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ABSTRACT 

Yeast adaptation and survival under acute exposure to lethal ethanol stress 

Jamie S. Yang 

 

 The ability to respond to stress is universal in all domains of life. Failure to properly 

execute the stress response compromises the fitness of the organism. Several key stress pathways 

are conserved from unicellular organisms to higher eukaryotes, so knowledge of how these 

pathways operate in model organisms is crucial for understanding stress-related diseases and aging 

in humans. The mechanisms of stress tolerance have been well-studied in the budding yeast 

Saccharomyces cerevisiae. Yeast respond to diverse stresses by initiating both general and stress-

specific responses that generally protect the cells during and after the stress exposure. While 

previous work has revealed mechanistic insights on adaptation and survival under mild and long-

term exposure to stress, how they cope with acute exposure to lethal stress is not well understood.  

Here, we combined transcriptional profiling, fitness profiling, and laboratory evolution to 

investigate how S. cerevisiae survive acute exposure to lethal ethanol stress. By using high 

throughput methods such as RNA-seq and barcode sequencing of the pooled yeast deletion library, 

we were able to discover and characterize both existing and novel pathways that yeast utilize to 

adapt to and survive ethanol stress. We found both ethanol-specific and as well general stress 

response mechanisms. We were also able to evolve a strain of ethanol under lethal ethanol stress 

to exhibit a survival of at least an order of magnitude greater than the parental wild-type strain. 

Additionally, this evolved strain exhibited cross protection to other stresses without compromising 

bulk growth rate. We found that this strain adapted its global expression levels to a post-stress 

state, making it more robust to various stresses even under optimal growth conditions.  
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Organisms in the wild are constantly being exposed to various environmental changes. 

They will often sense and properly respond to these alterations in their surroundings to maximize 

their fitness in a given environment. Some environmental changes are positive, such as the 

availability of a food source. Organisms may respond to that change by moving towards the food 

source or increasing uptake of the nutrient. Other environmental changes may be negative. These 

perturbations threaten the organism in some way and may cause cellular or macromolecular 

damage to the orgasm. We refer to these negative environmental changes as stress. Many stresses 

work in a dose-dependent manner, with higher stress levels causing more damage to the orgasm. 

Some stress levels are mild and will not kill an orgasm in its wild-type state. We refer to these 

stresses as sublethal. As the level of stress increases, there may be a point at which some members 

of a wild-type population start to die. This is the threshold of lethality. Above this level of stress, 

a greater fraction of the population will die, and the stress at this level is considered lethal. While 

stresses at a high enough dose will be lethal, organisms have evolved mechanisms to sense and 

adapt to mild levels of stress. Cellular responses to many stresses have been widely described in 

model organisms, especially in Saccharomyces cerevisiae, and a study of the yeast stress response 

helps elucidate mechanisms and pathways of how cells survive and adapt to stress. 

 

Stress response in yeast 

 A particularly well studied example of the yeast stress response is its response to heat shock 

(Lindquist and Craig, 1988; Mager and Ferreira, 1993; Piper, 1993; Mager and De Kruijff, 1995). 

The heat shock proteins that were discovered to mediate this response were found to be induced 

in other stresses as well. Several studies also found that mild heat shock protected yeast cells from 

not only subsequent exposure to lethal levels of heat shock, but also exposure to lethal levels of 
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other stresses, such as desiccation stress (Hottiger et al., 1987), oxidative stress (Benaroudj et al., 

2001), and ethanol stress (Sanchez et al., 1992). This biological phenomenon was known as cross 

protection, in which yeast cells exposed to a mild stress develop tolerance to other stresses. These 

observations led stress biologists to propose the existence of a general stress response, in which 

different stresses create the same intracellular signal (Ruis and Schüller, 1995). A general stress 

transcription factor was proposed when genes that were found to be upregulated or downregulated 

under one stress condition were similarly up- or downregulated under different stress conditions 

(Kobayashi and McEntee, 1990; Wieser et al., 1991). The promoters of these stress-responsive 

genes contained a common sequence, with a core consensus sequence of AGGGG, known as the 

stress response element (Kobayashi and McEntee, 1993; Marchler et al., 1993; Schüller et al., 

1994). 

 The transcription factors that bind the stress response element were found to be zinc finger 

proteins called MSN2 and MSN4, and they were coined as the general stress transcriptional factors 

(Martínez-Pastor et al., 1996). A ΔMSN2 ΔMSN4 double mutant was sensitive to various different 

stresses, and overexpression of the two genes improved resistance to some of the same stresses. 

Pathways that were important for growth in yeast were found to repress expression of genes 

dependent on MSN2 and MSN4. This included the protein kinase A (PKA) pathway (Smith et al., 

1998) and the target of rapamycin (TOR) pathway (Beck and Hall, 1999). In the absence of MSN2 

and MSN4, however, some of their targets may still be induced in response to stress, hinting at a 

more complicated system of stress regulation. For example, the transcription factor YAP1, 

discovered to be a key mediator of oxidative stress, could also be activated by a variety of stresses 

and had a general stress component (Kuge et al., 1997; Wemmie et al., 1997). 
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Environmental stress response 

 The development of global analyses allowed researchers to more fully understand the 

responses to environmental stresses. Exploring genomic expression patterns responding to a 

diverse set of stresses using DNA microarrays allowed researchers to implicate a significant 

number of previously uncharacterized genes in the general stress response (Gasch et al., 2000; 

Causton et al., 2001). These two studies covered genomic expression studies characterizing wild-

type yeast in response to heat shock, pH extremes (acid, alkali), oxidative and reductive stress 

(hydrogen peroxide, menadione, diamide, dithiothreitol), hyper-osmotic shock (sorbitol, 

potassium chloride, sodium chloride), and starvation (progression into stationary phase, amino 

acid starvation, nitrogen starvation). Other studies around the time also performed genomic 

expression studies involving ethanol shock (Alexandre et al., 2001), cadmium exposure (Momose 

and Iwahashi, 2001), phosphate starvation (Ogawa et al., 2000), zinc starvation (Lyons et al., 

2000), copper starvation (Gross et al., 2000), diverse drug treatments (Bammert and Fostel, 2000; 

Hughes et al., 2000), anaerobic growth (Kwast et al., 2002), ionizing radiation (Sanctis et al., 2001; 

Gasch et al., 2001), and double-strand breaks (Lee et al., 2000). A large set of genes showed a 

similar response to the majority of these stresses. 

This global expression pattern in response to these diverse stresses was coined by Gasch et 

al., 2000 as the environmental stress response (ESR). This response consisted of a set of 

approximately 900 genes, about 600 of which were repressed and about 300 of which were induced 

by these various stresses. The expression pattern of the induced and repressed groups of genes 

show almost identical but opposite patterns of expression in response to various stresses (Figure 

1.1).  The magnitude of expression changes in the ESR is proportional to the degree of stress 
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sensed by the cell. The transcription factors implicated in this response were MSN2, MSN4, and 

YAP1, same as those discovered for the general stress response. 

Two groups with distinct expression profiles were found within the repressed genes of the 

ESR. One group of genes appear to be coregulated and have functions involved in growth-related 

processes, RNA processing and splicing, translation initiation and elongation, tRNA synthesis and 

processing, nucleotide biosynthesis, secretion, and other metabolic processes.  The second group 

has a slight delay in the downregulation of expression and is mainly composed of genes that encode 

ribosomal proteins. Repression of genes encoding ribosomal proteins, RNA metabolism, protein 

synthesis, and cell other aspects of cell growth is a defining feature of the repressed ESR (Gasch 

et al., 2000). The reduced synthesis of genes required for ribosome biogenesis, ribosomal proteins, 

and translation initiation was proposed to conserve energy while the cell adapts to the new stressful 

environment (Warner, 1999; Gasch et al., 2002). 

Regarding the group of genes induced in the ESR, many of those genes were previously 

known to be protective of the cell during stress conditions. A wide variety of processes were found 

in the induced ESR, such as carbohydrate metabolism, detoxification of reactive oxygen species, 

cellular redox, cell wall modification, protein folding and degradation, DNA damage repair, fatty 

acid metabolism, metabolite transport, autophagy, intracellular signaling, vacuolar functions, and 

mitochondrial functions. Many of the induced ESR genes also played reciprocal functions, such 

as the upregulation of genes that code for synthesis of enzymes and also induction of genes that 

code for catabolism of enzymes. The same scenario existed for genes regulating the protein kinase 

A pathway. It was proposed that this observation allowed the cells finer control of these specific 

pathways by shifting the regulation to be controlled translationally (Gasch et al., 2000). 
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Figure 1.1 The environmental stress response 
The average gene expression levels of ESR genes whose expression is induced (black lines) or 
repressed (gray lines) in response to six different mild stresses. The stress levels are as follows: 
25℃ to 37℃ heat shock, 0.3 mM hydrogen peroxide, 1.5 mM diamide, 1 M sorbitol, 0.02% methyl 
methanesulfonate, and 170 Gray of ionizing radiation. Figure from Gasch, 2003. 
 
 While the ESR is a common response to many different stresses, its regulation is more 

specific to the particular stress, being controlled at many levels, such as transcriptional initiation, 

chromatin remodeling, and mRNA turnover (Gasch et al., 2002). For example, the transcription 

factors HSF1, HOT1, and YAP1 independently affect different subsets of the ESR in response to 

heat shock, osmotic stress, or oxidative stress, respectively (Treger et al., 1998; Rep et al., 1999, 

2000; Amoros and Estruch, 2001). This indicates that the cell can activate the ESR in response to 

a wide-variety of upstream signals. 

 

Growth rate versus stress 

 Since the repressed ESR included many genes related to growth-related processes, 

researchers wondered if the ESR was actually a growth rate response. More than 70% of the genes 

that were repressed as part of ESR were involved in protein synthesis, ribosome synthesis and 
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processing, RNA polymerase I- and III-dependent transcription, and translation, all processes that 

affect cellular growth (Ashburner et al., 2000; Ball et al., 2000). Genome-wide expression studies 

were performed in which growth rates were controlled in chemostats by limiting nutrients such as 

glucose, ammonium, phosphate, sulfate, leucine, or uracil (Castrillo et al., 2007; Brauer et al., 

2008). It was found that expression of more than one fourth of all yeast genes was linearly 

correlated with growth rate, independent of the nutrient that was being limited. Up to one third of 

all yeast genes could be correlated with growth rate for certain limiting nutrients. Additionally, 

positively correlated genes with growth rate mainly encoded for ribosomal functions (Brauer et 

al., 2008). When ESR genes were examined for their correlation to growth rate, it was found that 

repressed ESR genes were positively correlated with growth rate, and induced ESR genes were 

negatively correlated with growth rate. Lu et al., 2009 suggested two possibilities that could 

explain this observation. The first was that stress directly causes slow or stopped growth, and this 

growth rate reduction would cause the gene expression changes seen in the ESR. The second 

possibility was that slow growth itself was perceived by the cells as stress. They performed 

experiments to disentangle the direct effects of stress from the changes in growth rate (Lu et al., 

2009). 

 Using a chemostat, yeast cultures were grown under phosphate limitation at four different 

growth rates ranging from a 0.072 doublings per hour to 0.43 doublings per hour. A sample from 

each culture was then acutely heat shocked to a temperature of 50℃. They discovered that the 

fastest growing cells were the most sensitive to heat shock, the slowest growing cells were resistant 

to heat shock, and cells growing at intermediate rates showed intermediate rates of killing, 

indicating a negative correlation between growth rate and survival under heat shock. Performing 

the same heat shock experiments using different nitrogen sources to control for growth rate in 
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batch culture confirmed this negative correlation between growth rate and stress defense as well 

(Lu et al., 2009). 

 Another approach to study the connection between growth rate and stress defense is by 

using the yeast deletion collection, which contains deletions of about 4,800 haploid deletions out 

of the more than 6,000 possible ORFs (http://www-sequence.stanford.edu/group/ 

yeast_deletion_project/deletions3.html). Many gene deletion strains show a slow growth 

phenotype when grown in rich media at 30℃. Their growth defects ranged from 12% to 90% of 

the wild-type growth (Giaever et al., 2002). The genes that were required for optimal growth were 

enriched in the categories of protein synthesis, ribosomal proteins, mitochondrial functions, and 

respiration (Mewes et al., 2000). The yeast deletion library can be used to systematically 

investigate the genes and pathways involved in stress survival. Additionally, all deletion strains of 

the same background can be pooled together to simultaneously test the effects of each gene 

deletion. 

 Zakrzewska et al., 2011 used the pooled yeast deletion library to test stress survival. The 

pooled library was grown for three hours at either optimal growth conditions of 30℃ or mild heat 

stress at 38℃. The populations were exposed to ten minutes of three different lethal stresses, 

consisting of either hydrogen peroxide, acetic acid, or heat. The samples were then recovered and 

DNA was isolated for hybridization to fitness arrays (Zakrzewska et al., 2011). For cells that were 

not pre-exposed to mild heat shock, the growth rate of the mutants was a strong determinant of 

stress survival, with up to half of the differences in severe stress survival being accounted for by 

differences in growth rate (Figure 1.2). In contrast, only 10% - 25% of the results could be 

explained by mechanistic overlap. 
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Figure 1.2 Inverse correlation between stress survival and growth rate 
The survival percentage of each gene deletion strain after exposure to 10 minutes of 48℃ heat 
shock is plotted against each of their growth rates in rich media. Figure from Zakrzewska et al., 
2011. 
 
 To determine the pathways that were important for stress survival, the contribution of 

growth rate to severe stress survival was corrected for using linear regression. The deletion strains 

that survived better due to growth rate were enriched for functions in RNA polymerase II mediated 

transcription, translation, ribosome biogenesis, mitochondrial functions, and DNA and 

chromosome organization. After growth rate correction, stress-specific pathways were able to be 

identified. Additionally, the correlation between any two individual stresses decreased after growth 

rate correction, confirming that cross resistance was determined mostly by growth rate 

(Zakrzewska et al., 2011). 

 The previous two studies showed an inverse correlation between severe stress survival and 

growth rate by altering growth rate either through nutrient limitation or through gene deletions. 

Nutrient limitation and certain gene deletions can, however, cause increased survival through 
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mechanisms other than purely growth rate. Using wild-type yeast that have a range of growth rates 

would be more ideal to test the effects of growth rate without confounding variables. Levy et al., 

2012 used a high-throughput microscopy growth assay to measure the growth rate variance of 

wild-type yeast. Using time-lapse images, they were able to determine the growth rate of different 

colonies on a plate. They found that wild-type populations growing in optimal conditions on a 

plate had about 1.3% - 10% of their colonies growing at less than half the median population 

growth rate, a trait that was also heritable. They ruled out all genetic mechanisms and 

mitochondrial aberrations for explaining the slow growth, describing it instead as a bet-hedging 

mechanism. The stress experiments were performed by growing the cells under optimal growth 

conditions for six hours and then heat shocking the cells so that most cells are killed. The cells 

were observed under the microscope from the start of growth until 14 – 20 hours after the heat 

shock. All colonies that did not have a slow growth rate died from the heat shock. Many slow 

growing cells, however, survived the heat shock, underwent one to two cell divisions at a slow 

rate, and then produced fast growing progeny (Levy et al., 2012). 

 This study also used a marker, Tsl1, which had a negative correlation with growth rate. 

Using fluorescence activated cell sorting on Tsl1-GFP cells, they were able to sort for cells into 

bins based on Tsl1 levels, which was a proxy for growth rate. They found a dose-dependent effect 

between Tsl1 and stress survival. Higher Tsl1 levels predicted higher chance of stress survival. 

They concluded from this study that populations of yeast contain a continuous range of metastable 

epigenetic states that each confer a different fitness. The states in which the cells are slowest 

growing protect against stresses, whereas the states in which the cells are fastest growing are the 

most susceptible to stress (Levy et al., 2012). 
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 The association of stress survival and growth rate was so strongly linked that many 

believed that rapid growth and stress defense were competing interests for the cell, claiming that 

is it not possible to optimize one independently of the other. The known pathways that drive growth 

in yeast (TOR and RAS/PKA pathways) repress stress defense, and vice versa (Figure 1.3). 

 

Lethal stress in yeast 

 The majority of studies on yeast stress survival have focused on acquiring stress tolerance 

after exposing yeast to a mild dose of stress so that they can better survive subsequent doses of 

lethal stress. Few studies have looked at acute exposure to transient lethal stresses only without 

any pre-exposure to mild doses of stress. Many studies have investigated nutrient deprivation and 

stationary phase, which are also lethal stresses, but we will not discuss those further because they 

are a completely different type of stress. They are stresses in which the cell can never overcome 

unless the nutrient is added back into the cell’s media. Therefore, experiments can only be 

performed to increase their lifespan or decrease their rate of death in that media rather than 

overcome the stress and proliferate again (Longo et al., 2012). Additionally, because cells die over 

a long period of time during nutrient deprivation or stationary phase, there is much time for cells 

to mount a response to slow down their rate of death or even enter a dormant state that is highly 

stress-resistant. We are interested in lethal stresses in an acute setting that minimizes the time the 

cells can mount a response to the stress. 
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Figure 1.3 Growth and stress compete for limited cellular resources 
The signaling processes that occur in yeast and mammalian cells are shown here. Pathways 
relevant to yeast are shown in blue, pathways relevant to mammalian cells are shown in brown, 
and pathways common to both are shown in black. Figure from Ho and Gasch, 2015. 
 

 As mentioned earlier, Zakrzewska et al., 2011 used the yeast deletion library to assess 

severe stress survival to three different stresses. While the majority of the study focused on the 

acquisition of stress tolerance following a mild heat shock, they did list the functional groups that 

were responsible for severe stress survival without a pre-exposure to any mild stress. After 

correcting for growth rate, they found that severe oxidative stress enriched for gene deletions with 

functions in 90S pre-ribosome, ribonucleoprotein complex, rRNA processing, ribosomal protein, 

RNA elongation, tRNA wobble uridine modification, and ribosome biogenesis. Severe heat shock 

enriched for gene deletions in mitochondrial functions, translation, RNA polymerase II mediated 

transcription, RNA elongation, protein targeting to vacuole, stress granule, chromatin 
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modification, and chromosome organization (Zakrzewska et al., 2011). From these results, one can 

see that survival to extreme oxidative stress is helped by deletions in RNA processing, ribosomal 

proteins, and ribosome biogenesis, all functions that are correlated with growth rate. Similarly, 

survival to extreme heat shock is helped by deletions in mitochondrial functions, translation, and 

RNA polymerase II mediated transcription, all functional groups that are also correlated with 

growth rate. This suggests that these functions have an effect on lethal stress survival that is more 

than simply based on growth rate. It is possible that in addition to affecting cellular growth, these 

processes also actively divert cellular resources towards stress defense. 

 Another extreme stress survival study, Yaakov et al., 2017, looked at exposure to lethal 

levels of the antifungal fluphenazine. They found that cells with extremely high levels of heat 

shock protein 12 (Hsp12) had increased survival to fluphenazine. They discovered that Hsp12 also 

correlated with DNA damage and hypothesized that DNA damage was the cause of the increased 

fluphenazine survival. They were able to show that random double-stranded breaks in a small 

population of a yeast population activated the ESR internally, causing those cells to be more stress 

resistant. Creating the mutant ΔMSN2 ΔMSN4 decreased their survival to fluphenazine, as 

expected, but also decreased the percentage of cells with extremely high levels of Hsp12. In 

addition to the ESR activation, increased double-stranded breaks in a small population predisposes 

those cells to have more mutations, which allows the cells to have a greater chance of acquiring a 

mutation that is beneficial under stress (Yaakov et al., 2017). This is similar to Levy et al., 2012 

in that it also suggested a bet hedging strategy that allows a small fraction of population to be 

highly stress resistant, which increases the fitness of the population under environments that are 

prone to be stressful. 
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Yeast response to ethanol stress 

The study of the yeast response to ethanol stress has been of particular interest in the food 

industry, for making beer and wine, and also in the biofuel industry, for making ethanol. High 

ethanol concentrations, however, will inhibit cell growth and limit ethanol yield and productivity 

from fermentation (Ansanay-Galeote et al., 2001; Aguilera et al., 2006). Understanding the ethanol 

stress response and improving survival to high alcohol concentrations can significantly improve 

cost-effective ethanol production in these industries. 

The main sites of ethanol action in yeast are the plasma membrane, hydrophobic proteins 

of the cell and mitochondrial membranes, nuclear membrane, vacuolar membrane, endoplasmic 

reticulum, and hydrophilic proteins in the cytoplasm (D’amore et al., 1989; Walker, 1998). By 

interacting with these membranes, ethanol increases membrane fluidity and decreases membrane 

structural integrity (Mishra and Prasad, 1989). Vacuolar morphology is also altered under ethanol 

stress in that segregated structures become one large organelle (Meaden et al., 1999). Important 

enzymes and proteins can be denatured due to the decrease in cellular water content (Hallsworth 

et al., 1998). Additionally, ethanol induces the production of heat shock-like proteins, lowers the 

rate of RNA and protein accumulation, and increases the amount of petite mutations (Huo et al., 

2006). The main effects of yeast exposure to ethanol are shown in Table 1.1. 
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Table 1.1 Effects of ethanol stress on yeast 
Figure from Stanley et al., 2009. 
 
 Several transcriptome-wide studies were performed comparing the transcriptomes of 

stressed versus non-stressed yeast cells during short term sublethal ethanol exposure. The gene 

ontology categories that were found to be upregulated upon exposure to ethanol stress were cell 

energetics, transport mechanisms, cell surface interactions, lipid metabolism, general stress 

response, trehalose metabolism, protein destination, ionic homeostasis, glycolysis, and 
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tricarboxylic acid cycle (Alexandre et al., 2001; Chandler et al., 2004; Fujita et al., 2004). There 

was a significant increase in genes encoding for hexose transport and glycolysis, which led 

Chandler et al., 2004 to propose that yeast enter a pseudo-starvation state during ethanol stress. 

The genes that decreased in expression upon exposure to ethanol stress contained gene ontology 

categories of protein synthesis, RNA synthesis and processing, amino acid metabolism, and 

nucleotide metabolism (Alexandre et al., 2001; Chandler et al., 2004). Chandler et al., 2004 also 

found that late-stage ethanol response genes (3 hours post-stress) only shared 7% commonly with 

early-stage response genes (one hour post-stress). 

 A number of studies also used the pooled yeast deletion library to determine gene deletions 

that were sensitive or tolerant to ethanol (Kubota et al., 2004; Fujita et al., 2006; Van Voorst et al., 

2006; Yoshikawa et al., 2009). The severity of ethanol stress was found to influence which genes 

were sensitive to ethanol. Different genes were associated with ethanol tolerance when exposed to 

8% versus 11% ethanol. At 11% ethanol, the genes necessary for ethanol tolerance had functions 

in biosynthesis, cell cycle, cytoskeleton, mitochondria, morphogenesis, nucleic acid binding, 

protease activity, protein transport, vacuole, signal transduction, transcription, and transport 

(Kubota et al., 2004). At 8% ethanol, the main functional categories associated with ethanol-

sensitive deletion strains were tryptophan metabolism, vesicular and vacuolar transport, 

mitochondrial functions, and peroxisomal transport (Yoshikawa et al., 2009). If all four of the 

pooled yeast deletion library results are combined, there was not a large overlap among the genes 

in each study, possibly indicating difference in strains and ethanol concentrations used in the 

studies. 

 While many of the genes and pathways from the previous studies is associated with 

mechanisms of the general stress response, some ethanol-specific responses have also been 
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discovered. While both ethanol and heat stress cause selective mRNA export, bulk poly(A)+ 

mRNA accumulates in the nucleus under ethanol stress. Nuclear localization of the DEAD box 

protein Rat8 in response to ethanol stress blocked bulk poly(A)+ mRNA export, but there was not 

a similar Rat8 localization under heat stress, suggesting specificity of Rat8 to ethanol stress 

(Takemura et al., 2004). Asr1 was also identified as an ethanol-specific transcriptional regulator. 

It is a yeast Ring/PHD finger protein that normally shuttles between the cytoplasm and nucleus 

constitutively, but upon ethanol stress, it rapidly accumulates in the nucleus. This protein does not 

show similar localization under oxidative, osmotic, nutrient limitation, or heat stress (Betz et al., 

2004). The authors suggested that Asr1 might allow yeast to acclimate to ethanol. A later study 

showed, however, that there was no significant difference between ΔASR1 and wild-type strains, 

suggesting instead that Asr1 accumulation in the nucleus was only due to a failure of nuclear export 

machinery under ethanol stress (Izawa et al, 2006).  



 

 18 

 

 

 

 

 

 

 

 

 

 

METHODS 

  



 

 19 

Media and growth conditions 

 We used YPD broth (10 g/L Bacto yeast extract, 20 g/L Bacto peptone, 20 g/L glucose) 

and YPD agar plates (YPD broth with 20 g/L Bacto agar) for routine growth of yeast strains. All 

experiments were performed using standard complete + glucose (sc+glu) media (6.7 g/L yeast 

nitrogen base (Difco), 2 g/L yeast synthetic drop-out mix (US Biologicals), 20 g/L glucose) and 

sc+glu plates (sc+glu media with 20 g/L Bacto agar). All growth on plates occurred at 30℃. All 

growth in liquid media also occurred at 30℃ and shaking at 220 rpm in an Innova 42 incubator 

(New Brunswick). To test growth rate, the number of cells were tracked by measuring optical 

density at a wavelength of 660 nm using an Ultrospec 3100 pro spectrophotometer (Biochrom). 

 

Yeast strains 

All yeast strains were derived from BY4741 (Mat a his3Δ1 leu2Δ0 met15Δ0 ura3Δ0) 

(Brachmann et al., 1998), which is the strain we refer to as wild-type. All deletion strains were 

obtained from the S. cerevisiae knockout collection (Giaever et al., 2002). The gene deletions used 

in this study are ΔTOR1 and ΔTCO89. 

