

Unsupervised feature selection for large data sets

Journal Pre-proof

Unsupervised feature selection for large data sets

Renato Cordeiro de Amorim

PII: S0167-8655(18)30496-3
DOI: https://doi.org/10.1016/j.patrec.2019.08.017
Reference: PATREC 7606

To appear in: Pattern Recognition Letters

Received date: 22 August 2018
Revised date: 10 June 2019
Accepted date: 20 August 2019

Please cite this article as: Renato Cordeiro de Amorim, Unsupervised feature selection for large data
sets, Pattern Recognition Letters (2019), doi: https://doi.org/10.1016/j.patrec.2019.08.017

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

© 2019 Published by Elsevier B.V.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Essex Research Repository

https://core.ac.uk/display/227473055?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.patrec.2019.08.017
https://doi.org/10.1016/j.patrec.2019.08.017

1

Highlights

• We propose a novel clustering-based unsupervised feature
selection algorithm

• This is possibly the first such algorithm not to require ac-
cess to the whole data

• Our algorithm is particularly suitable for very large data
sets

2

Pattern Recognition Letters
journal homepage: www.elsevier.com

Unsupervised feature selection for large data sets

Renato Cordeiro de Amorim

School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK.

ABSTRACT

The last decade saw a considerable increase in the availability of data. Unfortunately, this increase
was overshadowed by various technical difficulties that arise when analysing large data sets. These
include long processing times, large requirements for data storage, and other technical issues related
to the analysis of high-dimensional data sets. By consequence, reducing the cardinality of data sets
(with minimum information loss) has become of interest to virtually any data scientist. Many feature
selection algorithms have been introduced in the literature, however, there are two main issues with
these. First, the vast majority of such algorithms require labelled samples to learn from. One should
note it is often too expensive to label a meaningful amount of data, particularly when dealing with
large data sets. Second, these algorithms were not designed to deal with the volume of data we
have nowadays. This paper introduces a novel unsupervised feature selection algorithm designed
specifically to deal with large data sets. Our experiments demonstrate the superiority of our method.

c© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Recent technological advances and new government policies,
such as transparency and freedom of information, have sub-
stantially increased the availability of data. This ever increas-
ing growth rate of available data (which has exceeded that of
Moore’s Law (Chen and Zhang, 2014)) and the possibility of
merging data sets (often originated at different sources) have
had a considerable impact on the size of data sets, and by con-
sequence their complexity. However, in the world of big data
quantity does not mean quality (Kaisler et al., 2013). Thus,
such data sets may very well contain irrelevant features.

The word feature refers to a measurement used to describe
entities in a data set, in the literature this is sometimes called a
variable. Removing irrelevant features is of interest to virtually
any data analyst, particularly when dealing with large data sets.
A reduction in the number of features usually leads to shorter
processing times, a lower requirement in terms of memory to
hold a given data set, and may help to avoid problems related
to overfitting and the curse of dimensionality. However, direct
evaluation of each possible subset of features tends to be infea-
sible. Given a data set X composed of N entities each described
over V features there would be 2V possible subsets of features,
such evaluation becomes a NP-Hard problem as V grows.

∗∗Corresponding author: Tel.: +44 (0)1206 872895;
e-mail: r.amorim@essex.ac.uk (Renato Cordeiro de Amorim)

Feature selection is certainly one of the main areas of re-
search in machine learning, however, most of the work focuses
on supervised methods (see for instance (Guyon and Elisseeff,
2003; Chandrashekar and Sahin, 2014), and references therein).
These are methods that require a labelled sample of meaning-
ful size to learn from. The validation of such algorithms often
makes use of either five or ten fold cross-validation, in both
cases this means there is an expectation there would be consid-
erably more labelled samples than unlabelled. This seems to
contradict the fact that data sets are growing in size and by con-
sequence labelling a large sample of entities is becoming more
and more expensive. We see unsupervised feature selection al-
gorithms as probably the most viable option for real-world sce-
narios given these algorithms are data-centric and do not require
a labelled sample to learn from. However, even among these
there is at least one major issue. Existing unsupervised feature
selection algorithms require access to the whole data set (see for
instance, (Mitra et al., 2002; Cai et al., 2010; Kim et al., 2000),
and references therein). This requirement can be problematic
as modern data sets may occupy more memory than what is
usually available.

In this paper we introduce a novel unsupervised feature se-
lection algorithm. Our method is the first, to our knowledge, to
be designed specifically for data sets that are large and may not
fit in the main memory of a computer. We validate our method
through various experiments and conclude that it does reduce
the number of features in a data set with low (if any) informa-
tion loss.

3

2. Related work

There are two main areas of research related to the work
we present in this paper, (i) unsupervised learning algorithms
in general and (ii) unsupervised feature selection. Section 2.1
provides an overview of related clustering algorithms, these are
unsupervised algorithms directly related to our contribution (for
details see Section 3). Section 2.2 provides an overview of un-
supervised feature selection algorithms.

