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Abstract

Neuroimaging studies suggest greater involvement of the left parietal lobe in sign language 

compared to speech production. This stronger activation might be linked to the specific demands 

of sign encoding and proprioceptive monitoring.

In Experiment 1 we investigate hemispheric lateralization during sign and speech generation in 

hearing native users of English and British Sign Language (BSL). Participants exhibited stronger 

lateralization during BSL than English production. In Experiment 2 we investigated whether this 

increased lateralization index could be due exclusively to the higher motoric demands of sign 

production. Sign naïve participants performed a phonological fluency task in English and a non-

sign repetition task. Participants were left lateralized in the phonological fluency task but there 

was no consistent pattern of lateralization for the non-sign repetition in these hearing non-signers.

The current data demonstrate stronger left hemisphere lateralization for producing signs than 

speech, which was not primarily driven by motoric articulatory demands.
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1 Introduction

The left hemisphere plays a critical role in language processing in the majority of the 

population (Hellige, 1993). Large scale studies of language lateralization show that 82—

96% of right handed participants primarily use their left hemisphere for spoken language 

processing (Knecht, Deppe, et al., 2000; Knecht, Drager, et al., 2000; Springer et al., 1999). 
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Similarly, lesion and neuroimaging studies have shown that signed languages appear to rely 

on a left lateralized network for both comprehension and production (Bellugi, Klima, & 

Poizner, 1988; Corina, 1999; Corina et al., 1999; Damasio, Bellugi, Damasio, Poizner, & 

Van Gilder, 1986; MacSweeney, Capek, Campbell, & Woll, 2008; MacSweeney, Waters, 

Brammer, Woll, & Goswami, 2008). Although neural networks supporting speech and sign 

processing are very similar, they are not identical. In addition to analogous activation in the 

classical left perisylvian areas for sign and speech, previous neuroimaging studies have also 

identified the left parietal lobe as having a greater role in signed than spoken language 

processing (for a review see Corina, Lawyer, & Cates, 2012; MacSweeney, Capek, et al., 

2008; MacSweeney, Waters, et al., 2008). Studies of sign production in particular have 

highlighted an important role for the left parietal lobe (Braun, Guillemin, Hosey, & Varga, 

2001; Corina, San Jose-Robertson, Guillemin, High, & Braun, 2003; Emmorey, Mehta, & 

Grabowski, 2007).

Sign and speech production differ dramatically in terms of articulatory and motoric 

demands. Overt generation of words requires rapidly changing movements of the vocal tract 

and the mouth, which are non-lateralized anatomic structures. In contrast, sign articulation 

demands precise movements of the face, torso and, crucially, the arms and hands. Although 

sign production involves both hands, signers are dominant in the use of one hand or the other 

(Vaid, Bellugi, & Poizner, 1989). Different signs can require different degrees of 

involvement of the hands. Three simple categories can be considered: (1) one-handed signs, 

performed by the signer’s ‘dominant’ hand, (2) two handed signs in which the dominant 

hand carries out most of the movement required for the sign, (3) two-handed signs with 

equal movement of both articulators (for a linguistic description of these types of signs see 

Battison, 1978). This differential use of the hands has direct implications for brain activity 

since movements of the hands are associated with the contralateral brain hemisphere. 

Therefore, in right hand-dominant signers the left motor cortex would be engaged more than 

the right during sign production and vice versa for left hand dominant signers.

Another area of difference between sign and speech is in their use of self-monitoring 

mechanisms. Speech is directly audible to the speaker. In contrast, the signer does not have 

complete perceptual feedback of her own signing. Even when she can see her hands moving 

in space, her point of view is different to that of regular sign perception. This raises the 

likelihood that sign production relies more on proprioceptive and somatosensory feedback 

than speech (see e.g. Emmorey, McCullough, Mehta, & Grabowski, 2014). The need to keep 

track of the position and precise movements of the hands may also influence hemispheric 

lateralization observed in signers.

A number of previous studies, that have used fMRI and PET to examine the neural systems 

supporting sign and speech production, have identified the left parietal lobe as playing a 

greater role in sign than speech production (e.g. Braun et al., 2001; Emmorey et al., 2007). 

For example, Emmorey et al. (2014) used H2
15O-PET to directly contrast ASL and English 

production during picture naming in hearing native signers, without removing low-level 

motoric effects. Sign production led to greater parietal activation than English, especially in 

the left hemisphere. This greater activation was attributed to somatosensory and 
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proprioceptive feedback, the voluntary production of motor movements, and sensory motor 

integration necessary for phonological encoding of signs.

However, technical limitations of neuroimaging techniques, such as the need to minimize 

movement, have meant that previous studies of sign language production have required 

covert speech generation or sign whispering, a form of signing with a displaced location and 

a reduced amount of movement (Emmorey et al., 2007, 2014). Furthermore, in order to 

minimize movement in the scanner, many previous studies have only examined the 

production of one-handed signs (Corina et al., 2003; Emmorey et al., 2007) or have not 

considered the amount of movement actually executed by each hand (Braun et al., 2001). 

These factors might influence the patterns or the strength of motor cortex activation 

differently than when producing signs in more naturalistic conditions. Brain activity linked 

to somatosensory feedback is likely to differ when the production is limited by the 

technique’s technical restrictions.

The current study uses functional transcranial Doppler sonography (fTCD) to investigate 

hemispheric lateralization during natural, non-whispered BSL and English production. fTCD 

measures event-related changes in blood flow velocity to the middle cerebral arteries 

bilaterally. fTCD is a non-invasive, fast and safe technique for establishing hemispheric 

dominance during cognitive tasks (Aaslid, 1987; Bishop, Watt, & Papadatou-Pastou, 2009; 

Deppe, Knecht, Lohmann, & Ringelstein, 2004) which shows high concordance with 

functional magnetic resonance imaging (fMRI; Deppe et al., 2000; Somers et al., 2011) and 

the Wada technique (Knake et al., 2003; Knecht, Deppe, Ebner, et al., 1998; Knecht, Deppe, 

Ringelstein, et al., 1998). fTCD is considered an excellent technique for measuring 

hemispheric dominance for language production, especially in children and populations for 

whom MRI is not an option (e.g. cochlear-implanted participants). One of the reasons in 

favour of using fTCD is that the signal is reasonably robust to movement (e.g. Gutierrez-

Sigut, Payne, & MacSweeney, 2015; Knecht, Deppe, & Ringelstein, 1999), meaning that 

neither the quality of the signal nor the patterns of lateralization seem to be affected by a 

participant’s natural speech articulation (Badcock, Nye, & Bishop, 2012; Bishop et al., 

2009; Gutierrez-Sigut, Payne, et al., 2015). To address this issue we have previously 

contrasted covert and overt speech production directly (Gutierrez-Sigut, Payne, et al., 2015). 

We reported no differences between covert and overt speech in the number of epochs with 

movement artefacts, in the strength of lateralization or in the percentage of individuals 

categorised as left lateralized.

Unlike speech movements, however, sign language production requires constant movement 

of the arms and hands. Understanding how this type of movement affects the strength of 

lateralization measured with fTCD becomes especially relevant since, as discussed above, 

these movements tend to be asymmetrical. Here we investigate whether the strength of 

lateralization is similar for natural speech and sign production in two different overt 

language generation tasks: phonological and semantic fluency.

The phonological fluency task is considered the gold standard task for assessing language 

lateralization with fTCD in adult speakers. In this task the participant is presented with a 

series of letters one at a time and asked to generate as many words beginning with the letter 
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as possible within a fixed time window. While phonological fluency is a reliable and 

remarkably consistent task, the examination of other language domains provides a more 

complete pattern of hemispheric dominance for language.

