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Abstract 

The aim of this study was to calibrate chemometric models to predict beef M. longissimus 

thoracis et lumborum (LTL) sensory and textural values using visible-near infrared (VISNIR) 

spectroscopy. Spectra were collected on the cut surface of LTL steaks both on-line and off-

line. Cooked LTL steaks were analysed by a trained beef sensory panel as well as undergoing 

WBSF analysis. The best coefficients of determination of cross validation (R2CV) in the 

current study were for textural traits (WBSF = 0.22; stringiness = 0.22; crumbly texture = 

0.41: all 3 models calibrated using 48 h post-mortem spectra), and some sensory flavour traits 

(fatty mouthfeel = 0.23; fatty after-effect = 0.28: both calibrated using 49 h post-mortem 

spectra). The results of this experiment indicate that VISNIR spectroscopy has potential to 

predict a range of sensory traits (particularly textural traits) with an acceptable level of 

accuracy at specific post-mortem times. 

Keywords: Visible-near infrared spectroscopy; Chemometrics; Beef quality; Trained sensory 

panel; Shear force.  
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1. Introduction 

Beef is one of the most valued products obtained from bovine animals (Food and Agriculture 

Organization of the United Nations, 2016). Eating satisfaction, sensory characteristics and 

nutritional content are the key factors that influence consumers in regard to purchasing fresh 

meat (De Marchi, 2013; Grunert, Bredahl, & Brunsø, 2004). Beef producers, manufacturers 

and retailers have a duty to offer meat that is safe, of a high quality and sustainable (Troy, 

Ojha, Kerry, & Tiwari, 2016). However, conventional methods to assess quality are 

expensive, destructive and time consuming (e.g. instrumental measurement of beef texture 

using Warner-Bratzler shear force (WBSF) and sensory analysis of meat samples using a 

trained sensory panel) (Prevolnik, Čandek-Potokar, & Škorjanc, 2004; Prieto, Ross, Navajas, 

Nute, Richardson, Hyslop, Simm, Roehe, 2009; Yancey, Apple, Meullenet, & Sawyer, 2010). 

Large scale, industry wide recording of beef quality phenotypes (such as instrumental 

tenderness and trained sensory panel scores) is not feasible, and is a limiting factor when 

developing breeding programmes for the improvement of beef eating quality (Cecchinato, De 

Marchi, Penasa, Albera, & Bittante, 2011). The drive to inform on product quality, maintain a 

consistently high level of quality and develop methods to identify animals that are genetically 

superior (in terms of meat quality) for breeding purposes is an important challenge that has 

led to the exploration of new technologies suitable as proxy measures to provide information 

on quality traits both online and inline on a larger scale (Troy et al., 2016). 

Visible and near infrared (VISNIR) spectroscopy is a technology that has been proposed as an 

efficient, cost-effective tool for the simultaneous prediction of various important meat 

sensory quality traits (De Marchi, 2013; Dixit, Casado-Gavalda, R. Cama-Moncunill, X. 

Cama-Moncunill, Markiewicz-Keszycka, Cullen, & Sullivan, 2017; Prevolnik et al., 2004; 

Weeranantanaphan, Downey, Allen, & Sun, 2011). It involves the detection of the variation 

in the vibrations of –CH, –OH and –SH molecular bonds between samples of different quality 
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(Roggo, Chalus, Maurer, Lema-Martinez, Edmont, & Jent, 2007), which occur when a sample 

undergoes irradiation from a VISNIR light source and its reflectance is measured. Physical 

and sensory quality attributes in beef samples may potentially be indirectly predicted using 

VISNIR spectroscopy (Prieto, Roehe, Lavín, Batten, & Andrés, 2009) coupled with advanced 

chemometric regression analysis. Some of the main advantages of VISNIR spectroscopy are 

that it is a rapid, non-destructive and environmentally friendly objective technology, known 

for its ease of use and low-running cost (Dixit et al., 2017; Prieto, López-Campos, Aalhus, 

Dugan, Juárez, & Uttaro, 2014; Troy et al., 2016).  

The aim of this study was to assess the potential of VISNIR spectroscopy as an early post-

mortem, rapid predictor of instrumental texture, sensory texture, sensory juiciness and 

sensory flavour scores in 14 day aged beef samples, through chemometric modelling of 

VISNIR spectra collected at four different time-points (both on-line and off-line setting) and 

using three different mathematical spectral pre-treatments. 

