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Abstract 
Antimicrobial resistance (AMR) poses a threat to global health and the economy. Rifampicin-

resistant Mycobacterium tuberculosis accounts for a third of the global AMR burden. Gaining the 

upper hand on AMR requires a deeper understanding of the physiology of resistance.  

AMR often results in the erosion of normal cell function: a fitness cost. Identifying intervention 

points in the mechanisms underpinning the cost of resistance in M. tuberculosis could play a pivotal 

role in strengthening future treatment regimens. We used a collection of M. tuberculosis strains 

providing an evolutionary and phylogenetic snapshot of rifampicin resistance and subjected them 

to genome-wide transcriptomic and proteomic profiling to identify key perturbations of normal 

physiology.   

We found that a rifampicin resistance-conferring mutation in RpoB imparts considerable gene 

expression changes, many of which are mitigated by a compensatory mutation in RpoC. 

However, our data also provide evidence for pervasive epistasis: the same resistance mutation 

imposed a different fitness cost and functionally unrelated changes to gene expression in clinical 

strains from unrelated genetic backgrounds. Rather than functional changes in specific pathways, 

our data suggest that the fitness cost of rifampicin resistance stems from a misallocation of 

resources: the greater the departure from the wild type baseline proteome investment, the greater 

the fitness cost of rifampicin resistance in a given strain. We summarize these observations in the 

“Burden of Expression” hypothesis of fitness cost and provide evidence that it can be used for 

suppressing the emergence of rifampicin resistance. 
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Introduction 

Antimicrobials are one of the cornerstones of modern medicine1. The global increase of 

antimicrobial resistance (AMR) poses an existential threat, claiming an increasing number of lives 

and resources2. We currently have access to a wide array of antibiotics, but their efficacy is 

waning, making safeguarding existing and future drugs a high priority. Understanding the 

mechanisms and drivers of AMR3, including the underlying biology, will be key to that process. 

Antibiotics target essential bacterial processes. Modification of their targets is an important 

mechanism through which AMR emerges. It is therefore not surprising that AMR often comes 

with a fitness cost4. Fitness cost is a broad concept capturing any negative deviation in the 

proliferation of a mutant from its ancestor: for example, a decreased growth rate in vitro, or in the 

case of pathogens, a decreased ability to transmit or cause disease. The physiological basis for the 

cost of drug resistance seems to be dependent on the antibiotic, bacterial species and 

environment5 and is thus often unknown and likely to be multifaceted. One of the better studied 

examples is the cost of rifampicin resistance. Rifampicin targets the bacterial RNA polymerase 

(RNAP), and resistance to rifampicin is usually mediated by mutations in the β subunit of 

RNAP6. Several studies point to the rate of transcription, particularly as it pertains to the 

synthesis of ribosomal RNA and ribosomal proteins, as an important mediator of growth rate7,8. 

A slowing down of transcription is therefore the prime mechanistic candidate for the cost of 

rifampicin resistance9,10. The mechanism linking RNAP activity to ribosome biosynthesis 

provides a compelling explanation for the cost of rifampicin resistance in rapidly dividing bacteria 

such as Escherichia coli and Pseudomonas aeruginosa whose growth relies on the rapid replenishment 

of biosynthetic machinery lost through cell division11. Importantly, the fitness cost of rifampicin 

resistance can be mitigated or even reversed through the acquisition of secondary, compensatory 

mutations in the α, β and β’ subunits of RNAP that seem to restore normal enzyme function9,12,13.   

Rifampicin-resistant Mtb is one of the major causes of AMR-associated mortality globally, 

claiming an estimated 240,000 lives in 201614, and unlike in fast-growing bacteria, the rate of 
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transcription does not seem to reflect the fitness cost of key rpoB mutations, measured either as 

growth rate in vitro or prevalence in the clinic13,15,16. While relative fitness does seem to determine 

the clinical success of rifampicin-resistant Mtb17, and compensatory mutations are frequently 

found in settings with a high burden of drug resistant TB18-21, the basis for the fitness cost of 

rifampicin resistance remains unknown in Mtb. Understanding the mechanism by which rpoB 

mutations impair normal Mtb physiology could help identify new intervention points, through 

which we could stem the tide of existing and emergent rifampicin resistance. 

We used the known ability of mutations in the beta barrel double ψ (BBDP) domain of the β’ 

subunit of RNAP to compensate for the fitness cost of resistance mutations occurring in the β 

subunit in Mtb  as a starting point12,13,22. Compensatory mutations improve patient to patient 

transmission of rifampicin-resistant strains19, and partially reverse biochemical changes imparted 

on RNAP by rifampicin-resistance mutations12,13. We hypothesise that the same would be true for 

gene expression differences. Leveraging the knowledge of the role of RpoC mutations, we used 

transcriptomic and proteomic expression profiling to identify the signature of compensation and 

therefore infer the likely mediators of fitness cost in a collection of strains derived from a drug-

susceptible clinical isolate (see Figure 1). Our findings point to the idiosyncratic consequences of 

expressional dysregulation as a key factor conferring a fitness cost to rifampicin resistance in Mtb. 

We expanded on this observation by profiling the expression signature of rifampicin resistance in 

a panel of genetically diverse clinical isolates sharing the same rifampicin resistance-conferring 

mutation: RpoB Ser450Leu. While we found very little evidence for a shared expression signature 

of rifampicin-resistance across the tested strain pairs, we show a correlation between the fitness 

cost of the rifampicin-resistance conferring mutation and the extent to which its presence imparts 

a deviation from the proteome composition of the wild-type. Finally, we show that this 

correlation could be exploited to suppress the emergence of rifampicin resistance. 
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Results 

Compensatory mutations mitigate resistance-imposed expression changes 

Physiological changes incurred by a fitness cost are likely to manifest as deviations in gene 

expression. Since mutations in the BBDP domain of the β’ subunit of RNAP mitigate the fitness 

cost of rifampicin-resistance mutations in Mtb12,13,22 they should also impact and therefore 

highlight expression changes that are relevant to the understanding of fitness cost of rifampicin 

resistance. 

We previously reported the result of a directed evolution experiment in which we identified a 

mutation in the BBDP domain: RpoC Leu516Pro as a putative compensatory mechanism for the 

fitness cost of the rifampicin-resistance conferring mutation RpoB Ser450Leu in a clinical 

isolate18. The strains generated by that study comprise the original drug-susceptible isolate (DS), 

its laboratory-derived rifampicin-resistant mutant (RpoB Ser450Leu, RifR) and the resulting 

evolved strains obtained by serial passage in the absence of rifampicin for 200 generations (DSevo 

and RifRevo, respectively, see Figure 1A). Together these strains offer a representative snapshot of 

the evolutionary process that passes through the initial emergence of (costly) drug resistance and 

leads to the establishment of a mature drug-resistant strain whose fitness is indistinguishable 

from its drug susceptible ancestor. We therefore hypothesised that comparative transcriptomic 

and proteomic expression profiling of these strains will allow us to determine the signature of the 

fitness cost associated with rifampicin resistance. 

