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The effect of sensory experience on hemispheric specialisation for language production is not well understood.
Children born deaf, including those who have cochlear implants, have drastically different perceptual experi-
ences of language than their hearing peers. Using functional transcranial Doppler sonography (fTCD), we
measured lateralisation during language production in a heterogeneous group of 19 deaf children and in 19
hearing children, matched on language ability. In children born deaf, we observed significant left lateralisation
during language production (British Sign Language, spoken English, or a combination of languages). There was
no difference in the strength of lateralisation between deaf and hearing groups. Comparable proportions of
children were categorised as left-, right-, or not significantly-lateralised in each group. Moreover, an exploratory

subgroup analysis showed no significant difference in lateralisation between deaf children with cochlear im-
plants and those without. These data suggest that the processes underpinning language production remain ro-
bustly left lateralised regardless of sensory language experience.

1. Introduction

Language processing in the vast majority of hearing adults is asso-
ciated with more extensive brain activity in the left than right hemi-
sphere (Knecht et al., 2000; Price, 2012; Vigneau et al., 2006). Asym-
metric patterns of activity are also found in children producing
language (Bishop et al., 2009; Krishnan et al., 2015; Paquette et al.,
2015; Sowman et al., 2014). The causal underpinnings of hemispheric
specialisation for language are not known, but are likely to involve a
complex interaction of genetic, maturational, hormonal, and experi-
ential factors (Bishop, 2013; Francks, 2015; Josse and Tzourio-
Mazoyer, 2004; Tzourio-Mazoyer et al., 2016). One such factor is sen-
sory experience, manipulation of which has been shown to influence
hemispheric lateralisation of visual processing in other animals
(Johnston and Rogers, 1999; Letzner et al., 2014; Ocklenburg and
Giintiirkiin, 2012). In humans, manipulating early sensory experience is
not ethical. We can however observe the effect of altered sensory ex-
perience on lateralisation by examining cerebral lateralisation in in-
dividuals who have sensory impairment. One such example is children
born deaf.

Children born deaf show great variability in their experience of

language. First, their auditory language input is variable. This is largely
dependent on the child’s level of deafness and whether they receive a
device such as a hearing aid or cochlear implant (CI), which may or
may not provide some useful access to auditory speech. Second, deaf
children’s visual language experience is also variable. For all deaf
children, access to spoken language is supported by visual input (lip-
reading). In addition, 5-10% of deaf children may be exposed to a
signed language at home from their deaf parents. Others may learn sign
language at some point during their school years or later in life, while
others still might never learn sign language.

In a review of the literature on the development of hemispheric
lateralisation, (Minagawa-Kawai et al., 2011), delineate three types of
theory that aim to account for asymmetries in brain responses to
speech. Although the focus of the review is speech perception, it
nevertheless provides a useful framework against which to consider
lateralisation for other domains of language processing. The three types
of account are summarised as signal-driven, domain-driven, or those
which emphasise the role of learning.

Signal-driven theories focus on low-level properties of speech and
their differential processing in early auditory areas (Boemio et al.,
2005; Giraud et al., 2007; Morillon et al., 2010; Poeppel, 2003; Zatorre
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and Belin, 2001). For example, temporal or spectral complexity, op-
timal time windows for integration, and phoneme or word duration
have all been put forward as candidate properties for inducing different
processing streams. Evidence for a signal-driven account comes from
findings of left or right lateralised brain responses in infants in auditory
cortices and neighbouring portions of the superior temporal cortex,
depending on the specific acoustic properties of the stimuli (for ex-
ample, Dehaene-Lambertz et al., 2002; Pena et al., 2003; see Minagawa-
Kawai et al., 2011 for a review). Whether experience of auditory input
to these regions plays a causal role in lateralisation of later language
production is not known, but this possibility has been raised in the
literature (for example, Poeppel, 2012).

Domain-driven accounts suggest that abstract linguistic features
drive asymmetries in processing. These accounts place emphasis on a
left-lateralised brain network that processes linguistic information re-
gardless of the properties of the sensory input (Dehaene-Lambertz et al.,
2006). Previous findings of robustly left-lateralised activity in deaf
adult deaf signers processing sign language provide support for this
view (Emmorey et al., 2002a; Gutierrez-Sigut et al., 2016; MacSweeney
et al., 2002, 2008). The importance of linguistic information is also
evident from studies in which the low-level properties of the stimulus
remain constant, but task is manipulated to involve more or less lin-
guistic processing. For example, left lateralisation has been demon-
strated to emerge only after hearing participants with no knowledge of
a sign language are given labels for a set of gestures (Mottonen et al.,
2010) or when participants are required to focus on certain aspects of
an auditory speech stimulus such as meaning versus tonal quality (Von
Kriegstein et al., 2003).