2. Materials and methods 

2.1 Animals and sample preparation 

Crossbred bull and steer progeny (18 ± 4 months old; n = 469 bull, n = 126 steer) from elite 

Irish beef breed artificial insemination bulls were obtained and reared under the same feeding 

and environmental conditions by the Irish Cattle Breeders Federation Tully Progeny Test 

Centre (Tully, Kildare, Ireland). Animals from eight beef breeds, with representative numbers 

for each breed in proportion to that of the Irish herd, were included as part of this study as 

follows; Limousin (LM; bull n = 200, steer n = 40), Charolais (CH; bull n = 107, steer n = 

28), Simmental (SI; bull n = 50, steer n = 6), Belgian Blue (BB; bull n = 55, steer n = 6), 

Aberdeen Angus (AA; bull n = 30, steer n = 22), Salers (SA; bull n = 17, steer n = 12), 

Hereford (HE; bull n = 2, steer n = 8), Parthenais (PT; bull n = 8, steer = 4). Information on 
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how animals were reared and subsequently slaughtered has been previously described in 

Cafferky, Hamill, Allen, O’Doherty, Cromie, and Sweeney (2019). At 24 h post-mortem, 

carcasses were quartered and at 48 h post-mortem loins were boned out. Twelve steaks with a 

thickness of 2.54 cm were sliced from the right-side LTL starting at the anterior end and 

vacuum packaged. These steaks were labelled 1-12 in order of cutting. The 4th steak on each 

loin was allocated for WBSF analysis and the 5th and 6th steaks for sensory analysis. Forty 

nine h PM steaks were vacuum packaged and aged for a further 12 days in a chill room set at 

4 °C, then blast frozen and stored at -20 °C until analysis. 

2.2 VISNIR spectral measurements 

A portable ASD Labspec 5000 (ASD Inc., Boulder Colorado, USA) VISNIR spectrometer 

fitted with a high-intensity contact probe with a 10 mm spot size was used to collect spectra 

at four time-points, two on day 1 post-mortem and two on day 2 post-mortem. Prior to 

spectral acquisition the instrument was calibrated using a Spectralon tile as the white 

reference. VISNIR spectral measurements were recorded at quartering on the cut surface of 

the LTL muscle (5th rib) 1 day PM, immediately after cutting at the quartering stage (24 h 

PM) and after 1 h blooming in a chill room (25 h PM). This was repeated off-line on steak 

number 12 at 2 days PM, immediately after slicing (48 h PM) and again after 1 h blooming 

(49 h PM, respectively). The muscle was scanned in triplicate at 3 representative locations on 

the transverse surface of the LTL, that were free from excessive fat, observable connective 

tissue, bone and debris from cutting. For each of these three scans, 20 spectra were 

automatically collected by the instrument consecutively and averaged to reduce noise effect. 

Spectra were collected at 1 nm intervals between 350-2500 nm using the Indico Pro program 

(ASD Inc.) and saved in absorbance mode (log (1/R)). Spectral data was exported as JCAMP 

to The Unscrambler X version 10.3 (CAMO ASA, Oslo, Norway) for further chemometric 

analysis.  
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2.3 Warner-Bratzler shear force 

Steaks (n = 469 bull, n = 126 steer) were thawed in unsealed plastic vacuum bags in a 

circulating water bath at room temperature (20 °C). Once thawed, steaks were trimmed of 

external fat, placed into a fresh unsealed plastic vacuum bag and immersed in a water bath for 

cooking (Grant Instruments Ltd., England) at 72 °C until an internal core temperature of 70 

°C was reached (as measured using a temperature probe; Eirelec Ltd., Ireland). Samples were 

placed on the benchtop in opened unsealed vacuum bags (free of cooking juices) until they 

reached ambient temperature. Once samples had cooled to ambient temperature they were 

placed within new unsealed vacuum bags and left to temper overnight in a refrigerator at 4 

°C. Shear force analysis was conducted following a modified version of American Meat 

Science Association (AMSA) Research Guidelines for Cookery, Sensory Evaluation and 

Instrumental Tenderness Measurements of Meat (AMSA, 2015). Seven cores per steak were 

taken with a 1.27 cm core and the fibres sheared perpendicular to the fibre direction using the 

Instron 4464 Universal testing machine (Instron Ltd., Buckinghamshire, UK), load cell of 

500 N, cross head speed 250 mm/min and analysed using Bluehill 2 Software (Instron Ltd., 

Buckinghamshire, UK). Maximum peak force recorded during analysis was reported as 

Newton (N) shear force. Highest and lowest measurements were excluded with the average of 

the remaining 5 cores recorded as the result to reduce standard deviation (modified from 

AMSA 2015 guidelines). 

2.4 Sensory analysis 

Sensory analysis (n = 180 bulls, n = 29 steers) was conducted at the Teagasc Food Research 

Centre (Ashtown, Dublin 15, Ireland) following a modified version of AMSA (2015) 

guidelines. Samples were selected from the wider data set for trained sensory panel analysis 

by using the Kennard-Stone algorithm (Unscrambler X v.10.3 software package; CAMO, 
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Trondheim, Norway), which selects a subset of spectra that have uniform distribution over 

the predictor space. This is designed to capture maximal spectral variability within the data 

set. Compusense 5.6 software was used to set up the project as a complete block design and 

to collect panellist scores. A 12 member trained sensory panel was used to assess the beef 

samples, using the average of 8 assessments per sample. Frozen 14 day aged samples were 

thawed at 4 °C for 24 h, then acclimatised to room temperature for 1 h prior to cooking. 