Gutierrez-Sigut, Payne, et al. (2015) used fTCD to study lateralization in native English 

speakers. In addition to a standard phonological fluency task, participants performed a 

semantic fluency task. In this task participants were given a semantic category (e.g. animals) 

and asked to produce as many words from this category as possible in the given time. 

Results showed a similar percentage of left lateralized participants (phonological: 77% vs. 

semantic: 82%) as well as no significant differences in strength of laterality between 

phonological and semantic tasks. In another of our studies we asked participants to make 

rhyme judgments (Payne, Gutierrez-Sigut, Subik, Woll, & MacSweeney, 2015). Only 66% 

of participants in the fast version of this task were classified as showing left hemisphere 

lateralization. This suggests that the language demands of the task used can, perhaps not 

surprisingly, influence the strength of the lateralization. This result suggests that, in order to 

further our understanding of the contribution of fTCD to the field, it is critical to take a 

multidimensional approach and examine lateralization for language across a range of tasks 

(Payne et al., 2015).

Comparing lateralization across language subdomains can allow further insights into the 

question of what aspects of language processing are influenced by modality and which are 

not. It can also be useful for assessing consistency of lateralization patterns within 

individuals. In a recent study, Marshall, Rowley, and Atkinson (2014) used phonological and 

semantic fluency tasks to study the organization of the lexicon in deaf BSL users. Results 

from the semantic fluency task showed expected similarities with spoken such as an 

equivalent number of overall responses. Responses to phonological categories, however, 

were remarkably less productive in the signers than they typically are in speakers. Moreover, 

analysis of the types of clustering within tasks/categories revealed a close relationship 

between semantics and phonology in the signs generated. Similarly, in a study of ASL 

comprehension, Gutierrez, Williams, Grosvald, and Corina (2012) found 

electrophysiological evidence of an interplay between phonological form and meaning in 

native signers. ERP responses to sentences, in which semantic expectancy and phonological 

form were systematically manipulated, showed a similar early onset N400 for semantically 

related and phonologically related signs. This result is interpreted as evidence that semantic 

and phonological properties are accessed early in ASL comprehension and incur similar on-

line processing costs.

In the present study we compare within-participant responses, to phonological and semantic 

fluency tasks in both BSL and English. Hearing native signers were tested. These individuals 

were born to Deaf parents from whom they learnt BSL and they also grew up learning 

spoken English from the hearing community around them. This allows us to directly 

contrast, within individuals, the strength of lateralization in both languages.

In summary, there is accruing evidence of increased left parietal involvement in sign 

compared to speech production linked with proprioceptive monitoring and the special nature 

of phonological encoding of signs. Here we investigate lateralization strength during both 
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BSL and English semantic and phonological fluency tasks. First, we examine the extent to 

which fTCD measures are robust to overt production of natural (non-whispered) signs. We 

assess this by examining the number of epochs rejected due to poor data quality in both 

languages and by examining the reliability of fTCD measures. Second, we predict that 

hearing native signers will produce more items (either signs or words) in the semantic than 

in the phonological tasks in both languages. Third, we expect similar levels of lateralization 

between phonological and semantic tasks in English. Whether the same would be true for 

BSL is an open question. Finally, our primary interest is in the strength of lateralization 

across sign and speech production. If the generation of signs leads to an increased left 

hemisphere involvement we would expect to observe a stronger lateralization for BSL than 

English. Furthermore, if the strength of lateralization, measured with fTCD, is largely driven 

by the actual hand and arm movement, we would expect a correlation between the amount of 

movement and laterality index in signers.

2 Experiment 1

2.1 Methods

2.1.1 Design—We used a 2 (Language: English vs. BSL) × 2 (Task: phonological vs. 

semantic) design. The resulting four conditions were presented in separate blocks, the order 

of which was counterbalanced across participants: English-phonological, BSL-phonological, 

English-semantic and BSL-semantic.

2.1.2 Participants—A total of 16 participants (14 female) were selected using the 

Deafness Cognition and Language research centre (DCAL) participant database. The mean 

age of participants was 34 years (range 19–49, SD = 8.8). All participants were hearing BSL 

native signers, with at least one of their parents being a deaf signer. Mean self-rated BSL 

proficiency, in a scale from 1 (poor) to 7 (excellent), was 5.8 (range 4–7; SD = 1.2). Eight 

participants were trained interpreters. No participants reported a history of neurological 

disorders or language related problems. Participants were all right handed as assessed by an 

abridged version of the Edinburgh Handedness Inventory (Oldfield, 1971). The 

questionnaire was composed of ten questions about handedness and four questions related to 

footedness for regular activities. Participants were all right hand dominant for BSL signing, 

fingerspelling and counting.

2.1.3 Stimuli

2.1.3.1 English phonological fluency: 10 letters were chosen which have been reliably 

used in previous phonological fluency studies (see e.g. Gutierrez-Sigut, Payne, et al., 2015): 

A, B, C, F, H, M, O, S, T, W. Each letter was presented twice. Thus, each condition 

consisted of 20 trials that were presented in a pseudo-randomized order to ensure that all 10 

letters had been presented once before they were repeated.

2.1.3.2 English semantic fluency: 10 semantic categories were chosen: Farm Animals, 

Zoo Animals, Vegetables, Fruits, Drinks, Colours, Sports, Pets, Tools and Transport. These 

categories were repeated twice, resulting in 20 trials per block that were presented in a 

pseudo-randomized order (as above).
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2.1.3.3 BSL phonological fluency: 10 BSL handshapes were chosen (see Fig. 1, top 

panel) from the most productive BSL handshapes in the dictionary of British Sign Language 

(Durham University, 1992). As with the letters, each handshape was presented twice. Thus, 

each condition consisted of 20 trials that were presented in a pseudo-randomized order.

2.1.3.4 BSL semantic fluency: The semantic categories were the same as those chosen for 

the English task. As above, each category was repeated twice, resulting in 20 trials per block 

that were presented in a pseudo-randomized order.

2.1.4 Procedure—Ethical approval for the study was obtained from the UCL Research 

Ethics Committee. All participants gave written informed consent prior to the study. The 

whole session, including set up time, lasted approximately 2 h. Each block was preceded by 

two practice trials showing categories, letters or handshapes that were not used in the 

experimental blocks.

2.1.4.1 English blocks: Each trial began with a four second preparation period during 

which ‘clear your mind’ was displayed on the screen and participants were instructed to 

focus on the screen (see Fig. 1). The cue, either a single letter or a semantic category, was 

then displayed for 17 s. Participants were asked to overtly generate as many words as 

possible beginning with the letter (phonological condition)/belonging to the category 

(semantic condition) displayed on the screen. A ‘relax’ prompt then appeared for 12.5 s. 

Participants were instructed to use the ‘relax’ period to imagine a peaceful scene. The 

overall trial duration was 33.5 s, which is shorter than many previous studies of word 

generation (see e.g. Knecht, Deppe, Ringelstein, et al., 1998). Nonetheless, we have 

previously obtained reliable fTCD measures using this task with a 30 s epoch and 

comparable generation and relax periods (Gutierrez-Sigut, Payne, et al., 2015).

Stimuli were presented using Cogent toolbox (www.vislab.ucl.ac.uk/cogent) for MATLAB 

(Mathworks Inc., Sherborn, MA, USA). Triggers time-locked to the onset of the stimulus 

were sent from the presentation PC to the Doppler-Box set-up.

