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This work performs a thorough characterization and analysis of the open source Lucene search library. The ar-

ticle describes in detail the architecture, functionality, and micro-architectural behavior of the search engine,

and investigates prominent online document search research issues. In particular, we study how intra-server

index partitioning affects the response time and throughput, explore the potential use of low power servers

for document search, and examine the sources of performance degradation ands the causes of tail latencies.

Some of our main conclusions are the following: (a) intra-server index partitioning can reduce tail latencies

but with diminishing benefits as incoming query traffic increases, (b) low power servers given enough parti-

tioning can provide same average and tail response times as conventional high performance servers, (c) index

search is a CPU-intensive cache-friendly application, and (d) C-states are the main culprits for performance

degradation in document search.
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1 INTRODUCTION

Online search has become one of the most popular and necessary services that virtually all
people use for everyday tasks. Online search comes in many forms, such as web search, email
search, enterprise search for business records, and landmark search in navigation applications.
These applications must respond quickly to user queries. For instance, even slight slowdowns in
response times can have negative impact on online services’ revenue [3, 12]. Therefore, online
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search services are required to provide tight QoS guarantees, such as tail latencies below 500ms
[2] even at peak traffic loads.

Previous work aims at improving the latency, efficiency and cost of operation of search ser-
vices. In the work of Meisner et al. [27], full system power management is evaluated for a web
search workload. To improve energy efficiency, Lo et al. [20] proposed running each server just
fast enough to satisfy global latency requirements, whereas Vamanan et al. [33] proposed to ex-
ploit time slack by slowing down individual sub-queries. The possibility of using mobile cores for
web search for improved cost and energy efficiency is studied in the work of Reddi et al. [30]. Ren
et al. [31] examined how web search can benefit from heterogeneous cores, whereas Haque et al.
[10] and Jeon et al. [15] looked at adaptive parallelism for improving response times. Work stealing
for meeting web search target latency is proposed by Li et al. [17]. Hsu et al. [14] propose a turbo
boost framework that increases CPU voltage and frequency at fine-grain time intervals to reduce
the latency of computational heavy search queries. Other work has collocated search applications
with other types of workloads to increase data center utilization [25, 26, 35].

This article presents a thorough top-down characterization of an open source search engine to
improve the overall understanding of search engines. In particular, this work presents a character-
ization of the Lucene-based Nutch web search benchmark [8] on real hardware providing insights
about the application and micro-architectural level behavior of this benchmark. This workload
is based on the popular Lucene document search engine. Previous characterization efforts of this
benchmark focused only on the query stream characterization [34] and micro-architectural charac-
terization [8]. Another work conducted with the Nutch benchmark [9] evaluated the performance
of index intra-server partitioning and slower cores. However, that work used a small index (5GB)
and closed-loop query traffic (stress test traffic). This work extends and earlier work [9] by us-
ing larger index size (10GB) and Poisson inter-arrival distribution for dictating query arrival rate.
Furthermore, this work provides a broader top-down benchmark characterization, as it performs,
among other, (a) an analysis of the performance benefit from various micro-architectural features
such as caching and prefetching, and (b) an analysis of the the latency impact of DVFS and idle
states.

The specific contributions of this work are the following:

(1) We characterize end-to-end query processing times and confirm that index search is the
most time-consuming part of the query execution [9, 27, 30].

(2) We show that index search time scales linearly with index size, whereas other operations,
such as document summary generation, take constant processing time.

(3) We demonstrate that a 10GB index, generated with a typical crawl walk starting from
various seed web sites, exhibits good load balancing in terms of the number of indexed
documents per partition.

(4) Given the performance scaling with dataset partitioning and parallel search (due to the
good load balancing of index terms across partitions), we motivate the use of low power
servers with many simple cores for index search.

(5) We confirm that intra-server index partitioning is beneficial for both average and tail
latency reduction, but benefits decrease with increased query arrival rate and load imbal-
ance [9, 10, 15].

(6) The index is stored in compressed form, and each query executes a large amount of in-
structions for decompression to read its index from memory. This explains the high in-
structions per cycle (IPC) and the good caching behavior of index search.

(7) Idle states are detrimental to index search performance.
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Fig. 1. Basic components of Nutch with arrows showing the query execution flow.

The rest of the article is organized as follows. Section 2 describes the search engine framework
used for the experiments in this work. Section 3 presents the experimental setup. Section 4 presents
several studies to characterize the application-level performance behavior of the benchmark. Sec-
tion 5 presents a micro-architectural characterization. The article concludes and provides direction
for future work in Section 6.

2 SEARCH ENGINE FRAMEWORK DESCRIPTION

2.1 Architecture and Functionality

This section describes the architecture and the functionality of the Nutch web search engine. The
Nutch framework provides a lot of useful functionalities, such as (a) crawling and building the
index, (b) partitioning the index among multiple index servers, and (c) coordinating index server
execution with a front-end server that forwards the search requests to multiple index servers,
collects their answers, and sorts them. Figure 1 shows the components and the overview of the
search engine’s architecture. The Nutch search engine structure consists of the front-end, index,
and document servers, and it is similar to what is described by Barroso et al. [5] as the Google query
serving architecture. The Nutch index search is based on the Lucene search engine, which is well-
known. For instance, the Twitter’s real-time search [6] is built on Lucene. Therefore, this engine is
representative of some real-world deployments. It must be noted, however, that compared to the
most widely used search engines, such as Google or Bing, the search engine used in this work has
some differences mainly in document scoring and query processing, which are discussed later in
this section.