2.1. Clustering algorithms

The literature in data clustering presents a number of al-
gorithms, among these k-means (Ball and Hall, 1967; Mac-
Queen, 1967) is arguably the most popular (Hans-Hermann,
2008; Jain, 2010; Mirkin, 2012; Steinley, 2006). K-means
groups the N entities in a data set X into K homogeneous clus-
ters S = {S 1, S 2, ..., S K} so that S k ∩ S j = ∅ for k, j = 1, 2, ...,K
and k , j, leading to | ∪K

k=1 S k | = N. Each cluster S k ∈ S
is represented by a centroid zk ∈ Z, often called the prototype
of S k. This algorithm aims to locate homogeneous clusters by
minimising the within-cluster sum of squares given by

P(S ,Z) =

K∑

k=1

∑

xi∈S k

V∑

v=1

(xiv − zkv)2, (1)

where V represents the number of features describing each en-
tity xi ∈ X. The minimisation of (1) follows three simple steps:
(i) select K entities from X at random and copy their values to
z1, z2, ..., zK ; (ii) assign each entity xi ∈ X to the cluster S k rep-
resented by the centroid zk which is the nearest to xi; (iii) update
each centroid zk ∈ Z to the centre of its cluster S k ∈ S . Since
(1) applies the squared Euclidean distance, the centre of S k is
given by zkv = |S k |−1∑

xi∈S k
xiv for v = 1, 2, ...,V .

K-means is a rather popular algorithm implemented in a
number of software packages often used for data analysis, such
as: Clustan, Scipy, R, and MATLAB (Wishart, 1998; Jones
et al., 2001; R Core Team, 2014; MATLAB, 2013). However
popular k-means does have known weaknesses, for instance: (i)
it requires the number of clusters, K, to be known beforehand;
(ii) it may get trapped in local minima; (iii) it assumes the de-
gree of relevance of each feature is the same; (iv) it cannot clus-
ter large data sets in an acceptable speed. In this paper, we are
particularly interested in adapting a clustering algorithm so that
it can be used for unsupervised feature selection on large data
sets, which is related to weaknesses (iii) and (iv).

The availability of data has increased considerably in the
last decade, and surely the internet has been one of the major
forces behind this. The impact of this increase is so high that it
has lead to the popularity of the term big data. The availability
of data is indeed increasing and so is the expectation of users
in terms of processing time. Users tend to expect very low
latencies, meaning a given application is expected to process
large amounts of data in less and less time. Web-Scale k-means
(WSk-means) (Sculley, 2010) was introduced to address these
extreme requirements of latency and scalability. This algorithm
addresses these requirements by applying a sampling approach
to clustering taking only a couple of extra parameters in
relation to k-means: the quantity of uniformly random samples

(T), and the cardinality of each sample (b).

Web-Scale k-means

1. Select K entities from X at random, and copy their values
to z1, z2, ..., zK .

2. Set each counter c1, c2, ..., cK to zero.
3. Repeat T times:

3..1 Xt ← b entities selected at random from X.
3..2 For each xi ∈ Xt

i. Find zk, the closest centroid to xi.
ii. Set ck = ck + 1.

iii. Set η = c−1
k .

iv. Set zkv = (1 − η)zkv + ηxiv for v = 1, 2, ...,V .

WSk-means allows one to balance the trade-off between scal-
ability and latency by tuning the parameters T and b. This is
a popular and effective algorithm, but it considers all features
regardless of their actual relevance. Generally speaking, it is
fair to assume that large data sets are likely to contain features
with different degrees of relevancy. There has been consider-
able research in feature relevance in clustering (see for instance
(de Amorim, 2016; Huang et al., 2005; Chan et al., 2004), and
references therein), and we have had considerable success with
the Minkowski weighted k-means (MWk-means) (de Amorim
and Mirkin, 2012). This algorithm applies a weighted version
of the Minkowski distance

dp(xi, zk) =

V∑

v=1

wp
kv|xiv − zkv|p, (2)

where the Minkowski exponent p is a user-defined parameter,
and wkv represents the weight (ie. degree of relevance) of fea-
ture v at cluster S k. The use of the Minkowski distance allows
the distance bias to be adjusted with the help of p. At p = 1,
p = 2, and p → ∞ the cluster shape will be biased towards
rhombus, circle, and square, respectively. Clearly, interpola-
tions of these shapes can be reached with intermediate values
of p. The distance (2) leads to the MWk-means criterion

P(S ,Z,w) =

K∑

k=1

∑

xi∈S k

V∑

v=1

wp
kv|xiv − zkv|p, (3)

subject to

S k ∩ S j = ∅ for k, j = 1, 2, ...,K and k , j,

wkv ≥ 0 for k = 1, 2, ...,K and v = 1, 2, ...,V,
∑V

v=1 wkv = 1 for k = 1, 2, ...,K,

p ≥ 1.

(4)

and minimised iff

wkv =

V∑

u=1

[Dkv/Dku]1/(p−1)

−1

, (5)

where the dispersion of a given feature v at a cluster S k is given
by Dkv =

∑
xi∈S k
|xiv − zkv|p. To avoid divisions by zero one can

add the average over all dispersions to each Dkv. We formalise
MWk-means as follows:

Minkowski weighted k-means

4

1. Select K entities from X at random, and copy their values
to z1, z2, ..., zK . Set each wkv to V−1 and select a value for
p.