First, we determined the relative fitness of RifR. Using a mixed effect linear regression model to 

analyse growth assays, we noted a 26.4% decrease (CI95%: 21.5 – 31.0%, p < 0.001) in the growth 

rate of RifR when compared to DS. The comparison of their evolved counterparts – DSevo and 

RifRevo – showed no significant differences (-1.2%, CI95%: -10.8 – 7.1%, p = 0.814), illustrating the 

fact that RpoC Leu516Pro does indeed compensate the fitness cost of rifampicin resistance.  
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We aimed to identify differences in the baseline, unperturbed, gene expression as a proxy for 

describing the biological basis for reduced fitness in RifR. We sampled actively growing bacterial 

cultures of each of the four strains, extracting total RNA and protein to be profiled using RNA 

sequencing (RNAseq) and sequential window acquisition of all theoretical mass spectra 

(SWATH-MS),  respectively (see Figure 1B). In total, we were able to obtain RNA transcript 

counts for all present regions of the Mtb genome and reliably quantify 2,886 proteins across our 

samples (Supplementary Figure 1). We used differential expression analysis to test our hypothesis 

that the compensatory mutation RpoC Leu516Pro had the net effect of reversing, at least 

partially, the expression changes brought about by the rifampicin resistance mutation RpoB 

Ser450Leu. We named this trend a “signature of compensation” – see Figure 2A and we derived 

it by identifying genes that are uniquely differentially expressed in RifR compared to the other 

three strains in our dataset. To maximise the probability of identifying the signature of 

compensation, we chose an inclusive definition of differential expression: a p-value of less than 

0.05 after adjusting for multiple testing (see Methods). In keeping with our inclusive approach, 

we also deliberately did not use an effect size threshold (e.g. minimum log-fold change).  

Using these criteria, we identified 536 transcripts that could be involved in the cost of resistance. 

289 transcripts were less abundant and 247 were more abundant in RifR compared to the other 

samples. Similarly, 536 proteins showed a significant signature of compensation: 260 proteins 

were more and 276 were less-abundant in RifR (see Figure 2B). Gene set enrichment analysis of 

the transcriptomic and proteomic data pointed to iron homeostasis being significantly affected. 

Specifically, it indicated a higher expression, in RifR, of genes that are repressed by the iron-

dependent regulator (IdeR, Rv2711) in iron replete conditions. Among them, there was a 

significant enrichment of genes involved in polyketide and non-ribosomal peptide synthesis, 

which include the biosynthetic machinery for the sole Mtb siderophore: mycobactin (see 

Supplementary Figure 2-4). These changes suggested that RifR faced a shortage of iron in our 

experimental conditions. 
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The availability of iron is an essential requirement for Mtb growth, both in culture and during 

infection, and iron acquisition systems are therefore key virulence factors23-25. Hence, an increased 

requirement for iron could manifest itself as a loss of relative fitness. The fact that RpoB 

Ser450Leu led to a modification of the expression of genes involved in iron homeostasis and that 

RpoC Leu516Pro reversed the effect provides a compelling alternative mechanism underpinning 

the apparent fitness cost of rifampicin resistance. If the disruption of iron homeostasis drives 

fitness cost, we would expect that iron supplementation should mitigate the relative cost of RpoB 

Ser450Leu. Furthermore, based on the expression profile, we expected that RifR should produce 

more mycobactin at baseline than DS, potentially influencing the overall growth rate of the 

mutant.  

We addressed the first hypothesis by comparing growth rates of RifR and DS in the presence or 

absence of 10 µM hemin – an additional source of iron that is by itself sufficient to support the 

growth of a mutant defective in mycobactin biosynthesis. Importantly, hemin and mycobactin 

provide two separate routes of iron uptake, which allows us to side-step issues that might emerge 

from deficient iron transport23. The presence of hemin did not change the cost of RifR, which we 

calculated to be 18.6% in the absence and 20.9% in the presence of hemin for this experiment 

(Mixed effect linear model, p = 0.737).  Similarly, hemin did not impact the growth rate of DS (- 

4.7%, CI95%: -16.3 – 2.3%, p = 0.128). In summary, iron did not appear to limit the growth of 

RifR under normal conditions.  

Next, we addressed the production of mycobactin. We prepared whole cell extracts from DS and 

RifR grown in both, normal medium and medium supplemented with 10 µM hemin. We found 

that on average RifR produced more mycobactin than DS, corroborating the physiological 

relevance of the increased baseline expression of mycobactin biosynthesis genes. We also 

observed a slight decrease in the production of mycobactin in bacteria grown in the hemin-

supplemented medium, pointing to a modification of the expression of mycobactin biosynthesis 

cluster in response to iron (See Figure 3). Given that the growth rate was not affected by the 
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presence of hemin, these findings suggest that mycobactin itself does not modulate the growth 

rate of the mutant. It is therefore possible that the higher expression of the biosynthetic cluster 

itself might impart a fitness cost. 

Interestingly, while significantly enriched, only half of the genes reported to be repressed by 

IdeR26 in iron-replete conditions were part of the signature of compensation (22 out of 40 genes). 

This prompted us to take a closer look at the IdeR regulon and its regulation. We took advantage 

of recent studies modelling the global gene regulation in Mtb27-29. We reconstructed the genome-

wide gene regulatory network and extracted the immediate neighbours of IdeR- and iron-

responsive genes28. There were 7 expression modules that contained at least 3 genes that are part 

of the IdeR regulon (Figure 3, black diamonds). Together, these modules covered 82.5% of all 

the IdeR-repressed genes, and with the exception of Module 4 (Figure 3), none of the modules 

included IdeR-independent iron-responsive genes. All the genes that we identified as candidates 

for compensation belonged to Modules 1-4, while none of the genes included in the other 

modules were found to be differentially expressed in RifR. A key difference among modules was 

that IdeR-regulated genes represented more than half of all the genes in modules affected by 

compensation but fewer than half in those that were not part of the “signature of compensation”. 

Mapping proteomic data onto the same expression network produced similar results (see 

Supplementary Figure 5). Interestingly, few of the IdeR-independent iron-responsive genes were 

part of the signature of compensation. This pattern implies a modulation of the canonical 

function of IdeR, either through regulatory inputs from other transcription factors, or some 

other mechanism.  

These results supported our hypothesis that mutations in rpoB impart changes to the baseline 

expression profile of Mtb that could be reversed in the presence of a compensatory mutation in 

rpoC. Combining the expression data with our findings that iron supplementation and mycobactin 

levels did not affect RifR growth rates, we concluded that the transcriptional changes were not 

driven by the demand for iron. Instead, these changes might be a reflection of a dysfunction of 
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RNAP – e.g. differences in promoter specificity or modified interaction with IdeR, whose 

downstream consequences may impose a fitness effect. For example, as the mycobactin 

biosynthesis cluster comprises several large proteins, their excessive production could represent a 

drain on the cell’s resources. If true, we would expect such effects to be universal across all Mtb 

strains carrying this rpoB mutation.  