2.1.4.2 BSL blocks: The BSL blocks proceeded in exactly the same way as the English 

ones, except that all prompts and cues were given in BSL. ‘Clear your mind’ and ‘relax’ 

messages, as well as the semantic categories were presented as video clips. After the sign for 

the semantic category cue was completed the last frame remained on the screen for the 

whole generation period. The phonological cues (handshapes) were static images.

2.1.5 fTCD recording and processing—Changes in blood flow velocity in the left 

and right MCAs were measured using a Doppler ultrasonography device (DWL 

DopplerBox: manufactured by DWL Elektronische Systeme, Singen, Germany). Two 2-

MHz transducer probes were mounted on a flexible headset and placed at each temporal 

skull window.

Data analysis was carried out with dopOSCCI, a custom MATLAB (Mathworks Inc., 

Sherborn, AM, USA) program written for analysing fTCD group data (Badcock, Holt, 

Holden, & Bishop, 2012). Analysis involved down-sampling of the data from 100 to 25 Hz, 
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normalization of left and right channel values on an epoch by epoch basis, heart cycle 

integration and artefact rejection. Epochs containing blood flow velocities less than 70% or 

greater than 120% of the average blood flow velocity were excluded from the analyses. 

Epochs were segmented from −4 to 29.5 s (33.5 s long) relative to stimulus presentation. All 

data points were baseline corrected by subtracting the averaged blood flow velocity during a 

period of inactivity −4 to 0 s prior to stimulus onset. The period of interest (POI) was set 

from 5 to 18 s after stimulus onset. To ensure that blood flow for the baseline period was 

always calculated from resting level, the first trial of the block was not included in the 

analyses. This resulted in 19 analysed trials per block. Laterality indices (LIs) were 

calculated for each participant separately, for each of the four conditions (Badcock, Holt, et 

al., 2012; Badcock, Nye, et al., 2012; Deppe, Knecht, Henningsen, & Ringelstein, 1997). 

For each participant the maximum peak left-right difference within the POI was identified. 

The two-second measurement window was centred on this maximum. The LI was defined as 

the average of the left minus right differences within this two second window. A positive LI 

is indicative of left lateralization and a negative LI of right lateralization.

One-sample t-tests were used to assess whether the LI value was significantly left or right 

lateralized for each participant in each condition. When the one-sample t-test did not reach 

significance, participants were considered as ‘low lateralized’ for that condition (also 

referred to as ‘bilateral lateralization’ e.g. Badcock, Holt, et al., 2012; Badcock, Nye, et al., 

2012; Bishop et al., 2009).

2.1.6 Behavioural responses and movement coding—Participants’ behavioural 

responses were monitored on-line and videos were recorded for scoring offline. In the 

English phonological fluency conditions, items were accepted if they began with the target 

letter or letter ‘sound’ (e.g. phone for /f/ was allowed). In the BSL phonological fluency task 

items were accepted if they were a real sign that can be articulated with the prompted 

handshape. Occasionally participants produced a non-sign, that is they used the cued 

handshape to produce a sign that should be articulated with a similar handshape. These items 

were not scored as correct. In the semantic conditions, all items semantically linked to the 

category were permitted.

In order to explore the effect on the TCD signal of arm and hand movement during sign 

generation, participants movements during the 17 s generation period were coded by a deaf 

BSL signer. Three categories were used for this coding: (1) the participant made a one-

handed sign moving only the right hand, (2) the participant made a two-handed sign in 

which the right hand was dominant1 and (3) the participant made a two-handed sign in 

which both hands move symmetrically. All linguistic and non-linguistic movements were 

coded as one handed, right hand dominant or two hands symmetrical. Instances of left hand 

alone movement were extremely scarce and therefore not coded.

1Note that in this sign type the non-dominant hand usually adopts an unmarked handshape, e.g. B-flat and serves as a basis for the 
dominant hand movement. The movement of the non-dominant hand therefore is very limited for these instances.
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2.2 Results

2.2.1 fTCD data quality and reliability—In order to investigate whether overt signing 

led to more movement artefacts in the fTCD data than overt speech we analysed the number 

of epochs remaining for each participant after artefact rejection (see Methods). A repeated 

measures ANOVA revealed no differences in the number of epochs accepted between 

languages [F(1,15) < 1], or tasks [F(1,15) = 1.7, MSE = 1.09, p > .2] and there was no 

significant interaction [F(1,15) < 1]. The average number of accepted epochs for each 

condition was 18 (min = 12, max = 19, SD = 1.2).

To assess the internal reliability of the data, Pearson’s correlations between the LIs of the 

even and odd epochs were conducted on each condition separately. Good reliability was 

found for the fTCD data: odd and even epochs were correlated within the English-

phonological (r = .817, p < .001), BSL-phonological (r = .823, p < .001), English-semantic 

(r = .637, p < .01) and BSL-semantic (r = .858, p < .001).

In order to assess the consistency of LIs across conditions we examined the correlations 

between LIs. Positive correlations were found between the English phonology and BSL 

phonology tasks (r = .693, p < .01) and between the English semantic and BSL semantic 

tasks (r = .556, p < .05). Within languages, LIs on both tasks also correlated or approached 

the level of significance: BSL phonology and BSL semantic (r = .757, p < .001) and English 

phonology and English semantic (r = .49, p = .054).

2.2.2 Mean LI and percentage of subjects left lateralized—At the group level, 

each of the four conditions was significantly left lateralized (see Table 1 and Fig. 2). 

However, not all participants showed this pattern. Table 1 shows the number of participants 

who showed left lateralization, low laterality (not significantly different to zero) or were 

right lateralized (negative LI, significantly different to zero) in each condition. This 

variability is also clear in Fig. 2. The three participants who had a negative LI in any of the 

four conditions are shape coded for ease of tracking across conditions. Detailed visual 

inspection of the data from these participants did not show increased artefacts or signal 

noise.

2.2.3 LI differences between conditions—A repeated measures ANOVA showed a 

main effect of Language [F(1,15) = 89.3, MSE = 1.29, p < .0001,  = .856]: LIs for BSL 

were stronger than for English (4.997 vs. 2.35). The main effect of Task [F(1,15) = 1.76, 

MSE = 1.21, p > .1,  = .105] as well as the interaction [F < 1,  = .003] were not 

significant. Fig. 3 shows cerebral blood flow velocities for the left and right channels time-

locked to the beginning of the active period.

2.2.4 Relationship between LI and number of items generated

2.2.4.1 Behavioural data: number of items produced during BSL and English fluency 
tasks: Table 2 shows the average number of items (words or signs) reported for each trial in 

each of the four conditions for the 16 participants. A repeated measures ANOVA on the 

number of correctly produced items showed that the main effect of language was significant 
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[F(1,15) = 53.7, MSE = 1.59, p < .0001,  = .78]. The main effect of Task was significant 

[F(1,15) = 71.84, MSE = 1.2, p < .0001,  = .83]. The interaction was also significant 

[F(1,15) = 16.97, MSE = .727, p < .001,  = .53]. Pairwise comparisons showed that 

participants produced more items in the semantic than in the phonological task in English 

(mean of 8.7 vs, 7.3 [F(1,15) = 19.82, p < .0001,  = .569]) and BSL (mean of 7.3 vs. 4.1 

[F(1,15) = 75.4, p < .0001,  = .834]). Moreover, participants produced more items in 

English than BSL in both tasks: phonological (mean of 7.3 vs. 4.1 [F(1,15) = 139.5, p < .

0001,  = .903]) and semantic (mean of 8.7 vs. 7.3 [F(1,15) = 9.45, p < .01,  = .387]).

2.2.4.2 Correlations between number of words produced and LIs: No significant 

correlations were found between strength of LI and number of items produced in any 

condition: English phonological (r = −.084, p > .5); English semantic (r = −.102, p > .5); 

BSL phonological (r = .036, p > .8); BSL semantic (r = .38, p > .1).