Steaks were cooked on a Velox CG-3 grill (Wantage, UK) at a temperature of 210 °C, until 

an internal temperature of 70 °C was reached, rested in foil for 4 min, cut into approximately 

2.5 cm x 4 cm pieces, wrapped individually in foil, and served. Eight members of a 12 

member trained sensory panel assessed each beef sample in the morning, using the average of 

8 assessments per sample. Panelists had access to water and plain crackers as palate cleansers 

between each sample. Twelve sensory traits were scored (tenderness, juiciness, chewiness, 

stringiness, crumbly texture, fatty mouthfeel, difficulty to swallow, beef flavour, metallic 

flavour, beef after-effect, metallic after-effect and fatty after-effect) on a 0-100 line scale, 

with 0 being the lowest score and 100 the highest.  

2.5 Chemometric analysis 

All chemometric analysis in the current study was performed using The Unscrambler X 

v.10.3 software package (CAMO, Trondheim, Norway). All traits were tested for normal 

distribution and outliers within The Unscrambler software package. Post visual inspection, 

anomalous spectra were detected with the use of the H-statistic, which indicates the 

difference between a sample spectrum and the average spectrum of the set (Williams & 

Norris, 2001). All samples with a H-statistic greater than ≥ 3 standardised units from the 

mean spectrum was defined as a global H outlier and removed from the dataset. For the 

prediction of beef sensory and instrumental textural attributes using VISNIR spectroscopy (X 
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data), 60 separate partial least squares regression models (PLSR) were developed for each of 

the 13 sensory and textural traits analysed (Y data), with 780 models constructed in total. 

PLSR models were developed using spectra collected at 4 post-mortem time-points which 

were: the quartering stage (on-line) on day 1 (24 and 25 h PM) and on a boned out piece of 

LTL sample (off-line) on day 2 (48 and 49 h PM). Models were developed for each of the 4 

time-points with the use of 5 separate subset wavelength ranges (full, 350-2500 nm; clipped, 

450-2300 nm; visible, 450-779 nm; near-NIR, 780-1099 nm; NIR, 1100-2300 nm) and 3 

mathematical treatments (None, no treatment; Standard Normal Variate, SNV; Savitzky-

Golay smoothing – 2nd derivative with 2nd polynomial and 21 smoothing points, SG). Spectra 

were subset into separate wavelength ranges to test the hypothesis that more robust models 

would be developed for specific traits by selecting specific ranges of the spectrum compared 

to those generated using the full spectrum. PLSR models were calibrated using the non-linear 

iterative partial least squares (NIPALS) algorithm, with the performance of models evaluated 

using a leave-one-out full internal cross validation (Prieto et al., 2014). The best fitting model 

for each trait was identified using a standard procedure in this field, by the model that had an 

optimal combination of the lowest Root Mean Square Error of Cross Validation (RMSECV) 

and the lowest number of PLS terms utilized; with this result validated using the explained 

variance test in the Unscrambler X 10.3 software package. Ratio Performance Deviation 

(RPD) was calculated as the Standard Deviation (SD) of a meat quality trait divided by the 

RMSECV (Williams, 2014). 

2.6 Statistical analysis 

Descriptive statistical analysis was performed using The Unscrambler X v.10.3 software 

package (CAMO, Trondheim, Norway). Pearson Correlations between beef LTL quality 

attributes were calculated using the CORR procedure in Statistical Analysis Software 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

(SAS) Version 9.4 (SAS Institute Inc., Cary, NC. USA) with a significance level of P < 

0.05.  

3. Results 

3.1 Descriptive statistics and correlations between sensory traits 

Sensory tenderness scores and WBSF values (Table 1) shared similar standard deviation 

values and coefficients of variation within the dataset (SD 10.47 and 10.8, respectively; CV 

20.0% and 24.94%, respectively). Large coefficients of variation were found for the textural 

sensory traits chewiness, stringiness, crumbly texture, fatty mouthfeel, metallic after-effect 

and fatty after-effect (CV 41.49% to 84.95%).  

Correlations among the twelve sensory attributes are displayed in Table 2. Sensory tenderness 

scores were inversely correlated with tougher textural attributes (chewiness, stringiness and 

difficulty swallowing, R = -0.72 to -0.86; P < 0.001), while tougher textural attributes were 

positively correlated to each other (R = 0.77 to 0.84; P < 0.001). Textural attributes associated 

with tender beef such as sensory tenderness and crumbliness were positively correlated with 

juiciness (R = 0.3 to 0.47; P < 0.001). The instrumental measurement of tenderness (WBSF) 

was negatively correlated with sensory tenderness, juiciness, crumbliness, beef flavour and 

beef after-effect, while positively correlated with chewiness, stringiness and difficulty to 

swallow (P < 0.001). Furthermore, juiciness was positively correlated with beef flavour and 

beef after-effect. No correlation was observed between WBSF values and fatty mouthfeel, 

metallic flavour, metallic after-effect and fatty after-effect (P > 0.05).  

