, but by the turn of

the twentieth century, few maintained that music enjoyed a privileged biophysical pathway into the

listening subject. Thus, developing an information-theoretic model of music (music as heard, at least)

could draw on the rich fund of psychophysical research into the ear. In the jargon of information

theory, music shared the same “channel” as speech, audible noise, and other non-musical sounds.

Another reason for this was that music—at least the kind of music that Weaver imagined—already

had a fully ramified notational system that drew from a finite symbol set. Music that could be

notated—and, consequently, music that had been notated—yielded rather supplely to analysis in

terms of the formal model of communication that Shannon outlined.

The use of concepts from or inspired by information theory by twentieth-century composers

has already been identified in the musicological literature. For instance, in some histories of

twentieth-century music, information theory has been identified as a motive force, a progenitive

technology that shaped the musical output of the composers who brought this mathematical concept

to bear on their creative practice. Cristoph Both has suggested that “the concepts of information

theory” were nothing less than “the source of a crucial paradigm shift in compositional method,

simultaneously giving birth to computer music in America and initiating the decay of serialism

in Europe in the 1950s.”18 Both argues that, drawing on the use of elementary principles of

information theory in the composition of the Illiac Suite (1955/6) their influential computer-generated

([Unpublished MS], 2007), http://webprojects.eecs.qmul.ac.uk/marcusp/notes/music-information-theory.pdf; In French,
see Laurent Fichet, Les théories scientifiques de la musique aux XIXe et XXe siècles (Paris: Vrin, 1996), 172–194.
Christopher Ariza has undertaken an extremely well-researched discussion of some computer music, or what the author
calls “computer-aided algorithmic composition” (CAAC), that emphasizes the work of Hiller and Isaacson and the
relation between CAAC and information theory. See Ariza, “An Open Design for Computer-Aided Algorithmic Music
Composition.”, 36–107. Schuler and Ariza’s discussions of information theory are incidental to their broader goals, a
sweeping survey of computer-aided analysis and the design of a new programming environment for CAAC, respectively.
Both authors tend to grant the stability of “information theory” as a discourse on which music theorists and composers
drew. The present approach differs by emphasizing that information theory was subject to diverse theoretical extensions
and contexts of application, which speak to its relative instability. Nor do I discount the possibility of an influence of
contemporary thought about music on the public and academic reception of information, particularly as it was argued to
apply to the arts and aesthetic thought more generally.

18. Christoph Both, “The Influence of Concepts of Information Theory on the Birth of Electronic Music
Composition: Lejaren A. Hiller and Karlheinz Stockhausen, 1953–1960” (University of Victoria, 1995), 3, https://hdl.
handle.net/1828/6399.
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composition, Lejaren Hiller and Leonard Isaacson brought about a shift from “model-based” to

“rule-based” composition.19 The status of Hiller and Isaacson’s Illiac Suite as a milestone in computer

music has long been recognized: it continues to be cited variously as the first computer-produced

score.20 Christopher Ariza has carefully pursued some of the research into automatic composition

that Hiller and Isaacson cited as precursors and inspiration to their work, showing that this claim

(at best) misrepresents their work as the point of origin for computer music. Following Ariza and

others, I view Hiller and Isaacson’s work as depending on close to a decade of scattered investigation

into computer applications to music, for both inspiration and for method.21 Hiller and Isaacson were

clearly interested in drawing on prior work; there are some early computer music applications about

which we know very little other than what is disclosed in personal communications that are cited in

Experimental Music. Both the technical–musical basis for Illiac Suite, and (importantly) its legibility

as a landmark computer music composition were made possible by music’s informatization, a process

already underway by 1957, thus both preceding and succeeding the particular moment of any single

composition.

19. Both, “The Influence of Concepts of Information Theory on the Birth of Electronic Music Composition.”, 86.
Though Both’s account of Hiller and Isaacson’s work is well grounded in references to early computational analysis of
musical scores, his co-option of Kuhn seems ill-suited to his thesis about changing styles of music composition. The
new “normal composition” rarely obliterates the prior body of compositional theory; when it comes to art, there is no
great answer to the question: why can’t many paradigms be coextensive? That talk of paradigm shifts seems ill-fitting
when it comes to “experimental” music suggests that more flexible theories from the history of science are better suited
to discussions of musical experimentalism(s), as the work of Benjamin Piekut and others has shown. Benjamin Piekut,
“Actor-Networks in Music History: Clarifications and Critiques,” Twentieth-Century Music 11, no. 2 (September 2014):
191–215, https://doi.org/10.1017/S147857221400005X. For a discussion of the strain put on the notion of paradigm by
the “cross-disciplinarity” of contemporary scientific research, see the writing of Mario Biagioli. For Biagoli, formations
of contemporary academics with diverse expertise co-operate to carry out research directed at a “problem.” These
temporary assemblages had relatively short lifespans: insufficient time for these researchers to form a stable disciplinary
identity as such, or to build an institution. A similar argument could be made for musicians who collaborate with
technicians on music making use of emerging music technology. Mario Biagioli, “Postdisciplinary Liaisons: Science
Studies and the Humanities,” Critical Inquiry 35, no. 4 (Summer 2009): 816–33, https://doi.org/10.1086/599586, 822ff.

20. Though rarely without some hedging qualifier: “Lejaren Hiller was the first composer to have extensively
investigated computer-aided composition.” Charles Dodge and Thomas A. Jerse, Computer Music: Synthesis,
Composition, and Performance, 2nd edition (New York: Schirmer Books, 1997), 3745.

21. Ariza, for instance, suggests that the earlier work of David Caplin and Dietrich Prinz in 1955 “may be the first
use of a computer to generate not just sound (as was done as early as 1950 or 1951 […]), but new musical structures.”
Christopher Ariza, “Two Pioneering Projects from the Early History of Computer-Aided Algorithmic Composition,”
Computer Music Journal 35, no. 3 (2011): 40–56, 40. See also, William Brooks, “In Re: ‘Experimental Music’,”
Contemporary Music Review 31, no. 1 (February 2012): 37–62, https://doi.org/10.1080/07494467.2012.712282.
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In her sweeping overview of the contents of the short-lived but influential Die Riehe,

M. J. Grant identifies information theory as one of the primary scientific influences on post-War

European avant garde music.22 She briefly discusses both the publication of Werner Meyer-Eppler’s

“Informationstheoretische Probleme der musikalischen Kommunikation” in the last issue of Die Reihe

and that of Abraham Moles’s Information Theory and Esthetic Perception (orig. 1958), identifying

Meyer-Eppler and Moles as two of the more influential proponents of information theory within the

community of experimental musicians within the orbit of that journal.

In a recent book, Jennifer Iverson builds on the work of Both and Grant to provide a subtler

account of information theory on compositional technique in the late 1950s. Iverson is especially

sensitive to the negative consequences of adopting a blunt technological determinism when it

comes to electronic music. Her history seeks out those “invisible collaborators” held in common

by post-war composers that have to date been overlooked. This oversight has been partly due to a

tendency to overemphasize the significance of differences between the technology available at the

various continental sites of elektronische Musik. Histories tend to focus on music affiliated with a

single studio, and neglect to consider the exchange of ideas and personnel between sites. Iverson

persuasively argues that, despite their tendency to demur when asked about the extent to which

contemporary scientific theories influenced their compositional work, composers affiliated to the

West-Deutscher Rundfunk (WDR) studio in Cologne availed themselves of ideas that originated

in information theory discourses.23 Werner Meyer-Eppler was Germany’s leading exponent of

information theory who exerted an influence not only his pupil Stockhausen but, as Iverson argues,

also influenced Ligeti and Xenakis whose direct contact with him was more limited. Iverson

posits “information theory discourse” as the unrecognized common source of talk of probability

distributions, “perceptual Gestalten” and the implications of Shannon’s sampling theorem in the work

22. M. J. Grant, Serial Music, Serial Aesthetics: Compositional Theory in Post-War Europe, Music in the
Twentieth Century (Cambridge: Cambridge University Press, 2001), 29–33.

23. Jennifer Iverson, Electronic Inspirations: Technologies of the Cold War Musical Avant-Garde (New York,
NY: Oxford University Press, 2019), 21. As well as in many other intellectual currents, such as phonetics etc. Elena
Ungeheuer.
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and writings of these post-war avant garde composers.24 Identifying information theory as a missing

link of sorts causes us to revise commonly-held assertions about the Balkanised terrain of avant

garde composition, which draws a distinction between those within and without the WDR clique,

which would eventually come to center around Karlheinz Stockhausen. As Iverson claims, Xenakis,

whose use of the equations of mathematical physics seems to distinguish him from his peers, should

be viewed as more closely allied to the Cologne group than his repeated exclusion from Darmstadt

programming might suggest.

Information theory has also been influential on the development of hypotheses in music

psychology. Leonard Meyer’s Emotion and Meaning in Music (1956) introduced the arousal–inhibition

model of musical emotion, claiming that the affective capacity of music, and thus its meaning, arises

from its ability to set up, defer, and sometimes completely thwart a listener’s expectations.25 Some

of these expectations arise from the application of segmentation and prediction heuristics postulated

by Gestalt psychology, while others arise from the listener’s acculturation to or expertise in a given

style. Collectively these expectations can be characterized as the listener’s prior knowledge—however

obtained—about the probability of the occurrence of certain musical events. Since Shannon’s

information had been readily interpreted as measuring the degree of “surprisingness” following the

receipt of a given message, and had been demonstrated to correspond to as much in examples with

natural language (English), Meyer found much in the theory of information that could be used to

retroactively buttress his position in Emotion and Meaning, which he did in a subsequent article,

“Meaning in Music and Information Theory” (1957).26

Meyer’s dalliance with information theory guided laboratory investigation of musical

expectation for decades by suggesting that information (or “entropy”) was a useful measure with

which to compute the relative unexpectedness or unexpectedness of sequences of stimuli. That

24. Iverson, 135. Shannon’s sampling theorem provides guarantees about the faithful reconstruction of signals from
sampled data, which in turn grounds much of today’s work on digital audio and electronic sound production.

25. Meyer, Emotion and Meaning in Music.
26. Leonard B. Meyer, “Meaning in Music and Information Theory,” The Journal of Aesthetics and Art Criticism

15, no. 4 (June 1957): 412–24, https://doi.org/10.2307/427154. In Emotion and Meaning in Music, Meyer makes the
claims just once that “many of the concepts presented in this book have clear counterparts in the theory of games and in
information theory.” Meyer, Emotion and Meaning in Music, 255.
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it appeared to have the imprimatur of the doyen of music psychology surely accelerated the

measure’s circulation. Joseph Youngblood gave the statistical interpretation of musical style

its clearest articulation in “Style as Information” (1958).27 In the same year, Edgard Coons and

David Kraehenbuehl described the results of a mathematical study of the theoretical predictability

of musical forms represented as abstract formal plans (for example: a “rondo”-type form as

ABACADA).28 Despite the fact that their investigation made no use of music (neither notated or

sounded), they did not hesitate to title their study “Information as a Measure of Structure in Music.”

Ramon Fuller, David Lewin, and Calvert Bean all published analyses making use of concepts from

information theory in the pages of the then-young Journal of Music Theory in the decade between

1958 and 1968.29 Hiller’s influence on this body of work is clear; Bean and Fuller’s work is clearly

derived from their doctoral theses which were completed at Illinois under Hiller some years prior to

their publication in JMT.30

This decade-long period is the first of three clusters of interest in information theory and music

identified by Elizabeth Margulis and Andrew Beatty. They note that “papers examining music

from the perspective of information theory are widely distributed among from different fields,” and

can be divided chronologically into three periods: the first papers from the late 1950s and 1960s,

another burst of research in the 1980s, and a handful of contemporary studies from the first decade

27. Joseph E. Youngblood, “Style as Information,” Journal of Music Theory 2, no. 1 (1958): 24–35, https://doi.org/
10.2307/842928. Youngblood’s work witnessed a cursory extension to Carnatic music by Siromoney and Rajagopalan.
Gift Siromoney and K. R. Rajagopalan, “Style as Information in Karnatic Music,” Journal of Music Theory 8, no. 2
(Winter 1964): 267–72, https://doi.org/10.2307/843082.

28. That is, their results are equally applicable (in the worst case, “not at all”) to the study of all forms that may be
represented as sequences of selections from a finite set of categorical labels, just as a rhyme scheme represents a particular
formal aspect of certain kinds of poetry. Edgar Coons and David Kraehenbuehl, “Information as a Measure of Structure in
Music,” Journal of Music Theory 2, no. 2 (1958): 127–61, https://doi.org/10.2307/843197.

29. Lejaren Hiller and Ramon Fuller, “Structure and Information in Webern’s Symphonie, Op. 21,” Journal
of Music Theory 11, no. 1 (1967): 60–115, https://doi.org/10.2307/842949; David Lewin, “Some Applications of
Communication Theory to the Study of Twelve-Tone Music,” Journal of Music Theory 12, no. 1 (1968): 50–84, https:
//doi.org/10.2307/842886; Lejaren Hiller and Calvert Bean, “Information Theory Analyses of Four Sonata Expositions,”
Journal of Music Theory 10, no. 1 (1966): 96–137, https://doi.org/10.2307/843300.

30. Cf. Calvert Bean, “Information Theory Applied to the Analysis of a Particular Formal Process in Tonal Music”
(DMA thesis, University of Illinois at Urbana-Champaign, 1961), https://search.proquest.com/docview/302066397;
Ramon Colin Fuller, “An Information Theory Analysis of Anton Webern’s ‘Symphonie,’ Opus 21 (with) ‘Music for
Two-Channel Tape and Two Percussionists”’ (DMA thesis, University of Illinois at Urbana-Champaign, 1965), https:
//search.proquest.com/docview/302312294.

129

https://doi.org/10.2307/842928
https://doi.org/10.2307/842928
https://doi.org/10.2307/843082
https://doi.org/10.2307/843197
https://doi.org/10.2307/842949
https://doi.org/10.2307/842886
https://doi.org/10.2307/842886
https://doi.org/10.2307/843300
https://search.proquest.com/docview/302066397
https://search.proquest.com/docview/302312294
https://search.proquest.com/docview/302312294


of the twenty-first century.31 The first waning of interest coincides with the decline in optimism

about information’s universal applicability that followed deflationary critiques lodged against its use

outside of engineering which will be described in the section below. There continues to be interest in

applications of information theory to the theory of music and to composition.32 This continuing—if

sporadic—explicit interest in information theory of music researchers motivates the present chapter’s

approach: to understand information’s enduring promise, by looking to its history. To this end, in

the next section I review critical histories of the concept of information more generally. I relate work

which suggests that the modern concept of information also operates implicitly as a highly flexible

metaphor outside of the original telecommunications engineering context, to include—but not limited

to—the musical applications described above.

3.1.4 Critical approaches to information

The theory of communication (marked by the definition of information it provides) is neither a

monolithic field nor a clearly defined set of approaches. In untangling the history of information from

the history of information processing machines—computing machinery—William Aspray identifies

information as an essentially interdisciplinary concept that crops up in a number of research areas.

Chief among them: communications theory, mathematical models of the brain, artificial intelligence

(AI), cybernetics and automata theory.33 The many senses of “information” that both predate and

extend technical definitions provided for in the communications engineering literature has dispersed

responsibility for a putative “history of information” among at least a half-dozen distinct fields,

according to more recent survey of the state of the field by Aspray.34 Of the six “subdisciplines” that

31. Elizabeth Hellmuth Margulis and Andrew P. Beatty, “Musical Style, Psychoaesthetics, and Prospects for Entropy
as an Analytic Tool,” Computer Music Journal 32, no. 4 (November 19, 2008): 64, https://doi.org/10.1162/comj.2008.32.
4.64.

32. Gerardo Febres and Klaus Jaffe, “Music Viewed by Its Entropy Content: A Novel Window for Comparative
Analysis,” PLoS ONE 12, no. 10 (October 17, 2017), https://doi.org/10.1371/journal.pone.0185757; Nori Jacoby, Naftali
Tishby, and Dmitri Tymoczko, “An Information Theoretic Approach to Chord Categorization and Functional Harmony,”
Journal of New Music Research 44, no. 3 (2015): 219–44, https://doi.org/10.1080/09298215.2015.1036888. See also,
Alan Alexander Marsden, “New Prospects for Information Theory in Arts Research,” Leonardo, forthcoming.

33. Aspray, “The Scientific Conceptualization of Information: A Survey,” 117.
34. William Aspray, “The Many Histories of Information,” Information & Culture 50, no. 1 (February 2015): 1–23,

https://doi.org/10.7560/IC50101.
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Aspray identifies, communication history and the history of computing may have the most to say

about the concept of “information” as it was adopted by musicians.35

Shannon and others were dubious about the expansion of information theory’s explanatory

domain: connections between information theory as a mathematical technique and as an explanatory

mechanism for animal behavior were not made explicit by Shannon or in the communications

engineering literature. Rather, they were made by a constellation of other researchers in the biological

and human sciences who found in information a quantity that could be made use of in psychology,

neurobiology, and even psychiatry. In these disciplines, information animated the discussion of

animals and human beings as systems: systems with features like homeostasis, feedback–control

loops, and negentropic tendencies whose character, it was thought, might be made more precise

with the help of Shannon’s information.36 Computationalism, the position within psychology and

the philosophy of mind that modeled animal thought as transformations on mental representations,

made use of information to formulate and measure its claims.37 Computationalism was ably helped

by growing dissatisfaction with the early-twentieth century behaviorist orthodoxy that internal mental

states of humans and animals were not appropriate objects of psychological speculation.38 As early

as 1959, as the widespread adoption of digital computers was still underway, the psychologist Fred

Attneave could write:

That the nervous system is a complex communications network, that the brain functions
as a kind of computer with extensive facilities for storing information, that psychological

35. Aspray, 6.
36. Crucial to understanding such applications of information is the work of Norbert Wiener, and its long, longs

reception history. Norbert Wiener, Cybernetics: Or Control and Communication in the Animal and the Machine, 2. ed.,
4. print (Cambridge, Mass: MIT Press, 1985).

37. See Jean-Pierre Dupuy, The Mechanization of the Mind: On the Origins of Cognitive Science (Princeton,
NJ: Princeton University Press, 2000). See, for example, the foundational work of George Miller. George A. Miller,
“What Is Information Measurement?” American Psychologist 8, no. 1 (1953): 3–11, https://doi.org/10.1037/h0057808;
George A. Miller, “The Magical Number Seven, Plus or Minus Two: Some Limits on Our Capacity for Processing
Information.” Psychological Review 63, no. 2 (1956): 81–97. See also, Walter Ralph Reitman, Cognition and Thought;
an Information-Processing Approach (New York: Wiley, 1965).

38. Though, interestingly, behaviorist principles would be used when they were found rhetorically useful, as William
Aspray notes: “Behaviorist psychology, by concentrating on behavior and not consciousness, helped to break down the
distinction between the mental behavior of humans and the information processing of lower animals and machines. This
step assisted the acceptance of a unified theory of information processors, whether in humans or machines.” Aspray, “The
Scientific Conceptualization of Information: A Survey,” 128.
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processes are essentially information-handling operations—this point of view is so
widespread today that we are likely to forget how recent it is[.]39

Researchers who strove to apply information theory to illuminate aspects of human

communication identified ways in which Shannon’s theory had to be modified or extended to

cover the kinds of phenomena in which they were interested in. Shannon’s original formulation

of information pre-emptively foreclosed the possibility that the concept of information could

be used to formalize any discussion of meaning: semantic, aesthetic, or otherwise. Shannon

notoriously wrote that although the messages in a communications system have “meaning; that is

they refer to or are correlated to some system with certain physical or conceptual entities,” applying

communications theory with a view to modeling meaning was dead on arrival since “these semantic

aspects of communication are irrelevant to the engineering problem.”40 Reflecting on just under a

decade’s worth of interest in his writing, Shannon wrote in 1956 with some dismay that although

“applications [of information theory] are being made to biology, psychology, linguistics, fundamental

physics, economics, the theory of organization, and many others,” “it is certainly no panacea for the

communication engineer or, a fortiori, for anyone else.”41

Concerns centered on the allegation that less-careful researchers took “information” in

Shannon’s sense to mean whatever they wanted it to, by strategically conflating its older, common

senses—information as a meaningful utterance—and newer, technical sense. Relatedly, other terms

used by Shannon and Weaver as interpretations of “information” were elevated to equivalences with.

At various stages, concepts such as originality, relative surprisingness, expectedness, intelligibility,

and complexity were viewed as loosely synonymous with information content. Since Shannon’s

contribution lent information an unambiguous definition, it was identified as a viable mathematical

proxy for these features of messages and was used liberally in experimental contexts as a measure

39. Fred Attneave, “Stochastic Composition Processes,” The Journal of Aesthetics and Art Criticism 17, no. 4
(1959): 42, https://doi.org/10.2307/428223. Incidentally, Fred Attneave and Carolyn Attneave reportedly carried out some
of the earliest attempts to generate melodies based on the statistical analysis of pre-existing music.

40. Claude E. Shannon and Warren Weaver, The Mathematical Theory of Communication (Urbana, IL: University
of Illinois Press, 1949), 31.

41. Claude E. Shannon, “The Bandwagon,” IRE Transactions on Information Theory 2 (1956): 3, https://doi.org/
10.1109/TIT.1956.1056774. What does a fortiori mean here? This sentence can be read a number of different ways.
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thereof. One vocal critic of loose talk in the burgeoning field of information theory was Yehoshua

Bar-Hillel, who sympathized with Shannon’s skepticism about the overreach of researchers

lately joining the information “bandwagon.” Bar-Hillel made repeated calls for the practice of

“semantic hygiene” when it came to the term “information” at the Third London Symposium on

Information Theory, held in 1955.42 Bar-Hillel’s critique, which he elaborated in an influential paper

in Philosophy of Science (1955), hinges on the non-equivalence of information in the sense defined

by Shannon and in the everyday sense:

There is no logical connection whatsoever between these two measures, i.e. the
amount of (semantic) information conveyed by a statement and the measure of rarity
of kinds of symbol sequences, even if these symbol sequences are typographically
identical with this statement […] I admit that the temptation to identify these measures
is great and almost irresistible when the “information” terminology is used. But
the identification is still a mistake, and the fact that this mistake was made by many
competent thinkers only increases its seriousness and the necessity of a complete
clarification of the situation.43

Writers who identified this lack in the original framing and attempted to rectify it with

recourse to new mathematical and conceptual formulations confirmed their deviance from

orthodox information in so doing. As Bernard Dionysius Geoghegan puts it, “ ‘information theory’

percolated through bizarre internal regimes of disciplinary reception and re-articulation.”44 The

countless extensions, modifications, and qualifications of Shannon’s theory—what can be viewed

as its reception history—suggest that it is misleading at best to view “information theory” as a

homogeneous set of techniques that can be fully accounted for with reference to its foundational text:

Shannon–Weaver.

42. Nelson M. Blachman, “Report on the Third London Symposium on Information Theory,” IRE Transactions on
Information Theory 2, no. 1 (March 1956): 17–23, https://doi.org/10.1109/TIT.1956.1056778, 18; 23.

43. Yehoshua Bar-Hillel, “An Examination of Information Theory,” Philosophy of Science 22, no. 2 (April 1955):
96, https://doi.org/10.1086/287407. Emphasis in original.

44. Bernard Dionysius Geoghegan, “The Historiographic Conceptualization of Information: A Critical Survey,”
IEEE Annals of the History of Computing 1, no. 1 (2008): 73.
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Attempts to demarcate science from non-science using just such techniques of “clarification”

constitute what the sociologist Thomas Gieryn has called boundary-work.45 Following Clifford

Geertz, Gieryn suggests that the ideological basis for boundary-work is productively understood in

rhetorical terms, by paying closer attention to “patterns in the symbolic formulations and figurative

languages of ideologists.”46 Robert Kline interprets Cold War debates over the proper explanatory

domain of information theory as boundary-work of just this sort.47 Jennifer Iverson points out that

composers and critics performed precisely such boundary-work when they dismissed certain attempts

to apply scientific theories and terminology to music, as John Backus (among others) did when he

dismissed much of the contents of Die Reihe as pseudo-science, in a scathing review of the journal

published in the first issue of Perspectives of New Music.48 Avant garde composers and their theorists

were no stranger to contests over the applicability of formalisms to the discussion of music: criticizing

or defending the perceived scientism of post-war composition was one of many important fronts for

their struggle.

Information theory provided researchers of many disciplinary stripes with a mathematical

quantity that could be used to capture the ways in which superficially diverse kinds of things in the

world behaved similarly, despite their apparent material differences. Researchers and practitioners

who turned to information theory to describe or compose music made heavy use of this abstraction.

In short, their research proceeded on the basis that there was some there there that accounted for how

we understood such apparently diverse human activities as speech, writing, typewriting, music, and

dance as communicative. Crucially, whatever that there was, it was in some important sense the same

phenomenon, regardless of the particular channel. If information was “real,” it had the property that

45. Thomas F. Gieryn, “Boundary-Work and the Demarcation of Science from Non-Science: Strains and Interests
in Professional Ideologies of Scientists,” American Sociological Review 48, no. 6 (December 1983): 781–95, https://doi.
org/10.2307/2095325.

46. Gieryn, 78.
47. Ronald Kline, “What Is Information Theory a Theory of?: Boundary Work Among Scientists in the United

States and Britain During the Cold War,” in The History and Heritage of Scientific and Technical Information Systems,
ed. W. Boyd Rayward and Mary Ellen Bowden (Proceedings of the 2002 Conference, Chemical Heritage Foundation,
Medford, NJ: Information Today, 2004), 15–28.

48. Iverson, Electronic Inspirations, 106; John Backus, “‘Die Reihe’: A Scientific Evaluation,” Perspectives of
New Music 1, no. 1 (Autumn 1962): 160–71, https://doi.org/10.2307/832186.
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we might today identify as being in some way media-independent. As we will see, this generality

motivates the direct adoption of techniques of text analysis for use with music.

Moreover, the mathematical similarity between Shannon’s information and the already-existing

definition of thermodynamic entropy in the arsenal of statistical physics (discussed in more detail

below) “suggests that communications theory involves a basic and important property of the physical

universe and is not simply a scientific by-product of modern communication technology.”49 Thus,

for better or worse, adopting information to describe and evaluate music was also consonant with

universalizing impulses in some quarters of musical aesthetics that sought to ground rules and

guidelines for composition in inviolable physical principles. Revanchist critics of atonal music, who

previously would have focused on acoustical reasons to dis-prefer dissonance, found in information

theory a new tool with which to characterize that same music as overwhelmingly information-rich by

dint of its unpredictability, an intuition now apparently given concrete support in mathematical terms.

Even if music’s encounter with information was relatively fleeting, its language echoed for

decades in computationalist accounts of cognition and their related statistical accounts of musical

intelligence, according to which listeners are understood to “process” the sounds that they hear,

to “store” them in memory as melodies, schemata, or entire works, “retrieve” them when required,

and “infer” meanings therefrom. As I argue in Chapter 1, computational metaphors operate even in

apparently common-sense narrative accounts of music that are otherwise remote from the discussion

of actual computing technology. The historian of science Lily Kay has shown how similar dead

metaphors found their final resting place in the field of molecular biology. Kay traces the first use of

these cryptographic and scriptural metaphors in molecular biology back to early research into genetics

inspired by information theory.50 Kay argues that early, provisional work on the genetic code led to

the widespread circulation of these communication-related metaphors among molecular biologists.

Kay writes that:

49. Aspray, “The Scientific Conceptualization of Information: A Survey,” 124.
50. One important figure in Kay’s story is none other than Henry Quastler, who went on to perform investigations

into human behavior that I will describe in more detail later.
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[d]espite the acknowledged pitfalls in applying information theory, linguistics, and
cryptanalysis to molecular biology in the 1950s, these informational and scriptural
representations of heredity set roots and proliferated.51

The origin of words like “decoding,” “transcription,” “instructions,” which persist even today in

molecular biology, can be traced back to that discipline’s moment of enthrallment to information

theory. The continuing use of this terminology supports the powerful metaphor of “information as the

ontological unit of life.”52 Crucially, Kay argues that

[w]hen applied metaphorically to biological phenomena, “information” becomes even
more problematic: it seems actually to restore its first sense as intelligence and meaning,
but as such it violates the precepts of information theory, which supposedly and initially
legitimized the biological applications. It thus becomes a metaphor of a metaphor, a
catachresis, and a signifier without a referent.53

Kay’s deconstructionist perspective suggests how the apparent antinomy between the mathematical-formal,

novel, orthodox definition of information, and the less formal, venerable, heterodox sense of the same

term is generative rather than destructive: as a floating signifier, “information” yields to the various

senses foisted upon it by its users. Not content to merely note this fact, Kay draws on archival

evidence and research reports to historicize the term. Kay’s approach has much to recommend it

for thinking through the reception and circulation of information in musical contexts. As it was

appropriated by music researchers and creators, information was subject to “irruptive extension of

a sign” that Derrida considered definitional of catachresis.54 Chief among them, distinguished by

being the first to do so explicitly in a substantial and influential theoretical treatise on information,

was Abraham Moles.

51. Lily E. Kay, Who Wrote the Book of Life?: A History of the Genetic Code (Stanford, CA: Stanford University
Press, 2000), 11.

52. Sarah Kember, Cyberfeminism and Artificial Life (Abingdon, UK: Taylor & Francis, 2003), 17, https://doi.org/
10.4324/9780203299159.

53. Kay, Who Wrote the Book of Life?, 24.
54. Jacques Derrida, Margins of Philosophy (Chicago: University of Chicago Press, 1982). Perhaps aptly, Derrida

is in turn glossing the discussion of rhetorical figures by the French grammarian Pierre Fontanier (1765–1844).
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3.2 Elements of an “aesthetic” theory of information

Abraham André Moles, the polymathic French engineer and sociologist of art and culture, set out

to extend the reach of information theory to the arts. In his Théorie de l’information et perception

esthétique (1958), Moles set out to demonstrate the applicability of information theory to the arts

more generally. Moles built on his (second) doctoral thesis (1956, in philosophy; advised by Gaston

Bachelard) as well as the practical experience in broadcast engineering that he had gained at the

“Centre d’études de la radio-télévision,” the research and development arm of the organization which

became in 1945 the French national broadcaster, Radiodiffusion-Télévision Française (RTF).55

Moles, recipient of two grants from the Rockefeller Foundation to visit the United States, spent time

at MIT where he met Claude Shannon, information theory’s grand homme.56 Moles also visited

Columbia University’s Department of Music, as a guest of Vladimir Ussachevsky. Their collaboration

led to the publication of a paper that advocated for the sonogram as a representation of music that is

greatly superior to “utterly inadequate” conventional notation.57

Drawing on these particular connections and experiences, and being evidently more familiar

with the physiological and psychological features of the ear than with those of the visual or motor

systems, Moles repeatedly returns to musical examples in his text. Sharing with Werner Meyer-Eppler

as focus on the perception of sound and acoustics more generally, Moles moved in experimental

music circles as the chief Francophone exponent of information theory during the late 1950s, though

he composed little or no music himself and is remembered outside of musicology primarily as

a prolific sociologist of mass culture. Moles’s text was translated into English by Joel E. Cohen

55. For more (in French) about Moles’s professional and academic formation (cursus), see the autobiographical
account Abraham Moles and Elisabeth Rohmer, “Autobiographie d’Abraham Moles: Le cursus scientifique d’Abraham
Moles,” 1996, https://www.infoamerica.org/documentos_pdf/moles_autobiografia.pdf.

56. Moles and Rohmer, sec. 7. The Rockefeller Foundation sponsored similar research around this time. Bernard
Dionsyus Geoghegan writes of the Foundation’s motivation: “Officers at the Rockefeller Foundation saw [cybernetics
and information theory] as intertwined aspects of a program for worldwide scientific reform based on the cultivation of
expert-driven rational solutions to social and political problems.” Bernard Dionysius Geoghegan, “From Information
Theory to French Theory: Jakobson, Lévi-Strauss, and the Cybernetic Apparatus,” Critical Inquiry 38, no. 1 (September
2011): 96–126, https://doi.org/10.1086/661645, 102; 102–104.

57. Abraham Moles and Vladimir Ussachevsky, “L’emploi du spectrographe acoustique et le problème de la
partition en musique expérimentale,” in Annales des Télécommunications, vol. 12 (Springer, 1957), 299–304.
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and was published in 1966 as Information Theory and Esthetic Perception by the University of

Illnois Press, with the support of Lejaren Hiller.58 Cohen’s translation, proposed when still an

undergraduate student of mathematics at Harvard, was prepared with Moles’s approval and differs

from the 1958 original in documented and undocumented ways.59 Moles’s text is ambitious and

diffuse.60 Nevertheless, it stands out as one of the earliest sustained workings-out of the implications

of attempting to model various forms of art—to include visual art, music, and dance—as human

communication systems, in the narrower sense captured by Shannon’s formalization. Moles was not

the first to attempt a quantitative and general aesthetics of various forms of art, though his can effort

be distinguished from earlier works by its both its mathematical specificity (in that it invokes and

demonstrates the use of Shannon’s information repeatedly) and its dependence on music, both notated

and sounded.61

58. Abraham Moles, Information Theory and Esthetic Perception, trans. Joel E. Cohen (Urbana, IL: University of
Illinois Press, 1966), Preface.

59. A complete survey of the differences is out of scope. The closest Cohen gets to a statement of editorial policy
comes in the Preface, the relevant section of which I reproduce for convenience: “The text of this English edition differs
in many details from that of the French. When I first proposed translating the book in 1961, Dr. Moles wrote: ‘I have
written this book as an introduction to an informational theory of psychology which would not require a too extensive
knowledge of mathematics, and could consequently be suitable for students in psychology.’ With this function in mind,
I have added sentences to clarify Dr. Moles’s text where necessary, and converted European units of measurement (for
example, savarts) to more usual American units (cents). I have checked, corrected, and occasionally rewritten several of
the mathematical proofs and calculations and the lists of musical compositions, but I cannot hope to have made the book
error-free in this regard. I will appreciate further corrections. I have also renovated a revised bibliography furnished by
Dr. Moles; I do not claim the result is fully up to date. Dr. Moles kindly read early drafts of the English translation in
manuscript. He added and deleted sentences and paragraphs throughout. Chap. I, Sec. 9 [‘Complexity as a measure of the
structure of organisms’]; Chap. V, Sec. 8 [‘The informational architecture of the work of art’]; Chap. VI, Sec. 5 [‘Another
example of the multiple message: Pantomime’]; and Chap. VII [recte Conclusion], Sec. 5 [‘Conditions on the validity of
an information theory in psychology’], as well as quite a number of the figures, are entirely new additions by Dr. Moles.”

60. But not quite as ambitious as Armin Medosch has made it out to be: “Moles imagined and described in detail a
computer-based system that would be capable of analyzing and producing art work.” Little mention is made of computing
in Moles’s text, digital or otherwise. Rather, the technological emphasis is on “analog” studio equipment, such as
magnetic tape, commodity time-shifting devices, and electronic filter banks. Armin Medosch, New Tendencies: Art at
the Threshold of the Information Revolution (1961–1978), Leonardo Book Series (Cambridge, MA: The MIT Press,
2016), 83.

61. Moles’s forebears in quantiative approaches to aesthetics include the mathematician George Birkhoff
(1884–1944) and, before him, the expermental psychologist and psychophysics pioneer Gustav Fechner (1801–1887).
Fechner’s outline of an experimental aesthetics is can be found in Gustav Theodor Fechner, Vorschule der Aesthetik,
Second edition (1897; repr., Cambridge: Cambridge University Press, 2013). See also, Alexandra Hui, The
Psychophysical Ear: Musical Experiments, Experimental Sounds, 1840–1910, Transformations: Studies in the History
of Science and Technology (Cambridge, MA: MIT Press, 2013), chap. 1. Needless to say, Birkhoff and Fechner were
working without the information-theory framework that Moles embraces. Like Moles, however, Birkhoff did treat music
at some length in George Birkhoff, Aesthetic Measure (Cambridge, MA: Harvard University Press, 1933), chapters 5–7.
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Its reception was mixed. In negative reviews, Moles was variously accused of dilettantism and

dilated prose, of drawing on outdated psychological research (particularly of psychoacoustics), of

factual inconsistencies, and, worst of all, of a propensity for faddish jargon.62 Yet, Moles’s work—in

its original French edition—began to be viewed as a core text in the inchoate area of European

“information aesthetics,” the short-lived movement in art and art criticism which sought to adopt

Shannon-Weaver information as an empirical and objective measure of artistic content as well as

a criterion for its creation.63 The influential visual artist and early adopter of the digital computer

Frieder Nake identified Abraham Moles along with Max Bense as one of the two main exponents of

information aesthetics during the late 1950s.64 By the time Cohen’s English translation of Moles’s

text was published, however, information was experiencing one of its characteristic temporary nadirs.

The eight-year lag between the publication of Moles’s text in French and in English may be one

reason why Moles’s English-language reception characterizes his ideas as clumsy and immediately

stale and, consequently, of speculative interest only. Anglophone first readings of Moles’s book took

place against the background of an already-deflating information aesthetics; a sense for the vitality of

his admittedly idiosyncratic project remains to be recaptured for this audience.

Moles concludes his “General Outline of Physical Information Theory” with a set of steps which

specify in general terms how an information-theoretic account of any communication system, to

include music, should proceed. Moles:

In short, to construct an “information theory” of a given system of communication, one
must fulfill the following requisites, which delineate a method:

1. Define a “situation of communication,” that is, a channel and a level of observation
adopted by the experimenter toward the pair: transmitter, receiver. This is a
problem of situational psychology.

62. David Kraehenbuehl, “Review of Abraham Moles, Information Theory and Esthetic Perception,” Journal of
Music Theory 11, no. 1 (Spring 1967): 149–51; Arthur B. Wenk, “Review of Information Theory and Esthetic Perception,
by Abrahm Moles, Trans. Joel E. Cohen,” Notes 25, no. 2 (December 1968): 249–50. For a particularly devastating
though lightly researched take-down by a fellow Harvard man, see Wilson Lyman Keats, “Review of Abraham Moles’s
Information Theory and Esthetic Perception, Trans. Joel E. Cohen,” The Harvard Crimson, March 18, 1966.

63. For an overview of information aesthetics in the context of the New Tendencies movement, see Medosch, New
Tendencies, 82–87.

64. Frieder Nake, “Information Aesthetics: An Heroic Experiment,” Journal of Mathematics and the Arts 6, nos. 2
– 3 (June 2012): 65–75, https://doi.org/10.1080/17513472.2012.679458.
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2. Find the nature and state the repertoire (sign-set) corresponding to this situation.
This is a problem of behavioral psychology.

3. Through statistical study, find the probabilities of occurrence (expectancy) of each
element of the repertoire.

4. Through experimental modification of the message, compute its redundancy
and try to account for redundancy in terms of constraints upon the transmitter’s
freedom of choice.

5. Sum up these various rules constituting the code as the whole of the laws of
assemblage known a priori to receiver and transmitter.65

Moles’s protocol shows how the construction of an information theory of human communication

requires a conspiracy of disciplines: situational psychology, behavioral psychology, and statistics.

This in addition to the domain expertise that allows the researcher to identify the particularities of a

given kind of communication. Moles’s exposition of the mathematical concepts required to get to a

working definition of information was designed to be accessible to a wide audience, even though he

assumes familiarity with basic mathematical notation. My introduction to the concepts closely tracks

Moles’s, with minor adaptations.