This lack of relationship was not due to inclusion of the three participants that had LI values 

lower than 0 in any of the conditions, and therefore a right hemisphere bias. When these 

participants were excluded, no significant relationships between LI and number of items 

produced were found: English phonological (r = −.202, p > .5); English semantic (r = −.375, 

p > .2); BSL phonological (r = −.025, p > .9); BSL semantic (r = .035, p > .9).

2.2.5 Relationship between LI and sign type

2.2.5.1 Behavioural data: handedness of signs produced during BSL fluency tasks: To 

examine the relationship between hand movement and LI we undertook detailed analysis of 

the BSL signs produced (see methods). A repeated measures ANOVA of task (phonological 

and semantic) and sign type (right hand only, right hand dominant and both hands 

symmetrical) showed a main effect of sign type [F(2,30) = 71.78, MSE = 2,046,578, p < .

0001,  = .827]. Pairwise comparisons showed that more time during each trial was spent 

producing right hand only movements than two-handed right hand dominant movements 

(mean of 6.14 s per trial vs. 2.37 s, SD of 1.9 and .99, minimum of 3.3 and .8, maximum of 

10.4 and 4 respectively; [p < .0001]) and both hands symmetrical movements (mean of 6.14 

s per trial vs. 2.84 s, SD of 1.9 and .91, minimum of 3.3 and 1.5, maximum of 10.4 and 4.4 

respectively; [p < .0001]). There were no differences in the amount of time spent producing 

right hand dominant two handed movements and both hands symmetrical movements (p > .

1). There was no main effect of Task [F(1,15) = 2.19, MSE = 1,031,174, p > .1,  = .127] or 

interaction [F < 1,  = .026].

2.2.5.2 Correlations with LI: There was a moderate significant correlation between LI 

during the BSL phonological task and right hand only movements (r = .5, p < .05) but not 

with right hand dominant (r = −.14, p > .1) or both hands symmetrical movements (r = −.03, 

p > .9). For BSL semantic generation there was no significant correlation between LI with 

any of the types of movement: right hand only (r = −.05, p > .8), right hand dominant (r = −.

21, p > .4) or both hands symmetrical movement (r = −.3, p > .1).
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As mentioned above, two-handed signs in which the right hand is dominant are composed 

primarily of movement of the right hand. In order to explore more thoroughly the effects of 

dominant hand movement, we combined the right hand only and right hand dominant 

conditions. For phonological generation there was a moderate significant correlation of right 

hand movement and LI (r = .54, p < .05). There was no correlation for semantic generation 

(r = .088, p > .7). Fig. 5 shows the relationships of the different types of hand movement 

with LI in both the phonological and semantic tasks.

2.3 Discussion

Our main finding was that of significantly stronger LIs for BSL than English. This increased 

laterality for BSL was observed for both semantic and phonological generation. The 

movement analyses demonstrated a moderate correlation between LI and right hand 

movement in the phonological generation task. This does not allow us to rule out the 

possibility of some contribution of motoric brain activation to strength of lateralization. This 

finding encouraged a further study of the role of movement during sign production in 

Experiment 2.

3 Experiment 2

We investigated the role of movement during sign production further by comparing 

lateralization patterns during English phonological fluency and a non-sign repetition task in 

which hearing non-signers were asked to repeat non-signs (structured hand movements that 

have no semantic content). We hypothesized that if hand movement by itself elicits strong 

LIs then the majority of participants (all right-handed non-signers) would show left 

hemisphere lateralization during non-sign repetition. Conversely, if the strong lateralization 

for BSL production observed in Experiment 1 in signers is not primarily driven by motor 

activity but by linguistic processing we will find stronger LIs for English phonological 

fluency than for non-sign repetition.

3.1 Methods

3.1.1 Design—Participants performed two tasks, overt English phonological fluency and 

non-sign repetition. The tasks were presented in separate blocks, the order of which was 

counterbalanced across participants.

3.1.2 Participants—A total of 16 participants (4 male) were recruited from 

undergraduate courses at UCL and also from a volunteer database. The mean age of 

participants was 23 (range 19–34) and all were English native speakers. All participants 

were hearing and did not have any previous knowledge of BSL. No participants reported a 

history of neurological disorders or language related problems. Participants were all right 

handed as assessed by an abridged version of the Edinburgh Handedness Inventory 

(Oldfield, 1971).

3.1.3 Stimuli

3.1.3.1 Phonological fluency in English: The same 10 letters as in Experiment 1 were 

used. Four of the letters were presented twice, and letters to be repeated were chosen 
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randomly for each participant. Each block consisted of 142 trials which were presented in a 

pseudo-randomized order to ensure that all 10 letters had been presented once before being 

repeated.

3.1.3.2 Non-sign repetition: One hundred non-sign video clips were chosen from LSE-

Sign: a lexical database for Spanish Sign Language (Gutierrez-Sigut, Costello, Baus, & 

Carreiras, 2015). Video clips for non-signs in this database were recorded by varying one 

phonological parameter from an existing Spanish sign language sign. The resulting non-sign 

kept the visual complexity of a real sign, including non-manual features. The selected non-

signs contained highly perceivable handshapes and maintained the variability and 

complexity of locations and movements found in real signs. In order to further remove the 

linguistic component, and therefore ensure that the stimuli would not have any meaning for 

non-signers, the selected non-signs had been previously rated as non-iconic by signers of 

LSE (see Gutierrez-Sigut, Costello, et al., 2015 for further details). Videos were short clips 

of non-signs produced in a carrier sentence. They were edited to start and finish in the first 

and last hold of the item (see Gutierrez-Sigut, Costello, et al., 2015). A mixture of 2-handed 

and 1-handed signs were presented. The proportions of each type of non-sign were 

established to reflect the movements of the signing participants in Experiment 1: 56 non-

signs were one-handed signs, 21 were right hand dominant and 23 were two-handed, with 

symmetrical movement of both hands. The block consisted of these 100 non-signs presented 

in a randomized order. Approximately 7 non-signs were presented during each of the 14 

experimental trials. In Experiment 1, signers produced an average of 6 signs per trial. Non-

signers were required to repeat slightly more than this number in order to encourage 

engagement with the task since we have previously shown that decreasing the stimulus 

presentation rate results in weaker LIs with the same stimuli (Payne et al., 2015).

3.1.4 Procedure—Ethical approval for the study was obtained from the UCL Research 

Ethics Committee. All participants gave written informed consent prior to the study. The 

whole session, including set up time, lasted approximately 2 h.

3.1.4.1 Phonological fluency block: The procedure was the same as in Experiment 1 

English phonological fluency except that a blank screen of 5 s was included at the beginning 

of the block to ensure that baseline measures for the first trial would be calculated from 

resting level.

3.1.4.2 Non-sign repetition block: Each trial began with a four seconds preparation 

period during which ‘Clear your mind’ was displayed on the screen in English. Then during 

the 17 s active period multiple short video clips were displayed. Following presentation of 

the first video clip the last frame remained on the screen for 1300 ms. During this period the 

participant repeated the observed non-sign. Then the next video clip appeared followed by 

1300 ms to allow repetition, this sequence continued until the end of the 17 s (approximately 

7 videos). Participants were instructed to repeat the non-signs with the same hand as the 

model, and they performed at least one example of each category copying the experimenter’s 

2The number of trials was reduced with respect to Experiment 1 to reduce participants fatigue and promote engagement with the task.
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movements before the tasks. A trigger was sent to the acquisition computer when the first 

video clip was displayed. A ‘relax’ prompt in English then appeared for 12.5 s. As in the 

phonological fluency block, the first trial was preceded by a 5 s blank screen. All 

participants were monitored carefully during the experiment to ensure they complied with 

the instructions. A blank screen of 5 s was also included at the beginning of the block.