The third type of theory to account for hemispheric lateralisation of
language attributes a critical role to learning. Support for this per-
spective comes from studies of songbirds demonstrating increasing left-
lateralisation with song learning (Chirathivat et al., 2015; Moorman
et al., 2015; Tsoi et al., 2014). Significant asymmetry (left > right) in
the formation of new neurons in auditory regions is reported for zebra
finches (Tsoi et al., 2014). Human adults also show increased functional
left lateralisation as they learn a foreign language (Plante et al., 2015).
At the other end of the spectrum, there is some evidence that in-
dividuals with language learning disorders show atypical lateralisation.
Reduced functional lateralisation has been reported for language im-
paired groups (Artiges et al., 2000; Braun et al., 1997; Crow et al., 1996;
de Guibert et al., 2010; Maisog et al., 2008; Whitehouse and Bishop,
2008) though some of these findings are subject to controversy over
their validity (see Wilson and Bishop, 2018).

Contrasting patterns of lateralisation in deaf and hearing children
can provide insights into these different accounts of hemispheric la-
teralisation for language. A signal-driven account of lateralisation
predicts that children born deaf are more likely to show atypical cer-
ebral lateralisation, or to show ‘weaker’ lateralisation, for language, as a
consequence of reduced access to auditory speech. In contrast, a do-
main-driven account predicts deaf children will show left-lateralisation
regardless of modality of language background, as long as they are
exposed to complex linguistic information. A learning-based account
also predicts left-lateralisation regardless of language background, but
crucially only in those individuals with proficient language.

To date, only one study has investigated functional hemispheric
asymmetries in children born profoundly deaf. Chilosi et al. (2014)
reported group-level left lateralisation in deaf children. This was in-
terpreted as evidence for the importance of auditory experience, pro-
vided via a cochlear implant (CI), in the development of left later-
alisation. However, only deaf children who had an early CI were
included in the study. Therefore it is not possible to draw conclusions
regarding the relationships between auditory input via a CI and later-
alisation for language. A better test of the signal driven account would
be to assess hemispheric lateralisation in a more representative sample
of deaf children, some of whom do not have CI. This is the approach
taken in the current study.
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Investigating the neural systems involved in language processing in
deaf children has been hampered by the incompatibility of CIs with
common forms of functional imaging, such as fMRI. In the current study
we use functional transcranial Doppler sonography (fTCD), which as-
sesses gross differences in hemispheric activity (Deppe, Ringelstein, &
Knecht, 2004). fTCD, the method also used by Chilosi et al. (2014)
measures changes in the speed of blood flow through the left and right
middle cerebral arteries (MCAs) during sensory and cognitive tasks
(Aaslid et al., 1982). Two features of fTCD make it ideal for assessing
language lateralisation in deaf children. First, fTCD is not subject to the
same constraints on movement as other imaging modalities, permitting
the measurement of cerebral blood flow changes during overt speech or
sign language production (Emmorey et al., 2002b; Gutierrez-Sigut,
Payne, & MacSweeney, 2016; MacSweeney et al., 2002, 2008). Second,
fTCD is safe for use with those with cochlear implants, which are
contraindicated for use with fMRI.

In the current study, we recruited a diverse group of young deaf
children and measured lateralisation during language production in
their preferred communication mode. As well as variability in language
input, deaf children’s language output also varies from child to child
and within a child, depending on the context and the interlocutor. It is
not uncommon for a deaf child to switch between spoken English and
BSL, or to use a form of communication with the grammar of spoken
English, with accompanying BSL signs (often referred to as Sign
Supported English or Total Communication). We compared the later-
alisation strength in deaf children during language production in their
preferred communication mode, with that of language-matched hearing
comparison group. Offline behavioural measures of language profi-
ciency were also collected so that we could investigate the relationship
between lateralisation and language proficiency.

With regard to the effect of cochlear implantation on lateralisation,
support for the conclusions drawn by Chilosi et al. would come from
evidence showing that deaf children with CI (who have more experi-
ence with auditory speech) show greater left lateralisation than those
without. This study was not powered to detect differences between
amplification types, therefore this comparison is included as ex-
ploratory.

In contrast to Chilosi et al. (2014) we suggest that exposure to au-
ditory speech may not be the main driving factor in the establishment of
left lateralisation. We suggest that learning- or domain-driven theories
of lateralisation are also tenable. Therefore, we predicted that a het-
erogeneous group of deaf children would show left lateralisation during
language production. We predicted a similar strength of lateralisation
in the deaf and hearing children, since the groups were matched on
language level. In line with the idea that lateralisation is related to an
efficient language processing system, we predicted a positive relation-
ship between strength of lateralisation and language ability, irrespec-
tive of hearing status.

2. Method
2.1. Procedure

Ethical approval for the study was obtained from the UCL Research
Ethics Committee. Parents or carers gave written informed consent
prior to the study. Children also gave verbal assent before the start of
each testing session.

Testing took place over two or three sessions on separate days not
more than a week apart. Children were tested in a designated room at
their school by a hearing researcher or a deaf researcher fluent in BSL.
In some cases, a learning support assistant accompanied the child. All
children were encouraged to respond in whichever language (or com-
bination of languages) they wished. Children who communicated pre-
dominantly in BSL were given all instructions in BSL.