 

Stress experiments 

 All stress experiments, regardless of background or using the pooled yeast deletion library, 

were performed identically. Cells were first grown to mid-log phase in 25 mL sc+glu in a 250-mL 

flask at 30℃ and then washed. They were transferred to 50 mL Falcon tubes and centrifuged for 

five minutes at 3000 rcf to pellet in an Allegra 25R centrifuge (Beckman Coulter). The supernatant 

was discarded and the cells were resuspended in 25 mL deionized water. They were again 

centrifuged for five minutes at 3000 rcf to pellet. The supernatant was discarded and the cells were 
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resuspended in 1 mL of deionized water. They were then centrifuged at 20,000 rcf to pellet on a 

benchtop centrifuge. The supernatant was discarded and the cells were resuspended in 600 

microliters of deionized water. The pre-stress time points for all experiments were taken from this 

cell suspension. 

To stress the cells with ethanol or hydrogen peroxide, 400 microliters of the suspension 

was added to 600 microliters of solution containing the appropriate stress, immediately vortexed, 

set at room temperature for two minutes, vortexed again, and immediately removed from the stress. 

The 600 microliters of solution contained the amount of stress such that the final 1 mL of cell 

suspension contained the desired concentration of ethanol or hydrogen peroxide. For example, if 

the cells were to experience a stress level of 20% ethanol, 200 microliters of 100% ethanol were 

added to 400 microliters of deionized water. As soon as 400 microliters of cells were added to this 

solution, the final 1 mL volume of cells would immediately encounter the 20% ethanol stress. In 

the case of heat stress, 400 microliters of the pre-stress cell suspension were added to 600 

microliters of deionized water. This 1 mL of cell suspension was vortexed, placed in a water bath 

at the desired temperature for two minutes, vortex again, and immediately removed from the stress. 

For all three types of stress used, the stress was removed through dilution. The 1 mL of 

stressed cells was diluted tenfold into deionized water and vortexed. The post-stress time points 

for all experiments were taken from this final cell suspension, whether it be for recovery or plating. 

A control experiment was performed in which cells were subjected to the tenfold diluted 

concentration of the desired stress. They were in this mild stress for four hours and plated 

periodically on sc+glu plates. There was no loss in viability in any of the tenfold diluted 

concentrations of either hydrogen peroxide or ethanol stress. 
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For all experiments in which fraction survival was calculated, the 100 microliters were 

removed from the pre-stress and post-stress cell suspension for serial dilutions in deionized water 

and then plated on sc+glu plates. The number of colonies (CFU) from the plates were counted 

daily until the CFU count no longer increased. The number of cells before and after stress were 

calculated from the CFU counts. Fraction survival was defined as the ratio of post-stress cells to 

pre-stress cells. 

 

Experimental setup for transcriptional profiling using RNA-seq 

 Diagrammatically shown in Figure 3.4, there were five time points taken for each 

experiment, which will be referred to as growth, pre-stress, 15 minutes post-stress, 30 minutes 

post-stress, and 60 minutes post-stress. Yeast colonies were picked from YPD plates and grown 

overnight in 2 mL of sc+glu media at 30℃ until saturation. The next day, cells were back-diluted 

1:200 into 25 mL of fresh, prewarmed sc+glu media in a 250-mL flask and grown for 6 hours at 

30℃. Before washing the cells in preparation for ethanol stress exposure, 1.5 mL of cells were 

removed and centrifuged at 20,000 rcf for 1 minute to pellet. The supernatant was removed and 

the pellet was immediately frozen and stored at -80℃. This sample is the growth time point, used 

to determine gene expression levels in optimal growth conditions. The rest of the 23.5 mL of cells 

were then washed and stressed as described above in “Stress experiments”. From the 600-

microliter pre-stress cell suspension, 150 microliters were removed, pelleted, and frozen, similar 

to the growth time point. This sample is the pre-stress time point, used to determine gene 

expression levels immediately prior to stress exposure. The cells were recovered from the ethanol 

stress in deionized water. During this recovery period, 1.5 mL of cells were removed at 15 minutes, 
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30 minutes, and 60 minutes to pellet and freeze. All samples were stored at -80℃ until preparation 

for sequencing. 

 

Experimental setup for fitness profiling of a pooled haploid yeast deletion library 

 Diagrammatically shown in Figure 2A, the pooled yeast deletion library was thawed from 

a frozen stock and grown in 25 mL of sc+glu media in a 250-mL flask at 30℃ until mid-log phase. 

Samples were then washed and stressed as described above in “Stress experiments”. 150 

microliters of the pre-stress cell suspension were saved as the pre-stress time point. The post-stress 

cell suspension was subjected to an outgrowth period in sc+glu media at 30℃ until the cells 

reached early log phase. Then were then saved as the post-stress time point. All experiments were 

performed with 24.5% ethanol and in triplicates. 

 

Experimental setup for laboratory evolution 

 Diagrammatically shown Figure 3A, yeast colonies were picked from YPD plates and 

grown overnight in 2 mL of sc+glu media at 30℃ until saturation. The next day, cells were back-

diluted 1:200 into 25 mL of fresh, prewarmed sc+glu media in a 250-mL flask at 30℃ and grown 

for six hours. The cells were then washed and stressed, and fraction survival was also calculated 

as described above in “Stress experiments”. From the tenfold diluted post-stress cell resuspension, 

500 microliters were added to 2 mL of sc+glu media and regrown in 30℃ until saturation, thus 

starting the next round of evolution. Whenever cells were back-diluted 1:200 for the six-hour 

growth, 300 microliters of cells were frozen and stored in -80℃ to capture the cellular state at 

every round of evolution. All experiments continued for 10 - 12 rounds of evolution. Three parallel 

lines of evolution were performed for any given strain background and stress condition. At the end 
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of the evolution experiment, one evolved population from each replicate line was picked for further 

analysis and for sequencing. 

 The experiment was designed in such a way as to select for both stress defense as well as 

fast growth. While certain laboratory evolution studies use nutrient-limited media during the 

recovery period after stress to limit selection for strains that grow faster or recover from the stress 

faster (Boer et al., 2008), we wished to avoid accumulation of mutations that cause generic slow 

growth, which would be a trivial solution to lethal stress survival given the established link 

between growth rate and stress defense. This strategy favored mutations that increased survival 

without compromising growth rate or recovery time. Since slow-growing mutations will be 

positively selected for during stress exposure and negatively selected for during recovery, there 

was non-monotonic and cyclical patterns of survival. As such, the last round of evolution was not 

necessarily when the evolved cells survive the best to lethal stress. Upon noticing this observation, 

we altered our method for picking the evolved population to use for sequencing and other analyses. 

We picked the evolved population that was highest for surviving lethal stress based on the fraction 

survival data from the platings instead of just using the evolved population from the last round of 

evolution. 

 Each evolved population was tested for stress survival under the same stress used to evolve 

them, using the protocol described above in “Stress experiments”. The population was then 

streaked on sc+glu plates and individual colonies were picked to test for survival. We avoided 

picking the smallest colonies so as to not bias for slow growing cells. At least six colonies from 

each population were tested for survival. If at least three out of the six survived lethal stress higher 

than the unevolved parental population, then the three highest surviving colonies would be sent 

for whole-genome sequencing. Only one population fit this criterion. For all other evolved lines, 



 

 24 

additional colonies would be tested for stress survival either until three showed higher survival 

than the parental strain or until about twenty colonies were tested. At this point, even if there were 

less than three colonies that showed higher survival, whichever colonies that did survive better 

was saved for sequencing. 

 

RNA-seq of transcriptional profiling experiment 

 RNA was isolated using the YeaStar RNA Kit (Zymo Research). Between step 5 and 6 of 

the protocol, the sample was treated with DNAse I (Sigma-Aldrich). An in-column DNAse 

digestion was performed according to Appendix A of RNA Clean & Concentrator-5 (Zymo 

Research). From the isolated RNA, rRNA was removed using the Ribo-Zero rRNA Removal Kit 

(Illumina). Samples were barcoded and prepared for sequencing using the NEBNext Ultra 

Directional RNA Library Prep Kit for Illumina (New England Biolabs). All samples were pooled 

and sequenced using a NextSeq 500 sequencer (Illumina). 

 

Sequencing of fitness profiling experiment 

 DNA was isolated with the YeaStar Genomic DNA Kit (Zymo Research). Each gene 

deletion in the pooled deletion library were then amplified for sequencing. For a given gene 

deletion, it is replaced, immediately downstream of the start codon, with an 18-nucleotide 

universal priming site U1 (GATGTCCACGAGGTCTCT), a unique 20-nucleotide TAG sequence, 

another 18-nucleotide universal priming site U2 (CGTACGCTGCAGGTCGAC), a 1537 base pair 

KanMX cassette that contains the KAN gene, a 19-nucleotide universal priming site D2 

(CGAGCTCGAATTCATCGAT), a different unique 20-nucleotide TAG sequence, a 17-

nucleotide universal priming site (CTACGAGACCGACACCG), and ends with a TAA stop 
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codon, which replaces the normal stop codon for that gene. The KAN gene confers resistance to 

the antibiotic kanamycin in bacteria and the antibiotic geneticin in yeast. Since not all gene 

deletions had an annotated downstream TAG, only the upstream TAG was sequenced. 

In order to use Illumina platforms for sequencing, Illumina compatible adapter were 

required to be added to the TAG sequence. We decided to use the Illumina Truseq adapters. The 

two universal priming sites (U1 and U2) were used to add the Truseq adapters. This was performed 

using two rounds of PCR that resulted in a final sequence of the form 

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATC

TN[6-11]ATGGATGTCCACGAGGTCTCTNNNNNNNNNNNNNNNNNNNNCGTACG 

CTGCAGGTCGACAGATCGGAAGAGCACACGTCTGAACTCCAGTCACNNNNNNATCT

CGTATGCCGTCTTCTGCTTG. The light green sections represent the 5’ and 3’ ends of the 

Illumina Truseq adapters, with the dark green sequence indicating a specific sequence for different 

samples for multiplexing. We used Truseq adapters 2, 4, 5, and 6. The purple, yellow, and red 

sequences represent the U1, TAG, and U2 sequences, respectively. The gray section indicates 

custom-made internal adapters (ATCACG, TTAGGCG, ACTTGACG, GATCAGTAG, 

TAGCTTACAG, GGCTACGAGTG) for additional multiplexing. These internal adapters were 

made in such a way that as to minimize failure during sequencing due to overabundance of one 

type of nucleotide (Figure 2.1). All samples were pooled and sequenced using a NextSeq 500 

sequencer (Illumina). 
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NNNNNN ATGGATGTCCACGAGGTCTCT 
Index 1   ATCACG ATGGATGTCCACGAGGTCTCT 
Index 2   TTAGGC GATGGATGTCCACGAGGTCTCT 
Index 3   ACTTGA CGATGGATGTCCACGAGGTCTCT 
Index 4   GATCAG TAGATGGATGTCCACGAGGTCTCT 
Index 5  TAGCTT ACAGATGGATGTCCACGAGGTCTCT 
Index 6   GGCTAC GAGTGATGGATGTCCACGAGGTCTCT 

NNNNNN NNNNNATGGATGTCCACGAGGTCTCT 
 
Figure 2.1 Color balance considerations for sequencing 
The Illumina sequencers use two different colored lasers, one for G/T and one for A/C. At least 
one or two nucleotides corresponding to a given color must be read for the first several bases to 
prevent the run from failing. The six staggered indices (gray) shown here ensures color diversity 
at each position. The purple section is the U1 priming site. Figure adapted from Panos Oikonomou. 
 

Whole-genome sequencing of laboratory evolution experiment 

 DNA was isolated using the YeaStar Genomic DNA Kit (Zymo Research). Isolated DNA 

was then barcoded and prepared for sequencing using the Nextera XT DNA Library Prep Kit 

(Illumina). All samples were pooled and sequenced using a NextSeq 500 sequencer (Illumina). 

 

Pre-processing of sequencing results 

 All sequencing reads were first separated based on sample number using bcl2fastq 

conversion software (Illumina). For RNA-seq and whole-genome sequencing data, sequencing 

reads were clipped to remove Illumina adapter sequences (AGATCGGAAGAGC) using cutadapt 

(Martin, 2011). They were then trimmed using Trimmomatic 0.33 (Bolger et al., 2014) to remove 

end bases with a quality score below three and retain only the part of the read that has quality score 

above fifteen using a four-base sliding window. Reads that were less than ten base pairs as a result 

of this trimming were discarded. For the deletion library data, a second demultiplex step, using a 

custom-written script, was performed after the initial bcl2fastq to separate samples based on the 

internal staggered indices (Figure 2.1, gray nucleotides). By searching for the U1 and U2 primer 
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sequences, we were able to find the unique 20-nucleotide TAG sequence in each sequencing read. 

All reads that did not contain a TAG sequence were discarded. 

 

Mapping of sequencing reads 

For the RNA-seq data, reads were aligned to the reference transcriptome of S. cerevisiae 

strain S288C (https://downloads.yeastgenome.org/sequence/S288C_reference/orf_dna/) using 

kallisto (Bray et al., 2016). The counts for each gene from the kallisto output were expressed in 

the normalized form, transcripts per million (TPM). TPM counts for each sample were then 

combined into a matrix, and genes in which all samples had a raw read count below ten were 

discarded from further analysis. 

For the deletion library data, reads were mapped to the reference file of all TAG sequences 

using bowtie2, default settings (Langmead and Salzberg, 2012). All reads that mapped to multiple 

TAG sequences were discarded. A total of 4,563 gene deletions were represented in our samples. 

The total number of TAG sequences was normalized across all samples, and all gene deletions in 

which the read count was less than ten was discarded. 

For the whole-genome sequencing data, reads were mapped to the S. cerevisiae S288C 

genome using breseq (Deatherage and Barrick, 2014). Breseq uses bowtie2 to map reads to the 

reference genome. It then calls mutations using a standard Bayesian single nucleotide 

polymorphism caller, and each resulting score is corrected for multiple testing by multiplying by 

the total genome size. For populations that were sequenced, breseq was run in population mode, 

which identifies mutations present at intermediate frequencies in the population. Mutations 

completely fixed in the population would still be identified as 100% frequency (Deatherage and 

Barrick, 2014). 
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Clustering of RNA-seq data and functional category analysis 

 For clustering, all genes in which the coefficient of variation across all time points was 

below 0.2 were removed. The remaining genes were clustered in R using k-means, with cluster 

sizes of 10, 20 and 40. The genes and their cluster designations were used as input to iPAGE 

(Pathway Analysis of Gene Expression) to identify the likely pathways that are overrepresented in 

each of the clusters (Goodarzi et al., 2009). We decided to use a cluster size of 10 for all 

downstream analyses because the larger cluster sizes over-clustered the data and had clusters in 

which no significant pathways from iPAGE were assigned to them. To expand the list of relevant 

pathways, iPAGE analysis was also performed on each of the individual post-stress time points 

after being mathematically zero-transformed by the pre-stress time point. The full list of pathways 

was then filtered for only significant terms (p<0.001). The list of pathways was large and had many 

redundant terms, so it was summarized into functional categories using REVIGO (Supek et al., 

2011). 

 

Enrichment/depletion and functional category analysis 

 DEseq2 was used to determine gene deletions that are significantly enriched or depleted 

after stress survival (Love et al., 2014). The resulting enrichment scores were used as input to 

iPAGE. The common functional categories between the yeast deletion library data and the RNA-

seq data were then compared to determine if any correlation existed between the two datasets. 
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Validation of evolved strains 

 One evolved population from the laboratory evolution experiment showed a higher survival 

compared to the other evolved populations. The highest surviving colony from that population was 

used for testing cross-resistance to other stresses and also survival at other ethanol concentrations. 

The mutations from that colony, as determined from the whole-genome sequencing results, were 

recreated in the wild-type background to test the effect of each mutation alone. 

 We created the mutations using a CRISPR-Cas9-mediated genome editing method 

described on Ryan and Cate, 2014 and Ryan et al., 2016. We first identified a protospacer adjacent 

motif (PAM) sequence, which is NGG, close to the site where we wanted to create the mutation. 

The 20 base pairs immediately upstream of the PAM sequence, called the guide sequence, was 

cloned into a pCAS plasmid. The original protocol, using ligation-independent cloning, created 

mutations in the pCAS plasmid and had low efficiency, so we used a modified version of pCAS 

(courtesy of the Lorraine Symington Lab) in which we used restriction cloning to insert the guide 

sequence into the pCAS plasmid. Digestion of the modified pCAS plasmid with the restriction 

enzymes ZraI and XbaI and ligation with the annealed oligomers TTT[20-nucleotide guide 

sequence]GTTTTAGAG and CTAGCTCTAAAAC[20-nucleotide guide sequence]AAA allowed 

the correct guide sequence to be successfully cloned into the pCAS plasmid. The repair sequence 

was designed by ensuring at least 50 base pairs of homology upstream and downstream of the 

mutation and PAM sequence. Since one of our mutations was not within 20 base pairs of a PAM 

sequence, we needed to create a synonymous mutation immediately upstream of the PAM to 

ensure that the CRISPR-Cas9 did not cut the DNA again. Fortunately, this mutation created an 

early stop codon, so the mutation created would likely not be translated. We then co-transformed 

our pCAS plasmid and linear repair DNA into our wild-type yeast cells. The original protocol 
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suggested making yeast competent cells for the transformation, but this had too low transformation 

efficiency. Instead, we adapted the LiAc-PEG-ssDNA method for our transformation (Gietz and 

Woods, 2002), using one microgram of pCAS plasmid and 2.5 micrograms of linear repair DNA.  
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GLOBAL RESPONSES OF YEAST CELLS TO LETHAL AND THRESHOLD LETHAL 

ETHANOL STRESS 
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SUMMARY 

 Yeast respond to a diverse array of mild stresses by initiating stress-specific and general 

gene expression programs to both survive the stress and also protect against subsequent stronger 

doses of stress. How yeast adapt to and survive acute exposure to lethal stresses, however, is poorly 

understood. Here, we use transcriptional profiling via RNA-seq and fitness profiling of the pooled 

yeast deletion library to discover and characterize existing and novel genes and pathways that are 

important in responding to and surviving ethanol stress. We find many pathways that are also 

significantly enriched in the environmental stress response as well as pathways known to have 

ethanol-specific stress responses. We also discovered novel functional categories such as 

chromosome condensation and spore wall assembly, known only to play a role in diploid yeast, 

indicating a possible adaptive role of translational repression in the ethanol stress response. 

 

INTRODUCTION 

 The majority of yeast stress studies use stress levels well under the lethal threshold. This 

includes all the stresses used in the environmental stress response (Gasch et al., 2000; Causton et 

al., 2001). While some of the genes and pathways important to the response to sublethal stress may 

be similar to the response to lethal stress, there is likely to be novel mechanisms and pathways at 

play for lethal stresses. Even between two different sublethal ethanol concentrations, at 8% and 

11% ethanol, there were significant differences in the genes that respond to the stress (Kubota et 

al., 2004; Yoshikawa et al., 2009). To study the genes and pathways important for lethal stress 

survival, we used two global approaches: transcriptional profiling using time-course RNA-seq and 

fitness profiling utilizing the pooled yeast deletion library. 
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 Gene expression profiling using high-throughput methods has been used for decades, 

starting with complementary DNA microarrays (Schena et al., 1995) and greatly improved with 

the advent of RNA-seq (Nagalakshmi et al., 2008). RNA-seq is powerful in that it allows the entire 

transcriptome to be studied in many different facets, such as allele specific expression, gene 

fusions, non-coding transcripts, and detection of alternative splicing (Wang et al., 2009; Roy et al., 

2011). Many dynamic biological processes such as the recovery from sublethal stress (Gasch et 

al., 2000; Causton et al., 2011) have to be captured continually in a time course experiment. The 

data needs to be captured at several time points during the recovery phase in order to recapitulate 

the entire stress response. In contrast to non-time-series RNA-seq data, time course RNA-seq data 

is more complex to process and requires different methods (Spies and Ciaudo, 2015). Unbiased 

pattern-based approaches, such as unsupervised clustering, are common methods used to analyze 

time courses data. Gasch et al., 2000, used hierarchical clustering for their time course data. A 

comprehensive study comparing four commonly used clustering algorithms using 52 gene 

expression datasets found that k-means/k-medoids ranked among the best methods for analyzing 

time-course RNA-seq data (Jaskowiak et al., 2014). 

 Determining the effects of a gene deletion is another fundamental approach to studying 

how a gene functions under exposure to stress. Using the haploid yeast deletion library, in which 

each non-essential gene is deleted and uniquely identified using a DNA barcode, allows the library 

to be pooled so that growth and fitness contributions of every non-essential gene can be studied in 

parallel (Giaever et al., 2002). While the early pooled yeast deletion libraries were quantitatively 

studied by hybridizing to high-density oligonucleotide arrays, improved methods such as barcode 

sequencing allowed newer high-throughput sequencing platforms to be used to quantitatively 

measure the fitness effect of gene deletions (Han et al., 2010). 
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 Here, we performed transcriptional profiling via RNA-seq on haploid wild-type yeast cells 

at threshold lethal stress to determine the genes and pathways important for recovery from the 

stress. To further explore which of these functional categories may play an adaptive role in stress 

survival, we performed fitness profiling using the pooled yeast deletion library, which contains 

deletions of all non-essential genes in haploid yeast. We were able to determine which gene 

deletions helped or hurt survival under lethal ethanol stress. 

 

RESULTS 

Cellular response at the threshold of lethal ethanol stress 

 We developed an acute lethal stress paradigm in which haploid yeast cells were treated 

with a brief 2-minute exposure to a range of ethanol concentrations, from 19% to 26% ethanol. 

This brief exposure minimized the possibility of a direct transcriptional response during the period 

of stress. In this way, we created conditions in which the cellular state immediately prior to the 

stress and the longer-term transcriptional responses following the short period of stress were the 

dominant contributors to survival. As can be seen from the stress-survival curve in Figure 3.1, 

ethanol exposure above 20% causes lethality as determined by the fraction survival of CFUs. 

Furthermore, survival drops exponentially for concentrations above 20%, reaching 10-5 at 26% 

ethanol. 

 

 

Global transcriptional response at the threshold of lethal ethanol stress 

 In order to gain better insights into the cellular pathways that may contribute to acute 

ethanol stress survival, we carried out transcriptional profiling using RNA-seq. To minimize any 
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confounding effects from dying cells, we chose to determine transcriptional responses at the 

threshold levels of lethality corresponding to 20% ethanol. The transcriptional state of haploid 

yeast cells (strain BY4741) were monitored starting prior to stress exposure and followed until 60 

minutes after stress exposure, sampling at various time points during the recovery from stress 

(Figure 3.2A).  

 

Figure 3.1 Yeast survival under a range of ethanol concentrations 
The fraction survival of yeast CFUs exposed to two minutes of ethanol stress was tested at a range 
of ethanol concentrations, from 19% to 26%. At 20% and below, there is 100% survival. Above 
20% ethanol, the fraction survival drops in a dose-dependent manner with increasing ethanol 
concentrations. 
 
 The samples collected from the experiment were analyzed by RNA-seq. Comparison of 

global transcriptional states between each post-stress time point and the pre-stress time point 

revealed transcriptional changes that accompany any adaptation following stress. Figure 3.2B 

shows the number of genes that exhibit a twofold change in expression at each post-stress time 

point compared to the pre-stress time point. The number of genes that showed a twofold change is 
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greatest at the 15-minute time points, suggesting that the peak response to ethanol stress occurs 

early. At the early time points (15 and 30 minutes), there are 4.5 times as many genes with a 

twofold decrease than a twofold increase, indicating that the transcriptional response to ethanol 

stress is largely driven by a global downregulation of gene expression. 

 To discover dominant patterns of gene expression following stress, we carried out 

unsupervised clustering of genes using the k-means algorithm. The gene expression patterns of the 

ten clusters are shown in Figure 3.2C, demonstrating both induced and repressed groups of genes. 

The application iPAGE (Goodarzi et al., 2009), a pathway discovery algorithm, revealed that these 

expression clusters were significantly enriched in various functional categories and biological 

processes (Figure 3.3, Supplementary Figure 1). There are four clusters (3, 4, 6, 8) that show 

decreased expression over the entire recovery period. Ribosome biogenesis, ribosomal proteins, 

and translation (in clusters 3 and 6) are three well-documented functional categories, part of the 

environmental stress response, that decrease in response to a variety of stresses (Gasch et al., 2000, 

Causton et al., 2001). The decreased expression of genes encoding for electron transport chain and 

oxidative phosphorylation (cluster 4), which occurs in the mitochondria, is consistent with studies 

that show deletion of mitochondrial genes increase survival during exposure to a variety of lethal 

stresses (Zakrzewska et al., 2011). 
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Figure 3.2 Transcriptional analysis of response to ethanol stress 
(A) Procedure used to perform stress assay on yeast cells and to collect samples for RNA-seq. (B) 
Number of differentially expressed genes for each post-stress time point relative to the pre-stress 
time point, measured as the number of genes with a 2-fold expression change. The total number 
of differentially expressed genes was broken down into those with a 2-fold downregulation and 
those with a 2-fold upregulation. (C) Clustering of the time-course gene expression data using k-
means with 10 clusters. Gene ontology analysis was then performed on each of the clusters, and 
significant functional categories (p<0.001) are shown for each cluster. (D) Average expression 
from the 12 most significant gene ontology categories in the 15- or 30-minute post-stress time 
point. Red colored lines indicate upregulated genes and blue colored lines indicate downregulated 
genes within the early post-stress time points. 
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Cluster 10, enriched for protein refolding, shows the strongest upregulated response during 

the early time periods, suggesting the possible adaptive role of protein refolding by heat shock 

proteins in the adaptation to ethanol stress. This is consistent with previous studies that have shown 

induction of heat-shock proteins in response to mild ethanol stress (4% - 10% ethanol) (Piper et 

al., 2004). Cluster 7 shows genes upregulated in lipid biosynthesis, more specifically, sphingolipid 

biosynthesis. Membrane lipid composition is known to play an important role in sublethal ethanol 

and heat stress (Swan and Watson, 1999), and increased sphingolipid biosynthesis has been shown 

to increase tolerance to heat stress in yeast (Cowart and Obeid, 2007). Other studies have also 

shown that vesicular and vacuolar transport are both important in yeast survival to mild ethanol 

stress (D’amore et al., 1989; Walker, 1998; Kubota et al., 2004; Yoshikawa et al., 2009; 

Charoenbhakdi et al., 2016; Navarro-Tapia et al., 2016), represented here in clusters 1 and 9, 

respectively. While upregulation of vesicular genes occurs shortly after exposure to ethanol, 

induction of vacuolar functions shows a delayed induction, peaking closer to 60 minutes after the 

onset of ethanol stress. 