2. Assign each entity xi ∈ X to the cluster S k ∈ S whose
centroid zk is the nearest to xi, as per (2).

3. Update each centroid zi ∈ Z to the centre of its cluster S k.
4. Update each weight wkv as per (5).

MWk-means applies the Minkowski distance, by consequence
the centroid zk of cluster S k ∈ S is only given by the
component-wise mean of xi ∈ S k if p = 2. At p = 1 and p→ ∞
the centre is given by the median and mid-range, respectively.
In all other cases one can apply a gradient descent method. At
p ≥ 1 we have a U-shaped curve γv(µ) =

∑
xi∈S k
|xiv − µ|p,

with a minimum in the interval [min(xv),max(xv)] (de Amorim
and Mirkin, 2012; de Amorim and Hennig, 2015). The mini-
mum µ for a feature v at cluster S k can be found by first setting
µkv = |S k |−1∑

xi∈S k
xiv, and then improve it stepwise by a fixed

amount (say, 0.001) per step to the side in which γv is reduced.
In the MWk-means model the weight wkv represents the degree
of relevance of a feature v at cluster S k ∈ S , thus supporting two
intuitive and related ideas. First, a given feature v may have dif-
ferent degrees of relevance at each cluster S k ∈ S . Second, even
among relevant features there may be different degrees of fea-
ture relevance. The literature has shown that applying feature
weights does increase cluster recovery (de Amorim and Mirkin,
2012; de Amorim, 2016; Chan et al., 2004; Huang et al., 2005)
and if these weights are used as feature rescaling factors it in-
creases the likelihood of clustering validity indexes to return the
true number of clusters in a data set (de Amorim and Hennig,
2015).

2.2. Feature selection

Modelling the degree of relevance of features using feature
weighting can certainly improve cluster recovery. However, in
some scenarios (particularly those related to large data sets) it
may be better to simply remove some of the features from a data
set. For instance, unsupervised feature selection may make it
possible to analyse a data set that was previously thought to be
too large to be analysed. Of course, for this to happen we need
an unsupervised feature selection algorithm capable of dealing
with large data sets.

Feature Selecting using Feature Similarity (FSFS) (Mitra
et al., 2002) is arguably the most popular unsupervised fea-
ture selection algorithm (and certainly the most cited). This
algorithm applies k−nearest neighbours (Altman, 1992) and a
feature similarity measure given by

2λ2(v1, v2) = (var(v1) + var(v2)−
√

(var(v1) + var(v2))2 − 4var(v1)var(v2)(1 − ρ(v1, v2)2), (6)

where var() represents the variance of a feature, ρ(v1, v2) =
cov(v1,v2)√

var(x1)var(v2)
, and cov() is the covariance. λ2(v1, v2) is zero if

the features v1 and v2 are linearly independent, λ2(v1, v2) in-
creases as the dependency between v1 and v2 decreases. FSFS
determines the set of maximally independent features by dis-
carding those considered to be redundant. This algorithm has

a user-defined parameter which is approximately equal to the
number of features removed by the algorithm.

Traditionally, unsupervised feature selection algorithms
compute feature specific scores. They then use these scores
to decided which features should be kept and which should
be removed from a given data set. Such approaches neglect
the possible correlation between different features. With this
in mind Cai, Zhang and He proposed the Multi-Cluster Fea-
ture Selection (MCFS) (Cai et al., 2010). Their method has
been inspired by developments on manifold learning and L1-
regularized models, and attempts to select those features such
that the multi-cluster structure of the data can be best preserved
with a single user-defined parameter. This algorithm has two
parameters that can be fine-tuned by the user (the number of
eigenfunctions used, and the number of neighbours for a k-NN
graph) as well as a parameter that must be defined: the number
of features to be selected.

Previously, we introduced Feature Selection via Feature
Weighting (Panday et al., 2018). This method took into account
that under the MWk-Means framework (see Section 2.1) a very
low
∑K

k=1 wkv essentially means feature v will not contribute
to the clustering. However, in this case v would still be used
in computations (consuming CPU time) and occupy memory.
FSFW removes any feature v for which K−1∑K

k=1 wkv < V−1,
or, max

1≤k≤K
wkv < V−1.

Unfortunately, FSFS, MCFS and FSFW follow a common
pattern in unsupervised feature selection: current algorithms
require access to the whole data set (for other examples see
(Guyon and Elisseeff, 2003; Chandrashekar and Sahin, 2014;
Kim et al., 2000), and references therein). Thus, if a data set
is large enough not to fit in the memory of a computer these
algorithms cannot be used.

3. Web-Scale Minkowski weighted k-means and feature se-
lection

In this section we introduce the Web-Scale Minkowski
weighted k-means (WSMWk-means). This is, to our knowl-
edge, the first clustering algorithm capable of producing and
applying feature weights for large data sets. These feature
weights model the degree of relevance of each feature at each
cluster, and we show that these weights can be used for unsu-
pervised feature selection in large data sets. WSMWk-means
minimises the MWk-means criterion (3) following a framework
inspired by that of WSk-means (for details see Section 2).