The impact of RpoB Ser450Leu is shaped by epistasis 

We wanted to test the hypothesis that higher expression of the mycobactin biosynthetic cluster is 

a general feature of rifampicin resistance in Mtb and therefore the underlying cause of its fitness 

cost. To do so, we generated RpoB Ser450Leu mutants in five genetically diverse clinical isolates 

belonging to two different Mtb lineages and profiled them. Globally, Mtb can be grouped into 

seven distinct genetic lineages each with a specific geographic distribution30. Mtb lineages can 

differ in their interaction with the human host, the dynamics of disease progression, and also in 

their apparent propensity to acquire drug resistance31,32. We chose strains belonging to Lineage 1 

and 2, because of their large phylogenetic separation (see Supplementary Figure 6) and more 

importantly, because drug resistance is often associated with Lineage 2 and relatively rare in 

Lineage 133. We expected that the comparison of the transcriptome and proteome between the 

Ser450Leu mutants and their cognate wild type ancestor would allow us to identify general 

patterns of fitness cost linked to this mutation. 

It is important to note that this comparison did not include any compensated strains, i.e. strains 

carrying mutations in the BBDP domain. We were therefore unable to focus our analysis 

exclusively on genes whose expression was corrected by the presence of an rpoC mutation. 

Nonetheless, direct comparison of RifR and DS is virtually indistinguishable from the signature 

of compensation when considering IdeR-regulated genes and therefore serves as a reasonable 

proxy for our analyses (see Supplementary Figure 5). 
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We started by measuring the growth characteristics of the wild type isolates and the relative cost 

of the RpoB Ser450Leu mutation in the different strain backgrounds. The generation time varied 

from 22.7 h ( 95%CI: 20.8 – 25.0 h) to 31.0 h ( 95%CI: 29.3 – 35.1 h). The relative fitness cost of the 

RpoB Ser450Leu mutation differed as well, from a modest 2 % (mixed effect linear regression, p 

= 0.71) to a pronounced 27 % (mixed effect linear regression, p = 5.6 × 10-6). 

We obtained the expression profiles for each strain to check whether the pattern we identified for 

IdeR-repressed genes was a universal phenotype for RpoB Ser450Leu mutants. Analysing the 

transcriptomic data by performing a single comparison across the five strain pairs, we found that 

only 17.5% (7/40 genes) of the IdeR-repressed genes were significantly differentially expressed. A 

single gene belonging to the mycobactin biosynthesis cluster was included in that number. 

Proteomic analysis revealed a similar result – 17.1% (6/35 detected proteins) were found to be 

significantly differentially expressed across all strains, none of which belonged to the mycobactin 

biosynthesis cluster. None of the iron-homeostasis gene sets highlighted in the “signature of 

compensation” were significantly differentially expressed across all strains. Since these findings 

were contrary to our expectations, we stratified the analysis and mapped the differential 

expression results for each strain onto the IdeR- and iron-responsive gene network we collated 

earlier. These results echoed our combined analysis: the signature of compensation was not 

universal across the tested strains. N0155, which corresponds to “DS”, is the only strain to show 

a transcriptional profile consistent with the signature of compensation (see Figure 4A). Proteomic 

data corroborated this finding (see Supplementary Figure 7). It is important to note that these 

data represent an independent replication of the experiments, from which we derived the 

signature of compensation, showing that our original results are robust and reproducible. 

However, the absence of a coherent IdeR-responsive phenotype was clear evidence of epistasis 

and raised a broader question: are there any commonalities in the phenotypic manifestation of 

the RpoB Ser450Leu mutation among our set of strains? 
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To address this question we sought to identify expression modules28 whose membership was well 

represented among significantly differentially expressed genes in at least one pair-wise 

comparison between a rifampicin-resistant strain and its cognate drug-susceptible ancestor (see 

Methods for details). Using transcriptomic and proteomic data, we identified 33 expression 

modules that fitted our criterion (see Figure 4B). There was virtually no consensus across the 

strains in the transcriptional or translational response to the rpoB mutation. The only case where 

we observed partial agreement across genetic backgrounds concerned some of the modules 

controlled by the hypoxia-responsive regulator DosR34. As with modules containing IdeR iron-

repressed genes, we observed only partial regulon induction for DosR. Specific modules were 

clearly involved in the expression changes (either protein or transcript) in each background, but 

the impact of these was strain-specific. A complementary manifestation of this phenomenon 

comes from the global comparison of all rifampicin-resistant strains against all wild type strains, 

which highlighted a single module as enriched for significantly differentially expressed genes. 

Comparing the distribution of the effect sizes, as measured by the per-gene fold-changes in 

expression in the combined analysis and the pairwise comparisons for each strain, we saw a 

marked muting of the magnitude of differential expression in the former (see Supplementary 

Figure 8). This was likely due to the averaging effect of the combined analysis suppressing the 

contribution of the differential expression from individual strains. The magnitude of the 

expression change in pairwise comparisons was comparable across strains. 

Overall, we were able to identify a wealth of gene expression changes in our samples: as many as 

958 transcripts and 1914 proteins were observed to be differentially expressed in at least one 

comparison across our samples. On the level of individual genes, the transcriptome and to lesser 

extent the proteome of each strain were perturbed in their own private way (see Supplementary 

Figures 9&10), manifesting itself as the drug resistance iteration of the Anna Karenina principle35. 

Because the majority of those changes were specific to individual strains they were largely 

invisible if the comparison was made across all strain pairs. The fact that the same mutation can 
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have such profoundly different outcomes depending on the genetic context in which it occurs, is 

clear evidence of epistasis, and shows that natural genetic variation can fundamentally impact the 

physiological consequences and therefore evolution of drug resistance. Importantly, the impact of 

resistance on the expression profile of any two strains was found to be independent of the 

genetic distance between them (see Supplementary Figure 11). 

So far, we showed that the RpoB Ser450Leu causes a considerable re-organization of baseline 

gene expression, that this perturbation can be reversed by a compensatory mutation in RpoC and 

that the specific phenotypic manifestation was dependent on mutations that occurred more 

recently than those defining individual lineages. These findings were consistent with our 

observation that the same mutation imposed a different fitness cost to different strains. We 

therefore sought to find correlates of the varying fitness costs. 

Deviation from baseline expression correlates with the cost of rifampicin resistance 

Pleiotropic phenotypes of the kind described above are not normally addressed, however we 

wanted to explore whether the extent of the expression perturbations correlated with the varying 

fitness costs of Ser450Leu we observed in different genetic backgrounds. We reasoned that the 

cumulative impact on expression disruption, rather than the dysregulation of individual genes, 

would provide a conduit for a loss of fitness. 