In order to capture the broadest possible set of pathways modulated during the adaptation 

process, we compared the gene expression at each of the three post-stress time points to the pre-

stress time point and discovered gene ontology classes that are significantly enriched in them. The 

complete list of these categories can be found in Supplementary Table 1. The average gene 

expression from the 12 most significant functional categories modulated during the early time 

points (15 and 30 minutes) are shown in Figure 3.2D. Whereas lipid biosynthesis was significant 

in one of the upregulated patterns in Figure 3.2C, here lipid transporter is also shown to be 

significantly induced, further indicating its significance in the ethanol stress response. Regulation 

of RNA polymerase II transcription (Choder and Young, 1993) and protein kinase activity (Ho et 
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al., 2018) are both categories that have increased expression under certain stresses. On the contrary, 

deletion of RNA polymerase II genes has also been associated with higher survival, but this was 

found to mostly be a growth rate effect (Zakrzewska et al., 2011). 

 
Fig 3.3 Over- and underrepresented pathways in each of the expression clusters 
This is a summarized list of 22 representative pathways in each of the 10 clusters. The full list, 
which we used for downstream analysis, contains 202 pathways and is shown in Supplementary 
Figure 1. Overrepresented pathways are shown in red and underrepresented pathways are shown 
in blue. 
 
 The ATPase activity category consists of some genes that code for heat shock proteins, 

including the Hsp70 family, all of which have been shown to protect against mild ethanol stress 

(Piper et al., 1994). The ATPase activity category is also composed of genes that code for vacuolar 

H+ ATPase, required for tolerance to straight chain alcohols through vacuolar acidification 
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(Charoenbhakdi et al., 2016). The category that is upregulated the greatest during the early time 

points, cellular bud, is composed of genes involved in creating a protuberance from the mother 

cell to create a daughter cell (includes genes with functions in polarized growth, localization of 

proteins to either mother or daughter cell, cytokinesis, cell wall formation), which have not been 

previously implicated in ethanol stress adaptation. 

 The functional category that shows the greatest downregulation is sugar transport activity. 

Other transport processes, such as ammonium transport and organic acid transport, are also 

downregulated in response to ethanol stress in our data to a lesser extent. Transport processes play 

an important role in the ethanol stress response, with some reports of general inhibition of transport 

processes (Leão and Van Uden, 1984) and others reporting an increase of transport processes, 

specifically hexose transport (Chandler et al., 2004) under mild ethanol stress. Kubota et al., 2004 

found that deletion of transport genes hurt survival when yeast cells were exposed to 11% ethanol. 

Vesicle-mediated transport was increased in our analysis, suggesting both an increase and decrease 

of transport processes at threshold lethal ethanol stress, depending on the substrate being 

transported. 

 Two categories, spore wall assembly and condensed chromosome, show an initial decrease 

during the early recovery period with a subsequent increase in gene expression after 60 minutes of 

recovery (Figure 3.2C, cluster 2). Chromosome condensation occurs during meiosis in yeast (Yang 

et al., 2006). Meiosis and spore formation are processes that are specific to diploid yeast (Wagstaff 

et al., 1982) and their modulation in response to ethanol stress in haploid yeast suggests their 

potential adaptive value in response to acute lethal stress. 
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Contribution of all non-essential genes to survival under acute exposure to lethal ethanol 
stress 
 
 Transcriptional responses to extreme stress can reflect pathways that may be adaptive. 

Alternatively, these gene expression dynamics may reflect non-adaptive or even maladaptive 

responses that may only be of values within the organism’s native habitat (Tagkopoulos et al., 

2008). In order to systematically determine the contribution of yeast genes to acute lethal stress, 

we carried out fitness profiling of a pooled haploid yeast deletion library upon exposure to lethal 

ethanol stress (Figure 3.4). We use a lethal level of ethanol, specifically at 24.5% ethanol, the 

concentration at which 1% of the wild-type population survives after a two-minutes exposure. The 

inclusion of a post-stress outgrowth phase reduced the likeliness that some mutants may achieve 

better survival due to a severe growth defect. This haploid library contains about 4,800 deletions 

of most non-essential genes, with each gene deletion represented by a unique 20-nucleotide 

barcode sequence. Comparing the abundance of post-stress gene deletions to pre-stress gene 

deletions, we were able to systematically quantify the effects of each gene deletion on survival. 

 This analysis revealed gene deletions that significantly increased or decreased survival. 

The list of the top gene deletions with positive and negative fitness effects are shown in Table 3.1. 

For the gene deletions that help survival, five out of the top 20 genes are ribosomal subunits, three 

are mitochondrial proteins, and two are in the TOR pathway. The increased survival seen from 

deletion of ribosomal genes and mitochondrial genes are consistent with prior yeast deletion 

studies showing the same effect to other stresses (Zakrzewska et al., 2011; Welch et al., 2013). 

Decreased expression of TOR pathway components is well known to increase survival universally 

under stress conditions (Powers et al., 2006; Wei et al., 2009; Pan et al., 2011). If the list is 

expanded to the top 100 gene deletions, many more ribosomal genes show up. For the gene 
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deletions that hurt survival, six out of the top 20 genes have vacuolar functions. This suggests that 

vacuolar functions are essential for yeast survival under lethal ethanol stress. 

 

Figure 3.4 Procedure used to perform stress assay on yeast cells and to collect cells for 
barcode sequencing 
 

We next performed iPAGE analysis on the full range of fitness scores in order to determine 

whether specific pathways were enriched among gene deletions that changed fitness (Figure 3.5). 

We found significant enrichment for ribosome and translation-related genes at both the positive 

and negative ends of the fitness effect distribution. In particular, there were many non-essential 

ribosome and translation-related genes whose deletion substantially improved survival. The fitness 

benefit of deleting non-essential translation-related functions is consistent with the strong 

transcriptional repression of translation immediately following lethal stress (Figure 3.6). This 

suggests that repression of translation is indeed an adaptive response to lethal stress. In addition to 

translational repression, we wanted to explore whether there was a correlation between the 

maximal transcriptional change of a gene across the post-stress time course and the fitness effect 
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of a deletion in that gene. Plotting all significant positive and negative fitness scores of gene 

deletions again their maximal post-stress expression fold change, we noticed that about 85% of all 

genes exhibited this anticorrelation (Figure 3.7). Many of these genes may play an adaptive role 

in response to lethal ethanol stress. 

ENRICHED   

Gene 
Name 

Systematic 
Name 

Score Description 

AAH1 YNL141W 8.26 adenine deaminase 

LTV1 YKL143W 8.05 EGO/GSE complex subunit, upstream of TOR complex 

FTR1 YER145C 7.72 iron permease 

RPL13A YDL082W 7.72 ribosomal 60S subunit  

SNT1 YCR033W 7.71 deacetylase, positive regulation of stress-activated MAPK 
cascade 

AFG3 YER017C 7.59 mitochondrial metallopeptidase 

RPS16A YMR143W 7.47 ribosomal 40S subunit 

TRM13 YOL125W 7.38 methyltransferase 

EAP1 YKL204W 7.15 translation initiation factor, TOR pathway 

RPL14A YKL006W 6.90 ribosomal 60S subunit  

RPL16B YNL069C 6.80 ribosomal 60S subunit  

PIL1 YGR086C 6.51 eisosome assembly 

KSS1 YGR040W 6.11 MAP kinase 
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PET117 YER058W 5.86 electron transport chain 

ASF1 YJL115W 4.20 nucleosome assembly factor, stress response 

MRP7 YNL005C 4.02 mitochondrial ribosomal large subunit 

VPS24 YKL041W 3.81 vacuolar protein sorting 

CTR1 YPR124W 3.74 copper transporter 

REG1 YDR028C 3.49 protein phosphatase regulator 

GAT2 YMR136W 3.34 transcription factor 

 

DEPLETED   

Gene Name Systematic 
Name 

Score Description 

VPS69 YPR087W -12.40 vacuolar protein sorting 

SIW14 YNL032W -6.92 tyrosine phosphatase 

NGG1 YDR176W -6.81 acetyltransferase 

YJL047C-A YJL047C-A -6.79 unknown function 

DGA1 YOR245C -6.38 acyltransferase, triglyceride biosynthesis 

INO2 YDR123C -6.34 transcription factor, phospholipid biosynthesis 

IRC23 YOR044W -6.16 unknown function 

VPS13 YLL040C -5.97 vacuolar protein sorting 
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SUE1 YPR151C -5.96 degradation of cytochrome c 

UGA4 YDL210W -5.79 GABA transport, located on vacuole membrane 

MON1 YGL124C -5.70 guanine nucleotide exchange factor, located on vacuole 
membrane 

DUR3 YHL016C -5.64 putrescine, spermidine, urea transporter 

ISN1 YOR155C -5.53 nucleotidase, breaks IMP to inosine 

AHK1 YDL073W -5.52 scaffold protein, important in osmotic stress 

YCF1 YDR135C -5.32 glutathione transporter, located on vacuole membrane 

PMC1 YGL006W -5.28 ATPase, located on vacuole membrane 

YGL015C YGL015C -5.25 unknown function 

YGL140C YGL140C -5.24 unknown function 

ICL1 YER065C -5.24 isocitrate lyase, induced by growth on ethanol 

TUF1 YOR187W -5.24 mitochondrial translation elongation factor 

 
Table 3.1 Top 20 most enriched and depleted gene deletions upon exposure to lethal ethanol 
stress 
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Figure 3.5 Over- and underrepresented pathways within the full range of fitness scores 
The pathways that are over- or underrepresented among the fitness scores are shown. 
Overrepresented pathways are shown in red and underrepresented pathways are shown in blue. 
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Figure 3.6 Gene expression fold change versus fitness score for translation initiation genes 
The significantly enriched translational initiation genes from Figure 3.5 (rightmost column, fourth 
row) were used to plot their maximal post-stress expression fold change from the RNA-seq data 
against their fitness score from the deletion library data. 
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Figure 3.7 Gene expression fold change versus all significant fitness scores 
All significant fitness scores (p<0.05, Bonferroni corrected) were plotted against their maximal 
post-stress expression fold change from the RNA-seq data. 85% of all points were contained within 
the top left and lower right quadrants. 
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DISCUSSION 

 Using two global approaches, we were able to discover many important genes and 

pathways important for adaptation to threshold lethal ethanol stress and for survival to lethal 

ethanol stress. Our method of measuring gene expression at the threshold of lethality under such a 

short time period was a novel approach to studying how genes respond to stress and how they 

allow yeast cells to recover. Nevertheless, we were able to discover pathways that were previously 

known to play a role in stress survival, both under general stress and under ethanol-specific 

responses. We found the functional categories of ribosome biogenesis, ribosomal proteins, and 

translation, of all which are known to be repressed in the ESR, to also be downregulated in our 

experiment as well, highlighting the importance of these general stress response mechanisms under 

ethanol stress. 

Cellular membranes are targets of ethanol stress, and we found lipid biosynthesis and lipid 

transporter as important upregulated functional categories in the post-stress response. It has been 

shown that the main targets of ethanol in yeast are the plasma membrane, mitochondrial 

membranes, nuclear membrane, vacuolar membrane, and endoplasmic reticulum (D’ amore et al., 

1989; Walker, 1998). The particular genes that make up the lipid biosynthesis category in our 

dataset mostly include genes that code for components of the plasma and mitochondrial 

membranes, but there were also genes that code for components of endoplasmic reticulum 

membranes, vacuolar membranes, and cell wall components. The lipid transporter category in our 

dataset mostly includes genes that are involved in the transport of phospholipids in general. More 

specifically, there were a few genes that involved the transport of phosphatidylinositol. Taken 

together, these results underscore the importance of protecting against damage to cellular 

membranes due to ethanol. 
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In addition to pathways shared between both sublethal and threshold lethal stress, we found 

novel functional categories that are significantly enriched in response to ethanol stress. The 

categories of chromosome condensation, which occurs during meiosis, and spore wall assembly 

both only occur in diploid yeast. The fact that they are significantly downregulated in response to 

ethanol stress suggests a possible adaptive role under acute lethal stress. In diploid yeast, the stress 

of starvation propels yeast cells to undergo meiosis and sporulation (Nasmyth, 1982). Here, our 

yeast cells have undergone ethanol instead of starvation stress, but even if we assume they were in 

a starvation state, the decrease in meiosis and spore wall assembly genes is the opposite of what 

we would expect to occur in diploid yeast cells. Chu et al., 1998 performed time-course 

transcriptional profiling during meiosis in yeast to determine all the genes that were significantly 

induced during this process. They broke down the meiotic process into early, early middle, middle, 

and late middle stages. Out of the 69 genes in our dataset that fit the meiosis category, 13 of them 

were also found in the dataset by Chu et al., 1998. Strikingly, all 13 of our genes were found to be 

induced in the early stage of meiosis in their dataset. 

Most of the genes known to be involved in the early stage of meiosis function in meiotic 

prophase, which consists of pairing of homologous chromosomes and recombination. Many of 

these genes contain a conserved site, URS1 (5’-GGCGGC-3’), in their upstream region. This 

sequence is recognized by Ume6/Ime1, a major transcriptional regulator of this group of early 

meiotic genes (Rubin-Bejerano et al., 1996; Kupiec et al., 1997). Analysis of our data using FIRE 

also discovered the URS1 consensus site in the genes from the meiosis category. The role of URS1 

in mediating stress in yeast has been largely unstudied. It is known that in diploid yeast, URS1-

bound factors modulate HSF1 through HSP82 during early meiotic induction (Szent-Gyorgyi, 

1995). Under heat shock, protein binding at URS1 is lost (Erkine et al., 1999). This allows the 
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URS1-containing HSP82 to be de-repressed and can subsequently activate HSF1 (Uffenbeck and 

Krebs, 2006). 

Genes that contain URS1 can be activated by IME1. In our dataset, it is shown that IME1 

expression mimics the pattern shown by spore wall assembly genes seen in Figure 3.2. Its role as 

a master regulator of meiosis is primarily as an early inducer. While this is well known to occur in 

diploid yeast, its role in haploid yeast is poorly understood. We do not know why its expression 

decreases in response to ethanol stress, but its strong downregulation suggests an adaptive role in 

the response to ethanol stress. 

 Fitness profiling revealed many gene deletions that have similar functions at both the 

extremes of significantly enriched and significantly depleted. While it may seem to be a waste of 

cellular resources to have the same functions both induced and repressed, this could indicate a 

finer control of that pathway under ethanol stress exposure. Specifically, as some studies have 

suggested, this could allow the cell to shift control from transcriptional machinery to translational 

machinery (Ho et al., 2018). Combining both fitness profiling and transcriptional profiling results 

allowed us to analyze which genes and pathways possibly played an adaptive role in response to 

acute lethal ethanol stress. Translational repression seems to be one such category that fits this 

potentially adaptive role. 

 It is important to note that the pooled yeast deletion library contains only non-essential 

gene deletions. There is the possibly that some essential genes play an adaptive role in the ethanol 

stress response, but we would not be able to test their deletions using this deletion library. A 

possible way to test those genes would be to use temperature-sensitive mutants or use a 

heterozygous diploid library. Hillenmeyer et al., 2008 used yeast heterozygous and homozygous 

deletion libraries in various chemical and environmental stress conditions, noting that 97% of all 
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genes are optimal for growth in some condition. Therefore, it is very likely that some essential 

genes would have their deletion play an important role in the ethanol stress response. 
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EXPERIMENTAL EVOLUTION TO INCREASE SURVIVAL TO LETHAL ETHANOL 

STRESS 
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SUMMARY 

 Mutational studies are important in determining genes important in the ethanol stress 

response. In the previous chapter, we used a deletion library to determine how nonessential loss-

of-function mutations contribute to survival under lethal ethanol stress. Here, we expand the 

landscape of possible mutations by using experimental laboratory evolution to try and improve 

yeast stress survival under lethal ethanol stress. We were able to evolve a strain of yeast that 

displayed greater than 30% survival compared to a 1% survival of the parental wild-type strain. 

The pre-stress gene expression state of this evolved strain was similar to the post-stress expression 

state of the parental state. By being in a stress-tolerant state, the evolved strain was able to survive 

better under heat and hydrogen peroxide stress as well. This was achieved without a significant 

decrease in the bulk growth rate of the evolved strain. 

 

INTRODUCTION 

 Experimental laboratory evolution is a method commonly used to gain insights into 

adaptive changes that may accumulate in populations under certain growth or environmental 

conditions. Many such experiments have been performed in E. coli and S. cerevisiae in the past 

few decades (Paquin and Adams, 1983a-b; Bennett et al., 1990). During the laboratory evolution 

process, the microorganism is grown in clearly defined conditions for time periods ranging from 

weeks to years, allowing for the selection of phenotypes that improve its fitness in that condition 

(Dragosits and Mattanovich, 2013). The longest running laboratory evolution study was conducted 

by Richard Lenski, having evolved E. coli for much longer than 50,000 generations (Sniegowski 

et al., 1997; Lenski et al., 1998; Cooper and Lenski, 2000). Many biological phenomena can be 

explored with these experiments, giving insights into the genetic basis of increased fitness (Barrick 



 

 55 

et al., 2009), historical contingency (Blount et al., 2008), clonal interference (Kao and Sherlock, 

2008), and evolutionary bet hedging (Beaumont et al., 2009). 

 In E. coli and S. cerevisiae evolution experiments, 100 to 500 generations usually 

correspond to a fitness increase of 50-100%, and in certain cases, even a 1000% increase can be 

achieved (Tremblay et al., 2010). It is hard, however, to predict the time scale at which a fitness 

increase of the population will occur. While some environments can lead to fast phenotypic 

increases, others, such as adaptation to pH, have low adaptive potential (Hughes et al., 2007; 

Dragosits et al., 2014). The fitness increase as a function of the number of selection cycles is also 

not linear. It seems to increase quickly within the first 100 to 500 generations below slowing down 

drastically (Barrick et al., 2009). 

 Here, we used experimental laboratory evolution to evolve a wild-type strain of haploid 

yeast over the course of 10 to 12 rounds of evolution. We calibrated the initial level of ethanol 

stress to allow only 1% of the population to survive. The surviving cells would be grown to 

saturation in rich media before starting the next round of evolution. We were able to evolve several 

parallel lines to have higher survival than the parental strain, with the best evolved strain showing 

greater than 30% survival under acute exposure to lethal ethanol stress. 

 

RESULTS 

 The genetic diversity of the yeast deletion library enabled us to determine the extent to 

which loss-of-function mutations substantially improves survival of yeast cells to lethal ethanol 

stress. We were curious to what extent random mutations and selection may drive improved lethal 

stress survival and whether and to what extent the transcriptional responses of these cells may shift 

as a function of improved survival. To this end, we developed a laboratory experimental evolution 
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paradigm in which wild-type haploid yeast cells were exposed to lethal ethanol stress and then 

recovered in an outgrowth phase over multiple cycles of selection. In each round, cells were first 

grown to saturation in rich media, diluted and grown until mid-log phase, then exposed to two 

minutes of lethal ethanol stress. The surviving cells were then regrown to saturation, thus starting 

the next round of selection (Figure 4.1A). Whereas some studies use nutrient-limited media during 

the regrowth phase so as to minimize growth-based competition (Boer et al., 2008), we wished to 

avoid accumulation of mutations that cause generic slow growth which would be a trivial solution 

to lethal stress survival. The strategy we used favored mutations that increased survival without 

compromising growth rate. As such, we decided to recover the cells in rich media following lethal 

stress. Since slow-growing beneficial mutations will be positively selected for during stress 

exposure and negatively selected for during recovery, it may explain the non-monotonic increase 

of survival throughout the laboratory evolution process (Figure 4.2). 

 Experimental evolution was carried out in triplicate populations. The lethal selection was 

calibrated to have a baseline survival of 1%. As can be seen in Figure 4.2, we saw a substantial 

increase in survival frequency in multiple lineages. The best performing evolved population 

showed about an average 35% survival compared to the parental strain (Figure 4.1B, compare red 

to black). Individual colonies were then selected from this evolved population and also tested for 

survival. All colonies tested exhibited an average survival of at least 10% (Figure 4.1B, green). 

The colony with the highest average percent survival, which we will refer to as strain JY304, was 

chosen for subsequent phenotypic and molecular analyses. We first determined the survival 

advantage of strain JY304 across a range of ethanol concentrations. We saw a dramatic increase 

in survival across the full range of ethanol concentrations. At the highest concentration tested 

(26%), we saw nearly a hundred-fold increase in survival (Figure 4.1C). Remarkably, this survival 
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advantage was not accompanied by any significant reduction in the bulk growth rate of the 

population (Figure 4.1F). 

 

 
 
Figure 4.1 Enrichment of mutations that confer survival benefit upon acute lethal stress 
exposure 
(A) Laboratory evolution protocol. At every round of evolution, survival was measured by plating, 
and experiments were stopped when survival seemed to be noticeably above the baseline survival 
of 1%. (B) Fraction survival of the naive wild-type strain (black), evolved population (red), and 3 
distinct colonies from the evolved population (green). Horizontal lines indicate the average 
survival of each of the replicates. (C) Analogous to Figure S1, comparing the fraction survival of 
yeast at a range of ethanol concentrations, from 19% to 26%. (D) Testing cross-protection of cells 
evolved under ethanol stress, stressed at 60mM or 70mM hydrogen peroxide. (E) Same as D except 
with heat stress. (F) Growth curves of the evolved and wild-type strains. 
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Figure 4.2 Tracking survival at each round of evolution 
The fraction survival was calculated at each round of evolution for all three replicate lines of the 
wild-type background. 
  
Cross-resistance of strain JY304 across orthogonal lethal stresses 

 The survival advantage of strain JY304 may be due exclusively to ethanol-specific 

advantages conferred by the underlying mutations. Alternatively, at least some of the survival 

advantage maybe due to more general survival effects beyond lethal ethanol stress. To see any 

evidence for such cross-resistance, we determined haploid yeast survival to orthogonal stresses: 

hydrogen peroxide (70 mM) and heat shock (57℃) for two minutes. As can be seen in Figure 4.1D-

E, strain JY304 showed significantly higher survival for both stresses, suggesting that at least part 

of the survival advantage is generic. 
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Evolution of transcriptional responses in the evolved hyper-surviving strain 

 The evolved strain JY304 may achieve superior ethanol survival due to an improved ability 

to reprogram gene expression during the minutes and hours following exposure to lethal stress. 

Alternatively, some of the survival advantage may be due to establishment of a pre-stress cellular 

state that is more resistant to lethal stress. In order to determine the extent to which these differing 

strategies may contribute to survival, we carried out transcriptional profiling of the strain JY304 

exactly as performed for the parental wild-type strain. The parental strain showed a dramatic shift 

in gene expression in the 15-minute post-stress period, repressing and inducing a large number of 

genes that led to a substantial divergence in global transcriptional state, followed by a gradual 

recovery of gene expression back to pre-stress patterns after an hour (Figure 3.1B). The evolved 

strain, however, exhibited a less dramatic shift in gene expression that was largely maintained in 

the post-stress period without significant recovery (Figure 4.3A). 

 To discover significant patterns of gene expression, we performed unsupervised clustering 

using the k-means algorithm with k=10. This revealed gene expression clusters, six of which 

showed the same enrichment in functional categories as observed in the parental strain. Three of 

these were upregulated (vesicle, proteasome complex, protein refolding) and three were 

downregulated (ribosomal protein, ribosome biogenesis, nucleosome). Although the directionality 

of these gene expression dynamics was similar to the parental strain, the magnitude of change was 

significantly different. All six categories showed a lower magnitude of change in strain JY304 

compared to the wild-type strain. The overall lower magnitude of change is also evident in the 

comparison of heat maps (compare Figure 4.3B to Figure 3.2C). 
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Figure 4.3 Increase in survival frequency in multiple lineages 
Analogous to Figure 3B, the 8 categories are (A) wild-type replicate line 2, (B) wild-type replicate 
line 3, (C) ΔTCO89 replicate line 1, (D) ΔTCO89 replicate line 2, (E) ΔTCO89 replicate line 3, 
(F) ΔTOR1 replicate line 1, (G) ΔTOR1 replicate line 2, (H) ΔTOR1 replicate line 3. The last 
column in each graph, named “other col”, are additional colonies tested that did not end up having 
a significant survival increase upon repeated testing. 
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 We compared the global expression of genes in strain JY304 to the parental strain during 

exponential growth phase in rich media to determine if the pre-stress cellular state of strain JY304 

is more resistant to lethal stress. Remarkably, we saw significant differences in pre-stress gene 

expression states with 266 genes showing greater than twofold expression change and 52 showing 

genes lower than twofold expression change. Table 4.1 contains a list of the 20 most highly 

differentially expressed genes in the both the positive and negative directions. It is worth noting 

that many of the most highly differentially expressed genes are of unknown function (8 out of 20 

for genes with increased expression and 5 out of 20 for genes with decreased expression), including 

the top two genes with decreased expression. This highlights the importance of novel genes and 

pathways in the ethanol stress response that have yet to be elucidated. There are also categories 

that have genes in both the increased and decreased sets. Transposable element (four in increased, 

four in decreased), heat shock protein (one in increased, one in decreased), helicase (one in 

increased, one in decreased), and mitochondrial protein (five in increased, two in decreased) are 

all such examples. Having genes with similar functions being both increased and decreased in 

strain JY304 compared to the parental strain suggests a finer control of these specific pathways by 

shifting the regulation to be controlled translationally (Gasch et al., 2000). Ho et al., 2018 showed 

that protein production is controlled transcriptionally under normal conditions, but stress shifts it 

under translational control. 
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Figure 4.4 Transcriptional analysis of an ethanol-tolerant strain’s response to ethanol 
stress 
(A) Correlation between each of the post-stress time points to the pre-stress time point for both the 
evolved JY304 and wild-type strains. (B) Analogous to Figure 1C except on strain JY304. (C-H) 
Average expression of the 6 functional categories that are significant (p<0.001) in both strain 
JY304 and wild-type data and have the same directionality. The wild-type yeast data always starts 
at 0 at time point 0, but strain JY304 data starts at its relative expression compared to the wild-
type strain during the growth phase. The 6 categories are kinase, ribosomal protein, ribosome 
biogenesis, translation, nucleosome, and protein tag, respectively. 
 