H. Payne et al.

2.2. Background measures

2.2.1. Cognitive assessments

For children in both groups, nonverbal IQ was assessed using the
Pattern Construction subtest of the British Ability Scales, 3™ edition
(BAS-III; Elliot and Smith (2011)).

2.2.2. Language assessments

Due to differences in ages and language modalities across and
within groups, it was not possible to use the same language assessments
for all participants.

2.2.2.1. Language assessments for deaf children. In the deaf group,
general expressive vocabulary knowledge was estimated using the
Naming Vocabulary subtest of the British Ability Scales (BAS-III;
Elliot & Smith, 2012). Given that standard scores for these scales are
normed for hearing children, we report scaled scores which take into
account the number of attempted items. Children were able to respond
in either English or BSL.

We also included assessments of receptive language in both English
and BSL, where appropriate. The Single Words subtest of the Test of
Child Speechreading (Kyle et al., 2013) was included as a measure of
spoken English language comprehension. British Sign Language (BSL)
comprehension was assessed using the BSL Receptive Skills Test (BSL-
RCT, Herman et al., 1999), which focuses on receptive grammar.
Children were only tested on this assessment if 1) their teacher reported
the child having exposure to BSL and 2) they could produce 50% or
more of the BSL labels for the nouns that appeared in the test. Using
these criteria, 6 out of 19 children were tested on the BSL RCT.

Finally, the Early and Single Word Reading subtests of the York
Assessment of Reading Comprehension (YARC, Hulme et al., 2009)
were included as additional measures of language proficiency. Single
word reading was attempted only if the child could complete the ma-
jority of the Early Word Reading subtest. Children were able to respond
in either English or BSL.

2.2.2.2. Language assessments for hearing children. For the hearing
group, expressive vocabulary was assessed using age appropriate
subtests of the BAS-III (Elliot & Smith, 2012). Four to five year olds
were tested on the Naming Vocabulary subtest and 6-7 year olds were
tested on the Word Definitions subtest. We did not include any
measures tapping receptive language skills.

We also assessed children on the Early/Single Word Reading subt-
ests of the YARC (YARC, Hulme et al., 2009). Single word reading was
attempted only if the child could complete the majority of the Early
Word Reading subtest.

2.2.3. Handedness assessments

Handedness was assessed using two measures of hand preference.
The card-reaching task followed the procedure described by Bishop
et al. (1996). A set of cards depicting highly nameable objects were
dealt into 7 piles at 30 ° intervals in a semi-circle in front of the child. In
a random order, which was the same for every child, the experimenter
asked the child to reach for a given object card and place it in a pile in
front of them. A Card Laterality Quotient (Card LQ) was calculated for
each child, givenby LQ = (R — L) /(R + L + Both) *100, ranging from
100 for participants reaching exclusively with the right hand, 0 for
those who do not show a preference, to —100 for those reaching ex-
clusively with their left hand.

The second measure of hand preference required children to use
four objects in turn: a pencil, scissors, a jug, and a cup. An Objects
Laterality Quotient (Object LQ) was calculated in the same way the
Card LQ, given by LQ = (R — L) / (R + L + Both) * 100.
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2.3. Participants

Twenty-eight deaf (greater than 60dB loss in their better ear)
children were recruited from UK hearing support units (16), specialist
deaf schools (11) and mainstream schools (1). It was not possible to
record fTCD data for six of these children due to inability to find a
signal (4 children), interference with the placement of probes from
glasses (1 child), or inability to attempt a sufficient number of trials (1
child). Therefore, data were collected from 22 children (13 male). The
average age of the sample was 8; 0 in years; months (min = 5; 0,
max = 11; 5). All children had typical non-verbal IQ (mean standard
score = 49.4, min = 34, max = 66).

For comparison, we included a group of hearing children who were
tested as part of another study (Payne et al., in prep). The average age
of the comparison group was 6; 4, (min = 4; 3, max = 7; 6). These
children also had typical non-verbal IQ scores (mean standard
score = 58.6, min = 47, max = 78). The group was selected on a case-
by-case basis according to their single word reading ability to be closely
matched to the deaf group. Reading scores were chosen a proxy for
language ability since this test was used with the majority of both deaf
and hearing children. Three deaf children had especially low language
ability. Three younger hearing children were selected to be their mat-
ched controls, who had similar vocabulary naming age equivalents
(Naming Vocabulary subtest of the BAS-III) and Early Word Reading
scores. These six children were not included in correlations relating
reading score with LI. Children in the hearing group were significantly
younger than those in the deaf group (t (36) = 3.30, p = .002) but not
significantly different in terms of reading scores (t (28) = 0.05,
p = .96) or vocabulary (t (4) = 0.27, p = .79).