Web-Scale Minkowski weighted k-means (p = 2)

1. Select K entities from X at random, and copy their values
to z1, z2, ..., zK . Set each wkv to V−1.

2. Set each counter c1, c2, ..., cK to zero.
3. Repeat from t = 1 to t = T :

3..1 Xt ← b entities selected at random from X.
3..2 for each xi ∈ Xt

i. Find zk, the closest centroid to xi using (2).
ii. Assign xi to S k, the cluster represented by zk.

iii. Set ck = ck + 1.

5

iv. Set η = c−1
k .

v. zkv = (1 − η)zkv + ηxiv for v = 1, 2, ...,V .
3..3 Set λ = t−1.
3..4 Given Xt, S , and Z, generate a new set of weights w′

following Equation (5).
3..5 Set each weight wkv = (1 − λ)wkv + λw′kv

4. Assign each xi ∈ X to the cluster S k represented by the
centroid zk which is the nearest to xi as per Equation (2),

Feature weighting can be seen as a generalisation of feature se-
lection. This is straightforward if one interprets these as allow-
ing wv (the degree of relevance of feature v) to be 0 ≤ wv ≤ 1
or wv ∈ {0, 1}, respectively. Clearly, it is possible to move from
feature weighting to feature selection if one is able to find a
suitable threshold θ. WSMWk-means was designed to clusters
data sets in which a feature v may be relevant to a single clus-
ter. It does so by allowing v to have K weights w1v,w2v, ...wKv.
With this in mind we have decided to set θ = V−1, and compare
it against max

1≤k≤K
wkv, so that

wv =

1, max

1≤k≤K
wkv ≥ V−1

0, max
1≤k≤K

wkv < V−1.
(7)

The rule above deselects v iff max
1≤k≤K

wkv < V−1, that is

max
1≤k≤K

V∑

u=1

[Dkv/Dku]1/(p−1)

−1

< V−1

If we consider p = 2 we have

max
1≤k≤K

V∑

u=1

Dkv

Dku
> V,

leading to

max
1≤k≤K

V∑

u=1

Dkv − Dku

Dku
> 0.

The above can only be true if Dkv > V−1∑V
u=1 Dku for at least

one S k ∈ S . This implies Dkv > Dku for at least one feature u in
at least one cluster S k ∈ S . That is, at least once the dispersion
of v is higher than that of u in the same cluster S k, implying the
degree of relevance of feature u is higher than that of v (wku >
wkv). Hence, the situation max

1≤k≤K
wkv < V−1 only happens if there

is a more relevant feature than v for each cluster S k ∈ S .
In this section we introduced WSMWk−means, an algorithm

that minimises the MWk-means criterion (3) following a frame-
work inspired by that of WSk-means. We find this to be a par-
ticularly interesting route to design an unsupervised feature se-
lection algorithm because both WSk-means and MWk-means
have considerable strengths that complement each other. WSk-
means is arguably the most popular algorithm for clustering
very large data sets. However, it considers all features in a data
set regardless of their actual relevance. This means that features
are taken into account even if they are not relevant at all, which
is counter-productive when dealing with large data sets. On
the other hand, assigning a within-cluster degree of relevance

to any given feature (wkv) is precisely the strength of MWk-
means. By combining and extending these two algorithms we
were able to calculate the relevance of features in data sets that
were prohibitively large, culminating in a novel unsupervised
feature selection algorithm designed specifically for large data
sets.

4. Set up of experiments

Our method has a mathematically sensible approach for un-
supervised feature selection in large data sets (for details see
section 3). Of course, we also provide an empirical validation
and describe the set up of our experiments in this section. The
data sets we experiment with come from the popular UCI ma-
chine learning repository (Dheeru and Karra Taniskidou, 2017).
In terms of data pre-processing we first removed any feature
with a range of zero. We then replaced any missing value xiv

by the average of v over the whole data set, x̄v. This was possi-
ble because we had missing values solely in numerical features.
The Poker hand data set contains five categorical features. We
dealt with these by replacing each feature v with V ′ categories
by V ′ binary features, in which only the binary feature related
to the original category was set to one. Finally, we standardised
each feature (including those that were binary) of a given data
set using

xiv =
xiv − x̄v

range(xv)
. (8)

We chose (8) rather than the z-score because the latter favours
features under a unimodal distribution. Such features tend to
have a lower standard deviation than those that are multimodal.
By consequence their z-score is higher, leading to a higher con-
tribution to the clustering from unimodal features than from
multimodal features. However, multimodal features are those
that are usually of particular interest during clustering. The last
adjustment on our original data sets was to create labels for the
Online News popularity data set as these were not available.
Rather arbitrarily we decided to assign six clusters to this data
set, based on the number of shares (the target for this data set).
To do so we used bins of 1,000, and assigned entities with 5,000
or more shares to cluster six.

Unfortunately, we do not know which features are relevant
for each of the data sets we experiment with. Our experiments
address this issue in two ways. First, we added noise features
to each of our original data sets (see details in Table 1). Here,
a noise feature is one composed entirely of within-domain uni-
formly random values. For each original data set we generated
two other data sets by adding dV × 0.1e and dV × 0.2e noise fea-
tures, respectively. We opened an exception for the Skin Seg-
mentation data set and added one and two noise features respec-
tively, otherwise we would be adding a single noise feature in
both cases. If a feature selection method removes one of these
noise features, we know it is removing a feature that should be
removed. Second, if a method removes an original feature (that
is, a feature that originally belonged to the data set) that does
not necessarily mean it is removing a relevant feature. We do
not know which of the original features are actually relevant.
We address this issue by computing the average Entropy over
the features of a data set, before and after feature selection.