In the following, we provide a description of the query-processing flow that is also illustrated
in Figure 1. First, the client sends a query to the front-end server. Second, the front-end receives
the query and asks each index server to return the most relevant query documents. Third, the
index servers perform the search and respond to the front-end with the document IDs and the rel-
evance scores of the top-k relevant matching documents. Fourth, the front-end collects the results
and sorts the documents according to their relevance score. In this step, the front-end performs a
check for duplicate results. The default configuration of Nutch allows no more than two results
from the same site. Depending on the query, steps 2 through 4 may be repeated multiple times
until the front-end is satisfied with the number of unique sites. To increase the number of unique
sites retrieved, the number of top-k results returned by each index-server is increased by 2X at
each search repetition. These subsequent searches are referred to as optimization searches. Fifth,
after the front-end has the final top-k results, it sends a detail request to each index server whose
search results are in the current top-k list. Each index server responds to a detail request with a
title and a URL. Sixth, as soon as the front-end has all the titles and URLs for the top-k results,
it asks the document servers for their summaries. The front-end is aware of which documents
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Fig. 2. High-level view of the index organization.

each document server holds. Consequently, only the document servers that hold the documents
in the top-k results are being asked for summaries. Seventh, the document servers generate the
summaries and send them to the front-end. Eighth, when the front-end receives the summaries,
it assembles the final HTML response and sends it to the client. Next, we provide a more detailed
per-component description.

Index server. The index server is a Hadoop 0.2 IPC server process running the Lucene 3.0.1
search engine. The Hadoop IPC server consists of (a) a listening thread, which listens for incoming
requests from the front-end server; (b) the handler threads, which perform the index search or
retrieve the details of a document; and (c) a responder thread for sending the responses to the
front-end.

Nutch uses document partitioning, which is the most common index partitioning implemen-
tation [24]. With document partitioning, each index server holds an index for a disjoint set of
documents. The index of our benchmark is generated by a crawling process that uses Hadoop’s
MapReduce framework [1]. The index is stored in multiple partitions, similarly to a typical Hadoop
MapReduce output, with each partition storing a disjoint set of documents. The particular crawler
distributes the documents to an index partition using the hash of the document’s URL and a modulo
operation, such as partitionNo = URL_hash mod number_of_partitions. According to theory [24],
this document distribution results in a more uniform distribution of query processing time across
index servers. This explains the good load balancing we observe later in the experimental results.

Next, we discuss the implementation of the index organization shown in Figure 2. The index
terms are stored in an array in alphabetical order. The alphabetical ordering enables binary search
and fast term searching. A parallel array holds pointers to a byte stream; each pointer points to
the position in the byte stream where the <documentId,termFrequency> pairs of a term start. The
list of a term’s <documentId,termFrequency> pairs is called the posting list. The documentId and
termFrequency pairs are compressed using a variable integer format [23]. The variable integer
format enables saving space by using the first bit of each byte to show whether more bytes are
remaining (if a bit is equal to 1, more bytes are left; otherwise, no bytes are left to read). This
way, all numbers from 0 to 127 can be represented with one byte, all numbers from 128 to 16,383
with two bytes, and so forth. The posting list can be sorted by score [15, 24]—for example, the
PageRank [28]. Sorting the docs by score is beneficial both for performance and for relevance of
results. It provides quick access to the most popular documents that are most likely to fit the user’s
information needs. In Nutch, all posting lists are sorted by DocId, which is useful for performing
efficient merging of posting lists for conjunctive (AND) queries (posting list intersection) [24].

Now we discuss the index search procedure. Nutch uses conjunctive multi-term queries, a vector
space model (for representing documents), and a tf.idf weighting scheme (for ranking documents)
[22]. The actual search procedure goes like this. First, binary search is performed to find the posting
lists for all query terms. Then, the posting list intersection is performed to find the documents
that contain all query terms. For each document found, a tf.idf score is calculated. The tf.idf [22]
weighting scheme gives high scores to documents that have many occurrences of the query terms
and also to documents that contain many occurrences of rare terms. To decide the top-k (e.g.,
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top 10) most relevant to the query documents, the index server sorts the documents based on their
tf.idf score. To summarize, the index search time for a conjunctive query is determined by (a) the
binary search for finding each term’s posting list, (b) the merging of the term posting lists, (c) the
ranking of the documents that come out of the intersection, and (d) the sorting of the documents
by their relevance rank.

At this point, it is useful to provide a brief comparison of Lucene with other search engines. The
posting list intersection is generally considered the most time consuming part of the index search
procedure, not only for Lucene but for other search engines as well [32]. In terms of the ranking
function, however, despite tf.idf being a very well known scoring scheme, some differences are
to be expected as compared to the most advanced search engines. For instance, the Bing search
engine uses machine learning–based ranking [30]. In addition, web search engines usually per-
form an early termination of the search procedure either by using a cut-off latency [30] or when
the quality of results is unlikely to improve with further searching [15]. Early termination is used
to avoid having an index server search for too long. Nutch provides an option to stop searching
according to a cut-off latency. With a cut-off latency search configuration, queries that are pre-
maturely stopped may suffer from poor result quality (low relevance of the search results). For
instance, this may happen when an index server is, for a variety of reasons, slowed down and does
not have enough time to go through its posting list. In practical terms, it is not trivial to compare
server performance in terms of relevance of query results. Given that optimizations that expedite
search time can be beneficial to deployments with and without cut-off, for our evaluation we use
the default configuration of the Nutch benchmark, which does not use any cut-off latency. Conse-
quently, the various server configurations that we assess are compared using latency metrics (both
average and percentile).

Two other parameters that are important for the index search are (a) the amount of index dataset
an index server holds and (b) the number of index servers used. The larger the dataset an index
server holds, the longer its search time. By increasing the number of index servers, we can re-
duce response time. Using more index servers enables increasing the degree of partitioning, which
means that each index server gets a smaller index part and thus needs less time to respond to a
query. Of course, it is important to have balanced posting lists across the partitions; otherwise,
partitioning will not provide the expected performance benefit. Index partitioning can be done
across servers or inside the same server (intra-server partitioning) [15]. Intra-server partitioning
is realized by running multiple index search contexts on the same server with each context work-
ing on a different index part. Intra-server partitioning represents a trade-off between throughput
and response time latency. Having many index searchers in a CPU socket can speed up the execu-
tion of a query but reduces the number of available cores for handling multiple queries in parallel
and can thus increase queueing time.