The deaf and hearing groups were also matched on two measures of
hand preference, tool use and card reaching, as described in Section
2.2.3. The majority of children showed strong right hand dominance in
these tasks. The groups did not differ on either of these measures (Mean
Object LQ deaf = 81.6 (sd = 41.5), hearing = 77.6 (sd = 47.8), t
(36) =.27, p .79, Mean Reaching LQ deaf =49.5 (sd = 48.3),
hearing = 36.9 (sd = 37.0, t (34) = .88, p = .38). Three participants in
the deaf group and one participant in the hearing group wrote with
their left hand. All four of these participants are denoted by open circles
in the Results shown in Fig. 3.

2.4. fTCD materials

Blood flow velocity through the left and right MCAs was measured
using a Doppler ultrasound device (DWL DopplerBox: manufactured by
DWL Elektronische Systeme, Singen, Germany). Two 2-MHz transducer
probes were mounted on a flexible headset and placed at each temporal
skull window. To accommodate cochlear implants and hearing aids, we
commissioned a custom-built band headset to hold the ultrasound
probes in place.

Changes in cerebral blood flow velocity (CBFV) were recorded
during an Animation Description task developed in Bishop et al. (2009)
which has been used with children as young as 4-years-old and also
adults (Bishop et al., 2009; Groen et al., 2013, 2012; Hodgson et al.,
2016) and shows good reliability within and across testing sessions
(Bishop et al., 2009).

During the task, the child watched a cartoon penguin in a series of
clips. The maximum number of possible clips was 30. However, this was
dependent on the child’s compliance. The animation had environmental
sounds and some unintelligible vocalisations but was otherwise silent.
Fig. 1 shows a schematic of the trial timings. A period of silent watching
(12s) was followed by a prompt for the child to describe the events of
the animation (10 s) after which the child was instructed to sit quietly
for a rest period of 16 s. After the rest period, the experimenter checked
the child is ready to proceed. The task was presented using Cogent
toolbox (www.vislab.ucl.ac.uk/cogent) for MATLAB (Mathworks Inc.,
Sherborn, MA, USA). Triggers were time-locked to the onset of the
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watch clip describe clip relax (shh)

Developmental Cognitive Neuroscience 36 (2019) 100619

Fig. 1. Schematic showing timings for single trial of
Animation Description.

>

—
26 time (s)

Table 1
Descriptive statistics for language assessments and online task performance. Group comparisons are made where appropriate.
Deaf Hearing Test statistic p Effect size
Mean (SD)
Age 8.19 (2.17) 6.38 (1.01) t(36) = 3.30 .002 1.1
Test of Child Speechreading Single words (%) 70.7" (8.0) - - - -
BSL Receptive Skills 84.0 (13.5) - - - -
Expressive vocabulary Naming® n = 16 - - - -
161.3 (24.0)
Expressive vocabulary - n =16 - - -
Word Definitions® 100.9 (16.5)
Single word readingi 31.07 (12.90) 31.31 (11.92) t (28) = .053 .958 0.009
Participants with low language proficiency
Early word readingf‘ n=3 n=3 t(4) = .18 .87 0.15
3.0 (4.4) 3.7 (4.6)
Expressive vocab n=3 n=3 t(4) = 1.9 .13 1.5
Naming* 16.7 (4.5) 23.3 (4.0)

a Corresponds to scores between 50" — 75% centile.

+ standard score; ¥ raw score; § scaled ability score (takes into account number of items attempted).

video clips.

2.5. Planned analyses

2.5.1. Behavioural data processing

Due to the very different language outputs of the deaf and hearing
children, different measures of amount of language produced during
the task were established for the two groups. For the hearing group,
responses were audio recorded and transcribed offline. As an indication
of task performance, the average number of words produced for ac-
cepted trials was calculated. For the deaf group, responses were re-
corded using a digital video camera. Videos of behavioural responses
were coded using ELAN transcription software (http://tla.mpi.nl/tools/
tla-tools/elan; Max Planck Institute for Psycholinguistics, The Language
Archive, Nijmegen, The Netherlands). This allows time-aligned anno-
tations for multiple tiers of description. For example, a child’s utter-
ances can be marked using a separate tier for each hand and another
tier for speech. It was not possible to code the number of tokens pro-
duced (words or signs) because deaf children often switched between
spoken English, BSL, and gesture or produced these outputs at the same
time. In some of the youngest children particularly it was difficult to
differentiate poorly-formed signs from gestures to get an accurate
measure of the number of individual tokens. Instead we coded onsets
and offsets of the following actions separately for right-hand, left-hand,
and speech: during the video presentation (the period used for baseline
correction), during the animation description period and during the
‘relax’ period. Total seconds of each transcription were calculated and
averaged over the number of viable trials for that child. From the
transcriptions, we calculated an index of hand-movement dominance:
(R - L) / (all hand movement) * 100 as well as the average commu-
nication (of any type) for each child. Instances where the child pro-
duced utterances during the baseline or ‘relax’ period were manually
rejected. Instances of self-grooming, brief points or single short voca-
lisations were ignored.