6

Feature selection using Feature Similarity (FSFS, for details
see Section 2, or (Mitra et al., 2002)) is arguably the most
popular unsupervised feature selection algorithm there is, and
certainly the most cited. Thus, we have decided to use it as
a benchmark. We considered Multi-Cluster Feature Selection
(MCFS, for details see Section 2, or (Cai et al., 2010)) because
this is also a popular algorithm with hundreds of citations but
our initial experiments deemed it unsuitable for large data sets
(after three days processing the Record Linkage data set on an
Intel Xeon 3.2 GHz with 64GB of RAM using the source code
provided by the original authors, we gave up).

One could argue our experiments comparing FSFS to our
method are biased towards the former. FSFS had access to the
whole of the data, while our method requires access only to a
fraction of each data set. Our method works this way so that
it can be used in very large data sets that may or may not fit in
the memory of a computer, unlike FSFS. Also, FSFS requires a
user-defined parameter which is roughly the number of features
to be removed. In real-world scenarios a user is unlikely to
know this number, but we have supplied FSFS with the correct
number for all data sets containing noise features. Since such
features have no meaningful structure (they are uniformly ran-
dom values) FSFS should remove the noise features. For data
sets with no noise features we set this parameter to d0.05 × Ve.

The data sets we selected for our experiments are indeed
large, but they all easily fit in the memory of a modern com-
puter. They are large enough to be relevant, but not so large
that we can not experiment with FSFS or measure the entropy
of features. The latter aims to establish whether FSFS and our
method are removing solely irrelevant features by measuring
average entropy of data sets before and after feature selection.
In short, we did not run experiments with even larger data sets
solely because we need a benchmark.

5. Results and discussion

In our experiments we ran WSMWk-means 100 times, and
arbitrarily set b =

√
N ∗ K. An optimal value for b should take

into account the size of a given data set, the amount of free
memory in the computer running WSMWk-means, as well as
the speed of that computer. By consequence the optimal value
for b is clearly problem dependent. In this paper we set b =√

N ∗ K solely to have a single rule that we could use in all of
the data sets we experiment with.

Table 2 shows the average frequency features were selected
in our first set of experiments. These experiments compare
FSFS, analysing the whole of the data and feed with the correct
number of noise features, against the average over 100 runs of
WSMWk-means. Let us first consider the experiments in which
T = 5. These clearly show that in the vast majority of cases
noise features were selected with a much lower average fre-
quency by WSMWk-means than by FSFS. The only meaningful
exception was the Poker Hand data set. In this WSMWk-means
was unable to remove the noise features while FSFS selected
them with an average frequency of 0.333 and 0.200 for the data
sets with 10% and 20% of noise, respectively.

On the Record Linkage data set WSMWk-means (still with
T = 5) selected noise features with an average frequency of

Table 1. The list of data sets used in our experiments. The column ‘Fea-
tures’ includes noise features if there are any. The data sets were ob-
tained from the popular UCI machine learning repository (Dheeru and
Karra Taniskidou, 2017).

Entities Clusters Features Noise
Data sets N K V features
Covertype 581,012 7 54 0
MoCap Hand Postures 78,095 5 36 0
IDA 2016 Challenge 76,000 2 169 0
Online News Popularity 39,644 6 58 0
Poker Hand 1,000,000 10 25 0
Record Linkage Comparison P. 5,749,132 2 9 0
Sensorless Drive Diagnosis 58,509 11 48 0
Skin Segmentation 245,057 2 3 0
+ approx. 10% noise features
Covertype 581,012 7 60 6
MoCap Hand Postures 78,095 5 40 4
IDA 2016 Challenge 76,000 2 186 17
Online News Popularity 39,644 6 64 6
Poker Hand 1,000,000 10 28 3
Record Linkage Comparison P. 5,749,132 2 10 1
Sensorless Drive Diagnosis 58,509 11 53 5
Skin Segmentation 245,057 2 4 1
+ approx. 20% noise features
Covertype 581,012 7 65 11
MoCap Hand Postures 78,095 5 44 8
IDA 2016 Challenge 76,000 2 203 34
Online News Popularity 39,644 6 70 12
Poker Hand 1,000,000 10 30 5
Record Linkage Comparison P. 5,749,132 2 11 2
Sensorless Drive Diagnosis 58,509 11 58 10
Skin Segmentation 245,057 2 5 2

0.14 and 0.055 for the data sets with 10% and 20% of noise
features, respectively. In the same data set FSFS was able to
remove all noise features, however, one should note WSMWk-
reached a very good result after analysing only 0.4% of the data.
Reaching the best results in the majority of cases, using only a
fraction of the data, is the major advantage provided by our
method. For instance, we have removed nearly all noise fea-
tures from the CoverType and IDA 2016 data sets processing
less than 5% of the available data.