Document server. The document server, like the index server, is an instance of a Hadoop IPC
server with a listening thread, a responder thread, and many handler threads. The document server
contains the actual copies of the documents. The document server is used for fetching the sum-
maries of the documents. Summaries can be dynamic or static [24]. Static summaries are preloaded
and are always the same regardless of the query that hit a document, whereas dynamic summaries
are query dependent and attempt to explain to the user why a document is relevant to the query.
Nutch uses a dynamic summarizer. The dataset of the document server, like the index, is parti-
tioned in many parts. Each part contains a disjoint set of documents. For expediting access to
the document’s content, the document server uses a partitioning function (which takes as input a
document’s URL) for determining at which partition the document is located. A document server
partition contains (URL, web page content) key value pairs and a small index that points to a
fraction of keys that further expedites the summary generation procedure.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 2, Article 19. Publication date: May 2019.



19:6 Z. Hadjilambrou et al.

Front-end server. The front-end is a Tomcat web server running the Nutch application. Tom-
cat is multi-threaded and spawns a new thread for handling a new query request. The front-end
coordinates the entire query execution and is the component that acts as a link between the client
and the nodes that do the actual job: the index and the document servers.

Client. The client is a process thread used for sending queries to the front-end. A client thread
can send queries based on some inter-arrival time distribution [15] (open-loop) or in a stress test
manner (closed loop). In the stress test scenario, a client thread sends a new query as soon as it
receives the response for the previous query sent.

Having discussed the architecture and the information flow of the search engine, we next de-
scribe its inputs, such as the queries.

2.2 Inputs

Search engines can handle various types of queries. The most typical type of queries are multi-
term queries. For a multi-term query, search engines try to give a higher score to a document that
contains many terms of the query (e.g., 3 of 5) [24]. Some search engines allow multi-term queries
to be combined with Boolean expressions like OR, AND, NOT. Other types of queries are (a) phrase
queries, which try to find documents that contain a phrase specified by a user, and (b) proximity
queries for terms within a specified distance [24]. Phrase queries and proximity queries can be
implemented with a positional index that holds the position of each term in a document. Nutch
considers all multi-term queries as AND queries, and it can also execute phrase queries. For testing
a search engine, we can either use a real traffic query stream trace or random queries built using
index terms.

2.3 Metrics

A search engine must provide both low mean and low high percentile response times. Service
guarantees, such as 99% of response times within 500ms, are usually set to keep users satisfied [2].
Such service guarantees must be preserved even at the highest (peak) loads [7, 16]. Relevance of the
search results is also a crucial factor that contributes to user satisfaction and the eventual success of
a search engine. The relevance of search results can be improved with more sophisticated ranking
functions and a larger index [15].

2.4 Sources of Performance Degradation, Variability, and Tail Latencies

Search engines in real-world deployments, such as web search running in data centers, perform
index search across thousands of servers in parallel. At such grand scale, performance variability is
more likely to happen. Subject to a particular setup, a single node can either slow down the whole
query execution or may negatively affect the relevance of results (in the case of utilizing cut-off
latency) [4]. In any case, the user experience is affected negatively. Search engines suffer from
intrinsic performance variability, as some queries require longer time to execute than the average
case. These queries plus the various sources of performance variability [18], such as power-saving
features, are the main culprits for high tail latencies. Part of this work aims to identify and address
sources of performance variability and of poor response times in search engines. In particular,
in Section 4.6, we analyze the performance degradation caused by power-saving features such as
idles states and dynamic voltage frequency scaling (DVFS).

3 EXPERIMENTAL DETAILS

For the experimental analysis, we use dual-socket blade servers based on an Intel Xeon E5-2665
@2.4GHz CPU. The processor supports frequency scaling with a range from 1.6 to 2.4 GHz. Table 1
provides details about the blade server hardware. At most, we use four blade servers, one for
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Table 1. Server System Parameters

Number of CPUs (sockets) 2
CPU Intel Xeon E5-2665 @ 2.4GHz

Micro-architecture Sandy Bridge
Private L1 (Instruction + Data) 32KB+32KB

Private L2 256KB
Shared L3 size 20MB

Number of physical cores per CPU 8
Number of logical cores (SMT contexts) per CPU 2

DRAM 8 x 8 GB DDR3 1,600MHz
NUMA Memory nodes Two with each node having 32GB

Ethernet speed InfiniBand
OS Ubuntu 16, Kernel 4.4.0-63

each of the following functions: client, front-end server, index server, and document server. The
experiments that focus on index search are conducted with three blade servers (client, front-end,
index). The machines are connected with an InfiniBand communication network.

Now we explain in more detail how we performed the experiments. The client machine runs one
client process that we implemented. For almost all experiments, the client sends queries using a
Poisson distribution to determine inter-arrival times. The client can also send queries in a stress test
manner. We use the stress test with one client thread only for the experiments in Sections 4.1 and
4.2 to isolate query stream characterization and processing time breakdown from queueing delays
and resource contention overheads. The front-end machine runs a Tomcat web server process that
spawns a new thread for handling each new query request.

Unless stated otherwise, our experiments use the following default configuration. The index and
document machines run one index server process and one document server process, respectively.
We keep the number of handler threads (see Section 2.1) of the index and document servers equal
to the number of cores. We pin the handler threads to specific cores and memory nodes using the
numactl command [19], and we disable DVFS (run constantly at the same nominal frequency). In
addition, in all runs, we place the index in a memory-mapped file system using the tmpfs Linux
command. Explicitly pre-loading the index into memory, instead of relying on the OS file system
cache, improves performance and reduces variability between runs. Moreover, the servers are run
with hyper-threading disabled to ease the analysis, as this avoids performance differences arising
from running in two different physical cores versus running on two logical cores mapped in the
same physical core. Again for analysis ease, turbo boost is disabled because it can cause variation
in measurements. Finally, we disabled all C-states because we find that they cause a significant
increase in latencies (Section 4.6).