2.5.2. fTCD data processing

Analyses were run using functions from https://github.com/
nicalbee based on dopOSCCI, a custom MATLAB (Mathworks Inc.,
Sherborn, AM, USA) toolbox written for analysing fTCD group data

(Badcock et al., 2018; Badcock, Holt, Holden, & Bishop, 2012). The
analysis scripts used in the current study are available at from the OSF
page for this project - https://osf.io/r3evy/?
view_only = 9350d5137f024804bc06b42c3672bae6.

Analyses of the cerebral blood flow velocities consisted of normal-
isation of left and right channel values on a trial-by-trial basis and in-
tegration of blood flow speed fluctuations associated with the heart
cycle (Deppe et al., 1997). In addition, trials with unusually high or low
blood flow speeds were rejected. This was defined as + 50% of the
average speed for that channel.

The data were segmented into epochs from -12 to 26 s relative to
stimulus presentation. The left-right difference wave was baseline cor-
rected by subtracting the average blood flow velocity during a period of
inactivity (10 to —2s prior to stimulus onset) from each data point. As
is standard for fTCD analysis, a period of interest (POI) was chosen a
priori. Here the POI was set between 4 and 18s.

For each participant, the maximum peak left-right difference within
the POI was identified. A two second window was centred on this
maximum. The LI was defined as the average of the left minus right
difference within this two second window. One-sample t-tests were
used to assess whether the LI value was significantly left or right la-
teralised for each participant in each condition. When one-sample t-
tests were not significant, participants were considered ‘low lateralised’.
The group mean LI was calculated as the mean average of individual
LIs.

Results
3.1. Behavioural data

Descriptive statistics for language assessments are presented in
Table 1. With regard to amount of linguistic material produced by deaf
and hearing children during the tasks, equivalent measures could not be
established (as described in Section 2.5.1). We include descriptive
statistics here only to provide a better description of the variability
within each group, not for comparison. Deaf children produced an
average of 7.8 s of communicative content (in any form) per 10 s active
period (sd = 2.3, range = 1.5-10.63). Hearing children produced an
average of 17.3 words per 10 s active period (sd = 2.8, range = 12-23).
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3.2. fTCD data quality and reliability

Data from two children were identified as poor quality during the
first phase of data analysis. Following artefact rejection, these two
children had a low number of acceptable trials (< 9) and were excluded
from further analyses. This threshold for the number of acceptable
epochs is within the range commonly used for fTCD studies (Badcock
and Groen, 2017).

In the second stage of data screening, trials were removed if the
child had not adhered to the instructions. For one child this resulted in
fewer than 9 acceptable trials and they were excluded from further
analyses. The statistics below reflect the data from the more restricted
group of 19 deaf children (10 male) and 19 hearing children (9 male).
The average age of this group was 8; 0 years (min = 5; 0, max = 11; 5).

Reliability was estimated using the split-half correlation coefficient
for the averaged odd and even LIs calculated for each individual.
Reliability for both groups was good (deaf: r=0.91, p < .001,
hearing: r = .82, p < .001). This indicates a consistent response to the
task across the trials. The average number of suitable trials was 14.4
(sd = 3.8, min = 9, max = 22) for the deaf group, and 14.6 (sd = 2.6,
min = 10, max = 19) for the hearing group. The average latency of the
peak difference within the period of interest was 10.9s (sd = 2.9,
min = 6.4, max = 17.7) for the deaf group, and 11.2s (sd = 2.9,
min = 6.0, max = 17.7) for the hearing group. There were no sig-
nificant differences between groups on any of these measures (all
p’s > 0.1)

3.3. Group lateralisation indices

The average LI of the deaf group was 2.2 (3.0), indicating significant
left lateralisation (one sample t-test, t (18) = 3.2, p =.005). The
average LI of the hearing group was 1.8 (3.0), which is significantly
different from O (t (18) = 2.7, p = .016) indicating left lateralisation at
the group level. Table 2 shows descriptive and inferential statistics for
the LIs of both groups, as well as the percentage of children in hearing
and deaf groups categorised as left- right- or low-lateralised according
to their individual LI and SEM. Fig. 2 shows both groups’ averaged time
course of cerebral blood flow velocity change for left and right channels
and the average difference between channels.

We compared the strength of lateralisation between the deaf and
hearing groups. There were no significant differences between the
hearing and deaf groups in terms of strength of LI (t (36) = .45,
p = .67, d = 0.15). Furthermore, there were no significant differences
in the proportion of children in each lateralisation category (x? = .62,
p = .73). See Table 2.