The flavour attributes: beef flavour, beef after-effect, fatty mouthfeel and fatty after-effect 

were all positively correlated with each other (P < 0.001), with a strong relationship between 

beef after-effect and beef flavour (R = 0.72; P < 0.001), as well as between fatty after-effect 

and fatty mouthfeel (R = 0.82; P < 0.001) (Table 2). The metallic sensory traits, metallic 
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flavour and metallic after-effect were positively correlated (R = 0.67; P < 0.001); while 

metallic flavour and beef flavour were uncorrelated (P > 0.05). Positive correlations were 

present between metallic flavour and both fatty mouthfeel and fatty after-effect (P < 0.001).  

Correlations between tenderness and fatty mouthfeel, fatty after-effect, metallic flavour and 

metallic after-effect (P < 0.001) were negative, while tenderness was positively correlated 

with beef after-effect (P < 0.05). No correlation was observed between tenderness and beef 

flavour (P > 0.05). Stringiness and crumbliness were both positively correlated with fatty 

mouthfeel, metallic flavour and metallic after-effect (P < 0.001). Crumbliness positively 

correlated with beef flavour and beef after-effect, while stringiness showed a positive 

correlation with fatty after-effect (P < 0.001). 

3.2 Prediction of beef LTL textural and juiciness quality traits 

Best fitting prediction models for beef sensory and textural quality traits using VISNIR 

spectroscopy are presented in Table 3. The highest coefficients of determination of cross 

validation (R2CV) obtained for prediction of WBSF values in this study (R2CV = 0.22, 

RMSECV = 10.1 N) were obtained using spectra collected at 48 h PM in the 450-2300 nm 

wavelength range. The best fitting model calibrated using spectra collected on-line 1 day PM 

was with the use of 24 h PM spectra (R2CV = 0.14, RMSECV = 10 N), incorporating the 

entire VISNIR wavelength range recorded (350-2500 nm). In Figure 1, the spectra (48 h PM; 

350-2500 nm) for the average of the five highest scoring WBSF samples (tough) and the 

average of the five lowest scoring WBSF samples (tender) are plotted together, with tougher 

samples having higher absorption from 650-1150 nm. However, absorption for the tougher 

samples was lower between 1400-2500 nm.  

The 49 h PM time-point yielded the highest R2CV for prediction of sensory tenderness in the 

present study (R2CV = 0.13, RMSECV = 8.6), while spectra collected 25 h PM gave the 
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highest value for spectra collected 1 day PM (R2CV = 0.06, RMSECV = 10.3). This 49 h PM 

model was calibrated using the full spectral wavelength (350-2500 nm). When 49 h PM 

spectral measurements (350-2500 nm) for the 5 most tender samples are averaged and plotted 

with the average spectra for the 5 toughest samples, the tougher samples had higher 

absorption between 550- 1450 nm (Figure 2).  

Tougher sensory textural attributes were all predicted in a similar range with a low degree of 

accuracy (R2CV = 0.1 to 0.22; RMSECV = 7.1 to 9.3). Best fitting models for all three 

sensory traits were built using spectra from the visible wavelength region, 450 – 779 nm, and 

collected 2 days PM (48 h PM for chewiness and stringiness; 49 h PM for difficulty to 

swallow). 

Prediction of crumbly sensory texture gave the highest coefficient of determination of all 

traits analysed in the present study. The 48 h PM spectral model outperforms the 25 h PM 

model, with higher R2CV (0.41, 48 h PM; 0.34, 25 h PM) and lower RMSECV values (9.4, 

48 h PM; 10.5, 25 h PM). Best fitting models for crumbly texture (Table 3) were built using 

the full spectral wavelength range (350-2500 nm) and without the use of any mathematical 

pre-treatment as they were not found to improve accuracy of prediction or reduce RMSECV 

value. 

Sensory panel juiciness scores predicted via VISNIR spectra had the lowest R2 value of all 

traits in the current study, with the highest R2CV achieved being 0.09 (Table 3). The best 

fitting PLSR models for juiciness shown in Table 3 were constructed using spectra collected 

off-line (49 h PM), when the muscle had been sliced and bloomed for 1 h. Both 24 h and 49 h 

PM models were shown to have the relatively low RMSECV value of 6.8.  
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3.3 Prediction of beef LTL sensory flavour 

The best fitting model for beef flavour prediction (48 h PM) provided an R2CV value of 0.13 

and an RMSECV value of 6.4, and was constructed using the full spectral wavelength and no 

spectral pre-treatment. Beef after-effect was predicted with an R2CV of 0.2, and a lower 

RMSECV (in comparison to beef flavour) of 5.4 (Table 3). The model for beef after-effect 

was calibrated using spectra from the near-NIR range, which is far narrower and in contrast 

with the full wavelength range which gave most accurate determinations for beef flavour. It is 

also worth noting that beef after-effect was the only sensory trait in this study where a 

spectral pre-treatment (SNV) model provided the best fitting model for both day 1 and 2 PM. 

In all other models within the present study, a spectral pre-treatment has only improved the 

accuracy of models for one PM day.  