Regarding the query stream, we use 100K queries from the AOL query log [29]. We have selected
100K unique queries. This means that each query appears only once in the query stream. This is
done to emulate the effect of common or repeated queries being captured by a query cache. We are
aware of the controversy surrounding the AOL query log because of privacy issues. We want to
state that we do not use the AOL log for identification of people. We use the real-life representative
queries only for performance characterization and analysis purposes.

For the index dataset, we use a 10GB index crawled from various Internet pages using the Nutch
crawler. To crawl and generate the index, we followed instructions in the Nutch tutorial [1]. The
dataset is divided into chunks of approximately 220MB each. This facilitates index partitioning
since these chunks can be combined to form larger index partitions. Besides the index dataset, the
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Fig. 3. Frequency of query lengths of

the input query stream.

Fig. 4. CDF of the response times. Mean

is 59ms, 90th is 118ms, and 99th is 437ms.

crawling also produced a 100GB segment dataset that is given as input to the document server
(segment dataset).

In Section 5, we show micro-architectural data such as IPC, captured using the perf Linux utility.

4 CHARACTERIZATION AND ANALYSIS

4.1 Query Stream

The analysis in this section is obtained with one client thread running in stress mode. The client
sends the next query only after it receives the answer for the previous query. This is done to isolate
the response times from the effects of queuing and resource contention when serving multiple
queries in parallel. This way, the analysis is focused only on the time needed to process queries.

Figure 3 shows the cumulative frequency of the queries according to their number of terms.
We have observed query lengths from 1 term to 72 terms. The short queries dominate the query
stream. On average, the query length is 2.93 terms. A cumulative distribution of the frequency of
response times is shown in Figure 4. The average response time is 59ms, the 90th percentile is
118ms, and the 99th percentile is 437ms. Most queries are executed fast, but there are few queries
that require hundreds of milliseconds. Figure 4 also shows the same distribution but weighted with
the response time of each query. A noticeable fraction of the total processing time, around 10%, is
due to queries with very long response times (more than 490ms).

Figure 5 presents the correlation between the number of query terms and the average end-to-
end response time. The error bars represent the observed maximum and minimum for a given
number of terms. The figure also shows, on the secondary y-axis, the average number of docu-
ments matched for a given number of query terms. Please note that both y-axes are logarithmic.
The results in Figure 5 clearly show an increase in the average response time with a growing num-
ber of query terms. This behavior is consistent with what previous work has observed [32]. The
correlation with matching documents is a rather monotonic decrease with an increasing number
of query terms. We observe a high deviation in response times that decreases as the number of
query terms grows. In the following, we discuss the implications of these observations.

According to Tatikonda et al. [32], the intersection of posting lists dominates the processing
cost. This explains why, on average, we observe higher response times for larger queries. The large
deviation in response times, especially for queries with a small number of terms (e.g., 1 to 3 terms),
can be explained by considering the number of documents that are relevant to a query. Let us take,
for example, some single term queries. There are single term queries like “about” or “home,” which
are virtually relevant to all documents in the dataset. The processing cost of ranking all of those
documents plus the possible extra optimization searches, which may be required for duplicate
elimination, yields high response times. The wide deviation in response times for queries of the
same length underlines the difficulty in developing accurate heuristics for predicting response
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Fig. 5. Average response time and average number of

matching documents as a function of the number of

query terms.

Fig. 6. The breakdown of 99th tail latencies

as a function of the number of query terms.

time based only on the number of terms. The reason the documents matched are decreasing with
increasing query terms is due to conjunctive multi-term queries. For these queries, as the number
of terms grows, it gets more difficult to find documents that contain all the terms of a query.

The results in Figure 6 show the breakdown for another key search engine characteristic: the
contribution of queries with a given number of terms to long tail latency (>99%). The results in
this figure have a correlation with Figure 3 that shows the breakdown of the queries according to
their number of terms. The large contribution of queries with few terms to tail latency is due to
their high frequency in the entire stream, as shown in Figure 3. In addition, as we have already
mentioned, queries with few terms or even one term, such as “about,” may end up with many
optimization searches. This kind of queries are very time consuming, as they need many searches
and have a lot of matching documents. The bottom line of this analysis is that we do not observe
the tail being dominated only by queries with many terms. Small term queries also experience long
latency. Similar behavior is observed by Hsu et al. [14].

4.2 Performance in Relation to Dataset Size

Next, we report on the findings about the sensitivity of the response time to the dataset size. The
goal is to identify how much processing time is spent in the various phases of the benchmark
as a function of the dataset size. According to Section 2.1, we summarize and report the query
processing time in terms of the latency of the following four discrete Nutch phases: (a) the time
spent for client– front-end communication (the client sends a request, and the front-end assembles
the html response and sends it back to client); (b) the index search, which is performed on the
index server (including any optimization searches for duplicate deletion, any time the front-end
spends to sort the results, and the time for network communication between the front-end and
index servers); (c) the detail requests, which are also performed on the index server; and (d) the
summary requests, which are performed on the document server. Like in the previous section,
we use one client in stress mode to isolate the processing time from queuing delays and resource
contention overheads. We perform six experiments with increasing dataset parts both for the index
and the document servers.

The result of the experiments is shown in Figure 7. It can be observed that the processing time
for the search increases linearly with the dataset size, whereas the rest of the processing times
remain mostly the same. It is interesting to understand why the summary generation time does
not increase with the dataset size. The explanation lies in the functionality of the document server,
described in Section 2.1. The document server uses a hash function to determine at which one of
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Fig. 7. Cumulative time spent at each phase of the

benchmark as a function of dataset size.

Fig. 8. Numbers of documents stored in an in-

dex versus the index size in gigabytes.

the partitions a document is located, so it does not have to search all partitions to find a document.
This behavior helps limit the time required for finding a document to be, more or less, the time
needed for searching the average size of a document server segment partition, which does not vary
a lot across runs, plus the time required for dynamically generating a summary for a document.
This targeted search approach cannot be implemented for index search, as a relevant document
may exist in any index dataset partition, and thus the search time increases as we increase the index
dataset. Increasing the index dataset results in the adding of more documents. This is confirmed
by the strong correlation seen in Figure 8 between the number of indexed document increases and
the index size. This means that with a bigger index dataset, the index server needs more time to
traverse a term’s posting list. This explains the nearly linear relation between the index search time
and the index size. Such behavior suggests that index search may benefit from index partitioning
and parallel search. We explore this possibility in Section 4.4.