INCREASED EXPRESSION   

Gene Name Systematic 
Name 

Fold 
increase 

Description 

YMR046C YMR046C 26.7 transposable element 

YKL131W YKL131W 6.7 unknown function 

YLR410W-A YLR410W-A 6.0 transposable element 

HSP32 YPL280W 5.5 heat shock protein 

YBL111C YBL111C 4.9 helicase-like protein 

YHL037C YHL037C 4.8 unknown function 

YHL005C YHL005C 4.8 unknown function 

YGL235W YGL235W 4.4 unknown function 

ATP6 Q0085 4.3 mitochondrial protein 

AI1 Q0050 4.2 mitochondrial protein 

YPL060C-A YPL060C-A 3.8 transposable element 

SDP1 YIL113W 3.8 stress-inducible MAP kinase phosphatase, shifts 
location upon heat stress 
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YDR261C-C YDR261C-C 3.7 transposable element 

YPR136C YPR136C 3.7 unknown function 

YBR224W YBR224W 3.6 unknown function 

RRT16 YNL105W 3.5 unknown function 

COX3 Q0275 3.4 mitochondrial protein 

AI2 Q0055 3.4 mitochondrial protein 

YPR197C YPR197C 3.3 unknown function 

COB Q0105 3.2 mitochondrial protein 

 

DECREASE EXPRESSION   

Gene Name Systematic 
Name 

Fold 
decrease 

Description 

YGL088W YGL088W 75.9 unknown function 

YDR545C-A YDR545C-A 38.3 unknown function 

SNA3 YJL151C 9.8 vesicular sorting of proteins to vacuole 

YIL177C YIL177C 7.9 helicase 

SRB6 YBR253W 6.7 RNA polymerase II subunit 

CUE4 YML101C 5.2 unknown function 

YGR027W-A YGR027W-A 4.9 transposable element 
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TAR1 YLR154W-C 4.7 mitochondrial protein 

YLR156W YLR156W 3.9 unknown function 

COX13 YGL191W 3.8 mitochondrial protein 

PGA2 YNL149C 3.6 protein transport 

HSP33 YOR391C 3.4 heat shock protein 

HHT1 YBR010W 2.9 histone H3, rRNA transcription 

YBR064W YBR064W 2.8 unknown function 

COF1 YLL050C 2.8 golgi to plasma membrane transport 

YAR010C YAR010C 2.8 transposable element 

YJR028W YJR028W 2.8 transposable element 

YPR137C-A YPR137C-A 2.8 transposable element 

RPB9 YGL070C 2.7 RNA polymerase II subunit 

HTB2 YBL002W 2.5 Histone H2B 

 
Table 4.1 Top 20 most differentially expressed genes in both the positive and negative 
directions in strain JY304 compared to the parental strain 
 
 Pathway analysis on the full range of pre-stress fold changes by iPAGE revealed 125 gene 

ontology terms with significant differences in expression (p<0.001), clearly showing a significant 

difference in the pre-stress cellular state between these two strains. The full list of 125 terms can 

be found in Supplementary Table 2. Many of those gene ontology terms were combined into six 

representative functional categories to see the dynamics in the average behavior of these gene sets 
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across the post-stress period (Figure 4.3, C-H). Examination of these pathway dynamics shows 

that in strain JY304, there was a reprogramming of gene expression that shifted its pre-stress state 

towards that of the wild-type at 15 minutes post-stress. For each of the functional categories that 

is upregulated post-stress in the parental strain, strain JY304 already has a higher expression during 

the growth phase (red dotted line). Likewise, for each of the functional categories that is 

downregulated post-stress in the parental strain, strain JY304 already has lower expression during 

the growth phase (blue dotted line). This suggests that the evolved strain is already in a more stress-

resistant state during normal growth and is better prepared to survive an acute transition to lethal 

stress. Four of the six categories are known to be part of a general stress response (protein kinase, 

ribosomal protein, ribosome biogenesis, and translation), explaining why strain JY304 also better 

survives hydrogen peroxide and heat stress (Figure 4.1 D-E). 

Similar to Figure 3.7, we plotted the ratio of the maximal post-stress transcriptional 

response of the wild-type strain to the pre-stress expression level of strain JY304, against the 

significant fitness scores. If strain JY304 has perfectly adapted to the post-stress state of the 

parental strain, we should see a shift of each of the points towards the x-axis, which is what we 

observe for genes with negative fitness scores (Figure 4.4, left half). This suggests that globally, 

genes that are essential for surviving acute lethal ethanol stress have adapted their expression levels 

to a post-stress state in strain JY304. In contrast, there was no significant change in expression 

fold change between positive fitness scores between Figure 3.7 and Figure 4.4. While certain 

functional categories in strain JY304, such as translation and ribosomal protein, move towards the 

post-stress state of the parental strain, in general, there is not a significant global shift in gene 

expression for those genes whose deletion helps survival. 
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Figure 4.5 Gene expression fold change versus all significant fitness scores, using strain 
JY304 as the baseline pre-stress state 
All significant fitness scores (p<0.05, Bonferroni corrected) were plotted against the ratio of their 
maximal post-stress expression fold change of the parental strain to the pre-stress expression level 
of strain JY304. The gene deletions with negative fitness scores (left side of graph) showed a shift 
in gene expression towards the x-axis (p<1e-15). The gene deletions with positive fitness scores 
(right side of graph) did not show any significant change in expression levels compared to the left 
half of Figure 3.7. 
 
DISCUSSION 

 Here, we used laboratory evolution to evolve a wild-type strain with an initial 1% survival 

under lethal ethanol stress to more than 30% survival after 10 to 12 rounds of evolution. This 
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strain, which we named JY304, showed significant cross resistance to heat and hydrogen peroxide 

stress, indicating a general stress aspect, without compromising bulk growth rate. We determined 

that strain JY304 shifted its global expression level to that of the post-stress wild-type expression 

level, indicating a more stress-resistant state even during growth in optimal conditions. 

 In Zakrzewska et al., 2011, they were able to use the pooled yeast knockout library to 

determine the correlation between survival and growth rate of the gene deletions. Regardless of 

the type of stress they used, a 1% survival roughly corresponds to a growth rate of 0.34 doublings 

per hour, whereas a 30% survival roughly corresponds to a growth rate of 0.26 doublings per hour. 

In Lu C. et al., 2009, they forced their yeast to grow at several different rates in a chemostat. 

Testing survival at 50℃ for 5 minutes, they found that 1% survival roughly correspond to a growth 

rate of 0.44 doublings per hour, whereas a 30% survival roughly corresponds to a growth rate of 

0.22 per hour. These studies demonstrated just how closely linked growth and stress defense are. 

Our study, however, showed that our evolved strain that has at least 30% survival had a bulk 

growth rate that was comparable to that of the wild-type strain. 

 In Figure 4.4, the decreased expression of genes that encode ribosomal proteins, ribosome 

biogenesis, and translation may suggest that bulk growth rate should be decreased. The pooled 

yeast deletion library used by Zakrzewska et al., 2011 did show that some genes with deletions in 

those three categories were slower growing. However, the growth rate of these strains was 

calculated by determining relative abundances of each strain within the entire pooled deletion 

library. Using only relative abundances is not as accurate as calculating growth rate of a clonal 

population. Additionally, the growth rate of each individual strain in the population will not 

necessarily be the same as if the individual strain were grown by itself, due to competition from 

all the other deletion strains. Welch et al., 2013 used 41 strains that had deletions in ribosome 
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biogenesis genes and showed that there was no correlation between growth rate and survival 

against desiccation stress. In fact, many of their ribosome biogenesis mutants showed greater than 

a 1000-fold increase in desiccation tolerance compared to wild-type but were actually in the 

quartile with the fastest growth rate. 

 While it may seem that we have evolved a strain that is able to optimize both growth rate 

and stress survival, the bulk growth rate of the population does not tell us whether individual cells 

actually have both optimized. It is certainly possible that strain JY304 shows a persistence or bet-

hedging effect in which a small fraction of the population grows at a slow rate and is the main 

contributor of increased stress survival. Since we are only measuring bulk growth rate, we will not 

be able to truly determine if our population increases survival due to this subpopulation. We would 

need additional experiments to look at the distribution of growth rates within this population and 

determine if it is still the slow growing subpopulation that is the main contributor to increased 

survival. One aspect we were able to optimize, however, was recovery from stress. Whereas the 

initial rounds of evolution took three days to fully recover and saturate, we were able to evolve our 

strain to recover and reach saturation at two days or less. 

 Since ribosomal proteins, ribosome biogenesis, and translation all have decreased 

expression in strain JY304 even in optimal growth conditions, it seems that we have created a 

strain in which the repressed part of the ESR is mildly yet permanently activated. It has been shown 

that a decrease in repressed ESR transcripts causes a large increase in empty ribosomes, indicating 

that ribosomes are not limiting cell growth or translation, but instead directing translational 

capacity to induced mRNAs (Ho et al., 2018). A similar phenomenon has been proposed in 

bacterial cells as well, in which ribosomes are removed from the active pool upon nutrient 

starvation and osmotic stress to maintain elongation rates (Dai et al., 2017; Dai et al., 2018).  
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In this dissertation, we examined how yeast adapts to and survives acute exposure to lethal 

ethanol stress. Previous stress studies in ethanol mostly investigated the effects of mild doses of 

ethanol on yeast, with significant gene difference even between 8% and 11% ethanol (Kubota et 

al., 2004; Yoshikawa et al., 2009). While we found important pathways in our lethal stress studies 

that were consistent with many previous findings, we also discovered new insights into how yeast 

survives ethanol in the lethal range under acute exposure, experimental conditions that had not 

been well-studied in yeast. 

 We first investigated how wild-type haploid yeast responded to an acute exposure of 

threshold lethal ethanol stress. We showed that ribosome biogenesis, ribosomal proteins, and 

translation, all significantly downregulated categories of the environmental stress response, were 

also downregulated in response to threshold lethal ethanol stress. We also showed that heat shock 

proteins, which are significantly upregulated in the environmental stress response, are also 

upregulated in our experimental setup. Two functional categories, condensed chromosome and 

spore wall assembly, had never previously been described as having a role in ethanol stress 

survival. While genes in these categories contained a URS1 element that was associated with 

HSF1, this was still mostly in the context of meiosis and only demonstrated in diploid cells. The 

strong downregulation of genes containing the URS1 element as well as IME1 suggests a possible 

adaptive role in response to threshold lethal ethanol stress, especially due to the fact that they have 

not previously been known to play in a role in haploid yeasts. 

 We next determined the fitness effect of every non-essential gene deletion under acute 

exposure to lethal ethanol stress. By calculating the fitness score of all gene deletions, we were 

able to determine which gene deletions help or hurt survival. At the positive and negative extremes 

of fitness scores, we saw genes that fall in similar functional categories, suggesting an enhanced 
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role for these pathways. Ho et al., 2018 proposed that this enhanced regulation may be used by the 

cell to shift the ethanol stress response away from being controlled transcriptionally normally to 

being controlled translationally instead. The anticorrelation between fitness scores and expression 

fold changes between the fitness profiling and transcriptional profiling for translation genes 

indicates a possible adaptive role for translational repression under acute exposure to lethal ethanol 

stress. 

 We next tried to improve stress survival to lethal ethanol stress by designing an 

experimental laboratory evolution protocol in which both stress defense as well as rapid growth of 

the bulk population was selected for. We were able to evolve a population of cells that showed a 

significant improvement in stress survival under lethal ethanol stress. Furthermore, the evolved 

strain showed cross protection to heat and hydrogen peroxide stress without compromising bulk 

growth rate. This evolved strain was found to be in a more stress-resistant state even when growing 

at optimal growth conditions. 

 A novel aspect of our experimental design is the very short amount of time of two minutes 

that yeast cells are exposed to ethanol. Most experiments performed on yeast are much longer, 

especially for studying acquired stress tolerance, in which the stress is there constantly until the 

cell mounts a transcriptional response to the stress. Here, the duration of two minutes does not give 

the cell time to mount a transcriptional response, which makes much of the cell’s survival 

dependent on the pre-existing state prior to the onset of the stress. It is interesting to note how such 

a short duration affects the survival at a range of ethanol concentrations as seen in Figure 4.1C. 

For the wild-type strain, the range of ethanol concentrations from 20% to 25% decrease the 

survival in a dose-dependent manner over two orders of magnitude, but increasing the ethanol 

concentration to 26% suddenly decreases the survival another three orders of magnitude. A similar 
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behavior is seen with strain JY304. This evolved strain only demonstrates less than one magnitude 

decrease in survival between 20% and 25% ethanol but also shows a drastic drop in survival, of 

more than two orders of magnitude, between 25% to 26% ethanol. It would be interesting to further 

explore exactly what aspect of the stress defense mechanism is overcome by the ethanol stress at 

this extreme. Another interesting point to note is that both the wild-type strain and strain JY304 

have slightly decreased survival at 20.5%. It seems that strain JY304 does not actually increase 

the threshold of lethality in regards to ethanol stress but rather just survives better than the wild-

type strain within the lethal regime. An insightful future experiment would be to perform 

competition experiments between the wild-type strain and strain JY304 under various 

experimental conditions to determine how much more fit strain JY304 is compared to the wild-

type strain. 

 While new insights can be gained from using such a short duration of stress, it remains to 

be seen whether these cells can survive longer term stresses. While we clearly demonstrated that 

strain JY304 survives better than the wild-type strain when stressed for two minutes under ethanol, 

heat, and hydrogen peroxide stress, we do not know whether it will fare as well when the duration 

of these stresses is longer. An interesting follow-up experiment would be to expose the wild-type 

and evolved strains to longer stress durations and track not only the survival but also gene 

expression changes. 

 A potential limitation of this study is the use of ethanol and pure water as the media in 

which the cells are stressed. Removing all nutrients, especially glucose, from the media ensures 

that the cells are not growing. Many stresses, especially starvation conditions, have demonstrated 

that the presence of glucose actually kills the cells faster than if no carbon source was present at 

all. This is due to the fact that cells that sense glucose may continue to try to divide, and this 
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utilization of valuable cellular resources that could have been used on stress defense actually kills 

the cells faster. To remove any possibility of this effect, we decided to remove all nutrients in the 

media before stressing the cells. The negative side effect of this is that the expression changes that 

result from this may be a combination of both ethanol stress and nutrient starvation. We do expect 

the effects to be predominantly from ethanol stress, however, because it is a stress at the threshold 

of lethality that the cell must quickly deal with in order to survive. In our experiments in which 

the cells were exposed to pure water only, they do not actually show any death for at least 24 hours 

(data not shown).  

 These results have potential applications in the food and biofuel industries. For example, 

many yeast strains used for winemaking will die at a certain ethanol concentration, limiting the 

alcohol content of the resulting wine. Insights from our evolved strain, which is more stress-

resistant, could potentially be used to engineer yeast strains that can increase the alcohol content 

of wines before dying. Taken together, our results provide a key stepping stone in determining 

general principles that allow yeast and other microorganisms to adapt to and survive a diverse 

array of lethal stresses. 
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Supplementary Figure 1 
Over- and underrepresented pathways in each of the expression clusters for wild-type yeast 
exposed to ethanol stress 
This is the full list of pathways from Figure 3.3. 
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SUPPLEMENTARY TABLES 

GO:0000027 ribosomal large subunit 
assembly and maintenance 

GO:0015629 actin cytoskeleton 

GO:0000082 G1/S transition of mitotic 
cell cycle 

GO:0015630 microtubule cytoskeleton 

GO:0000086 G2/M transition of 
mitotic cell cycle 

GO:0015849 organic acid transport 

GO:0000166 nucleotide binding GO:0015934 large ribosomal subunit 

GO:0000226 microtubule cytoskeleton 
organization and biogenesis 

GO:0015935 small ribosomal subunit 

GO:0000288 mRNA catabolism, 
deadenylylation-dependent decay 

GO:0015980 energy derivation by oxidation of 
organic compounds 

GO:0000293 ferric-chelate reductase 
activity 

GO:0016023 cytoplasmic membrane-bound vesicle 

GO:0000300 peripheral to membrane 
of membrane fraction 

GO:0016209 antioxidant activity 

GO:0000313 organellar ribosome GO:0016282 eukaryotic 43S preinitiation complex 

GO:0000502 proteasome complex 
(sensu Eukaryota) 

GO:0016283 eukaryotic 48S initiation complex 

GO:0000775 chromosome, pericentric 
region 

GO:0016310 phosphorylation 

GO:0000777 condensed chromosome 
kinetochore 

GO:0016563 transcriptional activator activity 

GO:0000778 condensed nuclear 
chromosome kinetochore 

GO:0016620 oxidoreductase activity, acting on the 
aldehyde or oxo group of donors, NAD or NADP as 
acceptor 

GO:0000779 condensed chromosome, 
pericentric region 

GO:0016675 oxidoreductase activity, acting on heme 
group of donors 
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GO:0000780 condensed nuclear 
chromosome, pericentric region 

GO:0016676 oxidoreductase activity, acting on heme 
group of donors, oxygen as acceptor 

GO:0000786 nucleosome GO:0016758 transferase activity, transferring 
hexosyl groups 

GO:0000788 nuclear nucleosome GO:0016773 phosphotransferase activity, alcohol 
group as acceptor 

GO:0000790 nuclear chromatin GO:0016887 ATPase activity 

GO:0000793 condensed chromosome GO:0017038 protein import 

GO:0000794 condensed nuclear 
chromosome 

GO:0018456 aryl-alcohol dehydrogenase activity 

GO:0003678 DNA helicase activity GO:0019773 proteasome core complex, alpha-
subunit complex (sensu Eukaryota) 

GO:0003700 transcription factor 
activity 

GO:0019774 proteasome core complex, beta-subunit 
complex (sensu Eukaryota) 

GO:0004129 cytochrome-c oxidase 
activity 

GO:0019783 small conjugating protein-specific 
protease activity 

GO:0004175 endopeptidase activity GO:0019941 modification-dependent protein 
catabolism 

GO:0004386 helicase activity GO:0019954 asexual reproduction 

GO:0004672 protein kinase activity GO:0030010 establishment of cell polarity 

GO:0004812 aminoacyl-tRNA ligase 
activity 

GO:0030029 actin filament-based process 

GO:0005319 lipid transporter activity GO:0030036 actin cytoskeleton organization and 
biogenesis 

GO:0005618 cell wall GO:0030117 membrane coat 

GO:0005643 nuclear pore GO:0030120 vesicle coat 
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GO:0005732 small nucleolar 
ribonucleoprotein complex 

GO:0030126 COPI vesicle coat 

GO:0005746 mitochondrial electron 
transport chain 

GO:0030127 COPII vesicle coat 

GO:0005751 respiratory chain 
complex IV (sensu Eukaryota) 

GO:0030133 transport vesicle 

GO:0005759 mitochondrial matrix GO:0030134 ER to Golgi transport vesicle 

GO:0005761 mitochondrial ribosome GO:0030135 coated vesicle 

GO:0005794 Golgi apparatus GO:0030137 COPI-coated vesicle 

GO:0005798 Golgi-associated vesicle GO:0030163 protein catabolism 

GO:0005819 spindle GO:0030234 enzyme regulator activity 

GO:0005830 cytosolic ribosome 
(sensu Eukaryota) 

GO:0030312 external encapsulating structure 

GO:0005839 proteasome core complex 
(sensu Eukaryota) 

GO:0030427 site of polarized growth 

GO:0005842 cytosolic large ribosomal 
subunit (sensu Eukaryota) 

GO:0030467 establishment and/or maintenance of 
cell polarity (sensu Fungi) 

GO:0005843 cytosolic small ribosomal 
subunit (sensu Eukaryota) 

GO:0030468 establishment of cell polarity (sensu 
Fungi) 

GO:0005933 bud GO:0030476 spore wall assembly (sensu Fungi) 

GO:0005938 cell cortex GO:0030479 actin cortical patch 

GO:0006092 main pathways of 
carbohydrate metabolism 

GO:0030658 transport vesicle membrane 

GO:0006096 glycolysis GO:0030659 cytoplasmic vesicle membrane 
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GO:0006118 electron transport GO:0030660 Golgi-associated vesicle membrane 

GO:0006119 oxidative 
phosphorylation 

GO:0030662 coated vesicle membrane 

GO:0006123 mitochondrial electron 
transport, cytochrome c to oxygen 

GO:0030663 COPI coated vesicle membrane 

GO:0006272 leading strand elongation GO:0030863 cortical cytoskeleton 

GO:0006284 base-excision repair GO:0030864 cortical actin cytoskeleton 

GO:0006357 regulation of 
transcription from RNA polymerase II 
promoter 

GO:0031124 mRNA 3'-end processing 

GO:0006364 rRNA processing GO:0031386 protein tag 

GO:0006365 35S primary transcript 
processing 

GO:0031410 cytoplasmic vesicle 

GO:0006403 RNA localization GO:0031980 mitochondrial lumen 

GO:0006405 RNA export from 
nucleus 

GO:0031982 vesicle 

GO:0006413 translational initiation GO:0031988 membrane-bound vesicle 

GO:0006417 regulation of protein 
biosynthesis 

GO:0035251 UDP-glucosyltransferase activity 

GO:0006418 tRNA aminoacylation for 
protein translation 

GO:0042026 protein refolding 

GO:0006445 regulation of translation GO:0042138 meiotic DNA double-strand break 
formation 

GO:0006486 protein amino acid 
glycosylation 

GO:0042175 nuclear envelope-endoplasmic 
reticulum network 

GO:0006508 proteolysis GO:0042244 spore wall assembly 
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GO:0006511 ubiquitin-dependent 
protein catabolism 

GO:0042255 ribosome assembly 

GO:0006512 ubiquitin cycle GO:0042257 ribosomal subunit assembly 

GO:0006520 amino acid metabolism GO:0042274 ribosomal small subunit biogenesis 

GO:0006551 leucine metabolism GO:0042723 thiamin and derivative metabolism 

GO:0006606 protein import into 
nucleus 

GO:0042724 thiamin and derivative biosynthesis 

GO:0006633 fatty acid biosynthesis GO:0042773 ATP synthesis coupled electron 
transport 

GO:0006665 sphingolipid metabolism GO:0042775 ATP synthesis coupled electron 
transport (sensu Eukaryota) 

GO:0006772 thiamin metabolism GO:0043169 cation binding 

GO:0006793 phosphorus metabolism GO:0043487 regulation of RNA stability 

GO:0006796 phosphate metabolism GO:0043488 regulation of mRNA stability 

GO:0006888 ER to Golgi vesicle-
mediated transport 

GO:0043632 modification-dependent macromolecule 
catabolism 

GO:0006890 retrograde vesicle-
mediated transport, Golgi to ER 

GO:0044257 cellular protein catabolism 

GO:0006897 endocytosis GO:0044427 chromosomal part 

GO:0006913 nucleocytoplasmic 
transport 

GO:0044431 Golgi apparatus part 

GO:0006970 response to osmotic 
stress 

GO:0044433 cytoplasmic vesicle part 

GO:0007114 cell budding GO:0044437 vacuolar part 
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GO:0007126 meiosis GO:0044445 cytosolic part 

GO:0007163 establishment and/or 
maintenance of cell polarity 

GO:0044448 cell cortex part 

GO:0007571 age-dependent general 
metabolic decline 

GO:0044455 mitochondrial membrane part 

GO:0008026 ATP-dependent helicase 
activity 

GO:0045277 respiratory chain complex IV 

GO:0008233 peptidase activity GO:0045333 cellular respiration 

GO:0008324 cation transporter activity GO:0045893 positive regulation of transcription, 
DNA-dependent 

GO:0008519 ammonium transporter 
activity 

GO:0046695 SLIK (SAGA-like) complex 

GO:0008540 proteasome regulatory 
particle, base subcomplex (sensu 
Eukaryota) 

GO:0046930 pore complex 

GO:0008610 lipid biosynthesis GO:0048193 Golgi vesicle transport 

GO:0008639 small protein conjugating 
enzyme activity 

GO:0048475 coated membrane 

GO:0008652 amino acid biosynthesis GO:0048519 negative regulation of biological 
process 

GO:0009060 aerobic respiration GO:0051119 sugar transporter activity 

GO:0009071 serine family amino acid 
catabolism 

GO:0051168 nuclear export 

GO:0009100 glycoprotein metabolism GO:0051169 nuclear transport 

GO:0009277 cell wall (sensu Fungi) GO:0051246 regulation of protein metabolism 

GO:0012506 vesicle membrane GO:0051252 regulation of RNA metabolism 
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GO:0012507 ER to Golgi transport 
vesicle membrane 