For prediction of fatty mouthfeel and fatty after-effect, the best fitting models for both traits 

(R2CV = 0.23; 0.28 - Table 3) shared a number of similarities in their calibration, such as 

similar time-point (49 h PM), wavelength range utilized (780-1099 nm) and RMSECV value 

(3.2). In Figure 3, 25 h PM spectral measurements for the average of the 5 lowest scoring and 

the average of the 5 highest scoring fatty mouthfeel samples are plotted together (350-2500 

nm). The 5 higher scoring samples have higher absorption between 550-2500 nm. Peaks are 

visible at 980, 1100 and 1400 nm for both high and low scoring fatty mouthfeel samples.  

Best fitting predictive models for metallic flavour and metallic after-effect were found to be 

very similar (Table 3), with both models calibrated using spectra from the same time-point 

(24 h PM), the same optimal number of PLS terms utilized (10 terms), and the near-NIR 

range (780-1099 nm). Both models also had similar R2CV predictions of 0.17 and 0.19, 

respectively. 
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4. Discussion 

Methods currently employed for the measurement of meat quality do not allow for industry 

wide quality monitoring or the recording of these traits for breeding objectives. The ability to 

implement on-line systems to predict meat quality at a time-point compatible with many meat 

management systems (48 h PM) within the factory could be of utility to breeders and 

processors (Cecchinato et al., 2011; De Marchi, 2013). Prediction of instrumental and sensory 

textural information of carcasses on-line is desirable, as it allows for the formation of 

differentiated product lines of various grades of meat with higher quality and high added 

value (Balage, da Luz e Silva, Gomide, Bonin, & Figueira, 2015). Improved grading of meat 

based on quality may also lead to a fairer cost to the consumer and additionally a fairer 

payment to the producer. 

The most accurate coefficients of determination for prediction of WBSF values in this study 

were obtained at the 48 h PM time-point (R2CV = 0.22, RMSECV = 10.1. In Figure 1, 

differences in absorbance between the spectra of high scoring WBSF samples (tough) and 

low scoring WBSF samples (tender) can be seen along the VISNIR range (350-2500 nm), 

indicating that these spectral regions contain important information relevant to prediction of 

WBSF. This is in agreement with  Hildrum, Nilsen, Mielnik, and Næs (1994) who reported 

tougher beef samples having higher absorbance values in the regions previously mentioned. 

Prieto et al. (2009) obtained a similar value (R2CV = 0.23) for the prediction of 14 d aged 

beef LTL samples analysed using slice shear force, which is similar to WBSF, with both our 

study and theirs having low RPD values (1.07; 1.14, respectively). However, the present 

study used a much larger set of samples for WBSF prediction in comparison to Prieto et al. 

(2009), which possibly contributed to the improved RMSECV value (10.1, in comparison to 

28.49). The RPD value of 1.07 reported in this study is considered too low for 

implementation of VISNIR spectroscopy into an abattoir for the prediction of shear force 
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values, as RPD values < 2 are not recommended for quality control or grading purposes 

(Williams, 2014). Predictions of WBSF values in other meats using VISNIR spectroscopy 

have been reported by De Marchi, Penasa, Battagin, Zanetti, Pulici, and Cassandro (2011) in 

chicken breast (R2CV = 0.41, RMSECV = 3.18) and Balage et al., (2015) in pork loin (R2CV 

= 0.3, RMSECV = 4.98, RPD = 0.2). In the current study, R2CV values for WBSF were 

greater than those obtained by De Marchi (2013), with similar standard error values reported. 

De Marchi (2013) showed the application of a mathematical pre-treatment upon spectra 

(multiplicative scatter correction and first derivative) had a negative effect upon predictive 

accuracy, in agreement with the present study. Ripoll, Albertí, Panea, Olleta, and Sañudo 

(2008) achieved higher coefficients of determination for beef LTL WBSF prediction (R2 = 

0.743). However, this value was achieved by collecting spectra on homogenized rather than 

intact sample, which previously has been shown to increase predictive capabilities in muscle 

tissues (Weeranantanaphan et al., 2011) by destroying and randomising the muscle fibre 

arrangements, therefore averaging the effect of scattering caused by fibres of different size 

(Prieto et al., 2009). Models necessitating a homogenization step are less practical when 

implementation in a commercial setting is being considered, as it is both destructive of the 

sample and time consuming.  

Sensory tenderness predictions resulting from spectra collected offline in the laboratory at 49 

h post-mortem in the present study were similar to that reported by Prieto et al. (2009), but 

lower than those reported by Ripoll et al. (2008) (R2CV = 0.98). The result achieved by 

Ripoll et al. (2008) may be attributed to the use of animals with differing maturity rates and 

varying fatness and conformation grades, leading to greater variation within the dataset 

(tenderness CV = 32.92%) and in turn higher coefficients of determination. Moreover, in 

their study spectral measurements and sensory panel analysis were carried out on the same 

day (7 d PM). Again, when implementation in the factory setting is the ultimate goal, 
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collecting spectra offline at 7 d PM may be less desired. In Figure 2, tougher sensory 

tenderness samples had higher absorbance between 550-1450 nm. This is most likely due to 

tougher samples having reduced sarcomere length and therefore deeper penetration path 

length (Prieto, Ross, et al., 2009). 