In addition, it is clearly shown in Figure 7 that the index search dominates the end-to-end re-
sponse time. This observation confirms what previous work [15, 27, 30] observes, namely that
index search is the most processing-demanding part of a search engine. Hence, for the rest of the
article, we perform experiments that focus only on index search and do not perform a query’s
detail and summary operations. Thus, for the remaining experiments, we use three blade servers:
one server running the client, one server running the front-end, and one server running the index
server (or index servers for the runs with intra-server partitioning).

4.3 Performance as a Function of Inter-Arrival Rate

In this section, we perform an investigation into how the query arrival rate affects the response
latencies and CPU utilization. Figure 9 shows the average latency and Figure 10 the 99th percentile
latency, as well as the index server CPU utilization (right axis) for various query arrival rates.
Both average and 99th percentile latency increase with higher arrival rates. In particular, average
latency increases from 40ms at 50 queries/sec to 125ms at 225 queries/sec, and correspondingly,
99th percentile latency increases from 255 to 1152 ms. The latency increase is the result of (a) longer
queue latency and (b) increased contention on shared resources when multiple cores are engaged
simultaneously. Higher traffic rates increase both the number of cores that simultaneously must
be active, as well as the time queries are queued waiting to be served. Hence, higher arrival rates
result in higher latency. Regarding index server CPU utilization, it increases linearly with arrival
rate. We stop the exploration at 225 queries/sec, which causes a CPU utilization of 83%. The reason
we stop at 225 queries/sec is because at this rate, we have observed some dropped queries due to
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Fig. 9. Average latency for various query

arrival traffic rates.

Fig. 10. CPU utilization and 99th per-

centile latency for various query arrival

traffic rates.

Fig. 11. Histogram of the ratio of posting lists size

of all terms for two equal-size index partitions.

Fig. 12. Histogram of the ratio of posting lists of

the most popular terms (at least 1,000 postings) for

two equal-size index partitions.

extremely high queuing times. For the rest of the article, to avoid runs with dropped queries, we
perform experiments with arrival rates ranging between 50 and 200 queries/sec.

4.4 Intra-Server Partitioning

We now compare the posting lists of two equal-size (in gigabyte) partitions. If the two partitions
have equal-size posting lists for most terms, then index partitioning and parallel search can help
reduce index search latency. Figure 11 shows a histogram of how balanced the two partitions are
according to the size of the posting list for each term. The balance is measured in terms of the size
ratio of the biggest over the smallest posting list. Values close to 1 mean equal-size partitions. The
results show that the majority of terms have a ratio of above 2. Keep in mind, however, that many
terms have very few postings. A query term with a short posting list has negligible contribution
to the query’s computation time. Therefore, it is more useful to check the load balancing for terms
with large posting list sizes (e.g., at least 1,000 documents). The histogram in Figure 12 shows the
load balance across partitions for these more popular terms. The figure clearly shows a high degree
of load balancing, with 97% of terms having posting list size ratios below 1.1. Consequently, we
can conclude that there is a good load balance among the popular terms, which are the ones that
add considerable computation time to the query execution. These findings indicate that it is worth
examining further index partitioning. Next, we investigate the best server configuration to run a
partitioned index and the benefits from a partitioned index search in a realistic setup.

A machine running an index server can have multiple index server processes with each process
working on a separate index part. Using many index server processes can reduce the response
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Fig. 13. Average latency for the various

index-partitioned configurations across dif-

ferent query arrival rates.

Fig. 14. The 99th percentile latency for

the various index-partitioned configurations

across different query arrival rates.

latency, due to the good load balancing among index partitions, but at the expense of executing
less independent queries in parallel. We study four different configurations for how to run the
index server on a CPU. In particular, a socket in our Intel Xeon E5-2665 has eight cores, and we
explore the following options: (a) one index server process with eight cores, (b) two index server
processes and four cores per index server process, (c) four index server processes and two cores per
index server process, and (d) eight index server processes with one core per index server process.
We used the numactl command [19] to pin processes to specific cores. To test the sensitivity of
each option to incoming traffic, we used arrival rates from 50 to 200 queries/sec. For presentation
clarity, we will denote the different configurations with the coding IX_CY, where X denotes the
index servers and Y the cores per server (e.g., I2_C2 means two index server processes and two
cores per index server process). The results of this analysis are reported in Figure 13 (average
latency) and Figure 14 (99th percentile).

We observe that eight index servers (I8_C1) is a bad choice because even at the lowest arrival
rates, it does not manage to provide faster latencies than the no-partitioned configuration (I1_C8).
This underlines the diminishing benefits from excessive parallelism. However, we observe that the
two other partitioned configurations, I2_C4 and I4_C2, behave much better. I4_C2 provides faster
average latency than I1_C8 for arrival rates up to 125 queries/sec. I2_C4 provides faster or equal to
I1_C8 average latency for all query arrival rates. But both I2_C4 and I4_C2 fall behind I1_C8 in 99th
percentile latency for traffic rates higher that 100 queries/sec. In general, we observe that at low
utilization levels (below 125 queries/sec), the partitioned configurations I2_C4 and I4_C2 provide
faster or equal to I1_C8 average and 99th percentile latency. This is expected because, as pointed
out in previous work [15], partitioning is beneficial during periods of low utilization. During low
utilization, there is minimal queuing delay, and hence the partitioned setup only gets benefits from
parallel query processing that result in lower latency as compared to the non-partitioned setup.
At higher traffic rates (above 100 queries/sec), the partitioning benefits are offset from the queuing
delays, and hence the configuration without partitioning (I1_C8) provides the best 99th percentile.