3.2.1 The information measure

In plain language, Moles writes:

We shall say that the quantity of information transmitted by a message is the binary
logarithm of the number of choices necessary to define the message without
ambiguity.66

Moles mathematically defines information following Shannon. A message of M elements

chosen from a repertoire of n symbols with probabilities pi of occurrence has an information H in

bits:

H = −M
n∑

i=1
pi log2 pi

65. Moles, Information Theory and Esthetic Perception, 55.
66. Moles, 24.

140



The index for the sum ranges over the total number of symbols in the message for which we are

trying to compute the information content. The summation adds up the product of the probability

that the i-th symbol in the message occurs (pi) and the base-2 logarithm of that same value (log2 pi).

This digests the information content of the message into a single, real-valued number in a unit that has

come to be conventionally known as the bit. Moles calls the total set of possible symbols that may be

sent from sender to receiver the ”repertoire In the case of a telegram, the repertoire of symbols from

which a message can constructed is limited to (for the sake of argument) the uppercase letters of the

alphabet, plus a word space and the period (full stop), for a repertoire of size 28.

Each letter has certain probability of occurring in typical telegrams, which can be estimated

fairly well by looking at a large enough body of text that is representative of typical messages and

counting the relative frequencies of each symbol. Moles uses the evocative example of type-cases to

explain this principle. Typesetters who set type by hand use cases to arrange movable type to make

them easily available during typesetting in accordance with their expected frequency. We can view

the layout of one such type case, the popular California Job Case, as reflecting this particular aspect

of the statistical reality of the English language. The largest compartments hold the letters that are

most likely to occur in the language: E, T, O, A, N… and so forth.67 The size and position of these

compartments reflect the fact that they are more likely to be required by the typesetter at any given

moment; the design of the type case ensures that the most common letters are ready-to-hand.

While most examples here assume a finite repertoire of symbols, the definition of information

can be adapted to account for infinite repertoires, if the symbols have particular properties.68

Crucially, information may be measured numerically no matter what the repertoire consists of: it

is a quantity. As Moles writes, “one cannot emphasize this idea too much; it appears at the origin

of communication theory.”69 Thus, Moles could claim all of the phenomena listed in Table 3.1 for

communication theory.

67. Moles, 24.
68. Moles, 26.
69. Moles, 19.
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Figure 3.4: Typical type case layout: the “California Case”

Table 3.1: Original caption: “Types of communication”. In Abraham Moles, Information
Theory and Esthetic Perception, trans. Joel E. Cohen. (Urbana: University of Illinois
Press, 1966), 9.

Dimensions Message

1 spatial dimension (L) printed line, quipusa

a. A kind of knot-based recording system used by
Incas and other ancient Andean cultures.

1 temporal dimension (T ) music, speech

2 spatial dimensions (L2) drawing, photos, painting

2 dimensions [one spatial, one temporal] (LT ) sound track, magnetic tape

3 spatial dimensions (L3) sculpture, architecture

2 spatial dimensions + 1 temporal dimension

(L2T )

motion pictures, animated cartoons

3 spatial dimensions + 1 temporal dimension

(L3T )

cinerama, live theater
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Moles demonstrates these definitions, and their generality, by using them in a number of

introductory example applications in the first chapter of his text. Moles provides five worked

examples, showing that information can be used:

• to determine “the sociocultural originality of musical programs” by analyzing records of past

symphonic concert programs70

• to measure the “structural complexity” of social groups71

• to speculatively rank the “structural complexity” of organic and mechanical organisms72

• to estimate the information rate of musical patterns transmitted by a hypothetical score73

• to estimate the redundancy of the written Hebrew and French languages74

Here, we deal only with the notated score example in detail. “Let us suppose,” Moles begins,

“that a simple melodic pattern of classical music, such as might occur in a Beethoven symphony,

consists of 20 notes and that it takes about 20 seconds to play the melody.”75 What is the information

content of this musical message? Moles starts by considering the rhythmic pattern of the hypothetical

melody. Musical rhythms, as Beethoven would have known them, can be represented a message

drawing from a repertoire of the relative durations permitted by the notational scheme of Western

music notation. The definition of information demands relative frequencies for each of the symbols

in the repertoire. Moles estimates that this probability distribution over the repertoire is uniform: that

each symbol (each rhythmic value) has an equal probability of occurring in a given musical message.

Table 3.2 summarizes the intermediate stages in determining the information content of the rhythmic

component of this melody.

70. Moles, 27. Remarkably early example of an attempt to “optimize” concert program (or, “playlist”) generation
based on historical listenership data.

71. Moles, 32.
72. Moles, 33. This example does not appear in the French original (Moles, 1958).
73. Moles, 35.
74. Moles, 42.
75. Moles, 35.
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Table 3.2: Steps to calculating the information content of the rhythmic component of an
imagined melody. Adapted from Abraham Moles, Information Theory and Esthetic
Perception, trans. Joel E. Cohen. (Urbana: University of Illinois Press, 1966), 35.

Symbol number (i) Note value Probability (pi) pi × log2 pi

1 64th note 1
7

1
7 × log2

1
7

2 32nd note 1
7

1
7 × log2

1
7

3 sixteenth note 1
7

1
7 × log2

1
7

4 eighth note 1
7

1
7 × log2

1
7

5 quarter note 1
7

1
7 × log2

1
7

6 half note 1
7

1
7 × log2

1
7

7 whole note 1
7

1
7 × log2

1
7

Plugging these estimates into the definition of information, or summing down the last column of

Table 3.2 and multiplying by the message length, we get:

H = −M
n∑

i=1
pi log2 pi = −20

7∑
i=1

1
7 log2

1
7 = −20 log2

1
7 ≈ 56bits

There are thus 56/20 = 2.8 bits per symbol. If the duration of the transmitted message

is known, we may estimate the rate of information transmission by dividing the information for

the message by duration of the transmission, for a unit in bits per second. Moles, assuming the

melody takes twenty seconds, concludes that the rate of information contained in such a melody

is 2.8 bits per second.76 Moles then turns to model the pitch dimension of his imaginary melody.

Here, the assumption of equiprobability is lifted. Moles explains that it is reasonable to assume that

“the frequency of a musical interval varies inversely as its size, that is, the bigger it is, the less its

probability of occurrence”77 The probabilities for the repertoire of melodic intervals are summarized

76. Moles, 36.
77. Moles, Information Theory and Esthetic Perception, 36. This assumption is supported by some preliminary

findings by George Zipf, a statistician known for his distributional studies of language. Zipf’s Law indicates that the
relative frequency of words exhibits a power law behavior: the most commonly used words appear much more frequently
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in Table 3.3; k is a number (approximately 0.37) such that
∑8

i=1
k

i
= 1, a constraint that ensures

that the relative frequencies of each interval relate to each other per Moles’s assumption. The total

information content is similarly found by summing down the rightmost column. Moles estimates the

information content of the interval content of the melody at approximately 51 bits, and sums the two

values together (H = Hintervals + Hdurations = 51 + 56 = 107) to conclude that the hypothetical rate

of information for this melody is 5.35 bits per second.

Table 3.3: Steps to calculating the information content of the melodic–intervallic component of
an imagined melody. Adapted from Abraham Moles, Information Theory and Esthetic
Perception, trans. Joel E. Cohen. (Urbana: University of Illinois Press, 1966), 36.

Symbol number (i) Interval Probability (pi) pi × log2 pi

1 unison k

1
k

1 × log2
k

1

2 second k

2
k

2 × log2
k

2

3 major or minor third k

3
k

3 × log2
k

3

4 fourth k

4
k

4 × log2
k

4

5 fifth k

5
k

5 × log2
k

5

6 sixth k

6
k

6 × log2
k

6

7 seventh k

7
k

7 × log2
k

7

8 octave k

8
k

8 × log2
k

8

All this constitutes a drastic oversimplification of the musical facts. Moles’s assumption of a

uniform distribution over notated rhythms is implausible: it is not the case in Beethoven’s oeuvre (or

almost any notated body of work) that 64th notes occur with equal probability as quarter notes. The

repertoire of allowed rhythmic symbols accounts neither for ties or dotted notes, neither does it appear

to consider the possibility of an interaction between the probability of a particular rhythmic value

being used and other musical features. Moles assumes, for the purposes of his demonstration, that the

than rarely used ones. The English edition adds a reference to Zipf’s work, who reported similar results in a study of
Mozart’s Bassoon Concerto in B-flat major, K.191/186e. George Kingsley Zipf, Human Behavior and the Principle
of Least Effort, Human Behavior and the Principle of Least Effort (Oxford: Addison-Wesley Press, 1949), 335ff.
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composer makes decisions about rhythm independently (in both the common sense and the technical

sense) of decisions about other musical features, such as pitch, harmonic and contrapuntal context,

and so on. While this independence assumption might hold for some composers, it is certainly not the

case for the tonal idiom represented by his choice of example, Beethoven.

In some ways, however, to raise objections of this kind to Moles’s demonstration—that it is

simplistic, or that it over-schematizes such a complex phenomenon as music—is to miss the point.

Moles pre-empts these objections, anticipating

criticisms of the roughness and lack of rigor of the numerous hypotheses of the theory
and of the examples chosen to establish the arguments. We shall consider them minor
and shall neglect them. The very essence of information theory consists in cutting
through the complexity of reality to find an intelligible conception, hence, to schematize
reality; like any new theory, information theory is presented as a thesis and does not
claim universal validity.78

Although there is no straightforward way to rectify the lack of rigor of Moles’s statements of his

theory’s hypotheses, the probabilistic set-up of his estimations of the information content of typical

musical phrases provides a sketch for how the examples might be made less rough: by computing

more accurate estimates for the probabilities of symbols in the musical repertoire by the analysis of

pitch and rhythm distributions as they actually occur in a representative corpus of musical scores.

Estimates of the probability of the symbols in a given repertoire can be improved by considering

larger corpora. In this way, the responsibility for improving the fidelity of an information-theoretic

model of music is delegated to data collectors.

In this move we see the beginnings of a vector for thinking about the computational analysis

of music that is reminiscent of the “Big Data” moment, in which the final verdict on the value of a

new formal model is deferred to some data-rich moment in the future. At this conjectural juncture,

a sufficient number of scores or recordings has been amassed to justify the original assumptions

of the model. The information-theoretic model, however, remains unchanged in the meantime,

absent the nuance promised by the forecast data downpour. The artistic process is characterized,

following Shannon, as the selection and transmission of messages composed of symbols drawn from

78. Moles, Information Theory and Esthetic Perception, 55.
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a repertoire. The relative frequencies of these symbols are computed by counting as a way to estimate

the probabilities demanded by the formula for information. These probability estimates, derived

from various linguistic and musical corpora, are used to explicitly specify generative process for the

creation of new messages in a communication system, called Markov processes.

3.2.2 Utterance as a Markov process

In “A Mathematical Theory of Communication,” Shannon memorably illustrated the value of even

rudimentary statistical analysis of language by reporting on a set of informal experiments that he

carried out on written language. Shannon demonstrated how counting the relative frequencies of

characters as they appear in a representative example of the English language can be used to generate

new text, whose patterns reflect those found in reality. To do so, Shannon modeled the text generation

process as a discrete Markov process. This model ties the generation of characters (or words) to the

behavior of an abstract “machine” which exists in one of a fixed, finite set of states (S1, S2, . . . , Sn)

at a time. The behavior of the most simple version of this machine, a so-called first-order Markov

model, is completely specified in terms of the probability of transitioning from one state to another

(pij being the probability of transitioning from state Si to Sj), with all other things being equal.

These transition probabilities are usually represented and stored as two-dimensional tables, whose

rows and columns are labeled by the names of the states, allowing either a human or machine user of

the table, given the current state of the machine, to determine the relative probabilities of transitioning

to each of the other possible states (including the probability of staying in the same state).

As an abstract mathematical constructions, Markov processes need not necessarily be understood

as information sources. Indeed, Markov processes were defined by their namesake, Andrey

Andreyevich Markov, and their properties had already been enumerated by statisticians many decades
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in advance of Shannon’s paper, as he recognizes.79 Shannon makes explict the function of the Markov

process in the communications theory context:

To make [a] Markoff process into an information source we need only assume that
a letter is produced for each transition from one state to another. The states will
correspond to the “residue of influence” from preceding letters.80

The Markov process is deployed here not as an abstract statistical curiosity, interesting in its own right

but as a model of something. This a subtle but important point because it suggests that identifying

this particular mathematical technique is a necessary but not sufficient condition for tracing the

influence of information theory discourse on, for example, music composition. Pointing out that

a particular composer used or uses Markov chains to generate musical material does not tell us

why—in the sense of either cause or teleology—they chose to do so. Nevertheless, Markov chains

become part of the rhetoric of information theory primers, and served as concrete demonstrations

of how information-theoretic tools provided a way to analyze the structure of a given domain of

communication. Pinkerton’s discussion of the BANAL TUNE MAKER is a case in point. When

melody-writing is idealized as a Markov process, the history of notes up to a fixed cutoff point is

used to determine the probability with which the next note is selected.81 In “Information Theory

and Melody,” Pinkerton published a matrix (shown in Figure 3.5) which contains the transition

probabilities between the notes of the diatonic scale that he used to define the structure of his

coin-flipping graph.82 Pinkerton explains:

79. Shannon and Weaver, The Mathematical Theory of Communication, 45. That said, Markov himself did apply
his mathematical discoveries to the analysis of consonant patterns in text. In 1913, Markov presented an analysis of
consonant and vowel distributions in Pushkin’s Eugene Oneigin. At this time, of course, the discourse of information
is many decades away, and though Markov’s analysis is of great relevance to the statistical study of written language
more generally, it has little to add to the story of information. See David Link, “Traces of the Mouth: Andrei Andreyevich
Markov’s Mathematization of Writing,” History of Science 44, no. 3 (September 2006): 321–48, https://doi.org/10.1177/
007327530604400302.

80. Shannon and Weaver, The Mathematical Theory of Communication, 45. Shannon (along with many older
authors) transliterates as “Markoff.” Here, “Markov” is preferred throughout except in direct quotations of sources that use
the older form.

81. Christopher Ariza discusses Caplin and Prinz’s use of a related technique and connections with Hiller’s use of
Markov chains. Ariza, “Two Pioneering Projects from the Early History of Computer-Aided Algorithmic Composition,”
46–47.

82. Pinkerton also derived a playing-card-based algorithm to generate melodies based on the same statistics.
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Figure 3.5: Transition probabilities for Pinkerton’s first-order Markov model of melodies based
on his analysis of 39 nursery tunes. (In Richard Pinkerton, “Information Theory and
Melody,” Scientific American 194 (1956), 80.)

TRANSITION PROBABILITIES show how frequently any note follows any other in
the 39 nursery tunes. The first notes of all possible pairs are listed in the column at the
left; the second notes, in the row at the top. Thus each number in the table gives the
probability that the note at the top of its column will come after the note at the left of its
row. The color pattern divides the table between likely transitions (colored) and unlikely
(white).83

As Shannon had shown, the comprehensibility of generated English text can be improved by

increasing the length of the history of the melody used to compute the transition probabilities between

83. Pinkerton, “Information Theory and Melody,” 80.
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successive notes. Whereas a first-order Markov chain only uses the last note as the basis for proposing

a new note, a second-order model uses the last two notes. Changing this feature of the model, the

“order” of the Markov process, allows the model to capture more of the structure latent in the source

material. Pinkerton neglects to mention this fact. Increasing the order of the model requires more

computational resources to both compute the relevant probabilities and to store them. Pinkerton’s

article makes it clear that he computed the transition probabilities for his first-order Markov process

by hand, working with a set of eight states (the seven notes of the diatonic scale, plus a symbol to

indicate an eighth-note rest). Estimating the transition matrix for a model of this order requires 82(=

64) separate calculations (counting and normalizing) over the complete data set. To move from a

first-order model to a second-order model would involve eight times more computations, for a total

of 512 separate calculations. The exponential growth of the scale of the task means that, at least for

hand-computation, this quickly becomes unmanageable, even for such a toy case as Pinkerton’s.84

Fortunately, as the order of the Markov chain is increased, the return on doing so diminishes.85 As the

order of the model is increased, more observations are required to accurately estimate the transition

probabilities between the various states. A related issue occurs when the model begins to “memorize”

and reproduce large segments (say, sentences) of recognizable material as it appeared verbatim in the

input corpus. This behavior can be interpreted as a failure of the particular model to generalize; when

it behaves in this way, the results of the model can be indistinguishable from the results of more naive

“cut-and-paste” computer-assisted composition algorithms.86

Despite these limitations, Markov models remained an attractive formalism, because they

were simple to compute, did not require vast amounts of storage or memory (at least for small-order

models), and their behavior was relatively straightforward to interpret. Estimating the transition

84. More generally, if the alphabet is of size n a first-order Markov model requires n2 memory positions to store
the associated probabilities, a second-order Markov model requires n3, and so on. Wilhelm Fucks, who also worked with
Markov models of pitch, alludes to this problem in one of his few published references to the practicalities of using a
computer (Rechneranlage) to do information-theoretic research into music. Wilhelm Fucks, Mathematische Analyse der
Formalstruktur von Musik ([Wiesbaden]: Springer Fachmedien Wiesbaden GmbH, 1958), 52.

85. The threshold at which this takes place is dependent on the data set and the size of the symbol set (“repertoire”).
86. This behavior, loosely called overfitting, must still be avoided in the design of mathematical models, including

those used in the latest computer-aided algorithmic composition software.
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probabilities for a first-order Markov model involves counting and normalizing symbol frequencies

over a representative corpus of data. These estimates can be formed using the basic arithmetic

operations available on almost all computer systems; no complicated or processor-intensive analytic

functions are required. The final advantage is that the Markov chain model is what is understood to

be a “generative” model, meaning that the model explicitly specifies a process according to which the

data it models is generated. This lends its parameters a degree of natural interpretability since they are

directly related to a particular probability distribution, and can normally be expressed analytically as

a straightforward mathematical formula. These advantages of the Markov model show that accuracy

or reproductive fidelity are not the only criteria for choosing a model: material exigencies, such as

the model’s consumption of computational resources (either human or machine) and questions of

interpretability come to bear on such a choice.

3.2.3 Redundancy: or, “the part of a message that can be eliminated without loss of essential

information”

Shannon defined the redundancy of a communications source as the reciprocal of its relative entropy,

that is, the ratio of the information in a source relative to the theoretical maximum that it could have,

assuming that source is still restricted to composing messages with the same alphabet (what Moles

calls the “repertoire”).87 Shannon illustrates this concept with reference to utterances in Basic English,

representing the minimum extreme of redundancy, and the content of Joyce’s Finnegan’s Wake,

representing the other pole: minimally redundant, maximally informative text.88 Just as information

was loosely understood to refer to the “intelligibility” or “complexity” of a sequence, redundancy was

frequently synonymized with “banality” or “uniformativeness.”

Redundancy has a practical application: it allows us to measure how robust a system will be to

noise. Crucially, engineers made use of the concept to design communication systems to deliberately

introduce redundancies so that information can still be reliably communicated over noisy channels. In

87. Shannon and Weaver, The Mathematical Theory of Communication, 56.
88. Shannon and Weaver, 56.
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fact, language as it is commonly spoken and written already has a significant amount of redundancy

built into it. Shannon estimates the redundancy of ordinary English, excluding consideration of

long-range grammatical structures, at 50%. “This means,” Shannon writes, “when we write English

half of what we write is determined by the structure of the language and half is chosen freely.”89

Shannon would later carry out more sophisticated experiments that revised his estimate upward

to 75%.90 Redundancy can be estimated over an entire language or over a subset of a language. In

the case of the redundancy of English, the accuracy of various estimates was subject to considerable

debate. The fact of the disagreement itself is of less important than the implicit consensus about

how these estimates would be improved: by the collection of more data, just as in the case of the

generative Markov process models discussed above. Shannon claimed that his early estimates of the

redundancy of the English language derive from “certain known results in cryptography.”91 Since

redundancy is defined mathematically, a body of text can be easily analyzed to provide estimates of

the redundancy of a given language. Analogously, it would be argued that given a sufficiently large

and representative corpus, the redundancy of various musical styles could likewise be computed.

Purely statistical estimates of the redundancy of a repertoire contrast with empirical estimates

of redundancy, which are typically defined from the results from human behavioral experiments. In

studies of the redundancy of printed English, participants were asked to predict the completion of

partial sequences of letters; Claude Shannon had already described the results of informal games of

this nature in 1951.92 In a different paradigm, participants are asked to read or listen to a language

source which becomes successively degraded by the application of rounds of erasures or the insertion

of noise. Abraham Moles adapted Shannon’s techniques for the study of French, and reprinted some

89. Shannon and Weaver, 56.
90. Claude E. Shannon, “Prediction and Entropy of Printed English,” The Bell System Technical Journal 30, no.

1 (January 1951): 50–64, https://doi.org/10.1002/j.1538-7305.1951.tb01366.x. Cited by Fred Attneave, Applications of
Information Theory to Psychology: A Summary of Basic Concepts, Methods, and Results (New York: Holt, 1959), 15,
30ff.

91. Soni and Goodman, A Mind at Play, 152. Estimating the redundancy of language was crucial to codebreaking
efforts since redundancy implies a degree of recurring structure in a transmitted message, which can in turn be used as
candidate “cribs” from which hypothetical plain-text pairs can be posited. For an accessible introduction to this notion,
see Iverson, Electronic Inspirations, 173.

92. Shannon, “Prediction and Entropy of Printed English.”
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sample texts in Information Theory and Esthetic Perception.93 The force of these theoretical and

empirical studies was that redundancy came to be quantified, studied, and ultimately posited as

the inverse of information, both rhetorically and mathematically. Mathematically, the reciprocal

relation between information and redundancy guaranteed this relation. The rhetorical relation was

established by setting information and redundancy in antithetical relationships, triangulated by a set of

oppositions between pairs of their respective constellations of related concepts. Moles is unashamedly

schematic in this regard:94

• Banality vs. Originality
• Redundancy vs. Information
• Intelligible form vs. Informative output
• Periodicity, order vs. Disorder
• Foreseeability vs. Unforeseeability

To Bar-Hillel or to Shannon in the mood attested to by his “Bandwagon” rebuttal, one of these pairs

is not like the others: redundancy versus information, the only two concepts with strict mathematical

definitions. The rest might shed useful light on how those mathematical tools might be interpreted

in order to make sense of other phenomena. Of most interest to an information aesthetics was be the

banality/originality distinction, to which Moles awards pride of place in his account.

3.2.4 Implications for perceptually grounded theories of music and art

Based on what on what we have so far learned from Moles, an information-theoretic discussion of

music (or the other arts) seems to stake little claim to anything in particular about human esthetic

perception, despite the promise of the title of his treatise. Moles showed how counting relative

frequencies of symbols in textual and musical corpora can provide the probability distributions

required by Shannon’s information-theoretic model without canvassing perceiving readers or

listeners.95 The calculations that Moles describes could be carried out without consideration of any

93. Moles, Information Theory and Esthetic Perception, 45; Abraham Moles, Théorie de l’information et
perception esthétique (1958; repr., Denoël, Gonthier, 1972), 52–53.

94. Moles, Information Theory and Esthetic Perception, 76–77.
95. And around the same time, as we shall see below, so did Wilhelm Fucks.
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perceiving subject, especially when a notational system for music was to hand. Insofar as musical

information was out there in the world, its trace was to be found in scores, recordings, and other

records of musical behavior and not necessarily in the mentalities of its auditors.

However, empirical evidence of the limits of human ability to distinguish between sonic

stimuli is integral to Moles’s information aesthetics. As Moles puts it, “a message is a finite,

ordered set of elements of perception drawn from a repertoire and assembled in a structure.”96

Shannon’s communication scheme models the joint behavior of a transmitter and a receiver. In a

telecommunications system the receiver must be able to discriminate between the various different

symbols as they pass through the channel. In the case of telegraphy after Samuel Morse, there must

be a detectable difference between the dot and the dash: this might be a difference of amplitude, of

frequency, or of duration. Along whatever dimension that difference might be, it must be significant

enough so that an appropriately sensitive receiver circuit can measure and thus register the difference.

If the transmitter chooses a repertoire containing two or more elements that may not be discriminated

from each other by the receiving party, either owing to excessive channel noise or a misconfiguration

of the receiver, this is tantamount to a reduction in the size of the repertoire. As Moles puts it: “the

elements of the repertoire are defined by the properties of the receiver.”97 In the case of artificial

communications systems, this repertoire is defined by the operating characteristics of the electronic

receiver; in the case of natural communications systems, its a consequence of the psychophysical and

biological features of the animal receiver.

Moles’s discussion draws on the results of perceptual experiments of the late-nineteenth and

early twentieth century to provide the technical characteristics of the receiver: the human ear. These

results range from the straightforward observation that the range of human hearing is constrained

both in terms of loudness and pitch: there are some sounds that simply may not be heard by human

listeners since they are either too quiet or too high or low. Thus, the physical constraints of the human

96. Moles, 9. Emphasis mine.
97. Moles, Information Theory and Esthetic Perception, 9. Moles writes, later on, “The basis of the

communication concept, as established by Wiener, Shannon, and others was the existence of a ‘common’ repertoire for
an ensemble of senders and receivers, each sharing the same a priori knowledge of their language.” Moles, 52.
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ear, considered now as a receiver, places strong bounds on the repertoire of possible sounds that make

up a musical message. Later laboratory research showed that the ear can discriminate extremely small

differences of pitch, loudness, and duration. This research is consolidated in psychophysical literature

in the concept of “just-noticeable difference.” Moles argues that just-noticeable difference data should

be used to partition the entire space of total sonic possibilities—that is, any sound ever—into discrete

packets or “quanta” of sound.98 The minimum extent of these quanta in the multidimensional space of

pitch, intensity, and, duration is derived from the results of perceptual experiments. Therefore, if the

sonic space is carved up accordingly, the perceptibility of each of these quanta is arguably guaranteed

by design. In turn, these sonic quanta make up the repertoire for sonic communication of all kinds,

and, specifically, of music.

Although this proto-digital partition of the space of all possible audible sounds was informed

by perceptual research, the need to discretize the sound-world into distinct sonic quanta came

from information theory’s purely formal-mathematical mandate for a discrete alphabet, Moles’s

“repertoire.” The paradigmatic applications of information theory to human communication to date all

depended on the existence of discrete, symbolic alphabets—letters, words, ideographs, elements of

printed music notation. Moles’s application of Claude Shannon’s information-theoretic model to the

human perception of sound followed suit, and in the process, outlined nothing less than a process for

the alphabetization of raw sound.

Later, Moles asserts the status of information theory as an “inspiration” or as the basis for

a thought experiment that serves to defamiliarize the apparently natural act of communication:

“[T]he theory appears as a huge Gedanken experiment, attempting to re-create the strangeness of

communication by making evident its material aspect. It was specifically this point of view which

led us to the concept of sonic objects.”99 In particular, listeners whose epistemologies of sound that

remain yoked to symbolic representational schemes of music require a shock to wrest them from the

98. This approach follows Denis Gabor’s approach to the analysis of complex signals; an alternative to Fourier
decomposition which viewed signals as composed of quanta. See Curtis Roads, Microsound (Cambridge, MA: MIT Press,
2001), esp. chap. 2, “The History of Microsound from Antiquity to the Analog Era.”

99. Moles, Information Theory and Esthetic Perception, 208.
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specious conflation of music as notated with music as sounded. Moles quite explicitly aligns the goals

of his study with those of phenomenology:

The theory [of information] offers not only properly new results, but a new method of
presentation, a synthesis of known facts in a new structure, making evident the gaps,
destined to be filled, in our knowledge. It may be classed, with the great scientific
theories, among the heuristic methods, and more particularly among those which we
term methods of presentation and of phenomenologic variation (cf. Moles, La création
scientifique, 1957).100

Not only are the musical schemes encoded by traditional notation partial and incomplete, they have

become naturalized: they are inseparable from our conception of music.

Information would provide the inspiration for a new theory of the “sonic object”: a

thoroughgoing refutation of traditional music theory, to Moles a moribund enterprise that might

only be revived with a dose of purported phenomenology. In this connection, Moles describes a

series of experiments with tape, extolling the virtues of reverse playback: ”Shattering the normal view

of the temporal object, it [reverse playback] aims to recover an intrinsic appreciation forbidden to us

by our mental habits.101 The affordances of particular sound recording technologies—in this case,

magnetic tape players—can reveal phenomenal invariants of particular sonic objects. Moles applied

both reverse playback and electronic filterbanks to various found and constructed musical material in

order to hear precisely which sonic qualities survive such manipulations.102

For Moles, this grand thought-experiment about music—inspired by information theory—implied

a wholesale revision of traditional music theory, which is connected with Moles close collaboration

with Schaeffer on an early incarnation of an explicit theory of Schaeffer’s objet sonore. Moles had

100. Moles, Information Theory and Esthetic Perception, 32. Citing Abraham Moles, La création scientifique
(Genève: Kister, 1957).

101. Moles, Information Theory and Esthetic Perception, 147.
102. The sonic results of some of these experiments have been preserved in the recordings that were issued along

with the Gravesaner Blätter. In the original French edition, Moles also included, as an appendix, a modest “thematic”
discography referring the reader to recordings of musical works and other experimental recordings as examples of some
of the informational feature so music that he described. This was omitted from Cohen’s edition. Moles viewed these
manipulations as crucial empirical evidence a distinction that Moles makes between two “types” of information: esthetic
and semantic information. The dependence of this particular extension of information theory on music and musical
structure cannot be overstated. Organized sound plays a leading part in Moles’s provisional and heroic (heroic because
ultimately futile) attempt to address mainline information theory’s lack: its indifference with regard to meaning.
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been hired by Schaeffer to work at the Club d’Essai (later the Groupe de Recherches Musical)

during the summer of 1951. The final chapter of Schaeffer’s A la recherche d’une musique concrète

(1952) is titled “Equisse d’un solfège concret, en collaboration avec [Abraham] André Molès [sic].”

The relationship of Moles’s early thought—and (by proxy) the perhaps surprising appearance

of Shannon’s information theory—to Schaeffer’s conception of the objet sonore, which later

developed into a theory of acousmatic sound, remains to be fully accounted for in English-language

scholarship.103

3.3 Three pioneers

3.3.1 Pierce and Shannon: Automatic writing to automatic composition

Pinkerton was not the first to generate music under the loose Markov assumptions that affiliate his

work to Shannon’s information-theoretic experiments. Fred and Carolyn Attneave were reported to

have had some success manually generating monophonic “cowboy songs” based on the analysis of

transition probabilities of pitches, whose results were known no later than 1955.104 Even earlier still

were the experiments at Bell Laboratories of John R. Pierce and Mary Elizabeth (“Betty”) Shannon,

who described in a 1949 Bell Labs Technical Memorandum how four-part harmonies could be

selected from a catalog of pre-prepared voicings, according to the outcome of a dice roll.105 Though

this research was neither classified nor particularly commercially sensitive, because it was described

in an internal corporate memo it was not widely distributed. It was only recently recovered from

103. For instance, Peter Manning mentions Moles in passing; from Brian Kane’s Sound Unseen, Moles is
conspicuously absent. Comments made by Schaeffer in the “Equisse” suggest that the physicalist model of the
perception of sound that it outlines is essentially refuted in Schaeffer’s later theoretical discussions of the sonic object;
the psychologism of a perceptual theory of music comprising Moles’s fusion of communications theory and the
psychophysics of sound serves only as a straw-man to the phenomenological/acousmatic approach adopted in Schaeffer’s
later work. See Makis Solomos, “Schaeffer phénoménologue,” in Ouïr, entendre, écouter, comprendre après Schaeffer
(Paris: Buchet/Chastel, 1999), 53–67, fn. 20.

104. Reported during the discussion of Fucks’s paper at the Third London Information Theory Symposium.
Incorrectly cited as the “Altneaves.” Wilhelm Fucks, “Mathematical Theory of Word Formation,” in Information Theory,
ed. Colin Cherry (Symposium on “Information Theory”, London, UK: Butterworths Publications Ltd., 1955), 154–170,
169.

105. J. R. Pierce and Mary E. Shannon, “Composing Music by a Stochastic Process,” Technical Memorandum (Bell
Telephone Laboratories, November 15, 1949).
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obscurity by machine learning researchers investigating contemporary models for automatic music

compositions.106

The fact that work in information theory at Bell Labs was distributed in internal memos did

not necessarily limit the distribution of their research outside the corporate sphere. Lydia Liu has

described how one J. J. Coupling quoted and glossed the results of Shannon’s early experiments

with the stochastic generation of text in the pages of Astounding Science Fiction, a long-running

monthly science fiction (SF) periodical that published not only “novelettes” and short stories, but

non-fiction essays, book reviews, and other commentary on contemporary developments in science

and technology.107 In a later article published in November 1950, entitled “Art for Science’s Sake,”

Coupling revisited Shannon’s experiments but now included music examples in a clumsy staff

notation as well as new material from another unpublished collection of stochastically generated

sentences.108 J. J. Coupling’s intimate familiarity with the stochastically generated music of Shannon

and Pierce is easily explained: Pierce wrote many SF and non-fiction contributions for Astounding

Science Fiction under just that pseudonym from 1948 to 1964. Pierce wrote some twenty non-fiction

essays for the same publication between 1944 and 1955.109

Pierce provides a little context for his generated music examples by first attributing the “dubious

success” of previous applications of mathematics in art to a “combination of over-expectancy and

misdirection.”110 “One should be happy to achieve anything new through mathematics, however

narrow the achievement might be,” he writes, pleading for incrementalism: the recognition of modest

achievements, just like Shannon’s successful generation of “mathematically produced doubletalk.”111

He reproduces Shannon’s convergent “approximations” of printed English:

106. Their discovery is lightly contextualized in Haizi Yu and Lav R. Varshney, “On ‘Composing Music by a
Stochastic Process’: From Computers That Are Human to Composers That Are Not Human,” IEEE Information Theory
Society Newsletter, December 2017.

107. Lydia He Liu, The Freudian Robot: Digital Media and the Future of the Unconscious (Chicago: University of
Chicago Press, 2010), 127. Coupling, “Chance Remarks”.

108. J. J. Coupling, “Science for Art’s Sake,” Astounding Science Fiction, November 1950.
109. See Pierce’s entry in the superlative Internet Speculative Fiction Database: “Summary Bibliography: John R.

Pierce,” The Internet Speculative Fiction Database, accessed May 3, 2019, http://www.isfdb.org/cgi-bin/ea.cgi?460.
110. Coupling, “Science for Art’s Sake,” 83.
111. Coupling, 84.
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3. Second-order approximation—diagram [sic] structure as in English. ON IE
ANTOUTINYS ARE T INCTORE ST BE S DEAMY ACHIN D ILONASIVE AT
TEASONARE FUSO TIZIN ANDY TOBE SEACE CTISBE

4. Third order approximation—trigram structure as in English. IS NO IST LAT
WHEY CRATICT FROUR BIRS GROCID PONDENOME OF DEMONSTURES
OF THE REPTAGIN IS REGROATIONA OF CRE112

Reflecting on his own response to these invented words, Pierce writes:

I find DEAMY pleasant and light—from dream? PONDENOME strikes me as solemn;
INCTORE as somewhat less so. ILONASIVE has a dubious connotation, and TIZIN
sounds foreign. I would not like anyone to characterize me as GROCID—because of
gross, groceries and gravid?113

The fact that Pierce posits etymological or phonesthetic explanations for his intuitive responses might

suggest that he expects other readers to respond similarly to him. However, the opposite is in fact the

case:

The reader may amuse himself by conscientiously trying out his own reactions; I think
that he will have some. They will be, however, his own. There is no feeling of the author
or artist to be conveyed. That which is found is like the rhythm of dripping water, the
face on the rock, the scene in the stains on a wall; it is in the mind of the beholder.114

Reader response is celebrated; indeed, it is “one of the most important aspects of the matter” for

Pierce. Stochastically generated texts give “an unalloyed opportunity for what one might call creative

appreciation”115 Pierce goes on to quote even more text, purportedly the results of an ingenious

framing of the text-generation task, not unlike the familiar “exquisite corpse” parlor game.116 He

covertly and provocatively slips in two short texts, one from Ulysses (Joyce again) and one from

the “writings of a schizophrenic,” among the stochastically generated texts: an invitation to further

112. Coupling, 86; These examples were first published in Shannon, “A Mathematical Theory of Communication,”
388.

113. Coupling, “Science for Art’s Sake,” 86.
114. Coupling, 87.
115. Coupling, 87.
116. Coupling, “Science for Art’s Sake.” On word-association games and the cybernetic connection, see Liu, The

Freudian Robot, 142.
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consider the value and responsibilities of reader response absent the operation of then-standard

notions of authorship.117

Pierce invokes the application of chance procedures in visual art and sculpture: the kaleidoscope

and Marcel Duchamp’s Three Standard Stoppages (1913/14) are cited approvingly by Pierce as

examples of “much the sort of thing we have been considering.”118 Pierce’s rhetorical shift to chance

music in his article is justified by the arts’ concern with chance more generally. Next, describing

the process for compiling the chord catalog in detail, Pierce summarizes the principles behind the

work that is also described in the technical memorandum. By rolling specially constructed dice

and choosing chords based on the outcome of these rolls from a pre-compiled table of SATB-style

sonorities, Pierce could claim that he and Mary Shannon had produced something analogous to

Claude Shannon’s initial experiments with stochastic text.

Pierce notes that three pieces were generated in this way, taking about a half-day’s works each.

He asked “an experienced pianist” to play these pieces (reprinted in the article) for him remarking

that:

After a few repetitions, he came to add a certain amount of phrasing and expression
which he felt natural. Thus, he made a performer’s contribution to these works of art.
Certainly one cannot object that he was violating the intentions of the composer.119

Precisely because it forecloses any discussion of the author’s intended meaning, “stochastic music”

serves as a field of play for subtle thoughts about how musical meaning is constituted by performers

and listeners. Pierce notes that the pieces that the process generates are written in an inferior

idiom that violates good voice-leading principles.120 Refinement of the rule-set, Pierce concedes,

117. Liu glosses Peirce’s interest in automatic and “schizophrenic” writing. She writes: “Difficult as they are, Joyce’s
texts are still considered “authored” texts in contrast with the above-quoted passage from Shannon–“THE HEAD AND
IN FRONTAL ATTACK ON AN ENGLISH WRITER …”–which is composed of chance elements that obey the laws of
statistical structure of the language, and which seems to pronounce the death of the author before Barthes, Foucault, and
others learned why and how the author died. […] When we juxtapose his stochastic sample with a passage from Joyce and
with the writing of a schizophrenic mind, it is not always self-evident which of the three makes better sense.” Liu, 128.