In the first instance, we considered the correlation between the fitness cost of the rpoB mutation 

and the overall expression distance between the mutant and its cognate wild type strain (See 

Supplementary Figure 12). Through this approach, we were able to detect a relationship between 

cost and expression differences for the expressed proteins (R2 = 0.83, p = 0.031, ordinary least 

squares linear regression) but not RNA (R2 = 0.39, p = 0.258, ordinary least squares linear 

regression). Given that the correlation was stronger in the proteome compartment, and that the 

proteome compartment seemed more affected by resistance, we elaborated on our observation 

by incorporating a measure of physiological cost for each protein. We used two different metrics 

.CC-BY 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/456434doi: bioRxiv preprint first posted online Oct. 30, 2018; 

http://dx.doi.org/10.1101/456434
http://creativecommons.org/licenses/by/4.0/


13 
 

for cost. In the simpler case we used the molecular weight of amino acids as proxy for the 

resource investment necessary to generate each protein36. We also used estimates of ATP cost for 

each amino acid in E. coli as a way to approximate the level of energy investment a bacterial cell 

makes when synthesising its proteome37. Both metrics showed that drug resistance imposes an 

additional physiological cost to the baseline proteome (Molecular Weight: Mann-Whitney U-test, 

p = 8.26 × 10-4, ATP equivalents: Mann-Whitney U-test, p = 4.50 × 10-4, see Supplementary 

Figure 13). Furthermore, this cost was negatively correlated with the relative fitness of the RpoB 

Ser450Leu mutation in a given strain background (ρs = - 0.90, p = 0.04) – the greater the 

deviation from the resource investment of the ancestral proteome, the larger the cost of the 

mutation (see Figure 5A). Growth rate and gene expression are not independent from each other. 

To test the possibility that the observed correlation may be an artefact of our analysis, we took 

advantage of the natural variation in growth rates of different drug-susceptible clinical isolates in 

our medium and compared them to the relative costs of expression (See Supplementary Figure 

14). We performed a pairwise comparison across all the tested strains and observed no 

statistically significant correlation between the differences in the investment into the proteome 

and the difference in growth rates (ρs = 0.34, p = 0.33). The differences in the allocation of 

resources into the protein compartment of different bacterial strains were therefore not the main 

determinant of variation in their respective generation times. 

Taken together, our results seemed to suggest that the ultimate manifestation of the disruption of 

wild type baseline gene expression by RpoB Ser450Leu was a net increase in the biosynthetic 

input required to maintain the steady state proteome: the greater the cost of the disruption, the 

greater the slowing down of growth in a given strain background. We propose this as the 

“Burden of Expression” hypothesis of the fitness cost of rifampicin resistance. 

Carbon allocation rather than ATP availability modulates cost of resistance 

An implication of the “Burden of expression” hypothesis is the possibility of suppressing the 

emergence of rifampicin-resistance in mycobacteria by maximising the additional biosynthetic 
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cost imposed by the deviation from the baseline expression. We tested two types of conditions 

that may impose such a stress: inhibition of ATP synthesis and variation of carbon-source quality. 

The first would disrupt the ability to generate energy through catabolic processes, while the 

second would place more emphasis on the anabolic aspects of bacterial growth. In the first 

instance, we tested the susceptibility to bedaquiline, an ATP synthase inhibitor that leads to a 

decrease in intracellular ATP levels in Mtb38. Given the higher baseline cost of their proteome, we 

expected that RpoB Ser450Leu mutants should show an increased susceptibility to bedaquiline 

commensurate with their relative loss of fitness. We did not observe any correlation between 

bedaquiline susceptibility and the cost of the RpoB Ser450Leu mutation (see Figure 5B).  

Next, we explored varying carbon source quality, expecting substrates that force the bacterial cell 

to rely more heavily on anabolic processes to serve as amplifiers for the perceived cost of 

rifampicin resistance. A related phenotype has been reported before for RpoB Ser450Leu12. We 

chose the Luria-Delbrück fluctuation assay as an unbiased readout for the overall increase in the 

cost of rifampicin-resistance, because its frequency of resistance estimate contains a signal for the 

ability of drug resistant bacteria to propagate within the population prior to antibiotic exposure39. 

The global increase in the cost of RpoB mutations would therefore manifest itself as an apparent 

decrease in the frequency of resistance, as the population size of pre-existing RpoB mutants 

would be smaller due to limited expansion post-emergence. We chose glycerol, citrate and acetate 

to test our hypothesis in the soil organism Mycobacterium smegmatis, whose patterns of rifampicin 

resistance mirror those of Mtb40. As expected, these three carbon sources supported different 

growth rates with measured generation times of the wild type being 3.24 h ( 95%CI: 3.23 – 3.25 h), 

6.17 h ( 95%CI: 6.09 – 6.25 h) and 17.62 h ( 95%CI: 17.61 – 17.62 h), respectively. We then 

determined the frequency of rifampicin resistance for bacteria grown on each carbon source 

using the Luria-Delbrück fluctuation assay. We found a striking correlation between carbon 

source and the calculated frequency of resistance, with bacteria grown in glycerol giving rise to 

rifampicin-resistant bacteria at a rate of 1.3 × 10-8 ( 95%CI: 1.2 × 10-8 – 1.5 × 10-8), those grown in 
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citrate at a rate of 3.4 × 10-9 ( 95%CI: 2.9 × 10-9 – 4.0 × 10-9)  and acetate-cultured bacteria at a rate 

of 4.5 × 10-10 ( 95%CI: 3.4 × 10-10 – 5.6 × 10-10) – see  Figure 5C. This trend was remarkable, 

because it showed that changing only the carbon source, keeping all other variables constant, 

could lead to a 28-fold change in the frequency of resistance. 

The disparity in outcomes between the two experimental approaches suggests that the availability 

of catabolic energy does not disproportionately influence the ability of RpoB mutants to survive. 

However, the impact of carbon source on the frequency of rifampicin-resistant bacteria within a 

population clearly suggests that carbon allocation might be an important driver of the fitness cost 

of rifampicin resistance.  

Discussion 

We normally expect that form follows function in bacteria: expression differences should reflect 

variations in physiological states. Indeed, we show that RpoB Ser450Leu imparted a measurable 

physiological perturbation in addition to conferring rifampicin resistance. Consistent with the 

suggested role of compensatory mutation18, we confirmed that in one strain, RpoC Leu516Pro 

reduced both, the apparent fitness cost of rifampicin resistance and the magnitude of the 

expression changes arising from it. However, we also showed that the nature of the perturbation 

was not consistent across different genetic backgrounds. Instead, we observed a strain-specific 

response to the RpoB mutation, both in terms of the relative impact on growth and the 

rearrangement of gene expression. We further observed that the magnitude of the fitness cost 

that RpoB Ser450Leu imposes on a strain was related to the overall increase in the resources 

allocated to the proteome. Based on these observations, we proposed the “Burden of expression” 

hypothesis, with which we posited that in Mtb, the cost of rifampicin resistance was mediated by 

the metabolic burden imposed by the modified baseline protein expression of resistant strains. 