The intra-server partitioning can be detrimental at some traffic rates because the speedup from
partitioning is not ideal. For example, a two-way partitioning does not provide 2X faster latencies
but perhaps 1.9X. This is expected because of imperfect load balancing and parallelism overheads.
In the ideal scenario, where partitioning speeds up a query by the degree of partitioning used, the
latencies cannot get worse than no partitioning. This is the case because the benefits from reducing
an individual query’s processing time is at worst offset by an increase in its queuing time, waiting
for the other queries to complete (that with no partitioning are processed in parallel). But of course
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Fig. 15. The 99th latency calculated using a synthetic queuing simulator.

this is not what we observe in our results; what we observe is that after a particular arrival rate,
the queuing increase overshadows the partitioning speedup.

We attempt to generalize our intra-server partitioning observations with a synthetic queueing
simulator. The queuing simulator accepts the following as inputs: (a) Poisson-distributed query
inter-arrival times and the mean of the distribution, (b) a sequence of query processing times
obtained from real hardware measurements, and (c) the number of cores for serving independent
queries. We run the simulator with a partitioned setup that uses two cores per index server and a
no-partitioned setup with four cores per index server (essentially, we mimic an index configuration
of I2_C2 and I1_C4). The no-partitioned processing times are the index search times captured on
real hardware with a no-partitioned configuration. For the partitioned setups, the search times are
equal to the no-partitioned index search times divided by various assumed speedup factors (the
ideal speedup is equal to 2).

Figure 15 shows the 99th percentile latency as a function of the arrival rate ranging from
10 queries per second to 320 queries per second, and for various configurations, namely no par-
titioning and partitioning with speedup of 1.8, 1.9, and 2. The graph shows that when we have
speedup of 2×, partitioning performance is always better or the same with the no-partitioned
setup. This is what we expected; at low utilization, the ideal partitioning would be a clear winner,
but at high utilization, the speedup is nullified by queueing, which results in identical latencies be-
tween partitioned and no-partitioned configurations. In general, we observe that the partitioning
benefits are decreasing with increasing arrival rate. Under high traffic, the queuing delay offsets
the benefit from partitioning, and for configurations with non-ideal speedup, there is a crossover
inter-arrival rate after which partitioning gets worse than the no-partitioned configuration. More-
over, the lower the speedup from partitioning, the more shifted to the left is the query arrival traffic
rate at which we observe the crossover point.

4.5 Index Server Performance in Relation to CPU Frequency

In Section 4.2, we showed that index search time grows linearly with index dataset size. This
behavior provides good motivation for exploring the use of low power servers for document search
with index dataset partitioning. Previous work has investigated the use of low power servers for
web search [21, 30] but without considering the implications of partitioning.

To approximate the performance of a low power server, we reduce the frequency of our Intel
Xeon CPU from 2.4 to 1.6 GHz (the lowest allowed frequency for this CPU). Figure 16 shows
that for 1.5x less dataset, the Xeon@1.6GHz achieves the same average response time as the
Xeon@2.4GHz. This may indicate that, for the Lucene search engine, with sufficient degree of par-
titioning, using more low power servers can match the performance of high performance servers.
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Fig. 16. Index search time for an index server running at 2.4 and 1.6 GHz versus index dataset size. The

1.6GHz achieves the same response times for 1.5x less dataset (e.g., the points in the oval shape).

Fig. 17. Average latency for various 1,600MHz

index-partitioned configurations across different

query arrival rates versus the I1_C8@2,400MHz

configuration.

Fig. 18. The 99th percentile latency for vari-

ous 1,600MHz index-partitioned configurations

across different query arrival rates versus the

I1_C8@2,400MHz configuration.

Figures 17 and 18 show how two sockets of 1.6GHz Xeons compare to one socket of a 2.4GHz
Xeon in terms of average and 99th percentile, respectively. We select as baseline configuration
the I1_C8@2.4GHz, which achieves the best 99th percentile latency at high traffic rates (according
to Figure 13). Again, we observe that excessive parallelism does not provide good latencies, with
I16_C1 being the worst configuration in terms of 99th percentile for all arrival rates. But all the
rest of 1,600MHz-partitioned configurations provide lower average and lower 99th percentile as
compared to the baseline for all query arrival rates (with the exception of I8_C2 at 200 queries/sec).
From this analysis, we conclude that many low power servers can help improve throughput, as
stated in previous work, but also response time when enough partitioning is applied.

Arguably, our analysis gives some advantage to the 1.6GHz setup as we assign to each slow
server 2x less dataset instead of 1.5x less (the 1.6GHz is only 1.5x slower than 2.4GHz). But this may
be desirable for another reason. When using a larger number of low power servers, as compared
to high power servers, it becomes more likely that a server will slow down, due to poor load
balancing, the whole query execution [5, 13]. Giving each low power server less amount of work
reduces the chance of a single server slowing the whole query execution. However, performance
is not the only metric that concerns the design of a data center operator; a total cost of ownership
(TCO) comparison must be done to justify the benefits of a search engine deployment built with
more low power servers as compared to fewer high power servers.
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Fig. 19. Relative to baseline (2.4GHz data center) TCO of a 1.6GHz server data center. We see that the more

sockets per MtB, the more money the 1.6GHz can cost without surpassing the TCO of the 2.4GHz.

An analysis is performed to estimate how much the cost should be for the 1.6GHz server (moth-
erboard (MtB) plus chips acquisition cost) to be profitable in terms of TCO in comparison to the
baseline. Our baseline is a data center of single-sockets servers with E5-2665 CPUs running at
2.4GHz. The low power servers must offer high density and high integration to be profitable. We
study three integration scenarios: (a) a pessimistic, single-socket MtB, (b) the scenario we actually
used with a dual-socket MtB, and (c) an optimistic scenario with a four-socket MtB. A data cen-
ter using 1.6GHz processors has twice the processors of the baseline 2.4GHz configuration. The
amount of disks, DRAMs, and average data center utilization remains the same. We assumed that
with lower frequency and voltage, the 1.6GHz power consumption falls to 34W peak and 13W idle
as compared to 80W peak and 30W idle at 2.4GHz. We estimated the baseline data center’s server
cost to be $616 assuming that a single-socket MtB costs $225 plus the price of a $391 processor.