3.4. Effect of implant status (CI n = 10, non-CI n = 8)

As a further exploratory test of whether access to auditory speech
through a CI plays a role in the development of lateralisation for lan-
guage processing, we compared the strength of lateralisation between
deaf children who had or had not received a cochlear implant. One
child was not included in this analysis because they had received a Bone
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Anchored Hearing Aid (BAHA). These devices use bone conduction to
transmit sound to the inner ear. Thus, they are very different amplifi-
cation devices to CIs. Furthermore, it would be problematic to include a
child with a BAHA in a ‘no CI’ group because the assumption is that
children in a ‘no-CI’ group would have reduced transfer of auditory
information to the cochlea. There was no significant difference in
average LI between the subgroups: CI group = 2.5 (sd = 2.8); non-CI
group = 1.6 (sd = 3.5) (t (16) = .61, p = .55,d = 0.28). Fig. 3 shows
the individual LIs for children in the no-CI, CI, and hearing group re-
spectively.

3.5. Relationship between language ability and lateralisation

To test the hypothesis that lateralisation is driven by learning, we
tested the relationship between the strength of lateralisation and an
offline behavioural measure of language proficiency for all children,
regardless of hearing status. The correlation between single word
reading and strength of lateralisation was not significant either when all
participants were combined (r = .24, p = .20) or when each group was
tested separately (deaf: n =14, r = .16, p = .58, hearing: n = 16,
r=.32, p=.23).

3.6. Test of equivalence

As described in Section 3.3, we did not observe a significant dif-
ference in the strength of lateralisation between deaf and hearing
groups. This null result may reflect a true difference of 0 between
groups, or may be due to insufficient power to detect a given effect size.
In the latter case, judgement on the existence of a group difference
should be reserved until more data have been collected. To test whether
we can be confident in this null result, we ran a test of equivalence on
the difference in LI between deaf and hearing groups, alongside cal-
culating a Bayes factor for the likelihood of the null over the alternative
(observed) distribution. This was done using the Two One-Sided T-tests
(TOST) library for R, as described in (Lakens et al., 2018; Lakens,
2017).

For these procedures, it is necessary to specify several parameters.
For the TOST procedure, a smallest effect size of interest (SESOI) is
selected a priori. A group difference with an effect size within these
bounds suggests that the groups can be considered equivalent. One
approach to defining a smallest effect size of interest is to calculate a
critical test statistic for a previous study that tested the same hypoth-
esis. In adopting this logic, we accept that there may be smaller true
differences between groups but elect that they are small enough to be
theoretically non-informative. Chilosi et al. (2014) tested 40 children
with an a=0.05. A critical t-value for this study would have been 2.02,
which is equivalent to a critical Cohen’s d=0.64. Thus, any group
difference of less than 1.9 units (in raw measurement of change in blood
flow velocity) would not reach significance. This value is taken as the
SESOI for the test of equivalence on our data.

For the comparison of Bayes factors we use an informed prior dis-
tribution also based on the findings of Chilosi et al. (2014), and our a
priori hypothesis (that deaf children will be less strongly left-lateralised

Table 2
Descriptive statistics for fTCD data and group contrasts for deaf and hearing children.
Deaf Hearing Test statistic p Effect size (Cohen’s d)

N 19 19
No. trials 14.3 (3.7) 14.6 (2.6) t(36) = .25 .80 .09
LI 2.23 (3.02) 1.79 (2.95) t(36) = .45 .66 .15
N left (%) 15 (79) 13 (68) x3(2) = .62 .73
N right (%) 3 (16) 4 (21)
N low (%) 1(5) 2(11)
Peak latency (seconds) 10.9 (2.9) 11.2 (2.9) t(36) = 0.29 .78 .10
Odd/even reliability 91 .82 Test on fisher transformed z = 1.05 .15
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Fig. 2. Average blood flow velocity change in left and right Middle Cerebral Arteries (MCA) during Animation Description for children born deaf (left side) and

hearing children (right side).
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Fig. 3. Violin plots showing the estimated probability density function of the LI
distribution for each group. Open circles denote left-handed individuals.

than hearing children). The consequence of this is modelling the prior
as Byo,0.5. The subscript y refers to a half-normal distribution: we
expect effects in one direction with smaller effects more likely than
larger ones (see Dienes, 2014). The prior (null) hypothesis has a mean
of 0 (effect size of 0 between group means) with a standard deviation of
0.5, based on the mean difference observed by Chilosi et al. (2014).

Fig. 4 shows the results of the two tests. Since the lower CI crosses
the lower equivalence bound we cannot reject the possibility that the
deaf group are more left-lateralised than the hearing group. However, a
difference in this direction would not be predicted based on any of the
previous literature. The lower 90% CI did not cross the upper bound,
therefore we can reject the possibility that the deaf children are more
right lateralised than the hearing children. In summary, this analysis
supports the interpretation that there is no meaningful difference in
strength of LI during language production between the deaf and hearing
children. In addition, the Bayes factor of 0.746 provides moderate
evidence for the null hypothesis (1.5 times more likely than the alter-
native hypothesis).