Elaborating on this hypothesis we demonstrated that interfering with anabolic processes could 

suppress the emergence of rifampicin resistance in the related organism M. smegmatis.  
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The “Burden of expression” hypothesis stems from experimental data with clear caveats. First, 

we started our analyses assuming that ribosomal biosynthesis is unlikely to play a key role in the 

cost of rifampicin resistance in Mtb and that therefore expression data were a better window into 

the modified physiology. Our data seem to support the validity of this assumption: ribosomal 

proteins represented only 5.5%, on average, of the total protein biomass in our experiments. This 

proportion was marginally higher in RpoB mutants, and it seemed to increase with increasing 

generation time (see Supplementary Figure 15). These trends were more consistent with a cost 

imposed by the metabolic burden of making ribosomes. Second, some of our key conclusions are 

based on a relatively small number of strains. Nonetheless, to the best of our knowledge, this 

sample set represents the most comprehensive and best curated account of rifampicin resistance-

induced global expression changes in Mtb to date, covering both: evolutionary dynamics and 

phylogenetic diversity. We were also able to show that patterns of expression detected in the DS-

RifR comparison were robust when the same strain pair was sampled again (see Figure 4 and 

Supplementary Figure 7). Importantly, key inferences that led us to propose the hypothesis came 

from SWATH-MS proteomic data drawn from the five different strain backgrounds. These data 

showed a clear clustering of biological replicates (see Supplementary Figure 16), with the 

exception of N0145 for which we were also unable to detect a significant cost for the Ser450Leu 

mutation or any significant changes to the expression. Third, we assumed that label free 

quantification (LFQ) using the “best flyer peptide” or TopN approach, which reflects the 

proportional abundance of individual proteins within our samples41, can be used to draw 

conclusions about the resource investment of the cell and can be extended to the growth rate of 

bacteria. It is possible that the roles are reversed and the growth rate of bacteria in fact 

determines the protein complement being expressed42. We addressed this possibility by 

performing a comparison of proteome investment and growth rate for wild type strains only. If 

the growth rate of Mtb did indeed determine the protein complement of cells across genetic 

distances on an evolutionary timescale, we would expect a strong correlation between differences 
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in proteome and differences in growth rates between any two strains. This was however not the 

case (see Supplementary Figure 13). Finally, we also assumed that the proteome plays a central 

role in imposing a limit to the growth rate of an Mtb cell. There are other components that 

require considerable investment in carbon: in the case of Mtb both lipids and cell wall may act as 

a sink for resources limiting growth as they can account for over half of the dry mass of actively 

growing cells43. Lipidomic analysis of RpoB mutants in Mtb pointed to differences in mycobactin 

biosynthesis as one of the biggest discrepancies between rifampicin-resistant mutants and their 

susceptible ancestors44. While echoing a key observation from our quest for determining the cost 

of resistance, we saw no evidence that mycobactin biosynthesis itself changes the rate of bacterial 

growth. The virulence-associated phthiocerol dimycocerosates (PDIM) have also been implicated 

in the cost of rifampicin resistance45, as have other changes in lipid composition46. The full 

exploration of the role of lipids in the physiology of rifampicin-resistant Mtb is beyond the scope 

of this study, but it would provide an interesting new and complementary avenue to pursue.  

Keeping these considerations in mind, there are two striking features to emerge from our results. 

The first is the pervasive epistasis modulating the impact of RpoB Ser450Leu: the same mutation 

has markedly different effects on the physiology of different Mtb strains. The second is the 

apparent mechanism through which modulation of gene expression is propagated across the 

levels of bacterial physiology. Modification in RNAP function seems to have pleiotropic effects 

that transcend the disruption of any single group of genes, and impart a perturbation that appears 

to affect bacterial resource allocation. 

One question that remains open is what sits at the heart of the disparity in phenotypes? The 

sequence of RNAP is effectively the same in all strains47; and by extension so are the biochemical 

changes that arise from resistance13. We envisage that part of the answer lays in differences in 

underlying robustness: a strain’s capacity to buffer perturbation. Furthermore, we can consider 

this a window into the evolutionary adaptation of each strain and a sign of how different their 

physiologies really are. The amalgamation of mutational differences that effectively makes up a 
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strain genetic background weaves a baseline phenotype that allows different Mtb strains to be 

successful pathogens despite differences in their underlying physiology. These differences are 

unmasked by the presence of a mutation that sits at the core of gene expression and reveals 

idiosyncratic transcriptional responses to rifampicin resistance that are poorly conserved across 

genetic distances. This observation has the implication that, beyond the described mutations in 

BBDP, which seem to alleviate some of the biochemical and gene expression effects of 

rifampicin resistance more generally, further investigation of positive selection of compensation 

of resistance-related traits should be performed in genetically related strains as they could vary 

considerably when comparing phylogenetically distant strains21,48.  

The strain-specific nature of resistance-related expression perturbations can be used to provide a 

credible link to disparate growth rate modulation. Our suggestion that proteome composition 

influences growth rate is not without precedent. This connection has been made before49, and 

resulted in the formulation of a collection of “growth laws” that linked growth rates to the 

partitioning of the limited proteome between ribosomes and other proteins carrying out the rest 

of the cellular functions. Growth on different carbon sources impacted this balance, with 

“poorer” ones requiring a greater investment into the functional proteome, presumably because 

of the need for anabolic reactions increased the reliance on biosynthetic enzymes. A similar 

relationship has been observed in a wide range of microbial species50. An elaboration of these 

growth relationships also led to the conclusion that the efficiency of proteome allocation can 

impact growth rates and cell physiology51. Our finding that the increase in the relative cost of the 

proteome brought about by the gain of a mutation correlates with the relative fitness of that 

mutation is consistent with these reports, as is our observation that anabolic processes may play a 

mechanistic role in setting the cost of a mutation.  

The observed differential cost of rifampicin resistance across Mtb strains, provides a lens through 

which we can better understand the emergence of drug resistance in clinical TB. However, it also 

indicates a new avenue to pursue in the fight against rifampicin resistant Mtb and perhaps 
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uncover a new paradigm for chemotherapeutic intervention. Agents that impart a considerable 

shock to the expression equilibrium of bacteria could exhibit potent activity against rifampicin 

resistant strains due to collateral sensitivity. Furthermore, when given in combination with 

rifampicin, such agents may act to suppress the emergence of resistance; a valuable attribute for 

lengthening the shelf life of rifampicin.  

Methods 

Strains and culture conditions 

We used four strains described by Comas et al.52: namely the wild type, clinical isolate T85 

(N0155, DS), a rifampicin resistant mutant of T85 carrying the Ser450Leu mutation (N1981, 

RifR), a derivative of T85 that was evolved by serial passage (200 generations) in the absence of 

rifampicin (N1588, DSevo) and an evolved derivative of the rifampicin resistant strains carrying an 

additional mutation in RpoC – Leu516Pro (N1589, RifRevo).  