GO:0051301 cell division 

GO:0015002 heme-copper terminal 
oxidase activity 

GO:0051321 meiotic cell cycle 

GO:0015075 ion transporter activity GO:0051327 M phase of meiotic cell cycle 

GO:0015077 monovalent inorganic 
cation transporter activity 

GO:0051603 proteolysis during cellular protein 
catabolism 

GO:0015078 hydrogen ion transporter 
activity 

  

 

Supplementary Table 1 
List of all gene ontology classes significantly upregulated or downregulated in response to 
threshold lethal ethanol stress in wild-type yeast 
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GO:0000027 ribosomal large subunit 
assembly and maintenance 

GO:0008652 amino acid biosynthesis 

GO:0000028 ribosomal small subunit 
assembly and maintenance 

GO:0009066 aspartate family amino acid 
metabolism 

GO:0000030 mannosyltransferase activity GO:0009069 serine family amino acid 
metabolism 

GO:0000096 sulfur amino acid metabolism GO:0009070 serine family amino acid 
biosynthesis 

GO:0000147 actin cortical patch assembly GO:0009092 homoserine metabolism 

GO:0000151 ubiquitin ligase complex GO:0009100 glycoprotein metabolism 

GO:0000221 hydrogen-transporting ATPase 
V1 domain 

GO:0009101 glycoprotein biosynthesis 

GO:0000502 proteasome complex (sensu 
Eukaryota) 

GO:0009112 nucleobase metabolism 

GO:0000793 condensed chromosome GO:0009117 nucleotide metabolism 

GO:0000794 condensed nuclear chromosome GO:0009165 nucleotide biosynthesis 

GO:0000819 sister chromatid segregation GO:0009250 glucan biosynthesis 

GO:0001405 presequence translocase-
associated import motor 

GO:0009295 nucleoid 

GO:0003743 translation initiation factor 
activity 

GO:0009309 amine biosynthesis 

GO:0003777 microtubule motor activity GO:0015077 monovalent inorganic cation 
transporter activity 

GO:0004672 protein kinase activity GO:0015078 hydrogen ion transporter activity 

GO:0004722 protein serine/threonine 
phosphatase activity 

GO:0015144 carbohydrate transporter activity 
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GO:0004812 aminoacyl-tRNA ligase activity GO:0015662 ATPase activity, coupled to 
transmembrane movement of ions, 
phosphorylative mechanism 

GO:0004840 ubiquitin conjugating enzyme 
activity 

GO:0015749 monosaccharide transport 

GO:0004871 signal transducer activity GO:0015934 large ribosomal subunit 

GO:0005657 replication fork GO:0015935 small ribosomal subunit 

GO:0005732 small nucleolar 
ribonucleoprotein complex 

GO:0016074 snoRNA metabolism 

GO:0005736 DNA-directed RNA polymerase 
I complex 

GO:0016282 eukaryotic 43S preinitiation 
complex 

GO:0005744 mitochondrial inner membrane 
presequence translocase complex 

GO:0016283 eukaryotic 48S initiation 
complex 

GO:0005759 mitochondrial matrix GO:0016471 hydrogen-translocating V-type 
ATPase complex 

GO:0005830 cytosolic ribosome (sensu 
Eukaryota) 

GO:0016616 oxidoreductase activity, acting 
on the CH-OH group of donors, NAD or 
NADP as acceptor 

GO:0005838 proteasome regulatory particle 
(sensu Eukaryota) 

GO:0016757 transferase activity, transferring 
glycosyl groups 

GO:0005839 proteasome core complex (sensu 
Eukaryota) 

GO:0016758 transferase activity, transferring 
hexosyl groups 

GO:0005842 cytosolic large ribosomal 
subunit (sensu Eukaryota) 

GO:0016763 transferase activity, transferring 
pentosyl groups 

GO:0005843 cytosolic small ribosomal 
subunit (sensu Eukaryota) 

GO:0016820 hydrolase activity, acting on acid 
anhydrides, catalyzing transmembrane 
movement of substances 

GO:0005871 kinesin complex GO:0016866 intramolecular transferase 
activity 
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GO:0006007 glucose catabolism GO:0016875 ligase activity, forming carbon-
oxygen bonds 

GO:0006096 glycolysis GO:0016876 ligase activity, forming 
aminoacyl-tRNA and related compounds 

GO:0006275 regulation of DNA replication GO:0019320 hexose catabolism 

GO:0006281 DNA repair GO:0030126 COPI vesicle coat 

GO:0006357 regulation of transcription from 
RNA polymerase II promoter 

GO:0030150 protein import into 
mitochondrial matrix 

GO:0006364 rRNA processing GO:0030476 spore wall assembly (sensu 
Fungi) 

GO:0006365 35S primary transcript 
processing 

GO:0030663 COPI coated vesicle membrane 

GO:0006399 tRNA metabolism GO:0030684 preribosome 

GO:0006413 translational initiation GO:0030685 nucleolar preribosome 

GO:0006417 regulation of protein 
biosynthesis 

GO:0031980 mitochondrial lumen 

GO:0006418 tRNA aminoacylation for 
protein translation 

GO:0042244 spore wall assembly 

GO:0006445 regulation of translation GO:0042255 ribosome assembly 

GO:0006450 regulation of translational 
fidelity 

GO:0042257 ribosomal subunit assembly 

GO:0006457 protein folding GO:0042626 ATPase activity, coupled to 
transmembrane movement of substances 

GO:0006458 'de novo' protein folding GO:0042645 mitochondrial nucleoid 

GO:0006461 protein complex assembly GO:0043038 amino acid activation 
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GO:0006486 protein amino acid 
glycosylation 

GO:0043039 tRNA aminoacylation 

GO:0006493 protein amino acid O-linked 
glycosylation 

GO:0043413 biopolymer glycosylation 

GO:0006519 amino acid and derivative 
metabolism 

GO:0043492 ATPase activity, coupled to 
movement of substances 

GO:0006520 amino acid metabolism GO:0044271 nitrogen compound biosynthesis 

GO:0006566 threonine metabolism GO:0044445 cytosolic part 

GO:0006626 protein targeting to 
mitochondrion 

GO:0044452 nucleolar part 

GO:0006725 aromatic compound metabolism GO:0044455 mitochondrial membrane part 

GO:0007009 plasma membrane organization 
and biogenesis 

GO:0045182 translation regulator activity 

GO:0007126 meiosis GO:0045332 phospholipid translocation 

GO:0007154 cell communication GO:0046164 alcohol catabolism 

GO:0007165 signal transduction GO:0046365 monosaccharide catabolism 

GO:0008028 monocarboxylic acid transporter 
activity 

GO:0046961 hydrogen-transporting ATPase 
activity, rotational mechanism 

GO:0008135 translation factor activity, 
nucleic acid binding 

GO:0051083 cotranslational protein folding 

GO:0008540 proteasome regulatory particle, 
base subcomplex (sensu Eukaryota) 

GO:0051246 regulation of protein metabolism 

GO:0008639 small protein conjugating 
enzyme activity 

GO:0051321 meiotic cell cycle 

GO:0008643 carbohydrate transport GO:0051327 M phase of meiotic cell cycle 
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GO:0008645 hexose transport   

 
Supplementary Table 2 
List of all gene ontology classes significantly increased or decreased in strain JY304 
compared the wild-type parental strain before the onset of threshold lethal ethanol stress  
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 In addition to my thesis project, I also worked closely with a former postdoctoral 

researcher in the lab, Peter Freddolino, who is now an assistant professor at the University of 

Michigan. The publication that resulted from this work, titled “Cellular Adaptation Through 

Fitness-Directed Transcriptional Tuning,” is attached directly after this page. 
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Stochastic tuning of gene expression
enables cellular adaptation in the absence
of pre-existing regulatory circuitry
Peter L Freddolino1,2†, Jamie Yang1,2, Amir Momen-Roknabadi1,2,
Saeed Tavazoie1,2*

1Department of Systems Biology, Columbia University, New York City, United
States; 2Department of Biochemistry and Molecular Biophysics, Columbia
University, New York City, United States

Abstract Cells adapt to familiar changes in their environment by activating predefined
regulatory programs that establish adaptive gene expression states. These hard-wired pathways,
however, may be inadequate for adaptation to environments never encountered before. Here, we
reveal evidence for an alternative mode of gene regulation that enables adaptation to adverse
conditions without relying on external sensory information or genetically predetermined cis-
regulation. Instead, individual genes achieve optimal expression levels through a stochastic search
for improved fitness. By focusing on improving the overall health of the cell, the proposed
stochastic tuning mechanism discovers global gene expression states that are fundamentally new
and yet optimized for novel environments. We provide experimental evidence for stochastic tuning
in the adaptation of Saccharomyces cerevisiae to laboratory-engineered environments that are
foreign to its native gene-regulatory network. Stochastic tuning operates locally at individual gene
promoters, and its efficacy is modulated by perturbations to chromatin modification machinery.
DOI: https://doi.org/10.7554/eLife.31867.001

Introduction
The capacity to adapt to changes in the external environment is a defining feature of living systems.

Cells can rapidly adapt to familiar changes that are commonly encountered in their native habitat by

sensing the parameters of the environment and engaging dedicated regulatory networks that have

evolved to establish adaptive gene expression states (Jacob and Monod, 1961; Thieffry et al.,

1998). However, dedicated sensory, signaling, and regulatory networks become inadequate, or

even detrimental, when cells are exposed to unfamiliar environments that are foreign to their evolu-

tionary history (Tagkopoulos et al., 2008). In principle, at least one gene expression state that maxi-

mizes the health/fitness of the cell always exists, despite the inability of the native regulatory

network to establish such a state. This is true because under any conceivable environment, the activi-

ties of some genes are beneficial, whereas those of others are futile or even actively detrimental

(Jacob and Monod, 1961; Tagkopoulos et al., 2008; Hottes et al., 2013). In fact, if the initial fit-

ness defect is not lethal, a population of cells may slowly adapt to an unfamiliar environment through

the accumulation of genetic mutations that rewire regulatory networks, thereby achieving more opti-

mal gene expression states (Tagkopoulos et al., 2008; Applebee et al., 2008; Philippe et al.,

2007; Goodarzi et al., 2010; Tenaillon et al., 2012; Rodrı́guez-Verdugo et al., 2016;

Blount et al., 2012; Van Hofwegen et al., 2016; Damkiær et al., 2013).

Freddolino et al. eLife 2018;7:e31867. DOI: https://doi.org/10.7554/eLife.31867 1 of 34

RESEARCH ARTICLE

107

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.7554/eLife.31867.001
https://doi.org/10.7554/eLife.31867
https://creativecommons.org/
https://creativecommons.org/
http://elifesciences.org/
http://elifesciences.org/
http://en.wikipedia.org/wiki/Open_access
http://en.wikipedia.org/wiki/Open_access


Results

Adaptation through fitness-driven stochastic optimization of gene
expression
In this work we speculate whether cells have evolved alternative strategies for finding adaptive gene

expression states, on more physiological timescales, without relying on their hard-coded sensory

and regulatory systems. Since the perception of the external world may be of limited value under

unfamiliar conditions, perhaps a more effective strategy would be to focus on maximizing the inter-

nal health of the cell—without regard to the specific parameters of the outside world. This would be

a challenging strategy, as every gene in the genome would need to independently reach the expres-

sion level that maximizes the overall health of the cell, and these expression levels could vary signifi-

cantly from condition to condition. In particular, we asked whether individual genes could, in

principle, carry out a search process equivalent to gradient descent (Cauchy, 1847), where the

health consequence of stochastic alterations in gene expression could gradually tune the expression

of individual genes towards a level that is optimal for internal health. We reasoned that such an opti-

mization process would require the existence of: (1) a source of stochastic transitions in gene expres-

sion; (2) the ability of local chromatin to maintain a record of recent changes in transcription; and (3)

a central metabolic hub that integrates diverse parameters of intracellular health and continuously

broadcasts whether the overall health of the cell is improving or deteriorating. In fact, we find that

the foundations for meeting these requirements are already present in eukaryotic cells: (1) The

expression of many genes is dominated by noisy bursts of transcription—a widespread phenomenon

of largely unknown functional significance (Sanchez and Golding, 2013; Raj and van Oudenaarden,

2008; Blake et al., 2006; Raser and O’Shea, 2005; Elowitz et al., 2002); (2) Co-transcriptional his-

tone modification can modify eukaryotic chromatin in promoters and gene bodies, establishing a

short-term memory of recent transcriptional events (Li et al., 2007; Rando and Winston, 2012); and

(3) Global integrators of cell health have evolved in eukaryotes. A classic example is the mTOR path-

way, which integrates a vast array of intracellular parameters reflecting nutrient availability, energy,

eLife digest To survive, cells have to adapt to changes in their environment. Organisms can do
so by constantly modifying the expression of their genes. For example, bacteria exposed to high
temperatures turn on heat-shock genes to help them cope.

Responses to familiar environmental changes take place thanks to specific, hard-wired molecular
pathways. These transmit external signals to transcription factors, proteins that can bind DNA near a
gene to regulate its expression. Yet, such established responses may not exist for stressful
conditions that cells have never encountered during their evolutionary history. In this case, how can
organisms adjust which genes to express, and at what levels?

Here, Freddolino et al. theorize that, in a new environment, individual genes can randomly
increase or decrease their level of expression. If a change ends up being good for the survival of the
cell, it is further reinforced. This ‘stochastic tuning’ would allow organisms to find the optimal levels
of gene expression without using genetically predetermined pathways that involve transcription
factors.

Mathematical simulations suggest that this mechanism can improve the growth and survival of a
cell in a new environment. Diverse experiments demonstrate that a phenomenon consistent with
stochastic tuning occurs in yeasts. The organisms are genetically modified so that their transcription
factors can no longer activate URA3, a gene required to grow in conditions lacking a chemical called
uracil. Yet, these altered yeast cells still manage to boost their URA3 expression in a uracil-free
environment.

Stochastic tuning could thus work alongside other types of conventional gene regulation to help
cells adapt to new and challenging living conditions. For instance, this may be how cancerous cells
survive and thrive when facing chemotherapy drugs.
DOI: https://doi.org/10.7554/eLife.31867.002
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and the presence of diverse stresses (Conrad et al., 2014; González and Hall, 2017; Albert and

Hall, 2015; Saxton and Sabatini, 2017).
With the necessary components for gradient-based optimization of gene expression in place

(Figure 1A), the promoter of each gene would be able to conduct a simple search process that cul-

minates in finding the expression level that maximizes the overall health of the cell: if global fitness/

health is increasing and there was a previous increase in transcriptional output (representing larger

or more frequent transcriptional bursts), the promoter further increases its transcriptional activity

(Figure 1B). If fitness is decreasing and there was a previous increase in transcriptional activity, the

promoter decreases its transcriptional output. Transcriptional output is altered in the opposite direc-

tion in the event that there was a previous decrease in transcriptional output. For each gene, this

tuning process can be expressed as: DEt = k ! sgn DFt ! DEt"1ð Þ þ h (see Figures 1 and 2A); here, E

denotes the vector of gene-level transcription rates, F the current fitness/health of the cell, k is a pro-

portionality constant, h a noise term, and sgn is a function yielding "1 if its argument is negative, 0

if its argument is zero, and +1 if its argument is positive. One can easily see how the process

described here can tune the optimal expression of a single gene. What is remarkable, however, is

the ability of this hypothetical stochastic tuning process to find near-optimal gene-expression states

for a system with thousands of genes. As can be seen in the simulations presented in Figure 2, this

is achieved through a fitness-directed stochastic search culminating in individual genes reaching spe-

cific gene expression levels that maximize the health/fitness of the cell. Such a stochastic tuning

Figure 1. Stochastic tuning of gene expression by fitness optimization at gene promoters. (A) Each gene contains a noisy expression apparatus with

noise amplitude h that allows exploration of a range of transcriptional activities. Each transcription apparatus also maintains a record of its previous

change in transcriptional activity (DEt-1). The change in transcriptional activity has the potential to contribute to a change in global health (DFt) through

the downstream effect of the gene product’s activity (likely through a multi-step pathway; for example, the biosynthesis of a metabolite that is limiting

for growth). A global metabolic integrator can transduce this change in health/fitness to every gene’s expression apparatus. At any point in time, the

expression apparatus executes a change in transcriptional activity (DEt) proportional (k) to the sign (sgn) of the product of DEt-1 and DFt plus noise (h).

(B) A simple example of this can be seen for a gene that experiences a random burst in transcriptional activity. If this leads to an increase in fitness the

expression apparatus further increases transcriptional activity. Conversely, if there is a decrease in fitness, the expression apparatus decreases

transcriptional activity.

DOI: https://doi.org/10.7554/eLife.31867.003
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Figure 2. Simulation of fitness-directed stochastic tuning for a thousand-gene system. (A) Quantitative framework

describing stochastic tuning. The transcriptional activity state of the genome is represented by the vector E, here

schematically represented for a three-gene system. In any environment, there is an optimal transcriptional state

vector (Eoptimal) that yields maximum fitness. At any time (t), a cell with transcriptional activity state Et has global

health/fitness (Ft) defined as the negative of the Euclidean distance between the immediately preceding

transcriptional activity state Et-1 and Eoptimal. Each gene promoter (i) executes a change in transcriptional activity

DEit which has two components: (1) a step with magnitude of k and sign (sgn) matching that of the product of the

global change in fitness (DFt) experienced at time t and the preceding change in transcriptional activity DEi
t-1, and

(2) a noise component with a magnitude of h and a random sign (+/-). (B) The stochastic tuning process moves the

transcriptional activity state towards the optimum, resulting in increasing health/fitness over time. Simulated

trajectories are shown for a 1,000-gene system with k = 0.1, h = 0.1 (blue); k = 0.5, h = 0.5 (red). (C) The time

evolution of the transcriptional activity state vector as a system containing 1000 genes converges to optimal

transcriptional activities through stochastic tuning. The temporal profiles of 20 representative genes are shown,

starting from randomly assigned initial activities, and gradually converging to activities that are near optimal for

fitness (using parameters corresponding to the blue curve in panel B). (D) Trajectories of two representative genes

are shown for the same simulation as in panel C). Transcriptional activities start at randomly assigned initial values

and gradually converge to near the optimum (arrows).

DOI: https://doi.org/10.7554/eLife.31867.004
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mechanism would be highly valuable to free-living organisms, enabling them to optimize their global

gene expression patterns to match the specific requirements of any environment in which their dedi-

cated sensory and regulatory networks are inadequate or sub-optimal.

Fitness-directed tuning of gene expression in yeast
Informed by the simulations above, we sought to test for evidence of stochastic tuning in the eukary-

otic model organism Saccharomyces cerevisiae. We engineered conditions in which the expression

of a single gene was required for growth, but for which no regulatory input existed to drive appro-

priate expression levels. This was achieved by using a yeast strain (BY4743) that lacks the URA3

gene, which is essential when cells are grown in the absence of uracil. We placed a chromosomally

integrated copy of URA3 at a different locus under the control of a weak synthetic promoter, consist-

ing primarily of a pseudorandom sequence. All recognizable binding sites for native transcription

factors were removed from the generated promoter sequence (see Materials and Methods and

Supplementary file 1 for details), in an attempt to decouple it from any existing sensory and regula-

tory input. We henceforth refer to this synthetic promoter sequence as synprom (see

Supplementary file 1 for sequence). In the experiments described below, URA3 is typically tagged

with a fluorescent fusion, either mRuby (Kredel et al., 2009) or a superfolder GFP (Pédelacq et al.,

2006), and a copy of a mouse DHFR gene coupled to a different fluorescent protein is inserted at

the same location on the sister chromosome to act as an internal control. A schematic of the inser-

tion constructs is shown in Figure 3A. We also added the URA3 competitive antagonist 6-azauracil

(6AU) to the media to control the threshold level of URA3 production required for growth. The

growth condition, SC+glu-ura media, containing x mg/ml of 6AU, will henceforth be referred to as

ura-/6AUx.
Even with the challenging and specific experimental layout described here, with growth highly

dependent on URA3 expression, we expect that stochastic tuning might contribute to fitness

through mechanisms acting in cis at the promoter driving URA3, those acting in trans through modu-

lation of factors that (despite our best efforts) weakly affect the promoter driving URA3, and through

tuning of unrelated pathways that benefit survival and growth in the –URA condition. Nevertheless,

URA3 expression itself will clearly be the key driver of growth since it is the critical bottleneck for

nucleotide biosynthesis in the absence of uracil supplementation.
To look for evidence of fitness-directed stochastic tuning, we tracked the colony formation of

cells containing synprom-driven URA3 after plating on ura-/6AU15 plates. Lacking sufficient URA3

expression to overcome high 6AU levels, these non-growing cells would be expected to succumb to

starvation and die. Remarkably, however, after prolonged incubation we observed apparently sto-

chastic transitions to rapid growth, leading to the formation of macroscopic colonies over time

(Figure 3B). We eventually observed colony formation by roughly one cell in 103, a rate too high to

be driven by mutation-driven adaptation in the absence of growth.

Stochastic tuning of other synthetic and natural promoters
The synthetic promoter referred to as ‘synprom’ throughout the text is the combination of a pseudo-

random sequence with a small natural promoter-proximal region taken from the SAM3 gene, with

both stripped of all recognizable matches to known transcription factor binding sites (see Materials

and Methods for details). We also tested all combinations of five other synthetic promoter sequen-

ces and one other promoter proximal region, enumerated in Supplementary file 2. As shown in Fig-

ure 3—figure supplement 1, four of the six synthetic promoters support stochastic tuning, and the

ability of synprom5 (the purely artificial component of the synprom referred to in the remainder of

the text; see Supplementary file 2 for all synthetic promoter sequences) to undergo tuning remains

even with a different promoter proximal region. These findings highlight the universality of the

observed tuning phenomenon and minimize the possibility that our observations actually arise due

to the presence of some residual sequence-specific transcription factor binding site present in

synprom.
As shown in Figure 3C, we also observed similar tuning behavior for two high-noise natural pro-

moters, PHSP12 and PRGI1 (Tirosh et al., 2009; Tirosh et al., 2006), indicating that stochastic tuning

can function even when superimposed on naturally evolved regulatory sites. Across all promoters
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(natural and synthetic) tested here, the observed tuning rates, relative to the number of viable plated

cells, varied from 1 in 101 (PHSP12) to 1 in 105 (synprom5-arf1).
The apparently stochastic nature of colony formation in our experiments is reflected both in the

steady emergence of colonies over the course of days or weeks (Figure 3B–C and Figure 3—figure

supplement 1), and in the wide variance of colony sizes observed on ura-/6AU15 plates (Figure 3D).

Microscopy revealed that cells remain quiescent for days before transitioning to URA3 expression

and rapid growth, with a transition rate dependent on the choice of promoter (Figure 3E). Further-

more, the change that enables growth under the ura-/6AU15 condition must be passed from mother

to daughter cells, as colonies expand from a few points of initiation instead of showing random divi-

sion of cells throughout the microscopic field over time. While the presence of some deterministic

Figure 3. Stochastic tuning of yeast cells under uracil starvation. (A) Schematic of the constructs used in this study. All strains are diploid, containing

similar insertions at the LEU2 locus of both copies of chromosome III. X is either a synthetic promoter (synprom) or a natural promoter (PRGI1 or PHSP12)

unless otherwise noted, and Y is either the same promoter as X or is the strong constitutive promoter PADH1. ‘cyc’ indicates the well-characterized CYC1

transcriptional terminator (Russo and Sherman, 1989). (B) Stochastic colony formation on ura-/6AU15 plates for cells containing URA3-mRuby under

control of synprom and DHFR-GFP under control of PADH1. Error bars show central 95% credible intervals; colors show biological replicates performed

on different days. ‘x’ marks are shown at the bottom of the axis for days where zero visible colonies were present at all plated dilutions. Cells plated on

SC+glu uniformly form visible colonies within 1–2 days. (C) As in panel B, but with URA3-mRuby controlled by PRGI1 or PHSP12 as indicated. (D) Images of

colony growth on SC+glu and ura-/6AU15 plates taken at the specified number of days after plating (1 day for SC+glu, 12 days for ura-/6AU15). Growth

of colonies is nearly uniform on SC+glu plates but shows non-uniform stochastic emergence on ura-/6AU15. N.b. the plated dilutions for the two plate

types are not the same. URA3 expression for the experiment shown is controlled by PHSP12, but similar behavior was observed for all promoters

discussed here. (E) Early colony formation on ura-/6AU15 plates imaged by superimposed differential interference contrast and fluorescence

microscopy. Cells contain PHSP12-URA3-mRuby/PADH1-DHFR-GFP. Left panel: One day after plating. By this timepoint small, macroscopic colonies would

have formed on SC+glu plates, but instead cells remain in microcolonies having undergone no more than three doublings. Right panel: Same plate as

left, five days after plating. While most cells have not grown since the one-day timepoint, other cells having undergone successful tuning instead form

larger colonies with URA3 expression sustained throughout them.

DOI: https://doi.org/10.7554/eLife.31867.005

The following figure supplement is available for figure 3:

Figure supplement 1. Stochastic colony formation rates for cells with URA3 driven by a variety of synthetic promoters.

DOI: https://doi.org/10.7554/eLife.31867.006
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process, yielding colony formation over the observed timescales (dependent on the initial state of

each cell), cannot be ruled out, a far simpler explanation for the observed phenomenon of a long lag

followed by appearance of colonies over a wide range of times is that each cell independently

undergoes a random process that can eventually lead to growth. We confirmed that the appearance

of colonies is not simply due to aging of the plates; 6AU-containing plates which were pre-incubated

for a week or longer prior to plating of cells showed no change in colony formation rates (data not

shown).