118. Coupling, “Science for Art’s Sake,” 90.
119. Coupling, 90.
120. “Too many ‘laws’ of harmony—no parallel fifths, no doubling of the leading tone, and so on—are flagrantly

ignored.” Coupling, 90.
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would reduce the number of errors. “But,” asks Pierce, “would this result in a gain or a loss?”121

Anticipating many later experiments carried out with computational aid, suggests the possibility

that “such statistical methods could be of use in trying out proposed systems of harmony,” because a

“statistical process is indifferent to whether the rules incorporated in it are old and well-known or new

and untried.”122 The autonomy of chance processes facilitates a field of play in which the contours

of novel musical systems can be proposed and explored in a judgment-free environment and without

the intervention of a human, who might be wittingly or unwittingly biased by their acquaintance with

more familiar musical idioms. To underscore this particular point, Pierce includes an example of a

canon composed using a whole-tone scale with the help of a die to select the notes of the subject, “for

the lover of modern music.”123

All this has, however, raised for me an issue beyond that of the stochastic generation of
art. Apparently, if I try hard, I am capable of liking almost anything that is surprising
if it only has some order or recognizable feature. Too, I am not entirely alone in this.
I wonder, how much of the appreciation of some of the more drastic experiments
in writing, music and painting is a combination of the artist’s style and tricks and a
determined effort to enjoy? How can one tell?124

Listeners to the LP Music from Mathematics (1961) would have a chance to ask themselves

some of these same questions, as one of Pierce and Shannon’s stochastic compositions was chosen

for inclusion in this assortment of computer music experiments prepared at and published by Bell

Telephone Laboratories.125 A piano performance of “RANDOM II” (see Figure 3.7 for the score)

by an unnamed musician was included in this recording, under the track title “Chance Music,” and

preceded by the following spoken explanation:

Mozart and Bach amused themselves with the composing of music by throwing dice.
The dice compositions violated many laws of harmony and counterpoint but certainly
no-one could complain of their being cliche. Following this slightly oblique musical

121. Coupling, 90. “Statistical music should be urged toward respectability only with caution”.
122. Coupling, 91.
123. Coupling, 91; Note, however, that he concluded that “Artistically, it is perhaps a severe challenge to the listener’s

powers of creative appreciation.” Coupling, 92.
124. Coupling, 92.
125. Music from Mathematics, LP 33 (Bell Telephone Laboratories, Inc. - 122227, 1961). Not to be confused with

the recording of the same name put out by Decca a year later. Music from Mathematics (Decca - DL 9103, 1962).
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Figure 3.6: J.J. Coupling [John R. Pierce], CANON I. (In J. J. Coupling, “Science for Art’s
Sake,” Astounding Science Fiction, November 1950, 91.)
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Figure 3.7: J.J. Coupling [John R. Pierce], RANDOM II. (In J. J. Coupling, “Science for Art’s
Sake,” Astounding Science Fiction, November 1950, 87.)

tradition, J. R. Pierce and M. E. Shannon composed the next piece by calling on chance
as their muse, and three specially made dice as musical mentors. This improbable
collection of chords was, you might say, thrown together by mathematical probability. It
is played here by a human pianist, who contributes artistic expression and phrasing.126

“For those who gamble recklessly,” the four-part setting was then played in retrograde. This was

followed by a performance of the result of a very idiosyncratic manipulation: the score was turned

upside-down and performed as if there were a treble and bass clef pair at the new start of the work (as

might be done with a puzzle canon). According to the liner notes, these manipulations were done to

the piece to “make sure it defies the laws of music.”127 It seemed, that by 1961, though still evidently

open to the possibility that stochastically generated music might “grow” on its listeners, Pierce was

ultimately less excited about his experiments:

Dr. Pierce says that he found the pieces a little meaningless at first, but after he had
heard them several times they became more comprehensible. He found them less dull
than poor hymns but considerably inferior to Bach. The pieces are clearly products
of the same composer. […] While there is little predictable about music composed in
this manner there is nothing very interesting either because the music is too surprising,

126. Transcription of “Chance Music.” Music from Mathematics.
127. Music from Mathematics, 5.
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too random, too unpredictable. It would seem that music acceptable to our tastes lies
somewhere between complete order and complete chaos.128

As we have seen, it was Shannon’s mathematical theory of communication that was taken up by

Moles and others to quantify the acceptability of musical products, making liberal use of the terms of

order and chaos to make the case. This, Pierce’s later gloss on his early experiments as J. J. Coupling,

uses the language of surprise, order, and chaos, openly, invoking information in all but name. All

this makes Pierce’s earlier oblique allusions to information theory more concrete: “Chance Music,”

though it was recorded in 1961, was based on work from 1949 and as such stands as some of the

earliest work to generate–and think through—how music goes, under the sign of information.

3.3.2 Henry Quastler: Information theory in the behavioral psychology lab

One of the first researchers to attempt to apply information theory to characterize explicitly musical

behavior was Henry Quastler who undertook a series of studies of human “channel capacity” at the

Control Systems Laboratory (CSL), at the University of Illinois, Urbana–Champaign.129 Quastler

was an Austrian physician with a specialism in radiology, who emigrated to New York in 1939. In

1941, Quastler moved to Urbana where he practiced medicine until his appointment to a assistant

professorship in physiology at the Control Systems Laboratory, in 1949.130

Though his name is probably unknown to the majority of music psychologists today, Henry

Quastler was by no means a marginal figure in his field. The historian of science Lily Kay has

credited Quastler with the introduction of concepts from information theory into molecular biology

that have now become naturalized as commonplaces of the field.131 At the University of Illinois,

Quastler headed up the Biological Systems Group, one of the original research units at the Control

128. Music from Mathematics, 5.
129. Henry Quastler, “Three Survey Papers: 1) A Survey of Work Done by the Bio-Systems Group of the Control

Systems Laboratory; 2) Studies of Human Channel Capacity; 3) the Informational Limitations of Decision Making”
(Urbana, IL: Control Systems Laboratory, University of Illinois, 1956), http://hdl.handle.net/2142/73988. For a glimpse
of the CSL’s activities in the context of the history of computing in the United States, see Joy Lisi Rankin, A People’s
History of Computing in the United States (Cambridge, MA: Harvard University Press, 2018), 169.

130. Kay, Who Wrote the Book of Life, 116. For more on Quastler’s biography, see Kay, 115–127.
131. Kay, chap. 4.

164

http://hdl.handle.net/2142/73988


Systems Laboratory. By the time he was appointed to the Biological Systems Group, Quastler was

very familiar with the work of Shannon and Wiener on communications. He saw fit to adjust his

focus away from information-theoretical applications in molecular biology and instead on to human

behavior considered at the macro-scale: the information-processing behaviors of individuals and

organizations.

Work on “human information-processing,” Quastler writes, made up the “main body” of the

work of the group from 1951 to 1956.132 Quastler’s group was especially interested in determining the

limits on the capabilities of human beings in a variety of stressful situations. This topic was of general

interest to the growing community of psychologists who saw a useful quantitative tool in information

as well as to military planners and industrial researchers, who were interested in computing the

maximum capacities of technological systems that depended on human beings. As research in the

“man-machine systems” strand had shown, “not nearly enough was known about the properties of

the basic components” of teams of human beings—that is, “a single man processing information.”133

In this respect, Quastler’s use of information is not unlike its use by military and corporate planners

aligned Operations Research (OR). OR was another emergent discourse, which like information

theory was allied to cybernetics more generally, though was originally rooted in interwar British

military research, which sought useful quantities for measuring and optimizing the activities of what

we might anachronistically term “cyborg” assemblages of operatives and their machines, after Donna

Haraway.134

Quastler’s experimental design was undergirded by the apparent generality of information;

following many of his contemporaries, he assumed that if

human information processing can be represented by a limited number of models,
independent of the particular kind of information processes, then one can attempt to

132. Quastler, “Three Survey Papers: 1) A Survey of Work Done by the Bio-Systems Group of the Control Systems
Laboratory; 2) Studies of Human Channel Capacity; 3) the Informational Limitations of Decision Making,” 4.

133. Quastler, 4.
134. In its desire for optimization, OR is aligned with “scientific management” practices associated with Ford and

Taylor, but its lineage is military.
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determine the human capabilities in a general way, not using those tasks which are
ultimately of interest, but those that are most accessible.135

Quastler was less interested in quantifying information transmission rates in these particular tasks

than in characterizing a larger slate of behaviors—“perceiving, filtering, remembering, correlating,

learning, selecting a responses”—that were subject to an information bottleneck at the input and

output steps.136 The performance of humans on well-defined, easy-to-measure, and operationally

more convenient tasks could be used to infer limits on their behavior more generally. The pioneering

work of George A. Miller established the experimental paradigm for the channel capacity experiments

that Quastler carried out.137 In 1956, Miller would go on to report results from discrimination and

memory experiments undertaken across a wide variety of modes—tones, colors, shapes, words, and

digits—that seemed to exhibit invariant limitations to human cognitive performance: this was his

“The Magical Number Seven, Plus or Minus Two.”138 Critical to Miller’s comparative approach was

his use of information to calculate putative channel capacities based on such diverse kinds of stimuli.

Like Miller, Quastler set out to study the performance of individual human subjects that were

idealized, in a way, as black boxes: subjects would be presented with input “information” in the form

of some visual or auditory stimulus, sometimes called “displays,” and were asked to respond with

output “information”: usually the value indicated by the display. With these assumptions in mind,

Quastler developed a battery of activities that were designed to shed light on limits of human ability

in terms of information transmission. He chose behavioral tasks that appeared to conform to three

criteria.139 First, all inputs should come from a single source: the task must be possible with reference

to a single kind of stimulus, be it a dial, characters on a sheet to be transcribed, or in musical notation.

Second, all output choices are “mechanical,” which is to say that no reflection or consideration is

135. Henry Quastler and V. J. Wulf, “Human Performance in Information Transmission: Part I: General Remarks; and
Part II: Sequential Tasks (Overlearned Activities)” (Urbana, IL: Control Systems Laboratory, University of Illinois, March
1955), 3, http://hdl.handle.net/handle/2142/73924.

136. Quastler and Wulf, 5.
137. Miller, “What Is Information Measurement?” Quastler cites Miller’s work.
138. Miller, “The Magical Number Seven, Plus or Minus Two: Some Limits on Our Capacity for Processing

Information.”
139. Quastler and Wulf, “Human Performance in Information Transmission: Part I and II,” 6.
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required to choose the correct output response, and that there is only one correct output for each input.

Third, all tasks should be “thoroughly familiar” to the subjects; elsewhere, Quastler describes these as

“overlearned” tasks, a term which connotes a skill in the task bordering on automatism.140

Figure 3.8 shows the various tasks that Quastler ask his participants to undertake under the

rubric of the human channel capacity project.141 The activities are broken down into three groups:

sequential tasks, “flash recognition” tasks, and scale-reading tasks. The first group of columns shows

the independent variables that were explored using in each task farming. Notably, the “piano playing”

task had the most scope for parameterization of all the tasks: the affordances of musical notation

and skilled musical listeners allowed the experimenters to independently vary the speed, order of

complexity, and range of motion used in stimuli.

Not only did these tasks have to be on a par with real-world activities like reading radar displays

or responding to air-traffic control commands, they also had to be sufficiently similar so that they

were comparable to each other. Quastler seemed more certain that his experimental results reflected

some empirical reality when his putative channel capacity calculations agreed with each other

across a variety of modalities. This motivated Quastler’s preference for information over other, less

sophisticated statistical summaries (for example, mean or median accuracy scores) when he set out

to compute the performance of his test subjects in each of the tested activities. Information theory

provided a common unit—the “bit”—which could be used to quantify human performance so that

they might be directly compared to each other. This approach furnished Quastler’s group with a

method for estimating the limits on human performance in real-world situations without the need for

expensive and time-consuming simulations or for potentially risky “field tests.”142

There is a caveat, of course: not all of these upper limits can be interpreted as channel capacities.

“There definitely is,” Quastler writes, “more than one kind of limiting factor,” and this is specific to

140. Quastler and Wulf, 6. Quastler argues that these three constraints ensure that the information processing
demands of the tasks are kept to a minimum, so that the subjects’ performance statistics can be interpreted as relating
to theoretical maximum information transmission rate—in other words, throughput or channel capacity—and not a
bottleneck elsewhere in the chain of information flow.

141. Quastler and Wulf, 15. The vast majority of these reports were digitally scanned and made available online in the
last five years.

142. Quastler and Wulf, 3.
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Figure 3.8: Quastler’s “Table I: Survey of tests and results,” showing various activities that his
participants were asked to complete during his human channel capacity experiments.
(In Henry Quastler and V. J. Wulf, “Human Performance in Information Transmission”
(Urbana, Illinois: Control Systems Laboratory, University of Illinois, March 1955), 15.)
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the kind of task in question.143 For sequential activities, such as typing and piano sight-reading, these

limits are modulated by the target speed of the activity, the range of symbols over which the subject

must range, or their product (whichever is lowest).144 In order to determine the maximum information

transmission rates in the piano-playing task, Quastler asked three trained pianists to sight-read

scores that were generated by hand, by consulting a book of pre-prepared random numbers.145 Some

examples of the kinds of scores that were used in these tasks were shown in the figure, along with the

nominal information content of each individual key stroke.

Low information-per-key statistics correspond, following Shannon’s definition of information,

to scores generated by random selections from smaller selections of possible notes. In all examples,

the notes are selected according to a uniform distribution over a set of possible keys of the piano: in

each stimulus-type, each note has equal probability of occurring, with no conditional dependencies

between successive notes. What Quastler computed as the information content of each note in the

stimulus is therefore proportional to the size of the total set of possible pitches in each stimulus.

The notes were intended to be played strictly isochronously and of equal duration, but the example

passages show some a mismatch between the notation and the intended stimulus, due to an evident

clumsiness with staff notation.

During a session, the set from which the pitches were drawn and the rate of presentation

were varied independently of each other, “coaxing the subjects into greater and greater speed until

they were obviously way beyond their capabilities.”146 Quastler derived his maximum information

transmission rates from both the speed and complexity of the stimuli, but also from the pitch accuracy

of the sight-reading, using tape recorders and the three pianists to determine each other’s accuracy

143. Quastler and Wulf, 14.
144. Quastler and Wulf, 14.
145. Quastler acknowledges Stanley Fletcher (Fletcher–Munson equal loudness curves), Burrill Phillips (a composer),

and Ludwig Zirner of the Music Department at the University of Illinois for “their generous help and advice.” Quastler
and Wulf, 21 fn.

146. Quastler, “Three Survey Papers: 1) A Survey of Work Done by the Bio-Systems Group of the Control Systems
Laboratory; 2) Studies of Human Channel Capacity; 3) the Informational Limitations of Decision Making,” 14; discussed
in Attneave, “Stochastic Composition Processes,” 79–80.
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Figure 3.9: “Random music” used in piano sight-reading tasks constructed by Quastler. (In
Henry Quastler and V. J. Wulf, “Human Performance in Information Transmission,” 21.)
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by ear. Quastler measured the pianists’ performance in bits per second, using Shannon’s quantity of

information to characterize the maximum limits of his subjects’ ability to sight-read at speed.

Quastler justifies the use of randomly-generated sequences of pitches in his experiment by

describing how the musician learns both specific pieces and a sense of musical style in terms of

information acquisition. A “virtuoso” playing a piece that they already know has a high information

output rate, due to their familiarity with the piece, but this does not “depend on information acquired

at the time of playing.”147 A piece that is “unknown but of a familiar kind,” poses a related but

distinct problem: experienced musicians will draw on their knowledge of similar pieces, and “use

old information as well as new, and guess some notes without having read them.” The subject’s prior

familiarity with musical style—in other words, “old information”—would have to be controlled for

in Quastler’s experiments. Quastler suggests that “by studying the statistical structure of the musical

style, one could establish how much old information the subject could use, at best, to facilitate the

acquisition of new information.”148

However, Quastler concedes that determining how much old information the subject actually

uses is difficult to evaluate. Quastler concludes this confound means that an experiment making

use of an already-learned piece or a piece in a familiar style cannot be used to measure the pianists

information processing capacity. Subjects would draw on their reserve of “old information,”

accrued through memorization or familiarity with a musical style, separately to the information

supposedly deposited in the “input” stimulus, and the transmission rate would thus reflect not only the

information that was to be found in the score but also the information that corresponds to the subject’s

prior knowledge of the style. Quastler is moved to propose the following solution:

One can get around this problem by setting up experimental situations in which all
the information in the text is new. This certain to be the case when the script used is a
random sequence of notes. Such a script is easily made up with the help of a table of
random numbers. In this situation there is no doubt about the information input.149

147. Quastler and Wulf, “Human Performance in Information Transmission: Part I and II,” 18.
148. Quastler and Wulf, 18.
149. Quastler and Wulf, 18.
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The randomly generated excerpts shown here in Figure 3.9 were supposed to control for the subject’s

knowledge of the repertoire (in the musical sense): random music was purported to be styleless.150

Much like Hiller and Isaacson would do in their Illiac Suite, Pierce and Shannon, and others, Quastler

used the output of controlled random processes to procedurally generate musical scores. These scores

were not viewed as self-standing musical compositions; they were to be used as visual stimuli in the

study of human information-processing capacity. Nevertheless, Quastler was not naive to the creative

potential of the stochastic approach to score generation, of which he had made instrumental use in his

lab. He remarks:

It is amazing how much “character” random music acquires by imposition of the
simplest rules. Random music is quite fascinating and might be a useful tool in
identifying some of the basis of musical “style,” its value being that it follows exactly
the rules that were consciously determined and only those. We hope that it will be taken
up for the sake of music, not only here, as one particular method to explore human
information processing capabilities.151

Discussing the results of these experiments, Quastler noted that the limitations on the rate of

information processing are not caused by limitations on the rate at which sense data is provided to

“peripheral input mechanisms.”152 For instance, the optic nerve was hypothesized to have a channel

capacity of several orders of magnitude greater than that implied the maximum transmission rates

observed in contempoary studies. The apparent richness of visual input, when viewed as data,

suggests that humans can ingest information at a much greater rate than the mind appears to be able to

process it at. Quastler rather naively argues that limitations on the output rate—the act of striking the

keys in the piano case—are not due to “mechanical difficulties” since he notes that with rehearsal, the

output rate could be improved.153 This leaves Quastler to conclude that “the mechanisms which limit

the observed performance must be connected with the speed of processing information.”154

150. In this regard, compare with discussion of Fucks’s “stochastic music” below.
151. Quastler and Wulf, 18 fn.
152. Quastler and Wulf, 61.
153. Quastler and Wulf, 61.
154. Quastler and Wulf, 61.
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Figure 3.10: Quastler’s model of a “simple sequential task.” The diagram has been modified
slightly by the addition of red shading to clarify the sense of Quastler’s diagonal boxes,
which delimit the steps involved in sight reading a single musical symbol. (In Henry
Quastler and V. J. Wulf, “Human Performance in Information Transmission,” 15.)

Although he was not primarily focused on accounting for these mechanisms, Quastler did

discuss them briefly. This figure shows Quastler’s schematic representation of a hypothetical model

of the various cognitive processes involved in the music sight-reading task, showing how the symbols

of a musical score are detected and processed by the five “component” systems listed above. Quastler

explains:

The physical events (scripts and sounds) are projected on bands; the boxes represent
mental processes, or rather, the abstractions here used to describe areas of mental
activities; each box represents a complex system of action155

155. Quastler and Wulf, 64.
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The interconnections shown between the various cells represent pathways through which information

might be said to flow; the question of precisely how this “information” might be coded, as trains

of microelectrical impulses or as some other neural representation, is deferred. This was never

Quastler’s objective.156 But this figure is crucial to my claim about what Quastler’s project represents,

not because of the particular model of piano sight-reading is novel or accurate, but because of its

claims to generality. Quastler writes that “the same type of diagram could be used for many other

serial activities—such as walking, reading, or speaking.”157 This is the crux of Quastler’s work: a

convergence between the approximate estimates of human channel capacity across a wide range of

activities—typewriting, piano sight-reading and even walking or speaking included—pointed to the

possibility of a general framework for first quantifying, and then describing, these “overlearned”

activities in terms of a new explanatory paradigm: the human as an information processor.

This view of the human, which was still in the process of being operationalized in the

psychology laboratory, is the perspective that makes the following remarkable claim by Quastler

possible:

Piano playing is a sequential task which involves high rates of information transmission.
A piano virtuoso generates information at a rate which is very impressive indeed; it
is possible that the performance of a piano player may approach the peak of human
capability.158

The use of information leads to the reconfiguration of familiar discursive formations in novel

ways. Musical virtuosity—once understood for centuries as above-average or potentially preternatural

musical sensibility—is operationalized in the Quastler’s Control Systems Laboratory as merely an

instance of a more general capability for “information transmission,” at (or close to) a putative human

“channel capacity.” By designing a research program for the study of musical behavior under the sign

of Shannon’s information, Quastler’s research evidences the dual of what Brian Lennon has recently

156. Quastler and Wulf, 64.
157. Quastler and Wulf, 64.
158. Quastler and Wulf, 18.
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called Weaver’s “culturalization of information”: the informatization of musical culture, the process

that lies at the heart of all the work described in this chapter.159

3.3.3 Wilhelm Fucks: Entropy, the common engine of quantitative literary and musical analysis

Wilhelm Fucks, an expert in nuclear physics, was the director of the Institut für Physik at the

Technische Hochschule in Aachen, Germany (RWTH).160 Fucks was also a seasoned statistical

analyst of both the English and German languages, pioneering a discipline that he termed “quantitativ

Literaturwissenschaft.” Fucks undertook several notable studies of music, adapting the statistical

tools that he used to analyze written language to the study of musical scores.161 His studies of music

exceed the early experiments of Pierce, Pinkerton, and the Attneaves in their scope, drawing on

dozens of distinct scores representing a much wider range of musical styles than did the toy corpora

of chorales, children’s nursery rhymes, and “cowboy songs” that were the basis of this earlier work.

Lejaren Hiller, reporting on a fact-finding visit to European computer and electronic music studies

in 1961, reports meeting Fucks during a trip to Aachen. Hiller noted his belief that much of Fucks’s

work was done with a digital computer but regretted that he didn’t have time to enquire further.162

Hiller’s suspicions were justified. As a professor at the RWTH, Fucks had access to the computation

center there, which was notable for having taken delivery in 1957 of the first mass-produced transistor

computer in Germany, the Siemens-Rechner SI 2002.163

Starting at least as early as 1957, Fucks published—repeatedly, and in a surprising diversity

of academic venues—a number of statistical studies of musical scores. Fucks’s reliance on

159. Brian Lennon, Passwords: Philology, Security, Authentication (Cambridge, MA: The Belknap Press of
Harvard University Press, 2018).

160. Today the Rheinisch-Westfälische Technische Hochschule Aachen (RWTH Aachen University).
161. Wilhelm Fucks, “Gibt es mathematische Gesetze in Sprache und Musik?” Umschau 57, no. 2 (1957): 33–37;

Fucks, Mathematische Analyse der Formalstruktur von Musik; Wilhelm Fucks, “Mathematical Analysis of Formal
Structure of Music,” IRE Transactions on Information Theory 8, no. 5 (1962): 225–228, http://ieeexplore.ieee.org/
abstract/document/1057746/; Wilhelm Fucks, “Mathematische Musikanalyse und Randomfolgen. Musik und Zufall,”
Gravesaner Blätter Jahrg. 6, no. Heft 23/24 (1962).

162. Lejaren Hiller, “A Report on Contemporary Music,” Technical Report (Urbana, IL: Experimental Music Studio,
1962), 78, https://monoskop.org/File:Hiller_Lejaren_A_Report_on_Contemporary_Music_1961.pdf.

163. Walter Ameling, Digitalrechner — Grundlagen und Anwendungen: Technische Informatik 1 (Braunschweig:
Friedr. Vieweg & Sohn, 1990), 23.
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entropy in these studies allies his work to Shannon, via the mathematical similarities between

Shannon’s measure of information and the principle of entropy as it had been defined in statistical

thermodynamics. Like Pinkerton, Fucks was careful to cite Shannon (and Moles) as a gesture towards

imprimatur, even when he did not make use of the full mathematical toolkit of information and

redundancy. Unlike Pierce and Quastler, however, Fucks’s models of musical creativity explicitly

invoke the by-then well-known isomorphism between Shannon’s definition of information and

another mathematical equation, that of Boltzmann entropy as it had been defined in statistical

thermodynamics many decades before “A Theory of Communication.”

Fucks’s work with musical corpora should be understood in the context of his earlier work with

linguistic corpora. As with Pierce’s gloss on the text-generation experiments of Shannon, describing

Fucks’s work with written texts will make the assumptions of his approach to music much more clear

since they are shared between the two domains. In “On Mathematical Analysis of Style” (1952),

Fucks articulates a number of analogies between mathematical physics and the statistical study

of literary texts, displaying a remarkable creativity of thought and evincing a process of cultural

production that is foreign in its outright autonomy and determinism. Fucks considers genres of

literary writing as analogous to the diverse states of matter: gas, liquid, and solid. As matter becomes

more orderly, in the case of water, for example, water vapor (steam) cools down—that is, loses energy

and becomes more ordered—and condenses into water. Cooling further, the water molecules becomes

more orderly and align in the crystalline structure that is familiar to us as ice.

For Fucks, the coming-into-existence of written texts is to be understood similarly. “By an

analogy with physics,” he writes, “we can regard the states of the text-elements before the formation

of text as ‘gaseous,’ in prose-text as ‘linearly fluid,’ and in poetic text as ‘linearly crystalline’.”164

The molecular units of language—be they letters, syllables, or words depending on the desired level

of analysis—are maximally disordered in their form as “raw” linguistic resources, prior to their

regularization into meaningful texts. They are more ordered in prose, and they are maximally ordered

in poetry. Fucks demonstrates some evidence for this hypothesis by computing statistical measures

164. Wilhelm Fucks, “On Mathematical Analysis of Style,” Biometrika 39, no. 1/2 (April 1952): 123, https://doi.org/
10.2307/2332470.
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based on the features of words used in poetry and prose (both English and German), showing these

measures can discriminate between known prose and poetic works.165 For instance, Fucks determines

that the poetic works of Rainer Maria Rilke are less disordered than prose work of the philosopher

Karl Jaspers, according to the application of the entropy formula, mathematically equivalent to

Shannon’s information metric.166

Fucks is tacit on the question of agency: all his statistical model can really account for is a

“coming-into-existence,” an apparently autonomous concresence of a chaotic cloud of symbols

into its ordered form as language, absent any clear sense of who or what is acting upon the words

stock to bring about these texts. Fucks concludes by remarking that the analogy between these

physical processes and the production of texts is “based on the common statistical nature of the

underlying states and processes.”167 This question-begging is typical of Fucks’s work: nothing about

the applications of information theory that he describes can prove that the process of composition

(prose or musical) resembles crystallization.168 Not unlike Fucks, Hiller and Isaacson considered the

“first principle” of music composition to be that

the formation of a piece of music is an ordering process in which specified musical
elements are selected and arranged from an infinite variety of possibilities, i.e, from
chaos.169

Although it remained speculative, this idea that creativity involved educing order from chaos was

not without rhetorical support from composers and music theorists. Hiller and Isaacson approvingly

165. Fucks, “On Mathematical Analysis of Style,” April 1952. Earlier stylometry in this vein had been carried out
by G. Udny Yule, to whose work Fucks belatedly gestures. Fucks cites, for instance, Yule’s work on sentence-length as a
feature of prose: G. Udny Yule, “On Sentence-Length as a Statistical Characteristic of Style in Prose: With Application
to Two Cases of Disputed Authorship,” Biometrika 30, no. 3/4 (1939): 363–90, https://doi.org/10.2307/2332655. See
also G. Udny Yule, The Statistical Study of Literary Vocabulary (Cambridge: The University Press, 1944). Similar
sentence-length studies can be found much earlier in L.A. Sherman’s work. L. A. Sherman, Analytics of Literature, a
Manual for the Objective Study of English Prose and Poetry (Boston, MA: Ginn & Company, 1893), http://archive.org/
details/analyticsofliter00sheruoft.

166. Fucks, “On Mathematical Analysis of Style,” April 1952, 128.
167. Fucks, 129.
168. Kay describes an analogous objection from biology against the equivalence between entropy à la Boltzmann and

“functional” information. Kay, Who Wrote the Book of Life, 122ff.
169. Hiller and Isaacson, Experimental Music: Composition with an Electronic Computer, 16.
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cite several passages from Stravinsky’s Poetics of Music to support their claim.170 among them,

Stravinsky’s remarks that composers “feel [the necessity] to bring order out of chaos, to extricate

the straight line of our operation from the tangle of possibilities.”171 “Art,” he claims “is the

contrary of chaos.”172 Hiller and Isaacson’s work could be seen as a literalization of this metaphor

of creation as the production of order from chaos, taking advantage of statistics to precisely specify

and parameterize an appropriately struck balance between order and chaos. Little wonder that

Hiller sought out Fucks in his 1961 trip to Europe, Fucks having sketched out as early as 1952 the

relationship between order and chaos, composition, and entropy that lies at the heart of Hiller and

Isaacsons’s mid-decade experiments.

Fucks examined language on the level of the syllable, investigating “whether the process of

word formation out of syllables in literary texts obeys a law which can be given mathematically,” in

a presentation to the Third London Symposium on Information Theory, which was held in 1955.173

Fucks’s paper stimulated discussion among attendees about the possibility that a similar kind of

analysis could be applied to musical data.174 During this discussion, Henry Quastler approvingly

cited the work of the Attneaves, described briefly above. In contradistinction to earlier studies of

the statistical structure of music, which Quastler considers to be “as-if” results—for example, Zipf’s

study of melodic interval frequencies cited by Moles above—the Attneaves’s model of cowboy

melodies is a “constructive” one, that “actually produces fair approximations to the phenomena it

describes.”175 In preferring “constructive” models, Quastler reflects the significant distinction between

generative and discriminative models, described earlier, seeking explicit, interpretable statistical

models of the phenomena to be studied. This criticism was clearly relevant to Fucks’ work too.

Although the research he presented to the London audience in 1955 bears some characteristic traces

170. Hiller and Isaacson, 16.
171. Igor Stravinsky, Poetics of Music in the Form of Six Lessons, trans. Arthur Knodel and Ingolf Dahl

(Cambridge, MA: Harvard University Press, 1947), 4.
172. Stravinsky, 11.
173. Fucks, “Mathematical Theory of Word Formation,” 1955.
174. This discussion is reported in the symposium proceedings.
175. Fucks, 169.
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of contemporary information theory—witness its optimism about the universality of entropy—it lacks

one in particular: an explicit specification of musical production as a generative stochastic process,

the Markov process.

Fucks remarked in response to this particular criticism of his work that his research group had,

in fact, been pursuing the statistical generation of music since at least 1952. In this year, Fucks reports

that a number of research assistants performed a piece of “statistical music composed with the help of

a roulette.”176 In “Gibt es mathematische Gesetze in Sprache und Musik?” (“Are there mathematical

laws in speech and music?”, 1957) Fucks turns to the analysis of musical scores for the first time in

print, and briefly describes his experiments with the roulette-derived music. First, however, Fucks

describes how a pivot from the study of literary texts to music is made possible by analogizing the

structural elements of language with those of music:177

In jedem einzelnen Werk der Sprache oder der Musik sind Element [sic] — z.B.
Laute, Silben, Wörter, Satzteile, Sätze, metrische oder grammatische Elemente bzw.
Töne, Intervalle, Akkorde, Takte oder ganze Sätze — in bestimmter Weise angeordnet:
Jedes Werk hat eine bestimmte Strukture. Wir stellen uns die Aufgabe, diese Strukture
mit mathematischen Hilfsmitteln zu untersuchen, wobei wir uns hier ausschleißlich
auf die Analyse von Grundelementen beschränken. Dabei sehen wir von Sinn- und
Bedeutungsgehalten ab.

[i]n every single linguistic or musical work there are elements — e.g. sounds, syllables,
words, phrases, sentences, metrical or grammatical elements bzw. tones, intervals,
chords, bars or whole sentences — that are arranged in a specific way: Each work has a
specific structure. We set ourselves the task to examine this structure with mathematical
tools, in such a way that we are exclusively limited to the analysis of basic elements. In
doing so, we refrain from [the consideration of] their sense and meaning.178

Fucks’s rationale also exhibits orthodox information theory’s characteristic deferral of the issue of

meaning. For him, the poverty of information theory with regard to meaning is not a shortcoming;

rather, it is an advantage. It functions to justify the wholesale importation of the techniques of his

nascent quantitative Literaturwissenschaft into his work on music.

176. Fucks, 169.
177. Fucks, “Gibt es mathematische Gesetze in Sprache und Musik?” 1957.
178. Fucks, 33.
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As for Fucks’s “statistical” music, he writes in “Gibt es”:

Diese ‘Musik’ wurde mit Hilfe des Roulettes erzeugt. Die Tonhöhen wurden
dabei Zahlenfolgen entnommen, die sich bei dem Roulettespiel in Bad Neuenahr
ergeben hatten. Errechnet man für diese stochastische “Musik” theoretische
Stilcharacterstiken, so ergibt sich, daß alle diese Charakteristiken nicht nur von dem
eigentlichen ‘Stil’, sondern auch von Tonumfang des Werkes abhängig sind

This “music” was generated with the help of roulette. The pitches were taken from
number sequences, which were the results of a roulette game in Bad Neuenahr. If one
calculates theoretical style characteristics for this stochastic “music,” it follows that all
these characteristics are not only dependent on the actual “style,” but also on the range
[ambitus] of the work.179

The pitches of this “statistical” music were thus generated according to the uniform probability

distribution that governs a fair roulette wheel. That is, every pich within a predetermined range is

equiprobable, just as with a fair die. For this reason, Fucks’s stochastic music is closely related to

Quastler’s experimental stimuli. Fucks wanted to determined what statistical features could be used

to distinguish passages of various musical styles from each other. Searching for best choice, Fucks

set out to explore the sensitivity of various statistics to other features of the musical work that were

not, in his view, directly related to style (for example, ambitus). Fucks notes that his experiments

with this stochastic music, showed that kurtosis, a mathematical characterization of the skewedness

of a data set, was a promising candidate since it did not covary with range when used to summarize

randomly-generated music.180 We will consider kurtosis in more detail below.

Fucks would publish a representative example of this music one year later in his research report,

Mathematische Analyse der Formalstruktur von Musik (1958), as shown in Figure 3.11. Here,

Fucks would provide much more detail about the status of this randomly-generated music in the

context of his larger research program:

Die abendländische Musik hat in den vergangenen Jahrhunderten einen offen zutage
liegenden Stilwandel durchgemacht. Dieser Stilwandel muss in einem Wandel
der formalen Struktur der Musik seinen konkreten Ausdruck finden. Wir müssen

179. Fucks, 36.
180. Fucks, 36.
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daher erwarten, dass geeignet gewählte mathematische Strukturcharakteristiken
von Werken aus den vergangenen Jahrhunderten in der abendländischen Musik
einen deutlichen und klaren Gang aufweisen. Verschiedene Versuche, eine solche
Gestzmässigkeit zu finden, führten zunächst nicht zum Erfolg. Man wusste also,
dass ausser dem eigentlichen Stilwandel der Musik noch irgendeiner oder mehrer
weitere Faktoren in unsere mathematischen Strukturcharacteristiken eingehen und
es dadurch verhindern, das der offenkundige Gang des eigentlichen musikalischen
Stils in unseren Resultaten deutlich zutage trat. Um hier Klarheit zu schaffen, lag es
nahe, Tonfolgen zu wählen, die in gewissem Sinne keinerlei spezifischen musikalichen
Stil haben oder sozusagen musikalisch-stilistisch den Nullpunkt oder die Nullinie
darstellen. Es sind dies Tonfolgen, die mit gewissen plausiblen Einschränkungen
voellig regellos sind, die also natürlich nicht im eigentlichen SInne als Musik
bezeichnet werden koennen, die wir aber, um kurz sprechen zu koennen, hier also
stochastische “Musik” bezeichen wollen. So wurde bereits im Jahre 1952 im Institut
des Verfassers ein mit Hilfe eines Roulettes konstruiertes “Musikstück” konstruiert
und bei einer Veranstaltung des Instituts “aufgeführt.”

Western music has undergone a conspicuous style change over the past several hundred
years. This change in style must find its concrete expression in a change in the formal
structure of music. We must therefore expect that suitably chosen mathematical
structural characteristics [Strukturcharakteristiken] of works from the past centuries
in Western music have a clear and distinct course [Gang]. Various attempts to find
such a regularity did not initially lead to success. In addition to the actual stylistic
change of the music, one or more other [superfluous] factors are included in our
mathematical structural characteristics and thus prevent the obvious progression of
musical style from becoming apparent in our results. In order to clarify this, it was
natural to choose sequences of notes that in a sense have no specific musical style or,
so to speak, musically and stylistically consitute the zero point [Nullpunkt] or the zero
line [Nullinie]. These are sequences of notes that are completely random with certain
plausible restrictions. This, of course, can not be called music in the very sense of the
word, but we will to call them “stochastic” music, for the sake of brevity. Thus, in 1952,
a piece of “music” constructed using a roulette was prepared in the author’s institute and
“performed” at an event organized by the institute.181

“Mathematical analysis of formal structure of music” (1962) is an extremely short compilation

of the results of a number of Fucks’s earlier studies of musical scores, and is a useful entry point

into his work in English, summarizing many years of work published almost entirely in German182

Fucks begins by describing some relatively straightforward techniques, such as plotting histograms

181. Fucks, Mathematische Analyse der Formalstruktur von Musik, 41.
182. Fucks, “Mathematical Analysis of Formal Structure of Music,” 1962.
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Figure 3.11: The score for Wilhelm Fucks’s “stochastic music,” composed with the help of
the roulette wheel at the casino in Bad Neunhar. (In Wilhelm Fucks, Mathematische
Analyse der Formalstruktur von Musik ([Wiesbaden]: Springer Fachmedien Wiesbaden
GmbH, 1958), 42, fig. 28)
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Figure 3.12: Histogram showing pitch frequencies in the first violin parts of Beethoven, String
Quartet [No. 12] in E flat [major, op. 127] (1809) (right) and Webern, String Trio, op. 20
(1927). (In Wilhelm Fucks, “Mathematical Analysis of Formal Structure of Music,” IRE
Transactions on Information Theory 8, no. 5 (1962): 228.)

that show the distribution of pitches in several tonal and non-tonal works. In Figure 3.12, the deep,

jagged contours of a pitch histogram of a tonal work by Beethoven contrast with the relatively flat

surface of a the analogous plot of a work by Webern, confirming that the statistical distribution that

describes the latter composer’s works is closer to uniform. Put another way, all other things being

equal, in Webern’s piece, the likelihood of hearing any given pitch is close to that of any other..183

These histograms can be understood as approximations of some mathematical function which

best describes the probability distribution that matches the data behind it. For example, a histogram of

human heights aggregated over a sufficiently large and representative sample of the human population

approximates the famous “bell-curve” (or Gaussian normal) pattern that governs the distribution

of heights. Fucks’s histograms suggest that similar mathematical formulas might usefully be used

to describe the process of composing the melodies from which he computed the data. When this

183. Fucks, 225.
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approach is used, calculations over the various data sets can be used to estimate the parameters for

such a formula. Parameters are the free variables in the mathematical specification of the distributions

which give distributions their particular shape. For example, the Gaussian normal distribution—which

governs many naturally occurring distributions—is parameterized by two values: the mean (µ) and

the variance (σ).184 In Figure 3.13, Fucks plots individual musical works according to the date of

their composition against the variance (i.e. how widely spread out) of their characteristic pitch-class

distributions.185 Reducing each individual work to an single statistic allows Fucks to address hundreds

of years of music history in a single plot and to make a visually arresting argument regarding the

trajectory of musical development: that the composer’s use of melodic intervals becomes more

variable over time.

Fucks was not completely satisfied with this use of variance as a stylistic discriminant, however.