The textural sensory traits associated with toughness – chewiness, stringiness and difficulty 

to swallow, were poorly predicted in the current study (Table 3). Interestingly, all 3 traits 

were highly positively correlated to each other (Table 2). Coefficients of determination of 

calibration (R2Cal) for chewiness obtained in the current study (R2Cal = 0.38) are lower than 

in other studies (Liu, Lyon, Windham, Realini, Pringle, & Duckett, 2003; Rødbotten, Nilsen, 

& Hildrum, 2000), who reported R2Cal values of 0.58 and 0.38, respectively. The R2CV 

values are not presented in the studies mentioned so cannot be compared. It is notable that the 

models presented by Liu et al. (2003) were constructed using just 24 carcasses from the 

similar Angus and Hereford breeds; with the possibility that this animal group used for 

calibration is too homogenous for prediction of chewiness in a larger scale. 

The R2CV values reported in the current study for the prediction of juiciness by way of 

VISNIR spectroscopy are in agreement with that of Prieto et al. (2009), who also achieved a 

low R2CV value (0.13), and in disagreement with Liu et al. (2003) and Ripoll et al. (2008) 

who reported more accurate predictions of juiciness (R2 = 0.5-0.54). Rødbotten et al. (2000) 

were unable to obtain any predictive model for beef sensory juiciness scores in their study 

even after the application of mathematical pre-treatment to the spectral data (multiplicative 

scatter correction), underlining that prediction of juiciness scores is a complex affair and a 

difficult attribute to consistently predict with accuracy. Clearly, juiciness is a more complex 

trait than previously considered and aspects of the physical structure may impact the release 

of juice in the mouth which was not well-predicted here.  
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Predictive models obtained in the current study for beef flavour and beef after-effect were 

unsatisfactory (Table 3). Low predictions for beef flavour were also reported by Prieto et al. 

(2009) (R2CV = 0.26; Standard Error of Cross Validation, SECV = 0.56) and Byrne, 

Downey, Troy, and Buckley (1998) (R2CV = 0.24; SECV= 0.39), while Andrés, Murray, 

Navajas, Fisher, Lambe, and Bünger (2007) reported low predictions of flavour in lamb 

(R2CV = 0.27). Beef flavour variation is most commonly due to changes in fatty acid profile. 

Fatty acid content was not examined in the current study, however the C – H molecular bonds 

of fatty acids (1100-1400 nm) (Prieto, Andrés, Giráldez, Mantecón, & Lavín, 2008; Prieto, 

Roehe, et al., 2009; Pullanagari, Yule, & Agnew, 2015) are located within the spectral 

regions that provided the most accurate prediction of the beef flavour trait (350-2500 nm). It 

is also worth noting that beef after-effect was the only sensory trait in this study where a 

spectral pre-treatment (SNV) model provided the best fitting model for both day 1 and 2. In 

all other models within the present study, spectral pre-treatment has only improved the 

accuracy of models for one PM day. One possible explanation is that every trait (except beef 

after-effect) where SNV was shown to improve the performance of a model was calibrated 

using spectra collected at day 1 PM. It is possible that these spectra collected post quartering, 

on-line, and under sub-optimal conditions had the most to gain from a mathematical pre-

processing step. 

Fatty mouthfeel and fatty after-effect are another pair of sensory traits in the current study 

that are both highly positively correlated and comparable to each other. R2CV predictions for 

fatty after-effect were marginally more accurate of the two (0.28 compared to 0.23 for 

mouthfeel), with this model calibrated with the use of Savitzky-Golay smoothing. This was 

the only model within the present study where SG smoothing increased the predictive 

capabilities of a model, in comparison to untreated spectra. Interestingly, it was observed that 

R2 calibration models for both traits related to fattiness had higher predictive values in models 
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constructed with day 1 PM spectra (R2Cal = 0.46-0.53), indicating that some information for 

these traits is captured in spectra recorded on the day of quartering. The most accurate models 

for the prediction of fat related sensory traits in the current study were calibrated using 

spectra within the near-NIR range (780-1099 nm), which contains the third stretching 

overtone of IMF C – H bonds (950 nm) as well as the O – H bond for water (890 nm) (Shenk, 

Westerhaus, & Workman, 2007), two regions known for their role in prediction of IMF/fat 

sensory traits in meat (Andrés et al., 2007). In Figure 3, peaks are visible at 980, 1100 and 

1400 nm for high and low scoring fatty mouthfeel samples when they are plotted against each 

other. The peak visible at 980 nm is presumably due to water (Liu et al., 2003), while the 

peaks visible at 1100 nm and 1400 nm are most likely related to C – H molecular bonds of 

fatty acids (Williams & Norris, 2001).  

To the best of our knowledge, no other reports exist in the literature relating to the use of 

visible and near infrared spectroscopy for the prediction of the sensory traits beef after-effect, 

fatty mouthfeel, fatty after-effect, metallic flavour and metallic after-effect in beef LTL. 