3.1.5 fTCD recording and processing—For comparability between the experiments 

fTCD signal processing was the same as in Experiment 1, except that data from 14 instead 

of 19 trials were collected for each block. Visual inspection of individual trials for each 

participant established that the maximum left–right differences were within the selected POI. 

The first trial of each block was not removed, as a period of 5 s of a blank screen was 

included before the first trial.

3.2 Results

3.2.1 fTCD data reliability—Due to insonation difficulties and occasional hits of the 

ultrasound probes while participants repeated a movement close to the head, we were not 

able to collect sufficient data from two participants. All participants had over eight valid 

epochs in all conditions; the average number of epochs for phonological fluency was 10.6 

(SD = 1.9, min = 8, max = 14) and for non-sign repetition was 13.4 (SD = .63, min = 12, 

max = 14). Good reliability was found for the fTCD data. Split half reliability analyses 

demonstrated that odd and even epochs were correlated within both the phonological fluency 

(r = .81, p < .0001) and non-sign repetition (r = .62, p < .05) tasks.

3.2.2 Mean LI and percentage of subjects left lateralized—One-sample t-test 

showed that phonological fluency was left lateralized at the group level (see Table 3 and Fig. 

2, right panel). Of the 14 participants, one was right lateralized and another two, although 

having positive LIs, were considered low lateralized. For the non-sign repetition condition, 

group results were more variable. One-sample t-test showed that non-sign repetition LIs 

were not significantly different to zero and cannot be considered lateralized at a group level 

(see Table 3 and Fig. 2, right panel). At the individual level five participants were left 

lateralized, five right lateralized and four were considered low lateralized.

3.2.3 LI differences between phonological fluency and non-sign repetition—
A paired sample t-test comparing phonological fluency and non-sign repetition (mean 2.58 

vs. 0.25) for all participants showed no significant difference in LI (t(13) = 1.7, p > .1). 

However, when we performed the same analysis after removing the participant who was 

strongly right lateralized for phonological fluency, there was a significant effect of 

condition: LIs were more positive for phonological fluency than for hand movement (mean 

3.5 vs. 0.2 [t(12) = 3.31, p < .01]).

3.2.4 Relationship LI and number of items generated during phonological 
fluency—Strength of LI correlated with number of items produced during phonological 

fluency when the participant who was strongly right lateralized was excluded (r = .71, p < .

05) and also when this participant was included but their absolute LI value was included in 

the analyses (r = .79, p > .001) – (see Fig. 4b). This result contrasts with the lack of 
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correlation for hearing native signers found for the phonological fluency in English in 

Experiment 1. However, it is in accordance with previous results from our group from 

English monolinguals (Gutierrez-Sigut, Payne, et al., 2015).

3.2.5 Contrasting Experiment 1 and 2: The influence of producing signs on 
hemispheric lateralization in signers and non-signers—To address directly the 

influence of sign production on hemispheric lateralization in those for whom sign language 

is meaningful and those for whom it is not, we directly contrasted the strength of LI in 

hearing signers producing signs (during phonological and semantic fluency combined – 

Experiment 1) and hearing non-signers producing matched hand movements (Experiment 2). 

Left hemisphere lateralization was significantly stronger in signers than non-signers (t(28) = 

5.3, p < .0001). Importantly, this group difference was not a general effect (see Fig. 6). The 

hearing signing and non-signing participants did not differ in strength of LI during the 

English phonological fluency task (t(28) = −.104, p > .1).

4 General discussion

Our aim was to investigate hemispheric lateralization during speech and sign generation in 

hearing native signers of BSL. Results from Experiment 1 revealed stronger left 

lateralization for sign than speech generation in hearing native signers. The amount of right 

hand movement performed during the BSL generation tasks did not correlate with the 

strength of LI for the semantic task and only very moderately correlated in the phonological 

BSL task. In Experiment 2, we demonstrated that enhanced LIs for BSL production in 

signers could not be attributed to activation due to hand movement alone. There was no clear 

pattern of left lateralization in hearing non-signing participants who performed a non-sign 

repetition task. Finally, no differences in strength of lateralization were found between 

phonological and semantic fluency tasks in either BSL or English in hearing native signers. 

However, relationships with behavioural measures suggest that semantic fluency, rather than 

phonological fluency, might be a more appropriate task to assess lateralization in BSL.

4.1 BSL vs. English generation

Our finding of strong left lateralization during sign generation provides additional support to 

the increasing body of research showing an amodal left hemisphere language processing 

network (Bellugi et al., 1988; Corina, 1999; Corina et al., 1999; Damasio et al., 1986; 

MacSweeney, Capek, et al., 2008; MacSweeney, Waters, et al., 2008). Although the spatial 

resolution of fTCD does not allow us to make claims about specific areas involved in BSL 

production, the neuroimaging literature has shown increased activity in the left parietal 

cortex associated with sign production. Emmorey et al. (2007) found increased left parietal 

activation when deaf signers named pictures in ASL than when speakers named similar 

pictures in English. This increased brain activation in signers has been linked to binding of 

phonological properties of signs both in sign production (Corina et al., 2003) and 

comprehension (MacSweeney, Waters, et al., 2008; MacSweeney et al., 2002). Increased left 

parietal activity for sign production has been also linked to the more extensive use of 

somatosensory and tactile feedback and the need for increased proprioceptive monitoring for 

sign production. In a study of spontaneous sign production in hearing native signers, who 
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performed the task both in English and ASL, Braun et al. (2001) found increased activity for 

ASL production in widespread parietal somatosensory areas. Emmorey et al. (2014) studied 

single sign generation during picture naming in hearing native signers. Direct contrasts of 

ASL and English production revealed greater left parietal activation for ASL production 

related to phonological encoding specific to signs, somatosensory feedback and production 

of motor movements of the upper limbs. Accordingly, the stronger left lateralization for BSL 

than English generation in the current study could be accounted for by modality-dependent 

factors such as the greater reliance of sign language production on somatosensory feedback 

and a phonological encoding process that requires the selection of a handshape, a body 

location and a hand movement simultaneously.

A second notable finding of our study is that the stronger left lateralization found during 

BSL productions is not driven by motor activation alone. First, LIs during BSL production 

were not strongly correlated with hand movement during both generation tasks (Experiment 

1). Second, non-signers did not show a clear pattern of lateralization at the group level 

during non-sign repetition (Experiment 2). The fact that there is not a clear pattern of 

lateralization for the non-signers suggests that the higher LIs, found for signers during BSL 

production, are linked to language factors (e.g. sign phonological encoding, linguistic 

somatosensory feedback and motor planning) rather than to more general motor activation 

and somatosensory feedback mechanisms, which are common to both BSL generation and 

non-sign repetition. Our results are in line with an fMRI study by Corina et al. (2003) who 

found that in right handed signing participants, activation for sign production was left 

lateralized regardless of the hand used to produce the signs, suggesting that the linguistic 

motor programming of both hands is driven by the same left hemisphere regions.