Table 2 also shows the average frequency features were se-
lected in our second set of experiments. These are similar to
our first set of experiments, the only difference is that now we
set T = 10 for WSMWk-means. In this case our method pro-
cesses double the amount of data than at T = 5, leading to a
small improvement in the results. This is particularly true for
the data sets to which we added 10% noise features. We can
see our method now select a noise feature with an average fre-
quency of 0.03 and 0.05 for the data sets to which we added
10% and 20% of noise features, respectively. This is an excel-
lent result, particularly if we take into account our method used
only 0.8% of the data. In general we can see WSMWk-means
clearly outperforms FSFS.

Our previous experiments show that in most cases our
method does remove noise features from data sets, and in this

7

Table 2. The average frequency of features selected by FSFS (feed with
the correct number of noise features), and the average over 100 runs of
WSMWk-means. Under ‘Orig’ we show the average frequency of original
features being selected(those that originally belonged to the data set). Un-
der ‘Noise’ we show the average frequency of noisy features being selected
(those composed entirely of uniformly random values). The proportion of
data used is given by b × T/N for WSMWk-means, and the whole data set
for FSFS.

No
noise 10% of noise 20% of noise Proportion of

Orig Noise Orig Noise data used
WSMWk-means
(T = 5)
CoverType 0.915 0.957 0.002 0.971 0.000 0.046
Hand Postures 0.786 0.828 0.025 0.941 0.001 0.090
IDA 2016 0.866 0.931 0.000 0.931 0.000 0.036
Online News Pop 0.819 0.844 0.002 0.862 0.000 0.151
Poker Hand 0.945 0.934 1.000 0.932 1.000 0.050
Record Linkage 0.641 0.644 0.140 0.644 0.055 0.004
Sensorless Drive 0.773 0.826 0.000 0.939 0.000 0.227
Skin Segmentation 0.640 0.637 0.170 0.713 0.155 0.020
WSMWk-means
(T = 10)
CoverType 0.912 0.958 0.000 0.969 0.000 0.092
Hand Postures 0.753 0.821 0.018 0.928 0.012 0.179
IDA 2016 0.885 0.930 0.000 0.941 0.000 0.073
Online News Pop 0.816 0.843 0.002 0.858 0.000 0.303
Poker Hand 0.947 0.937 1.000 0.930 1.000 0.100
Record Linkage 0.624 0.654 0.030 0.649 0.050 0.008
Sensorless Drive 0.754 0.813 0.000 0.944 0.000 0.455
Skin Segmentation 0.657 0.607 0.170 0.700 0.135 0.040
FSFS
CoverType 0.944 0.963 0.333 0.944 0.273 1.000
Hand Postures 0.944 0.972 0.250 0.972 0.125 1.000
IDA 2016 0.935 0.888 1.000 0.787 1.000 1.000
Online News Pop 0.948 0.914 0.833 0.793 1.000 1.000
Poker Hand 0.920 0.880 0.333 0.960 0.200 1.000
Record Linkage 0.889 1.000 0.000 1.000 0.000 1.000
Sensorless Drive 0.917 0.917 0.600 0.896 0.400 1.000
Skin Segmentation 0.667 0.667 1.000 0.333 1.000 1.000

respect it outperforms FSFS. These experiments also show both
methods to remove, usually in a lower proportion, some of the
features that originally belonged to each data set. For instance,
in the CoverType data set with no noise features our method
selects a feature 91.5% of times (T = 5) and FSFS does so
94.4% of times. There are two points we must make now. First,
the fact FSFS tends to select more original features than our
method is no indication of its capabilities. We have no informa-
tion regarding the relevance of the original features, there may
be irrelevant features among those. Second and probably more
important, FSFS has a user-defined parameter that is roughly
the number of features to be removed. In the real-world a user
would not usually have this information. We have set this to
the number of noise features in the data sets containing such
features, and d0.05 × Ve to those with no noise features. This
generates a clear bias in favour of FSFS when experimenting
with a data set containing noise features, and, a bias towards an

average frequency of about 0.95 in the other cases.

With the above in mind we decided to run more experiments
in order to determine whether the feature selection algorithms
were removing relevant features. We calculated the entropy of
each data set, given by the average entropy over each feature
of a data set, before and after applying the feature selection
methods. Table 3 presents the average entropy for each of the
data sets we experiment with. These results clearly show our
feature selection method reduces the entropy of each data set in
all cases, and clearly outperforms FSFS. The only exception is
the Poker Hand data set with noise features (in both cases, 10%
and 20% added noise features), which is well aligned with our
previous results.

Table 3. The average entropy computer over the features of a given data set.
Under ‘Without FS’ we show the average entropy for each data set without
the use of a feature selection algorithm (that is the reason why the values
repeat, this is our baseline). Under ‘With FS’ we show the average entropy
computed over the features that have been selected by one of the methods
we experiment with. The results for WSMWk-means were computed over
100 runs.