In addition to these strains we used four clinical isolates that are part of the recently compiled 

Reference set of Mtb clinical strains53 covering the genetic diversity of Mtb. Two strains belonging 

to Lineage 1 (N0072, N0157) and two to Lineage 2 (N0052, N0145). We plated each of these 

strains on 7H10 plates containing 5 μg/ml Rifampicin, and picked colonies of spontaneous 

mutants. We checked the rifampicin-resistance conferring mutations using Sanger sequencing of 

the amplified RRDR region (Forward primer: TCGGCGAGCTGATCCAAAACCA, Reverse 

primer: ACGTCCATGTAGTCCACCTCAG, product size: 601 bp), and kept a Ser450Leu 

derivative of each clinical strain (N2027, N2030, N2495 and N1888, respectively). 

Bacteria were cultured in 1l bottles containing large glass beads to avoid clumping and 100 ml of 

media incubated at 37°C rotated continuously on a roller. Unless otherwise stated we used a 

modified 7H9 medium supplemented with 0.5% w/v pyruvate, 0.05% v/v tyloxapol, 0.2% w/v 

glucose, 0.5% bovine serum albumin (Fraction V, Roche) and 14.5 mM NaCl. Compared to the 
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usual composition of 7H9 we omitted glycerol, tween 80, oleic acid and catalase from the 

medium. We added 10 μM Hemin (Sigma) when supplementing growth medium with iron. We 

followed growth by measuring optical density at 600 nm (OD600).  

Fluctuation assay experiments were performed using Mycobacterium smegmatis, mc2 155. M. 

smegmatis was grown either in 10 ml cultures within 50 ml Falcon conical tubes in a shaker 

incubator (37°C, 200RPM), or as 200 μl aliquots within flat-bottomed 96-well plates at 37°C and 

shaken at 200 rpm. We used unmodified 7H9 medium or medium where glycerol was replaced 

with citrate or acetate added at concentrations that matched the molarity of carbon. 

Data availability and data analysis 

All RNAseq data were deposited in the ArrayExpress repository of the European Bioinformatics 

Institute under the E-MTAB-7359 accession. 

Unless otherwise stated, we preformed the analyses using Python 3.5.2 augmented with the 

following modules to provide additional functionality: Matplotlib (ver 2.0.0), Numpy (ver 1.12.1), 

Scipy (ver 0.19.0), Pandas (ver 0.20.1), statsmodels (ver 0.8.0), sklearn (ver 0.18.1), and netwrokX 

(ver 1.11).  

Fitness determination 

Mtb fitness was determined by comparative growth rate estimation. We grew bacteria as 

described and followed their growth by measuring OD600. We transformed the optical density 

measurements using logarithm base 2 and trimmed all early and late data points that did deviated 

from the linear correlation expected for exponential growth. Next, we fitted a linear mixed effect 

regression model to the data. Fitness cost was calculated as the resistance imposed deviation from 

wild type growth dynamics. 

For M. smegmatis, we determined the growth rates by culturing bacteria as described above. We 

monitored the increase in OD600 using a Tecan M200 Pro Nanoquant at 20 min intervals. The 
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data were log2-transformed, trimmed to retain only the portion of data pertinent to exponential 

growth and used for fitting a mixed effect linear regression model to estimate growth parameters. 

Transcriptional analysis with RNAseq 

We transferred a 40 ml aliquot of bacterial culture in mid-log phase (OD600 = 0.5 ± 0.1) into a 

50ml Falcon conical tube containing 10 ml ice. We harvested the cells by centrifugation (3,000×g, 

7 min, 4°C), re-suspended the pellet in 1 ml of RNApro solution (MP Biomedicals) and 

transferred the suspension to a Lysing matrix B tube (MP Biomedicals). We disrupted the 

bacterial cells using a FastPrep24 homogeniser (40s, intensity setting 6.0, MP Biomedicals). We 

clarified the lysate by centrifugation (12,000×g, 5 min, 4°C), transferred the supernatant to a clean 

tube and added chloroform. We separated the phases by centrifugation (12,000×g, 5 min, 4°C) 

and precipitated the nucleic acids from the aqueous phase by adding ethanol and incubating at -

20C overnight. We performed a second acid phenol extraction to enrich for RNA. We treated 

our samples with DNAse I Turbo (Ambion), and removed stable RNAs by using the RiboZero 

Gram Positive ribosomal RNA depletion kit (Epicentre). We prepared the sequencing libraries 

using the TruSeq stranded Total RNA kit (Illumina) and sequenced on a HiSeq2500 high output 

run (50 cycles, single end).  

Illumina short reads were mapped to the Mtb H37Rv reference genome using BWA (ver 0.7.13); 

the resulting mapping files were processed with samtools (ver 1.3.1). Per-feature read counts were 

performed using the Python module htseq-count (ver 0.6.1p1) and Python (ver 2.7.11). We 

performed differential expression analysis using the R package DESeq254 (ver 1.16.1) and R (ver 

3.4.0). In the case of the identification of the signature of compensation we performed a 

comparison of RifR vs DS + DSevo + RifRevo. For the follow-up experiments we performed two 

separate comparisons: (DRN0072 + DRN0157 + DRN0052 + DRN0145 + DRN0155) vs (DSN0072 + DSN0157 

+ DSN0052 + DSN0145 + DSN0155) as well as individual DR vs DS comparisons. 
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Gene set enrichment analysis was based on functional annotation from the Kyoto Encyclopaedia 

of Genes and Genomes and a custom collation of curated gene sets based on published reports. 

The overrepresentation analysis was based on Fisher’s exact as the discriminating test. 

In addition we transformed per-feature counts into transcript counts per million bases (TPM). 

TPM for each feature for each sample were calculated using the following formula:  
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Where countsi refers to the number of reads that map to a feature i, and sizei refers to the length (in 

bp) of feature i. This ratio was normalized by dividing by the sum of all the ratios across all the 

features.  

Proteomic analysis with SWATH-MS 

We harvested 20 OD600 equivalents from mid-log phase (OD600 = 0.5 ± 0.1) bacterial cultures by 

centrifugation (3,000×g, 7 min, 4°C). We washed the bacterial pellet twice with phosphate 

buffered saline (PBS) to remove residues of tyloxapol. We re-suspended the bacterial pellet in 500 

μl of protein lysis buffer (8M Urea, 0.1 M Ammonium bicarbonate, 0.1% RapiGest [Waters]) and 

transferred the suspension to a Lysing matrix B tube (MP Biomedicals). We disrupted the 

bacterial cells using a FastPrep24 homogeniser (40s, intensity setting 6.0, MP Biomedicals). We 

clarified the lysate by centrifugation (12,000×g, 5 min, 4°C), and sterilised the supernatant by 

passing it twice through a 0.22 μm syringe filters (Milipore). 