4. Discussion

The current study explored the effect of atypical sensory experience
on hemispheric specialisation for language processing. Specifically, we
assessed hemispheric lateralisation for language production in children
born deaf. These children have great variability in their language ex-
perience and extremely limited auditory speech input. We used fTCD to
measure hemispheric lateralisation of cerebral blood flow while the
children generated language in response to an established Animation
Description task (Bishop et al., 2009). As a group the deaf children
showed left lateralisation whilst producing speech, sign, sign-supported
English, or a combination of languages. This is the first study to mea-
sure cerebrovascular activity during language processing in a group of
deaf children from a range of language backgrounds.

Due to the hypothesised link between atypical or weak lateralisation
and language disorder (see Bishop, 2012 for a review), we chose a
comparison group of hearing children matched on language ability.
There was no significant difference between the deaf and hearing
children in the strength of lateralisation during language production.

We chose to match deaf and hearing children on language level, as
opposed to chronological age, to circumvent the potential confound of
language proficiency on lateralisation. Specifically, a finding of reduced
left-lateralisation in deaf compared to hearing children of the same age
could be attributed to poorer language ability in the deaf group (con-
sistent with a learning driven account) or to the difference in auditory
input between groups (interpreted primarily as evidence for a signal
driven account). It could be argued that a chronological age matched
group would be required to mitigate against group differences asso-
ciated with age-driven changes in lateralisation. However, two insights
led us not to include a chronological age-matched group. The first is a
meta-analysis of studies which examined age-related changes in lan-
guage lateralisation. The authors suggest that the localised changes in
functional lateralisation focused around the inferior frontal gyrus
(within the range of the MCA and therefore of fTCD) are likely to reflect
improved task performance rather than maturation per se (Weiss-Croft
and Baldeweg, 2015). Indeed, language skills that have a more pro-
tracted period of skill development are most likely to display ‘age-re-
lated’ changes in lateralisation (Holland et al., 2007). The animation
description task was designed such that very young children are able to
complete it (Bishop et al., 2009). Selecting a task that taps early de-
veloping skills therefore reduces the likelihood of age-related effects
between groups of different ages. The second insight is that two large
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studies using fTCD with children did not find an effect of age on la-
teralisation of language (Groen et al., 2012; Bishop et al., 2014). This
suggests that should any subtle, age-related differences in lateralisation
be present between groups, fTCD is not likely to be sensitive to them.

Our results agree with those of Chilosi et al. (2014), who reported
left lateralisation for language production in a group of deaf children
with CI. However, given that some participants in the current study had
a CI and some did not, our interpretation of left lateralisation in deaf
children is different to that of Chilosi et al. (2014). They argued, in line
with an auditory input-driven theory, that ‘reafferation of auditory
cortex following implantation’ (Chilosi et al., p. 4) drives left later-
alisation. Their argument suggests that plasticity in response to co-
chlear implantation and subsequent input of speech to auditory cortices
had led to left-lateralisation. The implication is that lateralisation was
not present pre-implant, though crucially this was not explicitly tested.
Furthermore, the Chilosi et al. (2014) study only included children with
cochlear implants. Deaf children, with or without implants, access
language through visual speech and, in some cases, a signed language:
both of which have been shown to be robustly left-lateralised in deaf
adults (see MacSweeney et al., 2008). Attributing left lateralisation of
speech production in deaf children with CI to increased auditory input
may therefore be premature. Indeed, our exploratory comparison be-
tween those with and without cochlear implants showed no significant
difference between groups.

The two other viewpoints that have been put forward to account for
language lateralisation, described in Section 1, suggest that linguistic
processes or learning may drive lateralisation (see Minagawa-Kawai
et al., 2011). While both accounts predict left lateralisation in deaf
children producing (signed or spoken) language, only a ‘learning-based’
account would implicate a relationship with language proficiency.
Specifically, a learning-driven account would predict that left-later-
alised language correlates positively with measures of language profi-
ciency. In the current study, we did not find evidence of a positive
correlation between lateralisation and language ability either when the
data from all children were pooled or when the data from deaf and
hearing children were analysed separately. It is entirely possible that
the measures used to assess language proficiency were not an accurate
reflection of a child’s ability. This is a particularly problematic area in
language research with deaf children, because of the lack of standar-
dised measures to assess modes of communication such as sign sup-
ported English. Nevertheless, the offline measures of BSL comprehen-
sion, as well as reading and vocabulary were related to how much
communication the deaf child attempted during the production period
(r's > 0.6). This suggests an acceptable level of validity for the mea-
sures of proficiency.

Whilst acknowledging that strong inferences cannot be drawn from
a null result, the current data suggest that left-lateralisation is not
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Fig. 4. Plot showing the summary of equivalence testing
supporting the interpretation that there is no meaningful dif-
ference in strength of LI during language production between
the deaf and hearing children. The filled square indicates the
mean difference of -0.4 with 90% confidence interval (CIs) as
a bold horizontal line and 95% confidence intervals as a thin
horizontal line. Equivalence bounds (-1.9 and 1.9 in raw units)
are shown with vertical dashed lines. The light blue dotted
line is the likelihood distribution, the light grey dashed line is
the alternative distribution, modelled as a half-normal in light
of hypotheses about the direction of the expected effect. This
places less weight on observations in the unexpected direction
when calculating the posterior likelihood function (solid black
line) (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this
article).