Though variance can be computed over any data set, it can only be reasonably be interpreted as an

estimate of the “true” parameter of the underlying distribution where the process generating the data

is assumed to be Gaussian, a unimodal distribution (one with a single peak). Histograms of common

practice works suggested strongly that the distribution of pitches in tonal music was multimodal,

and hence that this basic assumption was suspect. Fucks also wished to summarize his data using

statistics that were not sensitive to the variance of the underlying distribution. We have already seen

how Fucks used “stochastic” music to determine that certain statistics were sensitive to the range

of the musical excerpts chosen for analysis. Fucks would settle on computing the kurtosis (κ), a

measure of the “skewness” or tailedness of a distribution which is equal to 3, when the distribution

is perfectly normal (Gaussian). Fucks frequently plotted κ − 3, so that a distribution with value 0 can

be interpreted as “most normal.”

Fucks also found value in entropy: like kurtosis, entropy digests a complex sequence of

symbols—textual or musical—to a single figure, and has the advantage of making minimal

184. Loosely, the mean is the “average” value of data generated by the distribution, while the variance measures how
far away from the mean value that typical data is allowed to differ.

185. To be clear, every point in Figure 3.13 has a histogram associated with it, whose characteristic structure can
be summarized by the parameters of a statistical distribution. In this case, the parameter is variance, which is easily
calculated from the data itself.
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Figure 3.13: Scatter plot from one of Fucks’s corpus studies showing increasing variance over
time; older compositions have lower variance over their pitches. (In Wilhelm Fucks,
“Mathematical Analysis of Formal Structure of Music,” 228.)
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Figure 3.14: An array of pinned specimens of disease-carrying insects, ready to be sampled for
DNA barcoding. (The School Malaise Trap Program, https://malaiseprogram.com/.)

assumptions about what the underlying distribution is. It also works to support his story about the

increasing complexity of new music. It also helped—according to Fucks’s logic—that his earlier

studies of literature also showed this upward trend in complexity, because his working assumption

was that both fields of composition shared the same underlying “mechanism” of how creativity

worked: the imposition of order on otherwise chaotic symbol stocks, a process that could be

mathematically modeled by analogy with thermodynamics.

This parametric view of symbolic representations of musical works allowed empirically minded

writers like Fucks to locate complete musical compositions—even entire schools of compositions—in

a Cartesian plane, as Figure 3.13 persuasively suggests. Fucks’s figures evoke the archival forms of

comparative biology (cf. Figure 3.14) in which representative data (specimens) are plotted (pinned)

in a planar space (to a corkboard). After information theory, musicology (like biology), no longer

needed to be cladistic: it had become statistic. Stable, deductive–taxonomic regimes of knowledge

that deterministically assign culture into discrete, non-overlapping categories are replaced by talk of
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Figure 3.15: Example of a type case dating from the nineteenth century to store font for
typesetting Western music notation. (In Thomas MacKellar, The American Printer: A
Manual of Typography. Philadelphia, 1889. 118.)

clustering, mixture, probability, and inference. For Fucks, the use of a common fund of statistical

techniques for the analysis of written language and of notated music was justified by the apparent

flexibility of information. Such a turn complied with Weiner’s childhood aspiration as interpreted by

Orit Halpern: “a desire to see an older archival order, adjoined to modern interests in taxonomy and

ontology, rendered obsolete by another mode of thought invested in prediction, self-referentiality, and

communication,” a cybernetic mode of thought, ably helped by the mathematics of information.186

3.4 Conclusion

Consider the music-notational analog of the type case alluded to in Moles’s exposition of the concepts

of information theory. Figure 3.15 is a plate from Thomas MacKellar’s The American Printer (1889)

and shows how the font used to typeset printed staff notation should be laid out in a type case. Let us

assume that similar priorities apply here as in the design of the printed text type case: common, and

thus more probable, glyphs are stored in larger compartments, since more are likely to be required

186. Orit Halpern, “Dreams for Our Perceptual Present: Temporality, Storage, and Interactivity in Cybernetics,”
Configurations 13 (2005): 285.
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to set an average job; less common glyphs are to the margins and in smaller compartments. Recall

that we could infer certain statistical features about the English language from the disposition of the

font in the first type case. The typographical setup used in Shannon’s exposition of the concept of

information is a canny rhetorical move, since the example is highly familiar to readers, and there

seems to be a natural (or at least very straightforward to learn) mapping between what Moles calls

the repertoire of the message and the possible realizations of that message in English. The proposition

that this layout might tell us something similar about relative likelihood of musical events—indeed,

its information content—seems patently absurd.

It is not especially meaningful for a musician or an analyst to know that there are approximately

twice as many short beams as long beams, or that the most common glyphs in a music typesetter’s

lower case are horizontal lines (these are, in fact, stems). Certainly the way that Moles computes

the information content of notated music is incompatible with such a view of printed notation, since

Moles’s computations require pitch and duration information. Here, the repertoire does not capture

or encode pitch information directly; if there is any material instantiation of the “information” for a

musical score it is in the relative placement of each notehead glyph in respect to a particular staffline,

respect to a(n) (optional) key signature, accidentals, and so on. Believing that the musical work can

be adequately represented for the purposes of analysis, by drawing symbols from this repertoire

this graphic signs falls flat because it is so distant from strategies for making sense of this flavor of

graphical music notation.

The purpose of this thought-experiment is to drive home the point that in the several examples

of information-theoretic research described above, all—necessarily—work on representations of

music, and usually, these representations are inspired by the content of musical scores. It is only

with some symbolic representation of a musical work that the information-theoretic analysis can

proceed, because that symbolic representation defines the repertoire, and the relative frequencies of

these symbols determines the information content. Recall, too, that the information-theoretic analysis

can happily proceed without care as to what the particular interpretation of the symbol-set under

investigation is.
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This is computationalism’s characteristic deferral of the interpretation of representation of

musical symbols: the computational attitude to music at the second level. And yet, as this example

shows, certain repertoires—in Moles’s senses, meaning certain symbolizations of the musical

phenomenon—seem more plausible, more “ready” for interpretation than others. This intuition

alone should cause us to pause and wonder: why is it the case that there is only one obvious choice

of repertoire for the representation of written language—the alphabet? For music, this thought

experiment suggests that there are immediately better and worse symbolizations, each of which would

lead to different estimates of the information content of the musical work under consideration.

This begins to cast justified doubt on the generality of naive applications of information theory

to music, which exploit of the apparent generality of information theory to justify the application

of methods for the analysis of other phenomena to music. Usually, but not always, this “other” was

language. In turn, it causes us to be more precise about what a representational model of music needs

to do and how to hold representation schemes to account, when they present themselves in a given

a computational or computationalist application. For all the entertaining diversion of these early

applications of information theory to music, their manifestly different representational strategies that

they deploy mean that they are, as a whole,s inconclusive on precisely this question.
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4 | Forte’s program, Forte’s programs

4.1 Introduction

In this chapter, I discuss Allen Forte’s computational work in more detail, with a particular focus

on a music-computing application that Forte carried out between 1965 and 1967. During this

period, Forte was affiliated with Project MAC, an early computing infrastructure project at MIT.

Forte described an algorithm for the segmentation of musical scores, and explained how it could be

implemented using the combination of a string-oriented computer programming language called

SNOBOL, and a music encoding scheme called DARMS, which was designed to represent printed

musical scores as alphanumeric character strings. Certain technical features of these computational

tools afforded Forte’s essentially structuralist mode of music analysis. As I also show, Forte’s work

has some methodological sympathies with contemporary research at MIT, including early artificial

intelligence (AI) work at the AI Group to which he was affiliated. I conclude by indicating some

aftereffects of Forte’s research, by collating impressions that his computational experiences made on

the research and viewpoint of his graduate students, and pointing to evidence that his apparent interest

in computational-aid for the analysis of music persisted into the 1990s.

Ultimately, rather than viewing computer applications as passively consuming the

representations and abstractions of some putative prior conceptual repository for music

analysis, I argue that computers play a role in both constructing those theoretical abstractions

and, critically, appearing to endorse their use in certain ways. In paying special attention to the

computer technologies that feature in Forte’s computational encounter, I aim to demonstrate that

untangling the complex relationship between Forte’s research priorities, competencies, and desires
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and the features of the computer platforms to which he had access, can only proceed once a full

account of those platforms is rendered.

4.2 Pitch-class set theory and the computer

Who invented the pitch-class set? In 1997, Jonathan Bernard attempted to answer something

resembling this question, by investigating precursors to the pitch-class set.1 He set out to understand

how we got from a “theory of” tonal chords to a “theory of” pitch-class sets, thus begging the

question that we have (or have had) a theory of either. By this measure, Bernard’s history is an

instance of what Andrew Pickering has called a “scientist’s account,” in which “accepted scientific

knowledge [the modern pitch-class set theory] functions as an interpretive yardstick in reconstructing

the history of its own production.”2 Bernard projects an air of surprise at one of the results of his

study:

[P]erhaps most unexpected is the definite impression that begins to form as to the lack
of inevitability about the emergence of the pc [pitch-class] set, that as late as midcentury
the tendency toward comprehensive accounting for pitch combinations in the twelve-note
universe might have led to a very different result by the 1960s than the one that actually
came about.3

This finding is axiomatic to the present survey: music theory in the latter part of the twentieth

century could have been otherwise. There are no inevitable music-theoretical formulations. What

might it mean to “invent” a repertoire of mathematical facts, apparently true a priori about

twelve-tone equal-tempered tonal space? When there are similar concepts circulating among

candidate predecessors—pitch-class set-ish things avant la lettre—when can we be certain a singular,

fully-ramified concept of the pitch-class set has emerged? What even is a pitch-class set?

1. Bernard, “Chord, Collection, and Set in Twentieth-Century Theory.” Important previous attempts to cover
the same ground: Paul Lansky, “Pitch-Class Consciousness,” Perspectives of New Music 13, no. 2 (Spring–Summer
1975): 30–56, https://doi.org/10.2307/832082; Robert Wason, “Progressive Harmonic Theory in the Mid-Nineteenth
Century,” Journal of Musicological Research 8 (1988): 55–90; Severine Neff, “Otto Luening (1900–) and the Theories
of Bernhard Ziehn (1845–1912),” Current Musicology, no. 39 (1985): 21–41; Severine Neff, “An American Precursor of
Non-Tonal Theory: Ernst Bacon (1898–1990),” Current Musicology 48 (1991): 5–26.

2. Andrew Pickering, The Mangle of Practice: Time, Agency, and Science (Chicago: University of Chicago Press,
1995), 3.

3. Bernard, “Chord, Collection, and Set in Twentieth-Century Theory,” 12.
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Bernard argues that serial repertoire poses a special challenge to traditional analytical methods:

it makes simultaneous use of “horizontal and vertical integration.”4 Bernard concludes that “it is

doubtful that the pc set could have been invented, let alone come into the prominence it now enjoys,

without first the advent and then (especially) the post-War resurgence of twelve-tone music.”5 Making

this argument yokes the history of the concept of the pitch-class set to the history of the repertoire

it explains, grabbing one horn of the familiar dilemma in assuming that music theory follows

musical practice. It evinces a long-sightedness which sees past (or through) composers, musicians,

and instruments—both of music theory, and good-old—to the repertoire, forgetting that material

developments interact with the capacity of instruments to manipulate representations of musical

objects.

Since Bernard’s survey, complementary work has extended the history of the pitch-class set

in two historical directions. Catherine Nolan has shown how the “conceptual preparation” for the

concept of the pitch-class set extends back to mid-nineteenth century, citing a number of theorists

whose work on equal divisions of the octave and catalogs of pitch material seems to anticipate

the work of the mid-twentieth century.6 Taking a different historical tack, Michiel Schuijer has

identified different set of influences on the development of pitch-class set theory, two features of the

immediate context for its first American articulations by music theorists: the digital computer and the

prevailing mood in universities during the 1960s, which was sympathetic to the scientific—or at least,

“scientistic”—terms in which the most gregarious advocates for music theory were willing to frame

the emerging discipline.7 Here, we focus more closely on the first of these two conditions.

Schuijer points to the oft-overlooked fact that Forte was a competent computer programmer who,

in 1966, published a report on music-analytic work towards the automatic structural segmentation

of musical scores that used the programming language SNOBOL (StriNg Oriented and symBOlic

4. Bernard, 51.
5. Bernard, 51.
6. Chief among them are Anatole Loquin, Ernest Bacon, and Walther Howard. Nolan, “Combinatorial Space in

Nineteenth- and Early Twentieth-Century Music Theory.”
7. In the case of the latter influence, university culture, Schuijer follows Girard, “Music Theory in the American

Academy.”
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Language).8 Forte used computers extensively in his research in the 1960s, of which he spent two

years at MIT. Following this, he taught several graduate-level courses in computer applications

to music analysis into the 1970s, during his later tenure at Yale. Below, I describe in more detail

Forte’s score-segmentation program. I support my account not only with technical reflections on the

computational tools available to Forte at the time, but also with a description of the wider research

context at MIT as well by making connections between Forte’s work and the predominant intellectual

currents in that environment.

Forte’s The Structure of Atonal Music (1973) digested years of its author’s research into the

analysis of atonal music into a treatise, which summarized a latently computational toolkit useful for

the description of musical harmonies that resisted pre-twentieth-century categorization schemes.9

Yet, as Schuijer correctly points out, the text of the Structure of Atonal Music is silent on the

computational basis for any of its findings: not once is the computer mentioned in its pages. Forte did,

however, acknowledge in private correspondence that some material in the book grew directly out of

the results of the computational research described above.10

All in all, PC set theory seems to have received considerable impetus from the computer.
The reason why this is not mentioned in textbooks anymore is the role of music
analysis[.] […] An analysis can […] successfully represent a musical work of art, but by
transcending a mere exposition of musical techniques. What is more, it has to transcend
its own history. Therefore, it is understandable why the canonical textbooks of PC set

8. Schuijer, Analyzing Atonal Music, 242–50; Allen Forte, “A Program for the Analytic Reading of Scores,”
Journal of Music Theory 10, no. 2 (1966): 330–64, https://doi.org/10.2307/843247.

9. Allen Forte, The Structure of Atonal Music (New Haven, CT: Yale University Press, 1973).
10. In October 1976, in response to an inquiry by Susan Strapac Forte wrote, “After I delivered the report on the

project at Rockefeller University I continued to develop programming skills. During 1965–66 I was at M.I.T. as a Guest of
the Institute, on a Fellowship from the A.C.L.S. This gave me the opportunity to write a number of quite sophisticated
programs to perform certain analytical operations (on atonal music represented in DARMS) and to provide certain
information about general systematics that I was interested in. Subsequently, at Yale and at M.I.T. (where I was Professor
of Music during 1967–68) I continued the work begun in 1962. Some of the results of this work have been published
in articles and some of the results were used in The Structure of Atonal Music. I don’t really know what to say about
problems. The only problems I encountered are the usual intellectual ones: formulating a question in such a way that
it can be solved by means of a computer program, and so on. I have always had good support for my computer-based
research, in terms of computer time. I have never enjoyed the luxury of a programmer, but have always written my own
programs.” Letter from AF to Susan Strapac (Computers and the Humanities), 6 October 1976, Forte Archive at Yale,
Box 12. The conference paper at the Rockefeller Institute to which Forte alludes is Allen Forte, “The Structure of Atonal
Music: Practical Aspects of a Computer-Oriented Research Project,” in Musicology and the Computer, Musicology
1966-2000: A Practical Program ; Three Symposia (Musicology and the Computer I., American Musicological Society,
New York Chapter, 1965).
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theory and PC set analysis are silent on the naive reception of computer technology in
the 1960s. A discussion of this would run counter to the purpose of these textbooks: to
present an authoritative body of music theory.11

Recall Aaron Girard’s claim that Forte avoided traditional tonal taxonomies because to

model them computationally “would complicate (at best) the scripting of a program.”; they are

held by Girard to be “inappropriate for Forte’s theory because […] they are counter-productive for

applications in computer science[.]12 As I will suggest, Forte had many alternative means at his

disposal to resolve this (non-)problem. He could have switched to another programming language. He

could have used or designed an alternative music representation scheme. He could have developed

workarounds to overcome system limitations, or drawn on the expert local knowledge at the AI Lab

for computational assistance, had he backed up against the limits of his own abilities. Considering

the flexibility of the relatively high-level programming languages he worked with, the idea that the

reductive aspects of Forte’s pitch-class set theory can be explained by appealing to the constraints of

contemporary”applications in computer science” (Girard) or a sense of computing being in the air

(Schuijer) seems overly simplistic.

Forte was hardly buffeted along by the ambient computational atmosphere nor was his hand

forced—technologically determined—by the constraints of early computing. Forte was a skilled

computer programmer, and clearly curious about the role of new technology would play in music. In

an 1956 article for High Fidelity, Forte reported on his visit to the NWDR electronic music studios in

Cologne.13 He resists the notion that the tools and techniques of the electronic studio will determine

the course of composition, attributing the ultimate responsibility for electronic composition to the

composer, by analogy to the impact of mass-market cameras on the art of photography. It was,

ultimately, his own programming choices that led to the implementation of his score-segmentation

application in such a way that instantiates the computational attitude to music. Of course, Forte’s

choices were not entirely free: the features of the computer platforms with which he worked—in

11. Schuijer, Analyzing Atonal Music, 250.
12. Girard, “Music Theory in the American Academy,” 310.
13. Allen Forte, “Composing with Electrons in Cologne,” High Fidelity 6 (October 1956): 158.
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the environment of Project MAC—afforded the use of certain programming constructs and certain

music encoding languages. Forte, however, would take these affordances and run with them. In

particular, his choice to implement his score-segmentation problem in SNOBOL was a tactical one: it

had technical features that made it particularly straightforward for Forte to realize his music-analytic

conception. In the following section, I build toward this conclusion.

4.3 Forte’s tools

4.3.1 SNOBOL

SNOBOL—StriNg-Oriented and symBOlic Language—refers to a family of programming languages,

first described in the 1960s, designed for the manipulation of strings. An abbreviated history of

SNOBOL follows. With work beginning in 1962, the first version of the language that became known

as SNOBOL was developed at the Bell Telephone Labs (BTL) by Ralph E. Griswold, Ivan Polonsky,

and David Farber.14 Their main goal was to design a “general-purpose language for manipulation

of nonnumerical scientific data, such as formulas, that could naturally be represented by strings of

characters.”15

The public history of the SNOBOL family of languages begins with the first version, known

as SNOBOL, the existence of which was first officially announced outside of BTL in October

1963.16 Since that date, the language witnessed two relatively minor revisions. SNOBOL2, related

in April 1964, included some minor changes but was not used widely outside of BTL.17 SNOBOL3

replaced SNOBOL2 at BTL in October of 1964 and “was greeted enthusiastically in the user

community and its distribution to IBM 7090/7094 installations was widespread.”18 SNOBOL4

14. Ralph E. Griswold, “A History of the SNOBOL Programming Languages,” ACM SIGPLAN Notices 13, no. 8
(August 1978): 275–308, https://doi.org/10.1145/960118.808393, 275. See also Bernard D. Holbrook and W. Stanley
Brown, “A History of Computing Research at Bell Laboratories (1937–1975),” Computing Science Technical Report
(AT&T Bell Laboratories, 1982), 12.

15. Griswold, “A History of the SNOBOL Programming Languages,” 284.
16. Griswold, 277.
17. Griswold, 278.
18. Griswold, 278.
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was the final major revision of the language, and despite a name suggesting a compatibility with

earlier versions, represented a significant extension of the language with additional features,

implementation differences, and “changes in syntax for SNOBOL4 [that] would make SNOBOL3

programs obsolete.”19 As Griswold notes, some users did not switch to newer versions of SNOBOL,

citing the familiarity and simplicity of the older language as reasons to pass over the new language

features, including new numeric and array data-types that shifted SNOBOL’s emphasis away from

string processing toward more general-purpose computing.20 For the remainder of this chapter I

focus on SNOBOL3, the version that Forte used to implement his score-segmentation algorithm to be

discussed below. For convenience, SNOBOL should be understood below to refer exclusively to this

version of the language (SNOBOL3), unless otherwise explicitly stated.21

SNOBOL was one of many programming languages designed to facilitate research use

of computers other than that mainstay of scientific computing, which was numerical modeling.

Computers were used by numerical modelers to perform repetitive calculations with high precision

using the standard operations of arithmetic. The stated aim of SNOBOL’s designers stood apart

from those of contemporary programming languages that were designed for the manipulation and

calculation of numerical expressions, such as FORTRAN.22 Languages oriented toward numerical

computing are designed from the beginning to represent certain kinds of data more assiduously

than others. In particular, numeric programming languages model floating-point numbers to

high precision, providing guarantees on the numerical accuracy of long chains of computation.

Non-numerical programming languages, on the other hand, are better suited to manipulate

non-numeric kinds of data called “strings,” ordered collections of alphanumeric characters.23 These

19. Griswold, “A History of the SNOBOL Programming Languages.”, 288.
20. Griswold, 291.
21. Though not especially relevant now, the distinction between SNOBOL3 and SNOBOL4 is important to bear in

mind in the discussion of later programs coded by Forte, discussed below.
22. For an extremely evocative description of the differences between working with SNOBOL and FORTRAN, see

Ian Bent and John Morehen, “Computers in the Analysis of Music,” Proceedings of the Royal Musical Association 104,
no. 1 (1977): 30–46, https://doi.org/10.1093/jrma/104.1.30, 32.

23. For a snapshot of the broader Cold War turn away from numerical modeling to non-numerical computing, see
Steven E. Jones, Roberto Busa, S.J. And the Emergence of Humanities Computing: The Priest and the Punched Cards
(New York: Routledge, 2016), 477-479.
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languages often to provide built-in routines that are useful for the processing of strings, indexing, and

advanced output formatting, and so on.24

That these particular capacities were built into the SNOBOL language, with the designers

bearing strings in mind from the beginning justifies its name; this is what is meant when they claimed

that SNOBOL is “string-oriented.”25 To elect to work with SNOBOL, then, is to embrace the string;

the importance afforded to strings in SNOBOL means that strings are “first-class citizens” of the

language.26 Indeed, since alphanumeric strings are the only data type that SNOBOL3 supported, to

choose SNOBOL was to commit to thinking entirely non-numerically.27 The fact that SNOBOL was

designed in this way, with non-numeric computing applications in mind, would be consequential to its

ultimate adoption by Forte as his preferred language for music analysis. As I detail in the next section,

the emerging de facto standard for the digital encoding of musical scores—DARMS—represented

them as alphanumeric character strings.

One of SNOBOL’s designers, Ralph Griswold, describes how the language was designed

for use by the “ ‘naive user’ ” so that it would be “suitable for the person who was not primarily

a programmer.”28 This “philosophical view” manifested itself in a number of design decisions.

According to its designers, the language should be: concise, or have a small vocabulary; simple,

or “easy to learn and understand”; problem-oriented; and flexible, or impose a minimum of

24. Today, most programming languages can be used to perform both numeric and non-numeric computation, since
they support a variety of kinds of data and can provide reasonable performance guarantees under both regimes. This was
not always the case during the early decades of computing, when language-design decisions could limit the problems to
which such languages could be applied, by placing strong constraints on the kinds of data that may be represented using
them.

25. Just as in contemporary computer science we speak of “object-oriented” programming languages. Indeed,
today, we speak of “object-oriented” programming styles too, which suggests that certain programming behaviors—call
them idioms, best practices, or paradigms—befit particular kinds of programming languages. This is not to say that
writing code in a programming style that goes against the grain of a particular language is necessarily impossible (though
sometimes it is effectively impossible), but that programming in contraflow to the intended style results in less readable,
less idiomatic code. In the present case, so too does a “string-oriented” language more readily afford “string-oriented”
programming solutions to given programming problems.

26. This term is still in use today to refer to built-in, “default” data types in a computer language. It was first
introduced in 1964.

27. Save, however, for some basic arithmetic operations. SNOBOL3 implements basic arithmetic operators between
two strings only when both strings can be interpreted as a number, and returns the result of the operation as a string.

28. Griswold, “A History of the SNOBOL Programming Languages,” 284.
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“compile-time constraints.”29 However, the quality of software documentation can also influence

how software developers perceive software usability.30 In fact, until the development of SNOBOL4,

documentation was a low priority for the language maintainers. Partly as a result of its development

inside BTL, SNOBOL was primarily documented across a number of scattered memoranda, technical

reports, and derivative articles whose content remained private until approved for release by Bell

management.31 Griswold notes that the team was approached by Prentice-Hall with an expression

of interest in publishing a manual; “after an investigation of the potential market,” he “discouraged

this project.”32 Documentation for SNOBOL that went beyond the occasional papers describing the

language that emerged from BTL instead circulated in locally-prepared booklets and memoranda.

These were made accessible to users in print at each computer utility, as was the case for many other

languages at the time. One such document was Dorothy Shea’s SNOBOL guide, which was available

in the Documentation Room at Project MAC around the time of Forte’s research visit.33 Since Forte

was listed as a user of the CTSS, it is reasonable to assume that his knowledge of SNOBOL was either

acquired from or supported by this document (or one of its predecessors).

In 1967, MIT Press published a book written by Forte: SNOBOL3 Primer: An Introduction

to the Computer Programming Language, a self-contained text that introduced the SNOBOL3

string-processing language to an audience assumed to be largely unfamiliar with programming.34 This

primer consolidated information found in the samizdat material of the documentation room into a

29. Griswold, 284.
30. For a recent survey of 88 software developers—majority German-speaking—in which documentation quality

was related to other values, including usability and maintainability, see R. Plösch, A. Dautovic, and M. Saft, “The Value
of Software Documentation Quality,” in 2014 14th International Conference on Quality Software, 2014, 333–42, https:
//doi.org/10.1109/QSIC.2014.22.

31. Griswold, “A History of the SNOBOL Programming Languages,” 280.
32. Griswold, 281.
33. Dorothy J. Shea, “CTSS SNOBOL User’s Manual,” Project MAC Memorandum (Cambridge, MA:

Massachusetts Institute of Technology, May 16, 1966).
34. Allen Forte, SNOBOL3 Primer: An Introduction to the Computer Programming Language (Cambridge, MA:

MIT Press, 1967). Forte published a highly abbreviated version of this introduction to the language in Computers and
the Humanities, which effectively served as a teaser–trailer for the full text. Allen Forte, “The Programming Language
SNOBOL3: An Introduction,” Computers and the Humanities 1, no. 5 (1967): 157–63, http://www.jstor.org/stable/
30199238.
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commercially published, widely available, and consumer-friendly format.35 Forte’s work indirectly

addressed the language designers’ initial deprioritization of the documentation project. His book

witnessed modest success in the years following its publication; a Japanese translation was authorized

and subsequently released in 1972.36 In view of its impressive sales figures, an editor at MIT Press

wrote to Forte in 1976, asking him to consider preparing a revision of the book.37 Forte’s book

serviced an apparent demand for such a text, an publication opportunity we have already seen was

missed by the designers of SNOBOL.

SNOBOL, though it has fallen into relative obscurity today, was a somewhat popular choice

of humanities computing researchers into the 1970s, particularly those in computational literary

studies, who, like Forte, valued SNOBOL’s focus on string processing.38 Later versions of the

SNOBOL interpreter were subjected to various rewrites and ports so that they could be could be

used on a variety of different platforms. In some cases, these ports excluded features included in the

original versions of the interpreter (like the sno utility that shipped with the first UNIX operating

system distributions); in other cases, rewrites extended the features of SNOBOL (as with the popular

SPITBOL variant).39 The first public release of SNOBOL was made in the organs the volunteer-led

IBM user group, SHARE, which had distributed software and technical documentation to subscribing

computer centers since the mid-1950s (and continues to do so today). After some internal wrangling

35. The attractively typeset book, which was designed by Muriel Cooper, was selected by the American Institute
of Graphic Arts (AIGA) for its Fifty Books of the Year in 1968. From the AIGA Design Archives, we learn that the first
edition of Forte’s book ran to 3,000 copies. “AIGA Design Archives,” accessed April 28, 2019, https://designarchives.
aiga.org/#/entries/muriel/_/detail/relevance/asc/12/7/17199/snobol3-primer/1

36. Allen Forte, [SNOBOL3: Puroguramingu Nyumon], trans. Koichi Kishida (Tokyo: Nihon Seisansei Honbu,
1972).

37. Letter from Frank Satlow, 21 September 1976 (editor at MIT Press), Forte Archive at Yale, Box 12. Satlow
reports that book was one of the better sellers of its genre, with 7,769 copies sold since its publication, a not unremarkable
achievement for a publication by an academic press.

38. See, for instance Jeffrey Raskin’s modestly positive appraisal of the language in Jeffrey F. Raskin,
“Programming Languages for the Humanities,” Computers and the Humanities 5, no. 3 (1971): 155–58, 156. Its use was
still being advocated for in the 1990s, as Susan Hockey’s evangelism for the language suggests. Susan Hockey, “SNOBOL
in the Humanities,” Text and Technology 3, no. 2 (1993): 7–15. In the previous decade, Hockey had written a manual for
SNOBOL4, addressed particularly to humanities scholars. Susan Hockey, Snobol Programming for the Humanities (New
York: Oxford University Press, 1985).

39. In 1977, Ian Bent and John Morehen used SPITBOL to analyze choral polyphony. Bent and Morehen,
“Computers in the Analysis of Music.”
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and advocacy for liberal licensing, it was ultimately widely distributed to universities, research

centers, and corporations.40

While a complete description of the SNOBOL language would be beside the point, before

moving on to discuss DARMS, I turn to the final code example in Shea’s manual in order to give a

sense for what it was like to program in SNOBOL, noting some of the more distinctive features of the

language.41

BEGIN CHARS *C/’1’* = /F(RETURN)
FREQ = ’0’

BACK STRING C = /F(OUTPUT)
FREQ = FREQ + ’1’ /(BACK)

OUTPUT WRFLX(’FREQUENCY OF CHARACTER ’ C ’=’ FREQ) /(BEGIN)

This snippet of code, Shea explains, takes a target string (stored in the variable STRING) and another

string (stored in the variable CHARS) containing a sequence of single characters, each to be counted

in the target string. The program produces counts for each character in CHARS in turn, and writes

them to the teletypewriter using the WRFLX() system command. If this code snippet is “wrapped” in a

function called COUNTCHARS, it might be invoked to produce the following output:

> COUNTCHARS(’THIS IS THE TARGET STRING’, ’AEIOU’)

FREQUENCY OF CHARACTER A = 1
FREQUENCY OF CHARACTER E = 2
FREQUENCY OF CHARACTER I = 3
FREQUENCY OF CHARACTER O = 0
FREQUENCY OF CHARACTER U = 0

To understand the behavior of this snippet, we need to know the form in which SNOBOL expects

valid statements to take: the syntax of the language. Each line of SNOBOL code, consisting in a

single statement, contains up to three main parts: a label (optional), such as those in the leftmost

column (BEGIN, BACK, ); a rule (compulsory); and a branch (e.g. /F(OUTPUT)). By default, execution

of a SNOBOL program proceeds from top to bottom, with the statements in each line being evaluated

40. For more on the release of SNOBOL, see Griswold, “A History of the SNOBOL Programming Languages,” 283.
41. Shea, “CTSS SNOBOL User’s Manual,” 17.
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in the order they appear in the code. If the statement includes a branch, the program flow may change

conditional on the result of the rule’s evaluation: execution moves to the line with the label referenced

in the relevant branch. SNOBOL rules are the substance of the language, since it is in rules that string

manipulations are specified. They have up to four parts:

1. A string reference—giving the name of the string to be manipulated
2. A left side—specifying a pattern
3. An equal sign
4. A right side—specifying a replacement.42

As Shea notes, “the string reference part is mandatory; the others are optional.”43 The string reference

is mandatory, since it specifies the target string against which the pattern on the “left side” will be

matched. To borrow an example from Shea’s guide again, if the variable FIRST contains the string

HERE IS TO GOOD OLD BOSTON the very simple SNOBOL statement, consisting of just a rule (no

label, no branch):

FIRST ’BOSTON’

will result in a successful match.44 The string reference points to the motto; the “left side” specifies

the pattern, which in this case is a substring of FIRST. Rules can be viewed like search filters on text,

which we use to scan a string for a pre-determined structure that we specify in terms of individual

characters, character classes (e.g. numerals, uppercase letters, spaces etc.), their grouping structure,

and their neighbors. fully ramified rule (with all four parts in place) would look as follows:

FIRST ’BOSTON’ = ’ALMA MATER’

Now, the pattern matches again, but the string FIRST is modified, to respect the replacement specified

on the right-hand side of the equals sign: it now reads, HERE IS TO GOOD OLD ALMA MATER.45

42. Shea, “CTSS SNOBOL User’s Manual.”, 7.
43. Shea, 7. This is apparent from a brief inspection of the code snippet, which is valid SNOBOL3.
44. Shea, 3–4.
45. Shea’s manual provides many further several instructive examples, showing how patterns may be constructed

to deal with substring selection, backtracking, reordering, and so on. As we might expect, given the language designers’
intended application for the language, examples of language features that are useful algebraic formula manipulation
feature heavily.
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We are now in a position to step through the longer character counting example, which

shows that the pattern-matching is central to SNOBOL’s design. If strings are the main “noun”

of the SNOBOL, then pattern-matching can be thought of as the main “verb” of the language.

Pattern-matching is the second of the two distinctive features that made it a suitable choice of

programming language for Forte’s segmentation program. The first rule, CHARS *C/’1’* =,

effectively takes the first character of the string CHARS and assigns it to the variable C. The branch

(/F(RETURN)) provides for the case in which there are no more characters left in the string CHARS,

with the behavior that the function terminates when all the characters to be counted (in our example,

the English vowels AEIOU) have been counted. The simple rule FREQ = ’0’ assigns the string ’0’ to

FREQ to serve as the initial state of counter.

Next, STRING C = performs the most important step in the code snippet: it matches the contents

of the variable C (the vowel under consideration, say A) to the string stored at variable STRING (in our

example, ’THIS IS THE TARGET STRING’). If there is a match, the matched substring (in this case,

comprising a single character, A) is substituted with the null value and execution continues to the

next line, and the counter is incremented by 1. Then, the branch /(BACK) is followed and counting

continues so long as there is an A unaccounted for, If there is no such match, the branch /F(OUTPUT)

is followed—since the match failed—and the tally for that letter is output, and the branch /(BEGIN) is

followed, which moves the programs focus on to the next character to be counted and next resets the

counter variable C, as expected. In our running example, this is the next vowel in the CHARS variable,

’E’. Let us turn to the technical features of the encoding language that Forte worked with in the

preparation of his analysis, DARMS.

4.3.2 DARMS

In this section, I describe DARMS, the representation scheme that Forte chose to encode his pieces

for analysis. DARMS—standing for the Digital Alternate Representation of Musical Scores—was

first proposed in 1963 by Stephan Bauer-Mengelberg and Melvin Ferentz—the same pair who would

go on to publish a solution to the all-interval series problem in the pages of Perspectives of New
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Music two years later.46 At that time, the two men had secured a grant from the Ford Foundation

to design a text-based representation format that could be used in the computer-controlled music

phototypesetting.47 Acknowledging Bauer-Mengelberg’s expertise, Forte credited him in the technical

report as “President of the Mannes College of Music, musician, logician, and partially reformed

computer expert.”48 Bauer-Mengelberg was a logician, computer programmer, and sometime

conductor employed by IBM as trainer, while Ferentz was a then a professor of physics at Queens

College, New York.

Though it was clearly known to Forte in some form by the mid-1960s, it was not until the early

1970s that more formal specifications of DARMS were circulated to interested users; the earliest

versions of these were authored by Raymond Erickson.49 In 1976, Erickson prepared a version

of the “DARMS Reference Manual” that he hoped would canonize a stable and comprehensive

description of the encoding scheme.50 Over twenty years later, Eleanor Selfridge-Field would claim

that Erickson’s 1976 manual was “the only comprehensive description from that time to this.”51

Writing of DARMS in the introduction to this document, Erickson explains:

Because of its intended application to music-printing [sic], DARMS has been designed
to yield comprehensive and accurate encodings of complete musical scores[.] […] A
properly encoded DARMS data-set will contain all the information contained in the
musical score that has been supplied by the composer through notations and comments;
it will thus specify the relative position of all symbols in the score but will not resolve
ambiguities of interpretation that are the concern of the performer or music analyst;
likewise, it will not represent purely editorial features such as page boundaries, over
which the composer has no control.52

46. See Chapter 2 above.
47. Because the project was initially funded by both the Ford Foundation and Columbia University, the encoding

language that Bauer-Mengelberg and Ferentz worked on was sometimes called the “Ford-Columbia” code.
48. Allen Forte, “Music and Computing: The Present Situation,” in Proceedings of the November 14–16, 1967 Fall

Joint Computer Conference (ACM, 1967), 327–29, http://dl.acm.org/citation.cfm?id=1465653, iv.
49. In 1971, Stefan Kostka noted that DARMS “has never been described in print in a comprehensive manner. That

DARMS is very widely used, even though the material dealing with it must be circulated in an underground fashion, is
proof of its potential, and this should be more than enough to encourage those involved in its development to bring their
creation to light.” Kostka, “Recent Developments in Computer-Assisted Musical Scholarship,” 16.

50. Raymond Erickson, “DARMS: A Reference Manual,” June 1976, 1, http://esf.ccarh.org/ccarh-wiki/
DARMS-1976.pdf.

51. Selfridge-Field, Beyond MIDI, 169.
52. Erickson, “DARMS: A Reference Manual,” 1.
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Erickson predicates a familiar cast of characters, each of whom is assumed to have a clearly

demarcated area of responsibility in the production of music: the composer, who determines the ideal

placement of graphic signs that correspond most closely to their musical intentions; the editor, who

determines “purely editorial features” relating to the layout constraints of printed matter; and the

hermeneutic performers and/or analysts, who take responsibility for the “ambiguities” of the printed

score and propose candidates for their resolution. As a format, DARMS not only encodes scores, but

also encodes a set of premises about what a musical score is, the normative roles of its various users,

and—given the limitations of its finite symbol set—even the specific repertoire that may be encoded

using it. DARMS was, by design, a resolutely score-first encoding scheme. After all, it was intended

to encode the entire graphical description of a musical work for typesetting purposes. This was the

precise sense in which Erickson could claim that DARMS was “complete.”

Annotations dating from the 1980s made on an archival copy of the 1976 DARMS specification

remind us that the processes of designing encoding standards and processes of canonization go hand

in hand.53 DARMS, given its conspicuous history as a project for staff-notation typesetting, was

unsuited to representing musical production in any universal sense. As a representation, it can only

model a specific conception of notated music—sometimes now called Common Western Music

Notation (CWMN)—one which, following Erickson’s dramatis personae at least, seems to exclude

composers from an editorial function with respect to the layout of their own music. Thus the code is

naive not only to twentieth-century experiments in notation, but the well-known intimate involvement

of composers, who for centuries were involved in the preparation of printed editions of their own

work, demoting such involvement to a “purely editorial” function.

53. Erickson, “DARMS: A Reference Manual.”
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(a) The handwritten annotation reads, “cf. the opportunities for use in
Beethoven Op. 110.” [Beethoven, Piano Sonata No. 31 in A flat major
(1821)]

(b) The handwritten annotation reads, “encode as tremolo / 11/8/82 /
seems that we need an ‘Effective Duration’ code for Beam separators [?]
as a whole.” The music example is derived from Bartók, Concerto for
Orchestra (1943) Second movement, m. 215.