The lack of a consistent pattern of lateralization for the non-signers is surprising. Although, 

non-sign repetition by non-signers involves cognitive processes different to those needed to 

spontaneously generate language, nevertheless, to perform the task accurately, participants 

were required to track the shape, position and movement of the hands. Lack of expertise in 

hand movements is unlikely to account for this pattern since they were all equally 

inexperienced in signing but it was not the case that all participants showed weak 

lateralization. Rather, one third were significantly left lateralized, one third were 

significantly right lateralized and one third were low lateralized. Non-signers might have 

approached the non-sign repetition task differently. One possibility is that some of the non-

signers treated the non-sign repetition as a visuospatial receptive task, increasing the 

involvement of the right hemisphere, as has been shown in previous fTCD studies of visuo-

spatial processing (e.g., Payne et al., 2015; Rosch, Bishop, & Badcock, 2012; Whitehouse, 

Badcock, Groen, & Bishop, 2009). Another possible explanation for the variability within 

the non-signing group is that, although the non-signs used in the current study had been 

rated as non-iconic (Gutierrez-Sigut, Costello, et al., 2015) and the instructions emphasized 

that they had no meaning, it is possible that some participants sought meaning in the signs, 

and therefore increased the involvement of the left hemisphere. Finally, it is possible that the 

fTCD signal was weaker in some of the non-signers because they were performing a 

repetition task rather than the generation task performed by signers. Generation tasks tend to 

result in stronger left lateralized LIs than receptive tasks (Badcock, Nye, et al., 2012; 

Buchinger et al., 2000; Stroobant, Buijs, & Vingerhoets, 2009). Stroobant et al. (2009) 

Gutierrez-Sigut et al. Page 14

Brain Lang. Author manuscript; available in PMC 2016 June 23.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



showed that reading aloud fragments of natural text resulted in weaker left lateralization than 

sentence construction (from words in a random order) or phonological fluency. Further 

research into movement generation is necessary to fully address this issue.

In summary, although it is likely that non-signers were using different strategies to perform 

the non-sign repetition task to those used by signers in the sign generation task, nevertheless 

the movements they produced matched the amount of hand movement produced, on average, 

by signers during the sign generation task. If the motoric planning or a general mechanism 

to track the position and movements of the hands and arms was strongly influencing the LIs, 

a general trend towards left lateralization should have been more evident.

Consistent with our previous results in spoken English (Gutierrez-Sigut, Payne, et al., 2015), 

the present results support the idea that the blood velocity changes, as measured by fTCD, 

are not predominantly driven by motor processes but by more linguistic processes. This is 

the first study to show that fTCD measures of language lateralization are robust to 

movement even during production of a signed language, which requires constant and mostly 

asymmetric, movement of the hands. Indeed, the use of fTCD allows language lateralization 

to be assessed in a more naturalistic experimental situation where participants can produce 

the complete movement of the signs and use both hands without restrictions. The fact that 

fTCD reliably measures lateralization during natural language production makes it more 

feasible to include young signers and those with cochlear implants in experimental groups. 

This would broaden our understanding of a very heterogeneous population.

4.2 Phonological vs. semantic fluency

With regard to lateralization in different language sub-domains, we found the expected 

similar levels of lateralization between phonological and semantic tasks in English. LIs 

between phonological and semantic generation were also similar in BSL. This result 

suggests that the fTCD signal is affected similarly by linguistic and cognitive processes 

involved in language generation in both modalities. In accordance with previous behavioural 

studies in English (Crowe, 1998; Hurks et al., 2006; Monsch et al., 1994) and BSL (Marshall 

et al., 2014), participants produced more items during the semantic than the phonological 

fluency in both languages.

It is worth noting that the English and BSL phonological tasks are not equivalent. In BSL the 

stimulus is a handshape (a phonological parameter of signs). In contrast, in English the 

stimulus is a letter and is therefore an orthographic/visual representation of the target 

phoneme, rather than an auditory cue which would be directly analogous to the pictured 

handshape cue in the BSL task. These different task demands did not result in a significant 

difference of LIs between the phonological and semantic condition in either language. 

However, subtle differences in performance on the BSL phonological and semantic fluency 

tasks are worth noting. First, in the BSL phonological, but not semantic, task we found a 

moderate, but significant, correlation between the LI and the movement of the right hand. 

Inspection of the videos showed a motoric rehearsing strategy in the BSL phonological task. 

Participants tended to hold the cued handshape in their right hand. They would then move 

the hand to different locations where they rehearsed several movements, thus increasing the 

amount of movement that was coded, yet only occasionally recovering some extra signs. 

Gutierrez-Sigut et al. Page 15

Brain Lang. Author manuscript; available in PMC 2016 June 23.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Second, the BSL phonological fluency task is more difficult than the semantic fluency task 

(see Marshall et al., 2014 for discussion). Although native signers show good phonological 

awareness for sign language when tested on explicit judgement tasks (e.g., Corina, Hafer, & 

Welch, 2014; MacSweeney, Capek, et al., 2008; MacSweeney, Waters, et al., 2008) it is 

likely that signers are not very familiar with the nature of the phonological fluency task 

tested here. For example, I-spy games, based on initial phonemes of words, are common 

children’s games in spoken but not signed languages.

Phonological fluency is traditionally considered the ‘‘gold standard task” for assessing 

lateralization during speech production with fTCD. Consistent with our previous findings in 

English (Gutierrez-Sigut, Payne, et al., 2015), the current results show that both 

phonological and semantic fluency can be reliable tasks for assessing language lateralization 

with fTCD in speech production. For sign language production however, there are concerns 

that non-linguistic factors such us increased task difficulty or the use of a motoric rehearsing 

strategy might be contributing to the lateralization strength in the BSL phonological task. 

Semantic fluency may be more appropriate when investigating language lateralization during 

BSL production since it is directly comparable to a similar task in English, more intuitive to 

perform and is not compromised by the accompanying “non-linguistic, searching” hand 

movements that participants tend to make during the phonological task.

4.3 Effects of language background

Both hearing signers and non-signers showed similar LIs during English phonological 

fluency, suggesting that knowing a sign language does not affect lateralization strength 

during English production as measured by fTCD. However, in line with our previous results 

in English monolinguals (Gutierrez-Sigut, Payne, et al., 2015) the amount of words 

produced by non-signers during the phonological fluency task correlated with the strength of 

laterality. We did not find this correlation for the hearing native signers for words or for 

signs. Very few studies have reported the relationship or lack of relationship between 

amount or quality of language produced and the strength of the fCTD signal (see Gutierrez-

Sigut, Payne, et al., 2015 for discussion). Further research is needed to examine this issue 

and to address the possibility raised by the current pattern of results which suggest that 

bilingualism may influence this relationship.

5 Conclusions

By examining language lateralization using fTCD with a task other than the ‘gold standard’ 

phonological fluency task, we have shown that semantic fluency may in fact be more 

appropriate for assessing language lateralization in signed languages. We found evidence of 

stronger left lateralization for BSL than for English production, across both semantic and 

phonological fluency tasks. Importantly, we showed that this increased lateralization cannot 

be attributed to motoric activity alone. Although fTCD methodology is more basic than 

other neuroimaging techniques, simultaneous measurement of fully articulated behavioural 

responses allows for correlational analyses that can shed light on the factors affecting 

lateralization patterns in different language modalities. Further studies are required to 
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determine what cognitive and linguistic processes contribute to this enhanced left 

lateralization for sign language production.

Acknowledgements

This work was part of the programme of the Economic and Social Research Council – Deafness Cognition and 
Language Research Centre (DCAL) [grant number RES-620-28-0002]. It was also funded by a grant from the 
Institute of Education – University College London Strategic Partnership Research Innovation Fund awarded to EG, 
MM, CM. It was also MM is supported by a Wellcome Trust Senior Research Fellowship [grant number 
WT100229MA].

We would like to thank Omar Farooq, Nadia Malas and Amelia Ralph-Lewis for their help in coding of behavioural 
data.