While the CV values for fatty mouthfeel, fatty after-effect, metallic flavour and metallic 

after-effect were high (Table 1) and thus might be expected to generate acceptable models, 

despite a variety of pre-processing approaches and spectral subsets being explored, the 

models generated were lower quality in comparison to other traits. However, it is considered 

that texture, which was well predicted with good models for WBSF, stringiness and 

crumbliness are among the most important sensory traits for beef, suggesting that VISNIR 

spectroscopy is of value in sensory quality prediction for this foodstuff. 

5. Conclusion 

The results of this research demonstrate that VISNIR spectroscopy applied at standard cutting 

time-points showed varying levels of performance depending on trait, and prediction was best 
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for texture traits. Spectra collected at 2 days PM provided best fitting models for 11 of the 13 

sensory traits assessed. Traits with higher coefficients of variation were predicted with greater 

accuracy than traits with lower levels of variation. Chemometric models constructed using 

different regions of the VISNIR range as well as a number of mathematical treatments were 

investigated in an effort to maximise overall model performance, in particular predictive 

efficacy and robustness. For the majority of traits analysed, mathematical pre-treatments did 

not improve model performance. Models calibrated using the full VISNIR spectral 

wavelength range (350 – 2500 nm) and the visible wavelength range (450 – 779 nm) provided 

the best fitting models in the majority of traits analysed. However, for some traits which did 

not produce high quality models, subsetting of spectral ranges resulted in some improvement 

to the model fit. The value of VISNIR spectroscopy to prediction of beef quality for breeders 

is that spectra can be recorded non-destructively, at time-points compatible with meat 

management systems. With this data, information can be captured regarding a very large 

range of traits, both technological and sensory, once calibrations, such as those in the present 

study are available. This study provides the first calibrations for many traits derived from 

trained sensory panels and may have relevance to future breeding programmes for beef 

sensory quality. 
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Figure 1. Line plot showing the differences in 48 h PM averaged spectra between the 

five samples with the lowest WBSF values (tender), seen in red, compared to the 

averaged five samples with the highest WBSF values (tough), seen in blue. 

Figure 2. Line plot showing the differences in 49 h PM spectra between the five samples 

with the lowest sensory tenderness values (tough), seen in blue, compared to the five 

samples with the highest tenderness values (tender), seen in red. 

Figure 3. Line plot showing the differences in 25 h PM spectra between the five samples 

with the lowest fatty mouthfeel values, seen in red, compared to the five samples with the 

highest fatty mouthfeel values, seen in blue. 
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Table 1. Range, mean, standard deviation (SD) and coefficient of variation (CV) of 

thirteen beef LTL eating quality traits (sensory scores measured on a scale of 0-100). 

Attribute n Range Mean SD CV (%) 

WBSF (N) 595 22.05 – 96.77 43.3 10.8 24.94 

Tenderness
 

209 23.25 – 70.75 52.34 10.47 20.0 

Chewiness
 

209 6.33 – 53.33 26.92 11.17 41.49 

Stringiness 209 0.36 – 52.55 11.56 9.45 81.75 

Crumbliness 209 1.4 – 56.94 19.22 12.65 65.82 
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Juiciness 209 17.5 – 54.35 33.26 6.88 20.69 

Difficulty Swallowing 209 0.83 – 46 12.33 7.78 63.1 

Fatty mouthfeel 209 0.21 – 20.37 5.7 4.45 78.07  

Beef flavour 209 7.11 – 60.87 40.25 7.11 17.66 

Metallic flavour 209 1.42 – 29.5 13.9 5.52 39.71 

Beef AE 209 6.22 – 45 29.88 6.22 20.81 

Metallic AE 209 2.71 – 37.62 17.3 7.41 42.83 

Fatty AE 209 0.5 – 24.25 5.58 4.74 84.95 

WBSF, Warner-Bratzler shear force; N, Newtons; SD, Standard Deviation; CV, Coefficient of Variation; AE, 

after-effect; Sensory scores are measured on a scale of 0-100 

 

 

Table 2. Pearson correlation coefficients between instrumental and trained panel sensory 

quality attributes of beef LTL. 
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owin
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flav
our 

Met
allic 

flav
our 

Bee

fy 
AE 

Met

allic 
AE 

Fatt

y 
AE 

WBS
F 

- 0.39 
*** 

- 
0.26 
*** 

0.43 
*** 

0.33 
*** 

- 0.39 
*** 

0.01 
0.44 
*** 

- 
0.22 
*** 

0.12 
- 
0.27 
*** 

0.03 
-
0.07 
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ernes

s 

 
0.3 
*** 

- 
0.86 
*** 

- 0.72 
*** 

0.1 
- 
0.39 
*** 

- 0.74 
*** 

0.09 
- 
0.27 
*** 

0.2 *  
- 
0.35 
*** 

- 
0.27 
*** 

Juicin
ess 

 

 

- 
0.26 
*** 

- 0.92 
0.47 
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0.24 
** 
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0.17 
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*** 
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** 
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- 
0.14 