Figure 4.1: Handwritten annotations in a copy of Raymond Erickson’s DARMS reference of
1976, dating from the mid-1980s. Raymond Erickson, “DARMS: A Reference Manual,”
June 1976, http://esf.ccarh.org/ccarh-wiki/DARMS-1976.pdf.
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Figure 4.2: Score of Webern, Four Pieces for Violin and Piano op. 7, no. 1.
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WEBERN,FOUR PIECES FOR VIOLIN AND PIANO,OP. 7 (1910)
2.I01*VIOLIN,/I02*PIANO,/
I01 *XG,*XT*$SEHR LANGSAM (E=CA 50)$ *XM2*.4 VPP*L1,21-HJ,24-N4J,*AMIT *
$DAEMPFER*A / V*L1*G2,21HJ,24N4J *G2 / *XMR*.4 21Q RQ *X3E1*.2 RE1,*XVES
PRESS.$ VPP,30**Q1JL+1 / *XM2*.4 102 *XG *XM2*.4 RW / VPPP,24**H,26**H,3
0*=H*- / *XMR*.4 RQ RQ (VPPP,16**E,18**E,22*=EL+1 17**EJ,19*=EJ,23*=EJ)
/ *XM2*.4 *+ *XF *XM2*.4 RW / 79**H,84**H*- / *XM3*.4 RE VPPP*L1,69-EL+1
77**E V*L1*G2,76**Q.L+1 V*G2 / *XM2*.4 I01 *XG *XM2*.4 V*L1,30**E 29**Q
V*L1 27**E / *XM3*.4 V*G1,23-E 29**Q.L+1 V*G1 RE,*XVWEICH GEZOGEN$,*XVC

OL LEGNO$ VPPPSEMPRE,26*=EL+1*- / ((28-S*- 26*=S*- 28S*- 26SL+1*-)) ((28
SL+1*- 26S*- 28S*- 26S*-)) ((28S*- 26S*- 28S*- 26S*-)) / *XM2*.4 I02 *XG
*XM2*.4 *X3Q2*.2 V*L2,17**H2,19*=H2,23*=H2 V*L2,19**Q2J,21**Q2J,25**Q2J
/ *XM3*.4 19Q,1Q,25Q 18**HJ,20**HJ,25-HJ / V*G2,18Q,20Q,25Q V*G2,18-QJ

,21-QJ,24**QJ 18Q1,21Q1,24Q1L+1 V*L2,77**QJ / *XM3*.4 77Q. V*G2 72-E 74*
*QJ V*G2 / 74+1 RE VPPP,63*=Q.L+1 / *XM2*.4 I01 *XG *XM2*.4 ((28-SL+1*-
26*=S*- 28S* 26S*-)) ((28S*-,*XTRIT.$ 26S*- 28S*- 26SL+1*-)) / ((V*G1,

28-SL+1*- 26*=S*- 27**SL+1*-)) RS RE ((28SO V*G1,27S0)) / RW // 102 *XG
*XM2*.4 (V*G2,30**E10 24-E10 21**E10) V*G2,17**QJL+1*- / 17Q RQ RE VPPP,
18-Q,21-Q,23**Q RE // *+ *XF *XM2*.4 63*=H / RQ2 VPP*G2,76-Q2L+1 v*G2,19
**Q2JL+1 / 19Q. RE //

Figure 4.3: DARMS encoding of Webern, Four Pieces for Violin and Piano op. 7, no. 1.
(Adapted from Allen Forte, “Syntax-Based Analytic Reading of Musical Scores,” AI
Technical Report. Cambridge, MA: Project MAC, April 1, 1967, 5.)
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Forte presented a complete movement encoded in DARMS (as he knew it) in the pages of

his report on the score-segmentation program, showing both the full score (Example 4.2) and a

reproduction of its encoded version (Figure 4.3). To my eye, German and Italian text jumps out

almost immediately; it is clear that the DARMS representation is concerned not only with pitch

and duration—as today’s all-too common MIDI format for musical data is—but with almost every

element of the printed score: expression markings, tempo, dynamics, meter signature changes, and

so on. We may only scratch the surface of the total capabilities of DARMS here in showing how a

representative measure of the illustrated movement from Webern, Four Pieces for Violin and Piano

(op. 7, no. 1). Consider the third measure in the left hand of the piano part. In the dialect of DARMS

used by Forte, the measure is encoded as follows:

/*XM3*.4 RE VPPP*L1,69-E L+1 77**E V*L1*G2,76**Q.L+1 V*G2/

First, the meter signature change is represented as *XM3*.4, followed immediately by the eighth-note

rest—R for rest; E for eighth-note. The first note we encounter is represented as 69-E, standing for a

flattened note (-) on the 69th line (69, staff lines are odd while spaces are even), eighth-note duration.

The next two notes are encoded as 77**E and 76**Q., standing for the eighth-note F natural and the

dotted-quarter E natural respectively.54 As Brinkman points out, DARMS “encodes musical symbols,

rather than their meaning […] it does not name pitches, but instead encodes the location of notes

on the staff.”55 Thus, working with pitch in DARMS, as Forte desired, required his program to take

into consideration the same kind of data a score-reading human would have to, in order to determine

each pitch from such a representation: the clef, the current key signature in operation, as well as any

accidentals in the measure under consideration. As we will later see, Forte wrote preliminary parsing

code to extract just the information that he needed from the score before beginning segmentation

proper. Pre-processing of this nature was an imperative with such a comprehensive encoding

language as DARMS.

54. In the dialect of DARMS transmitted in Alexander Brinkman’s Pascal Programming for Music Research,
naturals are represented by a single asterisk (*). Alexander Russell Brinkman, Pascal Programming for Music Research
(Chicago: University of Chicago Press, 1990), 139.

55. Brinkman, 138.
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4.3.3 DARMS and SNOBOL co-operate to engender the computational attitude

In this section, I describe how Forte’s technical decisions are consonant with his views on music

analysis. Taken together, they instantiate an example of what I am here calling the computational

attitude to music. First, I summarize Forte’s analytical outlook, which evidences an approach to

the analysis of music that is generally called “structuralist.” This stance involves, inter alia, two

foundational assumptions. The first assumption, at a minimum, is that scores are a sufficiently

complete description of a musical work for the purposes of analysis.56 The second assumption is that

the structure of music—to wit, the features of a particular piece of music that lend it its coherence and

intelligibility as analyzed—can be derived from the elements in its score.

Next, I show how each of these two assumptions concord with Forte’s choice of encoding

scheme and contemporary hypotheses about computation, respectively. Forte chose DARMS

because he believed that it provided a “lossless” (this was his term) encoding of the contents of the

printed scores that he wished to analyze. Thus, from Forte’s viewpoint, if the score was a complete

description of a musical work, and the DARMS encoding scheme was lossless, then he would be

justified in using DARMS in a computer-implemented analysis. As for the second assumption, Forte

invoked a computational metaphor that cast the music analyst as a “pattern matcher” that operates

on the score, deriving structural information, more or less directly from the score. In doing so, he

elaborated a musical instance of a contemporary cognitive model for human intelligence that was

actively being pursued at the AI Group during his visit.

In his “Context and Continuity in an Atonal Work: A Set-Theoretic Approach,” Forte

analyzes Schoenberg’s Op. 19 with a view to demonstrating the unity of its six constituent “kleine

Klavierstücke,” arguing that they cohere as a collection since they are all compositional “projections”

of the same relational system.57 Forte argues that the pitch-class material for each movement can be

related to set-theoretic combinations of two reference sets. Why undertake this project? In Forte’s

56. Some music structuralists maintain a stronger version of this position: that the score is a complete description of
a musical work for all useful purposes. This form is much less common today.

57. Allen Forte, “Context and Continuity in an Atonal Work: A Set-Theoretic Approach,” Perspectives of New
Music 1, no. 2 (1963): 73, https://doi.org/10.2307/832105.
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words, his rationale is to determine the correct response to “the problem of atonal music”: what is

to be done with music composed by Schoenberg before the “denouement” brought about by that

composer’s discovery of the method of composing with twelve tones.58 Forte finds the several

traditional responses to be lacking. Neither a denial of the musicality of atonal music tout court nor

the Procrustean application of traditional tonal (i.e. triadic) techniques could satisfy Forte. Analysis

of this repertoire in terms of the “style” it evinces is also alleged by Forte to be fruitless; Schoenberg

on Schoenberg is cited as evidence that such an approach cannot be condoned, at least not without

courting the possibility of going against that composer’s intentions, a prospect Forte is keen to

avoid.59

Tellingly, no real positive case is offered for the applicability of his method to the piece at hand.

Rather, “the set-theoretic formulation, in turn, reflects the general viewpoint that the analysis of a

structural system begins with the determination of a set of elements and the combinatorial relations

which they exhibit.”60 This resonates so strongly with the principles of linguistic structuralism that it

is not difficult to imagine that Forte had the work of researchers like Roman Jakobson in mind when

he wrote these words.61 According to this (perhaps unintentionally) candid admission, any virtues of

the analysis offered in “Context and Continuity” do not accrue from anything that Forte claims about

the particular piece under consideration, but from the fact that the analysis instantiates a generally

structuralist approach. I suggest that this is also the case the score-segmentation program that Forte

went on to design.

There are some continuities, then, between the analytical values implied by “Context and

Continuity” and those instantiated by Forte’s segmentation algorithm, two years later. Recalling

the position taken in his earlier work, Forte argues in the introduction to the Technical Report that

58. Forte, 72.
59. Forte quotes a letter from Schoenberg to Leo Kestenberg from 1939, in which Schoenberg pronounces: “In

my music there has never been a concern for ‘style,’ but rather a constant concern for content. and its most precise
representation.” Forte, “Context and Continuity in an Atonal Work,” 1963, 73.

60. Forte, 73.
61. Though, note that John Halle has argued that there has been some confusion as to what counts as “structuralism”

in music circles, imputing some confusion to Forte in particular. John Halle, “From Linguistics to Musicology. Notes on
Structuralism Musical Generativism, Cognitive Science, and Philosophy,” Signata, no. 6 (December 31, 2015): 287–311,
https://doi.org/10.4000/signata.1109, 297.
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the traditional terms of music theory (“melody,” “harmony,” “counterpoint”) are not very useful

when atonal music is at hand; this vocabulary, Forte claims, “is not very useful, and may even be

a hindrance to new formulations, since it is oriented toward older music.”62 According to Forte, a

computer model of structural analysis of atonal scores facilitates the project of cleaning house of

such old-fashioned concepts, because during the process of specifying the desired behavior of his

system in “terms accessible to computer programming, many conventions are set aside and many

familiar concepts are rejected after serious scrutiny.”63 In other words, there is a reason not to view

Forte’s turn to computing as an aberration, or believe that his analytical decisions with the help of

the machine were in some way forced by the computational encounter. Though its analytical results

may have been provisional, Forte’s report stands as an interdisciplinary testament to a particular set of

beliefs about analysis in general, strongly projecting one vision of how human and machine—analyst

and instrument—could co-operate to make sense of atonal music.

In a brief section of the Technical Report, titled “The score as a system of graphic signs,” Forte

justifies his focus on scores above and beyond other traces of the musical composition. He writes:

One can obtain information about a particular composition in a number of ways: for
example, by reading statements made by the composer which purport to describe his
composing technique or his aesthetic views, or by asking a trained listener to supply a
description of some kind. Such information is always incomplete, however, and does not
provide an adequate base for an analytic system.64

This is Forte the formalist on fine form: an early assertion of his doubts about the value of history and

ethnography to music analysis that foreshadowed the more colorful but equally determined language

than he used several decades later in an unedifying tangle with Richard Taruskin.65 Even if Forte

62. Allen Forte, “Syntax-Based Analytic Reading of Musical Scores,” AI Technical Report (Cambridge, MA:
Project MAC, April 1, 1967), 1, DSpace@MIT, http://hdl.handle.net/1721.1/6899.

63. Forte, 1.
64. Forte, “Syntax-Based Analytic Reading of Musical Scores,” April 1, 1967, 3.
65. In a 1986 response to a review by Taruskin, Forte wrote: “My view, and one that is evidently completely at

odds with Taruskin’s is that a knowledge of history is totally inadequate for understanding musical documents, including
musical scores as well as treatises on music. It is only now with the development of contemporary modes of theoretical
thought, that scholars are beginning to understand more fully many of the classic documents of music theory.” Allen
Forte, “Letter to the Editor in Reply to Richard Taruskin from Allen Forte,” Music Analysis 5, no. 2/3 (1986): 321–37,
https://doi.org/10.2307/854194, 334.
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had left the computer far behind him by the 1980s—and there is circumstantial evidence discussed

below that suggests that he did not—it is hard not to imagine that Forte not only had the pitch-class

set apparatus in mind, in his rebuttal of Taruskin, but also the computational “mode of theoretical

thought” more generally. There is, at least, a seed in place here in the Technical Report for Forte’s

fantasy that a computational attitude to music analysis would leave what he called “historicist” modes

of analysis in the dust.

The problem for the music analyst is characterized as one of obtaining and curating information

about the work; Forte’s greatest fear of “soft,” historical data is that it is “always incomplete.” As we

have seen in Chapter 3, the concept of information took on a new charge in the decades following

World War II, functioning less often in its venerable sense as referring to knowledge or notice more

generally, and more and more as a feature of the material world that became measurable with the help

of new statistics—even as it seemed to transcend the particularities of the various media in which

it was instantiated. The efforts of the fifties work described there showed that information-theoretic

approaches borrowed from communications theory and linguistics could do work in the musical

domain. It was these demonstrations that emboldened Forte to make a case for representations of

scores as the proper target of computational music analysis, not from negative case built on formalist

doubts about the value of the historical project to music analysis, but on a positive basis, building on

the idea that dealing “more directly with music” minimized the loss of information while performing

such an analysis.

Speaking on precisely this point to a computationally minded audience at the 1967 Fall Joint

Computer Conference, Forte explained:

Both in style analysis and in the study of musical systems a distinction can be drawn
between “numeric” and “non-numeric” processing. If the researcher deals indirectly
with music, that is, if his data consist of numeric sets representing some musical
property or properties, information-loss is assumed and the problem is usually solved
in a straightforward way, using available mathematics. If he deals more directly with
music, however, the que stion of input data and information-loss becomes central.
What is to be the object of study? Bauer-Mengelberg maintains that it is the score and
makes a cogent case for a syntactic representation that is complete for any composition.
Other researchers take a more casual view and are content with incomplete or ad hoc
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representations. The issue is interesting and significant, for it may ultimately affect the
viability of a research project.66

Thus, when Forte writes in the score-segmentation program report that “the musical score [..]

constitutes a complete system of graphic signs, and properly represented for computer input, may

be analyzed as a logical image of the unfolding musical events which make up the composition,”

he made the case for DARMS on the basis of its apparent closeness to music. Musical scores, for

Forte’s intents and purposes at least, were the source of “complete information” of the musical

work that he wished to analyze. In turn, he argued that DARMS was a “lossless” encoding of the

musical score. Hence, from a strictly informational perspective, he could argue that to manipulate

a DARMS representation was tantamount to analyzing the musical object. And, since DARMS

(putatively) losslessly encoded the graphical form of the musical score as alphanumeric character

strings, SNOBOL—which only knew how to speak strings—seemed the perfect tool for the job.

Pattern-matching approaches to problems such as this exemplify an early form of rule-based

knowledge modeling. Knowledge modeling describes an early approach to artificial intelligence that

sought to elicit computer-interpretable expressions of “expert” knowledge about a real-world problem

so that a computer system would be able to apply analogous processes of reasoning to. The abstract

objects of the problem domain are as described as patterns—in this case, the patterns are manifest in

a character string that represents the object under consideration. When the pattern matches, the object

is identified.

Such processes are not too distant from the informational-structural perspective on scores that

we have imputed to Forte: all the information required to perform a structural analysis is in the work

“already,” and all we need are the correct configuration of optics to reveal it. The visual metaphor is

not inapt; recall that Forte considered that encoded score “may be analyzed as a logical image of the

unfolding musical events.”67 On this view, the structural content of a score is latent in the disposition

of the patterns that can be extracted from the score, just like an algebraic expression can be “matched”

and manipulated with the perfectly crafted SNOBOL statement by playing rules and substitutions

66. Forte, “Music and Computing,” 328.
67. Forte, “Syntax-Based Analytic Reading of Musical Scores,” April 1, 1967, 3.
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against each other to reorder the alphanumeric strings which represent it in accordance with the rules

of arithmetic.

Human expertise is considered to captured by the correct design of such a pattern, since human

thought can similarly be understood—by appeal to one of the contemporary orthodoxies of cognitive

science—as the computational application by the mind of pre-determined patterns to the incoming

flow of input sense data. Forte makes this connection with his work explicit, first recognizing

in highly general terms, that a trained music analyst demonstrates cognitive expertise when they

“[associate] certain signs to form units and [make] a series of basic decisions about the temporal spans

of such units and their internal structuring.”68

4.4 Forte’s work at MIT

Forte’s publication and teaching history, his personal correspondence, and his academic connections

all demonstrate a familiarity with computers. David Carson Berry’s short history of Forte’s tenure

at the helm of the Journal of Music Theory (JMT) suggests that Forte was using the IBM 7094

installed at the Yale Computing Center as early as 1965.69 Two years later, Forte participated in a

panel held at the 1967 Fall Joint Computing Conference entitled “Computing in the Humanities and

Social Sciences–A Status Report” and presented the state of the art in music computing alongside

three other papers about computational applications in literary studies, archaeology, and political

science.70 In his short contribution, Forte characterized the application of computers to music “as

a natural synthesis” of the numerical and the musical. He used conventional historical examples

of music-as-science, appealing to the long-standing relationship between music and “science,

68. Forte, 3.
69. David Carson Berry, “Journal of Music Theory Under Allen Forte’s Editorship,” Journal of Music Theory 50,

no. 1 (Spring 2006): 7–23, https://doi.org/10.1215/00222909-2008-004, 19.
70. Forte, “Music and Computing.”; Louis T. Milic, “Winged Words: Varieties of Computer Applications to

Literature,” in Proceedings of the November 14–16, 1967 Fall Joint Computer Conference, AFIPS ’67 (Fall) (New
York, NY, USA: ACM, 1967), 321–26, https://doi.org/10.1145/1465611.1465652; George L. Cowgill, “Computer
Applications in Archaeology,” in Proceedings of the November 14–16, 1967 Fall Joint Computer Conference, AFIPS
’67 (Fall) (New York, NY, USA: ACM, 1967), 331–37, https://doi.org/10.1145/1465611.1465654; Kenneth Janda,
“Computer Applications in Political Science,” in Proceedings of the November 14–16, 1967 Fall Joint Computer
Conference, AFIPS ’67 (Fall) (New York, NY, USA: ACM, 1967), 339–45, https://doi.org/10.1145/1465611.1465655.
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mathematics, and technology in some way.”71 By the time Forte made this address, he was well

qualified to represent the field, as a researcher who had been hired to teach music in an engineering

institute of the first rank. There he could prosecute his program for computational music analysis with

the help of some of the most competent and imaginative computer technicians in the United States, as

well as cutting-edge interactive computer technology.

Forte’s relationship began with MIT when he took leave from his appointment at Yale to work as

a visiting researcher for the academic year 1965/66, at the invitation of Marvin Minsky. Forte was

then hired as a Professor of Music at MIT, to start in Fall 1967. Forte held this position for a year

before he returned to Yale, where he was appointed as a full Professor of Music Theory in 1968.72

Forte spent his time at MIT affiliated to Minsky’s Artificial Intelligence (AI) Group, a research spur

of the music large multi-department computing research effort underway at MIT, called Project MAC.

Forte was one of three composers hired by Minsky at various times during his affiliation with

Project MAC.73 Minsky recalls that he hired the composers “in the hope that they would […] seem

more articulate than other musicians. […] I was hoping that they could do computer music and bring

some new viewpoint [sic].”74 Minsky headed up the Artificial Intelligence Group at MIT, which was

eventually spun out into a separate laboratory in 1970; during Forte’s visit it remained adminstratively

subordinate to Project MAC.

The main research objective of Project MAC was to design a time-sharing system for mainframe

computers at MIT. Up until the early 1950s, users interacted with digital computers according to a

batch-processing paradigm: users would send computer jobs to the utility to be scheduled manually

by the computer operators. Researchers at Dartmouth University pioneered a way of accessing

mainframe computers that simulated a live, pseudo-realtime conversation with the computer. This

71. Forte, “Music and Computing,” 327.
72. MIT Office of the President, “Report of the President 1967,” 1967, http://dome.mit.edu/handle/1721.3/59048,

289; “In Memoriam: Allen Forte, Music Theorist,” YaleNews, October 17, 2014, https://news.yale.edu/2014/10/17/
memoriam-allen-forte-music-theorist.

73. Marvin Lee Minsky, Oral history interview with Marvin L. Minsky, interview by Arthur L. Norberg, Transcript,
1989, http://hdl.handle.net/11299/107503, 45. One of the others was Wayne Slawson.

74. Minsky, 45.
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allowed users to submit single commands to the computer using a teletypewriter; as soon as the

command had been processed, the teletypewriter would print out a response from the mainframe.

This new design became known as “time-sharing,” in allusion to schemes first designed to

allocate the same transmission frequency to multiple broadcasters; here the shared resource being

pooled was processing time in the main core of the computer. In this way, multiple teletypewriter

interfaces could now access the same mainframe computer.75 Although time-sharing posed many

novel technical challenges to the engineers tasked with designing and implementing such systems,

perhaps its most transformative consequence was the new user interface paradigm it brought about:

interactive computing. With interactive computing, a user became more like an interlocutor with the

computer, able to engage in two-sided conversation with an electronic aide. This was one of many

reasons for the AI Group’s interest in the resource of Project MAC. The attraction of interactive

computing is apparent: if Alan Turing’s infamous protocol for evaluating artificial intelligence—such

a computer program should be indistinguishable from a human conversational partner—was to be

practical at all (to say nothing of its problems) then the illusion of real-time response was critical.

Even non-linguistic AI applications could benefit from real-time computing; the rapid processing

of audio, visual, and other sensory input was required if machines built to solve problems framed

in the terms of cybernetics—in terms of feedback and control—were going to be driven by digital

computers. This continued interest in time-sharing computing at MIT motivated Minsky’s tolerance

of the AI Group’s continued association with Project MAC during Forte’s visit.

In his privileged access to real-time computing, it is no exaggeration to say that Forte was at the

cutting edge as a representative of the humanities. Forte stood out at MIT as the sole member of the

faculty of Humanities listed as a user of the Compatible Time-Sharing System (CTSS)—one of the

first real-time computing environments, then still under active development at MIT—that served the

75. Providing this kind of access to a computer posed many technical challenges that were taken on by the systems
team at Project MAC: how to schedule input and output from remote teletypewriter terminals; how to assign priorities
to jobs and automatically respect them in the order in which job are scheduled; how to “interrupts” when a job requests
a computational resource that is already in use. Time-sharing also led to computer engineers earliest confrontation with
fundamental questions of computer security, of which many found their first solutions at MIT.
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members of Project MAC.76 Most music computing researchers had to wait several years before they

could experience this novel interaction paradigm for computer use, either as time-sharing mainframe

computers became more widely available or as less-expensive minicomputers—that could be bought

and maintained by smaller institutions—gained market share.

Drawing on his experiences in this environment, in 1965 Allen Forte published “A Program for

the Analytic Reading of Scores” in the Journal of Music Theory (JMT), an article that described

a computer program for the unsupervised, deterministic segmentation of encoded scores that

was implemented for an IBM mainframe in the SNOBOL programming language. Forte’s paper

was published as a Project MAC Technical Report. When the same research was written up as a

technical report (MAC-TR-39) to fulfill a requirement of the government-funded Project MAC, it was

published under the title “Syntax-Based Analytic Reading of Musical Scores.”

4.4.1 The segmentation program

Schuijer briefly describes the program that Forte prepared in his discussion of the computational

context for the history of pitch-class set theory that he outlines in his Analyzing Atonal Music.77

Here, I describe Forte’s program in more detail, and support it with a more concrete discussion

of the consequences of Forte’s choosing the particular tools that he did in order to implement his

score-segmentation algorithm. Forte’s score-segmentation program takes as its input a musical

score encoded in the DARMS representation, a machine-readable encoding intended to represent the

graphical content of a score as a single sequence of alphanumeric characters.

Two important parsing steps are carried out before the main work of the program. First, since

DARMS interleaves measures belonging to the individual parts in a score with multiple instruments,

76. Tom Van Vleck, “CTSS Creators and Users,” accessed February 8, 2018, http://multicians.org/thvv/ctss-list.html.
Tom Van Vleck, who worked with Project MAC and its successor projects writes, “I found an old file that listed people
who worked on MIT’s Compatible Time-Sharing System (CTSS) and users who supported it. This list is dated 1973 and
was used to generate a list of people invited to a ceremony at MIT celebrating the shutdown of the CTSS machine. The
ceremony was in March 1974; I missed it because I was out of the country. They gave every attendee a little plaque made
from a piece of a 1302 disk used on CTSS.” Forte’s name appears here; Van Vleck admits augmenting the original file. It
is unclear from the list as it published online whether his Forte’s use of CTSS was gathered from old user data, an access
log, or inferred from his invitation to the event.

77. Schuijer, Analyzing Atonal Music, 236–50.

217

http://multicians.org/thvv/ctss-list.html


Forte’s protocol demands that they each be first extracted from the single string that represents

the score, and assigned to distinct strings, with each new part-string corresponding to the notated

events in a single part. Second, because DARMS records only the graphical signs that together

make up a printed score, notation corresponding to the temporal placement and the duration of

the musical events must be interpreted according to the symbolic conventions that determine the

rhythmic values for notes and rests. These, of course, are familiar to trained, human score readers,

but have to be specified explicitly in SNOBOL code, since DARMS represents duration data with

alphabetic characters. This step translates the encoded score (considered a faithful representation

of the printed score) into a series of events, whose attacks and releases are assigned numeric real

values that describe their temporal positions relative to the start of the score. The score segmentation

assigns each musical note a “position value” (PV), which is the time of the onset of the note. PVs are

measured in multiples of the smallest durational value to occur in the score. The segmentation will

also keep track of the duration of the event.

The segmentation process has two main stages: first, the creation of what Forte calls primary

and secondary segments; second, the successive application of two concatenation functions to

each of the sets of primary and secondary segments produced by the first stage. The relationship

between PVs of the musical events in the primary segmentations of the piece become essential

criteria for the aggregation of those segments into larger units. Forte defines primary segments

as those non-overlapping segments of a single part that lie between either a rests or something

equivalent in function to a rest.78 This relatively naive criterion treats all rests, regardless of their

duration, as equally important in determining the beginnings and ends of primary segments. A set

of pattern-matching rules can straightforwardly determine the boundaries of each of the primary

segments, since rests are represented unambiguously in the DARMS encoding. Later, in The

Structure of Atonal Music, Forte would take up the use of the term “primary segment,” but would

give it a much more expansive definition than it had in the Technical Report:

78. For example, the start of the piece or a double barline.
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[a primary segment is] a configuration that is isolated as a unit by conventional means,
such as a rhythmically distinct melodic figure. For the most part, such segments are
indicated by some notational feature, for example, by a rest or a beamed group, and offer
no novel problems. Similarly, chords, in the sense of vertical groupings, and ostinato
patterns are not difficult to identify as primary segments.79

Forte’s updated definition of primary segment makes much musical sense, though it has the curious

feature of appealing much more explicitly to notational data (for example, beaming) which may

or may not be heard. Contrastively, the much more naive and restricted definition used in the

segmentation algorithm, is at least potentially perceptible: a rest (or other caesura).

Secondary segments are made up of overlapping pairs of primary segments taken from two

different instruments or voice parts. Forte enumerates the eleven ways in which primary segments

can overlap, based on their attack and release PVs and represents this information on a decision

tree. The move from primary to secondary segments captures the interaction between simultaneous

musical events, moving from a data structure that captures the horizontal conception of musical

content (“melody”) to one that begins to capture the vertical one (“harmony”). In Forte’s own

words, the production of secondary segments is “the first and most important step in the progression

from the one-dimensional primary segments to a representation of the analyzed two-dimensional

score.”80 Forte’s conspicuous avoidance of the parenthetical terms reflects his sanitized vocabulary at

work. Forte’s program enumerates all possible pairs of primary segments to see if they overlap: this

results in a large number of comparisons as the size of the score grows. Forte would not return to a

formalized notion of secondary segment in The Structure of Atonal Music, prefering instead to draw

a distinction between “primary segments” (defined above) and “compound segments,” which would

cover not only secondary segments in the sense defined in the report but also the results of the various

concatenation procedures defined therein, to which we now turn.81

Forte’s program stores the primary and secondary segments that it finds by concatenating them

into two long strings, which each contain a sequence of segments: PSGT for the primary segments,

79. Forte, The Structure of Atonal Music, 83.
80. Forte, “Syntax-Based Analytic Reading of Musical Scores,” April 1, 1967, 16.
81. Forte, The Structure of Atonal Music, 84.
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and SSGT for the secondary segments. Once these two strings of primary and secondary segments

have been compiled, the program moves on to two routines which process PSGT and SSGT using

temporal criteria to concatenate constituent segments into larger units. As Forte writes, “[p]ossibly

a particular […] segment is a constituent of an even larger event-configuration; thus, it may be

associated with other events in the local context.”82 Forte defines two “concatenation procedures” that

aggregate primary and secondary segments into these large contextual event-configurations: what

he calls the block concatenation procedure (BCP) and the segment concatenation procedure (SCP).

Somewhat confusingly, these procedures operate both on PSGT and SSGT, but they have different

effects. Following Forte, I notate the result of applying either procedure using the function call

notation, as in BCP(SSGT)—meaning, “the result of applying the block-concatenation procedure to

the SSGT string.” Crucially, the concatenation procedures open the door to the analysis of contextual

units that span more than two instruments or musical lines.83

The block-concatenation procedure (BCP) examines the individual “blocks” within every

segment in the total list of secondary segments, SSGT. Forte does not explicitly define “block,” but it

is evident from its usage that it refers to the combination of DARMS code elements that corresponds

to non-rest musical events; in the case of the pieces analyzed by Forte in the report, musical notes.84

For every block (call it Bi) in that segment, the program looks for other events in SSGT which

include a block that co-occurs with that block (call the co-occurring block Bj), and uses a substitution

rule to replace that event Bi with the original block and the co-occurring block (Bi → BiBj), in a

transformation that Forte calls “infixing.” The BCP operation can also be applied to the PSGT list.

When BCP(PSGT) is computed, a string results containing segments that are linked by an event which

occurs at the same PV in at least two separate parts; Forte describes such segments as “anchored” by

the block that has this PV in common.85 Where BCP operated to propose segmentations based on the

incremental enlargement of overlapping segments on a block-by-block basis, segment concatenation

82. Forte, “Syntax-Based Analytic Reading of Musical Scores,” April 1, 1967, 19.
83. Recall that the SSGT list is populated by looking at all pairs of primary segments and adding those that are

temporally coextensive.
84. Forte, “Syntax-Based Analytic Reading of Musical Scores,” April 1, 1967, 14.
85. Forte, 21.
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(SCP) works to merge entire segments on the basis of overlapping material.86 Forte explains that

“SCP finds event-configurations which are connected by (at least) one common PV [and] thus

represent continuity over longer spans, even though disjunctions may occur in some subparts of the

musical context. As a consequence SCP yields very intricate and subtle readings.”87

As Forte points out, performing BCP(PSGT) will identify event combinations that have already

been discovered in the creation of the SSGT, the list of secondary segments. Since BCP(PSGT)

concatenates blocks on the basis of shared PVs—i.e. blocks that share at least one simultaneous

event—and because all segments in SSGT overlap in some way, they also contain at least one such

simultaneity shared between parts. This is a specific instance of a general issue with the program

as it was outlined by Forte: the sequential applications of the subroutines in the algorithm generate

duplicates of segments already found. Duplicates must be eliminated from these results, Forte argued,

otherwise they will clutter the output of the score-segmentation program with multiple instances of

the same event-combination.88 Based on the abstract analysis of the possible subset relations that

can arise between these six strings, Forte outlines an ideal ordering of the parsing subroutines and

a schedule for the deletion of duplicates as they arise, shown in Table 4.1. Forte claims that this

ordering is optimal: it reduces both the number of duplicates found in the first instance and keeps the

number of scheduled deletion operations to a minimum.

86. There is a line of type missing in the 1967 report at the relevant point in the discussion. Forte, “Syntax-Based
Analytic Reading of Musical Scores,” April 1, 1967, 23. The text should read: “The content of segments derived by BCP
is limited with respect to span since the concatenation is restricted to units of block form. The function SCP […] may
extend to event-configurations of greater span since it defines the segment as the concatenation.”; Forte, “A Program for
the Analytic Reading of Scores.”, 354.

87. Forte, “Syntax-Based Analytic Reading of Musical Scores,” April 1, 1967, 23.
88. There is an interesting point to be made here, I think. Forte thinks of these duplicates as redundant because,

considered as a segment of the piece, they have already been discovered once—by whatever sequence of operations
happens to find it first. This doesn’t have to be the case; if there are different derivations for the same segment, we might
be interested in that.
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Table 4.1: Schedule for the deletion of redundant segments as specified in Forte’s report on
the score-segmentation algorithm. (In Allen Forte, “Syntax-Based Analytic Reading of
Musical Scores,” AI Technical Report. Cambridge, MA: Project MAC, 1967, 28.)

in… delete duplicate segments of …

PSGT PSGT

SSGT SSGT PSGT

BCP(PSGT) BCP(PSGT) SSGT PSGT

SCP(PSGT) SCP(PSGT) BCP(PSGT) PSGT

BCP(SSGT) BCP(SSGT) SSGT

SCP(SSGT) SCP(SSGT) BCP(SSGT) SSGT

The complete SNOBOL source for Forte’s program has not been published, so we only have a

small segment of published SNOBOL3 that we can definitively attribute to Forte’s work at MIT. The

following code example, which appears in both the JMT article and the Technical Report, relates to

the deduplication of the contents of the string SSGT.

VV SNM *N1/’1’* N2’1’*’,’ =    /F(WRTE)
HNM = SNM

V0 HNM N1 *N3/’1’*’,’ =    /S(V1)
HNM N2 *N3/’1’*’,’ = /S(V2)    
HNM *N3/’1’* N2 ’,’ =    /F(V4)S(V3)

V1 $(’SG’ N1 N3) = DP2($(’SG’ N1 N2),$(’SG’ N1 N3)) /(V0)
V2 $(’SG’ N2 N3) = DP2($(’SG’ N1 N2),$(’SG’ N2 N3)) /(V0)
V3 $(’SG’ N3 N2) = DP2($(’SG’ N1 N2),$(’SG’ N3 N2)) /(V0)
V4 $(’SG’ N1 N2) = DP2(PSGT,$(’SG’ N1 N2))

SSGT = SSGT $(’SG’ N1 N2) /(VV)

Forte explains that clever indexing of an intermediate representation of the secondary segments

can be used to “greatly reduce the number of scans [passes through the entire score] required and

permits the operation to be controlled by a non-arithmetic program segment in a fashion idiomatic

to SNOBOL.”89 This excerpt refers to another function (DP2), presumably defined elsewhere in the

89. Forte, 19.
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code; thus, it is impossible to say precisely what this code does without access to the complete source.

Nevertheless, comparing Forte’s code to the representative example from Shea’s user guide, we see

many of the same SNOBOL structures in use: the slicing of strings, pattern matching, assignment,

labels, branches that point to them, string concatenation, and so on. We also see the use of two more

advanced SNOBOL features called grouping and “indirectness” in Shea’s guide.90 “Indirectness”

(or more commonly, “indirection”) allows a programmer to use the contents of a string as a pointer

to another variable; it is critical to writing idiomatic SNOBOL code, precisely because indirection

allows the contents of strings—recall that they are the sole data-type in SNOBOL—to control the flow

of execution through the program. This short snippet of code therefore demonstrates that Forte was

no naive user of SNOBOL, boxed in by the exigences of sixties programming practices. He exhibits a

degree of proficiency in the language that allowed him to use relatively advanced language features to

optimize the performance of the code that he wrote, a marker of a familiarity—if not fluency—with

SNOBOL.

Once the segmentation program has been fully described, Forte turns to what he calls “higher

analytic levels.” The way that Forte uses the output of his program shows that he considers primary

and secondary segments to be equally informative of the structure of the work under examination.

Forte shows how each list of segments (PSGT and SSGT) and their related transformations are passed

to the pitch analysis routine, so that the Forte number for each construct is found. It is important

to note that the pitch-analysis routines were not written in SNOBOL, presumably because its

string-worientedness made it difficult or impossible to manage the more mathematical manipulations

required to normalize each de-duplicated pitch-class collection—Forte calls this “a compositional

set”—in order to find its corresponding set-class label under Forte’s scheme. Instead, as Forte notes,

this “sequence of linked programs” was written in the Michigan Algorithm Decoder (MAD), a variant

of the mainstream ALGOL programming language.91 This suite of routines, seems a veritable Swiss

army knife of atonal tools. Forte writes that these routines can:

90. Shea, “CTSS SNOBOL User’s Manual,” 8.
91. Forte, “Syntax-Based Analytic Reading of Musical Scores,” April 1, 1967, 357.
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(1) determine the class to which each set belongs;
(2) list and count all occurrences of each set-class represented;
(3) compute, for each pair of set-class representatives, an index of order-similarity;
(4) determine the transposition-inversion relation for each pair of set-class

representatives;
(5) list, for each set-class represented, those classes which are in one of three defined

similarity relations to it and which occur in the work being examined;
(6) summarize in matrix format the set-complex structure of classes represented in the

work;
(7) accumulate and retrieve historical and other informal comments in natural

language.92

Given the narrow focus of SNOBOL that we have seen so far, it is little surprise that Forte turned

away from the string-oriented SNOBOL in order to program these more numerically intensive

computations.

Reviewing Forte’s computational work in 1968, Robert Erickson noted that it was unfortunate

that Forte did not have the more sophisticated programming language PL/1 available to him, since

it would have both simplified parts of the score-segmentation programs and obviated the need for a

switch to MAD to perform the pitch-analysis step.93 Erickson additionally remarked that SNOMAD

was available for use at the Yale Computer Center, which was a system for invoking SNOBOL-like

string manipulation functions within the context of a MAD program: a kind of inter-language

compatibility layer that was developed by computer center staffer Robert F. Rosin, and described in a

1967 Yale Computer Center memo.94

In “A Theory of Set-Complexes for Music,” published in 1964, Forte announced that “a

complete roster of set-complexes for the 12-pitch system [had] been compiled by the author with

the aid of a computer.”95 Forte’s set-complex abstraction, defined formally in his article, describes

relations between families of pitch-class sets that share properties. This work, Forte notes, was

completed with the use of a computer: the IBM 7094/7040 DCS at the Yale Computer Center, almost

92. Forte, “Syntax-Based Analytic Reading of Musical Scores,” April 1, 1967, 357.
93. Raymond Erickson, “Musical Analysis and the Computer: A Report on Some Current Approaches and the

Outlook for the Future,” Computers and the Humanities 3, no. 2 (1968): 93, https://doi.org/10.1007/BF02402358.
94. Erickson, 104.
95. Forte, “A Theory of Set-Complexes for Music,” 1964, 162.
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certainly included a MAD interpreter.96 In addition to describing set-complex relations, not discussed

any further here, Forte includes tables of the “distinct n-note sets” This list marks the first appearance

in print of Forte’s now-familiar notation for classes of pitch-class sets, of which each is labeled with

two dash-separated integers: the first representing the cardinality of the family members (e.g. 3 for a

family of trichords); the second, an ordinal number denoting the position of that family in Forte’s list.