Without FS With FS
0% 10% 20% 0% 10% 20%

WSMWk-means
(T=5)
CoverType 1.389 2.050 2.508 0.806 0.973 0.974
Hand Postures 5.012 5.311 5.555 3.597 3.498 3.795
IDA 2016 1.493 2.088 2.582 1.045 1.131 1.062
Online News Pop 3.092 3.552 3.932 2.449 2.330 2.190
Poker Hand 1.389 2.097 2.491 1.344 2.050 2.444
Record Linkage 1.100 1.790 2.354 0.541 0.607 0.524
Sensorless Drive 4.389 4.729 5.011 2.922 2.864 3.277
Skin Segmentation 7.563 7.672 7.737 4.829 3.943 3.726
WSMWk-means
(T=10)
CoverType 1.389 2.050 2.508 0.794 0.972 0.960
Hand Postures 5.012 5.311 5.555 3.370 3.458 3.729
IDA 2016 1.493 2.088 2.582 1.101 1.130 1.071
Online News Pop 3.092 3.552 3.932 2.456 2.313 2.180
Poker Hand 1.389 2.097 2.491 1.346 2.052 2.443
Record Linkage 1.100 1.790 2.354 0.512 0.524 0.476
Sensorless Drive 4.389 4.729 5.011 2.780 2.781 3.302
Skin Segmentation 7.563 7.672 7.737 4.954 3.773 3.602
FSFS
CoverType 1.389 2.050 2.508 1.439 1.664 1.804
Hand Postures 5.012 5.311 5.555 5.307 5.234 5.234
IDA 2016 1.493 2.088 2.582 1.555 2.283 3.082
Online News Pop 3.092 3.552 3.932 3.192 3.677 4.510
Poker Hand 1.389 2.097 2.491 1.439 1.752 1.561
Record Linkage 1.100 1.790 2.354 1.204 1.100 1.100
Sensorless Drive 4.389 4.729 5.011 4.361 4.593 4.643
Skin Segmentation 7.563 7.672 7.737 7.543 7.695 7.866

WSMWk-means is a clustering-based method. Thus, we
can reinforce our previous results by demonstrating it improves
cluster compactness. We demonstrate this is the case by mea-
suring the average component-wise distance between entities

8

and their respective centroids, given by

P′(S ,Z) =

K∑

k=1

∑

i∈S x

V−1
V∑

v=1

(xiv − zkv)2. (9)

We measure cluster compactness with (9) rather than Equa-
tion (1) because the latter would tend to be higher as the number
of features increases (ie. when features are not removed by our
method). Table 4 presents the average of Equation (9) over 100
runs for each data set. We can clearly see that our feature selec-
tion algorithm decreases the average component-wise distance
between entities and centroids, which means clusters are more
compact.

Table 4. The average computed over 100 runs, of the average component-
wise distance between entities and their respective centroids. Under ‘With-
out FS’ we show these results for the data sets with all features. Under
‘With FS’ we show the results computed over the features that have been
selected by our method at each run.

Without FS With FS
0% 10% 20% 0% 10% 20%

WSMWk-means
(T=5)
CoverType 0.122 0.167 0.199 0.110 0.109 0.112
Hand Postures 0.060 0.086 0.116 0.052 0.053 0.058
IDA 2016 0.007 0.021 0.034 0.002 0.002 0.002
Online News Pop 0.229 0.256 0.275 0.173 0.177 0.179
Poker Hand 1.337 1.284 1.255 1.307 1.248 1.218
Record Linkage 0.140 0.147 0.148 0.060 0.069 0.059
Sensorless Drive 0.025 0.101 0.173 0.014 0.012 0.021
Skin Segmentation 0.064 0.091 0.108 0.042 0.046 0.059
WSMWk-means
(T=10)
CoverType 0.116 0.161 0.192 0.105 0.103 0.103
Hand Postures 0.058 0.085 0.115 0.049 0.053 0.058
IDA 2016 0.006 0.021 0.034 0.002 0.002 0.002
Online News Pop 0.225 0.249 0.271 0.170 0.175 0.175
Poker Hand 1.321 1.268 1.236 1.290 1.231 1.196
Record Linkage 0.133 0.140 0.143 0.052 0.063 0.064
Sensorless Drive 0.022 0.100 0.171 0.011 0.011 0.021
Skin Segmentation 0.061 0.091 0.107 0.039 0.044 0.055

The results shown in Tables 2, 3, and 4 seem to suggest
higher values of T lead to better results. This is a sensible con-
jecture as the higher the value of T the more data our method
has access to, but it requires further investigation. With this
in mind we ran a series of experiments with T = 10, 11, ..., 30
on two data sets: Record Linkage (the largest data set we ex-
periment with in this paper) and Skin Segmentation, each with
added 20% noise features. Figure 1 shows the average fre-
quency of noise features being selected by our method over T .
These experiments show a tendency for better results the higher
the value of T .

The results in this section show that our method is capable
of removing irrelevant features that may be present in large
data sets. These experiments also show that our method re-
quires a small amount of data to work. In the case of Record
Linkage (the largest data set we experiment with in this paper),

10 12 14 16 18 20 22 24 26 28 30

T

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

F
re

qu
en

cy
 o

f n
oi

se
 fe

at
ur

es
 b

ei
ng

 s
el

ec
te

d

Fig. 1. Average frequency of noise features being selected by WSMWk-
means over T on data sets with 20% extra noise features. The solid and
dashed lines represent the Skin Segmentation and Record Linkage data
sets, respectively.

our method identified the vast majority of irrelevant features
(approximately 86.0% when adding 10% noise features, and
94.5% when adding 20% noise features) using only 0.4% of the
data (for details, see Table 2, with T = 5).