References

Aaslid R. Visually evoked dynamic blood flow response of the human cerebral circulation. Stroke. 
1987; 18(4):771–775. [PubMed: 3299883] 

Badcock NA, Holt G, Holden A, Bishop DVM. dopOSCCI: A functional transcranial Doppler 
ultrasonography summary suite for the assessment of cerebral lateralization of cognitive function. 
Journal of Neuroscience Methods. 2012; 204(2):383–388. DOI: 10.1016/j.jneumeth.2011.11.018 
[PubMed: 22120689] 

Badcock NA, Nye A, Bishop DV. Using functional transcranial Doppler ultrasonography to assess 
language lateralisation: Influence of task and difficulty level. Laterality. 2012; 17(6):694–710. DOI: 
10.1080/1357650x.2011.615128 [PubMed: 23098198] 

Battison, R. Lexical borrowing in American Sign Language. Silver Spring: Linstok Press; 1978. 

Bellugi U, Klima ES, Poizner H. Sign language and the brain. Research Publications – Association for 
Research in Nervous and Mental Disease. 1988; 66:39–56. [PubMed: 2451852] 

Bishop DV, Watt H, Papadatou-Pastou M. An efficient and reliable method for measuring cerebral 
lateralization during speech with functional transcranial Doppler ultrasound. Neuropsychologia. 
2009; 47(2):587–590. DOI: 10.1016/j.neuropsychologia.2008.09.013 [PubMed: 18929586] 

Braun AR, Guillemin A, Hosey L, Varga M. The neural organization of discourse: An H2
15O-PET 

study of narrative production in English and American Sign Language. Brain. 2001; 124(Pt 10):
2028–2044. [PubMed: 11571220] 

Buchinger C, Flöel A, Lohmann H, Deppe M, Henningsen H, Knecht S. Lateralization of expressive 
and receptive language functions in healthy volunteers. Neuroimage. 2000; 11:S317.doi: 10.1016/
S1053-8119(00)91249-7

Corina DP. On the nature of left hemisphere specialization for signed language. Brain and Language. 
1999; 69(2):230–240. DOI: 10.1006/brln.1999.2062 [PubMed: 10447993] 

Corina DP, Hafer S, Welch K. Phonological awareness for American Sign Language. Journal of Deaf 
Studies and Deaf Education. 2014; 19(4):530–545. [PubMed: 25149961] 

Corina DP, Lawyer LA, Cates D. Cross-linguistic differences in the neural representation of human 
language: Evidence from users of signed languages. Frontiers in Psychology. 2012; 3:587.doi: 
10.3389/fpsyg.2012.00587 [PubMed: 23293624] 

Corina DP, McBurney SL, Dodrill C, Hinshaw K, Brinkley J, Ojemann G. Functional roles of Broca’s 
area and SMG: Evidence from cortical stimulation mapping in a deaf signer. Neuroimage. 1999; 
10(5):570–581. DOI: 10.1006/nimg.1999.0499 [PubMed: 10547334] 

Corina DP, San Jose-Robertson L, Guillemin A, High J, Braun AR. Language lateralization in a 
bimanual language. Journal of Cognitive Neuroscience. 2003; 15(5):718–730. DOI: 
10.1162/089892903322307438 [PubMed: 12965045] 

Crowe SF. Decrease in performance on the verbal fluency test as a function of time: Evaluation in a 
young healthy sample. Journal of Clinical and Experimental Neuropsychology. 1998; 20(3):391–
401. DOI: 10.1076/jcen.20.3.391.810 [PubMed: 9845165] 

Gutierrez-Sigut et al. Page 17

Brain Lang. Author manuscript; available in PMC 2016 June 23.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Damasio A, Bellugi U, Damasio H, Poizner H, Van Gilder J. Sign language aphasia during left-
hemisphere Amytal injection. Nature. 1986; 322(6077):363–365. DOI: 10.1038/322363a0 
[PubMed: 3488507] 

Deppe M, Knecht S, Henningsen H, Ringelstein EB. AVERAGE: A Windows® program for automated 
analysis of event related cerebral blood flow. Journal of Neuroscience Methods. 1997; 75:147–
154. [PubMed: 9288646] 

Deppe M, Knecht S, Lohmann H, Ringelstein EB. A method for the automated assessment of temporal 
characteristics of functional hemispheric lateralization by transcranial Doppler sonography. 
Journal of Neuroimaging. 2004; 14(3):226–230. DOI: 10.1177/1051228404264936 [PubMed: 
15228762] 

Deppe M, Knecht S, Papke K, Lohmann H, Fleischer H, Heindel W, Henningsen H. Assessment of 
hemispheric language lateralization: A comparison between fMRI and fTCD. Journal of Cerebral 
Blood Flow and Metabolism. 2000; 20(2):263–268. DOI: 10.1097/00004647-200002000-00006 
[PubMed: 10698062] 

Brien, D., editor. Durham University. Dictionary of British sign language – English. Faber & Faber; 
1992. 

Emmorey K, McCullough S, Mehta S, Grabowski TJ. How sensory-motor systems impact the neural 
organization for language: Direct contrasts between spoken and signed language. Frontiers in 
Psychology. 2014; 5:484.doi: 10.3389/fpsyg.2014.00484 [PubMed: 24904497] 

Emmorey K, Mehta S, Grabowski TJ. The neural correlates of sign versus word production. 
Neuroimage. 2007; 36(1):202–208. DOI: 10.1016/j.neuroimage.2007.02.040 [PubMed: 17407824] 

Gutierrez E, Williams D, Grosvald M, Corina D. Lexical access in American Sign Language: An ERP 
investigation of effects of semantics and phonology. Brain Research. 2012; 1468:63–83. DOI: 
10.1016/j.brainres.2012.04.029 [PubMed: 22763237] 

Gutierrez-Sigut E, Costello B, Baus C, Carreiras M. LSE-Sign: A lexical database for Spanish Sign 
Language. Behavior Research Methods. 2015a; doi: 10.3758/s13428-014-0560-1

Gutierrez-Sigut E, Payne H, MacSweeney M. Investigating language lateralization during phonological 
and semantic fluency tasks using functional transcranial Doppler sonography. Laterality. 2015b; 
20(1):49–68. DOI: 10.1080/1357650x.2014.914950 [PubMed: 24875468] 

Hellige, JB. Hemispheric asymmetry: What’s right and what’s left. Cambridge, MA: Harvard 
University Press; 1993. 

Hurks PP, Vles JS, Hendriksen JG, Kalff AC, Feron FJ, Kroes M, Jolles J. Semantic category fluency 
versus initial letter fluency over 60 seconds as a measure of automatic and controlled processing in 
healthy school-aged children. Journal of Clinical and Experimental Neuropsychology. 2006; 28(5):
684–695. DOI: 10.1080/13803390590954191 [PubMed: 16723317] 

Knake S, Haag A, Hamer HM, Dittmer C, Bien S, Oertel WH, Rosenow F. Language lateralization in 
patients with temporal lobe epilepsy: A comparison of functional transcranial Doppler sonography 
and the Wada test. Neuroimage. 2003; 19(3):1228–1232. [PubMed: 12880847] 

Knecht S, Deppe M, Drager B, Bobe L, Lohmann H, Ringelstein E, Henningsen H. Language 
lateralization in healthy right-handers. Brain. 2000a; 123(Pt 1):74–81. [PubMed: 10611122] 

Knecht S, Deppe M, Ebner A, Henningsen H, Huber T, Jokeit H, Ringelstein EB. Noninvasive 
determination of language lateralization by functional transcranial Doppler sonography: A 
comparison with the Wada test. Stroke. 1998a; 29(1):82–86. [PubMed: 9445333] 