In this article, kinds of pitch-class sets are defined by the content of their interval vector, a six-place

array that summarizes the total undirected pitch interval content of any pitch-class set.97 The families

that such an enumeration defines are not the same as the more familiar set-class notion that Forte

would go on to adopt in his later work, namely, equivalence under transposition and inversion.

4.4.2 Why Forte was at MIT

The editors of the 1963 collection Computers and Thought, Edward Feigenbaum and Julian Feldman,

wrote that “game situations provide problem environments which are relatively highly regular and

well defined, but which afford sufficient complexity in solution generation so that intelligence and

symbol reasoning skills play a crucial role.”98 For example, chess has been used repeatedly as just

such a “game situation” partly because the combinatorial explosion of possible game states made

naive, brute-force solutions to the game impossible, at least initially, due to the limitations of early

computers. The intimate link between artificial intelligence research and chess led researcher John

McCarthy to explain its nickname “the drosophila of AI,” in a nod to the role that the fruit fly (genus

Drosophila) has played in twentieth-century genetics as a model organism.99

More recently, the historian of computing Nathan Ensmenger has constrated those explanations

for the conspicious presence of chess in AI research that rely on the game’s mathematical or technical

features with his “social history” of chess-playing algorithms. Ensmenger demonstrates how the

96. Forte, 182, fn. 21.
97. Forte, 144.
98. Edward A. Feigenbaum and Julian Feldman, eds., Computers and Thought (New York: McGraw-Hill, Inc.,

1963), 52.
99. J. McCarthy, “Chess as the Drosophila of AI,” in Computers, Chess, and Cognition (New York:

Springer-Verlag, 1990), 227–37, https://doi.org/10.1007/978-1-4613-9080-0_14.
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adoption of chess-playing in particular as the paradigm case for artificial intelligence research was

facilitated by widespread public awareness of (or, even, familiarity with) the game, pre-existing

analytical literature and (chess-)notational conventions to describe and annotate games, and a

constituency of both expert and amateur commentators willing to discuss the consequences of

artificial chess prowess for the game.100

Crucially, chess was legible as the kind of game that demanded “intelligence” of its most

successful human players, and had been associated for centuries with a kind of creative intellectuality

that the designers of artificial intelligence programs aspired to implement. As Ensmenger writes:

[C]hess has long been recognized as the pinnacle of human intellectual accomplishment,
requiring both deliberate, carefully cultivated learning and strategy, as well as bold,
creative, and courageous flights of inspired brilliance. […] Because chess was
historically regarded as such an essentially human endeavor, the ability of machines to
play chess seemed to have fundamental metaphysical implications. If a machine could
emulate what was widely considered the summit of human intelligence, namely the
abstract reasoning associated with chess-playing ability, then was it not possible that
the essence, and not just the appearance, of humanity could eventually be reproduced
mechanically?101

Much the same could be said of music, with very little modification, especially of music performance

by virtuosi; of them, expectations of expressive fluency and “courageous flights” of improvisational

brilliance are highest.102 It was therefore both uncontroversial and representative of a home truth in AI

circles when Jeremy Bernstein, writing in a 1981 New Yorker profile of Minsky, claimed that “[s]ince

human minds play games like chess and checkers, do mathematics, write music, and read books,

100. Nathan Ensmenger, “Is Chess the Drosophila of Artificial Intelligence? A Social History of an Algorithm,”
Social Studies of Science 42, no. 1 (2012): 5–30, https://doi.org/10.1177/0306312711424596, 7. Ensmenger goes on
to argue that just as the use of Drosophila in genetics narrowed the scope of that genetics to specific disciplinary questions
that were easier to answer with respect to fruit flies, so too did AI researchers’ continued use of chess end up limiting the
problems and solutions of their field to those within the orbit of computer chess.

101. Ensmenger, 9.
102. This, of course, could be viewed as a weakness of Ensmenger’s argument, in that such a litany fails to explain

precisely why chess in particular rather than any other activity. Similar things could be said also about the faculty of
language.
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the ideal machine would have to be able to do all of these things at least as well as human beings do

them.”103

Like chess, numeracy, and literacy (both oral and written), music performance was frequently

emulated by the designers of mechanical anthropomorphic automata during the peak of interest

in such devices during the mid-18th and early 19th centuries.104 These automata were designed to

manifest the outward signs of expressive performance consistent with contemporary understandings

of musical expression: the bosom of Pierre Jacquet-Droz’s keyboard-playing automaton “La

Musicienne” (built 1744) rose and fell with the music.105 Additionally, these musical automata were

programmed to render sonic evidence of a capacity for expression: their rotating drums were pinned

with realizations of works that included divisions and ornamentations that would conventionally

“added” on top of the notes in the score by human musicians in the moment of performance.106

In an oral history interview, Marvin Minsky, recalled that Forte became “so interested in

computers that he didn’t, in fact, contribute anything to us, but that’s the way it goes. […] I hoped

that he would write some new theory of musical expression.”107 Since musical comprehension

was and is still understood as a higher-order animal function, perhaps even definitional of human

cognition, the stakes were high for signs of musical expressivity: they attested to the very subjectivity

of their source. Eighteenth-century automata both delighted and provoked commentators who had

to reconcile the obvious artifice of with their own theories of subjectivity. Though much in our

understanding of the physiology of mind and consciousness had changed in the centuries since “La

Musicienne” and the Mechanical Turk, Minsky’s prurient interest in musical expression is not too far

removed in motivation from the agents provocateurs who built and touted these automata. If a gadget

103. Jeremy Bernstein, “Marvin Minsky’s Vision of the Future,” The New Yorker, December 7, 1981, https://www.
newyorker.com/magazine/1981/12/14/a-i.

104. Emily Dolan has provided an organological perspective on E.T.A. Hoffmann’s story Die Automate (“Automata,”
which was originally published in AmZ and treats musical automata at some length. See Dolan, “E. T. A. Hoffmann and
the Ethereal Technologies of ‘Nature Music’.”

105. Dolan, “The Origins of the Orchestra Machine,” 8.
106. Moseley, Keys to Play, 52.
107. Minsky, Oral history interview with Marvin L. Minsky, 45.
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from the MIT AI Group could “express” musically, it could serve as a manifest demonstration of a

step in the right direction.

4.4.3 Contemporary connections

As we have established, the contents of Forte’s Journal of Music Theory article (“A Program for the

Analytic Reading of Scores”) and the AI Lab Technical Report (“Syntax-Based Analytic Reading of

Musical Scores”) published one year later are almost identical. However, “Syntax-Based Analytic

Reading” is prefaced by a generous acknowledgments section, which gives us a glimpse into the

company that Forte kept during his stay at Project MAC.108 Even if these were mere formalities,

give some sense of the social network in which Forte—a professional music theorist—found

himself in at MIT. Forte first thanks his hosts: Robert Fano, the computer scientist and director

of Project MAC from 1963 to 1967, and Marvin Minsky, the cognitive scientist who headed up

the AI Group (and later, the newly separated AI Lab). Fano had worked with Claude Shannon in

the 1940s on communications theory, and, as the head of Project MAC, was responsible for the

managing the various time-sharing systems projects that the team were tasked with. Forte also

thanked Joseph Weizenbaum and Robert McNaughton for their “philosophical inspiration and words

of encouragement.”109

Weizenbaum, who first joined the faculty at MIT in 1963, was a computer scientist and AI

researcher of international reputation who is perhaps most well known for his work on the ELIZA

program. ELIZA was a simple system for text-based interactions between human and machine

based on hand-coded “scripts” that implement straightforward language-parsing rules and keyword

detection to generate relevant responses to user input: an early chatbot.110 Weizenbaum’s program

used pattern-matching approaches, like Forte’s, but differed in its used of a list-oriented, LISP-like

108. Forte, “Syntax-Based Analytic Reading of Musical Scores,” April 1, 1967, iv.
109. Forte, iv.
110. Today, ELIZA is often conflated with ELIZA/DOCTOR, the combination of the somewhat general ELIZA

framework for conversational simulation and a particular script designed to simulate an interaction with Rogerian
psychoanalyst. See Joseph Weizenbaum, “ELIZA—A Computer Program for the Study of Natural Language
Communication Between Man and Machine,” Communications of the ACM 9, no. 1 (January 1966): 36–45, https:
//doi.org/10.1145/365153.365168.
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programming language of his own design. ELIZA was also the kind of early AI application that

benefited from the time-sharing architecture developed at Project MAC. McNaughton’s interests,

on the other hand, lay in more formal concerns: he worked on the theory of computing, writing

logic-heavy papers about the features and limitations of theoretical idealizations of computers.111 In

short, Forte was working in the midst of, and could seek counsel from, some of the brightest minds in

the emerging field of computer science.112

Forte’s syntax-based score segmentation program was not the only music-related research

underway at the AI Group. Project MAC published yearly progress reports starting in July 1964.

Each progress report contained abstracts of the work completed under each academic center; Forte’s

program was reported in the third Progress Report (1967) as “A Syntax-Based Score-Reading

Program” under the Artificial Intelligence group heading.113 In the same year, two music-related

projects were reported. An in-progress project by Peter Samson, entitled “Computer Processing of

Musical Data” promised two sets of new computer programs for the AI Group’s PDP-6: “those to

imput and output music in both human-oriented and machine-oriented forms; and those to edit and

analyze pieces of music in the computer”.114 Samson called the system BIG, and promised that it

would accommodate organ keyboard input and output, basic sound synthesis, and the visual display

111. John Corcoran, Paliath Narendran, and Wolfgang Thomas, “Obituary Robert McNaughton 1924 – 2014,”
Bulletin of European Association for Theoretical Computer Science 3, no. 114 (October 16, 2014), http://bulletin.
eatcs.org/index.php/article/view/309. McNaughton was only temporarily affiliated with Project MAC, but his visit was
influential on his own later research; work that he published many decades later on the topic of “infinite games” built on
the contents of a Project MAC Technical Report from 1965.

112. Forte also acknowledges William Henneman, another theoretical researcher in the area of automata; Daniel J.
Edwards, a computer security pioneer who would go on to work at the National Security Agency; and Joel Moses, who
played an instrumental role in the development of the computer algebra program Macsyma. Forte also recognized the help
of his contemporaries whose disciplinary bias tilted more toward music: Stephen Smoliar, whose work is briefly described
below; Wayne Slawson, a computer musician; Stefan Bauer-Mengelberg, presumably for clarification on the still-evolving
DARMS encoding scheme that he co-designed; and his student and advisee John Rothgeb, who would go on to make
heavy use of SNOBOL in his doctoral dissertation.

113. “Project MAC Progress Report III,” 1967, 26–27. Forte is listed as a “guest” of the group under the personnel
roster on p. 10, tagged with his Yale University affiliation.

114. “Project MAC Progress Report III,” 27. Peter Samson was an inveterate tinkerer; a musical “hacker” who, as an
undergraduate, wrote routines for the TX-0 and the PDP-1 that could be used to play music, in the vein of the experiments
described by Doornbusch, “Early Computer Music Experiments in Australia and England.”
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of scores.115 The BIG system was used by Stephen Smoliar, whose work is also reported alongside

Forte’s, to perform “Some Experiments in Computer Composition of Tonal Music.”116 Smoliar

writes of his “attempt to write a program that will generate tonal melodies” with a program called

MELGEN. Smoliar’s work is not dissimilar to the experiments, a decade earlier, of Richard Pinkerton

(discussed in Chapter 3 above) and therefore does not represent a particularly novel approach to

generative composition: the rhythms are chosen according to pre-generated transition probabilities

between rhythmic units (as in a Markov model), while the pitches are chosen at random from a major

tetrachord.117

The work of Adolfo Guzmán on the automatic segmentation of visual representations of

three-dimensional scenes, though it evidently relates to a different human sensory capacity, it

possesses some similarities with Forte’s work worth teasing out. In a paper published in 1966 as

an AI Technical Memo entitled “POLYBRICK: Adventures in the Domain of Parallelepipeds,”

Guzmán described ways that a computer could infer the total number and extent of solid, cube-like

structures arbitrarily disposed in a real-world scene given only a two-dimensional representation of

the scene, as viewed from a single vantage point.118 Guzmán’s work was part of a larger, multi-year

team project led by Marvin Minksy to develop an autonomous robotic arm. The “Autonomous

Manipulator System” project was also described in the third Project MAC Progress Report, and used

a “hydraulically-powered, electrically-controlled industrial arm […] built and given to [the group] by

the American Machine and Foundry Company.”119 The system was equipped with two visual-input

115. “Project MAC Progress Report III,” 1967, 28. For a more complete description of Samson’s system see, Michael
Beeler, “Peter Samson’s Music Processor, BIG,” Artificial Intelligence Memo (Massachusetts Institute of Technology
Project MAC, July 1, 1970), https://hdl.handle.net/1721.1/5852.

116. “Project MAC Progress Report III,” 1967, 28–29.
117. See, for instance, the music examples included in “Project MAC Progress Report III,” 1967, 31. One feature of

Smoliar’s work is perhaps worth a footnote: when a rhythmic figure is repeated, MELGEN implements a set of melodic
transformations on the first iteration of the rhythmic motto in order to produce the melody to be assigned to the second
iteration of the rhythm. These transformations were: raising or lowering the melody by one scale degree (for an ascending
or descending melodic sequence respectively), retrograde, “inversion” (“the first and fourth tones are swapped and the
second and third tones are swapped”), and “retrograde-inversion.”

118. Adolfo Guzmán, “POLYBRICK: Adventures in the Domain of Parallelepipeds; A World Without Perspective,”
MIT AI Memos (Cambridge, MA: MIT, May 1, 1966), http://hdl.handle.net/1721.1/5902.

119. “Project MAC Progress Report III,” 1967, 13; for a summary of the autonomous manipulator project, see
“Project MAC Progress Report III,” 11–17.
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devices (a TV camera and an “image-dissector device”), a tactile sensor, and positional data and was

intend to “accept a relatively uncomplicated command, and without human assistance, locate grasp,

and assemble parts of a simple mechanical device.”120

One challenge for the project leader, Minsky, was to decompose the large project into

smaller units of work, which could be assigned to lab members. Guzmán, who had designed a

new pattern-matching language called CONVERT (that loosely resembled SNOBOL), was tasked

with responsibility for processing the image data from the visual-input devices into a symbolic

representation of the real-world scene. Guzmán made his first efforts on a simplified framing of the

problem, in which he assumed that the image from the video camera had already been processed

to provide a list of vertices and their locations as Cartesian coordinates in a plane corresponding to

a projection from the viewpoint of the camera. Figure 4.4 reproduces a sample input to Guzmán’s

program, a scene named “GORDO,” showing both the visual and list representations of the scene.

Each vertex given a string label and listed on the right-hand side with its x and y position in the

projection, as well as the labels for any immediately adjacent vertices.

The goal of Guzmán’s research was to define a series of manipulations on a string representation

of the camera’s perspective on the world to decompose the view of this scene into its three

component “cubes.” In the “POLYBRICK” memo, Guzmán evaluates a number of candidate

procedures, demonstrating their relative successes and failures. Edge cases, such as scenes that feature

occlusion or perspective tricks that admit multiple valid decompositions, are marshaled to show how

incremental improvements to the routines can lead to more robust parsing of the scenes.121 Both

Guzmán and Forte were interested in taking a strategically stripped-down representation of a complex

multidimensional phenomenon and then applying hand-coded rules to segment the phenomenon

into sensical units. In Guzmán’s case, these were discrete, real-world objects corresponding to

the view on the scene; in Forte’s case, these were the underlying salient units of a piece of music,

reflected—he argued—by their disposition in the score. For Guzmán, the boundaries between units

120. “Project MAC Progress Report III,” 11.
121. See, for example, the discussion of the illusory figures “WHAT?” and “TRICKY.” Guzmán, “POLYBRICK:

Adventures in the Domain of Parallelepipeds; A World Without Perspective,” 31.
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Figure 4.4: “GORDO”. A visual representation of data corresponding to a real-world scene
containing three cuboids. (In Adolfo Guzmán, “POLYBRICK: Adventures in the Domain
of Parallelepipeds; A World without Perspective,” MIT AI Memos Cambridge, MA. 1966,
5, fig. 3)
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and their contiguity—“cubes”—are determined by the application of a priori, hand-coded patterns

that capture the expected structure of parallelepipeds. Similarly for Forte, since his algorithm

implements a segmentation strategy that assumes that discontinuities between salient musical objects

are represented by rests in the musical score, whereas contiguous areas are defined in terms of

temporal overlap.

Additionally, both projects “bracketed” the more complex problem of converting images

corresponding to their desired object of into machine-readable data. Just as Guzman’s program

assumed that all the work of de-noising, image-processing, and line detection was completed, so

too did Forte assume that an already-encoded score was available. Both researchers departed from

the assumption that some digital representation of the phenomenon to be analyzed was at hand. At

the time of writing, the most common method of encoding scores for computer consumption was

to use a keypunch: either a manual or typewriter-controlled device that perforated the standard

paper cards used for data input by mainframe computers. Some work had been done with so-called

“mark-sense” cards to alleviate the difficulty of keypunching score data, which—like Scantron

response cards—required little more than a stylus or pen to mark up, work was underway at MIT

to design the first optical music recognition (OMR) systems.122 In his doctoral dissertation, David

Prerau, an affiliate of the AI Laboratory who acknowledged Forte’s assistance, built on the early

of Dennis Pruslin to design an OMR system that processed images of printed scores.123 The early

successes of OMR were provisional and short-lived: Prerau’s system dealt with only two staves of

122. Kostka, “Recent Developments in Computer-Assisted Musical Scholarship,” 16–17.
123. David Stewart Prerau, “Computer Pattern Recognition of Standard Engraved Music Notation” (Doctoral diss.,

Massachusetts Institute of Technology, 1970); Dennis H. Pruslin, “Automatic Recognition of Sheet Music” (ScD diss.,
Massachusetts Institute of Technology, 1966). Both of these dissertations were reviewed by Michael Kassler in 1972.
Kassler writes (over-optimistically, it turned out) that “as a result of their work, the logic of a machine that ‘reads’ multiple
parallel staffs bearing polylynear [polyphonic] printed music in at least one ‘fount’ and size can be seen to be no further
than another couple of M.I.T. dissertations away. Quite possibly such dissertations may get completed before much
thought is directed toward deciding what wisely to do with the masses of musical data that an operational OCR system
could make available for computer processing.” Kassler, “Optical Character-Recognition of Printed Music.”, 253.
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monophonic lines, while precious little progress was seen until the advances of the 1990s at McGill,

stewarded by Ichiro Fujinaga.124

As Michiel Schuijer and Aaron Girard have already pointed out, both the technical report and the

article in JMT that describe Forte’s score-segmentation program bears the following message:

Work reported herein was supported in part by Project MAC, an M.I.T. research project
sponsored by the Advanced Research Projects Agency [ARPA], Department of Defense,
under Office of Naval Research Contract Nonr-4102(01).125

Why did the Department of Defense come to fund—however directly or indirectly—the work

of a music theorist proposing a musical segmentation algorithm for use in the analysis of atonal

music? According to Robin Maconie, these government funders believed that the more speculative

of the research that they financed would eventually lead to applications of interest to military or

national-security sponsors. Writing about Forte’s text the Structure of Atonal Music in the context of

a broadly pessimistic assessment of the influence of Cold War “information science” on avant-garde

composition and the music theory that supported it, Maconie claims that

[I]t requires little insight to recognize the project’s unstated, communications-related
agenda as aimed at developing a programmable automated system for the real-time
recognition of orally transmitted pitch-clusters to be identified as keywords in an alien
tongue (atonal music to you and me, Russian to someone else)126

From this perspective, some computational applications in musical research are stalking-horses for

the investigation of closely analogous problems in other domains—speech recognition is a favored

example of Maconie—upon whose solution questions of national security might hinge. With one

or two exceptions, the reality is considerably more banal. Scores of technical reports and related

publications in journals bore this message; this was independent of any apparent application of

124. Gary E. Wittlich, Eric J. Isaacson, and Jeffrey E. Hass, “Computer Applications in Music Composition and
Research,” in Advances in Computers, ed. Marshall C. Yovits, vol. 36 (Academic Press, Inc., 1993), 121, https://doi.
org/10.1016/S0065-2458(08)60271-5.

125. Forte, “Syntax-Based Analytic Reading of Musical Scores,” April 1, 1967, Appendix; Forte, “A Program for the
Analytic Reading of Scores,” 363.

126. Robin Maconie, “Care to Listen: Milton Babbitt and Information Science in the 1950s,” Tempo 65, no. 258
(October 2011): 34, https://doi.org/10.1017/S0040298211000362.
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interest to such a sponsor, or, indeed, independent of any overt reference to the use of the Project

MAC computer utilities.127

These acknowledgments are part of the background noise of military and government

bureaucracy and indicate neither an especially strong relationship between nor interest in the research

from the various government funding agencies. Furthermore, Forte acknowledged another source of

funding for his score-parsing program: a fellowship from the American Council of Learned Societies

(ACLS), tenable for the academic year 1965–1966.128 Forte likely applied for the ACLS Grants for

Computer-Oriented Research in the Humanities. In the year Forte would have applied, the ACLS

offered fellowships supporting time off from academic responsibilities up to the value of $10,000 “to

support research in all fields of the humanities involving the use of electronic computers.”129 This

funding would have permitted Forte to take time off teaching at Yale, with the promise of continued

employment on his return, for at least one of the two years that he spent at MIT. Thus, while Forte’s

access to computer time at Project MAC was facilitated by the standing ARPA grant, his relief from

teaching at Yale—the most significant cost in the execution of his project—was funded by the ACLS.

4.5 Forward projections

The computational attitude that Forte cultivated at MIT not only found its expression in his own

computer-driven research, but also in the courses he taught at Yale and the graduate research projects

he supervised as after his return in 1968. In his “Status Report” on humanities computing at the 1967

Fall Joint Computer Conference, Forte called attention to the importance of training—at both the

faculty and the graduate level—to assuring the future use of computers in music research.130 During

the period between 1966 and 1977 either Forte or an associated researcher offered a graduate course

127. See, for example, a paper on an area of pure mathematics relating to number theory with negligible relation to
the activities of Project MAC, save that one co-author (Hilary Putnam) completed the work during a stay at the group.
David Luckham and Hilary Putnam, “On Minimal and Almost-Minimal Systems of Notations,” Transactions of the
American Mathematical Society 119, no. 1 (1965): 86–100, https://doi.org/10.1090/S0002-9947-1965-0184852-2.

128. Forte, “Syntax-Based Analytic Reading of Musical Scores,” April 1, 1967, iv.
129. “Fellowships and Grants,” Proceedings of the Modern Language Association 79, no. 4 (1964): 256, http://

www.jstor.org/stable/2699210.
130. Forte, “Music and Computing,” 329.
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on computer applications in music theory at the Department of Music at Yale. The course, first

entitled “Computer Techniques for Music Theory” and then renamed in 1972 to the more general

“Computer Techniques for Research in Music,” was offered on a roughly biennial basis.131 The impact

of these courses is attested to by some of the enrolled students, who would recall them over forty

years later in a series of tributes and reminiscences published in 2014 by Gamut in memory of Forte.

John Graziano (PhD 1975) recalls:

The class struggled mightily with writing programs in SNOBOL, which we then had
to bring to the computer center […] where we would sit and type punch-cards to be
submitted to the mainframe. It was a slow and frustrating process, with the printout
taking upwards of an hour at times; only then would one find that there was a mistake in
the program. Allen was convinced that computer analysis was the wave of the future[.]132

Jens Hanson (PhD 1969) also emphasizes the frustrations of working with contemporary computing

utilities:

the introduction [to computer applications] was both exciting and difficult in the days of
punch cards, batch computing, and the slow development of computer languages for the
arts and humanities.133

James Baker (PhD 1977) invokes a memory of a now-deflated optimism about the transformative

effect of computer applications on music analysis. Baker claims that, as an intellectual exercise, their

study of computer methods nevertheless encouraged specific analytical habits of thought, even away

from the computer:

We theorists all took a semester of SNOBOL4 and became fairly adept at the
Ford-Columbia Representation (DARMS), lugging around boxes of punch cards
wherever we went. Although computer applications perhaps did not pan out for music
analysis the way many of us believed they would, I think this study nonetheless had a
profound effect on our view of the analytical value of systematic evaluation across a
spectrum of parameters.134

131. This information was collated from the Yale Graduate School Course Directories, which are available for
consultation in the reading room of the Yale University Archives, Yale University Library.

132. David Carson Berry, ed., “To Allen Forte from His Former Advisees: Tributes and Reminiscences,” Gamut, A
Music-Theoretical Matrix: Essays in Honor of Allen Forte (Part V), 6, no. 2 (2014): 267–338, http://trace.tennessee.edu/
gamut/vol6/iss2/9/, 279.

133. Berry, 275.
134. Berry, 284.
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Kim Kowalke (PhD 1977) misremembers the programming language they learned as the much

more widely-known and industry standard language COBOL, but attests to Forte’s teaching of

programming even outside the context of the “Computer Techniques” seminar:

At the time Allen was very interested in computer-assisted research, and in the “Atonal
Analysis” seminar we all learned COBOL (wasn’t it?), punched our data onto IBM cards,
and evaluated the results of various segmentations of our portions of the assigned work.
It all seems so primitive now, of course, but at the time we felt something like a team
of music-scientists at the cutting edge, particularly because our textbook was Allen’s
Selectric typescript of The Structure of Atonal Music.135

Kowalke’s recollection raises the specter of a more intimate link between the content of The Structure

of Atonal Music and the computational work of Forte’s graduate students. It is also notable that

the work of students, as Kowalke remembers it, consisted partially in the “evaluation” of various

segmentations of the musical works being studied in the seminar. This suggests that the use of a

segmentation algorithm was ultimately not considered by Forte to be definitive, thus requiring expert

(or, at least, graduate student) intervention before it could be certified as analytically useful—and

possibly, even, for inclusion in Forte’s draft text. Even as Forte’s research focus shifted away from the

computer-assisted analysis of atonal music, the work of his later students, such as Stefan Schwanauer,

who completed a doctoral dissertation on artificial intelligence and music under Forte, attest to his

continued computational influence.136

Forte’s role in propagating the computational attitude as an educator is not just confined to that

suggested by these scattered impressions: a number of his students worked extensively to include the

computer in their research. In his dissertation, John Rothgeb—Forte’s first advisee to graduate from

Yale with a PhD in Music Theory—described SNOBOL3 programs that propose harmonizations for

unfigured bass lines.137 One of Forte’s advisees cited above, Jens Hanson, described “An Operational

Approach to Theory of Rhythm” in his dissertation of the same year, which included source code for

programs in SNOBOL3 that implemented Hanson’s theory of the “pattern of signals,” an approach

135. Berry, 287.
136. Berry, 309.
137. John Rothgeb, “Harmonizing the Unfigured Bass: A Computational Study” (PhD diss., Yale University, 1968),

https://search.proquest.com/docview/302361019.
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to the description and generation of repeating forms inspired by the techniques of Schillinger.138

Bo Alphonce’s 1974 dissertation described the invariance matrix, a concise and useful means of

representing invariances between two pitch-class sets under TnI .139 Alphonce’s invariance matrix is

usually taught—if at all—as a time-saving tool for the analyst that quickly reveals those pitch-classes

in a pitch-class set that will be held in common under transposition, at all indices. It can be computed

relatively quickly by hand; it is viewed in this context as an adjunct to human analysis. Its main use,

however, in Alphonce’s dissertation is as a data structure: an internal, computational representation

optimized for pattern detection and manipulation.

Understanding that the continued success of courses of this nature depended on student access

to computers, Forte wrote a stern letter to the Provost and Acting President of Yale University, Hanna

Gray, complaining that a recent decision to close accounts for “unsponsored research” at the Yale

Computer Center (YCC) was “disturbing.”140 Forte noted that the Department of Music had made

regular use of the computer utility for some years, and noted:

I also feel strongly that the computing facility must be regarded as essential and that the
university’s support of unsponsored research should not be lessened in any way. This
is particularly true in the humanities where it is virtually impossible to obtain outside
assistance to support computational costs.141

Forte received a swift reply from the administration claiming that the hiatus was due to a problem of

time allocation by the YCC Operations Committee, and was, at any rate, temporary.142 He may have

been reassured to learn in the same reply that the YCC’s budget for the 1977/78 academic year was to

be larger than ever. However, such reassurances were bureaucratic platitudes: as computer technology

became ever more widespread, universities were bound to direct increasing amounts of money toward

computer purchasing and maintenance. Nevertheless, this brief exchange of letters demonstrates

138. Jens L. Hanson, “An Operational Approach to the Theory of Rhythm” (PhD diss., Yale University, 1969).
139. Bo H. Alphonce, “The Invariance Matrix” (PhD diss., Yale University, 1974), https://search.proquest.com/

docview/302760279
140. Forte Archive at Yale, Box 11, Letter dated June 21, 1977 from AF to Mrs. [Dr.] Hanna Gray. cc’d Rufus

Hendon, Charles Bockelman, Bo Alphonce.
141. Forte, Letter to Mrs. [Dr.] Hanna Gray.
142. Forte Archive at Yale, Box 11, Letter dated June 23, 1977 from Charles K. Bockelman to AF.
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Forte’s awareness of the precarity of the humanities’ access to computational resources (at least

at Yale), as well as his willingness to press for accountability when such access was threatened by

decisions made by the university administration.

As introduction of microcomputers relocated the site of (low-performance) academic computing

away from centralized mainframe computer utilities into the departmental labs and offices of faculty

members, set-theory helper programs became less cumbersome to use for that tiny constituency

of music theorists who sought to use the computer in their analytical work. In 1979, J. Timothy

Kolosick at the University of Wisconsin wrote to Forte, thanking him for his permission to include

his “list of prime forms” in a computer program that Kolosick and his colleague Joseph Pagliolo had

written for the Apple II microcomputer.143 Kolosick included an announcement for the release of the

software, which claimed that the authors “hope this time-saving program will encourage others to

use Forte’s analytical procedures on atonal and tonal music alike in order that the full potential of

the set-theoretic approach might be further realized.”144 Software began to circulate in the 1970s in

the form of relatively inexpensive magnetic diskettes, which the Apple II and many other commodity

microcomputers supported. This allowed academic software to circulate beyond the borders of the

centers of mainframe music computing—of which Yale could reasonably said to be one, thanks to

Forte’s interest—and into the offices of faculty and students.

Part of Forte’s personal archive, which is currently held at the University of North Texas, a

set of floppy diskettes contain a number of command-line MS-DOS programs from the 1990s that

can be used to aid music analysis. One program, MOD12.EXE was developed by Thomas Demske

(a graduate of Yale University) and provides an interactive interface to implementations of many

of the common calculations defined in terms of the objects of atonal music analysis. Extensive

documentation accompanies Demske’s program, but its source code does not: it was written in a

compiled language—either C or C++—and converted to a standalone executable binary file that

143. Letter from J. Timothy Kolosick to AF, 31 August 1979, Forte Archive at Yale, Box 12.
144. Enclosure to letter from J. Timothy Kolosick to AF, 31 August 1979, Forte Archive at Yale, Box 12.
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targets a particular operating system, and requires no other program to run.145 While this binary

executable can be run today with the help of emulators that simulate obsolete platforms on modern

ones, we cannot come to understand the inner workings of Demske’s digital artifact without the help

of reverse engineering tools.

Immediately more scrutable however, is a collection of nineteen SNOBOL4 programs on

the same disk. Unlike C or C++, SNOBOL is an interpreted language, meaning that code written

for SNOBOL is distributed in the form in which was written, requiring the presence of a separate

“interpreter” program to be installed in the target environment.146 These SNOBOL programs perform

some of the functions included in the MOD12 suite, and even some of those included in the original

MAD toolkit that Forte described in the late 1960s. Since Forte was proficient in SNOBOL, we

might suspect him to be the author of these programs. Dating the original coding of these programs

and establishing their author based on forensic evidence is not straightforward. It would be difficult

to claim that these programs were coded identically to the programs that Forte would have used in

the late 1960s, though they perform some of the functions enumerated by Forte at the end of the

Technical Report, where he describes the further analysis routines to which extracted segments could

be passed. Their existence on a diskette format commonly used through the late 1990s is strong

circumstantial evidence that Forte continued to have SNOBOL code at his disposal, many decades

after his work at MIT and after the language itself fell out of common usage. There is scant evidence

to suggest that Forte learned any other programming languages apart from SNOBOL (at least

SNOBOL3) and MAD, the two languages used and alluded to in his report on the score-segmentation

program.

The diagram shown in Figure 4.5 shows the relationships between select SNOBOL source

files, which provide an interface to basic set-theoretic and utility functions and the data files, which

contain various pre-computed information about pitch-class sets, genera, and their relations. Arrows

between a program name and a data file indicate that this program references the contents of the

145. The binary file MOD12.EXE in Forte’s floppy disk contains the following string, inter alia: “WATCOM C/C++16
Run-Time system. (c) Copyright by WATCOM International Corp. 1988-1995. All rights reserved.”

146. A SNOBOL4 interpreter is also included on Forte’s diskette.
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PROGRAMS/IMBRI.SNO

'\DATA\IVLSETS'

PROGRAMS/IIVEC.SNO

'\DATA\NEWLIST'

'\DATA\IIVECS'

PROGRAMS/SETNAMES.SNO

'\DATA\OCTA.IPT'

'\DATA\OCTA2.IPT'

PROGRAMS/PROD!.SNO

'\DATA\IVLSETS2'

PROGRAMS/unary.sno

'\DATA\ZSETS'

PROGRAMS/ROW.SNO

'\DATA\LETTERS'

'\DATA\ROWMESS'

PROGRAMS/PROD.SNO

'\DATA\PRODLIST'

PROGRAMS/SUBSETS.SNO

'\DATA\COMB.DTA'

PROGRAMS/MTX.SNO

'\DATA\GENERA.IPT'

'\DATA\ZHEXES'

'\DATA\GENSIZES'

'\DATA\GTYPES'

PROGRAMS/COMPARE.SNO

'\DATA\INVPCS'

Figure 4.5: Network diagram showing the dependency relations between the code and data files
stored on floppy disks owned by Allen Forte. All nodes are labeled with the name of the
file it represents. Circled nodes represent data files; the remainder represent runnable
program files. Arrows from a program node to a data node indicate that the content of
that data file is referenced in the code of the file represented by the data node. The relative
size of the nodes represent the number of inbound arrows to that node; larger nodes thus
represent data files that are most referenced in program code. Boldface program node
labels highlight those program files that depend on the master list of pitch-class set types,
organized by their interval content.
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data file during its execution, meaning that the SNOBOL program depends necessarily on the data

contained in the file that it references. Larger nodes correspond to those files that are referenced by

more programs. Perhaps unsurprisingly, the largest node corresponds to the file DATA/IVLSETS, a

master list of set-classes and their interval content. These relations attest to a continuing separation

between the music-analysis routines, coded in the non-numeric SNOBOL4 and the pitch-catalog

data, presumably precomputed in a numeric or mathematical computing environment. Almost

thirty years later, this was just as it was when Forte’s report alluded to the separation of concerns

between the segmentation routines (coded in SNOBOL) and the pitch-class set calculation routines

(coded in MAD). These diskettes, though they do not contain code dating from Forte’s time at MIT,

nevertheless bear the echoes of a way of thinking through music with machines—a computational

attitude—given its first airing in the heady days of sixties mainframe computing, computer-inspired

AI, and Forte’s dreams of a possible future for music theory: the automated, direct, lossless

manipulation of musical objects.

4.6 Conclusion

From this vantage point, we can now survey the alignment between Forte’s research program and

Forte’s computer programs. The former: his score-based, formalist agenda for the analysis of atonal

musical works, which, when fully purged of references to tonal or serial terminology, would reveal

an “adequate structural description” of the “determinants of this complex music.”147 The latter:

his deterministic, pattern-matching score segmentation routine, that he designed using SNOBOL

and DARMS to perform systematic transformations of notated music by applying straightforward,

rest-based segmentation criteria. To advance his analytical interests, Forte used his computational

expertise to take advantage of what SNOBOL and DARMS could do for him, realizing their potential

to be turned toward the structuralist analysis of purportedly lossless string representations of musical

works.

147. Forte, “The Structure of Atonal Music: Practical Aspects of a Computer-Oriented Research Project.”, 1.
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Forte’s work evinces the computational attitude on the first level, in that it explicitly specifies of

a computational algorithm that systematically manipulates the symbols of a musical score. Forte’s

situation within the AI Group, however, means that his work is allied also to the computationalist

project. This second register of the computational attitude, too, is reflected in Forte’s discussion

of the hypothetical music-analyst-as-pattern matcher, who applies cognitive filters to the musical

information of the score with a view to extracting the structure therein. It is this idea—that the analyst

carries with them an apparatus for structure-extraction with certain features that are compatible with

computer implementation—that motivates Forte’s choice to use the SNOBOL language in the first

place with its first-class support for string matching.

The music theorist David Lewin’s relation to the computational attitude is contrapuntal

to Forte’s. The crucial notion at the heart of Lewin’s essay, “Music Theory, Phenomenology,

and Modes of Perception,” (1986) is the p-model, his putative formalization of the content of

music-analytical experience that aims to take music-analytic context or “framing” into more or less

explicit consideration at every timestep in the unfolding analysis of a Schubert Lied, “Morgengruß”

from Die schöne Müllerin (D. 975). Despite its apparent richness, Lewin argues that the p-model

fails to capture everything an analyst might be interested in; schematic, disembodied attempts to

itemize the contents of experience. The influence of ideas from the field of artificial intelligence

(AI) on this essay been not only acknowledged by Lewin himself, but also by his latter-day exegetes,

including Brian Kane.148 Kane understands Lewin’s p-model to be the linchpin of a deliberate

straw-man argument: the p-model is described at length only to be ultimately rejected as an adequate

candidate model of music-analytic perception.

In this aspect in particular, Kane argues, Lewin closely tracks an argument against the feasibility

of general AI made by Richard Dreyfus, a strident critic of AI—particularly the strand represented

by Marvin Minsky’s work.149 Little wonder, then, that Forte and Lewin make contrasting uses of AI

148. David Lewin, “Music Theory, Phenomenology, and Modes of Perception,” Music Perception: An
Interdisciplinary Journal 3, no. 4 (July 1, 1986): 327–92, https://doi.org/10.2307/40285344, 334 fn. 10; Kane,
“Excavating Lewin’s ‘Phenomenology’.” See also, Moshaver, “Telos and Temporality.”, 180–181.

149. Kane, “Excavating Lewin’s ‘Phenomenology’,” 31–33.
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in their music-analytical work. On Kane’s reading, Lewin invokes the apparatus of AI reflexively

and self-consciously, using its notational and terminological apparatus to engineer a self-critique,

pushing the p-model to its limits. Forte’s report, on the other hand, makes use of the computational

attitude relatively straightforwardly: his program takes the premises of a rule-based approach to AI for

granted; they are both the departure point and the end goal of the Technical Report.

Forte falls in line with the orthodox techno-optimism of the AI Group to articulate a model

for music analysis that is about as disembodied as possible: the musical work is reduced to a

single stream of characters, sliced and diced in search of musical structure whose trace is specified

in advance by adequately crafted SNOBOL rules. That Forte had completely internalized the

computational research program advanced there is perhaps best summed up by a passing remark on

his score-reading program from the Technical Report. Its impassive tone dissembles an austere vision

of nothing less than music analysis without music analysts; theory without theorists:

A tool of this kind should produce results at least as good as those produced by the
human analyst. It should not give provisional readings that require further hand-editing
or interpretation of some kind. Indeed, it would be appropriate to aim for a reader which
would produce results superior to those obtained by the human analyst.150

150. Forte, “Syntax-Based Analytic Reading of Musical Scores,” April 1, 1967, 3–4.

244



Works cited

Agar, Jon. “What Difference Did Computers Make?” Social Studies of Science 36, no. 6 (December
1, 2006): 869–907. https://doi.org/10.1177/0306312706073450.