We estimated TCO using the tool by Hardy et al. [11]. The TCO results, shown in Figure 19,
reveal that with more integration, the low power servers can be more profitable. With a single-
socket MtB and server cost up to $200, the 1.6GHz option is more profitable. For a dual-socket cost
of up to $600 and for a four-socket cost up to $1,500, it is more profitable to use 1.6GHz instead of
2.4GHz processors.

4.6 Performance Sensitivity to DVFS and C-States

In this section, we analyze how idle states and DVFS affect the index search performance. Enabling
C-states and DVFS is expected to be detrimental for latency because of the time overhead to tran-
sition between idle to active state and to transition from low- to high-voltage frequency levels.
We perform this evaluation using the 1I_8C@2.4GHz configuration with 150 queries/sec incom-
ing traffic. Figure 20 shows how the latencies are affected when enabling/disabling C-states and
DVFS. The first configuration, cstate(OFF)_DVFS(OFF), has both C-states and DVFS disabled, and
this is how we run all the paper experiments. The second configuration keeps C-states disabled
but enables DVFS. The latencies are insensitive to the change. The third configuration keeps DVFS
disabled but enables C-states. This increases the average latency by 1.5X and the 99th percentile
latency by 1.35X as compared to the baseline configuration, cstate(OFF)_DVFS(OFF). It seems that
the core wake-up latency significantly increases latency. Disabling DVFS does not improve the
performance, as the DVFS governor appears to be performance aware and keeps the cores at the
highest voltage-frequency level, at least for the inter-arrival rate used in this experiment.

5 MICRO-ARCHITECTURAL CHARACTERIZATION AND OPTIMIZATIONS

This section presents a micro-architectural characterization of the index search and confirms from
a micro-architectural point of view the application-level insights of Section 4. In addition, this
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Fig. 20. Effect of DVFS and C-states on latencies.

Fig. 21. The decompression algorithm. We extracted this algorithm from the Lucene source code.

section discusses how index search micro-architectural characteristics can be leveraged to improve
the efficiency of document search engines.

By utilizing performance counters, we have estimated that, on average, the IPC of an index
search operation is 1.5 and the last-level cache (LLC) misses per thousand instructions (MPKI) is
0.77. These numbers imply that index search is a fairly compute intensive application with cache-
friendly behavior. Index search has low L3MPKI (L3 is the LLC in our system) despite the fact that
the index dataset size is equal to several gigabytes. One explanation for this behavior is that for
each query, the index server does not read a lot of data from the memory. We estimate (by taking
into account the posting lists of each query’s terms) that for the 100K AOL query stream we use,
the average per query amount of postings that the index server must read is approximately 100,000
postings. Assuming 8-byte postings (4byteDocid, 4byteTermFreq), the amount of postings read is
equal to 800KB, which is not much. Moreover, the postings are compressed (see Section 2.1). The
compression reduces further the postings’ size and consequently the amount of bytes read during
index search.

The other reason for the high IPC and the low L3MPKI is the compute-intensive nature of the
postings decompression algorithm. During index search, the index server must decompress all the
terms’ postings related to a query. Decompression takes a significant portion of the index search
execution time, and we have measured that, on average, 37% of the index search time is spent on
decompression. To estimate the time spent on decompression, we instrumented the source code
with the Java’s nanoTime function. The bottom line is that a significant portion of index search is
spent on decompression, and this means that the decompression algorithm can significantly affect
the overall index search operation’s IPC and cache behavior.

Next, we explain why decompression is compute intensive. To decompress the postings, we have
to read the byte stream byte by byte and perform the steps shown in Figure 21. We can identify at
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Fig. 22. Impact of disabling

prefetching on latencies.

Fig. 23. Impact of disabling prefetch-

ing on IPC (higher is better), L2MPKI

(lower is better), and L3MPKI (lower is

better).

least 8 instructions per byte read. If we multiply that by 64 bytes, which is the size of a cache block,
then we get 512 instructions executed per cache block fetched into the LLC cache. Assuming a cold
cache, this would translate approximately to a L3MPKI of 2. The actual index server’s L3MPKI is
slightly lower for various reasons. Prefetching or postings cached from previous queries can reduce
the L3 misses. In addition, the actual low-level code executes more than the 8 instructions identified
in Figure 21 per byte read. For example, the actual code also increments a variable that counts how
many postings of a term are read and checks if the document frequency number is reached. Our
findings are similar to what previous work has reported. In particular, Barroso et al. [5] show
that the Google Search index server exhibits good caching behavior and low memory bandwidth
utilization due to spatial locality in index data accesses and a fair amount of computation required
for every block fetched into cache.

The compute-intensive nature of index search and the small memory pressure support the fol-
lowing observations made in Section 4. First, in Section 4.5, the performance ratio between the
2.4G and 1.6 GHz cores is exactly 1.5 (equal to the ratio of frequencies); this is a result of the fact
that the memory time during index search is small. Second, in Sections 4.4 and 4.5, intra-server
partitioning is not negatively affected by using multiple index server processes; if index search
were a memory-intensive process, then running in parallel of multiple search processes would
result in increased contention due to memory accesses.

The small memory pressure makes index search rather insensitive to cache optimizations. This
insensitivity may open opportunities for gains in other metrics, such as power consumption, data
center utilization, and cost. For example, index search could probably be run on processors with
a smaller LLC cache; those chips can be cheaper and less power hungry [21]. Next, we study how
prefetching, query temporal locality, and cache size affect the index search performance. We show
that these cache optimizations have a rather small impact on index search times.