Knecht S, Deppe M, Ringelstein EB. Determination of cognitive hemispheric lateralization by 
‘‘functional” transcranial Doppler cross-validated by functional MRI. Stroke. 1999; 30(11):2491–
2492. [PubMed: 10548690] 

Knecht S, Deppe M, Ringelstein EB, Wirtz M, Lohmann H, Drager B, Henningsen H. Reproducibility 
of functional transcranial Doppler sonography in determining hemispheric language lateralization. 
Stroke. 1998b; 29(6):1155–1159. [PubMed: 9626288] 

Knecht S, Drager B, Deppe M, Bobe L, Lohmann H, Floel A, Henningsen H. Handedness and 
hemispheric language dominance in healthy humans. Brain. 2000b; 123(Pt 12):2512–2518. 
[PubMed: 11099452] 

Gutierrez-Sigut et al. Page 18

Brain Lang. Author manuscript; available in PMC 2016 June 23.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



MacSweeney M, Capek CM, Campbell R, Woll B. The signing brain: The neurobiology of sign 
language. Trends in Cognitive Sciences. 2008a; 12(11):432–440. DOI: 10.1016/j.tics.2008.07.010 
[PubMed: 18805728] 

MacSweeney M, Waters D, Brammer MJ, Woll B, Goswami U. Phonological processing in deaf 
signers and the impact of age of first language acquisition. Neuroimage. 2008b; 40(3):1369–1379. 
DOI: 10.1016/j.neuroimage.2007.12.047 [PubMed: 18282770] 

MacSweeney M, Woll B, Campbell R, McGuire PK, David AS, Williams SC, Brammer MJ. Neural 
systems underlying British Sign Language and audio-visual English processing in native users. 
Brain. 2002; 125(Pt 7):1583–1593. [PubMed: 12077007] 

Marshall C, Rowley K, Atkinson J. Modality-dependent and - independent factors in the organisation 
of the signed language lexicon: Insights from semantic and phonological fluency tasks in BSL. 
Journal of Psycholinguistic Research. 2014; 43(5):587–610. DOI: 10.1007/s10936-013-9271-5 
[PubMed: 24043510] 

Monsch AU, Bondi MW, Butters N, Paulsen JS, Salmon DP, Brugger P, Swenson MR. A comparison 
of category and letter fluency in Alzheimer’s disease and Huntington’s disease. Neuropsychology. 
1994; 8(1):25–30.

Oldfield RC. The assessment and analysis of handedness: The Edinburgh Inventory. 
Neuropsychologia. 1971; 9:97–113. DOI: 10.1016/0028-3932(71)90067-4 [PubMed: 5146491] 

Payne H, Gutierrez-Sigut E, Subik J, Woll B, MacSweeney M. Stimulus rate increases lateralisation in 
linguistic and non-linguistic tasks measured by functional transcranial Doppler sonography. 
Neuropsychologia. 2015; 72:59–69. DOI: 10.1016/j.neuropsychologia.2015.04.019 [PubMed: 
25908491] 

Rosch RE, Bishop DV, Badcock NA. Lateralised visual attention is unrelated to language lateralisation, 
and not influenced by task difficulty – A functional transcranial Doppler study. Neuropsychologia. 
2012; 50(5):810–815. DOI: 10.1016/j.neuropsychologia.2012.01.015 [PubMed: 22285903] 

Somers M, Neggers SF, Diederen KM, Boks MP, Kahn RS, Sommer IE. The measurement of language 
lateralization with functional transcranial Doppler and functional MRI: A critical evaluation. 
Frontiers in Human Neuroscience. 2011; 5:31.doi: 10.3389/fnhum.2011.00031 [PubMed: 
21483761] 

Springer JA, Binder JR, Hammeke TA, Swanson SJ, Frost JA, Bellgowan PS, Mueller WM. Language 
dominance in neurologically normal and epilepsy subjects: A functional MRI study. Brain. 1999; 
122(Pt 11):2033–2046. [PubMed: 10545389] 

Stroobant N, Buijs D, Vingerhoets G. Variation in brain lateralization during various language tasks: A 
functional transcranial Doppler study. Behavioural Brain Research. 2009; 199:190–196. DOI: 
10.1016/j.bbr.2008.11.040 [PubMed: 19100782] 

Vaid J, Bellugi U, Poizner H. Hand dominance for signing: Clues to brain lateralization of language. 
Neuropsychologia. 1989; 27(7):949–960. [PubMed: 2771033] 

Whitehouse AJ, Badcock N, Groen MA, Bishop DV. Reliability of a novel paradigm for determining 
hemispheric lateralization of visuospatial function. Journal of the International 
Neuropsychological Society. 2009; 15(6):1028–1032. DOI: 10.1017/s1355617709990555 
[PubMed: 19709454] 

Gutierrez-Sigut et al. Page 19

Brain Lang. Author manuscript; available in PMC 2016 June 23.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Fig. 1. 
Schematic diagram of experimental material (top panel) and timing of events in Experiment 

1 (central panel) and timing of events in Experiment 2 (bottom panel).
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Fig. 2. 
Individual LI scatterplots for each condition. The left panel shows Experiment 1. The LIs for 

atypical individuals in any of the four conditions are shape coded, each shape consistently 

codes each of these three participants across conditions. The right panel shows Experiment 

2. Individual LI for phonological fluency are shown on the left and for non-sign repetition 

on the right of the scatterplot.
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Fig. 3. 
Average of participants’ baseline-corrected cerebral blood flow velocity for the left (blue) 

and right (red) channels as well as the difference (left minus right; black dotted line) for 

phonological (right) and semantic fluency (left) in English (top) and BSL (bottom). The 

beige selection depicts the period of interest within which the lateralization indices (LIs) 

were calculated from the individuals’ maximum left–right difference. (For interpretation of 

the references to colour in this figure legend, the reader is referred to the web version of this 

article.)
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Fig. 4. 
Scatterplots showing relationships between LIs and number of items produced for 

Experiment 1 (a) and Experiment 2 (b). For Experiment 1 the left side panel show the 

phonological fluency task in BSL (top) and English (bottom). The right side panel shows the 

semantic fluency task for BSL (top) and English (bottom). The 3 participants that had an LI 

lower than 0 in any of the conditions are shape coded. None of these relationships was 

significant. For Experiment 2 (b) the scatterplot shows the relationship between LI and 

number of words produced in the English phonological fluency. For the right lateralized 
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participant the absolute value LI is plotted (X shape). The relationship was significant both 

when the right lateralized participant was excluded and when the absolute value LI was 

considered.
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Fig. 5. 
Scatterplots showing relationships between LIs and types of hand movement for the BSL 

phonological (left) and semantic (right) fluency tasks. The top panel show the relationships 

between number of seconds per trial spent in right hand only and right hand dominant 

movements. The bottom panel shows the relationships between number of seconds per trial 

spent on two-handed symmetrical movements. Only the relationship between right hand 

movements and phonological tasks (top left) was significant.
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Fig. 6. 
Mean LI summaries for English phonological fluency, BSL generation and non-sign 

repetition for signers (black) and non-signers (grey). Error bars represent standard error.
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Table 2

Descriptive statistics for the number of correct items generated in each condition in Experiments 1 and 2.

Language Language task Mean number of items per trial SD Minimum Maximum

Experiment 1

English Phonological 7.3 1.1 2 13

Semantic 8.7 1.6 4 16

BSL Phonological 4.1   .7 2   5

Semantic 7.3 1.7 4 10

Experiment 2

English Phonological 8.6 1.2 2 14
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