“AIGA Design Archives.” Accessed April 28, 2019. https://designarchives.aiga.org/#/entries/muriel/
_/detail/relevance/asc/12/7/17199/snobol3-primer/1.

Alphonce, Bo H. “Music Analysis by Computer: A Field for Theory Formation.” Computer Music
Journal 4, no. 2 (1980): 26–35. https://doi.org/10.2307/3680080.

———. “The Invariance Matrix.” PhD diss., Yale University, 1974. https://search.proquest.com/
docview/302760279.

Al-Zand, Karim. “Improvisation as Continually Juggled Priorities: Julian ‘Cannonball’ Adderley’s
‘Straight, No Chaser’.” Journal of Music Theory 49, no. 2 (2005): 209–39. http://www.jstor.
org/stable/27639399.

Ameling, Walter. Digitalrechner — Grundlagen und Anwendungen: Technische Informatik 1.
Braunschweig: Friedr. Vieweg & Sohn, 1990.

“Apple II Personal Computer.” National Museum of American History. Accessed May 5, 2019. https:
//americanhistory.si.edu/collections/search/object/nmah_334638.

Ariza, Christopher. “Algorithmic.Net | Algorithmic.net.” Accessed May 5, 2019. http://algorithmic.
net/.

———. “An Open Design for Computer-Aided Algorithmic Music Composition: athenaCL.” PhD
diss., New York University, 2005. https://search.proquest.com/docview/305469710.

———. “Navigating the Landscape of Computer Aided Algorithmic Composition Systems: A
Definition, Seven Descriptors, and a Lexicon of Systems and Research.” In Proceedings of
the International Computer Music Conference, 765–72. Barcelona, Spain, 2005.

245

https://doi.org/10.1177/0306312706073450
https://designarchives.aiga.org/#/entries/muriel/_/detail/relevance/asc/12/7/17199/snobol3-primer/1
https://designarchives.aiga.org/#/entries/muriel/_/detail/relevance/asc/12/7/17199/snobol3-primer/1
https://doi.org/10.2307/3680080
https://search.proquest.com/docview/302760279
https://search.proquest.com/docview/302760279
http://www.jstor.org/stable/27639399
http://www.jstor.org/stable/27639399
https://americanhistory.si.edu/collections/search/object/nmah_334638
https://americanhistory.si.edu/collections/search/object/nmah_334638
http://algorithmic.net/
http://algorithmic.net/
https://search.proquest.com/docview/305469710


———. “Two Pioneering Projects from the Early History of Computer-Aided Algorithmic
Composition.” Computer Music Journal 35, no. 3 (2011): 40–56.

Ashby, Arved. “Of ‘Modell-Typen’ and ‘Reihenformen’: Berg, Schoenberg, F. H. Klein, and the
Concept of Row Derivation.” Journal of the American Musicological Society 48, no. 1
(Spring 1995): 67–105. https://doi.org/10.2307/3128851.

———. “Schoenberg, Boulez, and Twelve-Tone Composition as ‘Ideal Type’.” Journal of
the American Musicological Society 54, no. 3 (Autumn 2001): 585–625. https:
//doi.org/10.1525/jams.2001.54.3.585.

———. “The Development of Berg’s Twelve-Tone Aesthetic as Seen in the Lyric Suite and Its
Sources.” PhD diss., Yale University, 1995.

Aspray, William. “The Many Histories of Information.” Information & Culture 50, no. 1 (February
2015): 1–23. https://doi.org/10.7560/IC50101.

———. “The Scientific Conceptualization of Information: A Survey.” IEEE Annals of the History
of Computing 7, no. 2 (April 1985): 117–40. https://doi.org/10.1109/MAHC.1985.10018.

Attneave, Fred. Applications of Information Theory to Psychology: A Summary of Basic Concepts,
Methods, and Results. New York: Holt, 1959.

———. “Stochastic Composition Processes.” The Journal of Aesthetics and Art Criticism 17, no. 4
(1959): 503–10. https://doi.org/10.2307/428223.

Auner, Joseph. “Reich on Tape: The Performance of Violin Phase.” Twentieth-Century Music 14, no.
1 (February 2017): 77–92. https://doi.org/10.1017/S147857221700007X.

Austrian, Geoffrey. Herman Hollerith, Forgotten Giant of Information Processing. New York:
Columbia University Press, 1982.

Baars, Bernard J. The Cognitive Revolution in Psychology. New York: Guilford Press, 1986.

Babbitt, Milton. “‘My Vienna Triangle at Washington Square,’ Revisited and Dilated.” In The
Collected Essays of Milton Babbitt, edited by Stephen Peles, 466–87. Princeton, NJ:
Princeton University Press, 2012.

———. “Responses: A First Approximation.” Perspectives of New Music 14/15, nos. 2-1 (1976):
3–23. https://doi.org/10.2307/832619.

———. The Collected Essays of Milton Babbitt. Edited by Stephen Peles. Princeton, NJ: Princeton
University Press, 2003.

246

https://doi.org/10.2307/3128851
https://doi.org/10.1525/jams.2001.54.3.585
https://doi.org/10.1525/jams.2001.54.3.585
https://doi.org/10.7560/IC50101
https://doi.org/10.1109/MAHC.1985.10018
https://doi.org/10.2307/428223
https://doi.org/10.1017/S147857221700007X
https://doi.org/10.2307/832619


———. “The Use of Computers in Musicological Research.” Perspectives of New Music 3, no. 2
(1965): 74–83. https://doi.org/10.2307/832505.

———. “The Use of Computers in Musicological Research.” In The Collected Essays of Milton
Babbitt, edited by Stephen Peles. Princeton, NJ: Princeton University Press, 2003.

Backus, John. “‘Die Reihe’: A Scientific Evaluation.” Perspectives of New Music 1, no. 1 (Autumn
1962): 160–71. https://doi.org/10.2307/832186.

Bar-Hillel, Yehoshua. “An Examination of Information Theory.” Philosophy of Science 22, no. 2
(April 1955): 86–105. https://doi.org/10.1086/287407.

Bauer, Amy. “‘Tone-Color, Movement, Changing Harmonic Planes’: Cognition, Constraints, and
Conceptual Blends in Modernist Music.” In The Pleasure of Modernist Music: Listening,
Meaning, Intention, Ideology, edited by Arved Mark Ashby, 121–52. Eastman Studies in
Music. Rochester, NY: University of Rochester Press, 2004.

Bauer-Mengelberg, Stefan, and Melvin Ferentz. “On Eleven-Interval Twelve-Tone Rows.”
Perspectives of New Music 3, no. 2 (1965): 93–103. https://doi.org/10.2307/832507.

———. “Research Project in the Utilization of High-Speed Electronics Computing Equipment for the
Preparation of Photo-Masters for Music Printing.” Unpublished interim report, January 31,
1968.

Bean, Calvert. “Information Theory Applied to the Analysis of a Particular Formal Process
in Tonal Music.” DMA thesis, University of Illinois at Urbana-Champaign, 1961.
https://search.proquest.com/docview/302066397.

Beeler, Michael. “Peter Samson’s Music Processor, BIG.” Artificial Intelligence Memo.
Massachusetts Institute of Technology Project MAC, July 1, 1970. https://hdl.handle.
net/1721.1/5852.

Bent, Ian, and John Morehen. “Computers in the Analysis of Music.” Proceedings of the Royal
Musical Association 104, no. 1 (1977): 30–46. https://doi.org/10.1093/jrma/104.1.30.

Berlind, Gary, Barry S. Brook, Lejaren A. Hiller, Jan P. LaRue, and George W. Logemann.
“Addendum: Writings on the Use of Computers in Music.” College Music Symposium 6
(Autumn 1966): 143–57. http://www.jstor.org/stable/40373186.

Bernard, Jonathan W. “Chord, Collection, and Set in Twentieth-Century Theory.” In Music Theory in
Concept and Practice, edited by James M. Baker, David W. Beach, and Jonathan W. Bernard,
11–51. Rochester, NY: University Rochester Press, 1997.

247

https://doi.org/10.2307/832505
https://doi.org/10.2307/832186
https://doi.org/10.1086/287407
https://doi.org/10.2307/832507
https://search.proquest.com/docview/302066397
https://hdl.handle.net/1721.1/5852
https://hdl.handle.net/1721.1/5852
https://doi.org/10.1093/jrma/104.1.30
http://www.jstor.org/stable/40373186


Bernstein, Jeremy. “Marvin Minsky’s Vision of the Future.” The New Yorker, December 7, 1981.
https://www.newyorker.com/magazine/1981/12/14/a-i.

Berry, David Carson. “Journal of Music Theory Under Allen Forte’s Editorship.” Journal of Music
Theory 50, no. 1 (Spring 2006): 7–23. https://doi.org/10.1215/00222909-2008-004.

———, ed. “To Allen Forte from His Former Advisees: Tributes and Reminiscences.” Gamut, A
Music-Theoretical Matrix: Essays in Honor of Allen Forte (Part V), 6, no. 2 (2014): 267–338.
http://trace.tennessee.edu/gamut/vol6/iss2/9/.

Biagioli, Mario. “Postdisciplinary Liaisons: Science Studies and the Humanities.” Critical Inquiry
35, no. 4 (Summer 2009): 816–33. https://doi.org/10.1086/599586.

Bianchi, Eric. “Prodigious Sounds: Music and Learning in the World of Athanasius Kircher.” PhD
diss., Yale University, 2011. https://search.proquest.com/docview/884260435.

Bigo, Louis, Jean-Louis Giavitto, and Antoine Spicher. “Building Topological Spaces for Musical
Objects.” In Mathematics and Computation in Music, edited by Carlos Agon, Moreno
Andreatta, Gérard Assayag, Emmanuel Amiot, Jean Bresson, and John Mandereau, 13–28.
Lecture Notes in Computer Science. Paris. France: Springer Berlin Heidelberg, 2011.

Birkhoff, George. Aesthetic Measure. Cambridge, MA: Harvard University Press, 1933.

Blachman, Nelson M. “Report on the Third London Symposium on Information Theory.”
IRE Transactions on Information Theory 2, no. 1 (March 1956): 17–23. https:
//doi.org/10.1109/TIT.1956.1056778.

Bloor, David. “Toward a Sociology of Epistemic Things.” Perspectives on Science 13, no. 3
(Autumn 2005): 285–312. https://muse.jhu.edu/article/188183.

Bogost, Ian, and Nick Montfort. “Platform Studies: Frequently Questioned Answers.” In
Proceedings of the Digital Arts and Culture Conference. Irvine, CA, 2009.

Born, Georgina. Rationalizing Culture: IRCAM, Boulez, and the Institutionalization of the
Musical Avant-Garde. Berkeley, CA: University of California Press, 1995.

Both, Christoph. “The Influence of Concepts of Information Theory on the Birth of Electronic Music
Composition: Lejaren A. Hiller and Karlheinz Stockhausen, 1953–1960.” University of
Victoria, 1995. https://hdl.handle.net/1828/6399.

Brinkman, Alexander Russell. Pascal Programming for Music Research. Chicago: University of
Chicago Press, 1990.

248

https://www.newyorker.com/magazine/1981/12/14/a-i
https://doi.org/10.1215/00222909-2008-004
http://trace.tennessee.edu/gamut/vol6/iss2/9/
https://doi.org/10.1086/599586
https://search.proquest.com/docview/884260435
https://doi.org/10.1109/TIT.1956.1056778
https://doi.org/10.1109/TIT.1956.1056778
https://muse.jhu.edu/article/188183
https://hdl.handle.net/1828/6399


Brooks, William. “In Re: ‘Experimental Music’.” Contemporary Music Review 31, no. 1 (February
2012): 37–62. https://doi.org/10.1080/07494467.2012.712282.

Burgoyne, John Ashley, Jonathan Wild, and Ichiro Fujinaga. “Compositional Data Analysis of
Harmonic Structures in Popular Music.” In International Conference on Mathematics and
Computation in Music, 52–63. Springer, 2013. https://doi.org/10.1007/978-3-642-39357-0_
4.

Burns, Patrick J. “The Ancient Case Against Programming ‘Languages’.” EIDOLON (blog), April
24, 2017. https://eidolon.pub/the-ancient-case-against-programming-languages-b8d253ea6e64.

Campbell-Kelly, Martin, and William Aspray. Computer: A History of the Information Machine.
Third edition. The Sloan Technology Series. Boulder, CO: Westview Press, 2014.

Carroll, J. Douglas, and J. J. Chang. “Analysis of Individual Differences in Multidimensional Scaling
via an N-Way Generalization of ‘Eckart-Young’ Decomposition.” Psychometrika 35, no. 3
(September 1, 1970): 283–319. https://doi.org/10.1007/BF02310791.

———. “How to Use INDSCAL, a Computer Program for Canonical Decomposition of N-Way
Tables and Individual Differences in Multidimensional Scaling.” Unpublished report. Murray
Hill, NJ: AT&T Bell Laboratories, 1969.

Carter, Elliott. Harmony Book. Edited by Nicholas Hopkins and John F. Link. New York: Carl
Fischer, 2002.

Cohen, Joel E. “Information Theory and Music.” Behavioral Science 7, no. 2 (1962): 137–63.

Cohn, Richard. “Teaching Atonal and Beat-Class Theory, Modulo Small.” MusMat: Brazilian
Journal of Music and Mathematics 1, no. 1 (December 2016): 15–24. https://musmat.org/
wp-content/uploads/2016/12/02-cohn.pdf.

Collins, Nick. “The Analysis of Generative Music Programs.” Organised Sound 13, no. 3 (December
2008): 237–48. https://doi.org/10.1017/S1355771808000332.

Cook, Nicholas. “Between Process and Product: Music and/as Performance.” Music Theory Online
7, no. 2 (April 2001). http://www.mtosmt.org/issues/mto.01.7.2/mto.01.7.2.cook.html.

Coons, Edgar, and David Kraehenbuehl. “Information as a Measure of Structure in Music.” Journal
of Music Theory 2, no. 2 (1958): 127–61. https://doi.org/10.2307/843197.

Corcoran, John, Paliath Narendran, and Wolfgang Thomas. “Obituary Robert McNaughton 1924
– 2014.” Bulletin of European Association for Theoretical Computer Science 3, no. 114
(October 16, 2014). http://bulletin.eatcs.org/index.php/article/view/309.

249

https://doi.org/10.1080/07494467.2012.712282
https://doi.org/10.1007/978-3-642-39357-0_4
https://doi.org/10.1007/978-3-642-39357-0_4
https://eidolon.pub/the-ancient-case-against-programming-languages-b8d253ea6e64
https://doi.org/10.1007/BF02310791
https://musmat.org/wp-content/uploads/2016/12/02-cohn.pdf
https://musmat.org/wp-content/uploads/2016/12/02-cohn.pdf
https://doi.org/10.1017/S1355771808000332
http://www.mtosmt.org/issues/mto.01.7.2/mto.01.7.2.cook.html
https://doi.org/10.2307/843197
http://bulletin.eatcs.org/index.php/article/view/309


Coupling, J. J. “Science for Art’s Sake.” Astounding Science Fiction, November 1950.

Cowgill, George L. “Computer Applications in Archaeology.” In Proceedings of the November
14–16, 1967 Fall Joint Computer Conference, 331–37. AFIPS ’67 (Fall). New York, NY,
USA: ACM, 1967. https://doi.org/10.1145/1465611.1465654.

Cumming, Naomi. The Sonic Self: Musical Subjectivity and Signification. Bloomington, IA:
Indiana University Press, 2000.

Cypess, Rebecca. “‘It Would Be Without Error’: Automated Technology and the Pursuit of Correct
Performance in the French Enlightenment.” Journal of the Royal Musical Association 142,
no. 1 (2017): 1–29. https://doi.org/10.1080/02690403.2017.1286115.

Derrida, Jacques. Margins of Philosophy. Chicago: University of Chicago Press, 1982.

Di Nunzio, Alex. “Genesi, sviluppo e diffusione del software ‘Music N’ nella storia della
composizione informatica.” Tesi di Laurea, Università degli Studi di Bologna, 2008.

Dodge, Charles, and Thomas A. Jerse. Computer Music: Synthesis, Composition, and Performance.
2nd edition. New York: Schirmer Books, 1997.

Dolan, Emily I. “E. T. A. Hoffmann and the Ethereal Technologies of ‘Nature Music’.” Eighteenth-Century
Music 5, no. 1 (March 2008): 7–26. https://doi.org/10.1017/S1478570608001176.

———. “The Origins of the Orchestra Machine.” Current Musicology, no. 76 (2003): 7–23.

Doornbusch, Paul. “Early Computer Music Experiments in Australia and England.” Organised
Sound 22, no. 2 (August 2017): 297–307. https://doi.org/10.1017/S1355771817000206.

Dubiel, Joseph. “What’s the Use of the Twelve-Tone System?” Perspectives of New Music 35, no. 2
(1997): 33–51. https://doi.org/10.2307/833641.

Dupuy, Jean-Pierre. The Mechanization of the Mind: On the Origins of Cognitive Science.
Princeton, NJ: Princeton University Press, 2000.

Eimert, Herbert. Grundlagen der musikalischen Reihentechnik. Bücher der Reihe 1. Wien:
Universal Edition, 1964.

Ensmenger, Nathan. “Is Chess the Drosophila of Artificial Intelligence? A Social History of an
Algorithm.” Social Studies of Science 42, no. 1 (2012): 5–30. https://doi.org/10.1177/
0306312711424596.

———. The Computer Boys Take over: Computers, Programmers, and the Politics of Technical
Expertise. Cambridge, MA: MIT Press, 2012.

250

https://doi.org/10.1145/1465611.1465654
https://doi.org/10.1080/02690403.2017.1286115
https://doi.org/10.1017/S1478570608001176
https://doi.org/10.1017/S1355771817000206
https://doi.org/10.2307/833641
https://doi.org/10.1177/0306312711424596
https://doi.org/10.1177/0306312711424596


Erickson, Raymond. “DARMS: A Reference Manual,” June 1976. http://esf.ccarh.org/ccarh-wiki/
DARMS-1976.pdf.

———. “Musical Analysis and the Computer: A Report on Some Current Approaches and
the Outlook for the Future.” Computers and the Humanities 3, no. 2 (1968): 87–104.
https://doi.org/10.1007/BF02402358.

European Commission, and Joint Research Centre. JRC Ispra: A 50 Years Pictorial History.
Luxembourg: EUR-OP, 2009.

Febres, Gerardo, and Klaus Jaffe. “Music Viewed by Its Entropy Content: A Novel Window for
Comparative Analysis.” PLoS ONE 12, no. 10 (October 17, 2017). https://doi.org/10.1371/
journal.pone.0185757.

Fechner, Gustav Theodor. Vorschule der Aesthetik. Second edition. 1897. Reprint, Cambridge:
Cambridge University Press, 2013.

Feigenbaum, Edward A., and Julian Feldman, eds. Computers and Thought. New York:
McGraw-Hill, Inc., 1963.

“Fellowships and Grants.” Proceedings of the Modern Language Association 79, no. 4 (1964):
256–62. http://www.jstor.org/stable/2699210.

Fernández, Jose D., and Francisco Vico. “AI Methods in Algorithmic Composition: A
Comprehensive Survey.” Journal of Artificial Intelligence Research 48 (2013): 513–82.

Fernandez-Duque, Diego, and Mark L. Johnson. “Attention Metaphors: How Metaphors Guide the
Cognitive Psychology of Attention.” Cognitive Science 23, no. 1 (1999): 83–116. https://doi.
org/10.1207/s15516709cog2301_4.

Fichet, Laurent. Les théories scientifiques de la musique aux XIXe et XXe siècles. Paris: Vrin,
1996.

Forte, Allen. “A Program for the Analytic Reading of Scores.” Journal of Music Theory 10, no. 2
(1966): 330–64. https://doi.org/10.2307/843247.

———. “A Theory of Set-Complexes for Music.” Journal of Music Theory 8, no. 2 (1964): 136–83.
https://doi.org/10.2307/843079.

———. “Composing with Electrons in Cologne.” High Fidelity 6 (October 1956): 64–67, 156–59.

———. “Context and Continuity in an Atonal Work: A Set-Theoretic Approach.” Perspectives of
New Music 1, no. 2 (1963): 72–82. https://doi.org/10.2307/832105.

251

http://esf.ccarh.org/ccarh-wiki/DARMS-1976.pdf
http://esf.ccarh.org/ccarh-wiki/DARMS-1976.pdf
https://doi.org/10.1007/BF02402358
https://doi.org/10.1371/journal.pone.0185757
https://doi.org/10.1371/journal.pone.0185757
http://www.jstor.org/stable/2699210
https://doi.org/10.1207/s15516709cog2301_4
https://doi.org/10.1207/s15516709cog2301_4
https://doi.org/10.2307/843247
https://doi.org/10.2307/843079
https://doi.org/10.2307/832105


———. “Letter to the Editor in Reply to Richard Taruskin from Allen Forte.” Music Analysis 5, no.
2/3 (1986): 321–37. https://doi.org/10.2307/854194.

———. “Music and Computing: The Present Situation.” In Proceedings of the November 14–16,
1967 Fall Joint Computer Conference, 327–29. ACM, 1967. http://dl.acm.org/citation.cfm?
id=1465653.

———. SNOBOL3 Primer: An Introduction to the Computer Programming Language.
Cambridge, MA: MIT Press, 1967.

———. [SNOBOL3: Puroguramingu Nyumon]. Translated by Koichi Kishida. Tokyo: Nihon
Seisansei Honbu, 1972.

———. “Syntax-Based Analytic Reading of Musical Scores.” AI Technical Report. Cambridge, MA:
Project MAC, April 1, 1967. DSpace@MIT. http://hdl.handle.net/1721.1/6899.

———. “The Programming Language SNOBOL3: An Introduction.” Computers and the
Humanities 1, no. 5 (1967): 157–63. http://www.jstor.org/stable/30199238.

———. The Structure of Atonal Music. New Haven, CT: Yale University Press, 1973.

———. “The Structure of Atonal Music: Practical Aspects of a Computer-Oriented Research
Project.” In Musicology and the Computer, Musicology 1966-2000: A Practical Program ;
Three Symposia. American Musicological Society, New York Chapter, 1965.

Fripertinger, Harald. “Enumeration in Musical Theory.” Beiträge Zur Elektronischen Musik 1
(1993).

Fripertinger, Harald, and Peter Lackner. “Tone Rows and Tropes.” Journal of Mathematics and
Music 9, no. 2 (May 4, 2015): 111–72. https://doi.org/10.1080/17459737.2015.1070088.

Fucks, Wilhelm. “Gibt es mathematische Gesetze in Sprache und Musik?” Umschau 57, no. 2
(1957): 33–37.

———. “Mathematical Analysis of Formal Structure of Music.” IRE Transactions on Information
Theory 8, no. 5 (1962): 225–28. http://ieeexplore.ieee.org/abstract/document/1057746/.

———. “Mathematical Theory of Word Formation.” In Information Theory, edited by Colin Cherry,
154–70. London, UK: Butterworths Publications Ltd., 1955.

———. Mathematische Analyse der Formalstruktur von Musik. [Wiesbaden]: Springer
Fachmedien Wiesbaden GmbH, 1958.

252

https://doi.org/10.2307/854194
http://dl.acm.org/citation.cfm?id=1465653
http://dl.acm.org/citation.cfm?id=1465653
http://hdl.handle.net/1721.1/6899
http://www.jstor.org/stable/30199238
https://doi.org/10.1080/17459737.2015.1070088
http://ieeexplore.ieee.org/abstract/document/1057746/


———. “Mathematische Musikanalyse und Randomfolgen. Musik und Zufall.” Gravesaner Blätter
Jahrg. 6, no. Heft 23/24 (1962).

———. “On Mathematical Analysis of Style.” Biometrika 39, no. 1/2 (April 1952): 122–29. https:
//doi.org/10.2307/2332470.

Fuller, Ramon Colin. “An Information Theory Analysis of Anton Webern’s ‘Symphonie,’ Opus 21
(with) ‘Music for Two-Channel Tape and Two Percussionists’.” DMA thesis, University of
Illinois at Urbana-Champaign, 1965. https://search.proquest.com/docview/302312294.

Gent, Ian P., Tom Kelsey, Steve A. Linton, and Ian Miguel. “Conditional Symmetry Breaking.” In
Principles and Practice of Constraint Programming—CP 2005, edited by Peter van Beek,
3709:256–70. Berlin: Springer, 2005. https://doi.org/10.1007/11564751_21.

Geoghegan, Bernard Dionysius. “The Historiographic Conceptualization of Information: A Critical
Survey.” IEEE Annals of the History of Computing 1, no. 1 (2008): 66–81.

Geoghegan, Bernard Dionysius. “From Information Theory to French Theory: Jakobson,
Lévi-Strauss, and the Cybernetic Apparatus.” Critical Inquiry 38, no. 1 (September
2011): 96–126. https://doi.org/10.1086/661645.

Gervink, Manuel. “Die Strukturierung des Tonraums. Versuche einer Systematisierung von
Zwölftonreihen in den 1920er bis 1970er Jahren.” In Perspektiven und Methoden einer
Systemischen Musikwissenschaft: Bericht über das Kolloquium im Musikwissenschaftlichen
Institut der Universität zu Köln 1998, edited by Klaus W. Niemöller, 323–34. Frankfurt:
Peter Lang, 2003.

Gieryn, Thomas F. “Boundary-Work and the Demarcation of Science from Non-Science: Strains and
Interests in Professional Ideologies of Scientists.” American Sociological Review 48, no. 6
(December 1983): 781–95. https://doi.org/10.2307/2095325.

Girard, Aaron Robert. “Music Theory in the American Academy.” PhD diss., Harvard University,
2007. https://search.proquest.com/docview/304847428.

Gleick, James. The Information: A History, a Theory, a Flood. New York: Pantheon Books, 2011.

Gordin, Michael D. Scientific Babel: How Science Was Done Before and After Global English.
Chicago: The University of Chicago Press, 2015.

Grant, M. J. Serial Music, Serial Aesthetics: Compositional Theory in Post-War Europe. Music in
the Twentieth Century. Cambridge: Cambridge University Press, 2001.

253

https://doi.org/10.2307/2332470
https://doi.org/10.2307/2332470
https://search.proquest.com/docview/302312294
https://doi.org/10.1007/11564751_21
https://doi.org/10.1086/661645
https://doi.org/10.2307/2095325
https://search.proquest.com/docview/304847428


Grey, John M. “Multidimensional Perceptual Scaling of Musical Timbres.” The Journal of the
Acoustical Society of America 61, no. 5 (May 1977): 1270–7. https://doi.org/10.1121/1.
381428.

Griswold, Ralph E. “A History of the SNOBOL Programming Languages.” ACM SIGPLAN Notices
13, no. 8 (August 1978): 275–308. https://doi.org/10.1145/960118.808393.

Guzmán, Adolfo. “POLYBRICK: Adventures in the Domain of Parallelepipeds; A World Without
Perspective.” MIT AI Memos. Cambridge, MA: MIT, May 1, 1966. http://hdl.handle.net/
1721.1/5902.

Hacking, Ian. Representing and Intervening: Introductory Topics in the Philosophy of Natural
Science. Cambridge: Cambridge University Press, 1983.

———. The Emergence of Probability: A Philosophical Study of Early Ideas About Probability,
Induction and Statistical Inference. 2nd ed. Cambridge; New York: Cambridge University
Press, 2006.

Haigh, T., M. Priestley, and C. Rope. “Los Alamos Bets on ENIAC: Nuclear Monte Carlo
Simulations, 1947-1948.” IEEE Annals of the History of Computing 36, no. 3 (July 2014):
42–63. https://doi.org/10.1109/MAHC.2014.40.

Halle, John. “From Linguistics to Musicology. Notes on Structuralism Musical Generativism,
Cognitive Science, and Philosophy.” Signata, no. 6 (December 31, 2015): 287–311.
https://doi.org/10.4000/signata.1109.

Halpern, Orit. “Dreams for Our Perceptual Present: Temporality, Storage, and Interactivity in
Cybernetics.” Configurations 13 (2005): 285–321.

Hanninen, Dora A. A Theory of Music Analysis : On Segmentation and Associative Organization.
Rochester, NY: University of Rochester Press, 2012.

Hansberry, Benjamin Konrad. “Phenomenon and Abstraction: Coordinating Concepts in Music
Theory and Analysis.” Columbia University, 2017. https://doi.org/10.7916/D83202T7.

Hanson, Jens L. “An Operational Approach to the Theory of Rhythm.” PhD diss., Yale University,
1969.

Haspels, Jan Jaap. Automatic Musical Instruments: Their Mechanies and Their Music, 1580-1820.
Koedijk: Muziekdruk C.V., 1987.

Headlam, Dave. “Fritz Heinrich Klein’s ‘Die Grenze Der Halbtonwelt’ and Die Maschine.” Theoria 6
(1992): 55–96.

254

https://doi.org/10.1121/1.381428
https://doi.org/10.1121/1.381428
https://doi.org/10.1145/960118.808393
http://hdl.handle.net/1721.1/5902
http://hdl.handle.net/1721.1/5902
https://doi.org/10.1109/MAHC.2014.40
https://doi.org/10.4000/signata.1109
https://doi.org/10.7916/D83202T7


Hedges, Stephen A. “Dice Music in the Eighteenth Century.” Music and Letters 59, no. 2 (1978):
180–87. https://doi.org/10.1093/ml/59.2.180.

Hiller, Lejaren. “A Report on Contemporary Music.” Technical Report. Urbana, IL: Experimental
Music Studio, 1962. https://monoskop.org/File:Hiller_Lejaren_A_Report_on_Contemporary_
Music_1961.pdf.

Hiller, Lejaren, and Calvert Bean. “Information Theory Analyses of Four Sonata Expositions.”
Journal of Music Theory 10, no. 1 (1966): 96–137. https://doi.org/10.2307/843300.

Hiller, Lejaren, and Ramon Fuller. “Structure and Information in Webern’s Symphonie, Op. 21.”
Journal of Music Theory 11, no. 1 (1967): 60–115. https://doi.org/10.2307/842949.

Hiller, Lejaren, and Leonard Isaacson. Experimental Music: Composition with an Electronic
Computer. New York: McGraw-Hill, 1959.

Hockey, Susan. “SNOBOL in the Humanities.” Text and Technology 3, no. 2 (1993): 7–15.

———. Snobol Programming for the Humanities. New York: Oxford University Press, 1985.

Hoffman, Justin. “On Pitch-Class Set Cartography Relations Between Voice-Leading Spaces and
Fourier Spaces.” Journal of Music Theory 52, no. 2 (Autumn 2008): 219–49. https://doi.
org/10.1215/00222909-2009-016.

Hofstetter, Günther. Fritz Heinrich Klein: Leben und Werk. n.p., [1988?].

Holbrook, Bernard D., and W. Stanley Brown. “A History of Computing Research at Bell
Laboratories (1937–1975).” Computing Science Technical Report. AT&T Bell Laboratories,
1982.

Hook, Julian. “Why Are There Twenty-Nine Tetrachords? A Tutorial on Combinatorics and
Enumeration in Music Theory.” Music Theory Online 13, no. 4 (December 2007).
http://www.mtosmt.org/issues/mto.07.13.4/mto.07.13.4.hook.html.

Howe, Hubert S. “Some Combinational Properties of Pitch Structures.” Perspectives of New Music 4,
no. 1 (1965): 45–61. https://doi.org/10.2307/832526.

Hui, Alexandra. The Psychophysical Ear: Musical Experiments, Experimental Sounds,
1840–1910. Transformations: Studies in the History of Science and Technology. Cambridge,
MA: MIT Press, 2013.

Hutchins, W. John, ed. Early Years in Machine Translation: Memoirs and Biographies of Pioneers.
Amsterdam Studies in the Theory and History of Linguistic Science Series 3, Studies in the
History of the Language Sciences 97. Amsterdam: Benjamins, 2000.

255

https://doi.org/10.1093/ml/59.2.180
https://monoskop.org/File:Hiller_Lejaren_A_Report_on_Contemporary_Music_1961.pdf
https://monoskop.org/File:Hiller_Lejaren_A_Report_on_Contemporary_Music_1961.pdf
https://doi.org/10.2307/843300
https://doi.org/10.2307/842949
https://doi.org/10.1215/00222909-2009-016
https://doi.org/10.1215/00222909-2009-016
http://www.mtosmt.org/issues/mto.07.13.4/mto.07.13.4.hook.html
https://doi.org/10.2307/832526


IBM. “IBM Archives: Italy Chronology 1950 - 1969,” January 23, 2003. http://www-03.ibm.com/
ibm/history/exhibits/italy/italy_ch2.html.

“In Memoriam: Allen Forte, Music Theorist.” YaleNews, October 17, 2014. https://news.yale.edu/
2014/10/17/memoriam-allen-forte-music-theorist.

Iverson, Jennifer. Electronic Inspirations: Technologies of the Cold War Musical Avant-Garde.
New York, NY: Oxford University Press, 2019.

Jacoby, Nori, Naftali Tishby, and Dmitri Tymoczko. “An Information Theoretic Approach to Chord
Categorization and Functional Harmony.” Journal of New Music Research 44, no. 3 (2015):
219–44. https://doi.org/10.1080/09298215.2015.1036888.

Janda, Kenneth. “Computer Applications in Political Science.” In Proceedings of the November
14–16, 1967 Fall Joint Computer Conference, 339–45. AFIPS ’67 (Fall). New York, NY,
USA: ACM, 1967. https://doi.org/10.1145/1465611.1465655.

Jelinek, Hanns. “Die krebsgleichen Allintervallreihen.” Archiv für Musikwissenschaft 18, no. 2
(1961): 115–25. https://doi.org/10.2307/930340.

Jones, Matthew L. Reckoning with Matter: Calculating Machines, Innovation, and Thinking About
Thinking from Pascal to Babbage. Chicago: The University of Chicago Press, 2016.

Jones, Steven E. Roberto Busa, S.J. And the Emergence of Humanities Computing: The Priest and
the Punched Cards. New York: Routledge, 2016.

“Joseph Schillinger’s Reharmonization Dial (1940) and a Bit More.” The Hum Blog (blog),
September 21, 2016. https://blogthehum.com/2016/09/21/joseph-schillingers-reharmonization-dial-1940-and-a-bit-more/.

Kane, Brian. “Excavating Lewin’s ‘Phenomenology’.” Music Theory Spectrum 33, no. 1 (2011):
27–36. https://doi.org/10.1525/mts.2011.33.1.27.

Kassler, Michael. “A Sketch of the Use of Formalized Languages for the Assertion of Music.”
Perspectives of New Music 1, no. 2 (1963): 83–94. https://doi.org/10.2307/832106.

———. “A Trinity of Essays: Toward a Theory That Is the Twelve-Note Class System, Toward
Development of a Constructive Tonality Theory Based on Writings by Heinrich Schenker,
Toward a Simple Programming Language for Musical Information Retrieval.” PhD diss.,
Princeton University, 1967. http://search.proquest.com/docview/288257906.

———. “Decision of a Musical System.” Communications of the Association for Computing
Machinery 5, no. 4 (1962): 223.

256

http://www-03.ibm.com/ibm/history/exhibits/italy/italy_ch2.html
http://www-03.ibm.com/ibm/history/exhibits/italy/italy_ch2.html
https://news.yale.edu/2014/10/17/memoriam-allen-forte-music-theorist
https://news.yale.edu/2014/10/17/memoriam-allen-forte-music-theorist
https://doi.org/10.1080/09298215.2015.1036888
https://doi.org/10.1145/1465611.1465655
https://doi.org/10.2307/930340
https://blogthehum.com/2016/09/21/joseph-schillingers-reharmonization-dial-1940-and-a-bit-more/
https://doi.org/10.1525/mts.2011.33.1.27
https://doi.org/10.2307/832106
http://search.proquest.com/docview/288257906


———. “Optical Character-Recognition of Printed Music: A Review of Two Dissertations.”
Perspectives of New Music 11, no. 1 (1972): 250–54. https://doi.org/10.2307/832471.

Kater, Carlos. “Villa-Lobos e a ‘Melodia das montanhas’: Contribuição à revisão crítica da pedagogia
musical brasileira.” Latin American Music Review/Revista de Música Latinoamericana 5,
no. 1 (1984): 102–5. https://doi.org/10.2307/780115.

Kay, Lily E. Who Wrote the Book of Life?: A History of the Genetic Code. Stanford, CA: Stanford
University Press, 2000.

Keats, Wilson Lyman. “Review of Abraham Moles’s Information Theory and Esthetic Perception,
Trans. Joel E. Cohen.” The Harvard Crimson, March 18, 1966.

Kember, Sarah. Cyberfeminism and Artificial Life. Abingdon, UK: Taylor & Francis, 2003. https:
//doi.org/10.4324/9780203299159.

Kennedy, Duncan F. Rethinking Reality: Lucretius and the Textualization of Nature. Ann Arbor,
MI: University of Michigan Press, 2002.

Kirchmeyer, Helmut. Kleine Monographie über Herbert Eimert. Vol. 6. Philologische-historische
Klasse 75. Leipzig: Verlag der Sächsischen Akademie der Wissenschaften, 1998.

Kivy, Peter. “Making the Codes and Breaking the Codes: Two Revolutions in Twentieth-Century
Music.” In New Essays on Musical Understanding, 44–67. Oxford: Clarendon Press, 2001.

Klein, Fritz Heinrich. “Die Grenze der Halbtonwelt.” Die Musik 17 (January 1925): 281–86.

Kline, Ronald. “What Is Information Theory a Theory of?: Boundary Work Among Scientists in the
United States and Britain During the Cold War.” In The History and Heritage of Scientific
and Technical Information Systems, edited by W. Boyd Rayward and Mary Ellen Bowden,
15–28. Medford, NJ: Information Today, 2004.

Klorman, Edward. Mozart’s Music of Friends: Social Interplay in the Chamber Works. Cambridge:
Cambridge University Press, 2016.

Klumpenhouwer, Henry. “Essay: In Order to Stay Asleep as Observers: The Nature and Origins of
Anti-Cartesianism in Lewin’s Generalized Musical Intervals and Transformations.” Music
Theory Spectrum 28, no. 2 (October 2006): 277–89. https://doi.org/10.1525/mts.2006.28.2.
277.

Knobloch, Eberhard. “The Sounding Algebra: Relations Between Combinatorics and Music from
Mersenne to Euler.” In Mathematics and Music, 27–48. Berlin: Springer, 2002. https://doi.
org/10.1007/978-3-662-04927-3_2.

257

https://doi.org/10.2307/832471
https://doi.org/10.2307/780115
https://doi.org/10.4324/9780203299159
https://doi.org/10.4324/9780203299159
https://doi.org/10.1525/mts.2006.28.2.277
https://doi.org/10.1525/mts.2006.28.2.277
https://doi.org/10.1007/978-3-662-04927-3_2
https://doi.org/10.1007/978-3-662-04927-3_2


Koetsier, Teun. “On the Prehistory of Programmable Machines: Musical Automata, Looms,
Calculators.” Mechanism and Machine Theory 36, no. 5 (May 2001): 589–603.
https://doi.org/10.1016/S0094-114X(01)00005-2.