We begin with the prefetching. We run our baseline configuration (1I_8C@2.4GHz and 150
queries/sec traffic) with all hardware prefetching disabled to evaluate how prefetchers affect the
latencies and the micro-architectural behavior. Figure 22 shows the average and 99th percentile
latency while Figure 23 shows the IPC, L2MPKI, and L3MPKI for the baseline configuration with
prefetchers enabled (the default way we run in the rest of the article) and with prefetchers disabled.
As expected, we observe an increase in L2MPKI and L3MPKI. In particular, the L2MPKI increase
nearly 2.5X times with prefetching disabled. However, the impact on IPC and latency is rather
small; we observe a 5% increase in IPC and 99th percentile latency. This implies that prefetching
improves a small portion of the query execution time. The time spent for reading the posting lists
from memory is short compared to the time spent on processing the postings. Thus, even though
prefetching decreases the cache misses, the impact in total index search time execution is small.
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Fig. 24. Performance of various

streams with different query temporal

locality.

Fig. 25. LLC size exploration for single-core

index search.

An interesting direction for future work is to explore the cost versus performance trade-off due to
prefetching.

Next, we explore the sensitivity of index search to temporal locality. We compare three types
of query streams: (a) a real query stream taken from the AOL log as it is, (b) a unique stream
that has only unique queries (this is what we use in the rest of the article), and (c) the real query
stream sorted alphabetically. One would expect that the sorted stream would provide the best
performance and the unique stream the worst, due to good and bad query temporal locality, re-
spectively. Figure 24 shows the (a) end-to-end average latency (the one perceived by the client), (b)
the pure index search time that does not include queueing delay, and (c) the queueing time for the
three different streams (using the 1I_8C@2.4GHz and 150 queries/sec traffic configuration). First,
we examine the average index search times. The average index search times show that the unique
query stream has slightly higher latency than the real stream and that the real stream latency is
slightly higher than the sorted stream. This is what we expected, but because the differences are
really small (unique index search time is 3ms higher than sorted), we can conclude that optimizing
the query stream executed by an index server for temporal locality is not something that notice-
ably benefits the performance. Regarding average end-to-end latency, we observe that the sorted
stream has much higher latency, which seems counter-intuitive. This high latency, however, is not
due to the index search time but to the queueing time. Analysis, not shown in a graph, reveals that
for the sorted stream, it is more likely to have high latency queries occurring back to back, which
in turn increases the likelihood for larger queueing delay. Real stream also suffers from this effect;
this is reflected by the fact that real stream has slightly higher queueing from the unique stream.
In summary, we conclude that index search intrinsically has a cache-friendly behavior, and thus it
is hard to gain large benefits from improving query temporal locality. Any significant differences
in query latencies among the three different query streams are not attributed to the actual index
search processing times but to queueing effects.

Last, the sensitivity of the index search to LLC size is explored. The low L3MPKI of the index
search suggests that an index server could maintain its performance with a smaller L3 cache,
which potentially can translate to either lower cost (cheaper CPU) or power savings (less leakage).
In addition, it can translate to better data center utilization. For example, data center operators
can collocate web search with other applications without hurting the QoS of web search. We use
bubbles [26] to emulate a reduced cache size and analyze the index search degradation. Bubbles
are processes that perform random accesses in a user-specified array. This way, they stress shared
memory resources like LLC, DRAM, and so forth. We collocated one index server process with
one bubble process. We change the bubble’s array size to emulate various L3 sizes. Particularly,
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we try bubble sizes of 17, 15, and 10 MB, which translate to emulation of 3, 5, and 10 MB L3 cache
sizes (recall that our CPU has a 20MB LLC). The bubble is placed on a different core, and it is
restricted to run only on that core. The index server is also restricted to use only one core, and the
experiments are performed with 50 queries/sec traffic. Effectively, this way, one core index search
performance with 3, 5, and 10 MB of L3 is emulated. Figure 25 shows the results of our evaluation.
For a 10MB emulated cache, the index search shows negligible degradation. For a 5MB emulated
cache, a 7% degradation is observed and for 3MB an 8% performance degradation. These results
suggest than an acceptable LLC size would be slightly above 10MB. Below 10MB, the degradation
is rather significant. Put another way, a core running our index search does not need all 20MB of
LLC. The results imply that a single-core index search can safely collocate (will suffer negligible
performance degradation) with at least one other process with a small memory footprint.

6 CONCLUSION

In this work, we thoroughly characterize using real hardware the Nutch search engine [8] that is
based on the popular Lucene document search library. The main contributions of this work include
(a) shedding light on the search engine’s software architecture and functionality through appli-
cation and micro-architectural characterization, (b) exploring the possibility of using low power
servers for search engines and the effects of intra-server partitioning, and (c) studying the sources
of index search performance degradation.

The key findings of our work are the following: (a) index search times scale linearly with the
amount of the index dataset, (b) summary generation processing time does not scale with the
amount of the dataset and remains constant, (c) index search is the most time consuming operation
of the search engine, (d) we motivate the use of low power servers for index search, (e) we confirm
that intra-server partitioning can help tail latencies with diminishing benefit with a higher rate of
incoming traffic, (f) the majority of frequent index terms have balanced posting lists (at least for a
small number of shards), (g) the use of index compression for storing the index adds to the amount
of instructions executed per byte read and explains the high IPC and the good caching behavior of
index search, (h) index search has small benefit from hardware prefetching and has low sensitivity
to LLC size, and (i) idle states are detrimental to index search.

Our experimental setup characteristics, such as (a) posting list sorted by document ID, (b) ab-
sence of advanced document scoring methods, and (c) single-server analysis, are more similar to
enterprise search engines rather than state-of-the-art large-scale web search engines. Nonethe-
less, our findings have implications for large-scale deployments. In general, for a fixed-size index
and tail latency requirement, reducing the response time of a single server can help increase the
amount of index a server can process and therefore reduce the number of servers that are needed
to hold the entire index and used to service a query. Assuming that each server response time to
a given query is a random variable that follows same response time distribution, the smaller the
number of servers, the less probable it is to observe a worst-case latency. As part of our future
work, we plan to explore, both analytically and empirically, how optimizations that improve the
tail latency of a single server can help reduce the tail for systems with many servers. Moreover,
for future work, we plan to explore dynamic index search parallelism, as well as dynamic fre-
quency scaling based on query processing demands and the target QoS. We also plan to evaluate
this benchmark using low power micro-servers.
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