Fitness-directed tuning operates independently of conventional
regulatory input and is transcriptionally driven
To provide further insights into the regulatory changes occurring during the onset of cell growth, we

performed flow cytometry time courses on cells challenged by, and subsequently growing in, liquid

ura-/6AU5 media, using cells with synprom-driven URA3-mRuby, and with a DHFR-GFP fusion driven

by either the constitutive ADH1 promoter (Figure 4A–B) or synprom (Figure 4C–D) itself. The use of

PADH1 to drive the second reporter allows us to control for extrinsic noise and global changes in

gene expression, whereas coupling synprom to the non-beneficial DHFR-GFP fusion allows us to test

whether the observed stochastic tuning is driven by any trans-acting input from some existing

Figure 4. Tuning is both promoter- and allele-specific. (A) Cell counts for synprom-URA3-mRuby/PADH1-DHFR-GFP cells in liquid ura-/6AU5 media.

Colors correspond to different biological replicates started on different days. Arrows indicate two timepoints from each strain for which fluorescence

cumulative distribution functions (CDFs) are shown below. Error bars for cell counts show central 95% credible intervals. (B) Flow cytometry cumulative

distributions of fluorescence levels for URA3-mRuby and DHFR-GFP during uracil starvation. In each CDF a given timepoint (solid line) is compared to

the distribution present for cells in logarithmic growth in SC+glu (rich) media (dashed lines). The values shown are log2 ratios to the median value of

cells growing exponentially in SC+glu. GFP signals are shown in green and mRuby signals in red. (C) Analogous to A, but we consider cells where

synprom drives both URA3-mRuby and DHFR-GFP. (D) Analogous to B, but for cells with synprom driving both URA3-mRuby and DHFR-GFP.

DOI: https://doi.org/10.7554/eLife.31867.007

The following figure supplements are available for figure 4:

Figure supplement 1. Promoter-specific stochastic tuning of URA3 expression by native promoters in S. cerevisiae.

DOI: https://doi.org/10.7554/eLife.31867.008

Figure supplement 2. Local tuning of URA3 expression.

DOI: https://doi.org/10.7554/eLife.31867.009
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regulatory network or whether it is truly specific to the allele needed for growth, as required by our
proposed tuning model.

Several patterns in the growth curves and flow cytometry data are immediately apparent. First, as
with the agar-based growth discussed above, cells show a lag of at least 72 hr with undetectable
growth, followed by the onset of steady growth until saturation. In the case of URA3-mRuby driven
by synprom and DHFR-GFP by the constitutive promoter PADH1, URA3-mRuby fluorescence increases

substantially in tandem with the onset of cell growth, and expression subsequently remains high until
saturation; in contrast, DHFR-GFP signals do not even recover to their initial levels (Figure 4B; com-
pare dashed and solid line distributions). This demonstrates that the URA3 induction resulting in
growth is promoter-specific and does not simply reflect a general increase in protein expression. We

observed qualitatively equivalent behavior when URA3 was driven by PRGI1 or PHSP12 (Figure 4—fig-
ure supplement 1). Even more strikingly, for cells with synprom driving both fluorescent fusions, we
observed a specific enhancement of URA3-mRuby expression over that of DHFR-GFP (Figure 4D),
showing that the transition to high URA3 expression is not only promoter-specific but allele-specific,

and thus must be driven at least partly by changes occurring in cis at the specific locus whose
expression is required for growth. As an additional test, we performed quantitative RT-PCR experi-
ments to measure the ratio of URA3 and DHFR mRNA expression in tuned cells either in liquid ura-/
6AU5 media or on ura-/6AU15 plates (see Figure 4—figure supplement 2). In both cases, we
observed a substantial increase in the URA3:DHFR ratio in the tuned cells, indicating that the

observed tuning occurs at least partly through a local cis-acting process at the locus required for
growth (although we cannot rule out additional changes in other promoters that also contribute to
survival and growth, which may account for the observed heterogeneity in expression levels between
replicates). Consistent with our proposed tuning model, the allele-specific nature of the transcrip-

tional induction supports a key role for a local tuning process that is independent of dedicated sen-
sory and regulatory input.

Varying the threshold level of URA3 required for growth shifts tuning
from stochastic to deterministic
The presence of the competitive URA3 inhibitor 6-azauracil allows us to vary the threshold level of
URA3 required for growth. Thus, it is instructive to consider how the concentration of 6AU may alter
stochastic tuning behavior, both in the context of the computational model described above and in

the actual behavior of the system. We made two crucial modifications to the numerical model
employed in Figure 2 to mimic our experimental setup. First, rather than having the entire gene
expression profile begin far from the optimal point, we begin with all genes but one (representing
URA3) at their optimal values, reflecting the fact that aside from the artificial stress of lacking appro-

priate URA3 regulation, the cells’ native regulatory network can provide an appropriate response to
ura-/6AU media. Second, we note that due to the presence of the competitive inhibitor 6AU, the
URA3 in the cell will not even be able to contribute meaningfully to nucleotide biosynthesis (and
thus impact the cell’s health/fitness) until it passes a threshold level. Thus, the tuning term
(Figure 2A) is not applied to the gene representing URA3 until after the concentration of URA3

passes a threshold. Aside from the modifications noted above, we model tuning in the ura-/6AU
environment as we did for the general case in Figure 2, and in particular, the fitness effects of
changing URA3 expression must compete with noisy gene expression from the other 999 genes in
the model gene expression profile to impact the direction of tuning.

The resulting URA3 expression profiles during simulated tuning in the presence of low or high
concentrations of 6AU are shown in Figure 5A. In the low 6AU case, the tuning mechanism pushes
URA3 expression almost deterministically to its optimal (high) value, whereas in the presence of high

6AU, the URA3 expression level undergoes a random walk until expression becomes high enough to
allow the tuning mechanism to ‘sense’ the gradient and drive the cells into a URA3+ state. The
effects on tuning rates of varying the 6AU concentration are plotted in Figure 5B, where we observe
that increasing 6AU concentrations both slow tuning and dramatically increase the variance in the

amount of time required for each individual cell to reach a URA+ state. This is precisely the behavior
observed experimentally with high 6AU concentrations (Figure 3). On the other hand, tuning in our
experimental system switched from slow and stochastic to rapid and deterministic in the presence of
low 6AU concentrations, with observable tuning occurring over the course of a few hours
(Figure 5C). Importantly, the tuning process is confined to the URA3-mRuby allele, despite the fact
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that DHFR-GFP is also being driven by the same synthetic promoter. This again demonstrates that

the tuning process occurs independently of conventional gene regulation by dedicated sensory and

regulatory input.

Tuning dynamics at the single-cell level
We utilized time-lapse fluorescence microscopy to monitor the correspondence between expression

of URA3-mRuby and cell division in PHSP12-URA3-mRuby/PADH1-DHFR-GFP cells that initiated the

tuning process. Consistent with our proposed tuning model, gene expression fluctuations that sur-

passed a threshold for alleviating the URA3 deficit were reinforced over long timescales and were

Figure 5. Numerical modeling and experimental validation of changes in tuning behavior as a function of 6AU concentration. We simulated the gene

expression dynamics of cells containing URA3 under the control of a non-native promoter, when exposed to uracil-depletion stress with varying

concentrations of the URA3 inhibitor 6AU. The model employed is equivalent to that in Figure 2A, with k = 0.1, h = 0.1, and the target expression

profile equal to that for the case shown in Figure 2B except for the case of the gene corresponding to URA3, whose optimal value was set to 80. (A)
Typical trajectories of URA3 expression levels for a cell in the presence of low (blue) or high (red) 6AU concentrations, which alter the minimum URA3

expression level at which fitness-directed stochastic tuning can occur. We show results for a starting URA3 level [URA3]=25, with optimal fitness

occurring at [URA3]=80. The initial and optimal URA3 levels are shown as gray lines. (B) Violin plots of the distributions of the minimum time required to

reach a URA3+state (defined as [URA3]>75) in the presence of increasing concentrations of 6AU (implemented as higher thresholds of URA3 required

for stochastic tuning to become active). In each case distributions reflect 50 independent trajectories simulated at each 6AU level. (C) Experimental

validation of model predictions. Cells were grown in liquid ura-/6AU1 media (-URA) for 3–4 hr and then had the expression of fluorescent reporter

proteins compared (using flow cytometry) with those of the equivalent cells grown in SC+glu (+URA) over the same time period. Values show log2 fold

changes from SC+glu to ura-/6AU1; error bars show bootstrap-based 95% confidence intervals. Biological replicates performed on different days are

shown side by side; the order of replicates is matched for URA3-mRuby and DHFR-GFP.

DOI: https://doi.org/10.7554/eLife.31867.010

Figure 6. Sustained trans-generational inheritance of URA3-mRuby expression in tuned microcolonies. Shown are fluorescence microscopy time courses

of microcolonies beginning after 12 hr of exposure to ura-/6AU5 media. A tuned colony is shown on top and a nearby untuned colony on the bottom.

Fluorescence values are uniformly scaled but are not otherwise processed.

DOI: https://doi.org/10.7554/eLife.31867.011
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sustained (inherited) across multiple generations as the tuned colony expanded (Figure 6). As
expected, there is no accompanying increase in DHFR-GFP. Similar trajectories were observed for
other tuning micro-colonies (Figure 7A). The apparently long autocorrelation time of URA3-mRuby

fluctuations through the duration of a tuning trajectory is consistent with our proposed fitness feed-
back reinforcement mechanism. In order to quantitatively determine the timescale of gene expres-
sion fluctuations, also known as mixing times (Sigal et al., 2006), we utilized fluorescence-activated
cell sorting (FACS) to sort a population of cells for the bottom 20%, the top 20%, and complete

(mock-sorted) distribution of URA3-mRuby expression and measured the timescales over which the
sorted fluorescence distributions converged to each other (Figure 7—figure supplement 1). For
cells growing under uracil-replete conditions (SC+glu), we observed a relatively fast mixing time on
the order of ~100 min (Figure 7—figure supplement 1; Supplementary file 3). On the other hand,
cells starving in ura-/6AU10 media had mixing times that ranged from 400 to 1200 min (Figure 7—

figure supplement 1; Supplementary file 3).
To determine the association of URA3-mRuby levels across generations with growth, we primed

cells with 12 hr of exposure to ura-/6AU5 media and then tracked the division of tuned vs. untuned

microcolonies of PHSP12-URA3-mRuby/PADH1-DHFR-GFP cells over 24 hr time courses in ura-/6AU5
media. By comparing the fluorescence of cells that are about to divide with those that are not, we
found that dividing cells have significantly higher levels of mRuby than non-dividing cells, whereas
the separation was much smaller for GFP (Figure 7C). Furthermore, the URA3-mRuby levels within

the tuning colony were highly heritable; as seen in Figure 7D, as the indicated colony tunes and
grows, cells within that colony maintain a high-mRuby state through subsequent divisions, and even
their internal rankings are mostly preserved. mRuby levels in other, non-tuned microcolonies are
almost uniformly lower than cells in the tuned colony. The fitness-driven optimization component of
our model (Figure 1) further predicts that fluorescence levels should not only be heritable, but also

that cells will continue to increase URA3 expression (possibly noisily) until they reach either a local
optimum fitness or some biological constraint on maximum gene expression. Consistent with our
expectation, we observed that the ratio of mRuby to GFP levels (the latter of which is fused to a
gene whose product is not needed for growth) became steadily higher in cell lineages that had been

dividing for longer (Figure 7E). These observations demonstrate that the level of URA3 expression is
correlated with fitness, is transmitted across several generations, and shows an ongoing upward
trend in tuned cells over the course of time. That last finding is particularly important because a
directed increase in URA3 once a lineage begins growing is predicted by our model for fitness-
directed tuning, but cannot be explained by other competing hypotheses. The images and data

shown in Figure 7 were taken for colonies within a single field of view of a 40x objective to ensure
internal consistency in illumination and normalization, but their behavior is representative of our
observations across multiple such windows. (e.g., Figure 7—figure supplement 2, panel A). Similar
quantitative analysis from another experiment beginning directly from growth in SC+glu (instead of
short-term pregrowth in ura-6AU media) is shown in Figure 7—figure supplement 2, panels B-D.

Growth on –ura/6AU media does not arise from genetic mutations
It is crucial to exclude the possibility that genetic mutations underlie the observed tuning transition
on –ura/6AU plates. The ongoing emergence of the tuned state in non-growing cells, over the
course of many days, makes mutational mechanisms unlikely. In addition, as seen by microscopy
(Figure 3E), no more than 1–3 cell divisions occur prior to the onset of sustained growth in a small

fraction of cells.
Nevertheless, given the phenomenon of stress-induced mutagenesis in non-growing bacterial

cells (Al Mamun et al., 2012), we wished to conclusively exclude any possibility of mutational mech-

anisms. To this end, we note that changes in URA3 expression occurring due to mutations should be
stably heritable in the progeny of the tuned cells, which would not be expected to revert to a URA3
low state even after restoration of uracil in the media. To test the reversibility of the URA3 high
state, we designed an experimental setup in which tuned colonies isolated from ura-/6AU plates
were grown for varying numbers of passages in uracil-replete media (SC+glu including uracil) and

then re-exposed to uracil starvation (Figure 8—figure supplement 1). If any genetic mutation were
responsible for increasing URA3 expression in the tuned cells, the phenotype should be stable for
many generations. On the other hand, stochastic tuning would predict that cells revert to a naı̈ve
state following sufficient growth in uracil-containing conditions, as they no longer benefit from URA3
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Figure 7. Heritability of elevated mRuby levels during tuning. (A) Formation of a microcolony over 24 hr of exposure to ura-/6AU5 media in PHSP12-

URA3-mRuby/PADH1-DHFR-GFP cells. GFP and mRuby are shown as transparent green and red overlays. (B) Snapshots equivalent to A) for a non-tuned

colony in the same field of view. (C) Observed cumulative distributions (empirical cumulative distribution function; ECDF) of mRuby (left) and GFP (right)

levels for cells that either do or do not divide in the timepoint following the measurement (analyzed in four-hour intervals). Values are pooled over all

timepoints except the first, for five colonies growing in a single field of view. p-values arise from a Wilcoxon rank sum test applied to the shift between

the non-dividing and dividing cells. D indicates a point estimate for the difference in fluorescence of the dividing vs. non-dividing cells, along with a

95% confidence interval (95% CI). Values shown are raw fluorescence normalized by the median value for all observations of each fluorescent protein;

note the different x scales for mRuby vs. GFP. (D) Lineage traces showing long term propagation/inheritance of URA3-mRuby protein levels. At each

specified timepoint, the average fluorescence of each cell is shown on the y axis, with lines connecting each cell to the cell(s) arising from it at the

subsequent timepoint; thus, forks in the lines indicate cell division. Colors specify which of five microcolonies a given cell is a part of; only the red

microcolony showed notable tuning over the course of the experiment. A black ‘*’ is shown for each transition between adjacent timepoints for which

the correlation of ranks between the timepoints in question is significant (p<0.05) using a Spearman correlation test, and a red ‘*’ is shown for

transitions where the same criterion holds considering only the rank ordering of cells in the red (tuned) colony (the colony shown in panel A). (E)
Observed distribution of mRuby/GFP ratios depending on time elapsed since a lineage of cells began to divide. The x axis divides the cells up by the

time (measured in four-hour intervals) that has elapsed since the first observed division event of an ancestor of that cell; ‘Undivided’ indicates cells in

lineages that have not yet divided in the analyzed trajectory, and 0 hr denotes cells that will divide before the next analyzed snapshot. Note that points

are plotted for each cell at each analyzed frame relative to its own growth history, and thus not all cells at a given x position necessarily arise from the

same time point in the image series.

DOI: https://doi.org/10.7554/eLife.31867.012

The following figure supplements are available for figure 7:

Figure supplement 1. Mixing times of mRuby levels for growing (uracil-replete) and uracil-starved cells.

DOI: https://doi.org/10.7554/eLife.31867.013

Figure supplement 2. Heritability of elevated mRuby levels during early tuning.

DOI: https://doi.org/10.7554/eLife.31867.014
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expression. As seen in Figure 8A, cells with synprom-driven URA3 show reversion toward the naı̈ve

colony formation rates upon growth in (uracil containing) SC+glu media, with recovery apparent

Figure 8. Effects of genetic and chemical perturbations on the efficacy of fitness-directed stochastic tuning and its

epigenetic reversion. (A) Time courses of recovery back to the naı̈ve state for tuned synprom-URA3-mRuby/PADH1-

DHFR-GFP cells grown in either SC+glu or SC+glu with 25 mM nicotinamide added (+NIC). Extremes are shown

for the colony formation times of cells never exposed to –ura conditions (Naı̈ve) and for single colonies isolated

after streaking out cells from ura-/6AU15 plates onto SC+glu (Streaked –URA colony). Colors of points indicate a

single lineage beginning from a single streaked out colony picked at the first SC+glu plate stage. The cells were

then repeatedly passaged in liquid SC+glu media and assessed for colony formation rates on ura-/6AU15 plates

on subsequent days, as detailed in Figure 8—figure supplement 1. (B) Colony formation rates on ura-/6AU15

plates in the presence of various genetic perturbations, assessed by colony counts from platings of selected

dilutions of cells. An ‘x’ followed by a dashed line indicates no observed colonies and is shown at the threshold of

detection from the experiment. All mutations are in a synprom-URA3-mRuby/leu2D0 background.

DOI: https://doi.org/10.7554/eLife.31867.015

The following figure supplements are available for figure 8:

Figure supplement 1. Recovery of cells taken from ura-/6AU plates toward a naı̈ve state.

DOI: https://doi.org/10.7554/eLife.31867.016

Figure supplement 2. Survival of cells in –ura media in the presence of genetic perturbations.

DOI: https://doi.org/10.7554/eLife.31867.017
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even after a single round of growth on an SC+glu plate, and subsequently becoming stronger with

additional SC+glu passages.
To conclusively exclude mutational mechanisms, we performed untargeted whole-genome re-

sequencing of a total of eight isolates with synprom-driven URA3-mRuby (four colonies from 6AU15

plates and four separate biological replicates taken after the onset of growth in 6AU5 liquid media;

see Materials and Methods for details). For each case, we scanned the region within 25 kb of the

LEU2 locus (where the URA3 cassettes were integrated) for mutations, since control of URA3 expres-

sion was shown in these cells to operate locally in cis (Figure 4 and Figure 4—figure supplement

2). The results are summarized in Supplementary file 4: Of the eight isolates, five show no muta-

tions within 25 kb of the URA3-mRuby insertion, two show SNPs of unknown fitness contribution in a

minority of the population, and one shows a duplication of the URA3-mRuby cassette (based on the

presence of a read density that is twice the level observed elsewhere for the same chromosome).

These data clearly indicate that the origin of growth-supporting URA3 expression levels in these cells

cannot be reliant on a mutational mechanism, as only one of the eight cases – that with the URA3

duplication – shows a mutation at high enough levels in the population to explain the onset of

growth (mutations present in less than half of the population must have arisen after one or more

cells in the population had already tuned and began growing, and thus by definition could not be

responsible for the initial onset of the growing state). The phenotypes caused by the sequence var-

iants observed in populations C2 and L4 are not immediately obvious, but even if they are beneficial,

their presence in a minority of cells excludes the possibility that they were responsible for the onset

of tuning. Note that it should not be surprising (and, indeed, would be expected) that beneficial

mutations might arise in a population once it had begun expanding in a new environment due to

stochastic tuning. Our findings are consistent with a non-genetically heritable basis for the observed

tuning in seven out of eight of the cases examined, as in all other growing lines, mutations near the

URA3 gene were either non-existent or present only in a minority of the population.

Excluding growth-selection on the basis of pre-existing variation in
URA3 expression level
A formal possibility for colony formation in a subset of the population is that growth occurs solely on

the basis of pre-existing URA3 levels in cells prior to being exposed to uracil deprivation. Micro-

scopic observations of starving cells (Figure 3E) argue against this possibility, as a substantial lag

passes before any cells begin sustained growth. Also, colony formation continues over the course of

many days (Figure 3B–D), demonstrating that even cells that were non-growing for a substantial

time period after exposure to URA- stress can eventually grow under this condition. Nevertheless, to

conclusively discount the possibility of pre-existing URA3 levels determining tuning, we sorted popu-

lations of cells on the basis of initial URA3 expression, isolated those with the highest mRuby levels

(the top 0.5–1%, well outside of the main distribution of the population) and plated them. These

experiments clearly showed that the ability to form colonies on ura-/6AU plates is not restricted to

cells with initially high URA3-mRuby expression (Supplementary file 5), as the highly fluorescent

cells do not form colonies on ura-/6AU plates at rates substantially higher than unsorted cells, and

certainly not at a sufficiently higher rate to fully explain the observed colony formation rates. These

data argue against the possibility that growth occurs only in cells that, by chance, already have high

levels of URA3 expression at the time of plating (although such cells may have some slight advan-

tage, given the nature of their initial state).

Stochastic tuning is affected by genetic perturbations to chromatin
modification machinery
The proposed fitness-directed tuning mechanism relies on the capacity of local chromatin to main-

tain a memory of recent changes in transcription, and to modulate the transcription rate based on

the fitness consequences of those changes, as conveyed by the proposed central metabolic integra-

tor of health/fitness. We hypothesized that chromatin modification machinery may be intimately

involved in these processes.
To probe the mechanistic basis of stochastic tuning, we focused on perturbations to histone acet-

ylation/deacetylation (deletions of GCN5, SIN3, HST3, HST4), and chromatin remodeling (deletions

of ASF1, ISW2, SWR1, UBP8), all of which provide potential pathways for coupling feedback from
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the cell’s physiological state to allele-specific modulation of chromatin and transcription (See Table 1

for details). We selected these targets because of their association with genes showing particularly

high levels of noise (and thus, more likely to be driven by tuning) in single-cell proteomic analysis

(Newman et al., 2006). In our screening, homozygous replacements of HST3, HST4, SWR1, ISW2,

and UBP8 with a kanMX cassette showed little effect on colony formation rates on ura-/6AU plates,

and SIN3::kanMX/SIN3::kanMX strains showed severely compromised cell survival under growth-

arrested conditions; all were excluded from further analysis. On the other hand, we found that

genetic perturbations to the histone acetylation machinery through deletion of the key histone ace-

tyltransferase GCN5 essentially abolished tuning, whereas deletion of the histone chaperone ASF1,

in contrast, increased tuning rate by more than an order of magnitude (Figure 8B). At the same

time, we show that the observed tuning process does not rely on transcriptional memory mecha-

nisms grounded in chromatin localization, given the lack of effect of a NUP42 deletion (Figure 8B;

cf. (Guan et al., 2012)).

Variations in colony formation rate are not a result of changes in
viability
In interpreting our data on the effects of genetic perturbations on tuning (Figure 8B), it was crucial

to consider the possibility that cells may lose viability at variable rates under different conditions,

which could contribute to the observed differences in colony formation rates. We thus performed

experiments to measure the rate of cell death in the presence of uracil starvation and compared the

results with the different colony formation rates observed. As shown in Figure 8—figure supple-

ment 2, the effects of a mutation on survival and tuning rates are not significantly correlated. For

example, deletion of GCN5 resulted in the nearly complete loss of stochastic tuning, deletion of

NUP42 had no effect, and deletion of ASF1 substantially enhanced tuning, yet none of these muta-

tions shows a change in survival rates during incubation in uracil-free media compared with wild type

cells sufficient to explain the observed change in colony formation rate (Figure 8—figure supple-

ment 2). Even for the poorest surviving strain, GCN5::kanMX/GCN5::kanMX, colony formation rates

after ten days are 100!1000 times lower than wild type cells even though survival rates are lower

only by a factor of ten.

Chemical perturbation of histone deacetylases inhibits the maintenance
of the tuned state
Given the apparent importance of chromatin modifications in fitness-directed tuning, we also tested

the effects of nicotinamide treatment (which inhibits the sirtuin class of histone deacetylases, or

HDACs (Bitterman et al., 2002)) on reversion of the tuned cells back to a naı̈ve state. As shown in

Figure 8A, we found that chemical inhibition of sirtuin HDACs by nicotinamide treatment substan-

tially accelerated the decay of a tuned population to the naı̈ve state, further highlighting the impor-

tance of histone modification in stochastic tuning. Combined with the data on knockout strains

described above, our results suggest a central role for chromatin modifications in the establishment

Table 1. Summary of genetic perturbations tested for effects on tuning rates.
Perturbation Direct effect Effect on tuning

GCN5::kanMX Deletion of histone acetyltransferase subunit (acts in ADA, SAGA, SLIK/SALSA complexes) Inhibits

SWR1::kanMX Deletion of H2AZ exchange factor No effect

UBP8::kanMX Deletion of SAGA complex de-ubiquitinase No effect

SIN3::kanMX Deletion of Rpd3S/L histone deacetylase components No effect

HST3::kanMX Deletion of Sir2-family histone deacetylase No effect

HST4::kanMX Deletion of Sir2-family histone deacetylase No effect

ISW2::kanMX Deletion of DNA translocase involved in chromatin remodeling No effect

ASF1::kanMX Deletion of nucleosome assembly factor Accelerates

NUP42::kanMX Deletion of nuclear pore complex component known to be involved in transcriptional memory No effect

DOI: https://doi.org/10.7554/eLife.31867.018
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and maintenance of the tuning process, although the molecular details cannot be discerned from
these data alone.