Kostka, Stefan M. “Recent Developments in Computer-Assisted Musical Scholarship.” Computers
and the Humanities 6, no. 1 (1971): 15–21. https://doi.org/10.1007/BF02402318.

Kraehenbuehl, David. “Review of Abraham Moles, Information Theory and Esthetic Perception.”
Journal of Music Theory 11, no. 1 (Spring 1967): 149–51.

Krämer, Reiner. “Algorithmic Music Analysis: A Case Study of a Prelude from David Cope’s ‘From
Darkness, Light’.” Ph.D., University of North Texas, 2015. https://digital.library.unt.edu/ark:
/67531/metadc801959/.

Krenek, Ernst. Horizons Circled: Reflections on My Music. Berkeley: University of California
Press, 1974.

———. Music Here and Now. Translated by Barthold Fles. New York: W. W. Norton & Company,
1939.

———. “Musik und Mathematik.” Der Auftakt 13, no. 9/10 (October 1933): 125–27.

———. “Musik und Mathematik.” Frankfurter Zeitung 77, no. 271/272 (April 11, 1933): 10.

———. “Review of Anleitung Zur Zwölftonkomposition by Hanns Jelinek.” The Musical Quarterly
40, no. 2 (April 1954): 250–56.

———. Über neue Musik: Sechs Vorlesungen zur Einführung in die theoretischen Grundlagen.
Wien: Ringbuchhandlung, 1937.

Krumhansl, Carol L. “The Psychological Representation of Musical Pitch in a Tonal Context.”
Cognitive Psychology 11, no. 3 (July 1979): 346–74. https://doi.org/10.1016/0010-0285(79)
90016-1.

Lambert, J. Philip. “Interval Cycles as Compositional Resources in the Music of Charles Ives.” Music
Theory Spectrum 12, no. 1 (1990): 43–82. https://doi.org/10.2307/746146.

Lansky, Paul. “Pitch-Class Consciousness.” Perspectives of New Music 13, no. 2 (Spring–Summer
1975): 30–56. https://doi.org/10.2307/832082.

Lazzarini, Victor. “The Development of Computer Music Programming Systems.” Journal of New
Music Research 42, no. 1 (2013): 97–110. https://doi.org/10.1080/09298215.2013.778890.

258

https://doi.org/10.1016/S0094-114X(01)00005-2
https://doi.org/10.1007/BF02402318
https://digital.library.unt.edu/ark:/67531/metadc801959/
https://digital.library.unt.edu/ark:/67531/metadc801959/
https://doi.org/10.1016/0010-0285(79)90016-1
https://doi.org/10.1016/0010-0285(79)90016-1
https://doi.org/10.2307/746146
https://doi.org/10.2307/832082
https://doi.org/10.1080/09298215.2013.778890


Lefkoff, Gerald, ed. Papers. Proceedings of the West Virginia University Conference on Computer
Applications in Music. Morgantown, WV: West Virginia University Library, 1967.

Leman, Marc. “Music, Gesture, and the Formation of Embodied Meaning.” In Musical Gestures:
Sound, Movement, and Meaning, edited by Rolf Inge Godøy and Marc Leman, 126–53. New
York: Routledge, 2010.

Lennon, Brian. Passwords: Philology, Security, Authentication. Cambridge, MA: The Belknap
Press of Harvard University Press, 2018.

Lewin, David. Generalized Musical Intervals and Transformations. New Haven, CT: Yale
University Press, 1987.

———. “Music Theory, Phenomenology, and Modes of Perception.” Music Perception: An
Interdisciplinary Journal 3, no. 4 (July 1, 1986): 327–92. https://doi.org/10.2307/40285344.

———. “Some Applications of Communication Theory to the Study of Twelve-Tone Music.”
Journal of Music Theory 12, no. 1 (1968): 50–84. https://doi.org/10.2307/842886.

Lewis, George E. “Mobilitas Animi: Improvising Technologies, Intending Chance.” Parallax 13, no.
4 (October 2007): 108–22. https://doi.org/10.1080/13534640701682867.

———. “Too Many Notes: Computers, Complexity and Culture in Voyager.” Leonardo Music
Journal 10, no. 1 (December 1, 2000): 33–39. https://doi.org/10.1162/096112100570585.

Link, David. “Traces of the Mouth: Andrei Andreyevich Markov’s Mathematization of Writing.”
History of Science 44, no. 3 (September 2006): 321–48. https://doi.org/10.1177/
007327530604400302.

Link, John. “John Link - the ‘Link Chords’.” Accessed June 9, 2017. http://www.johnlinkmusic.com/
linkchords.html.

Liu, Lydia He. The Freudian Robot: Digital Media and the Future of the Unconscious. Chicago:
University of Chicago Press, 2010.

Luckham, David, and Hilary Putnam. “On Minimal and Almost-Minimal Systems of Notations.”
Transactions of the American Mathematical Society 119, no. 1 (1965): 86–100. https://doi.
org/10.1090/S0002-9947-1965-0184852-2.

Maconie, Robin. Avant Garde: An American Odyssey from Gertrude Stein to Pierre Boulez.
Lanham, MD: Scarecrow Press, 2012.

———. “Care to Listen: Milton Babbitt and Information Science in the 1950s.” Tempo 65, no. 258
(October 2011): 20–36. https://doi.org/10.1017/S0040298211000362.

259

https://doi.org/10.2307/40285344
https://doi.org/10.2307/842886
https://doi.org/10.1080/13534640701682867
https://doi.org/10.1162/096112100570585
https://doi.org/10.1177/007327530604400302
https://doi.org/10.1177/007327530604400302
http://www.johnlinkmusic.com/linkchords.html
http://www.johnlinkmusic.com/linkchords.html
https://doi.org/10.1090/S0002-9947-1965-0184852-2
https://doi.org/10.1090/S0002-9947-1965-0184852-2
https://doi.org/10.1017/S0040298211000362


Margulis, Elizabeth Hellmuth, and Andrew P. Beatty. “Musical Style, Psychoaesthetics, and Prospects
for Entropy as an Analytic Tool.” Computer Music Journal 32, no. 4 (November 19, 2008):
64–78. https://doi.org/10.1162/comj.2008.32.4.64.

Marsden, Alan Alexander. “New Prospects for Information Theory in Arts Research.” Leonardo,
forthcoming.

Martin, Nathan. “The Tristan Chord Resolved.” Intersections: Canadian Journal of Music 28, no. 2
(2008): 6–30. https://doi.org/10.7202/029953ar.

Mathews, Max V. “An Acoustic Compiler for Music and Psychological Stimuli.” The Bell System
Technical Journal 40, no. 3 (May 1961): 677–94. https://doi.org/10.1002/j.1538-7305.1961.
tb03237.x.

Maus, Fred Everett. “Masculine Discourse in Music Theory.” Perspectives of New Music 31, no. 2
(1993): 264–93. https://doi.org/10.2307/833390.

McAdams, Stephen. “Chapter 2. Musical Timbre Perception.” In The Psychology of Music, edited
by Diana Deutsch, Third edition., 35–67. London: Academic Press, 2013. https://doi.org/10.
1016/B978-0-12-381460-9.00002-X.

McCarthy, J. “Chess as the Drosophila of AI.” In Computers, Chess, and Cognition, 227–37. New
York: Springer-Verlag, 1990. https://doi.org/10.1007/978-1-4613-9080-0_14.

McDonnell, Eugene. “At Play with J: The Bauer-Mengelberg Problem.” Vector 12, no. 2 (October
1995): 155–22. http://www.jsoftware.com/papers/play122.htm.

Medosch, Armin. New Tendencies: Art at the Threshold of the Information Revolution
(1961–1978). Leonardo Book Series. Cambridge, MA: The MIT Press, 2016.

Mendel, Arthur. “Some Preliminary Attempts at Computer-Assisted Style Analysis in Music.”
Computers and the Humanities 4, no. 1 (September 1969): 41–52. https://doi.org/10.1007/
BF02393450.

Meyer, Leonard B. Emotion and Meaning in Music. Chicago: University of Chicago Press, 1956.

———. “Meaning in Music and Information Theory.” The Journal of Aesthetics and Art Criticism
15, no. 4 (June 1957): 412–24. https://doi.org/10.2307/427154.

———. Style and Music: Theory, History, and Ideology. 1989. Reprint, Chicago: University of
Chicago Press, 1996.

260

https://doi.org/10.1162/comj.2008.32.4.64
https://doi.org/10.7202/029953ar
https://doi.org/10.1002/j.1538-7305.1961.tb03237.x
https://doi.org/10.1002/j.1538-7305.1961.tb03237.x
https://doi.org/10.2307/833390
https://doi.org/10.1016/B978-0-12-381460-9.00002-X
https://doi.org/10.1016/B978-0-12-381460-9.00002-X
https://doi.org/10.1007/978-1-4613-9080-0_14
http://www.jsoftware.com/papers/play122.htm
https://doi.org/10.1007/BF02393450
https://doi.org/10.1007/BF02393450
https://doi.org/10.2307/427154


Milic, Louis T. “Winged Words: Varieties of Computer Applications to Literature.” In Proceedings
of the November 14–16, 1967 Fall Joint Computer Conference, 321–26. AFIPS ’67 (Fall).
New York, NY, USA: ACM, 1967. https://doi.org/10.1145/1465611.1465652.

Miller, George A. “The Magical Number Seven, Plus or Minus Two: Some Limits on Our Capacity
for Processing Information.” Psychological Review 63, no. 2 (1956): 81–97.

———. “What Is Information Measurement?” American Psychologist 8, no. 1 (1953): 3–11. https:
//doi.org/10.1037/h0057808.

Mills, Mara. “Media and Prosthesis: The Vocoder, the Artificial Larynx, and the History of Signal
Processing.” Qui Parle: Critical Humanities and Social Sciences 21, no. 1 (Fall/Winter
2012): 107–49. https://doi.org/10.5250/quiparle.21.1.0107.

Minsky, Marvin Lee. Oral history interview with Marvin L. Minsky. Interview by Arthur L. Norberg.
Transcript, 1989. http://hdl.handle.net/11299/107503.

MIT Office of the President. “Report of the President 1967,” 1967. http://dome.mit.edu/handle/1721.
3/59048.

Miyazaki, Shintaro. “Algorhythmics: Understanding Micro-Temporality in Computational
Cultures.” Computational Culture, September 28, 2012. http://computationalculture.net/
algorhythmics-understanding-micro-temporality-in-computational-cultures/.

Moles, Abraham. Information Theory and Esthetic Perception. Translated by Joel E. Cohen.
Urbana, IL: University of Illinois Press, 1966.

———. La création scientifique. Genève: Kister, 1957.

———. Théorie de l’information et perception esthétique. 1958. Reprint, Denoël, Gonthier, 1972.

Moles, Abraham, and Elisabeth Rohmer. “Autobiographie d’Abraham Moles: Le cursus scientifique
d’Abraham Moles,” 1996. https://www.infoamerica.org/documentos_pdf/moles_autobiografia.
pdf.

Moles, Abraham, and Vladimir Ussachevsky. “L’emploi du spectrographe acoustique et le problème
de la partition en musique expérimentale.” In Annales des Télécommunications, 12:299–304.
Springer, 1957.

Morris, Robert. Class Notes for Atonal Music Theory. Hanover, NH: Frog Peak Music, 1991.

Morris, Robert, and Daniel Starr. “The Structure of All-Interval Series.” Journal of Music Theory
18, no. 2 (1974): 364–89. https://doi.org/10.2307/843642.

261

https://doi.org/10.1145/1465611.1465652
https://doi.org/10.1037/h0057808
https://doi.org/10.1037/h0057808
https://doi.org/10.5250/quiparle.21.1.0107
http://hdl.handle.net/11299/107503
http://dome.mit.edu/handle/1721.3/59048
http://dome.mit.edu/handle/1721.3/59048
http://computationalculture.net/algorhythmics-understanding-micro-temporality-in-computational-cultures/
http://computationalculture.net/algorhythmics-understanding-micro-temporality-in-computational-cultures/
https://www.infoamerica.org/documentos_pdf/moles_autobiografia.pdf
https://www.infoamerica.org/documentos_pdf/moles_autobiografia.pdf
https://doi.org/10.2307/843642


Moseley, Roger. Keys to Play: Music as a Ludic Medium from Apollo to Nintendo. Oakland, CA:
University of California Press, 2016. https://doi.org/10.1525/luminos.16.

Moshaver, Maryam A. “Telos and Temporality: Phenomenology and the Experience of Time in
Lewin’s Study of Perception.” Journal of the American Musicological Society 65, no. 1
(2012): 179–214. https://doi.org/10.1525/jams.2012.65.1.179.

“Music and Mathematics.” IBM Business Machines, December 1961.

Music from Mathematics. LP 33. Bell Telephone Laboratories, Inc. - 122227, 1961.

Music from Mathematics. Decca - DL 9103, 1962.

Nake, Frieder. “Information Aesthetics: An Heroic Experiment.” Journal of Mathematics and the
Arts 6, nos. 2 – 3 (June 2012): 65–75. https://doi.org/10.1080/17513472.2012.679458.

Neff, Severine. “An American Precursor of Non-Tonal Theory: Ernst Bacon (1898–1990).” Current
Musicology 48 (1991): 5–26.

———. “Otto Luening (1900–) and the Theories of Bernhard Ziehn (1845–1912).” Current
Musicology, no. 39 (1985): 21–41.

Noell, Marion. Hanns Jelineks kompositorischer Weg zur Zwölftontechnik in seinem Ersten
Streichquartett op. 10: archivalische, biographische und analytische Untersuchungen.
KulturReihe aktuell, Bd. 1. Kiel: Vauk, 1998.

Nolan, Catherine. “Combinatorial Space in Nineteenth- and Early Twentieth-Century Music Theory.”
Music Theory Spectrum 25, no. 2 (September 1, 2003): 205–41. https://doi.org/10.1525/mts.
2003.25.2.205.

“Österreichischer Kunstsenat - Hanns Jelinek.” Accessed August 19, 2017. http://www.kunstsenat.at/
preistraeger/CV/jelinek.htm.

Oudal, Robert D. “The 1968 Introductory Seminar in the Use of Computers in Musical Projects: A
Summary Report of Reactions, Frustrations.” Student Musicologists at Minnesota 3 (1968):
66–109.

Pearce, Marcus T. “Early Applications of Information Theory to Music.” [Unpublished MS], 2007.
http://webprojects.eecs.qmul.ac.uk/marcusp/notes/music-information-theory.pdf.

Piccinini, Gualtiero. “Computationalism in the Philosophy of Mind.” Philosophy Compass 4, no. 3
(2009): 515–32. https://doi.org/10.1111/j.1747-9991.2009.00215.x.

262

https://doi.org/10.1525/luminos.16
https://doi.org/10.1525/jams.2012.65.1.179
https://doi.org/10.1080/17513472.2012.679458
https://doi.org/10.1525/mts.2003.25.2.205
https://doi.org/10.1525/mts.2003.25.2.205
http://www.kunstsenat.at/preistraeger/CV/jelinek.htm
http://www.kunstsenat.at/preistraeger/CV/jelinek.htm
http://webprojects.eecs.qmul.ac.uk/marcusp/notes/music-information-theory.pdf
https://doi.org/10.1111/j.1747-9991.2009.00215.x


Pickering, Andrew. The Mangle of Practice: Time, Agency, and Science. Chicago: University of
Chicago Press, 1995.

Piekut, Benjamin. “Actor-Networks in Music History: Clarifications and Critiques.” Twentieth-Century
Music 11, no. 2 (September 2014): 191–215. https://doi.org/10.1017/S147857221400005X.

Pierce, J. R., and Mary E. Shannon. “Composing Music by a Stochastic Process.” Technical
Memorandum. Bell Telephone Laboratories, November 15, 1949.

Pinkerton, Richard. “Information Theory and Melody.” Scientific American 194 (1956): 77–86.

Plomp, R. “Timbre as a Multidimensional Attribute of Complex Tones.” In Frequency Analysis and
Periodicity Detection in Hearing, edited by G. F. Smoorenburg, 397–414. Leiden: Sijthoff,
1970.

Plösch, R., A. Dautovic, and M. Saft. “The Value of Software Documentation Quality.” In 2014 14th
International Conference on Quality Software, 333–42, 2014. https://doi.org/10.1109/QSIC.
2014.22.

Polash, Md Masbaul Alam, M. A. Hakim Newton, and Abdul Sattar. “Constraint-Directed Search
for All-Interval Series.” Constraints 22, no. 3 (July 2017): 403–31. https://doi.org/10.1007/
s10601-016-9261-y.

Pollack, Andrew. “I.B.M.: A Giant Among Giants in the Classroom as Well.” The New York
Times, August 30, 1980, sec. Education. http://www.nytimes.com/1981/08/30/education/
ibm-a-giant-among-giants-in-the-classroom-as-well.html.

Powell, Mel. “A Note on Rigor.” Perspectives of New Music 1, no. 2 (1963): 121–24. http://www.
jstor.org/stable/832109.

Prerau, David Stewart. “Computer Pattern Recognition of Standard Engraved Music Notation.”
Doctoral diss., Massachusetts Institute of Technology, 1970.

“Project MAC Progress Report III,” 1967.

Pruett, James. “The Harpur College Music-Computer Seminar: A Report.” Computers and the
Humanities 1, no. 2 (1966): 34–38. http://www.jstor.org/stable/30199205.

Pruslin, Dennis H. “Automatic Recognition of Sheet Music.” ScD diss., Massachusetts Institute of
Technology, 1966.

Putnam, Hilary. “Minds and Machines.” In Dimensions of Mind: A Symposium, edited by S. Hook,
148–79. New York: New York University Press, 1960.

263

https://doi.org/10.1017/S147857221400005X
https://doi.org/10.1109/QSIC.2014.22
https://doi.org/10.1109/QSIC.2014.22
https://doi.org/10.1007/s10601-016-9261-y
https://doi.org/10.1007/s10601-016-9261-y
http://www.nytimes.com/1981/08/30/education/ibm-a-giant-among-giants-in-the-classroom-as-well.html
http://www.nytimes.com/1981/08/30/education/ibm-a-giant-among-giants-in-the-classroom-as-well.html
http://www.jstor.org/stable/832109
http://www.jstor.org/stable/832109
http://www.jstor.org/stable/30199205


Quastler, Henry. “Three Survey Papers: 1) A Survey of Work Done by the Bio-Systems Group of the
Control Systems Laboratory; 2) Studies of Human Channel Capacity; 3) the Informational
Limitations of Decision Making.” Urbana, IL: Control Systems Laboratory, University of
Illinois, 1956. http://hdl.handle.net/2142/73988.

Quastler, Henry, and V. J. Wulf. “Human Performance in Information Transmission: Part I: General
Remarks; and Part II: Sequential Tasks (Overlearned Activities).” Urbana, IL: Control
Systems Laboratory, University of Illinois, March 1955. http://hdl.handle.net/handle/2142/
73924.

Rahn, John. Basic Atonal Theory. New York: Longman, 1980.

Randall, J. K. “A Report from Princeton.” Perspectives of New Music 3, no. 2 (1965): 84–92. https:
//doi.org/10.2307/832506.

Rankin, Joy Lisi. A People’s History of Computing in the United States. Cambridge, MA: Harvard
University Press, 2018.

Raskin, Jeffrey F. “Programming Languages for the Humanities.” Computers and the Humanities 5,
no. 3 (1971): 155–58.

Ratner, Leonard. “Ars Combinatoria: Chance and Choice in Eighteenth-Century Music.” In Studies
in Eighteenth-Century Music: A Tribute to Karl Geiringer on His Seventieth Birthday,
edited by H. C. Robbins Landon and Roger E. Chapman, 343–63. New York: Oxford
University Press, 1970.

Redlich, Hans F. “Hanns Jelinek.” The Music Review 21 (1960): 66–72.

Rehding, Alexander. “Instruments of Music Theory.” Music Theory Online 22, no. 4 (December
2016). http://mtosmt.org/issues/mto.16.22.4/mto.16.22.4.rehding.html.

———. “Three Music-Theory Lessons.” Journal of the Royal Musical Association 141, no. 2 (July
2, 2016): 251–82. https://doi.org/10.1080/02690403.2016.1216025.

Reitman, Walter Ralph. Cognition and Thought; an Information-Processing Approach. New York:
Wiley, 1965.

Rescorla, Michael. “The Computational Theory of Mind.” In The Stanford Encyclopedia of
Philosophy, edited by Edward N. Zalta, Spring 2017. Metaphysics Research Lab, Stanford
University, 2017. https://plato.stanford.edu/archives/spr2017/entries/computational-mind/.

Rheinberger, Hans-Jörg. Toward a History of Epistemic Things: Synthesizing Proteins in the Test
Tube. Stanford, CA: Stanford University Press, 1997.

264

http://hdl.handle.net/2142/73988
http://hdl.handle.net/handle/2142/73924
http://hdl.handle.net/handle/2142/73924
https://doi.org/10.2307/832506
https://doi.org/10.2307/832506
http://mtosmt.org/issues/mto.16.22.4/mto.16.22.4.rehding.html
https://doi.org/10.1080/02690403.2016.1216025
https://plato.stanford.edu/archives/spr2017/entries/computational-mind/


Rings, Steven. Tonality and Transformation. Oxford Studies in Music Theory. New York: Oxford
University Press, 2011.

Riotte, André. “CANDIDE: Overall Plan for Possible Developments of Linked of the CETIS Analog
and Digital Computers.” Translation of CETIS Report No. 33, 1963 “CANDIDE - Plan
d’ensemble sur les dévelopements possibles du couplage des calculateurs analogiques et
digitaux du CETIS”. Washington, D.C: National Aeronautics and Space Administration,
January 1964.

———. “Computer Music: A New Meeting-Point of Art and Science.” Euro Spectra: Scientific and
Technical Review of the Commission of the European Communities, March 1974.

———. “Génération des cycles équilibrés.” Internal report. Ispra, Italy: Euratom, 1963.

———. “Il nanosecondo ben temperato.” Rivista IBM 5, no. 2 (1969): 40–45.

Roads, Curtis. “Composition with Machines.” In Companion to Contemporary Musical Thought,
edited by John Paynter, Tim Howell, Richard Orton, and Peter Seymour. London: Routledge,
1992.

———. Microsound. Cambridge, MA: MIT Press, 2001.

———. The Computer Music Tutorial. Cambridge, MA: MIT Press, 1996.

Roads, Curtis, and Max Mathews. “Interview with Max Mathews.” Computer Music Journal 4, no.
4 (1980): 15–22. https://doi.org/10.2307/3679463.

Roberts, Arthur. “MUSIC4F, an All-Fortran Music-Generating Computer Program.” In Proceedings
of the AES Convention (Preprints), 1965. http://www.aes.org/tmpFiles/elib/20190320/1043.
pdf.

Rogers, E. M. “Claude Shannon’s Cryptography Research During World War II and the
Mathematical Theory of Communication.” In Proceedings of the 28th International
Carnahan Conference on Security Technology, 1–5. Albuquerque, NM, 1994.
https://doi.org/10.1109/CCST.1994.363804.

Rose, Simon, and Raymond MacDonald. “Improvisation as Real-Time Composition.” In The Act of
Musical Composition: Studies in the Creative Process, edited by Dave Collins. Farnham,
UK: Ashgate, 2016.

Rothgeb, John. “Harmonizing the Unfigured Bass: A Computational Study.” PhD diss., Yale
University, 1968. https://search.proquest.com/docview/302361019.

265

https://doi.org/10.2307/3679463
http://www.aes.org/tmpFiles/elib/20190320/1043.pdf
http://www.aes.org/tmpFiles/elib/20190320/1043.pdf
https://doi.org/10.1109/CCST.1994.363804
https://search.proquest.com/docview/302361019


Rufer, Josef. Composition with Twelve Tones. Translated by Humphrey Searle. New York:
MacMillan, 1954.

Schillinger, Joseph. The Schillinger System of Musical Composition. 1941. Reprint, New York: Da
Capo Press, 1978.

Schoenberg, Arnold. Arnold Schönberg, Stil und Gedanke: Aufsätze zur Musik. Vol. 1. 1966.
Reprint, Frankfurt am Main: S. Fischer, 1976.

Schoenberg, E. Randol. “Two Music-Related Problems in Combinatorics: The Classification
of All-Interval Rows and the Triad Content of Q of N Tones.” BA (Mathematics) thesis,
Princeton University, 1988.

Schuijer, Michiel. Analyzing Atonal Music: Pitch-Class Set Theory and Its Contexts. Rochester,
NY: University of Rochester Press, 2008.

Schüler, Nico. “Reflections on the History of Computer-Assisted Music Analysis II: The 1960s.”
Musicological Annual 42, no. 1 (2006): 5–24. https://doi.org/10.4312/mz.42.1.5-24.

———. “Reflections on the History of Computer-Assisted Music Analysis I: Predecessors and the
Beginnings.” Musicological Annual 41, no. 1 (2005): 31–43. https://doi.org/10.4312/mz.41.
1.31-43.

Scott, James C. Seeing Like a State: How Certain Schemes to Improve the Human Condition Have
Failed. Yale Agrarian Studies. New Haven, CT: Yale University Press, 1998.

Seaver, Nicholas Patrick. “A Brief History of Re-Performance.” MSc (Comparative Media Studies)
Thesis, Massachusetts Institute of Technology, 2010.

Sedelow, Sally Yeates. “The Computer in the Humanities and Fine Arts.” ACM Computing Surveys
2, no. 2 (1970): 89–110.

Selfridge-Field, Eleanor, ed. Beyond MIDI: The Handbook of Musical Codes. Cambridge, MA:
MIT Press, 1997.

Sessions, Roger. “Exposition by Krenek: Review of Über {N}eue Musik.” Modern Music 15, no. 2
(1938): 123–28.

Shannon, Claude E. “A Mathematical Theory of Communication.” The Bell System Technical
Journal 27 (July 1948): 379–423.

———. “Prediction and Entropy of Printed English.” The Bell System Technical Journal 30, no. 1
(January 1951): 50–64. https://doi.org/10.1002/j.1538-7305.1951.tb01366.x.

266

https://doi.org/10.4312/mz.42.1.5-24
https://doi.org/10.4312/mz.41.1.31-43
https://doi.org/10.4312/mz.41.1.31-43
https://doi.org/10.1002/j.1538-7305.1951.tb01366.x


———. “The Bandwagon.” IRE Transactions on Information Theory 2 (1956): 3. https://doi.org/
10.1109/TIT.1956.1056774.

Shannon, Claude E., and Warren Weaver. The Mathematical Theory of Communication. Urbana, IL:
University of Illinois Press, 1949.

Shea, Dorothy J. “CTSS SNOBOL User’s Manual.” Project MAC Memorandum. Cambridge, MA:
Massachusetts Institute of Technology, May 16, 1966.

Sherman, L. A. Analytics of Literature, a Manual for the Objective Study of English
Prose and Poetry. Boston, MA: Ginn & Company, 1893. http://archive.org/details/
analyticsofliter00sheruoft.

Simms, Bryan. “The Theory of Pitch-Class Sets.” In Early Twentieth-Century Music, edited by
Jonathan Dunsby, 114–31. Models of Musical Analysis. Oxford: Blackwell, 1993.

Siromoney, Gift, and K. R. Rajagopalan. “Style as Information in Karnatic Music.” Journal of Music
Theory 8, no. 2 (Winter 1964): 267–72. https://doi.org/10.2307/843082.

Snarrenberg, Robert. “Competing Myths: The American Abandonment of Schenker’s Organicism.”
In Theory, Analysis and Meaning in Music, edited by Anthony Pople, 29–56. Cambridge:
Cambridge University Press, 1994.

Solomos, Makis. “Schaeffer phénoménologue.” In Ouïr, entendre, écouter, comprendre après
Schaeffer, 53–67. Paris: Buchet/Chastel, 1999.

Soni, Jimmy, and Rob Goodman. A Mind at Play: How Claude Shannon Invented the Information
Age. New York: Simon & Schuster, 2017.

Steege, Benjamin. “Between Race and Culture: Hearing Japanese Music in Berlin.” History of
Humanities 2, no. 2 (September 2017): 361–74. https://doi.org/10.1086/693319.

———. Helmholtz and the Modern Listener. Cambridge; New York: Cambridge University Press,
2012.

“Stefan Bauer-Mengelberg, a Conductor, 69.” The New York Times, October 28, 1996, sec. Arts.
https://www.nytimes.com/1996/10/28/arts/stefan-bauer-mengelberg-a-conductor-69.html.

Sterne, Jonathan. “Analog.” In Digital Keywords: A Vocabulary of Information Society and
Culture. Princeton Studies in Culture and Technology. Princeton, NJ: Princeton University
Press, 2016.

Stewart, John L. Ernst Krenek: The Man and His Music. Berkeley: University of California Press,
1991.

267

https://doi.org/10.1109/TIT.1956.1056774
https://doi.org/10.1109/TIT.1956.1056774
http://archive.org/details/analyticsofliter00sheruoft
http://archive.org/details/analyticsofliter00sheruoft
https://doi.org/10.2307/843082
https://doi.org/10.1086/693319
https://www.nytimes.com/1996/10/28/arts/stefan-bauer-mengelberg-a-conductor-69.html


Stoecker, Philip. “Aligned Cycles in Thomas Adès’s Piano Quintet.” Music Analysis 33, no. 1
(March 2014): 32–64. https://doi.org/10.1111/musa.12019.

Straus, Joseph Nathan. Introduction to Post-Tonal Theory. Upper Saddle River, NJ: Prentice Hall,
2005.

———. Introduction to Post-Tonal Theory. New York: W.W. Norton & Company, 2016.

Stravinsky, Igor. Poetics of Music in the Form of Six Lessons. Translated by Arthur Knodel and
Ingolf Dahl. Cambridge, MA: Harvard University Press, 1947.

Suisman, David. “Sound, Knowledge, and the ‘Immanence of Human Failure’ Rethinking Musical
Mechanization Through the Phonograph, the Player-Piano, and the Piano.” Social Text 28, no.
1 (102) (March 1, 2010): 13–34. https://doi.org/10.1215/01642472-2009-058.

“Summary Bibliography: John R. Pierce.” The Internet Speculative Fiction Database. Accessed May
3, 2019. http://www.isfdb.org/cgi-bin/ea.cgi?460.

Swartz, Anne, and Milton Babbitt. “Milton Babbitt on Milton Babbitt.” American Music 3, no. 4
(1985): 467–73. https://doi.org/10.2307/3051833.

Taruskin, Richard. “Reply to van Den Toorn.” In Theory Only 10, no. 3 (1987): 47–59.

———. The Oxford History of Western Music. Oxford: Oxford University Press, 2005.

Tenney, James C. “Sound-Generation by Means of a Digital Computer.” Journal of Music Theory 7,
no. 1 (1963): 24–70. https://doi.org/10.2307/843021.

Torgerson, Warren S. “Multidimensional Scaling: I. Theory and Method.” Psychometrika 17, no. 4
(December 1, 1952): 401–19. https://doi.org/10.1007/BF02288916.

Tresch, John. “Cosmologies Materialized: History of Science and History of Ideas.” In Rethinking
Modern European Intellectual History, edited by Darrin M. McMahon and Samuel Moyn,
153–72. Oxford: Oxford University Press, 2014.

Tresch, John, and Emily I. Dolan. “Toward a New Organology: Instruments of Music and Science.”
Osiris 28, no. 1 (January 2013): 278–98. https://doi.org/10.1086/671381.

Van Vleck, Tom. “CTSS Creators and Users.” Accessed February 8, 2018. http://multicians.org/thvv/
ctss-list.html.

Vee, Annette. Coding Literacy: How Computer Programming Is Changing Writing. Software
Studies. Cambridge, MA: The MIT Press, 2017.

268

https://doi.org/10.1111/musa.12019
https://doi.org/10.1215/01642472-2009-058
http://www.isfdb.org/cgi-bin/ea.cgi?460
https://doi.org/10.2307/3051833
https://doi.org/10.2307/843021
https://doi.org/10.1007/BF02288916
https://doi.org/10.1086/671381
http://multicians.org/thvv/ctss-list.html
http://multicians.org/thvv/ctss-list.html


———. “Understanding Computer Programming as a Literacy.” Literacy in Composition Studies 1,
no. 2 (2013): 42–64. https://doi.org/10.21623/1.1.2.4.

Wason, Robert. “Progressive Harmonic Theory in the Mid-Nineteenth Century.” Journal of
Musicological Research 8 (1988): 55–90.

Weizenbaum, Joseph. “ELIZA—A Computer Program for the Study of Natural Language
Communication Between Man and Machine.” Communications of the ACM 9, no. 1
(January 1966): 36–45. https://doi.org/10.1145/365153.365168.

“Welcoming the Future.” Women of Europe, no. 25 (March-April 1982): 52.

Wenk, Arthur B. “Review of Information Theory and Esthetic Perception, by Abrahm Moles, Trans.
Joel E. Cohen.” Notes 25, no. 2 (December 1968): 249–50.

Wessel, David L. “Psychoacoustics and Music: A Report from Michigan State University.” PAGE:
Bulletin of the Computer Arts Society 30 (1973): 1–2. http://computer-arts-society.com/
uploads/page-30.pdf.

Wiener, Norbert. Cybernetics: Or Control and Communication in the Animal and the Machine. 2.
ed., 4. print. Cambridge, Mass: MIT Press, 1985.

Williams, M. R. “From Napier to Lucas: The Use of Napier’s Bones in Calculating Instruments.”
Annals of the History of Computing 5, no. 3 (July 1983): 279–96. https://doi.org/10.1109/
MAHC.1983.10080.

Wittlich, Gary E., Eric J. Isaacson, and Jeffrey E. Hass. “Computer Applications in Music
Composition and Research.” In Advances in Computers, edited by Marshall C. Yovits,
36:111–202. Academic Press, Inc., 1993. https://doi.org/10.1016/S0065-2458(08)60271-5.

Wright, James K. “Schoenberg, Wittgenstein, and the Vienna Circle: Epistemological Meta-Themes
in Harmonic Theory, Aesthetics, and Logical Positivism.” PhD diss., McGill University,
2001.

Youngblood, Joseph E. “Style as Information.” Journal of Music Theory 2, no. 1 (1958): 24–35.
https://doi.org/10.2307/842928.

Yu, Haizi, and Lav R. Varshney. “On ‘Composing Music by a Stochastic Process’: From Computers
That Are Human to Composers That Are Not Human.” IEEE Information Theory Society
Newsletter, December 2017.

Yule, G. Udny. “On Sentence-Length as a Statistical Characteristic of Style in Prose: With
Application to Two Cases of Disputed Authorship.” Biometrika 30, no. 3/4 (1939): 363–90.
https://doi.org/10.2307/2332655.

269

https://doi.org/10.21623/1.1.2.4
https://doi.org/10.1145/365153.365168
http://computer-arts-society.com/uploads/page-30.pdf
http://computer-arts-society.com/uploads/page-30.pdf
https://doi.org/10.1109/MAHC.1983.10080
https://doi.org/10.1109/MAHC.1983.10080
https://doi.org/10.1016/S0065-2458(08)60271-5
https://doi.org/10.2307/842928
https://doi.org/10.2307/2332655


———. The Statistical Study of Literary Vocabulary. Cambridge: The University Press, 1944.

Zattra, Laura. “Génétiques de la computer music.” In Gèneses Musicales, edited by Nicolas Donin,
Almuth Grésillon, and Jean-Louis Lebrave, 213–38. Paris: Presses Universitaires de Paris
Sorbonne, 2015. https://doi.org/10.13140/RG.2.1.1829.2249.

———. “Les origines du nom de RIM (Realisateur en Informatique Musicale).” In Actes des
Journées d’informatique musicale, 113–20. Paris, France, 2013.

Zemanek, Heinz. Das geistige Umfeld der Informationstechnik. Berlin: Springer-Verlag, 1992.

———. “‘Mailüfterl’: Der Volltransistor-Rechenautomat des Instituts für Neiderfrequenztechnik der
Technischen Hochschule in Wien.” Unternehmensforschung 3, no. 1 (1959): 37–49. https:
//doi.org/10.1007/BF01922379.

———. “‘Mailüfterl’ - Eine Retrospektive.” Elektronische Rechenanlagen mit Computer-Praxis 25,
no. 6 (December 1983): 91–99.

———. Oral history interview with Heinz Zemanek. Interview by Henry Tropp, December 12, 1972.
Computer Oral History Collection, 1969-1973, 1977. Archives Center, National Museum of
American History. https://amhistory.si.edu/archives/AC0196_zema721212.pdf.

———. Oral history interview with Heinz Zemanek. Interview by William Aspray. Transcript,
February 14, 1987. OH 127. Charles Babbage Institute: The Center for the History of
Information Processing. http://hdl.handle.net/11299/107723.

———. Oral history interview with Heinz Zemanek. Interview by Philip Davis, June 11,
2005. Computer History Museum/Society for Industrial and Applied Mathematics.
http://history.siam.org/%5C/pdfs2/Zemanek_final.pdf.

Zipf, George Kingsley. Human Behavior and the Principle of Least Effort. Human Behavior and
the Principle of Least Effort. Oxford: Addison-Wesley Press, 1949.

270

https://doi.org/10.13140/RG.2.1.1829.2249
https://doi.org/10.1007/BF01922379
https://doi.org/10.1007/BF01922379
https://amhistory.si.edu/archives/AC0196_zema721212.pdf
http://hdl.handle.net/11299/107723
http://history.siam.org/%5C/pdfs2/Zemanek_final.pdf

	List of Figures
	List of Tables
	Acknowledgements
	Introduction
	Chapter summaries

	The computational attitude in music theory and where to find it
	Introduction
	Snapshot: Music computing 1965
	The computational attitude to music in the twentieth century
	The computational attitude defined
	The status of the computer as a tool for thought
	Levels of the computational attitude

	Remastering the history of music computing
	Conclusion

	Enumerating the all-interval twelve-tone series by computer in Vienna, Ispra, and New York
	Introduction
	The problem
	Specifying the problem
	Histories of the problem and its relation to twelve-tone composition
	From Fritz Heinrich Klein's Musikstatistik
	To Ernst Krenek and the axiomatization of musical thought

	Solution(s)
	`A Viennese May Breeze': Hanns Jelinek and Heinz Zemanek (1959)
	Unused cores, balanced cycles: André Riotte (1963)
	At last, an American solution: Bauer-Mengelberg and Ferentz (1965)

	After the flood
	Conclusion

	Music, information
	Laying the groundwork
	BANAL TUNE-MAKER: A way into information
	Chapter summary
	Information theory and music: A brief review
	Critical approaches to information

	Elements of an ``aesthetic'' theory of information
	The information measure
	Utterance as a Markov process
	Redundancy: or, ``the part of a message that can be eliminated without loss of essential information''
	Implications for perceptually grounded theories of music and art

	Three pioneers
	Pierce and Shannon: Automatic writing to automatic composition
	Henry Quastler: Information theory in the behavioral psychology lab
	Wilhelm Fucks: Entropy, the common engine of quantitative literary and musical analysis

	Conclusion

	Forte's program, Forte's programs
	Introduction
	Pitch-class set theory and the computer
	Forte's tools
	SNOBOL
	DARMS
	DARMS and SNOBOL co-operate to engender the computational attitude

	Forte's work at MIT
	The segmentation program
	Why Forte was at MIT
	Contemporary connections

	Forward projections
	Conclusion

	Works cited