Following protein extraction for each sample, we used trypsin to digest proteins into peptides 

and then desalted them using C18 columns (The Nest Group). The cleaned up peptides were re-

suspended in MS buffer (2% v/v acentonitrile, 0.1% v/v formic acid). Finally, the RT-kit 

(Biognosis) containing 11 iRT retention time normalization peptides was spiked in to every 

sample. 
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We measured every sample in sequential window acquisition of all theoretical mass spectra 

(SWATH) mode, a data independent acquisition implementation, on a tripleTOF 5600 mass 

spectrometer (AB Sciex) coupled to a nano flow HPLC system with the gradient of one hour55. 

The raw files acquired through a 64 variable width window precursor isolation scheme were 

centroid normalized using Proteowizard msconvert. We used the Mtb spectral library described 

earlier56 to extract data using the OpenSWATH workflow57-59. The processed data were filtered by 

MAYU to 1% protein FDR60. R packages aLFQ and MSstats were used for protein quantification 

(Top3 peptides and top5 fragment ions41) and differential expression analysis respectively61,62. 

Mycobactin determination 

We harvested 5 OD600 equivalents from mid-log phase (OD600 = 0.5 ± 0.1) bacterial cultures by 

centrifugation (3,000×g, 7 min, 4°C). We washed the bacterial pellet three times with 15ml of 

cold, sterile 7H9 medium base devoid of additives (BD) to remove residues of tyloxapol. After 

washing we resuspended the pellets in 80 μl of cold, sterile 7H9 medium base and added 750 μl 

of 1:2 Chloroform:Methanol. We vortexed the samples for 5 minutes at top speed and added 750 

μl of Chloroform. The samples were shaken for 1.5h at room temperature and clarified by 

centrifugation (16,000 × g, 10 min). We transferred the organic phase to a fresh tube, dried the 

samples in a speedvac and re-suspended each sample in 120 μl of 44:44:2 

Acetonitrile:Methanol:H2O, (v:v:v). 

Chromatographic separation and analysis by mass spectrometry was done using a 1200 series 

HPLC system with a Phenomenex Kinetex column (1.7 µl × 100 mm × 2.1 mm) with a 

SecurityGuard Ultra (Part No: AJ-9000) coupled to an Agilent Technologies 6550 Accurate-Mass 

Q-Tof. Solvent A: H2O, 10mM ammonium acetate; Solvent B: acetonitrile, 10mM ammonium 

acetate. 10 µl of extract were injected and the column (C18) was eluted at 1.125 ml/min. Initial 

conditions were 60% solvent B: 0-2 min, 95% B; 2-4 min, 60% B; 4-5 min at initial conditions. 

Spectra were collected in negative ion mode form 50 – 3200mz. Continuous infusion of 
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calibrants (Agilent compounds HP-321, HP-921, HP-1821) ensured exact masses over the whole 

mass range. 

We converted the raw data files to the mzML format using msConvert and processed them in R 

using the XCMS63 (ver 3.0.2). We extracted targeted ion chromatograms with CAMERA (ver  

1.34.0). 

Transcriptional module analysis. 

The iron-responsive sub-graph of the global gene regulation network published by Peterson et 

al.28,  was generated by using all expression modules and all iron-responsive genes as nodes, with 

edges connecting them representing module membership. All other gene nodes were discarded, 

keeping only the information pertinent to the number of genes present in each module (its 

degree). We focused explicitly on modules with at least 3 IdeR-dependent iron-responsive genes 

within them. Finally we marked significant differential expression of the gene nodes in every 

comparison. 

For the purposes of contextualising the expressional profiling of RpoB Ser450Leu we selected a 

subset of expression modules as follows: first we collated all the genes that were differentially 

expressed in at least one genetic background as determined by pairwise comparisons. We then 

scored each expression module for enrichment of membership by differentially expressed genes 

using a binomial test. We retained all modules for which the test pointed to an excess of 

differentially regulated genes (p < 0.05). We constructed a new sub-graph of the global regulatory 

network using all enriched modules and their constituent genes irrespective of whether or not 

individual genes were significantly differentially expressed. Edges reflected module membership. 

We added expression information in the form of log-fold changes of abundance to each 

subgraph based on pairwise analyses. 
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Calculation of genetic distance between clinical isolates 

Genetic distance between strains was defined as the number of single nucleotide variants (SNV) 

that separate two strains. The numeric value of this parameter was extracted from the phylogeny 

published elsewhere53. 

Quantification of the relative impact of the rpoB mutation on gene expression in 

different clinical isolates 

We define the dissimilarity in the expressional response to the presence of the rpoB mutation 

using three metrics: absolute number of shared significantly differentially expressed genes, the 

fraction of both the shared significantly differentially expressed genes and shared non-affected 

genes (hamming distance) and the Euclidean distance between ratios of TPM. The first is simply 

the number of shared genes that were found to be significantly affected by the presence of the 

rpoB mutation in two different genetic backgrounds. For the second we use the same input to 

calculate the hamming distance between the patterns of genes significantly affected by the 

mutation in rpoB in two different genetic backgrounds. In the third case we first calculate the 

TPM. We then calculate the mean TPM for each gene across the biological replicates as well as 

the ratio of mutant to wild type mean TPM for every gene. This gives us a vector containing 4000 

ratios for each mutant-wild type pair. Finally we calculate the Euclidean distance between these 

vectors for the different genetic backgrounds. We plotted each of these metrics against genetic 

distance and calculated the spearman correlation and the coefficient of variance: standard 

deviation over mean multiplied by 100 (σ / μ × 100%). 

Quantification of the absolute impact of the rpoB mutation on gene expression of a 

clinical isolate 

We used transcript counts per million bases (TPM) and label free quantification (LFQ) to 

generate an RNA vector and a protein vector containing all the available information for each 

measured sample. We then calculated all the possible DS – RifR pairwise Euclidean distances for 
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the RNA and protein vectors within each genetic background. We used the mean and standard 

deviation for the dissimilarity estimates. We evaluated the correlation between the fitness cost of 

RpoB mutations and the expression distance using the R2-coefficient derived from ordinary least 

squares linear regression as well as the Spearman correlation. Arbitrary units expressing the 

dissimilarity were obtained by dividing the calculated distances by 500,000 or 10,000,000 for TPM 

and LFQ, respectively. 