0.41 
*** 

0.31 
*** 

String

iness 

 

   
0.12 

0.61 
*** 

0.79 
*** 

0.03 
0.39 
*** 

- 
0.02 

0.42 
*** 

0.45 
*** 

Crum

blines
s 

 

    
0.47 
*** 

- 0.08 
0.35 
*** 

0.34 
*** 

0.26 
*** 

0.43 
*** 

0.16 

Fatty 

mout
hfeel 

 

     
0.46 
*** 

0.29 
*** 

0.54 
*** 

0.2 * 
0.61 
*** 

0.82 
*** 

Diffic

ulty 
swall

owin

 

      

- 
0.14 
* 

0.38 
*** 

- 0.2 
* 
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Table 3. Best fitting predictions of thirteen sensory traits on beef LTL using VISNIR spectral 

measurements. 

Variable 

Da

y 

P

M 

PM 

Time 

Math 

treatment 

Rang

e 

(nm) 

n p 
R²C

al 

RMSE

C 

R²C

V 

RMSEC

V 

RP

D 

WBSF (N) 

1 24 None 
350 - 

2500 

59

5 
8 0.23 9.53 0.14 10 

1.0

8 

2 48 None 
450 - 

2300 

45

0 
9 0.3 9.52 0.22 10.1 

1.0

7 

Tenderness 

1 25 None 
450 - 

779 

20

9 
5 0.12 9.9 0.06 10.3 

1.0

2 

2 49 None 
350 - 

2500 

16

0 
6 0.25 8 0.13 8.6 

1.2

2 

Juiciness 

1 24 SNV 
350 - 

2500 

20

5 
4 0.15 6.4 0.04 6.8 

1.0

1 

2 49 None 
450 -

779 

16

0 
2 0.11 6.6 0.09 6.8 

1.0

1 

Chewiness 

1 25 None 
450 -

779 

20

9 
6 0.18 10.2 0.11 10.6 

1.0

5 

2 48 None 
450 - 

779 

16

6 

1

0 
0.38 7.9 0.17 9.3 1.2 

Stringiness 

1 24 SNV 
780 - 

1099 

20

5 

1

0 
0.36 7.6 0.15 8.8 

1.0

7 

2 48 None 
450 - 

779 

16

6 
9 0.37 6.9 0.22 7.7 

1.2

3 

Crumbliness 

1 25 None 
350 - 

2500 

20

9 

1

0 
0.54 8.5 0.34 10.5 1.2 

2 48 None 
350 - 

2500 

16

6 
7 0.52 8.4 0.41 9.4 

1.3

5 

Fatty mouthfeel 

1 25 SNV 
350 - 

2500 

20

9 

1

0 
0.53 3 0.17 4 

1.1

1 

2 49 None 
780 -

1099 

16

0 

1

0 
0.36 2.9 0.23 3.2 

1.3

7 

Difficulty 

swallowing 

1 25 None 
450 - 

779 

20

9 
6 0.17 7.1 0.09 7.5 

1.0

4 

2 49 None 450 - 16 1 0.34 6.1 0.1 7.1 1.1 
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779 0 0 

Beef flavour 

1 24 SNV 
450 - 

779 

20

5 
9 0.25 6.2 0.11 6.8 

1.0

4 

2 48 None 
350 - 

2500 

16

6 
5 0.23 6 0.13 6.4 

1.1

1 

Metallic flavour 

1 24 None 
780 - 

1099 

20

5 

1

0 
0.36 4.38 0.17 5 1.1 

2 48 None 
450 - 

779 

16

6 
9 0.32 4.26 0.11 4.8 

1.1

5 

Beef AE 

1 24 SNV 

1100 

- 

2300 

20

5 
3 0.09 5.9 0.04 6.1 

1.0

8 

2 49 SNV 
780 - 

1099 

16

0 

1

0 
0.38 4.8 0.2 5.4 

1.2

2 

Metallic AE 

1 24 None 
780 - 

1099 

20

5 

1

0 
0.36 5.9 0.19 6.6 

1.1

2 

2 48 None 
350 - 

2500 

16

6 
6 0.23 6.3 0.08 6.9 

1.0

7 

Fatty AE 

1 24 None 
350 - 

2500 

20

5 
9 0.46 3.5 0.26 4.1 

1.1

6 

2 49 SG 
780 - 

1099 

16

0 
7 0.41 2.9 0.28 3.2 

1.4

8 

PM, post-mortem; n, number of samples; p, number of PLS terms utilized in the calibration equation; R
2
Cal, 

coefficient of determination of calibration; RMSEC, root mean square error of calibration; R
2
CV, coefficient of 

determination of cross validation; RMSECV, root mean square error of cross validation; RPD, ratio performance 

deviation; WBSF, Warner-Bratzler shear force; (N), Newton; None, no mathematical treatment; SG, Savitzky-

Golay smoothing – 2
nd

 derivative with 2
nd

 polynomial and 21 smoothing points ; SNV, standard normal variate; 

Diff. swallow, AE, after-effect 
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