A biologically feasible implementation of stochastic tuning
The abstract model introduced in Figures 1–2 demonstrates the potential utility of fitness-directed
stochastic tuning to establish adaptive gene expression states without directly sensing the external
environment. In order to substantiate the biological feasibility of stochastic tuning, we implemented
its critical components in a plausible simulation incorporating generic features of chromatin modifi-
cation and the information flow of the Central Dogma of Molecular Biology. We therefore designed
and simulated a dynamical model tracking transcription rates, transcript levels, protein levels, and
histone modifications in a single cell, with parameter distributions sampled from experimental data
(Figure 9A; see Methods for details). We incorporated the possibility of adding or removing chro-
matin marks that can alter the transcription rates of the associated genes. Our model incorporates
two classes of marks: tuning marks (T), which link cellular fitness to transcriptional output by having
mark addition rates that are a function of the recent direction of change in global fitness and current
number of such marks at each promoter; and stabilizing marks (S), which are added at a rate depen-
dent on the number of tuning marks at each promoter (Figure 9B). At any time, the transcriptional
output of the promoter is a function of the density of both tuning marks and stabilizing marks. As
such, the tuning marks provide a critical connection between changes in global fitness and transcrip-
tion rates, whereas the more slowly changing stabilizing marks capture the average transcriptional
output over longer timescales, enabling a more stable optimization trajectory. Both T and S chroma-
tin marks come in two varieties: positive (activating) and negative (repressive).

Our aim was to develop a generic simulation consistent with our general knowledge of coupling
between chromatin modification and transcription (Li et al., 2007; Rando and Winston, 2012;
Zhou and Zhou, 2011; Mitra et al., 2006). As such, the tuning and stabilizing marks described here
need not correspond to any specific chemical moiety or be attributed to any particular histone modi-
fication enzyme. Modulation of enzyme activity by global fitness could be due to some as yet
unknown signaling pathway or, alternatively, be dependent on known metabolic substrates or cofac-
tors, such as acetyl-CoA and NAD+ (Lin et al., 2000; Thaminy et al., 2007; Tanner et al., 1999).

As shown in Figure 9C, the detailed model is capable of stochastic tuning of a single gene which
strongly impacts the fitness of the cell (as would be the case for URA3 in our experimental setup).
For most randomly generated gene-level parameters, stochastic tuning results in substantially higher
fitness compared to when cells undergo random fluctuations in transcription levels or when tran-
scription is fixed at a rate appropriate for a different environment, and in most cases, tuning is able
to consistently achieve near-optimal expression levels. The model is robust to variations in both the
sampled biological parameters (Figure 9C) and the parameters of the model itself (Figure 9D) and
can locate an optimal expression level regardless of the ratio between the initial and target protein
levels (Figure 9E). These results demonstrate that a generic, biologically feasible implementation of
fitness-directed stochastic tuning can in fact function even in the presence of the multiple layers of
noise and temporal delays acting between transcription rates (at which tuning occurs) and protein
levels (which dictate fitness). Note that we do not expect to find conditions where stochastic tuning
is the primary mechanism of gene expression modulation for every gene in the genome, even for
novel or extreme environments. Rather, we expect that the cells’ hard-wired transcriptional regula-
tory logic exerts the primary role in the transcriptional reprogramming of the majority of genes in
the genome. For its part, we expect that stochastic tuning plays the dominant role in modulating the
expression of few genes/pathways that represent critical bottlenecks for fitness (for example, induc-
tion of a drug efflux pump, or repression of an enzyme that activates a pro-drug chemotherapeutic
agent).

Discussion
We have described a mechanism of adaptation through fitness-directed optimization of gene
expression. In numerical simulations, the proposed framework has the remarkable capacity to simul-
taneously tune the expression of thousands of genes, enabling optimization of fitness without
directly sensing environmental parameters. The demonstration that a phenomenon consistent with
fitness-directed stochastic tuning operates in S. cerevisiae has important implications for the
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Figure 9. Construction and performance of a biologically feasible model for fitness-directed stochastic tuning. (A) Schematic of processes modeled in

the simulation. Transcripts are produced at a rate dependent upon the state of chromatin marks at each promoter; each transcript has a fixed, gene-

dependent probability of being translated at each timestep (producing a protein), and may also be degraded (again, with a gene-dependent

probability). Similarly, each copy of a protein may be degraded at each timestep with a protein-dependent probability. The fitness of the system is

Figure 9 continued on next page
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adaptation of eukaryotic microbes to novel or extreme environments where their genetically

encoded regulatory networks become inadequate. However, we speculate that stochastic tuning

operates in parallel with conventional regulation even in frequently encountered environments.

Indeed, hard-coded sensory and regulatory networks are unlikely to have the encoding capacity to

optimally respond to every conceivable subtle change in the environment—even within the native

habitat. We therefore favor a model in which dedicated regulatory networks quickly move the sys-

tem to a state reasonably well matched to a given condition, and stochastic tuning subsequently

optimizes expression to achieve a more precisely adapted state for every individual encounter.
The ability to discover optimal gene expression states through a stochastic fitness-directed search

may have provided significant advantage to early eukaryotic microbes. Microorganisms have evolved

stochastic search strategies in other contexts. Indeed, the proposed stochastic tuning mechanism is

reminiscent of the biased random walk phenomenon in bacterial chemotaxis, where stochastic transi-

tions in the rotation of the flagellar motor are biased towards the direction that increases chemoat-

tractant signaling over time (Macnab and Koshland, 1972). Detailed molecular mechanisms of

chemotaxis have been revealed over the course of the last few decades, demonstrating the versatil-

ity of molecular processes in implementing rather complex computations (reviewed in (Sourjik and

Wingreen, 2012)). Although our main focus here has been on establishing the phenomenology of

fitness-directed stochastic tuning, we have already identified some critical components. In particular,

histone acetylation/deacetylation (via GCN5 and sirtuins) seem to play a critical role, as deletion of

GCN5 almost entirely abolished tuning. This is consistent with the high degree of intrinsic noise

exhibited by the genes that are regulated by the SAGA complex, in which GCN5 is the catalytic sub-

unit (Newman et al., 2006). Previous work has shown that increased transcriptional noise is benefi-

cial for adaptation to acute environmental stress (Blake et al., 2006). Interestingly, however, early

work demonstrated that deletion of GCN5 further increases expression noise in the context of the

PHO5 promoter (Raser and O’Shea, 2004).

Figure 9 continued

calculated as the Euclidean distance between the current profile of protein counts present in the cell from a target optimum. Chromatin marks may be

added or removed at each promoter at each step, as shown in panel B). (B) Logic underlying changes in tuning and stabilizing mark counts at each

step. Tuning marks (T) may be added or removed at each step based on the recent history of changes in fitness, and whether each promoter currently

has a net positive (activating) or negative (repressive) T count. Stabilizing marks (S) provide longer term integration by adding activating or repressive

marks over time in response to the state of the tuning marks. Thus, if an unmodified promoter undergoes random addition of a positive tuning mark

(top path), and that addition proves favorable, it will undergo further addition of positive T marks. If fitness continues to increase, stabilizing marks (S)

will be added to stabilize its higher activity. Similar logic holds for the random addition of negative tuning marks (bottom path). In both cases, if the

random T-mark perturbation proves unfavorable, the promoter will be modified in the opposite direction, in this case returning it back to its original

unmodified state. (C) Distributions of fitness scores for a one-gene system obtained in twenty simulations using different randomly sampled biological

parameters (e.g., transcript stabilities, translation rates, etc.) – these different parameter sets are the ‘simulated replicates’ referred to on the x axis. The

median scores over the last quarter of the simulation are shown for 10 independent tuning trajectories (differing in their random number seeds). Each

simulation proceeded for 300,000 steps (83.3 hr of simulated time). Different colors indicate varying methods used to control transcription rates (as

shown in the legend): ‘Known optimum’ refers to a case where transcription rates are kept fixed at their predefined target values, ‘Stochastic tuning’ is

the full model described in the Methods section, ‘Random chromatin marks’ is equivalent to the tuning model except that the direction of T chromatin

mark addition is random instead of fitness directed, and ‘Fixed at baseline values’ shows the case where transcription rates are fixed at their initial

values (intended to correspond to the environment that the cells were in prior to the onset of stress exposure). Dashed vertical lines group simulations

performed with identical parameters. On the left axis we show ten sets of simulations where the target transcription rate was eight-fold higher than the

starting rate, and on the right axis simulations where the target transcription rate was eight-fold lower than the starting rate. (D) Robustness of tuning
against changing model parameters. Violin plots are defined as in panel C), but in this case show the distributions of fitness scores observed under

variations of the model parameters (e.g., magnitude of individual tuning and stabilizing marks) for a single, randomly chosen set of gene-specific

parameters. Plotted are the median fitness scores over the last quarter of each simulation, using either our central ‘baseline’ parameters for all model

parameters (leftmost replicate; see Supplementary file 8), or twofold changes (up or down) of each editable parameter in our model. (E) Tuning
performance of a single gene matching a wide range of biological challenges. For a fixed set of biological parameters (see Materials and Methods), we

performed 10 simulations each where the initial transcription rates were off from the target rate by a factor of 23, 22, 0, 2!2, and 2!3, running in order

from blue to red. A strong dashed black line shows the median obtained from the last quarter of a long (3 million step) simulation with transcription

rates fixed at their optimal values; the shaded region shows the extent of a region encompassing 95% of the timepoints observed in that window.

Regardless of initial conditions, the protein level approaches the optimal value and then stably oscillates around it, with amplitudes similar to those

observed in the control simulation with target transcription rates.
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Taken together, these data suggest that stochastic tuning is not driven by noise alone; rather we
support a model in which the proper integration of noise, transcriptional memory, chromatin modifi-

cation, and cellular-health feedback work together to implement a directed search mechanism to
drive the expression level of individual genes to levels that maximize the overall health of the cell.

Indeed, histone modification is tightly coupled with gene expression. Co-transcriptional histone
modification can store recent memory of transcriptional activity (Li et al., 2007; Rando and Win-

ston, 2012) and histone modification can, in turn, affect transcription rate (Stasevich et al., 2014).

There has been a longstanding debate on the functional significance of this reciprocal coupling. Our
model and results help to unify these phenomena and support their functional relevance as requisite

components of a stochastic tuning-based cellular adaptation framework.
We note that our experimental setup for demonstrating stochastic tuning has superficial similari-

ties to a series of experiments performed in S. cerevisiae by the Braun lab, in which they sought to
determine whether glucose-driven repression of the GAL1 promoter could be overcome to allow

expression of a HIS3 construct in glucose-containing media (Stern et al., 2007; Stolovicki et al.,
2006). While the authors observed consistent emergence of growth in a large fraction of cells that

they initially noted could be attributed to either genetic or epigenetic mechanisms (Stolovicki et al.,

2006), subsequent analysis has shown that in that experimental system, genetic mutations are the
primary mechanism of adaptation, possibly driven by hypermutability of the genes involved in the

response of interest (David et al., 2010; Moore et al., 2014; David et al., 2013). These mutational

mechanisms stand in clear contrast to the rapidly reverting epigenetic stochastic tuning observed in
our experiments.

In addition to perception of environmental parameters, cells also possess a variety of hard-wired
homeostatic mechanisms sensing and responding to internal parameters, optimizing resource alloca-

tion in response to parameters such as growth rate (Klumpp et al., 2009; Klumpp and Hwa, 2014;
Brauer et al., 2008; Barenholz et al., 2016; Keren et al., 2013) and metabolite/nutrient pools

(Potrykus et al., 2011; Broach, 2012). However, while these mechanisms allow cells to sense their
internal state, they still reflect specific evolved responses to alter resource allocation and gene

expression in a predefined way in response to stress, standing in contrast with the ability of stochas-

tic tuning to conduct a search and discover arbitrary gene expression states that are adaptive under
extreme and unfamiliar environments.

The widely varying tuning rates for different promoters (Figure 3B–C and Figure 3—figure sup-
plement 1) clearly indicate that sequence features can influence tuning efficacy. By design, all but

one promoter driving URA3 in our experiments contained a TATA box, which has been linked to
high intrinsic noise (Newman et al., 2006), condition-specific expression variability (Tirosh et al.,

2006) and reliance on chromatin-mediated regulation (Tirosh et al., 2008; Basehoar et al., 2004).

Indeed, replacement of the (TATA-containing) PSAM3 derived sequence in synprom with a similarly
generated sequence from the TATA-free PARF1 promoter substantially reduced tuning rates under

the conditions tested (Figure 3—figure supplement 1). We also note that when we performed
experiments similar to those described above with the repressed natural promoter PGAL1, we

observed dramatically lower rates of colony formation (less than 1 in 107), and those colonies that

did form appeared to be non-reverting genetic mutants (data not shown). Exploring the full impor-
tance of transcriptional noise for tuning efficiency, as well as that of other features such as propensity

for nucleosome positioning, will be important in future work.
Fitness-directed stochastic tuning requires feedback of the global state of health to every pro-

moter in the genome. The dependence of many histone modification enzymes on metabolic inter-
mediates and cofactors (e.g., NAD+ for the sirtuin family of histone deacetylases (Lin et al., 2000;

Thaminy et al., 2007); SAM for histone methyltransferases (Luka et al., 2009), and acetyl-CoA for
histone acetyltransferases (Tanner et al., 1999)) provides support for potential direct feedback of

global fitness-related parameters to the epigenome (Katada et al., 2012; Kurdistani, 2014), and

indeed we showed that chemical manipulation of sirtuin activity had substantial effects on retention
of epigenetic memory. These enzymes may very well serve as distinct channels of health-related

information utilized by stochastic tuning. In this regard, chromatin itself may function as a global

health integrator, with histone modifications and their effect on gene expression being highly contin-
gent on the current trajectory of cellular fitness. Alternatively, cells may utilize a single global health

integrator (such as the mTOR system) as hypothesized in our idealized model. The mTOR pathway
integrates diverse parameters of internal health including energy, nutrient availability, and cellular
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stresses (González and Hall, 2017). Intriguingly, the mTOR pathway has recently been shown to reg-
ulate histone acetylation states through a variety of mechanisms (Chen et al., 2012;
Workman et al., 2016)

Fitness-directed stochastic tuning has important implications for gene regulation. Beyond a
potentially widespread mechanism of cellular adaptation, stochastic tuning brings together seem-
ingly unrelated phenomena under a unifying conceptual framework. These are areas of study at the
frontier of genetics and biochemistry, including stochastic gene expression, transcriptional memory,
and metabolic modulation of epigenetic states. Stochastic tuning may have initially evolved as a
mechanism for adaptation of single-cell eukaryotes to extreme environments. However, once avail-
able, it may have found additional utility as a versatile mechanism for controlling and fine-tuning
gene expression in the context of physiological and developmental processes in metazoans. This is
consistent with the evolutionary arc of an ancient set of molecular mechanisms that now serve as key
mediators of differentiation (Álvarez-Errico et al., 2015; Ziller et al., 2015; Meissner, 2010).
Exploring this possibility represents an important area for future research. Optimization of cellular
health through the fitness-directed stochastic tuning mechanism may also play an important role in
allowing cancer cells to survive and thrive in a variety of microenvironments unfamiliar to their
evolved regulatory networks, and in the face of extreme challenges imposed by chemotherapy and
radiation. Indeed, stochastic tuning may underlie the epigenetically mediated metastatic potential
and chemotherapy resistance observed in a variety of cancer types (Wu and Roberts, 2013; Perez-
Plasencia and Duenas-Gonzalez, 2006; Lv et al., 2016; Li et al., 2015; Borley and Brown, 2015;
Bonito et al., 2016; Shaffer et al., 2017). Our observations support the existence of a fitness-
directed tuning process that operates at the level of transcription. However, in principle, tuning
could also occur at any point along the hierarchy of gene expression where noise, memory, and
feedback of global fitness can drive the activity of gene products towards levels that optimize the
overall health of the cell. In particular, searching for evidence of tuning at the level of translation
would be an important focus for future research.

Materials and methods

Key resources table

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

gene (Saccharomyces
cerevisiae)

URA3 NA YEL021W

gene (Entacmaea quadricolor) mRuby DOI: 10.1371/journal.
pone.0004391

gene (Aequorea victoria) GFP DOI: 10.1038/nbt1172 Codon optimized for S. cereivisiae;
sequence available as Supplementary file 3

genetic reagent (S. cerevisiae) PHSP12 NA Promoter region upstream of YFL014W

genetic reagent (S. cerevisiae) PADH1 NA Promoter region upstream of YOL086C

genetic reagent (S. cerevisiae) PRGI1 NA Promoter region upstream of YER067W

genetic reagent (S. cerevisiae) synprom This paper Synthetic promoter sequence. See
Supplementary Material for complete
sequence, and methods for
details of construction

genetic reagent (S. cerevisiae) GCN5::kanMX PMID: 10436161 Knockout cassette obtained
from the yeast knockout collection strain

genetic reagent (S. cerevisiae) ASF1::kanMX PMID: 10436161 Knockout cassette obtained
from the yeast knockout collection strain

genetic reagent (S. cerevisiae) NUP42::kanMX PMID: 10436161 Knockout cassette obtained from
the yeast knockout collection strain

strain background (S. cerevisiae) BY4743 PMID: 9483801

chemical compound, drug 6-azauracil ACROS Organics Product code 153970050 Stock solution 10 mg/mL in
1 M ammonium hydroxide

Continued on next page
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Continued

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

chemical compound, drug Nicotinamide Sigma Product number N0636 Stock solution 1 M in water;
filter sterilized

software, algorithm tuning_simple This paper Octave implementation
provided as Source Code 2

software, algorithm tuning This paper Python implementation
provided as Source Code 3

Media and strains
For routine growth of strains, we used YPD broth (10 g/L yeast extract, 20 g/L peptone, 20 g/L dex-

trose) or YPD agar plates (YPD broth +20 g/L Bacto agar). We used standard recipes based on SC

+glucose (SC+glu) (Kaiser et al., 1994) for all physiological experiments. SC/loflo refers to SC made

with low fluorescence yeast nitrogen base (US Biologicals). In the case of SC+glu, we used dropout

supplement powders interchangeably from ForMedium (DSCK012) and US Biologicals (D9515),

although they differ slightly in the concentrations of adenine and para-amino benzoic acid supplied.

SC+glu derivatives lacking particular nutrients are specified as SC+glu-NUTRIENT; e.g., SC+glu-ura

for SC+glu lacking uracil. We also refer to the commonly used mixture of SC+glu-ura with 6-azauracil

added as ura-/6AUi, where i is the final concentration of 6AU in microgram/mL. The agar for all

plates used in physiological experiments was either Noble agar (Difco) or quadruple-washed Bacto

agar. For the removal of the GAL-GIN11 cassette in counter-selections (see below), cells were plated

on YPGA agar plates (10 g/L yeast extract, 20 g/L peptone, 20 g/L galactose, 20 g/L agar, 100

microgram/mL ampicillin). All growth was at 30˚C; liquid phase growth included shaking at 200–220

rpm in an Innova 42 incubator (New Brunswick).
As diagrammed in Figure 3A, we constructed two classes of insertion cassettes. Each follows the

pattern of having a promoter, a functional reporter protein fused to a fluorescent protein, and then

ends with a CYC1 terminator. For URA3, the native sequence from S. cerevisiae was used, with the

exception of one silent SNP and an A160S mutation that does not appear to alter enzyme function.

The red fluorescent protein mRuby is described in (Kredel et al., 2009). For DHFR, we used murine

DHFR from pSV2-dhfr (Subramani et al., 1981) with an L22R mutation making it methotrexate-resis-

tant (Simonsen and Levinson, 1983). GFP refers in all cases to superfolder GFP (Pédelacq et al.,

2006) codon-optimized for S. cerevisiae using web-based tools from IDT (Integrated DNA Technolo-

gies); see Supplementary file 3 for the corresponding nucleotide sequence. In each case, the

reporter and fluorescent protein were separated by a short A/G/S containing linker. All constructs

were cloned in bacterial hosts using pBAD-derived plasmids; separate plasmids were constructed

with each promoter of interest downstream of a region homologous to the upstream target site in

the S. cerevisiae genome, and URA3-mRuby-cyc or DHFR-GFP-cyc upstream of a region homologous

to the downstream target site in the S. cerevisiae genome. All constructs were chromosomally inte-

grated at the leu2D0 locus of our yeast strains. Double-stranded DNA for transformation in yeast

was then generated by first amplifying the promoter and reporter constructs separately, using pri-

mers yielding 20–40 bp overlaps; we then used crossover PCR to generate the complete construct

of interest and subsequent amplification to generate a sufficient quantity for transformation. All PCR

used for strain construction was performed using Q5 high fidelity polymerase (NEB); routine PCRs

for strain validation were instead performed using OneTaq or Taq polymerase (NEB).
Promoters for ADH1, HSP12, and RGI1 were cloned from our wild type strain (BY4743 or its hap-

loid progenitors BY4741/BY4742) and included the entire region from 1700 to 1800 bp upstream of

the start codon to the base immediately prior to the start codon. The ADH1 promoter was selected

as a classic constitutive promoter (DeMarini et al., 2001); HSP12 and RGI1 were chosen as they

show high variance in expression between conditions (Tirosh et al., 2009; Tirosh et al., 2006), a

characteristic expected to be favorable for stochastic tuning. Synprom was designed in two stages:

the bulk of the DNA is a 600 bp random sequence generated using a Markov model to match the

trinucleotide frequencies present across all natural S. cerevisiae promoters. To this sequence we

appended the 200 bp immediately prior to the start codon of SAM3, to provide native transcription

and translation start sites. The resulting sequence was then modified to remove all recognizable
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binding sites for yeast transcription factors (TFs) as follows: we used the set of position weight matri-

ces and match thresholds in ScerTF (Spivak and Stormo, 2012) to identify all recognizable TF bind-

ing sites in the promoter, and randomized the sequences of only those regions and their immediate

surroundings until no recognizable TF binding sites remained. The resulting perturbed sequence is

given as Supplementary file 1. The required sequences were synthesized as gBlocks from Inte-

grated DNA Technologies and combined via Gibson assembly (Lartigue et al., 2009).
All yeast strains were derived from BY4741 or BY4742 (Brachmann et al., 1998), which includes a

complete deletion of the URA3 ORF (BY4741: Mat a his3D1 leu2D0 met15D0 ura3D0; BY4742: Mat a

his3D1 leu2D0 lys2D0 ura3D0). Insertions of URA3 or DHFR fusion proteins were always at the leu2D0

locus unless otherwise noted. To facilitate consistent insertion, we replaced the leu2D0 allele of

BY4741/BY4742 with a LEU2-GAL-GIN11 cassette (Akada et al., 2002), which allows growth in leu-

cine-free media but inhibits growth in the presence of galactose. We note that at least in our copy

of the BY474x strains, the leu2D0 deletion runs only from ChrIII:84799—ChrIII:93305, rather than

extending to position 93576 as annotated. Nevertheless, the deletion is sufficient to remove the

entire leu2 open reading frame.
Strains containing the fusion proteins were constructed by transforming the LEU2-GAL-GIN11

containing cells with appropriate double-stranded oligos (see above) and selection on YPGA plates,

allowing replacement of the LEU2-GAL-GIN11 cassette with the desired insert. Insertions were con-

firmed by PCR product sizing. Diploid strains were derived by mating one BY4741-derived (mat a)

strain with one BY4742-derived (mat a), and subsequently plating on SC+glu-lys-met or SC+glu-lys-

met-cys. All transformations were carried out using the LiAc-PEG-ssDNA method (Gietz and Woods,

2002).
Knockout strains were generated by beginning from appropriate haploids containing either a

leu2::promoter-URA3 or leu2::promoter-DHFR construct or simply leu2D0, amplifying an appropriate

kanMX knockout cassette from the corresponding strain in the S. cerevisiae gene deletion collection

(Giaever et al., 2002), and selecting on YPD+G418 plates. We confirmed the presence of kanMX at

the appropriate site and absence of the native gene by PCR. Diploid knockout strains containing

appropriate deletions and a URA3-mRuby insertion at leu2D0 were generated by mating these hap-

loids as noted above.

Colony formation assays
Experiments showing colony formation rates over time all follow a common formula. Cells were

grown overnight in SC+glu media, and then in the morning back-diluted 1:200 into fresh, pre-

warmed SC+glu. The cells were grown for four to five hours at 30˚C with shaking and then pelleted,

washed once with 25 mL deionized (DI) water, pelleted, washed with 1 mL water, pelleted, and

resuspended in 1 mL water. Specified dilutions were made in DI water from this final cell suspension.
Cells were then either plated on full plates at pre-chosen dilutions (100 microliters of an appropri-

ate cell suspension), or a dilution series was spotted onto appropriate agar plates (10 microliters per

spot). Plates were imaged and counted every 1–2 days for the duration of the experiment (lasting

between a few days and weeks, depending on the experiment in question). Plates were wrapped in

parafilm after ~3 days to minimize drying. Plating was performed identically on SC+glu plates (to

establish the number of cells being plated) and plates containing one or more test conditions (e.g.,

ura-/6AU).
Cells were counted either directly from the plates or from stored digital images. Direct plate

counts were done manually for all visible colonies; for those counted from saved images, we

imposed a minimum size threshold of 0.2 mm in diameter (rounding up to the nearest pixel). Times

for counts were rounded to the number of days since plating.

Death rate assays
To determine the survival rates of cells undergoing uracil starvation in the presence of various other

perturbations, we measured the death rates of cells lacking any copy of URA3 in SC-ura+glu media.

Cells were pregrown and washed as described above for plating assays, but then resuspended in liq-

uid SC-ura+glu media and incubated at 30˚C. Aliquots were regularly removed and spotted on SC

+glu plates to determine the number of viable colonies. Survival rates are for leu2D0 homozygotes
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(the original BY4743 diploid, possibly with a homozygous deletion of a specified gene) with no avail-

able copy of URA3.