Estimation of the biosynthetic cost of protein production 

The calculation of biosynthetic cost was based on the molecular weight of amino acids (MW)36 or 

on the estimate of E. coli ATP investment into individual amino acids derived by Akashi et al.37 

using the following formulae: 

�� �  ����,� � � ����
�

�	


    or    �� �  ����,� � � ����
�

�	


  

�� �  � ��
�

�

 

Where the cost of protein i (pi) was calculated as the sum of the cost for each constituent amino 

acid (αj
MW/ATP) based either on its molecular weight (MW) or ATP investment (ATP) and adjusted 

by the proportional contribution of protein i to the total proteome of sample X (LFQi,X). The 

overall cost of the proteome P for a sample X (PX) is expressed as the sum of the costs of 

individual proteins (p). The difference between the biosynthetic investments in the proteome of 

sample X when compared to sample Y was simply: PX – PY. We estimated the biosynthetic 

perturbation of RpoB Ser450Leu within a genetic background, by resampling sample-specific 

proteome costs for DS and RifR with replacement 100-times, and using the median as well as the 

3rd and 98th quantiles to provide the 95% confidence interval. Finally, we quantify the correlation 

with the relative fitness of RpoB Ser450Leu by calculating the Spearman coefficient. 
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Minimum inhibitory concentration determination 

We used the microplate alamar blue assay64 to determine the minimum inhibitory concentrations 

of bedaquiline in all drug susceptible and drug resistant strains used in our study. We tested 

bedaquiline using a two-fold dilution series spanning a concentration of 4 ng/ml – 1 µg/ml. 

Fluctuation Assay for determining the frequency of rifampicin resistance 

We used the Luria-Delbrück fluctuation assay65 to determine the frequency of rifampicin 

resistance in Mycobacterium smegmatis. Briefly, we inoculated 30 parallel cultures containing 10 ml of 

modified Middlebrook 7H9 medium containing either glycerol, citrate or acetate as the main 

carbon source with 5000 colony forming units of pre-adapted M. smegmatis. We grew the cultures 

to mid-log phase (OD600=0.5) at which point we chose three cultures at random for the 

determination of overall population size. We harvested the remaining bacteria by centrifugation 

4000×g for 7 minutes, re-suspended the cellular pellet with 500 µl of fresh Middlebrook 7H9 

medium and plated onto Middlebrook 7H10 solid media supplemented with 200 µg/ml 

Rifampicin. Plates were incubated at 37°C for 3-4 days and scored by counting the resulting 

resistant colonies. We determined the population-wide number of mutants (m) using an in house 

implementation of the Ma-Sandri-Sarkar maximum likelihood estimation66, and adjusted it by the 

estimated population size to determine the frequency of resistance. 
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Figure Legends 

Figure 1: Conceptual workflow. A. Two complementary strain sets used for the experiments. Strains 

comprised in the “Evolutionary trajectory of rifampicin resistance” set were derived from a single 

clinical isolate (DS, N0155) by isolation of a Ser450Leu mutant in the lab and the subsequent passage 

for 200 generations in the absence of rifampicin. These strains were used to identify expression 

changes that are reversed by compensation - signature of compensation. The generalizability of our 

finding was checked using the “Genetic diversity strain set” containing five independent clinical 

isolates and their rifampicin-resistant derivatives. All rifampicin resistant strains shared the same 

resistance mutation – RpoB Ser450Leu. B. Experimental outline for the sampling and analyses. 

Figure 2: Signature of compensation. A. The relative fitness of drug resistant strains (DR) is 

expected to be lower than wild type (DS) at first, but then is expected to increase due to compensatory 

evolution. The phenotypic equivalent of this trend is illustrated as an increase/decrease in a 

measurable trait upon the emergence of resistance that is then returned to its previous level through 

compensation. We refer to this dynamic as the “Signature of Compensation”. B. Plot of transcript 

counts per million bases (TPM) and label free quantifications (LFQ) of cellular proteins for genes 

whose expression is perturbed by the Ser450Leu mutation in RpoB and returned to wild type in the 

presence of the compensating Leu516Pro mutation. All results were standardized across 

measurements for a single gene to allow the comparison between strains. Grey traces show genes 

that are significantly more highly expressed in RifR, yellow traces show genes that were significantly 

less highly expressed in RifR. The red and blue bold lines show the median of the sample for more 

and less highly expressed proteins, respectively. 

Figure 3: RifR has a higher baseline level of mycobactin biosynthesis than DS. A. Subset of the 

gene regulatory network28 containing iron responsive genes. Circles represent IdeR-regulated genes 

that are either induced (black inner circle) or repressed (white inner circle) in low iron conditions. 

Hexagons represent IdeR-independent iron responsive genes that are induced (white inner hexagons) 

or repressed (black inner hexagons) in low iron conditions. We used blue and red to indicate 

significantly lower or higher RNA expression in RifR, respectively. Diamonds represent transcriptional 

modules as defined by Petersen et al, black diamonds indicate modules that contain at least 3 IdeR-

responsive genes. Edges connect gene nodes with the module nodes they belong to. Labels 1-7 refer 

to Module 502 (1), Module 525 (2), Module 267 (3), Module 446 (4), Module 231 (5), Module 086 (6) 

and Module 295 (7) from the original publication.  B. Relative mycobactin levels expressed as 

maximum peak heights for DS and RifR in normal medium (grey dots) and iron-supplemented medium 

(10µM hemin, red dots). Unfilled circles represent the mean of the observations. 
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Figure 4:  The prominent role of mycobactin biosynthesis in the signature of compensation is 

not universal. A. Iron-responsive subset the of gene regulatory network, as shown in Figure 3, 

coloured based on transcriptional differential expression data from pairwise comparison of genetically 

distinct rifampicin-susceptible clinical isolates and their cognate RpoB Ser450Leu mutants. RifR and 

N0155 refer to an independent sampling of the same strain pairs. See Supplementary Figure 7 for the 

proteome counterpart of this plot. B. Representation of the enrichment of significantly differentially 

expressed genes within individual transcriptional modules, as defined by Peterson et al.28. The 

columns alternate proteomic (P) and transcriptomic data (R). “ALL” refers to the global differential 

expression analysis of all rifampicin-susceptible against all rifampicin-resistant strains. The remaining 

column annotations refer to individual pair-wise comparisons in different genetic backgrounds. Black 

squares represent no significant enrichment, mauve squares and yellow squares show enrichment at 

0.01<p<0.05 and p<0.01 using a Fisher’s exact test. These p-values are not adjusted for multiple 

testing. Modules covering the DosR-regulon and IdeR-iron repressed regulon are highlighted 

separately. 

Figure 5:  The fitness cost of RpoB Ser450Leu correlates with increased resource 

requirements. A. The relative fitness of Ser450Leu RpoB mutants estimated from growth rate data is 

negatively correlated with the magnitude of the deviation from the resources allocated to the wild type 

proteome. ϱs – Spearman correlation. B. Comparison of minimum inhibitory concentrations (MIC) of 

bedaquiline in clinical isolates and their cognate RpoB mutants. Dotted line shows parity, darker 

shading includes 50% or lower difference in MIC and the lighter shading spans up to 2-fold change in 

MIC. C. The frequency of rifampicin resistance as measured in the model organism Mycobacterium 

smegmatis with the Luria-Delbrück fluctuation assay is plotted against the generation time in media 

containing different carbon sources. 
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