6. Conclusion

In this paper we introduced a new unsupervised feature selec-
tion algorithm designed specifically to deal with large data sets.
Our method models the degree of relevance of each feature at
each cluster using a feature weight that is found using samples
of a given data set. It then applies a clearly defined threshold to
these feature weights in order to decide which features should
be selected and which should be discarded.

We empirically show that our method is capable of remov-
ing irrelevant features, leading to a lower average entropy and
clusters that are more compact. The major advantages of our
method is that it reaches such results by processing only a frac-
tion of a given data set, and it does not require the whole data
set to be small enough to fit in the memory of a computer. We
believe this is of particular interest to those analysing data sets
that are too large for other methods to be applied. Our future
work will attempt to optimise the memory management of our
method to better deal with sparse data sets, as well as the fact it
considers one feature at a time.

References

Altman, N.S., 1992. An introduction to kernel and nearest-neighbor nonpara-
metric regression. The American Statistician 46, 175–185.

de Amorim, R.C., 2016. A survey on feature weighting based k-means algo-
rithms. Journal of classification 33, 210–242.

de Amorim, R.C., Hennig, C., 2015. Recovering the number of clusters in data
sets with noise features using feature rescaling factors. Information Sciences
324, 126–145.

de Amorim, R.C., Mirkin, B., 2012. Minkowski metric, feature weighting and
anomalous cluster initializing in k-means clustering. Pattern Recognition
45, 1061–1075.

9

Ball, G.H., Hall, D.J., 1967. A clustering technique for summarizing multivari-
ate data. Behavioral Science 12, 153–155.

Cai, D., Zhang, C., He, X., 2010. Unsupervised feature selection for multi-
cluster data, in: Proceedings of the 16th ACM SIGKDD international con-
ference on Knowledge discovery and data mining, ACM. pp. 333–342.

Chan, E.Y., Ching, W.K., Ng, M.K., Huang, J.Z., 2004. An optimization algo-
rithm for clustering using weighted dissimilarity measures. Pattern recogni-
tion 37, 943–952.

Chandrashekar, G., Sahin, F., 2014. A survey on feature selection methods.
Computers & Electrical Engineering 40, 16–28.

Chen, C.P., Zhang, C.Y., 2014. Data-intensive applications, challenges, tech-
niques and technologies: A survey on big data. Information Sciences 275,
314–347.

Dheeru, D., Karra Taniskidou, E., 2017. UCI machine learning repository.
URL: http://archive.ics.uci.edu/ml.

Guyon, I., Elisseeff, A., 2003. An introduction to variable and feature selection.
Journal of machine learning research 3, 1157–1182.

Hans-Hermann, B., 2008. Origins and extensions of the k-means algorithm
in cluster analysis. Journal Electronique dHistoire des Probabilités et de la
Statistique Electronic Journal for History of Probability and Statistics 4.

Huang, J.Z., Ng, M.K., Rong, H., Li, Z., 2005. Automated variable weighting in
k-means type clustering. Pattern Analysis and Machine Intelligence, IEEE
Transactions on 27, 657–668.

Jain, A., 2010. Data clustering: 50 years beyond k-means. Pattern Recognition
Letters 31, 651–666. doi:10.1016/j.patrec.2009.09.011.

Jones, E., Oliphant, T., Peterson, P., et al., 2001. SciPy: Open source scien-
tific tools for Python. URL: http://www.scipy.org/. [Online; accessed
2016-11-28].

Kaisler, S., Armour, F., Espinosa, J.A., Money, W., 2013. Big data: Issues
and challenges moving forward, in: System sciences (HICSS), 2013 46th
Hawaii international conference on, IEEE. pp. 995–1004.

Kim, Y., Street, W.N., Menczer, F., 2000. Feature selection in unsuper-
vised learning via evolutionary search, in: Proceedings of the sixth ACM
SIGKDD international conference on Knowledge discovery and data min-
ing, ACM. pp. 365–369.

MacQueen, J., 1967. Some methods for classification and analysis of multi-
variate observations, in: Proceedings of the fifth Berkeley symposium on
mathematical statistics and probability, California, USA. pp. 281–297.

MATLAB, 2013. version 8.10.0 (R2013a). The MathWorks Inc., Natick, Mas-
sachusetts.

Mirkin, B., 2012. Clustering: A Data Recovery Approach. Computer Science
and Data Analysis, CRC Press, London, UK.

Mitra, P., Murthy, C., Pal, S.K., 2002. Unsupervised feature selection using
feature similarity. IEEE transactions on pattern analysis and machine intel-
ligence 24, 301–312.

Panday, D., de Amorim, R.C., Lane, P., 2018. Feature weighting as a tool for
unsupervised feature selection. Information Processing Letters 129, 44–52.

R Core Team, 2014. R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing. Vienna, Austria. URL:
http://www.R-project.org.

Sculley, D., 2010. Web-scale k-means clustering, in: Proceedings of the 19th
international conference on World wide web, ACM. pp. 1177–1178.

Steinley, D., 2006. K-means clustering: a half-century synthesis. British Jour-
nal of Mathematical and Statistical Psychology 59, 1–34.

Wishart, D., 1998. Clustan. URL: http://www.clustan.com/.

Declaration of interest: none