Flow cytometry
Cells were analyzed by flow cytometry on an LSR Fortessa (Becton Dickinson) at the Columbia Uni-

versity Microbiology and Immunology Flow Cytometry Core Facility or University of Michigan Flow

Cytometry Core. Cells to be used in these experiments were initially prepared and washed following

the same pregrowth procedure as given above for colony formation assays, except that growth was

in low fluorescence SC/loflo media instead of SC. A flask containing 25 mL of prewarmed media

(generally ura-/6AU5 made from an SC-ura/loflo base) was then inoculated with 200 microliters of

the cell suspension, and cells were grown with shaking at 30˚C. Subsequent data acquisition varied

depending on the experiment to be performed.
For the long time courses shown in Figure 4 and its supplement, for an initial timepoint, 200

microliters of the washed cell suspension were combined with 500 microliters of 2x PBS/E (1x PBS

with 10 mM EDTA added), 290 microliters DI water, and 10 microliters of flow cytometry counting

beads (Invitrogen CountBright beads). At subsequent timepoints, snapshots were taken by combin-

ing 490 microliters of the growing cells, 10 microliters counting beads, and 500 microliters 2x PBS/E.

In either case, cells were run on the Fortessa, with signals recorded for forward and side scatter,

mRuby (using the Texas Red laser/filter set), and GFP (using the FITC laser/filter set).
Data were analyzed using the flowCore and flowViz modules of R (Ellis et al., 2006; Ellis et al.,

2009). Beads and cells were first identified based on their forward scatter and side scatter (FSC/

SSC) values (using permissive gates that capture the vast majority of each population) and fluores-

cence (beads were required to show very high fluorescence). For each growth phase (exponential in

SC+glu, starving in ura-/6AU, growing in ura-/6AU), we obtained empirical autofluorescence correc-

tions by analyzing populations in a similar growth state lacking the fluorescent tag on URA3. Guided

by exploratory analysis, we fit a linear model for starving cells predicting mRuby and GFP autofluor-

escence as a function of the observed forward and side scatter, and used constant autofluorescence

values characteristic of each of the two growing phases (obtained from cells with no fluorescent pro-

tein in a similar physiological state, either uracil-starved or undergoing stochastic tuning-driven

growth). During analysis of liquid phase fluorescent populations (shown in Figure 4 and its supple-

ment), the predicted autofluorescence values were subtracted from the observed value; in these

cases, an additional gate was applied to remove events with very low forward scatter values, which

had a very high variance in fluorescence and were well below the size of the main population.
For the use of FACS followed by plating to test the colony formation rates of highly fluorescent

cells, cells were prepared as described above, sorted using a BD FACSAria, and then subsequently

plated in equal quantities on SC+glu and ura-/6AU15 plates.
For the short timescale tuning data shown in Figure 5C, the cells were grown for 3–4 hr side by

side in SC/loflo + glu and –ura/loflo/6AU1 media, and then placed on ice and run directly on the

flow cytometer. For each biological replicate (performed on different days), we grew leu2::synprom-

URA3-mRuby/leu2::synprom-DHFR-GFP and nonfluorescent leu2::URA3/leu2D0 cells in parallel to

allow direct comparison of the observed fluorescence levels. Analysis was performed separately for

each biological replicate. We first normalized all fluorescence signals by the FSC-A signal raised to

the power of 1.5, which we found empirically to be an effective correction removing most of the

dependence of the fluorescence on cell size. Next, a mapping of FSC signals to expected autofluor-

escence on each channel was fitted using the R loess function (with default parameters), and the

expected autofluorescence subtracted from the observed value for each cell to yield what we refer

to as the blanked fluorescence. We then calculated and compared the changes in the median

blanked fluorescence of the populations for the same cells grown in SC+glu vs. ura-/6AU1 media.

Confidence intervals were calculated by bootstrapping with 200 bootstrap replicates.

Whole genome sequencing
Cells for whole genome sequencing were taken directly from the growth condition of interest (ura-/

6AU15 plate or ura-/6AU5 liquid media) and flash frozen in 15% glycerol or 1x TES (10 mM Tris, pH

7.5; 10 mM EDTA, 0.5% SDS). One reference sample grown under unselective conditions was taken

for each starting strain to use as a baseline. Genomic DNA was isolated using a YeaStar Genomic
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DNA kit (Zymo Research) according to the manufacturer’s instructions. Samples were then barcoded

and prepared for sequencing using a Nextera XT kit (Illumina, Inc.) and sequenced as part of a

pooled library on a NextSeq (Illumina, Inc.).
Sequencing reads were clipped to remove adapters and commonly observed artifactual end

sequences with cutadapt (Martin, 2014), and then further trimmed using Trimmomatic 0.30

(Bolger et al., 2014) to remove very low quality (<3) end bases, retain only the portion of the read

with a quality score above 15 in a four base sliding average window, and remove reads less than 10

bp long. Surviving trimmed reads were then aligned to the reference genome using Bowtie 2.1

(Langmead et al., 2009); the reference genome was constructed from the S. cerevisiae S288c

genome (GenBank BK006934 – BK006949), deleting the URA3 ORF and inserting the sequence for

the appropriate URA3 and DHFR constructs in separate copies of chromosome III at the LEU2 locus.

Read data used in this analysis are available from the Short Read Archive under accession

SRP117724.
After alignment, mutational calls and read depths were obtained using the mpileup and depth

modules of samtools 0.1.18 (Li et al., 2009), respectively. Reads for called variants within 25 kb of

the insertion site were examined manually and compared to the sequenced parental strain; validated

variants are listed in Supplementary file 4.

RNA isolation
RNA was isolated using an adaptation of the hot acid phenol method (Collart and Oliviero, 2001).

Cells for RNA isolation were grown under appropriate conditions (either in liquid phase or on agar

plates), and then snap-frozen in 1x TES (10 mM Tris, pH 7.5; 10 mM EDTA; 0.5% SDS) and stored

below !70˚C. Snapshots of 200 to 600 microliters were taken from growing liquid phase cultures,

whereas from agar plates we harvested 1–20 colonies of <0.5 mm diameter taken from the same

plate as each biological replicate. RNA was isolated by rapidly thawing the cell suspension and mix-

ing 1:1 with a 5:1 acid phenol:chloroform solution, then incubating 60 min at 65˚C with occasional

vigorous vortexing. The solution was then chilled on ice for 5 min, and centrifuged 5 min at 16,000 x

g at 4˚C. The aqueous phase was mixed 1:1 with additional acid phenol:chloroform, chilled, and cen-

trifuged as before. The aqueous phase was then mixed 1:1 with a 24:1 chloroform:isoamyl alcohol

solution, and centrifuged 5 min at 4˚C. The resulting aqueous phase was transferred to a fresh tube

and combined with 1/10 vol 3 M sodium acetate, 2 volumes of 1:1 ethanol:isopropanol, and 1/800—

1/200 vol Glycoblue (Ambion), and then precipitated for at least 1 hr at !20˚C and then at least 1 hr

at !80˚C. RNA was recovered by centrifuging 15 min at 16,000 x g at 4˚C, washed with ice cold 75%

ethanol, spun an additional 5 min, and then air-dried and resuspended in RNAse-free water. The

samples were then further purified using a Zymo RNA clean and concentrator five according to the

manufacturer’s instructions, including an on-column DNase digestion.

Quantitative RT-PCR
Total RNA was purified from cells in the desired growth condition using the hot acid-phenol proce-

dure described above. cDNA pools were generated for each sample using random hexamer-primed

reverse transcription with Protoscript II (New England Biolabs) following the manufacturer’s instruc-

tions. cDNA pools were used directly in qPCR reactions without further purifications, assembling

reactions using iTaq Universal SYBR Green Supermix (BioRad) following the manufacturer’s instruc-

tions, in GeneMate PCR plates. Plates were sealed with Microseal ‘B’ adhesive film (BioRad) and run

on a BioRad CFX96 detection system. Ct values calculated by the instrument software were then

exported for subsequent analysis. All isolated RNA was quantified on a Bioanalyzer (Agilent) and

found to have an RIN >= 6.8.
For comparison of URA3 and DHFR expression, we calculated separate DCt values for each qPCR

run replicate by taking the median of all technical replicates from that run. Values plotted in Fig-

ure 4—figure supplement 2 reflect DCt data from 1 to 2 technical replicate wells on each of two to

four separate, independently assembled runs; we plot the median of day-wise data points for each

separate biological sample. Primer locations and sequences are given in Supplementary file 7. We

performed a no-reverse transcriptase control reaction for each sample to ensure that DNA contami-

nation did not contribute to the observed signal (data not shown).
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qRT-PCR data were analyzed using a Bayesian hierarchical model treating the DCt value between
the URA3 and DHFR primers as follows:

DCt(sample,day)~T(ms(sample), srep, nrep)

ms(sample)~T(mc(class), sc(class), nbio)
Parameters not otherwise specified were assigned appropriate uninformative priors. Here ‘sam-

ple’ refers to a single biological sample and ‘class’ to a single growth condition. The key parameter

of interest is mc for each class of cells under study, the overall average URA3:DHFR difference for

cells grown under that condition. We fitted the model using JAGS (Plummer, 2003), and then report

credible intervals and other inferences from the posterior distribution on mc. Each of the DCt(sample,

day) values used the median across 1–2 technical replicates for each primer pair.

Cell count data analysis
Data were analyzed using custom-written python and R scripts. Source code for the nontrivial analy-

sis of flow cytometry data is provided as Source code 1. Uncertainties for cell counts (shown in plat-

ing and flow cytometry data) were calculated by treating each observed count as a Poisson random

variable; using Bayesian inference with the Jeffreys prior (Jeffreys, 1961), the posterior distribution

for the rate parameter I (the concentration of cells) is given in closed form by

I ~ Gamma(0:5þ
Pn

i¼0
in, n)

Where n is the number of observations and the in are the observed counts. Error bars then indi-
cate a central 95% credible interval for I given the observed data.

Recovery experiments
Experiments to examine the reversion of tuned colonies toward a naı̈ve state were performed as

shown in Figure 8—figure supplement 1. Single colonies from a ura-/6AU15 plate were streaked

out onto SC +glu and allowed to grow. From that plate, single colonies were again picked and

underwent repeated passages in liquid media; each ‘passage’ refers to a 200-fold dilution, which is

then allowed to grow for 48 hr (96 hr for the very first transfer). Cells were also taken for plating

from the original ura-/6AU15 plate, the first SC +glu plate stage, and several subsequent time points

during liquid culture. Cells taken from plates were immediately diluted in water and spotted on

SC +glu and ura-/6AU15 to track colony formation rates; cells taken from liquid passages were

streaked out on SC +glu plates prior to use in spottings, in order to obtain a consistent physiological

state. Plots for ‘naı̈ve’ cells refer to cells treated identically, except that they had initially been grown

on SC +glu plates instead of ura-/6AU15 plates. Recovery was assessed based on the amount of

time required for 1 in 10,000 cells spotted on the new ura-/6AU15 plate to form countable colonies

(using linear interpolation of colony counts between observed data points); in the event that one

dilution yielded no colonies passing our size threshold, but the next (10-fold more concentrated)

spot gave an uncountable haze, we assigned a count of 1 to the more concentrated spot.

Numerical simulations
The numerical simulations shown in Figures 2 and 5 were performed by implementing the model

described in the text using the Matlab programming language and simulated using Matlab (Math-

works, Inc.) or GNU Octave version 3.8.1 (Eaton et al., 2009), with qualitatively equivalent results

obtained in either case. All simulations were performed using the same initial conditions (but differ-

ent random seeds, for the sampling shown in Figure 5). Octave code implementing this model is

provided as Source code 2.
The physiological tuning model employed for Figure 9 and the accompanying text was imple-

mented in python, and simulated using python 2.7.6, making heavy use of the numpy (Svd et al.,

2011) and scipy (Jones et al., 2001) libraries, with data analysis and plotting using matplotlib

(Hunter, 2007) and pandas (McKinney, 2010). The details of the physiological model itself are given

below.

Biologically feasible simulation of stochastic tuning
To provide a suitable mechanistic model for stochastic tuning, we developed a discrete-time model

tracking the temporal evolution of transcription rates ri,t (continuous, changed in response to
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random fluctuations and potentially tuning input), copy number of each transcript per cell xi, and

copy number of each protein per cell pi, considered separately for each gene i.
Transcriptional regulation lies at the center of our consideration for fitness-directed tuning. In the

physiological model, there is a time-dependent probability ri,t for a single transcript to be generated

from gene i at each timestep; the probabilities ri,t are updated in response to changing fitness as

described below. In addition, each copy of the transcript present in the cell has a fixed probability di

of being degraded at each timestep. The net change at each timestep t in the transcript level xi for

each gene i is thus given by
xi,t ~xi,t-1 - binom(xi,t-1, di)+bern(ri,t-1)
Here binom/bern are binomial and Bernoulli random variables, respectively. Terms using binomial

distributions allow a uniform probability for each present copy of a protein or transcript to be

degraded or translated, whereas the Bernoulli term captures the probability of a transcript arising

from each gene in a single timestep. We used a timestep of 1 s for all simulations described here.
Protein production in our physiological model arises from similar principles. At each timestep,

each copy of a transcript from gene i has a fixed gene-dependent probability li of being translated

to produce a single copy of the corresponding protein. In addition, each copy of that protein already

present in the cell has a gene-dependent probability ei of being degraded. Thus, the net rate of

change in the protein copy number pi at each time t is governed by the equation
pi,t ~pi,t-1 - binom(pi,t-1, ei)+binom(xi,t-1,li)
The fixed, gene-specific parameters di, ei, and li were drawn from distributions that are them-

selves fits to appropriate experimental data; we then modified the fitted parameters to yield distri-

butions that are contained within the physiological distributions, while excluding the extreme ends

of the available range. The parameters used for the physiological rate distributions are summarized

below:
Transcription rates (used to initialize the transcription rate distribution, and separately to set the

target transcription rate distribution): Transcripts per hour are gamma distributed with shape = 5

and rate = 2 (obtained by fitting data from (Holstege et al., 1998) and excluding extreme values)
Transcript degradation rates di: Half lives in minutes have a gamma distribution with shape = 12.0

and rate = 0.75 (obtained by fitting data from (Holstege et al., 1998) and then modifying to exclude

extreme values).
Protein degradation rates ei: Half lives in hours have a scaled t distribution with mean = 1,

sigma = 0.382, and 80 degrees of freedom (fit based on data from (Christiano et al., 2014), but

modified to exclude long half-lives, consistent with the induction of autophagy in stressed cells

(Cebollero and Reggiori, 2009)).
Protein synthesis rates li: log2 synthesis rates per transcript have a scaled t distribution with

mean=-5, sigma = 0.5, and 80 degrees of freedom (in units of s!1); based on protein abundance

data from (Kulak et al., 2014) combined with the other parameters defined above, and modified to

exclude extreme values).
As described in the main text, our model permits two classes of ‘marks’ (representing histone

modifications) that alter transcription rates: tuning marks (T), which change in level on the basis of

recent changes in fitness and the current tuning mark state at each gene, and stabilizing marks (S),

which change in abundance based on the tuning mark levels at each promoter. The number of each

mark type at each promoter may be positive or negative, reflecting the possibility of distinct activat-

ing (+) or repressing (-) chromatin modifications.
The rate of change in the tuning marks proceeds according to the following principles. At each

timestep, marks may be added or removed on the basis of recent changes in fitness; each mark may

decay with a fixed probability; and marks may be added or removed in an undirected manner due

to random drift. Referring to the number of tuning marks at a particular gene i as mi, the change in

tuning marks at each timestep due to the tuning contribution alone is given by
Dmi,tuning ~sgn(DFt) * sgn(mi) * randint(1,5) * bern(ptunestep)
Here sgn(x) is one if x is positive, !1 if x is negative, and 0 if x is zero. D F indicates the difference

in mean fitness between the previous nwindow steps and the nonoverlapping block of nwindow steps

before that; thus, sgn(DFt) will be positive if the cells are becoming healthier, and negative if the cells

are becoming less healthy. The fitness itself, Ft, is calculated as the Euclidean distance between the

observed vector of protein levels pt at a particular timestep, and the median observed in the last

quarter of a long (10 times the normal simulation length) trajectory where all transcription rates are
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fixed at their target values (note that oscillation still occurs, even in this case of known-correct tran-
scription rates, due to the inherent randomness in transcript and protein production and degrada-

tion). In the context of our model, DF represents the direction of change in global cellular health,
and ptunestep indicates the probability that tuning marks will be added/removed at a particular time-
step. The combination of signs of the change in fitness (DF) and marks (mi) ensures that if the fitness
is increasing and a given promoter has a positive number of tuning marks, the number of tuning

marks at that promoter will increase further, whereas if the fitness was decreasing, the number of
tuning marks will be decreased. The inverse directions apply for promoters with negative levels of T
marks. Note that for control simulations where the effects of tuning are removed, the sign of the fit-

ness-dependent term above is instead taken to be random.
The removal and random drift of tuning marks are governed by the equations
Dmi,removal ~ !1 * sgn(mi) * binom(mi, pdecay)
and
Dmi,random ~ (1–2*bern(0.5)) * bern(prandom) respectively. The first equation here indicates that

each individual mark may be removed with probability pdecay at each timestep, and in addition, the
second equation dictates that each promoter may have a single mark of random sign added at each

timestep, with probability prandom. The overall equation for the change in tuning marks at promoter i
at each timestep is thus given by the sum of the terms above:

Dmi,t ~ D Ft * sgn(mi,t-1) * randint(1,5) * bern(ptunestep) - sgn(mi) * binom(mi, pdecay) + (1–2*bern(0.5))
* bern(prandom)

The stabilizing marks (S), in contrast, do not vary directly in response to fitness, but rather, at
each timestep may be added or removed from each promoter depending on its current state of T

marks (see Figure 9B): if the promoter has a high transcription rate due to high T levels, the net S
count will be increased (with a probability at each timestep proportional to the current magnitude of
the T level), and if the promoter has low T levels, the net S count is decreased. The effect of the sta-
bilizing marks is to slowly shift the baseline transcription rate of genes over time. The change in num-

ber of S marks ni at gene i at each timestep is given by:
Dni,t ~ sgn(mi,t-1) * bern(abs(mi,t-1) * ps_mark / mmax)
Here ps_mark is a probability of changing S marks at each time step, and mmax the maximum num-

ber of T marks allowed at a given promoter, whether positive (activating) or negative (repressive).
Every gene in the model is taken to have a baseline transcription rate, ri,0, drawn from the physio-

logical distributions defined above. The time-dependent instantaneous transcription rate of a given
gene, ri,t, is then calculated from the number of tuning marks (mi) and stabilizing marks (ni). The

effects of tuning and stabilizing marks in the model are multiplicative, such that the transcription
rate ri at gene i with mi tuning marks and ni stabilizing marks is given by

ri,t = ri,0 * a * exp(b); where a = 2*((mi,t / mmax)+1) and b = mS * ni,t
Here mS represents the magnitude of the effects of a single S mark, and the number of T marks is

constrained to the interval [-mmax, mmax]. The various fixed model parameters (e.g., mS, pdecay, etc.)
were chosen to be physiologically plausible while supporting tuning. The values of these parameters
used in Figure 9C and E are taken as a baseline and shown in Supplementary file 8; note, however,
that as shown in Figure 9D, the performance of the model is robust to changes in those parameters.

A python implementation of the model, along with sample inputs corresponding to the simula-
tions described here, are included as Source code 3.

Fluorescence tracking of sorted populations
In order to measure the mixing times under different stress conditions, synprom-URA3-mRuby/syn-

prom-DHFR-GFP cells were grown overnight in SC +glu media. The next morning, the cells were
back-diluted 1:100 into fresh, prewarmed low fluorescence SC +glu or ura-/6AU10. The cells in ura-/

6AU10 media were kept in a 30˚C incubated shaker for 24 hr before sorting, whereas the cells in the

complete media were sorted after four hours of growth at 30˚C. The cells were sorted based on their
mRuby fluorescence level into three populations of the top 20%, bottom 20%, and the complete dis-
tribution (mock-sorted) of cells. In order to minimize the effects of both autofluorescence and size-

fluorescence correlations, the cells (including those in the mock-sorted population) were tightly
gated on FSC-A levels. The sorted cells were kept on ice until they were spun down and transferred
to pre-warmed media identical to that in which they had previously been incubated (that is, cells
from complete media to complete media and cells from ura-/6AU to fresh ura-/6AU). The cells were
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incubated at 30˚C thereafter. A sample of each population was analyzed using flow cytometry at dif-

ferent time intervals, with T = 0 being the time that the fresh media was added to the samples. The

last time point for the cells in SC +glu media was 630 min, and for the ura-/6AU cells was 6660 min.
We calculated the distribution of mRuby fluorescence values for each sample at each time point

by smoothing the observed values using a kernel density estimator. We then measured the pairwise

mRuby fluorescence distribution overlap of the top 20%, bottom 20% and the complete distribution

at each time point for each growth condition. The distribution overlap was calculated by numerically

integrating the area under the (normalized) kernel density distribution estimates of both populations

being compared.
An increasing overlap relative to t = 0 signifies the amount that the two populations have moved

towards each other, and therefore the higher the overlap, the more mixed the two populations have

become. Therefore, we calculated f tð Þ ¼ max xð Þ$x tð Þð Þ
xt¼0

, where x is the overlap between the two distribu-

tions and max(x) is the maximum observed overlap. f(t) can be modeled as an exponential decay

process according to:

f tð Þ ¼ ae$
t
t

where t provides a timescale for the mixing time (in particular, t ln(2) is the half-life of the decay
process). We used nonlinear curve fitting in Matlab to estimate the values of the parameters in the

above equation for cells grown under each of the physiological conditions described above and

report the estimated half-lives to give insight into the mixing times active in the populations studied

here.

Fluorescence microscopy time courses on immobilized cells
The images shown and analyzed in Figure 6, Figure 7, and panel A of Figure 7—figure supplement

2 were obtained on a Zeiss Axio Observer Z1, using a 40x objective lens. PHSP12-URA3-mRuby/

PADH1-DHFR-GFP cells were grown overnight in SC +glu liquid media, and then back-diluted 100x

into SC/loflo + glu media and grown four additional hours with shaking at 30˚C. Cells were spun

down, and then incubated in ura-/loflo/6AU5 liquid for 12–13 hr. The cells were then pipetted onto

the prepared slides. In order to prepare slides, we added 200 mL of ura-/loflo/6AU5 media contain-

ing 1% agar to each well of a two-well slide. Using a 22 mm coverslip, the surface of the media in the

wells containing the solid media was flattened. After adding the cells on to the wells, we allowed

extra media to be absorbed and then added a cover slip on top. The cells were imaged on DIC,

GFP, brightfield, and mRuby channels; snapshots were taken once every 30 min for approximately

24 hr.
The additional imaging time series analyzed in panels B-D of Figure 7—figure supplement 2

were obtained for PHSP12-URA3-mRuby/PADH1-DHFR-GFP cells immobilized to thin-bottomed growth

chambers and grown in ura-/6AU5 media. To prepare the slides, cells were grown overnight in

SC +glu liquid media, and then back-diluted 100x into SC/loflo + glu media and grown four addi-

tional hours with shaking at 30˚C. During that incubation, a coverslip/incubation chamber (Nunc) was

treated for five minutes with poly-D-lysine solution (MPI Biomedical), washed three times with sterile

deionized water, and then allowed to dry.
After the pregrowth period, cells were diluted 10x into additional prewarmed SC/loflo + glu, and

then pipetted onto the poly-D-lysine treated cover slip and allowed to settle for 30 min at room tem-

perature. The media was removed, and non-adherent cells were washed away with two 1 mL rinses

of sterile deionized water. The cells were then covered with 2 mL of ura-/loflo/6AU5 media, and

then placed in a preheated microscopy incubation chamber (OKO) at 30˚C and 90% relative humid-

ity. Cells were imaged on DIC, GFP, and mRuby channels; snapshots taken once every 30 min for 24

hr on a Nikon Eclipse Ti microscope using a 20x objective.
For comparative visualization purposes (Figure 7A–B), the DIC or brightfield channel of each

image was rescaled using the ImageMagick ‘normalize’ operator, and the fluorescence channels

were normalized by subtracting the minimum pixel value within a given field of view, and then sub-

jecting the remaining data to a median filter over a 5 % 5 pixel window. The fluorescence channels

were then stacked on the DIC or brightfield to generate the images shown. Un-normalized data

were used for all quantitative analysis.
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For the quantitative analysis in Figure 7C–E and Figure 7—figure supplement 2, segmentation
and lineage tracking were performed manually to identify cell division events and define cell interiors

at the plotted timepoints. The fluorescence of each cell for each channel was then taken to be the

average value of all pixels within the defined cell interior, with the mode value of all pixels in a

defined window around the cell subtracted as background. For the purpose of classifying cells based

on their division state, a cell was classified as ‘dividing’ if it gave rise to a daughter cell before the

next analyzed snapshot. Timepoints prior to three hours were excluded from quantitative analysis of

dividing vs. nondividing cells for the populations pregrown in SC/loflo + glu, as a large fraction of

cells in all of our microscopy experiments did undergo a single division before arresting, likely using

residual nutrients from their previous growth in complete media.
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derived sequence on the second. The sequence has been perturbed to remove all recognizable tran-
scription factor binding sites, as described in Materials and Methods.
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. Supplementary file 5. Colony counts for the extreme most highly fluorescent cells (top 0.5–1%) iso-
lated from populations in which URA3-mRuby is driven by the specified promoter. Equal volumes of
the sorted cells were plated in parallel on SC+glu and ura-/6AU15 plates, and then counted after 2–
3 days (SC+glu) or 19–20 days (6AU). ‘Baseline’ refers to the fraction of cells expected to form colo-
nies on 6AU15 plates in 19–20 days in unsorted populations (c.f. Figures 3–4 of the main text).
DOI: https://doi.org/10.7554/eLife.31867.027

. Supplementary file 6. Codon optimized sequence of superfolder GFP used in all GFP constructs.
Note that no start codon is included, as the construct is intended to be part of a fusion protein.
DOI: https://doi.org/10.7554/eLife.31867.028

. Supplementary file 7. Primer design for quantitative PCR experiments. End locations are given rela-
tive to the start codon of the gene in question.
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in Figure 9.
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