Deaf group more right-lateralised

conditional upon ‘successful’ language learning. This finding is in
contrast to an fMRI study with adults showing increasing lateralisation
with learning (Plante et al., 2015). Their study showed strengthening
left-lateralisation of brain activity in hearing adults learning to dis-
criminate words from pseudowords in an unknown language. Learning-
related changes were reported in a region of interest encompassing the
anterior and middle parts of the superior temporal gyrus. Assessing
changes in lateralisation during learning, as opposed to correlations
with overall proficiency, as was done in the current study, is a more
direct way of testing the hypothesis that learning drives lateralisation.
However, the types of processes involved in learning to discriminate
words from non-words in an unfamiliar language are likely to be
drastically different from those involved in producing novel sentences,
making it difficult to meaningfully compare these studies. Furthermore,
by studying hearing adults, Plante et al. (2015) contribute to a different
question about the role of learning in driving lateralisation. Critically,
hearing adults learning a second language already have established a
robust first language. Changes in lateralisation may relate to the mod-
ification of an existing lateralised system. It is unlikely that conclusions
regarding the impact of learning on hemispheric lateralisation drawn
from adult second language learners can be applied to children learning
a first language, or even children learning a second language (McNealy
et al., 2011). We suggest that the trajectory of novel language later-
alisation in hearing adults cannot afford insight into the weighting of
maturation and experience in the development of lateralisation, since
the two are inexorably linked in all but extreme cases (e.g. of neglect).
In contrast, many of the deaf children tested in the current study do not
have a robust first language and are therefore a more suitable popula-
tion for answering questions about the role of learning in the devel-
opment of lateralisation, distinct from effects of maturation. Using a
longitudinal design to map the trajectory of language lateralisation in
children who do not have experience of a rich language input from
infancy would allow stronger inferences to be drawn, particularly about
direction of causality. However, the data here do not provide evidence
that proficient language learning relates to the strength of left hemi-
sphere dominance.

Our data are most supportive of ‘domain-driven’ theories of later-
alisation. That is, the data support the hypothesis that hemispheric la-
teralisation for language production is driven by the requirements of
processing linguistic information regardless of modality, rather than
auditory language experience. This concords with functional neuroi-
maging findings from deaf adults showing left-lateralised processing of
various aspects of sign language processing (Corina et al., 2003;
MacSweeney et al., 2002; Emmorey et al., 2002a).

All of the children in the current study, including those using pre-
dominantly BSL, are regularly exposed to spoken English via the visual
modality and via whatever access to auditory speech is available via
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their hearing aid or CI. Therefore, a possible caveat to our support for a
domain-driven account is that some low-level properties present in the
auditory speech stream are perceptible from visual speech.
Nevertheless, our data make clear that increased access to auditory
speech via a CI is not a prerequisite for left hemispheric lateralisation
for language production in deaf children.

Several extraneous factors may have influenced lateralisation in the
current study. First, the animation clips contained environmental
sounds. This introduces potential bias during the baseline period if
perception of such sounds is lateralised in the hearing children.
However, evidence for the lateralisation of non-speech sounds is equi-
vocal (e.g. Boemio et al., 2005; Rosen et al., 2011). Moreover, there
were no significant differences in lateralisation between deaf and
hearing groups in LIs before baseline correction, (hearing mean = -0.52
(0.77), deaf mean = -.69 (1.1.), t (36) = -.56, p = .58, d = .18). This
suggests that the environmental sounds from the video did not in-
troduce significant group bias.

Another factor that requires consideration is that we assessed chil-
dren on handedness preference but not handedness skill, which has
been linked to brain asymmetry in a genome-wide association study
meta-analysis (Brandler et al., 2013). Whether deaf and hearing chil-
dren show systematic differences in handedness skill is an open ques-
tion (see meta-analysis by Papadatou-Pastou and Safar, 2016), there-
fore we cannot rule out the possibility that differences in handedness
skill between groups may have obfuscated differences in lateralisation.
The issue of handedness is related to the final limitation raised here: the
possibility of a contribution of motor movement to lateralisation in
children producing BSL signs. Previous studies with signing adults have
observed stronger lateralisation for sign than speech production, po-
tentially linked to preparatory premotor activity (Gutierrez-Sigut et al.,
2015a, b). In the subgroup of children who produced signs in their
output (n = 6) we did not observe an association between the strength
of signing hand dominance and lateralisation (—0.16, p = .79). How-
ever, given the very small group, this lack of relationship must be in-
terpreted with caution.

In conclusion, this study provides a unique insight into the effect of
drastically different language experience on hemispheric specialisation.
It provides evidence that hemispheric specialisation for language pro-
duction is robust to significant differences in language experience. This
study also demonstrates the feasibility of using fTCD as an indirect
measure of neural activity in this understudied paediatric population.
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